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ABSTRACT 

Exact Inference problem in Belief Networks has been well studied in the literature 

and has various application areas. In this thesis, a polynomial time transformation from 

Vertex Cover Problem to Exact Inference problem in Belief Networks is proposed and 

proved. To understand and see the development of the transformation, some well-known 

transformations about Vertex Cover Problem and Exact Inference, are introduced. By using 

the transformation proposed, some Vertex Cover problems are converted to Exact 

Inference Problems and solved by softwares using the algorithms of Exact Inference.  
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ÖZET 

İnanç Ağında Olasılık Çıkarımı problemi literatürde üzerinde sıkça çalışılan ve 

uygulama alanı oldukça geniş olan bir problemdir. Bu tezde, Köşe Kapatma probleminden 

İnanç Ağında Olasılık Çıkarımı problemine polinom zamanda dönüşüm için bir yöntem 

önerildi ve bu yöntemin doğruluğu ispatlandı. Önerilen dönüşümü daha iyi anlamak için, 

Köşe Kapatma ve Olasılık Çıkarımı problemleriyle alakalı dönüşümler hakkında bilgi 

verildi. Önerilen dönüşüm ile ilgili olarak, bazı Köşe Kapatma problemleri Olasılık 

Çıkarımı problemine dönüştürüldü ve Olasılık Çıkarımı problemini çözen algoritmaları 

kullanan yazılımlarla çözüldü.  
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1.    INTRODUCTION 
 
 

We are living in the world of causes and effects. An event is a result of action and 

all actions are the supplementary results of decisions. While giving ordinary decisions, 

maybe unconsciously we are checking the outer causes and effects about our decision. 

Science gives us the opportunity to model the cause and effect relations. Belief networks 

constitute such a framework that enables us to demonstrate the causal relationships 

between the events. In real life, the relations between the events are not deterministic, so in 

a belief network the effects of causes are determined by probabilities.  

 

With such a construction, it is possible to find out the probability of an event when 

a certain indirectly related other event happens. Calculating the probability of an event 

given related evidences is called Exact Inference Problem. The methods for solving these 

type of problems are important for troubleshooting, medical diagnosis, etc.  

 

Exact Inference Problem is very difficult to solve. But, in the last decade lots of 

scientists have worked on this subject. Another interesting problem in the literature is 

Vertex Cover problem (VC). The details of the problem can be found in the following 

sections. Our target in this thesis is to show that VC is an instance of Exact Inference 

Problem in BNs. Finding a polynomial time transformation from VC to Exact Inference is 

enough to prove that, these two problems are in the same class of complexity and VC is an 

instance of Exact Inference Problem. 

 

 Polynomial time transformations are so important that it enables to view a problem 
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in a different manner. Many people work on these transformations. They attempt to find the 

analogies among the problems in order to use the algorithms developed in a research area 

to another field. Another aim of transformation among the well known problems can be 

using the heuristics developed independently for each problem for the other type of 

problem. 

 

By converting the problem structure, it is possible to use the heuristics for Exact 

Inference Problem to VC. After the transformation, the structure of the Belief Network for 

the Exact Inference problem is investigated to obtain  better algorithms or some shortcuts 

for the known algorithms in the literature. Also, the approximations used for VC can be 

applied to certain Exact Inference Problem instances.  

 

In the following sections, after making the definitions of the terms used and the 

literature review, some known transformations about Exact Inference and VC will be 

introduced. Then, in the succeeding section, the proposed method and its usage will be 

described. Finally, application of the transformation proposed and its results will be 

explained. 

 

1.1 Basic Definitions 

 

Definition 1. A “Belief Network” is a graph that consists of a set of random 

variables, a set of directed links connecting pairs of nodes where each node has a 

conditional probability table that quantifies the effects that the parents have on the node. 

The set of random variables for the Belief Network is the union of the states of the nodes. 

A state of the node is the random variable that demonstrates the condition or the value of 

the node. The graph has no directed cycles so it is a directed acyclic graph (DAG). The 

causal relationships between particular variables are represented on the graph as nodes. 

Nodes are connected by causal links represented by arrows, that points from parent nodes 

(causes) to child nodes (effects). 

 
Definition 2. “Exact Inference Problem” on a belief network is the process of 
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computing  Pr( V=v | E=e ), or simply Pr(v | e) where v is a value of a variable V and e is 

an assignment of values to a set of variables E in the belief network. e is also called 

evidence or observation.  

 

To understand the Exact Inference problem, a simple example will be introduced.  

 
In this example all nodes are binary, i.e., all nodes have two possible values, that will 

be denoted by T (true) and F (false).  

 

We see that the event "grass is wet" (W=true) has two possible causes: either the 

water sprinkler is on (S=true) or it is raining (R=true). The strength of this relationship is 

shown in the table. For example, we see that Pr(W=true | S=true, R=false) = 0.9 (second 

row), and hence, Pr(W=false | S=true, R=false) =1 - 0.9  = 0.1, since each row must sum 

to one. Since the node C has no parents, its probability table specifies the prior probability 

that it is cloudy (in this case, 0.5). An instance of the Exact Inference problem can be 

computing the probability of sprinkler is on where grass is wet and it is raining. 

Pr(S=true|W=true,R=true) 
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How to find the answer is the art of Artificial Intelligence and it says that the answer 

is 0.1945.  

 

 

Definition 3. By using the notation of (Garey, Johnson, 1979), a “polynomial 

transformation” from a language L1 to a language L2 is a function f that satisfies the 

following two conditions: 

1- There is a polynomial time program that computes f. 

2- x ∈  L1 if and only if  f(x) ∈  L2. 

If there is a polynomial transformation from L1 to L2, it is written L1∝  L2 and read as 

“L1 transforms to L2”.  

One can make the following observations about polynomial transformations: 

1- If L1∝  L2 and  L2 ∈  P, then L1∈  P. 

2- If L1∉  P then L2 ∉  P. 

3- if L1∝  L2 and L2∝  L3, then L1∝  L3.  

 

The advantages of these transformations are; if a problem is converted into another 

form, all the heuristics developed individually in for the target problem can be applied to 

the converted problem. In our case, if it is possible to find a polynomial transformation 

from Vertex Cover problem to the Exact Inference in BN problem, any algorithm 

developed or any software developed for Exact Inference problem in BN can be applied to 

VC.  

 
Definition 4. The problems are said to be “polynomially equivalent” whenever both 

L1∝  L2 and L2∝  L1 holds. That means if one problem has a polynomial time algorithm so 

does the other. 

 
 
Definition 5. “Easy Problem”s are the problems which can be solved by such an 

algorithm whose complexity is polynomial, that is O(f) for a polynomial f in the size of 

input data. 
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Definition 6. The problems whose solution is either ‘yes’ or ‘no’ is said to be a 

“decision problem”, or “logic problem”.  

 

Hamiltonian Cycle (HC) problem is an example for such a decision problem. Or, the 

question whether a directed graph is acyclic is a decision problem. We know that, HC is 

NP-Complete. 

 
Definition 7. The problems where an optimal solution is searched with respect to a 

certain criterion, is “optimization problem”.  

 

Traveling Salesman Problem (TSP) is an example to the optimization problem. 

(Jungnickel,1999) says that each optimization problem corresponds to a decision problem. 

This can be illustrated using TSP as follows: For a given matrix W = (wij) and a positive 

integer M, the corresponding decision problem is the question whether there exists a tour π 

such that w(π) ≤ M or not. Another type of problem between optimization problems and 

decision problems is said to be evaluation problems, where the value of an optimization 

problem is asked for, without requiring the explicit solution itself. Actually, any 

optimization problem can be converted to an evaluation problem. Any algorithm that solves 

the optimization problem also solves the evaluation problem. Analogously, solving an 

evaluation problem also gives a solution for the associated decision problem. 

 
It is easier to deal with the decision problems while converting it to a BN problem, 

because the answer required from the Exact Inference (EI) problem will be either 0 or 1. 

Namely, either the probability of a an event is higher than a threshold value or not. So, 

while converting the “Vertex Cover Problem” to EI, the decision problem version of the 

vertex cover problem  is used.  

 

Definition 8. A “vertex cover” of an undirected graph G = (V,E) is a subset S of V 

such that if (u, v) is an edge of G, then either u ∈  S or v ∈  S (or both). While talking about 

the VC problem in this content, the formal definition is: “Let G = (V,E) be a graph and k a 

positive integer. Does G have a vertex cover V’ with |V’| ≤ k?”.  
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Definition 9. The definition for “3-SAT problem” is as follows: Consider a collection 

C={c1,c2,…,cm} of clauses of a finite set U of n boolean variables. Let (the literal) u be true 

if and only if the variable u is true and let –u be true iff u is false. Each clause ci contains a 

disjunction of three literals over U.  A collection C of clauses over U is satisfiable if and 

only if there exists some truth assignment for U that simultaneously satisfies all the causes 

in C. The 3-SAT decision problem involves determining whether there is a truth 

assignment for U that satisfies all the clauses in C. 

 

1.2 Literature Review 

 

To show that a problem is in NP-Complete set, the method used in the literature is, 

showing a known NP-Complete problem can be polynomially transformed into that 

problem. The transformations among, Exact Inference problem and 3-SAT problem 

(Cooper,1990); VC (Vertex cover) problem and 3-SAT(Garey, Johnson,1979); HC and 3-

SAT(Papadimitriou,1982); HC and VC (Garey, Johnson,1979); Clique problem and VC 

(Homer, Selman, 2001); HC and TSP are proven. One other transformation is MMP 

(Multidepot Multisalesman Problem) to TSP. Any algorithm of TSP can be used to solve 

the transformed TSP (Guoxing,1995). But there is no such  transformation in literature 

directly (without the detour using 3-SAT) from Exact Inference to VC.  

 

The techniques used for proving NP-completeness results vary almost as widely as 

the NP-complete problems themselves. However, there are several general types of proofs 

that occur frequently and that can provide a suggestive framework for deciding how to go 

about proving a new problem is NP-complete. These are restriction, local replacement and 

component design (Garey, Johnson, 1979). An NP-completeness proof by restriction for a 

given problem A∈  NP consists simply of showing that A contains a known NP-complete 

problem B as a special case. In proofs by local replacement, all we do is pick some aspect 

of the known NP-complete problem instance to make up a collection of basic units, and we 

obtain the corresponding instance of the target problem by replacing each basic unit, in a 

uniform way, with a different structure. The basic idea for component design is to use the 
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constituents of the target problem instance to design certain components that can be 

combined to realize instances of the known NP-complete problem. The transformation 

from VC to Exact Inference that we will introduce is in the form of component design, 

which is the most complicated (Garey, Johnson 1979). 

 

As is becoming increasingly well known, an influence diagram was defined in the 

1970s as a graphical representation of the relationship of the decisions and uncertainities in 

a decision problem (Howard,1990). An influence diagram is a graphical structure used to 

model uncertain variables and decisions and to explicitly reveal probabilistic dependence 

and the flow of data. It is an intuitive framework to formulate problems as seen by decision 

makers and to incorporate the knowledge of experts. It also is a precise description of 

information that can be stored and manipulated by a computer. An algorithm is developed 

that can evaluate any well-formed influence diagram and determine the optimal policy for 

its decisions. Since the diagram can be examined directly, there is no need to construct 

other representations, such as a decision tree. As a result, the examination can be performed 

using the decision maker's perspective on the problem. Questions concerning sensitivity 

and the value of information are natural and easily posed. Modifications to the model 

indicated by such analyses can be made directly to the problem formulation and then 

evaluated directly (Shachter, Ross, 1988). 

 

It has since become the most effective tool available for the representation and 

evaluation of decision problems. Researchers are extending the capability of the tool while 

practitioners are expanding its use in aiding decision-makers (Howard, 1990). The field of 

Belief Networks, and graphical models in general, has grown enormously over the last 

fifteen years, with theoretical and computational developments in many areas. As a 

consequence there is now a fairly large set of theoretical concepts and results for 

newcomers to the field to learn (Cowell, 1999). 

 

 (Cooper, 1990) states that Belief Networks provide a natural, efficient method for 

representing probabilistic dependencies among a set of variables. For these reasons, 

numerous researchers are exploring the use of belief networks as a knowledge 
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representation in artificial intellingence. Algorithms have been developed for efficient 

probabilistic inference using special classes of belief networks. More general classes of 

belief networks, however, have eluded efforts to develop efficient inference algorithms. 

Probabilistic inference problem using Belief Networks is NP-hard. Therefore, it seems 

unlikely that an exact algorithm can be developed to perform probabilistic inference 

efficiently over all classes of belief networks. 

 

(Dagum, Luby, 1993) showed that approximating probabilistic inference in Belief 

Networks is NP-hard. They again used the reduction of Cooper, and show that for all ε < 

½, there is no polynomial-time absolute approximation algorithm for Pr[ V = v | E =e] if          

NP ≠ P. The absolute approximation gives an estimate of Z where   

Pr[ V = v | E =e] - ε  ≤  Z ≤ Pr[ V = v | E =e] + ε 

So ε  is the maximum error  of the absolute approximation. 

Also, if NP ≠ P, there is no polynomial-time randomized absolute approximation 

algorithm for Pr[ V = v | Y =y] where ε < ½ and δ< ½ where δ is the probability of failure 

for the randomized approximation algorithm in the specified bounds of Z determined  by ε. 

(Dagum, Luby, 1997) showed that there is a polynomial time algorithm while 

approximating probabilistic inference, if the Belief Network contains probabilities that 

come arbitrarily close to zero in the case that the evidence set is empty or constant-sized 

and the conditions for the error bounds are the same as above. 

 

Another issue about Exact Inference problem is to group Belief Networks according 

to the groups complexity. It is shown that even for suprisingly restricted cases, the problem 

is NP-hard (Roth, 1996). It is also NP-hard when you convert it to Approximate Inference 

Problem. The place of Exact Inference Problem among the NP-hard problems is also 

worked by Roth in order to rank the problem among the others. 

 

The related problems with Belief Networks such as MAP explanation was shown to 

be NP-hard for exact solution (Shimony,1994) and for approximation (Abdelbar,1997). 

MAP explanation is very similar to Exact Inference problem. For MAP explanation, the 
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objective is to find the instantiation I with probability Pr(A | e). The MAP explanation with 

bounded probabilities is also NP-hard. This is shown by (Abdelbar,2000).   

 

Belief Networks have many different application areas. They provide a powerful 

tool for simulating the interactions between physical, social and economic variables. 

Although belief networks are no substitute for high quality fieldwork, it is clear that they 

provide a mathematical framework that facilitates interdisciplinary data capture and 

analysis (Batchelor,1999). It has applications nearly in all diciplines such as finance, 

troubleshooting, medical diagnosis and agriculture.  
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2. TRANSFORMATIONS 
 

 
2.1 Transformation from 3-SAT 

 
 
2.1.1 Transformation from 3-SAT to Exact Inference 

 
 

By following Cooper(1990) and Bilgic(2002), it is possible to convert a 3-SAT 

problem to decision problem version of the Exact Inference problem. 

 

Let’s consider the following instance of 3-SAT with U={u1,u2,u3,u4} and 

C={(u1 ∨  u2 ∨  u3), (-u1 ∨  -u2 ∨  u3), (u2 ∨  -u3 ∨  u4)} 

 

The truth assignment u1 = T, u2 = F, u3 = F, and u4 = T results in the answer “yes” 

for this example. 

 

For the probabilistic inference problem, let’s assume without loss of generality that  

all the variables can take only two values, Di = {T ,F } for all i where Di is the set of states 

of node i. Furthermore, considering the inference problem without the introduction of new 

evidence e, i.e., we are interested in the marginal probability Pr(Y) rather than Pr(Y|e). If it 

is possible to show that a restricted version of the problem is NP-hard, the more general 

version of the problem will also be NP-hard. 
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The decision problem version of the inference problem will return “yes” if  

Pr(Y = T)>0, 

and “no” otherwise. Let’s denote this decision problem as Inference in Belief Networks 

Decision Problem (IBND). We will transform 3-SAT to IBND.  

 

Let U = {u1,u2,…,un} and C = {c1,c2,…,cm} be any instance of 3-SAT. The BN 

constructed with a variable Y such that Pr(Y=T)>0 means C is satisfiable. 

 

The BN corresponding to the 3-SAT will have several components: 

1. A truth setting component 

2. A clause satisfaction testing component 

3. An overall satisfaction testing component 

Figure 2.1 depicts the BN corresponding to the example 3-SAT problem. 

 

The BN is represented as (G,P) where G=(N,A) is the DAG composed of 

nodes(vertices) N and arcs (edges) A. The truth setting component of the BN corresponding 

to 3-SAT is given as ((Nt,∅ ),Pt) and it is defined for all variables in U. In particular Nt is 

the set of all variables from U and Pt is the set of probabilities set at ½: 

Nt=U, 

and, 

Pt = {Pr(u1 = T) = ½, Pr(u2 = T) = ½,…,Pr(un = T) = ½}. 

 

See Figure 2.1 where four nodes are generated as shown in the first row of the 

network. 
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Figure 2.1 A belief network structure corresponding to the example 3-SAT problem 

 

For each clause cj ∈  C of the 3-SAT problem (1 ≤ j ≤ m), there is a clause satisfaction 

testing sub component ((Ns
j , As

j), Pj
s) that tests whether a given instantiation of the 

variables in U satisfies the clause cj ∈  C. The components of ((Ns
j , As

j), Pj
s) are defined as 

follows: 

Nj
s = {wj

1, wj
2, wj

3, Cj}, 

Where wj
1 (wj

2, wj
3) is the variable corresponding to the first (second, third) literal in clause 

cj. From the example c2 = (-u1 ∨  -u2 ∨  u3) and therefore w2
1 = u1, w2

2 = u2, and w2
3 =u3. 

The variable Cj  represents the truth value of clause cj. 

Aj
s = {(wj

1, Cj), (wj
2,Cj),wj

3,Cj)}, 

Pj
s  = {Pr(Cj = T|πcj)} 

where πcj represents the conjunction of the three variables wj
1, wj

2, wj
3 of clause cj and 

          

1 if gj(πcj) = T, 

   Pr(Cj = T|πcj) =  
        0 if gj(πcj) = F, 

where gj(πcj) is the truth function for clause cj. 

From the example problem, for the clause c3 = (u2 ∨  -u3 ∨  u4). There is a sub-component 

((N3
s, A3

s), P3
s), where 

 N3
s  = {u2, u3, u4, C3} 

 A3
s  = {(u2, C3), (u3, C3), (u4, C3)} 

 P3
s  = {Pr(C3 = T| u2 = T, u3 = T, u4 = T) = 1, 

truth-setting
Component

Clause-satisfaction-testing
component

overall-satisfaction-testing
component

 u1  u2  u3  u4

 C3 C2 C1

 D1  D2 Y
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  Pr(C3 = T| u2 = T, u3 = T, u4 = F) = 1, 

  Pr(C3 = T| u2 = T, u3 = F, u4 = T) = 1, 

  Pr(C3 = T| u2 = T, u3 = F, u4 = F) = 1, 

  Pr(C3 = T| u2 = F, u3 = T, u4 = T) = 1, 

  Pr(C3 = T| u2 = F, u3 = T, u4 = F) = 0, 

  Pr(C3 = T| u2 = F, u3 = F, u4 = T) = 1, 

  Pr(C3 = T| u2 = F, u3 = F, u4 = F) = 1} 

The clause satisfaction testing component is composed of the union of such sub 

components: 

 

 

Finally, the overall satisfaction testing component ((N0, A0), P0) tests whether all of m 

clauses are satisfied simultaneously. In particular, there is an arc from each Cj to a variable 

Y and the probability Pr(Y=T| C1, C2,…,Cm) is 1 if and only if C1 = C2 = …, Cm = T, 

otherwise it is 0. 

 

For the BN constructed in Figure 2.1, it is achieved via intermediate dummy nodes, 

Di. Each dummy variable Di has the value T if each of its parents has the value T; otherwise 

it has the value T with probability 0.  

 

This construction of BN can be performed in polynomial time. The construction of 

the truth setting component is O(n), the clause satisfaction testing component is O(m), and 

the overall satisfaction component is O(m). The result for this transformation is the clause 

set C is satisfiable if and only if Pr(Y = T) > 0.  

 

 
2.1.2 Transformation from 3-SAT to VC 

 

By following (Jungnickel, 1999),  it is possible to transform a 3-SAT problem to 

Vertex Cover problem. 

 

Ns ! ! j!1
m Nj

s, As ! ! j!1
m Aj

s, Ps ! ! j!1
m Nj

s.
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Let C1,…,Cm be an instance of 3-SAT, x1,…,xn are the variables occurring in C1,…,Cm. 

For each variable xi, consider a copy of the complete graph K2, namely 

Ti = (Vi, Ei) where Vi = {xi, xi`} and Ei = {xixi`}; 

 

The purpose of these sub-graphs is to determine the Boolean value of xi. Analogously, 

for each clause Cj (j = 1,…,m), we define a copy Sj = (Vj`, Ej`) of K3, where  

Vj`={c1j, c2j, c3j} and Ej`= {c1jc2j, c1jc3j, c2jc3j}; 

 

The purpose of these satisfaction-testing components is to check the Boolean value of 

the clauses. Note that each vertex cover of G has to contain, for each j, at least two of the 

three vertices in Vj`. 

 

The graphs Ti ( i= 1,…,n) and Sj (j= 1,…,m) are the ‘special components’ of our graph 

G; they do not depend on the explicit structure of the term C1,…,Cm , but only on n and m. 

The only part of the construction of G where the literals occurring in the clauses are used is 

the part we turn to now: Fixing the edges connecting the Sj and the Ti (‘communication 

edges’). For each clause Cj, let uj, vj and wj be three literals occurring in Cj, and define a set 

of edges  

Ej`` =  {c1juj, c2juj, c3jwj}. 

 

Finally, we define G = (V,E) by 

 

 

 

and put k = n+2m. Obviously, the construction of G can be performed in polynomial time 

(in n and m). Figure 2.2 shows as an example, the graph corresponding to instance of 3-

SAT. 

 

(x1 + x3`+ x4`) (x1`+ x2 + x4`)  

V :! ! i!1
n Vi ! ! j!1

m Vj
" and E :! ! i!1

n Ei ! ! j!1
m Ej

"
! ! j!1

m Ej
"" ,
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Figure 2.2 An instance of VC 

 

The claim is, G has a vertex cover W with |W| ≤ k if and only if there is a combination 

of values for x1,…,xn such that C1,…,Cm has value true. Any vertex cover has to contain at 

least n + 2m = k vertices so that |W| = k is achieved. Moreover, we know that, if such W 

exists, it has to contain, for each i, exactly one of the vertices xi and xi` and for each j, 

exactly two of the three vertices of Sj. 

 

Now, suppose W is such a vertex cover. Then we can use W as follows to obtain a 

combination w of Boolean values for the variables x1,…,xn: If W contains xi, we set w(xi) = 

true; otherwise W has to contain the vertex xi`and we set w(xi) = false. Now consider an 

arbitrary clause Cj. As W contains exactly two of three vertices in Vj`, these two vertices are 

incident with exactly two of three edges in Ej``. As W is vertex cover, it has to contain a 

vertex incident with third edge (c3jwj, for the example above), and hence W contains 

corresponding vertex in one of the Vi ( in our example, the vertex corresponding to the 

literal wj, that is , either xi or xi`). According to our definition of assignment w of Boolean 

values, this literal has the value true, so that the clause Cj also is true. As this holds for all j, 

the combination w of Boolean values gives the term C1,…,Cm also the Boolean value true. 

 

Conversely, let w be an assignment of Boolean values for the variables x1,…,xn such 

that C1,…,Cm takes the value true. We define a subset W ⊂  V as follows: If w(xi) = true, W 

contains vertex xi, otherwise W contains xi` (for i = 1,…,n). Then, all edges in Ei are 

covered. Moreover, for each clause Cj ( which has value true using w), at least one edge ej 

of Ej`` is covered. Adding the end vertices Sj of the other two edges of Ej`` to W, obviously 

    x1    x1`     x2    x2`     x3    x3`     x4    x4`

c21 c22

c11 c31 c12 c32
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all edges of Ej`` and of Ej` are covered and W is a vertex cover of cardinality k. 

 

 

 

2.2 Transformation from VC 

 

2.2.1 Transformation from VC to Exact Inference for a special type of VC 

 

By using these two transformations, it is possible to say that the problems in a special 

form for VC can be converted to BN. The special form is the graph obtained after the 

transformation from 3-SAT to VC.  

 

Suppose the graph for the VC satisfies the following conditions. There are two type 

of nodes for the graph. These are clause nodes and decision nodes. Decision nodes are in 

pairs, there is an edge between these two nodes. The clause nodes are grouped in triples. 

For each group, each vertex in the group has an edge with the other two node, and there is 

an edge which combines the node with a decision node. For a single clause group that 

consist of  3 nodes, there are 3 decision node connected, and these 3 node are in different 

decision groups. For the graph there is no other node or edge.  

Figure 2.3 A belief network structure corresponding to the example VC problem 

 

VC problem in such a graph can be converted to an inference problem by using same 

truth-setting
Component

Clause-satisfaction-testing
component

overall-satisfaction-testing
component

 u1  u2  u3  u4

 C2 C1

 D1 Y
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technique described above. The graph is a representation of a 3-SAT problem. Finding the 

original 3-SAT problem will yield the Exact Inference problem. An example problem is as 

follows: 

 

Lets take the graph in figure 2.2 as the vertex cover problem with cardinality k = 8 

which is n + 2m. This is actually the representation of the example 3-SAT problem where  

the clauses are (x1 + x3`+ x4`) (x1`+ x2 + x4`) 

 

We can construct the Exact Inference problem with BN for this sample problem. 

Figure 2.3 shows the BN representation of the 3-SAT problem, so it represents the VC 

problem in Figure 2.2.  

 

If we solve this BN for Pr(Y = T), the probability will be greater than 0, means that 

for a particular assignment of nodes to correct values it is possible to achieve Y is true. 

Then, for the logic problem VC, we can say that there exists a solution with vertex cover of 

cardinality 8. Then, what is wrong with this transformation? 

 

Firstly, to apply this transformation, the analysis of the original graph for VC should 

be done. By this analysis, whether the graph is suitable for the transformation condition is 

answered. This analysis has a cost and a formal way to do must be determined. 

 

This transformation is not the required transformation. Actually, the transformation 

that is sought should be applied for all type of VC problems. 

 

Besides, covering all aspects of VC problem, another important fact to be considered 

for the transformation is doing in a reasonable time. While performing it, the complexity 

should be polynomial. 
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2.2.2 Transformation from VC To Exact Inference 

 
 

In this section, we will transform the general VC problem to Exact Inference 

problem in polynomial time. The transformation should include any instance of VC 

problem. While converting VC, the Belief Network created will be in a fix structure. The 

Belief Network contains nodes, edges and probability tables. These nodes and edges can be 

classified into groups. Let’s consider a graph G=(V,E) for the vertex cover problem, with 

V={V1,...,Vn} and E={E1,...,Em}.  

 

2.2.2.1 Nodes of Belief Network 
 

The nodes of the Belief Network are defined as follows: 

Vertex nodes: For each vertex Vi on the graph, construct a vertex node for the belief 

network.  So there are n vertex nodes. Figure 2.4 shows the vertex nodes. 

 

Edge nodes: For each edge Ei on the graph, construct a node for the belief network. 

So there are m edge nodes. Figure 2.5 shows the edge nodes. 

 

Edge Result node: For each edge on the graph, except the edge with max. index 

number, construct a node for the belief network to see whether the edge is wrappered for 

the original problem or not. So, there are m-1 edge result node. Figure 2.6 shows the edge 

result nodes. 

 

State node: Corresponding to  the number of vertices in the vertex cover, construct 

state nodes for the belief network that counts the number of vertices in the vertex cover. 

For a vertex node Vi there are i+1 state nodes. Figure 2.7 shows a state node Sij where 

0≤j≤i.  
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State Result nodes: To see whether the number of covered vertices is less than or 

equal to k or not, construct the state result nodes. There are k+1 state result nodes. Figure 

2.8 shows the state result nodes. 

 

Final node: The node for BN that is associated with whether the solution for VC is 

true or false. Figure 2.9 shows the final node. 

 

For each node, there are two states, which is true or false. Total number of nodes  is   

( 2m + k +  [(n+2) * (n + 1) / 2 ] )  

 

2.2.2.2 Edges of Belief Network 
 

While describing the edges of the Belief Network, the relation of a group of node and 

its parents will be utilized. 

 

For Vertex nodes: These nodes don’t have parent nodes.  

Figure 2.4 Vertex Nodes of BN 

 

 

For Edge Nodes: Each edge node has two parent nodes. These are the vertex nodes 

that form the edge in the original graph. 

Figure 2.5 The parents of node Ej where Ej is (Vi,Vz) 

vertex nodes
*    *     *    *      *

 V1  V2  Vn

vertex nodes
*      * * *    *     *    *   * *

edge nodes
            *       *       *   *      *       *     

 Vi  Vz

 E1  E2  Ej  Em
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For Edge Result nodes: Each edge result node have at most two parent nodes. These 

are the predecessor edge result node and an edge node. 

 

 

 

Figure 2.6 The Edge Result Nodes 

 

For State nodes: The state nodes can be classified into n groups. Each group can be 

matched to a vertex node. In each group there are x nodes, where x is the order of the vertex 

node matched to that group. So, total number of state nodes is [(n+1)*(n+2)/2]-1. For each 

state node, there are at most 3 parent nodes. 

The notation used for a state node is Sij, where i is the vertex node illustrated with this 

node, and the j is the state of the first i vertex means if Sij is true, j of the first i vertex is 

covered. It is obvious that,  j ≤ i. j can be 0.  

Figure 2.7 The incoming arcs of the state node Sij 

 

The incoming arcs for state Sij are added if applicable. In Figure 2.7, the arcs are 

possible to draw if Si-1,j and Si-1,j-1 exists. If they don’t exist, then the arcs are not in BN. 

  
 Si-1,j-1

  
   Si,j

  
   Si-1,j

  
    Vi

edge nodes
            *       *       *   *      *       *     

edge result nodes
            *       *       *   *      *        

 E1  E2  Ej  Em

 R2 R1  Rj Rm-1
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However, at least there is always one arc to add, which comes from Vi.  

 

For State Result nodes: The state result nodes are constructed to see the total 

number of covered vertex. There are k+1 of them. For each result node there are at most 2 

parent nodes. These are the predecessor node and the state node Snj, where j≤k . 

 

Figure 2.8 The State Result Nodes 

 

For Final node: This node has 3 parent nodes. These are the last state result node, 

last edge node and last edge result node. It is only true if all parent nodes are true. 

 

Figure 2.9 Final Node denoted by Y 

 

There are no other nodes or edges for the BN. 

 

2.2.2.3 The Probability Tables 
 

Probability table for vertex nodes: There are 2 states for each node. And the states 

are probabilistic, they are not known. So, giving equal chances to each state seems 

 Em

 DkRm-1   Y

state result nodes
            *       *       *   *      *       *     where i = n

state result nodes
            *       *       *   

 Sn0  Sn1  Snk  Snn

 D1 D0  Dk
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reasonable. 

 

  VI 
TRUE 0.5 
FALSE 0.5 

Table 2.1 Probability table for vertex nodes 

Probability table for edge nodes: There are exactly two parent nodes for each edge 

node. The probability table for edge Ei is as follows: 

 

Table 2.2 Probability table for edge nodes 

 

The table says that the node Ej with parents Vi and Vz is always true if any of the 

parent is true. 

Probability table for edge result nodes: They have two parents nodes, except the 

first edge result node. The probability table is as follows: 

 

Table 2.3 Probability table for edge result nodes 

The table says that the node Rj with parents Rj-1 and Ej is true if both of the parents are 

true. For node R1, this table is not valid because there is no R0 exists. For R1 

Pr(R1=True|E1=True)=1 and Pr(R1=True|E1=False)=0 

Probability table for state nodes: They have at most three parent nodes. If the 

parent node does not exist, it should be removed from the table. The table is as follows: 

 

Ej

Rj-1 TRUE FALSE TRUE FALSE
Rj TRUE 1 0 0 0

FALSE 0 1 1 1

TRUE FALSE

Vi

Vz TRUE FALSE TRUE FALSE
Ej TRUE 1 1 1 0

FALSE 0 0 0 1

TRUE FALSE
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Table 2.4 Probability table for state nodes 

 

The state nodes are designed in order to count the number of true assignments to 

vertex nodes. If Sij is true, then  j of the first i state node is true. For the state nodes Snj, the 

information gained is the total number of true vertex nodes. 

Probability table for state result nodes: They have 2 parent nodes, except the first 

one. The probability table is as follows: 

 

Table 2.5 Probability table for state result nodes 

 

The table says that the result node Dj is true if any of the parents is true. 

 

2.2.2.4 An Example Transformation 
 

To understand the model easily,  lets define a vertex cover problem and solve it as an 

Exact Inference problem. 

Figure 2.10 A VC Problem: Is it possible to have a vertex cover V where |V|<=2? 

 

Here, the problem is stated in Figure 2.10. We are supposed give answer to the 

Vi
Si-1,j-1
Si-1,j TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE

Sij TRUE 0.5 1 0 0 0.5 0 1 0
FALSE 0.5 0 1 1 0.5 1 0 1

TRUE FALSE
TRUE FALSEFALSE TRUE

A B

D C

Sn,j

Dj-1 TRUE FALSE TRUE FALSE
Dj TRUE 1 1 1 0

FALSE 0 0 0 1

TRUE FALSE
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following question whether there is a vertex cover V where |V| ≤ 2? By using the 

transformation method proposed above the BN representation of this problem can be seen 

in Figure 2.11. 

 

We can solve this problem by using a software. Then, what is the next step? How 

can we conclude about original VC problem? 

 

If the probability for Pr(Y = TRUE) >0 then the answer to the vertex cover problem 

is yes, means it is possible to have a vertex cover with cardinality 2. 

Figure 2.11 The BN representation of the example problem 

After solving this simple problem with Hugin, the probability for Pr(Y = TRUE) = 

0.0625. Then, the conclusion for the original VC problem is; we can find a vertex cover 

with |V| ≤ 2. 

 

 

2.2.2.5 Correctness Of The Transformation 
 

Lemma 1: Pr( Y = TRUE) > 0 if and only if there is a vertex cover with cardinality k. 

A B C D

E1 E2 E3 E4 E5

R1 R2 R3 R4 Y

SA0 SA1

SB0 SB1 SB2

SC0 SC1 SC2 SC3

SD0 SD1 SD2 SD3 SD4

D0 D1 D2
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Proof: If the states of all vertex nodes are given, the probability of Y is either 0 or 1. 

That is the result of having deterministic relations among the nodes. It is 1 if all incoming 

nodes for node Y is true. Then, Rm-1, Em and Dk is true. Rm-1 and Em is true iff all edges are 

true. It is safe to say that all edges are true if Y is 1. Dk is true if the number of vertex nodes 

which is in state true, is smaller than or equal to k which is the cardinality number for the 

orijinal VC. So, having Y=1 means all edges are covered and the number of vertex nodes in 

state 1(true) is less than k. There are 2n possible assignments for vertex nodes. It means 

there are 2n different evidence options for vertex nodes. 

where the evidence i is an assignment of vertex nodes different than evidence j where    i ≠ 

j. If the probability of Y is greater than 0, then for an evidence i  

Pr(Y = TRUE | evidence i) 

is equal to 1. So, the original VC problem has a solution with cardinality k. 

 

Lemma 2: For any BN representation with a given vertex cover, exactly n of the 

state nodes is true. For each group of state nodes, only one node is true. 

 

Proof: By using induction 

1- For the first group of states nodes, S10 and S11, the probabilities are as follows: 

Pr(S10=True|V1=True)=0 and Pr(S10=True|V1=False)=1 

Pr(S11=True|V1=True)=1 and Pr(S10=True|V1=False)=0 

So either S10 or S11 is true according to the condition of V1. 

It means for the first group ofstate nodes only one of them is true. 

2- Think about the kth group of state nodes Skj. 

Let Skz is true, and all other state nodes in the group are false. 

For the  state nodes Sk+1,j the parents are Sk,j-1, Sk,j and Vk+1 if the parents exist. If  

Sk,j-1 and Sk,j are false regardless of the value of Vk+1 Sk+1,j is false. So, in order to make 

Sk+1,j true either Sk,j-1 or Sk,j must be true. For the nodes in the kth group only Skz is true, then 

the possible candidate nodes in the kth group to be true are Sk+1,z or Sk+1,z+1. According to 

Table 2.4 only one of them is true conditioning to the value of Vk+1. Then we can conclude 

Pr!Y ! TRUE" ! "i!1
2 n
#Pr!Y ! TRUE|evidence i".1/2n$
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that only one node in a group of state nodes is true. 

 

If state node Sij is true, j of the first i node is true. Let Sij  and Siw is true. That means 

j of the first i node is true and w of the first i node is true. That is impossible if j≠w. For 

each group of state nodes,  only one node is true. There should be one true state node 

because in any case, j of i node(s) is true. Remember that j is from 0 to i. For each vertex 

node there is exactly one state group. Then, there are n groups of state nodes. If there 

should be one true node for each group, there should be n true state nodes in the whole BN. 

 

Lemma 3: For the probability table of a state node, two parent state node can not be 

true simultaneously. So the probability assigned for both parents are true is not important. 

 

Proof: That is related with Lemma 2. For each group of state nodes there is only one 

true state node. For a state node Sij the parents Si-1,j ,Si-1,j-1 are in the same group. So, at most 

one of them is true. 

 

Lemma 4: The transformation can be carried out in polynomial time. 

 

Proof: The number of nodes for BN is ( 2m + k + [ (n+2) * (n + 1) / 2 ] ) . For a 

complete graph m is n*(n-1)/2. So, the number of nodes seems to be reasonable. For each 

node the number of edges connecting the node with its parents are 0, 1, 2 or 3. So 

determining the edges is not a big deal. For the probability tables, the number of states of 

nodes are 2, the generic  forms exist. So, it also doesn’t increase the complexity. Finally, 

the transformation is O(n2) and it is polynomial. 

 

 
 

2.3 Solving the Exact Inference Obtained 

 
 

In the literature there are some algorithms to solve Exact Inference problem. So we 

can use these algorithms to solve the Exact Inference problem for the special type of BN 
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obtained after the transformation. Consequently we will be able to read the solution of the 

Vertex Cover problem from the solution of the Exact Inference Problem. In order to solve 

this Exact Inference problem, the method must be choosen. We are interested in finding the 

probability of a single node. So, a method directly constructed to solve this node such as 

node elimination can be useful. If we want to reach to the result by giving initial values to 

vertex nodes, Junction tree algorithm can be useful. There are some interesting 

observations while using this algorithms.  

 

2.3.1 Node Elimination Method 

 

Description: Node Elimination Method is an algorithm to solve Exact Inference 

problem. It uses two fundamental operations. First is the barren node elimination and the 

second is arc reversal (Shacter, Ross, 1988). Barren node is the node that has no children 

and, not in the evidence set or the set of nodes whose posterior probability is asked. Arc 

reversal is the key step of the algorithm that  changes the direction of the arcs in order to 

make the nodes barren and eliminate them. While converting the directions probability 

tables should be recalculated.  

 

For the node elimination method, we initially remove the state nodes Sij where j>k. 

These nodes don’t have children and called as barren nodes. So, we can eliminate them.  

 
A B C D

E1 E2 E3 E4 E5

R1 R2 R3 R4 Y

SA0 SA1

SB0 SB1 SB2

SC0 SC1 SC2

SD0 SD1 SD2

D0 D1 D2
 

Figure 2.12 The BN after Elimination of Barren Nodes 
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By following our example, in Figure 2.12, the nodes SC3, SD3, SD4 are removed. 

After solving it, nothing changed for node Y. It is again 6.25 % for being true. The second 

step for this algorithm is arc reversal. Starting with the arc pointing to Y from Dk, we can 

reverse the arcs.  

 

Lemma 1: By using a logical methodology, in each step of arc reversal a node will be 

barren and will be eliminated for the special type of BN obtained by the transformation. 

The methodology: Starting with the arc reversal with the arc pointing from Y to Dk, 

Dk will be barren. After this arc reversal Dk-1 and Snk will have a child which is Y. Applying 

arc reversal to the nodes which have only single child which is Y will yield a result that in 

each iteration a node will be barren, and in each step after elimination of the barren node, 

one or two nodes will be added to the set of the nodes which have a single child Y. 

 

There are exactly n+2m+k+1+(n2+3n)/2 nodes. In the final graph we will have n+1 

nodes. Then, there are 2m+k+(n2+3n)/2 arc reversals. While calculating the new 

probabilites, there is no need to calculate the node which will be a barren node. So at each 

iteration, we will only recalculate the probability table of node Y. The first step of arc 

reversal for the example problem is, reversing D2 ! Y to D2"Y.  

After this conversion the  graph will be as in Figure 2.13. 
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A B C D

E1 E2 E3 E4 E5

R1 R2 R3 R4 Y

SA0 SA1

SB0 SB1 SB2

SC0 SC1 SC2

SD0 SD1 SD2

D0 D1 D2
 

Figure 2.13 BN after conversion 

 

Now, D2 is a barren node and there is no need to caculate the probability table for D2. 

Calculating the probability table for Y is enough.The new table for Y is: 

Table 2.6 New Probability Table After Node Elimination 

 

Finally after 2m+k+(n2+3n)/2 arc reversals, the graph will be as in Figure 2.14. 

Figure 2.14 Final BN for Node Elimination Method 

A B C D

Y

R 4
E 5

S D 2
D 1 T F T F T F T F T F T F T F T F

Y T R U E 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
F A L S E 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

F
T F

T F T F
F

T

T FT
T

F
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This network means, the state of Y depends on the states of A, B, C and D. By using 

the probability table of Y in this graph, we can conclude about any assignment for the 

vertex nodes. The table is as follows: 

 

Table 2.7 Final Probability Table after Node Elimination Method 

This table gives us all possible assignments for the vertex.  

 

 

 

2.3.2 Junction Tree Algorithm 

 

Description: Junction Tree Algorithm is a method for performing probabilistic 

inference on a belief network. It works in two steps. First, a belief netwrok is converted 

into a secondary structure. Then, probabilities of interest are computed by operating on that 

second structure. For repetitive queries this method has an advantage, and most of 

softwares are using this method. 

 

This method is developed by Lauritzen and Spiegelhalter and refined by Jensen. 

Huang and Darwiche prepared a document for Junction Tree algorithm in order to 

implement the algorithm without additional help. All of the details of this algorithm and 

more can be found in that document (Darwiche, Huang,1994). As mentioned above, the 

algorithm consists of two stages. The first stage is graphical transformation as stated in 

Figure 2.15. 

 

 

 

 

A
B
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Y T R U E 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
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Figure 2.15 Graphical Modification of Junction Tree Algorithm 

 

The BN we have for the vertex cover is not an ordinary BN. It has deterministic 

relations and the structure is fixed, so we can decompose the BN. While performing the 

Join Tree algorithm some simplifications can be performed in the first stage of graphical 

transformation which is the moralization step. In this step, parents of each node is 

connected with an edge. There are exactly n2+2m+k marriages in the moralization step for 

our special network. 

 

m of the marriages are the marriages between vertex nodes. These marriages are done 

if the vertex are connected via an edge in the original VC problem graph. By marrying Di’s 

and  Sn,i+1 we have k more arcs. By marrying Ei’s and Ri-1’s we introduce m-1 arcs. 2 arcs 

come from Em to Dk, and Rm-1 to Dk. (n*(n-1))/2 arcs are from the combination of Sij’s and 

Si,j+1’s where i is 1 to n-1. (n*(n+1))/2-1 of them are the arcs between Vi and Si-1,j where j is 

from 0 to i-1. If we sum up the numbers of the arcs added, it will give the number written 

above. 

Moralization

Triangulation

Identifying Cliques
Building an optimal Join Tree

Belief Network

Moral Graph

Triangulated 
Graph

Join Tree
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3.BENEFITS OF THE TRANSFORMATION 
 

 

3.1 Approximation algorithms of VC 

 

As stated in previous sections, if there is a polynomial time transformation among 

two problems, heuristics developed in one side can be applied in the other side. In our case 

VC and Exact Inference problems are not polynomially equivalent, but VC is a special type 

of Exact Inference Problem. For an Exact Inference problem in the structure of the BN 

proposed, the approximation algorithms of VC can be applied to Exact Inference Problem.  

 

The vertex cover problem can be described as an integer programming in the 

following way.  

 

 

 

 

 

The LP-relaxation for this integer program is: 

 

 

 

 

A half-integral solution to LP-relaxation is a feasible solution in which each variable 

min "v#V x v

subject to x u # x v $ 1, !u,v" # E
x v # %0,1&, v # V

min "v#V x v

subject to x u # x v $ 1, !u, v" # E
x v $ 0 v # V
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is 0,1 or ½. 

 

Any extreme point solution for the set of inequalities for this LP-relaxation is half-

integral. This result leads to a factor 2 approximation for vertex cover: find an extreme 

point solution, and pick all vertices that are set to ½ or 1 in this solution. (Vazirani,2001) 

 

This approximation can be used for the BN we achieved after polynomial time 

transformation from VC problem to Exact Inference problem. If the deal for a BN 

introduced in previous chapters is whether the P(Y=true)>0 or equal to 0, the answer can 

be given by using the LP-relaxation above. 

 

After solving the LP-relaxation, Vi is true if Vi is inherited from Xi and Xi is 1 or ½.  

Set Vi false, if Xi is 0. Calculating the probability for node Y is very easy, and can be done 

in polynomial time, after assigning the values of the chances nodes in the Belief Network. 

Because, all other nodes are deterministic nodes.  

 

 

 

 

 

 

Here, a is the variable for comparison with k. It is known that the lower bound 

solution for the optimal vertex cover problem is a/2.  

 

If  a<k  then the probability of Y= true is greater than 0. 

 

If a/2<k<a then to come up with an idea about probability of Y at this time is 

impossible. 

 

If k<a/2 then the probability for Y=true is 0. 

 

a ! "i!1
n ceil!Xi" where

"i!1
n Xi !min of LP-relaxation and

Xi # %0,1,1/2& and
ceil!Xi" ! 'Xi(
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All of the operations above can be done in polynomial time. So, it is possible to come 

up with an idea about the probability of Y in polynomial time.  

 

Having a better approximation, scheme and improving on factor 2 for VC is an open 

problem. There are other methods that give factor 2 approximation for VC problem. 

0- Set C to empty set. 

1- Let E’ is the copy of the graph G. 

2- Remove any edge (u,v) from the graph E’ if exists.  If not stop. 

3- Remove all other edges adjacent to (u,v) from E’. 

4- Add u and v to set C. 

5- Goto step 2. 

 

When this algorithm stops, the edges removed in step 2 have no common edge. So 

the size of the optimal solution set |C*| should exceed  |A| where A is the set of removed 

edges. The set C is a vertex cover, and |C| = 2 |A|. So this approximation is also factor 2. 

Instead of dealing with linear programming, this easy and simple procedure may help to 

come up with an idea about the probability of Y by using the same idea above. 

 

A lot of people try to find a simpler and improved algorithms for vertex cover 

problem. (Chen, Kanj, Jia, 1999) proposes a new algorithm that solves the problem in O( 

kn + 1.271k k2). This is also true for the Exact Inference problem in the structure of the 

transformed VC problem.  

 

Vertex Cover Problems are deeply worked, so special types of  graphs for VC can be 

solved in polynomial time. If the graph is a tree, an algorithm that solves the problem with 

complexity O(n+m) exists with a dynamic programming approach. 

 

There are also approximation algorithms for the inference problem. It is possible to 

use the approximate inference problem solving techniques for the Vertex Cover problem. 

In the next section results of the experiments for approximate inference as a heuristic for 

VC can be found. 
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3.2 Using softwares developed for Inference Problem as a VC Solver 

 

The aim of this section is to find out whether it is possible to discover a better 

approximation algorithm for VC by using the approximation techniques for Exact Inference 

and the transformation proposed in Chapter 2 from a practical point of view.  

The process consists of 3 steps. 

1- Random VC problem inference creation 

2- Converting VC to BN 

3- Finding the optimal and approximate solution  

 

Coding for first and second step is done by GSAMS, a visualized algorithm modelling 

system. The third needs using the Application Program Interface (API) of softwares 

developed by BN specialists. For  performance reasons, Hugin and MSBN are used and the 

coding is done by C++.  

 

3.2.1 Softwares Used 

For solving the problem, the following software tools are used. 

HUGIN: The HUGIN System is a tool enabling you to construct model based 

expert systems in domains characterized by inherent uncertainty. The models supported are 

Belief Networks and its extension influence diagrams. The HUGIN System allows you to 

define both discrete nodes and to some extent continuous nodes in your models.  

 

You have the opportunity to use the HUGIN System through HUGIN RunTime an 

easy-to-use graphical environment. You can also use the HUGIN API which comes as a 

library for C (or C++).  

 

MSBN: MSBNx is a component-based Windows application for creating, 

assessing, and evaluating Belief Networks, created at Microsoft Research. The application's 

installation module includes complete help files and sample networks. Belief Networks are 

encoded in an XML file format. The application and its  components run on Windows 98, 
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Windows 2000, and Windows XP. MSBNx inferential operations provide both inference 

about states of inference and about the value of information for unobservered evidence. 

The services and modeling environment supports both diagnostic and troubleshooting 

mingles observations and repair operations. MSBNx facilitates the development and use of 

new add-in components. The modeling environment provides a means for assessing 

distinctions and beliefs, and special interfaces and tools for representing the asymmetric 

nature of probability distributions. 

 

 

3.2.2 Random VC Creation 

  

Firstly, random VC problem is created by the following algorithm. The number of 

nodes, edges and cardinality of the problem are the input data for the algorithm. The 

algorithm is as follows: 

 

 

N u m b e r o f  n o d e s : n
N u m b e r  o f  e d g e s : e
C a rd in a lity : c

C re a te  th e  lis t n a m e d  
P e d g e L is t fo r  a ll p o s s ib le  

e d g e s  fo r  n  n o d e s

S e le c t ra n d o m ly  a n  
e d g e  f ro m  P e d g e L is t

R e m o v e  th e  s e le c te d  
e d g e  f ro m  P e d g e L is t

A d d  th e  s e le c te d  e d g e  
to  E d g e L is t

G e t th e  s ize  o f  
E d g e L is t

S ize < e
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3.2.3 Converting VC to BN 

 

The second step is converting the random VC problem to a BN. For Hugin the text 

representation of BN called NET language is used. For MSBN there are two different 

represenation techniques, one is the XML representation and the other is text 

representation. The text representation is prefered in order to use the work done for Hugin 

and DSC language is used. The VC problem is converted to an Exact Inference problem by 

the transformation proposed in Chapter 2.2.2 . 

  

3.2.4 Solving the Problem 

 

The third step is solving the problem. The optimal solution for the BN and 

approximate solution for different epsilon values are obtained by the algorithm used by the 

software Hugin 5.1. MSBN only finds the exact solution. 

 

The number of nodes, edges are cardinality for the vertex cover problem is an input. 

The summary result of whole experiment can be seen in Table 3.1. 

 

3.2.5 Results 

 

In Table 3.1. NOE denotes number of edges, NON denotes number of nodes and C 

denotes the cardinality of the problem.  

 

“Exact” shows the exact solution for node Y in state “True”. The values starting with 

“eps” demonstrates the result of the approximation algorithm for node Y for the same node 

where epsilon value is the stated value. “cf” is compilation failure means no solution is 

available. 

 

The compilation failure is about the algorithm used by the program. The error 

message is like “inconsistency_or_underflow” and the description is “Propagation of 
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inconsistent evidence has been attempted, or perhaps (but unlikely) underflow has 

occurred”.  

 

50 different instances have been tried. Table 3.1 shows the whole results. 

 

 

 

Table 3.1 Results of Experiment 

NOE NON C Exact Eps 0.1 Eps 0.2 Eps 0.3 Eps 0.4 Eps 0.5 Eps 0.6
2 3 2 0.5 0.5 0.5 0.5 1 1
2 3 2 0.5 0.6 0.75 1
3 3 2 0.375 0.4 1 1 1 1
3 3 2 0.375 0.4 1 1 1 1
4 4 2 0.125 0.125 0.2222 0 0 0 0 cf
4 4 4 0.4375 0.5 1 1 1 cf
4 4 4 0.4375 0.5 1 1 1 cf
6 4 4 0.3125 0.333 0 cf
6 4 4 0.3125 0.1667 0 cf
6 5 4 0.2814 0.2857 cf
6 5 4 0.2814 0.2222 cf

10 5 2 0 0 0 0 cf
10 5 4 0.1563 0.0909 0 0 0 0 0 cf

8 6 2 0 0 0 0 0 0 0 cf
8 6 6 0.25 0.1538 cf
8 6 6 0.25 0.22 0.1563 0.1538 cf

10 6 6 0.1875 0.1875 0 0
9 7 5 0.1484 0.1379 0.1875 0 cf
9 7 5 0.1406 0.0857 0 cf
9 7 5 0.1406 0.0417 0 0 0 cf

15 8 2 0 0 0 0 cf
15 8 6 0.0742 0.0133 0 0 0 0 cf
15 8 6 0.0664 0 0 0 cf
15 8 6 0.0781 0 0 0

6 9 4 0.0391 0 0 0 0 cf
6 9 4 0.0078 0 0 0 0 cf
6 9 5 0.1095 0.1011 0
6 9 9 0.2578 0.2278 0 0 cf
6 9 9 0.2813 0.1351 1 cf

24 12 6 0 0 0 0
24 12 10 0.0026 0 0
24 12 11 0.1546 0.0306 0
24 12 12 0.228 0.116 0.0992 0
25 12 12 0.2145 0.1149 0.0148 0.0196 0
26 12 12 0.1393 0.1146 0.0077 0
40 12 11 0.0242 0.0089 0
40 12 12 0.0898 0.0521 0
25 14 6 0 0 0
25 14 7 0 0 0
25 14 8 0.0033 0 0
25 14 9 0.0882 0.0121 0
25 14 10 0.1116 0.0538 0
25 14 11 0.1445 0.0519 0
25 14 12 0.2444 0.2221 0.115 0.0171 0
25 14 13 0.2832 0.2075 0.1 cf
25 14 14 0.314 0.2542 0.1272 0.0026 0
40 14 10 0.0883 0
25 15 6 0 0 0
40 15 9 0 0
40 15 10 0.0813 0
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As it is seen from the Table 3.1, number of nodes for the vertex cover does not 

exceed 15. Both of the software used for solving inference problem can not solve the VC 

with more than 15 nodes. Hugin stopped with a message denotes that no memory is 

available. MSBN stopped without giving any message after a work lasting 3 hours.  

 

 

3.3 Analysis of The Result 

 

These results show that if the optimal solution is very near to 0 but not 0, then the 

approximation algorithm fails. However, if the optimal solution is greater than 0.4 the 

epsilon value can be greater than 0.5(Experimental result). It is known that there exist 

polynomial time algorithms which calculates the Inference problem with epsilon greater 

than 0.5. Then, the conditions when the exact solution is greater 0.4 becomes an important 

question. Investigating the ratio of number of nodes n versus number of edges m for 

cardinality n can be useful to answer to this question. Table 3.2 shows this type of 

demonstration with the same result. 

 

Table 3.2 Results for C/NON = 1 

 

As  seen from the figure the exact value increases for NON=12 as NOE decreases. 

Then, the ratio has a meaning and if it is very high, it is possible to find a polynomial time 

algorithm which gives the approximate solution. Another observation that can be obtained 

from the table is the directly related with the number of nodes. If it increases, the number of 

different instances of the vertex nodes of BN increases. So, it decreases the value of exact 
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solution. We can easily conclude that for small networks giving more accurate answers is 

easier. 

 

In our sample, a polynomial time approximate inference algorithm can give true 

answer for the vertex cover problem with 23 %. It gives the wrong result with 3 %. It does 

not give an answer because of compilation error with  74 %. If  the results are achieved 

after the implementation of the approximation algorithm with epsilon 0.6, it will be safe to 

say that the true result for the vertex cover problem is obtained with probability 0.88.  

  

These results are not sufficient to say that a better approximation algorithm for Vertex 

Cover is found. Because of technological constraints, the number of nodes in the 

experiment data is very restricted and the results are not good.  
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4. CONCLUSION & FUTURE WORK 
 
 
 

The main contribution of this study is providing an alternative polynomial 

transformation that shows that the Exact Inference problem is NP-complete. The 

transformation uses the well known vertex cover problem. This polynomial transformation 

enabled us to try to solve vertex cover problem by using algorithms proposed in the 

literature  for the Exact Inference Problem. The results of these experiments were not very 

encouraging.  

 

Actually, proving that the Exact Inference problem is NP-Complete is not a  new 

result, because it was proven in a different way before. However, proving the relation 

between VC and Exact Inference can be useful since Vertex Cover Problem has various 

applications and very well studied. The fact that the Vertex Cover problem is a special case 

of Exact Inference problem can be useful in different ways. For instance, any development, 

a better algorithm from a practical point of view for general type Exact Inference problem 

can be beneficial for the solving VC problem. 

 

As a future work, it is possible to  convert easy problems to BN structure, and find the 

instances of BNs where the solution of Exact Inference is polynomial. Another method to 

find instances of BNs where the solution of Exact Inference is polynomial can be 

converting the special VC problems, for which there are polynomial time algorithms in the 

literature to Exact Inference Problem.  
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In section 2.3, to solve the Exact Inference problem in a specific structure, some 

methods are suggested. However, as a future work more useful methods can be found. 

Especially, for Junction Tree Algorithms, finding cliques is very important, and our special 

network has a   potential for finding a better method to determine the cliques from the 

existing methods.  

 

As the results of the experiments show, although the transformation is polynomial, 

number of nodes for BN is very high, and solving the Exact Inference is very difficult. For 

both type of problems, VC and Exact Inference, there is no general efficient approximation 

algorithm. Our approximation algorithm suggestion for VC by leaning on the 

transformation has also failed. 

 
There exists softwares for solving Vertex Cover. However, these are not well known 

and commercial products. Using MSBN or Hugin as a VC solver after eliminating the 

technological constraints is another side of the transformation. In the current technological 

condition, Hugin can only solve VC problem with 15 nodes, but as the capacity of 

computers increase in the future, the number of nodes solved by Hugin or MSBN will 

certainly increase. 
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