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Abstract—In this paper a method allowing to merge good 

features of the sliding mode control (SMC) and Neural network 
(NN) design is presented. Design is performed by applying NN to 
minimize cost function selected to depend on the distance from 
sliding mode manifold thus providing that NN controller enforces 
sliding mode motion in a closed loop system. It has been proven 
that selected cost function has global minima and that selection of 
the NN weights guaranty that the global minima is reached and 
then the sliding mode conditions are satisfied, thus closed loop 
motion is robust against parameter changes and the 
disturbances. For the controller design the system states and the 
nominal value of the control input matrix are used. The design 
for both MIMO and SISO systems is discussed. Due to the 
structure of the (M)ADALINE network used in the control 
calculation the proposed algorithm can be also interpreted as a 
sliding mode based control parameters adaptation scheme The 
stability proofs are given and the controller performance is 
verified by experimental results. 
 

Index Terms—Neural networks, Sliding mode control.  
 

I. INTRODUCTION 
 

Due its robustness to parameter uncertainties and external 
disturbances sliding mode is a well-established control method 
for application in nonlinear systems [1], [2], [3]. Merging a 
well-established control structure like sliding mode control 
with neural network (NN) based algorithms appeared to be a 
good idea and many researchers published various control 
structures based on this idea. A comprehensive historical 
investigation and a literature survey can be found in [4]. In 
application of SMC methods to NN based control a few main 
ideas seem to be prevailing. The first one attempts to apply 
NN as an observer in estimation of equivalent control [5]  and 
in some cases disturbances [6]. Such an application of NN 
leads to effective linearization of the system and thus allows 
simpler design of the main controller. The weights of NN are 
determined  based  on the evaluation of evaluation of 

 
Manuscript received xxx This work was supported in part by  Sabanci 

University, Istanbul, Turkey.. 
Y. Yildiz is with Sabanci University, Orhanli-Tuzla, 34956 Istanbul, 

Turkey, ( e-mail: yildiz@su.sabanciuniv.edu).  
A. Sabanovic is with Sabanci University, FENS, Orhanli-Tuzla, 34956 

Istanbul, Turkey, phone (+90 216 484 9502, fax +90 216 483 9550, e-mail: 
asif@sabanciuniv.edu). 

K. Abidi is with Sabanci University, Orhanli-Tuzla, 34956 Istanbul, 
Turkey, ( e-mail: khalida@su.sabanciuniv.edu). 

the  
 

distance from the sliding mode manifold. Good results in 
application to nonlinear systems linear with respect to control 
are reported. In [6], Jezernic, Rodic, Safaric and Curk applied 
the idea on a 3.D.O.F PUMA type DD - robot system. They 
used continuous sliding mode theory to establish a robust 
control scheme. To avoid the chattering effect, they estimated 
the equivalent control and used this estimation in the sliding 
mode control algorithm. The estimation of the equivalent 
control was done using an online neural network estimator. In 
[7], Rodic, Jezernic, Sabanovic and Safaric used a sliding-
mode based learning algorithm for robust accurate tracking of 
a single axis DD robotic manipulator driven with an induction 
motor. In another work, [8], Fang, Y., Chow; T.W.S. and Li, 
X.D. proposed a control system on the basis of a discrete 
Lyapunov function. Part of the equivalent control is estimated 
by a recurrent neural network (RNN) and a real-time iterative 
learning algorithm is developed and used to train the RNN. 
They also proved the stability of the system by showing that 
the learning error converges to zero.  
The adoption of a nonlinear dynamic adjustment strategy in an 
ADALINE based controller applied to a three dof robot is discussed 
in [10]. The idea is to impose a sliding mode control while an 
adaptation is imposed on the controller parameters in such a way that 
desired motion is achieved. PD controller with a bias term is applied 
so three parameters are to be adjusted.The rate of change of the 
parameters is discontinuous (sign function) which are approximated 
by the boundary layer continuous high gain. The sliding mode 
manifold is selected to be a difference between desired (unknown) 
and applied torque thus another functional mapping is needed in 
order to use available sliding mode function expressed as a linear 
combination of the position and velocity error. Similar idea is 
explored in [12] and [13] for a class of nonlinear systems.  

In this work, the proposed controller is based on the 
minimization of a cost function that is obtained by satisfying 
Lyapunov stability criteria. The cost function is selected in 
such a way that its time derivative is explicit function of 
control thus allowing calculation of the control input that will 
guaranty a stable solution. This cost function is the same cost 
function used in [5] but different from their approach, the aim 
is not calculating the equivalent control but computing the 
whole control signal using the minimization process. Also, the 
neural network used is a one layer neural network that holds 
the linearity of parameters. Due to the structure of the 
(M)ADALINE network used in the control calculation the 
proposed algorithm can be also interpreted as a sliding mode 
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based control parameters adaptation scheme. The difference 
with other approaches is in the selection of the NN error 
function which guarantee the existence and stability of the 
global minima and the stability of the sliding mode manifold 
when error function minima is reached. In addition selection 
of the control as a linear combination of the motion error and 
a bias term is straight forward with the guaranty of the 
stability of overall closed loop motion due to the fact that the 
sliding mode existence is proven.   

To verify the performance of the control scheme, two 
different experimental setups are used. The first experimental 
setup is a single axis linear drive that is driven by a dc motor. 
This setup is used for the implementation of the controller 
designed for SISO systems. The other setup consists of two 
piezo stack actuators and used for the controller designed for 
MIMO systems. The proposed control schemes performed 
well in both of the experiments.  

II. PROBLEM STATEMENT  
In this paper we will consider dynamical systems consisting 

of m  interconnected sub-systems described by  

iiii
n
i gubhy i ++=−1  where il

iy  stands for thl −  time 
derivative of iy . By selecting the state vector 

[ ]Tn
mmm

n ii ,...,yy,yyyyx 11
111 ,....,,...,, −−= &&  these interconnected 

sub-systems can be represented as a class of nonlinear systems 
linear with respect of control as depicted in (1)  
 

duxBxfx ++= )()(&  (1) 
 
where nTx ℜ∈  is the state vector ∑ == m

i inn 1 , mu ℜ∈  is the 

control vector, nxf ℜ∈)(  is an unknown, continuous and 

bounded nonlinear function, nxmxB ℜ∈)(  is a known input 
matrix whose elements are continuous and bounded and 

( )( ) mxBrank
x

=
∀

, with nd ℜ∈  being an unknown, bounded 

external disturbance. Both nxf ℜ∈)(  and nd ℜ∈  satisfy the 
matching conditions and all their components are bounded 

Mxf
xi ≤

∀
)(  and Ntd

ti ≤
∀

)( . Fully actuated 

mechanical systems belong to the class of systems described 
by (1). Such systems can be interpreted as m interconnected 
sub-systems ( ) ( ) ( )jiiiiiiiii ,qqgu,tqbq,qhq ++= &&& , ( )iii q,qh &  

in general represents Coulomb friction term, ( )jii ,qqg  
represents the interaction term and is regarded as a 
disturbance.  

The aim is to determine the control input [ ]Tmuuu ,...,1=  
such that the outputs of the system )(),...,(1 tyty m  track the 
desired trajectories )(),...,(

1
tyty

mdd while control error 

satisfies selected dynamical constraints.  

III. CONTROLLER DESIGN 
The controller will be designed in the SMC framework by  

firstly selecting a suitable sliding manifold that will ensure 
desired systems dynamics and then selecting control such that 
Lyapunov stability conditions are satisfied..  Selecting the 
Lyapunov function candidate in terms of the sliding function 
is a natural way of guaranteeing the sliding mode existence on 
the selected manifold and thus having desired closed loop 
dynamics. Finally, the necessary control input should be 
selected that will fulfill the requirements of the Lyapunov 
stability criteria.  

A. Sliding manifold 
For system (1) the natural selection of the sliding manifold 

is in the following form 
 

0== tGeσ , (2) 
 
where, tracking error vector is defined as, 

( ) ( )[ ] nTn
mm

n
t

meeeee ℜ∈= −− 11
11 ,...,...,,..., 1 ,   idi yye

i
−= . 

[ ] mT
mi ℜ∈= σσσ ,...,  mxnG ℜ∈ . Matrix G  is selected 

such that each component of vector ( )eσ  is selected to be 
function of one output control error and its derivatives 

( ) 0=ii eσ  having form 1,0; 1
1

1 =>= ∑ −
= ii

n
i iii aaeaiσ  with 

multiple real root being equal to C− .  
 

B. Computing the Necessary Control Input 
A Lyapunov Function candidate can be selected as 
 

σσ TV
2
1=  (3) 

 
where, ℜ∈V . This function can also be stated as 

( ) 2
22/1 σ=V , where 2•  indicates Euclidian norm with 

( ) 00 =V . The time derivative of the candidate Lyapunov 

function V& should be negative definite. In order to use this 
condition in selection of the control, we may require that the 
V&  satisfies some preselected form. Equating the time 
derivative of this function to a negative definite function like 
in (4),  
 

σσ
σμσσ T

T DV −−=& , (4) 

 
where, D  is a positive definite symmetric matrix, and 0>μ  
thus Lyapunov conditions are satisfied. By substituting (3) 
into (4), the following requirement is found. 
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0=⎟
⎠
⎞

⎜
⎝
⎛ ++

σσ
σμσσσ T

T D&  (5) 

 
Therefore, for 0≠σ , the control law can be calculated by 
satisfying the following equation. 
 

0=⎟
⎠
⎞

⎜
⎝
⎛ ++

σσ
σμσσ TD&  (6) 

 
and the sliding mode conditions are satisfied. The 
discontinuous term can be selected as small in order to avoid 
chattering. It had been proven [14, 15] that in the discrete time 
implementation the sliding mode is guarantied with 
continuous control action. We are targeting the computer 
controller systems for which controller will be implemented in 
discrete-time so in our application the discontinuous term will 
be omitted and we will be determining the control action that 
satisfies conditions ( ) 0=+ σσ D&  but all further analysis can 
be easily adopted for application of expression (6) if the 
term ( )σD  is replaced with ( )σσσμσ TD +   .   

For system (1) with sliding mode manifold (2) the control 
tha satisfies ( ) 0=+ σσ D&  can be determined as  
 

( ) ( )( ) ( ) σσ DGBuDxdfGGBu eqdi

11 −− +=−−+−= &  (7) 

 
where, ( ) ( )[ ]11 ,...,,...,,..., 1

11

−−= m

mm

n
dd

n
ddd yyyyx  and equ  is so-

called equivalent control obtained as a solution of the equation 
0=σ& . By substituting (7) into (1) the equations of motion of 

system (1) in manifold (2) are obtained as 0== tGeσ  and 
the approach to this solution is governed by equation (6). This 
is a result of the specific structure of the plant (1) in which 
states are selected as the derivatives of the measurable outputs 
and each sub-block is represented in the canonical form. 

To implement this control input, information about the plant 
dynamics and external disturbances are needed, which is hard 
to achieve. Hence, this solution needs the information on the 
equivalent control thus may be applied for the plants when 

equ  is known or can be estimated with sufficient accuracy. 

The approach in [4,5,6] is based on the application of neural 
network (NN) in the estimation of the equivalent control.  

In this paper we will take different approach. Instead of 
estimating equivalent control and then applying (7) we will 
apply a least square minimization using neural networks to 
fulfill ( ) 0=+ σσ D& .  

C. Structure and Working Principles of NN  
The structure of the NN used in this paper is presented in 

Fig. 1, where 
ite  is the thi  row of te .  ijw  refers to the 

weight of the signal that comes from the thj  node and goes to 

the thi  node, whereas 0iw  refers to the bias term of the thi  

node. Control inputs, which are the outputs of the NN, can be 
defined as [ ]muuu ,...,1= , where, 

miwweu
n

j
iijti i

,...1,1
1

0 =+=∑
=

 (8)  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Structure of the Neural Network 
 
As seen from (8), in the selected network the activation 
functions are linear and the network is static. In (8) the 
weights can be treated also as variable coefficients that should 
be adjusted in order to determine necessary control. For 
second order systems the structure (8) could be viewed as a 
PD controller with gain adaptation and for higher order 
systems it can be viewed as a state feedback controller with 
adaptation of the gain matrix. As follows from the structure of 
the network is such that if the inputs are zero (that means the 
control error vector is zero – thus the control objective is 
reached) the output is equal to the bias vector – thus the bias 
weights should compensate the system’s disturbance  

In this paper we will demonstrate the selection of weights in 
(8) so that for system (1) so that requirement ( ) 0=+ σσ D&  
determined from the Lyapunov stability conditions are 
satisfied. In order to fulfill the above requirements we will 
apply the neural network that will minimize the error function 
(9)  
 

( ) ( )σσσσ DDE T ++= &&
2
1  (9) 

 
 By selecting the weights such that 0→E  and that 0=E  is a 
stable solution the condition ( ) 0=+ σσ D&  will be satisfied 
and the stable sliding mode motion will be achieved in 
manifold (2). The selected error function depends on the 
control input and this allows take partial derivative of error 
function with respect to control. Due to the fact that, for 
selected structure of NN, the control is linearly dependent on 
weights the usual weight update is expected to give simple 
structure. In addition the selected error function does not 
depend on unknown variables so it can be evaluated on-line 

2t
e

nte  

11w

mnw

10w

20w
 

0mw

1
1u

2u

mu

1t
e
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and it does not need off-line training. 
 
1) Weight Updates: Weights are updated according to 

following rule.  
 

ij
ij w

Ew
∂
∂−= η&  (10) 

 
where, 0>η  is the learning constant. Using the chain rule, 
(10) can be written as 
 

ij

i

i
ij w

u
u
Ew

∂
∂

∂
∂−= η&  (11) 

 
Substituting (9) into (11) taking the derivatives, the following 
equation is obtained. 
 

( )
jt

i

T
ij e

u
Dw

∂
∂+−= σσση
&

&&  (12) 

 
Substituting (2) into (12), 
 

( ) ( )
jt

i

dT
ij e

du
xGxGDw
&&

&&
−∂+−= σση  (13) 

is obtained. Rewriting (1), 
 

[ ] d
u

u
xBxBxfx

m

m +
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+= MMM&

1

1 )(...)()( , (14) 

 
and substituting (14) into (13) and taking the derivative gives 
the following result. 
 

( )
jti

T
ij exGBDw )(σση += &&  (15) 

 
where, )(xBi  is the thi  column of the matrix )(xB . For the 
bias terms 0iw , the weight update can be computed using the 
same procedure as 
 

( ) )(0 xGBDw i
T

i σση += && . (16) 
 
The weights update (15) is simple and depend on the 
fulfillment of the conditions ( ) 0=+ σσ D&  . The weights will 
change as long as condition (6) is not satisfied. Both (15) and 
(16) depend on the plant gain matrix and the selected sliding 
mode manifold (2).   

The reason for introduction of the bias term (16) can be 
easily seen from the analysis of the error function (9) rewritten 
as ( )[ ]2

1
)1(

2
1 )( t

n

i
i

id DGedewBxfxGE +−−−= ∑ =
−&  from where 

is obvious that if all control errors are going to zero the error 

function will tend to finite value ( )[ ]2
2
1

0
)( dxfxGE de

−−=
=

& . 

By introducing the bias term the error function becomes 

( )[ ]2

11
)1(

2
1 1)( tn

n

i
i

id DGedwBewBxfxGE +−+−−= +=
−∑&  and 

terms that satisfy the matching conditions can be rejected so 
the error function will have minima in point E=0. After 
reaching E=0 the bias term will asymptotically tends to the 
equivalent control ( ) ( )( )dn xdfGGBw &−+−→ −

+
1

1  thus 
allowing the compensation of the matching disturbances. Due 
to the assumption that components of vectors df ,  and dx&  
are bounded the bias term will be also bounded, thus for 
bounded initial errors the control input will be also bounded.  

The selection of the linear activation function is not essential 
to the solution. Single-valued continuous activation functions 
may be applied. For example if the model of the NN is 
described as miwwen n

j iijti j
,...1,1

1 0 =+=∑ =
 with activation 

function ( )iii ngu =   then in (15) a multiplying term 

( ) iiii nngg ∂∂=,  will appear so we will have 

( )
jtii

T
ij exGBgDw )(,σση += && . Proper selection of   ,

ig  as 

single-valued positive definite function will preserve the 
validity of the proof given in the text.  

This solution provides the rate of change of the NN weights 
as a function of the distance from the desired solution 
( ) 0=+ σσ D&  and at the moment ( ) 0=+ σσ D&  is reached the 
weights are not further updated while the motion of the system 
reaches the sliding mode manifold according to 
( ) 0=+ σσ D& . As a result the control determined by (7) at the 
moment the sliding mode manifold is reached is equal to the 
equivalent control and thus the sliding mode motion in 
manifold (2) is enforced. To verify these comments the 
convergence to the global minima and the stability must be 
proven.  
  

D. Proof of Convergence 
One of the biggest problems in back propagation weight 

update algorithm is that system may not reach global 
minimum and may stay in some local minima. Investigating 
the shape of the error function (9), it can be shown that local 
minima do not exist for the selected formulation of the 
minimization problem. 

1) The Shape of the Error Surface: If a function’s second 
derivative w.r.t a function variable does not change sign, then 
the function does not have a change in the curvature sign 
through that variable, which means that the function does not 
have a local minimum through that variable. Taking the 
second derivative of the error function (9), w.r.t the weight 

ijw  gives the following result.   

 

( )
jti

ij

T

ij
exGB

w
D

w
E )(2

2

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
+∂−=

∂
∂ σση

&
 (17) 
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Using the chain rule in derivation, 
 

( )
jti

ij

i

i

T

ij
exGB

w
u

u
D

w
E )(2

2

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

∂
+∂−=

∂
∂ σση

&
, (18) 

 
and substituting (2) and (8) into (18), the following equation is 
obtained. 
 

( ) 2
2

2
)(

jti
i

T
d

ij
exGB

u
xGxG

w
E

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
−∂−=

∂
∂ &&

η  (19) 

 
Substituting (1) into (19) gives the following equation. 
 

( ) 2
2

2
)()()(

jti
i

TTTTTTT

ij
exGB

u
GdGxBuGxf

w
E

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
++∂=

∂
∂ η  (20) 

 
Taking the derivative, 
 

22
2

2
2

2
)()()(

ji titi
TT

i
ij

exGBexGBGxB
w

E ηη ==
∂
∂  (21) 

 
is obtained. Using the same procedure, second derivative of 
the error function (9) with respect to the bias weights are 
computed as 

2
22

0

2
)()()( xGBxGBGxB

w
E

ii
TT

i
i

ηη ==
∂
∂ . 

 
The (21) and (22), show that the sign of the curvature of the 

error surface (9) is always positive; hence, there are no local 
minima, what indicates that, with a proper selection of the 
learning constant, the proposed network is capable of 
minimizing the function (9) up to its global minimum, which 
is nothing but zero. Thus, the tracking error vector has to 
converge to zero. Also, since η  is a constant, G  is a constant 
matrix and )(xBi  is bounded, weight update algorithms (15) 
and (16) show that weights converge to a finite value. A finite 
value for the weights in steady state results in a bounded 
control input (8). As a result, all the signals in the control 
system are bounded.   

E. Proof of Stability 
Let the Lyapunov function candidate be the same function 

that is used for the cost function 
 

( ) ( )σσσσ DDV T ++= &&
2
1 . (22) 

 
It is easily seen that 0>V for 0≠+ σσ D&  and 0=V for 

0=+ σσ D& . Taking the time derivative of V , one obtains the 

following equation. 
 

∑∑
= = ∂

∂−=
m

i

n

j

ij

ij dt
dw

w
VV

1 0

&  (23) 

 
Substituting (10) into (23) and using the identity VE = , gives 
the following expression. 
 

∑∑
= =

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂−=

m

i

n

j ijw
VV

1

2

0

η&  (24) 

 
In the expression (24), η  is a positive scalar, thus 0≤V& . 
However, since it is proven that the error surface – hence, the 
Lyapunov function – does not have any local minima, the 
expression ijwV ∂∂ /  becomes zero only at the global 

minimum, which is zero. So, 0<V&  for 0≠+ σσ D&  and 
0=V&  for 0=+ σσ D& . This proves that Lyapunov function 

converges to zero and the requirement 0=+ σσ D&  is 
satisfied, resulting in a stable system.  
 

IV. A SPECIAL CASE: SISO SYSTEMS  
Since the MIMO system described in the previous section 

consists of a cluster of SISO systems, converting the above 
results to SISO systems is straightforward. In this section, 
first, the modified problem formulation for the SISO case is 
given and then related results are presented directly, without 
derivations.   

A. Problem Statement 
Consider the class of nonlinear systems described by the 

following differential equation. 
 

duxBxfx ++= )()(&  (25) 
 

where [ ] nTnyyx ℜ∈= − )1(,...,  is the state vector, ℜ∈y  is the 

system output, ℜ∈u  is the control vector, 
nxf ℜ∈)(  is an unknown, continuous and bounded nonlinear 

function, 1)( ℜ∈xB  is a known input gain coefficient, and 

ℜ∈d  is an unknown, bounded external disturbance. Also, 
( ) nnn dtydy /= . It is assumed that the system is controllable. 

The aim is to compute the control action u  such that the 
output of the system y  tracks the desired trajectory dy , 

while desired state vector is defined as ( )[ ]Tn
ddd yyx 1,... −= . 

The tracking error vector is defined as 
( )[ ] nTn

t eee ℜ∈= −1,..., , where, yye d −= .  
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B. Structure of the NN and Weight Updates 
Again NN minimizes σσ D+& , where tGe=σ  is the 

sliding function and nTG ℜ∈ . Sliding manifold is defined as 
( ) 0/ 1 =+= − eCdtd nσ . The NN used is presented in Fig. 2 

  

 
 

Figure 2. Structure of the NN for SISO Systems 
 
This type of NN is called “adaptive linear element” 
(ADALINE). As seen from the figure, the output of the 
network (which is the control input u  of the system (25)) is 
the weighted sum of the inputs, which are the individual 
elements of the tracking error vector, and the bias term. Using 
the same procedure as in the MIMO case, weight updates can 
be computed as 
 

( ) niexGBDw
iti ,...,1,)( =+= σση &&  (26) 

 
where 

ite  is the thi  row of the error vector te . For the bias 
term, weight update takes the following form. 
 

( ) exGBDw )(0 σση += &&  (27) 
 
Convergence and the stability proofs are straightforward using 
the same procedure as in the MIMO case.  

 

V. EXPERIMENTAL RESULTS 

A. Experiments with a Single Axis, Linear Servo Drive          
– A SISO System 

The experiments to verify the theory for SISO systems are 
carried with a single axis, toothed belt, linear servo system, 
which is now in use at Sabanci University, Mechatronics 
Laboratory. The experimental setup scheme is presented in 
Fig. 3, where “M” and “E” refer to motor and the encoder 
respectively. This DGEL25-1500-ZR-KF linear drive is 
equipped by an electrical servo motor MTR-AC-70-3S-AA 
with a motor driver attached to a dSPACE DS1103 module 
hosted in the PC with dSPACE software Control Desk v.2.0 
and the MATLAB 6.0.0.88.R12. The belt attached to the 
motor can carry different loads by a carriage. The load carried 
by the belt, the friction forces between the carriage and the rail 

and the friction on the motor bearings affect the motor as 
disturbance. A physical model of the overall system is 
presented in Fig. 4.  
 

 
 
Figure 3. Simplified Structure of the Experimental Setup 

 
 

 
 
 
 
 
 
 

Figure 4. Physical Model of the Linear Servo Drive 
 

In Fig.4, 1, JJ m  and 2J  refers to the inertias of the motor, 
the pulley that is driven by the motor and the idle pulley, 
while m  refers to the mass of the load that is attached to the 
belt. The belt is modeled as a spring and damper system so 
that overall system is of the fourth order with scalar input – 
represented by the torque developed by the driving motor. 
Due to the belt force dependence on the belt stretch overall 
system can be presented as an dual mass system with flexible 
link. From the point of motor shaft control system can be 
taken as a second order system with motor current as an input, 
the motor shaft position as an output and the disturbance 
represented by the motor friction and the belt force reflected 
to the motor shaft [16]. The aim is to control the motor 
position without the information of the load or other 
disturbances. While designing the controller, the load m , the 
friction at the slider and at the motor bearings, and the belt 
force are assumed to be unknown. We assume the nominal 
value of the motor torque constant to be known. To control 
the position of the motor, the sliding manifold is chosen as 

Cee += &σ  where θθ −= re  refers to the position error of 
the motor shaft. The control is implemented in a discrete-time 
form by implementing the calculation of weights as: 

( ) )()()()(11 )1( kekDk
J

rK
kww tk σση ++=+ &       (28) 

( ) )()()()(22 )1( kekDk
J

rKkww tk && σση ++=+              (29) 

( ))()()(33 )1( kDk
J

rK
kww tk σση ++=+ &                       (30) 

Controller parameters are selected as 10=C  200=D  
00001.0=η  and the sampling rate is 0.0001sec and the 
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motor parameters rJKt ,, are assumed to be constant with 
their nominal values.  

Fig. 5 – 11 show the response of the system to a smooth 
sigmoid position reference. The selection of such a reference 
is dictated by the limits on the acceleration timing-belt system 
may sustain on one hand and the usual profile of the velocity 
curve in the point-to-point industrial positioning systems.  
From Fig. 5, which shows the position tracking of the motor, 
it is very hard to distinguish the reference and actual motor 
positions. Fig. 6 shows the error in this tracking. As it is seen, 
the transient error makes a jump in the very beginning of the 
motion and then decreases fast during the tracking. In the end, 
steady state error reaches its theoretical limit, which is set by 
the position measurement device. In Fig. 7, the velocity 
tracking of the motor is presented. This figure also shows that 
after a deviation from the reference, the velocity catches its 
reference and tracks it. The initial deviation can be explained 
by the weights of the network starting from zero. After they 
reach certain values in a short time, the system behaves as 
desired. In Fig. 8, the control signal produced is shown. It is 
seen that the control signal is sufficiently smooth. 

In Fig. 12 the transients for a small pulse changes in the 
motor position reference are depicted. The smooth transient 
without overshoot is achieved and as shown in Fig. 13 on a 
phase plot diagram the sliding mode manifold is reached and 
sliding mode motion is maintained in the system. This shows 
the capability of the proposed controller structure to cope with 
nonlinear disturbance which depends on the plant state 
variable (the dependence of the belt force on the motor 
position and velocity) while taking nominal value of the plant 
gain (the motor torque constant).  
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Figure 5. Position Tracking of the Motor 
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Figure 6. Position Tracking Error of the Motor 

2.5 3 3.5 4
0

0.2

0.4

0.6

Time [sec]

V
el

oc
ity

 [m
/s

]

motor velocity
velocity reference

Figure 7. Velocity Tracking of the Motor 
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Figure 8. Control Input Applied to the Motor 
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Fig. 9 – 11 indicate that after having a transient period, the 
weights are converging to a finite value, matching with the 
theoretical results.  
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Figure 12. Transients for step position reference  
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 Figure 13. The phase plane for step position reference  
The presented results confirm what has been proven in the 

previous sections. The sliding mode motion is achieved by 

simple weight update algorithm and very limited knowledge 
on the system’s parameters.  

B. Experiments with Piezoelectric Actuators                           
– A MIMO System 

In order to demonstrate applicability to the MIMO case the 
PZT dual actuator is controlled in such a way that it follows 
desired trajectory while enforcing desired grasping force. The 
experimental setup consists of a Piezomechanik’s PSt150/5/60 
stack actuators ( 60max =x μm, 800max =F N, 

150max =v Volt) connected to SVR150/3 low-voltage, low-
power amplifiers. The actuators have built-in strain-gages for 
position measurement. The structure of the setup is presented 
in Fig. 14. In this setup, two piezo-drives (PD) are attached to 
each other via a load cell that is used for force measurement. 
The aim is to control the position of one actuator while 
controlling the force that is created due to the reaction of the 
load cell. Force control is achieved by moving the other 
actuator. Thus, there are two outputs of the system, position of 
one actuator and the force created in the load cell. Also there 
are two inputs: the voltage input to the actuator whose 
position is controlled and the voltage input to the other 
actuator by the help of which, the force is controlled. The 
overall system is described as two second order systems in 
interaction via load cell which is assumed without static. The 
conversion from the input voltage to the force is nonlinear 
having a hysteresis characteristics [17] what results in the 
plant gain being non single valued function of the input 
voltage and PZT stretch. Presence of the hysteresis 
nonlinearity in the system in addition to the unmodeled 
dynamics of the load cell makes design of the controller a 
challenging task.  The sliding mode manifold is selected being 
intersection of the position tracking sliding mode function for 
PD-1  as Ceex += &σ  where 11 xxe r −=  and the sliding 

mode function for PD-2 as FFrF −=σ . The weights are 
updated the same way as in (28), (29) and (30) with respective 
changes of the switching functions. The nonlinear gain (due to 
hysteresis) is assumed to have constant value represented by 
the symmetry line of the hysteresis and its variation is treated 
as a matched disturbance in the system to be compensated by 
the bis term of the controller.   
 

 
Figure 14. Simplified Experimental Setup  
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Fig. 15 – 21 depict the response of the system for a sigmoid 
reference for each of the actuators.  For all the experiments, 
the controller parameters are 5.1,400 == ηD , and sampling 
time is selected as 0.0001 second. As shown the references are 
applied at the same time and PD-1 is able to track a sigmoid 
position reference while simultaneously PD-2 moves in such a 
way that the force created also tracks a sigmoid reference. Fig. 
20 presents the trajectory when PD-2 follows in order to 
maintain the sigmoid force reference while PD-1 tracks its 
trajectory reference. The drift visible in Fig. 20 is due to the 
drift of the force transducer. Also, Fig. 17 and Fig. 20 show 
that both control inputs are bounded and well behaving.  

In Fig. 22-23 the behavior of the same system for sinusoidal 
changes in position and the force is depicted. It shows the 
capability of the system to cope with harmonic change in both 
references. 
 
 
 
 
 
 
 
 

 
 

Figure 15. Position Tracking of PD-1 
 
 
 
 
 
 
 
 
 
 

Figure 16. Tracking Error of PD-1 
 
 
 
 
 
 
 
 
 
 
 

Figure 17. Control Input for PD-1 
 
 
 
 
 

 
 
 
 

 
Figure 18. Force Tracking of PD-2 

 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 19. Tracking Error of PD-2 
 
 
 
 
 
 
 
 

 
Figure 20. Control Input for PD-2 

 
 
 
 
 
 
 
 
 
 

Figure 21. Position of PD-2 

0 2 4 6 8-0.2

0

0.2

0.4

0.6

0.8

1

Time [sec]

R
ef

er
en

ce
 &

 A
ct

ua
l P

os
iti

on
 [ μ

m
]

 
(a)  

 
 

R
ef

er
en

ce
 &

 A
ct

ua
l P

os
iti

on
 [μ

 m
] 

0 1 2 3 4 5 6 7 8

0 

0.5 

1 

Time [sec]

 

Time [sec] 0 1 2 3 4 5 6 7 8
-0.02 

-0.01 

0 

0.01 

0.02 

P
os

iti
on

 T
ra

ck
in

g 
E

rr
or

 [μ
m

]  

0 1 2 3 4 5 6 7 8
16 
17 
18 
19 
20 
21 

Time [sec]C
on

tro
l I

np
ut

 [V
] 

0 1 2 3 4 5 6 7 8 

0

0.5

1

Time [sec]

R
ef

er
en

ce
 &

 A
ct

ua
l F

or
ce

 [N
] 

0 1 2 3 4 5 6 7 8
-0.01

0

0.01

0.02

Time [sec]

Fo
rc

e 
Tr

ac
ki

ng
 E

rr
or

 [N
] 

0 1 2 3 4 5 6 7 8
4

6

8

10

Time [sec]

C
on

tro
l I

np
ut

 [V
] 

0 1 2 3 4 5 6 7 8
3

3.5

4

4.5

5

Time [sec]

P
os

iti
on

 [μ
m

] 



> YILDIZ et al. : SLIDING MODE NEURO CONTROLLER 
 

 

10

10

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 
 

Figure 22. (a) Position Tracking of PD-1 and (b) position of 
PD-2 producing the force as depicted in Fig. 22 
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Figure 23. Force tracking  

 

VI. CONCLUSION 
 
In this work, a structure of adapting the weights of a neuro-

sliding mode controller for uncertain systems is proposed..  
Proposed controller ensures the overall stability of the 

closed loop dynamic of nonlinear system with bounded 
disturbance and guaranty asymptotic transient towards sliding 
mode manifold, thus guarantying a robust properties of the 
sliding mode control systems without any off-line training. 
The weight update is derived from the stability conditions and 
for its implementation the sliding mode function and the 
nominal value of the plant gain matrix are needed thus 
proposed algorithm seems simple enough for real applications. 
The rejection of disturbances that are satisfying matching 
condition is proven and demonstrated via experimental results. 
The applicability of the theoretical results is demonstrated for 
the nonlinear SISO and MIMO systems and results are shown 
to conform to predictions  The proposed structure seems 
promising for application in controller parameters adaptation. 
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