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Abstract

We study an analytically solvable model for decoherence of a two spin system embedded in a large spin environment. As a measure of

entanglement, we evaluate the concurrence for the Bell states (Einstein–Podolsky–Rosen pairs). We find that while for two separate spin baths all

four Bell states lose their coherence with the same time dependence, for a common spin bath, two of the states decay faster than the others. We

explain this difference by the relative orientation of the individual spins in the pair. We also examine how the Bell inequality is violated in the

coherent regime. Both for one bath and two bath cases, we find that while two of the Bell states always obey the inequality, the other two violate

the inequality at early times.
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Entanglement, nonlocal quantum correlations between

subsystems, is not only one of the basic concepts in quantum

mechanics [1] but also central to quantum computation and

quantum information [2]. Decoherence, loss of phase relations

between the states, is essential in understanding how a quantum

system becomes effectively classical [3]. Therefore, how an

entangled system undergoes decoherence or how the entangle-

ment changes as a result of interaction with the environment is

an important issue and for two entangled spins subject to

quantum noise created by a bosonic bath the problem has

already been studied [4,5].

In this work, we concentrate on decoherence of two spins as

a result of an interaction with a spin bath. This problem is

closely related to electron spin dynamics, due to hyperfine

interaction with surrounding nuclear spins, in quantum dots [6].

Decoherence of various systems, including superconducting

quantum interference devices (SQUIDs) coupled to nuclear

and paramagnetic spins, can be described by similar models

[7]. Many spin systems can exhibit interesting behaviors

including parity dependent decoherence where some non-

diagonal elements of the density matrix survive the initial

decay of other entries due to environmental spins [8,9]. For the
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central spin model, which describes a localized spin coupled to

a spin bath, the quasiclassical equations of motion are

integrable [10].

Quantification of entanglement is a major challenge in

quantum information theory. A well known measure for a pure

state of a pair of quantum systems is the von Neumann entropy

or equivalently the Shannon entropy of the squares of the

Schmidt coefficients [11]. The entropy of the partial density

matrix, which is obtained by tracing out one of the members

from the total density matrix, can be used to parametrize the

entanglement. For a pair of binary quantum objects (qubits) an

alternative parameter is the concurrence which is related to the

von Neumann entropy bijectively [12]. To quantify

the entanglement between the two spins, we are going to use

the concurrence because of its mathematical simplicity. Our

main results related to entanglement will turn out to be

independent of the choice of the measure.

Decoherence of the two spins can be viewed as a generation

of entanglement between the pair and the spin bath (or baths)

and hence any measure of the entanglement can also be used to

parametrize the decoherence. As the members of the pair lose

their entanglement with each other, they start to entangle with

the bath spins. What we are going to evaluate is the

concurrence corresponding to the entanglement between the

two partners.

Our aim is to understand how two entangled spins lose their

correlation due to other spins interacting with them. For this

purpose, we start with a very simple model where we can
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observe decoherence effects. The model Hamiltonian

H Z c1z

XN1

kZ1

Zu1ks1kz Cc2z

XN2

kZ1

Zu2ks2kz (1)

describes two central spins, with z-component operators c1z and

c2z, coupled to bath spins represented by snkz, where nZ1,2

labels the baths and kZ1,2,3,.,Nn labels the individual spins.

All spins are assumed to be 1/2 and c1z, c2z, and snkz denote the

corresponding Pauli matrices. Hamiltonian (1) is a simple two

spin generalization of the model proposed by Zurek to study

decoherence in spin systems [13]. First, we are going to

consider two different spin baths where each spin couples only

one of them. Later, we are going to examine how our results

change when the pair interacts with a single bath. Since, the

Hamiltonian (1) involves only the z-components of the spins, it

can also be used to study decoherence of other two-state

systems.

We are going to assume that at tZ0, the central spins are not

entangled to the spin baths so that the state is in the product

form jJð0ÞiZ jJcð0ÞijJs1ð0ÞijJs2ð0Þi where

jJcð0ÞiZ a[[j[[iCa[Yj[YiCaY[jY[iCaYYjYYi
� �

(2)

with obvious notation for the two spins and

jJsnð0ÞiZ 5
Nn

kZ1
ankj[nkiCbnkjYnki
� �

(3)

where j[nki and jYnki are eigenstates of snkz with eigenvalues

C1 and K1, respectively, and jankj
2Cjbnkj

2Z1. At later

times, the state is no more in the product form due to

entanglement of the pair with environmental spins but instead

it is given by

jJðtÞiZða[[j[[ijJs1ðCtÞijJs2ðCtÞi

Ca[Yj[YijJs1ðCtÞijJs2ðKtÞi

CaY[jY[ijJs1ðKtÞijJs2ðCtÞi

CaYYjYYijJs1ðKtÞijJs2ðKtÞiÞ ð4Þ

where

jJsnðtÞiZ 5
Nn

kZ1
ðanke

Kiunktj[nkiCbnke
iunktjYnkiÞ: (5)

We are going to see that it is the randomness of the interaction

strengths and the expansion coefficients that will lead to

decoherence of the pair.

The total, central spin and the baths, density matrix is given

by rðtÞZ jJðtÞihJðtÞj but what we are interested in is the

reduced density matrix which is obtained from the former by

tracing out the bath degrees of freedom as rcðtÞZTrsrðtÞ where

subscript s means that trace is evaluated by summing over all

possible nk states. We can write the resulting density matrix in
the product basis {j[[i,j[Yi,jY[i,jYYi} as

rc Z

ja[[j
2 a[[a

�
[Yr2 a[[a

�
Y[r1 a[[a

�
YYr1r2

a�[[a[Yr
�
2 ja[Yj

2 a[Ya
�
Y[r1r

�
2 a[Ya

�
YYr1

a�[[aY[r
�
1 a�[YaY[r

�
1 r2 jaY[j

2 aY[a
�
YYr2

a�[[aYYr
�
1 r

�
2 a�[YaYYr

�
1 a�Y[aYYr

�
2 jaYYj

2

0
BBBBBB@

1
CCCCCCA

(6)

where * means complex conjugation and decoherence factors

r1(t) and r2(t) are given by

rnðtÞZ
YNn

kZ1

jankj
2eKi2unkt C jbnkj

2ei2unkt
� �

: (7)

In general both expansion coefficients ank, bnk and

interaction strengths unk are random. If the bath spins point

randomly at tZ0 we can write the expansion coefficients as

ankZcosðqnk=2Þe
Kifnk =2 and bnkZsinðqnk=2Þe

ifnk =2, where qnk
and fnk are spherical polar coordinates determining the

direction of the spins, and we assume that the angles qnk and

fnk have uniform distributions in the intervals [0,p] and [0,2p],

respectively. It is possible to show that for sufficiently short

times jrn(t)j exhibits a Gaussian time dependence eKant
2

rather

than exponential [14]. In our case

an Z 8
X
k

jankj
2jbnkj

2junkj
2: (8)

We are going to obtain several coherence factors given by

expressions similar to Eq. (7). We first note that the larger the

interaction strengths junkj, the faster the decay. Secondly, for a

given set of {unk}, the fastest decoherence is attained when

jankj and jbnkj become equal.

To evaluate the concurrence [12], we need to find the time-

reversed or spin-flipped density matrix ~rc which is given by

~rc Z ðsy5syÞr
�
c ðsy5syÞ: (9)

Here sy is the Pauli spin matrix and 5 stands for the Kronecker

product, and r�c is obtained from ~rc via complex conjugation.

We can write the spin-flipped density matrix as

~rc Z

jaYYj
2 KaY[a

�
YYr2 Ka[Ya

�
YYr1 a[[a

�
YYr1r2

Ka�Y[aYYr
�
2 jaY[j

2 a[Ya
�
Y[r1r

�
2 Ka[[a

�
Y[r1

Ka�[YaYYr
�
1 a�[YaY[r

�
1 r2 ja[Yj

2 Ka[[a
�
[Yr2

a�[[aYYr
�
1 r

�
2 Ka�[[aY[r

�
1 Ka�[[a[Yr

�
2 ja[[j

2

0
BBBBBB@

1
CCCCCCA

(10)

The final step in evaluation of the concurrence C is to find the

four eigenvalues {li} of the product matrix rc ~rc in the

decreasing order so that

C Zmax 0;
ffiffiffiffiffi
l1

p
K

ffiffiffiffiffi
l2

p
K

ffiffiffiffiffi
l3

p
K

ffiffiffiffiffi
l4

pn o
: (11)

We are going to evaluate the above expression for the Bell

states (Einstein–Rosen–Podolsky pairs)
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je1iZ
j[[iC jYYiffiffiffi

2
p (12)

je2iZ
j[YiC jY[iffiffiffi

2
p

je3iZ
j[[iKjYYiffiffiffi

2
p

je4iZ
j[YiKjY[iffiffiffi

2
p :

As we are going to see, the Bell states have the property that the

concurrence is the same for all of them. In fact, any other basis

obtained from the Bell states by replacing the coefficientsG1=
ffiffiffi
2

p

with eiq=
ffiffiffi
2

p
(q being a real number) has the same property.

For two baths, the concurrence, which is the same for all of

the Bell states, turns out to be

C Z jr1jjr2j: (13)

Since, r1(0)Zr2(0)Z1, the concurrence is also unity at tZ0.

On the other hand, both r1 and r2, and hence the concurrence,

decay with time and vanish. For the special case where only

one of the spins, say the first one, interacts with a spin bath so

that r2(t)Zr2(0)Z1, we still observe a decay in the

concurrence. This is an expected result because the entangled

pair must be treated as a single system rather than individual

spins.

We next consider the case where both spins undergo

decoherence due to interaction with the same spin bath so that

the Hamiltonian becomes

H Z Z
XN
kZ1

ðu1kc1z Cu2kc2zÞskz (14)

This time the state at tZ0 is given by jJð0ÞiZ jJcð0ÞijJsð0Þi

where

jJsð0ÞiZ 5
N

kZ1
ðakj[kiCbkjYkiÞ: (15)

Similar to the two bath case, we can write the density matrix as

rc Z

ja[[j
2 a[[a

�
[Yr2 a[[a

�
Y[r1 a[[a

�
YYr

C
12

a�[[a[Yr
�
2 ja[Yj

2 a[Ya
�
Y[r

K
12 a[Ya

�
YYr1

a�[[aY[r
�
1 a�[YaY[r

K�
12 jaY[j

2 aY[a
�
YYr2

a�[[aYYr
C�
12 a�[YaYYr

�
1 a�Y[aYYr

�
2 jaYYj

2

0
BBBBBB@

1
CCCCCCA

(16)

where decoherence factors are given by

rnðtÞZ
YN
kZ1

jakj
2eKi2unkt C jbkj

2ei2unkt
� �

(17)

and

rG12ðtÞZ
YN
kZ1

jakj
2eKi2ðu1kGu2kÞt C jbkj

2ei2ðu1kGu2kÞt
� �

: (18)
As we have discussed in the paragraph after Eq. (8), the larger

the interaction strengths, the faster the decay. Therefore, we

should compare u1kCu2k with u1kKu2k. If all of the

interaction constants unk have the same sign, rC12ðtÞ goes to

zero faster than rK12ðtÞ. For the special case, u1kZu2k for all k,

rK12ðtÞ does not decay at all but remains constant. This is a trivial

manifestation of decoherence free subspace [15–17]. When

u1kZu2k, je2i and je4i become immune to the environment as

we will see in Eq. (19).

After finding the spin-flipped density matrix ~rc and

eigenvalues of the product r ~rc, we can evaluate the

concurrence for each of the Bell states. In single bath case

the Bell states exhibit different decay rates with the

concurrence expressions

C1 ZC3 Z jrC12j (19)

C2 ZC4 Z jrK12j:

Although we have obtained this two by two grouping of the

Bell states in terms of the concurrence, any other measure, like

the von Neumann entropy, which depends upon the eigen-

values of the density matrices will yield the same result. Eqs.

(13) and (19) show that the concurrence, which is a measure of

entanglement is given by nothing but the coherence factor.

We can explain the different results for one bath and two

baths decoherence processes in terms of different characters of

the Bell states. When the spins interact with separate baths,

relative orientation of spins is not important because the only

difference between the up and down configurations is complex

conjugation of the coherence factor and it is the modulus of the

coherence factor which enters the concurrence expression. On

the other hand, in the single bath case there is no simple

relation between the opposite spin terms. In je1i and je3i states,

spins are always parallel while in je2i and je4i states, they are

always antiparallel. That is why two groups have different

decoherence behaviors. It also possible to interpret the

difference from correlation point of view. In our calculations

we assume that not only the baths but also the spins in same

bath are not initially entangled. In one bath case averaging over

bath spins is performed independently for individual spins.

However, for single bath this is not the case. In fact, single bath

can be thought as two separate baths interacting with each

member of the central pair where the baths have identical

initial spin configuration. In a sense, the baths are correlated in

contrast to the two bath case.

Finally, we are going to examine how the Bell inequality is

violated in the quantum regime and how it is satisfied in the

classical domain [18]. The Bell inequality, or in fact inequal-

ities are satisfied if there exists a local realistic theory [19].

There are a large number of Bell inequalities, all resulting from

local realistic assumptions, but following Ref. [20] we will

focus our attention on the quantity

SZEðq1;q2ÞKEðq1;q
0
2ÞCEðq01;q

0
2ÞCEðq01;q2Þ; (20)

where the correlation function E(q1,q2) is given by,

Eðq1;q2ÞZ Trfĉ1ðq1Þ5ĉ2ðq2Þrcg; (21)
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with

ĉiðqiÞZ cizcos qi Ccixsin qi: (22)

The Bell inequality is violated if jSjO2. In calculating whether

the inequality is violated, the choice of the angles q1 and q2 is

crucial. It is known that not all entangled states violate a Bell

inequality [21,22]. That is why qis must be chosen carefully. In

our case, for the Bell states {jeii}, we can find the

corresponding {Si} expressions. To simplify the equations,

for a given set of angles q1, q2, q01, and q02 we will introduce the

notation

AZ ðcos q1cos q2Kcos q1cos q02 Ccos q01cos q02

Ccos q01cos q2Þ (23)

BZ ðsin q1sin q2Ksin q1sin q02 Csin q01sin q02 Csin q01sin q2Þ

so that, for two separate baths,

S1 ZACBRfr1r2g (24)

S2 ZKACBR r1r
�
2

� �

S3 ZAKBRfr1r2g

S4 ZKAKBR r1r
�
2

� �

where r1 and r2 are again given by Eq. (7), and Rfzg denotes the

real part of the complex number z. For a single bath very

similar expressions hold. In this case, Rfr1r2g and Rfr1r
�
2 g are

replaced by RfrC12g and RfrK12g, respectively.

The angles q1, q2, q01, and q02 can take arbitrary values. We

are going to pick up a particular set for which {Si} are easy to

calculate. We will assume that q1Z0, q2Zp/4, q01Zp=2, and

q02Z3p=4. For this choice of angles, AZBZ
ffiffiffi
2

p
. At tZ0

where all decoherence factors are unity, for both two bath and

single bath cases, S2 and S3 vanish, and therefore, they satisfy

the Bell inequality jSj%2. When the system becomes

completely incoherent so that all coherence factors vanish,

again for both two bath and single bath cases, we obtain

jS2jZ jS3jZ
ffiffiffi
2

p
. Although there is an increase in jSj values,

the inequality is still satisfied. In je1i and je4i states, however,

the Bell inequality is violated at tZ0, since jS1jZ jS4jZ2
ffiffiffi
2

p
.

As the decoherence factors vanish, they both decay to
ffiffiffi
2

p
. For

two baths, jS1j and jS4j exhibit different decay rates. In single

bath case, the corresponding factors coming from decoherence

for je1i and je4i states are given by RfrC12g and RfrK12g,

respectively. As we have discussed above, the two factors

decay at different rates.

In conclusion, using the concurrence and the Bell inequality,

we demonstrated that a pair of entangled spins show different
decoherence behaviors when the spins interact with a common

spin bath or separate baths. Some entangled states can be more

vulnerable than others. For example, two entangled electrons

in the same quantum dot will have a different coherence

characteristics than two in separate dots. Recent proposal by

Beenakker et al. for the creation of entangled electron-hole

pairs might be an interesting system to look for such

decoherence effects [23].
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