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ABSTRACT 

It is expected that chemical, biological and envi-

ronmental applications of microdevices will increase 

with new developments in micromachining tech-

niques. In this work, a micropump design that utilizes 

passive valves and an actuated diaphragm is pre-

sented. The flow rate is controlled by the deflection 

and the frequency of the diaphragm’s displacement. 

Passive valves are used for directing the flow. 

Poiseuille flow analogy is used to generate the 

equivalent pressure drop and flow rate via modifying 

the viscosity in the valve-channel in order to replace 

the variation of the channel width due to valve 

movement. Overall flow in the micropump is gov-

erned by three-dimensional time-dependent Navier 

Stokes equations. Deformation of the domain due to 

moving boundaries that coincide with the diaphragm 

motion is handled with the arbitrary Lagrangian-

Eulerian method. Flow rate, hydraulic power and the 

efficiency of the micropump are obtained with re-

spect to driving frequency and displacement of the 

diaphragm. 

 

INTRODUCTION 
Micropumps are in demand for a vast range of 

applications such as surgical operations [1], fuel 

delivery [2], electronic cooling of microdevices [3] 

and bio-chemical sensors and actuators [4]. Micro-

pump designs vary with respect to their operation 

conditions and performance expectations [5]. Espe-

cially for liquids, viscous forces dominate the flow in 

micro scales limiting the transduction mechanisms 

that can be used in micropumps. In general, micro-

pumps can be classified into two categories based on 

the principles of actuation that result in a net flow: (1) 

mechanical displacement pumps that utilize an actu-

ated diaphragm or a similar moving part to generate 

pressure difference, and (2) dynamic pumps that 

utilize an electric or magnetic field, and ultrasonic 

waves on a boundary to generate an external force to 

move the fluid [5,6,7].  

Mechanical reciprocating positive-displacement 

pumps, in general, consist of a diaphragm membrane 

or a piston, and at least one or two check valves or 

nozzle-diffuser type passive-components to move and 

direct the flow. High flow rates are obtained only 

with the application of large voltages to piezoelectric-

material drivers. A few drawbacks of these mechani-

cal pumps include complexity of the design, and 

unsteady flow rates. Producing controllable steady 

flows with mechanical micropumps remains some-

what a challenge. 

Electrically conducting and magnetic fluids can 

be forced to flow by means of an external electric or 

magnetic field. However, the emerging electric cur-

rents in the fluid may not suitable for many applica-

tions.  

Here, we present a micropump design composed 

of a dome-shaped diaphragm and two passive valves, 

which are attached to the inlet and exit of the pump 

as shown in Fig. 1. Circular diaphragm is placed at 
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the top of the cylindrical main chamber of the micro-

pump. There are two rectangular channels attached to 

the main chamber, one is for the inlet and the other 

for the outlet. Each channel is restricted by a simple 

nozzle which has a flat restriction on one side and a 

gradual opening on the other side. Inside the opening 

of nozzles, prismatic parts are placed to form V-

shaped channels. Prismatic parts are held with elastic 

tabs (not shown) that act as springs to limit the mo-

tion of the prismatic part. As the diaphragm moves 

into the chamber, the displaced fluid tries to escape 

from inlet and exit channels. The restrictions inside 

the channels cause a pressure build-up in the cham-

ber, which is larger than the applied pressures at the 

inlet and the exit of the pump. Due to the pressure 

difference, inlet prism moves towards the inlet, and 

block the nozzle restricting the escaping fluid from 

the inlet; outlet prism, on the other hand, tends to 

clear the nozzle causing the fluid to escape more 

easily from the exit channel than the inlet channel. As 

the diaphragm moves outwards from the chamber 

forming a dome-shape, the pressure drop in the 

chamber causes to fluid to rush in from the inlet and 

exit ports causing both inlet and exit blocking prisms 

to move toward the chamber. At the exit port, the 

displacement of the prism will block the V-shaped 

channel further and restrict the back flow at the exit, 

the other prism at the inlet will open up to let the inlet 

flow fill in the chamber. Once the cycle completes, a 

net flow will emerge from the inlet to the outlet.  

Due to large viscous forces Poiseuille flow con-

ditions can be assumed in V-shaped channels at the 

inlet and exit of the pump. Thus the variation of the 

flow rate due to variation of the channel width and 

the pressure difference can be mimicked with the 

variation of an effective viscosity inside the V-shaped 

channel as explained further in the next section. 

The motion of the diaphragm can be sustained 

by, for example, appropriate piezoelectric actuator 

rim which is placed at the edge of the diaphragm 

[8,9]. 

METHODOLOGY 
 

The motion of the circular diaphragm is speci-

fied by the velocity of each point on the diaphragm 

along the z-axis: 

2 2 2( , ) cos( )( ) /w r t B t R r Rω ω= − ,            (1) 

where B is the maximum deflection of the center of 

the diaphragm, R is the radius of the diaphragm, r is 

the radial distance from the center of the diaphragm, 

ω = 2πf is the driving frequency and t is time. The 

general motion of the diaphragm is represented by the 

velocity vector, which is given by: 

0

0

( , )
diaphragm

u

v

w w r t

=

   
   
   
   

             (2) 

 

 
 

Figure 1: Three-dimensional view of the micropump 

and V-channels at the inlet and exit; inset shows a 

close-up view of the exit V-channel.  

Incompressible Navier-Stokes equations subject 

to continuity govern the motion of the fluid in the 

time-varying domain, Ω(t), which is subject to the 

motion of the diaphragm boundary:  

2

m( ) P
t

∂
ρ + − ⋅ ∇ = −∇ + µ

∂

 
∇ 

 

U
U u U U      (3) 

0∇ ⋅ =U .  (4)   

In (3) and (4), U is the fluid velocity vector and um is 

the velocity of the moving coordinates due to the 

deformation of the domain with respect to initial 

stationary reference coordinate frame. Deforming 

domain inside the pump chamber is represented by 

the arbitrary Lagrangian-Eulerian (ALE) [10,11] 

method, which incorporates Winslow smoothing 

[12]. The velocity of the moving coordinates is speci-

fied by: 

( ) ( )

0

0

, /  for w z t z H r R

 
 

=  
 < 

m
u             (5) 

Essentially, Eq. (5) represents a rubber mesh defor-

mation underneath the diaphragm in the chamber, 

where the local points get squeezed and stretch fol-

lowing the diaphragm’s motion [13]; at the bottom of 

the chamber, z=0, domain deformation is specified as 

0, and at the diaphragm, z = H with respect to the 

initial coordinates, the velocity of the deformation is 

equal to the diaphragm’s velocity given by Eq. (1). 

x y 

z 
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Eqs. (3) and (4) are subject to no-slip boundary 

conditions at the chamber and channel walls, speci-

fied velocity, by (2) at the diaphragm, neutral flow 

conditions at the inlet and exit [11]: 

[ ]
,

0
in t

P− + ⋅ =I σ n               (6) 

[ ]
,

0
out t

P− + ⋅ =I σ n  ,             (7) 

where n is the surface normal vector and σ is the full 

stress tensor. In efficiency simulations, the inlet 

boundary condition is replaced with specified pres-

sure. 

 
Passive valve model 
 

Motion of the passive valves is eliminated in this 

model to relieve the numerical burden of fluid struc-

ture interactions in V-shaped channels (gaps). Due to 

very low Reynolds number of the flow, one can as-

sume Poiseuille flow conditions in V-channels for 

which the flow rate is specified as [14]: 

32
t

3

chPh
Q

µ

∆
∝

ℓ
              (8) 

where Q is the flow rate, h is the V-channel height, t 

is the width, and ℓ  is the V-channel length as de-

picted in (Fig. 1). The flow rate in Eq. (8) is a func-

tion of the channel height and pressure difference it is 

subjected to, i.e. ∆Pch= Pin – Pout, which corresponds 

to the pressure difference between the inside and 

outside the pump at the exit, and the pressure differ-

ence between the outside and inside the pump at the 

inlet.  

Therefore, instead of modeling the motion of the 

prismatic valves in and out of the wedge, which ef-

fectively changes the V-channel height (gap thick-

ness) and dictates the flow rate for a given pressure 

difference across the V-channels, the effective viscos-

ity of the fluid within deforming channels can be 

used to mimic the varying gap thickness. This modi-

fication leads to the same flow rate for the given 

pressure difference, and is given by: 

3

0

0

ch

ch

h

h

 µ
=  

µ  
                        (9) 

where, h0 and µ0 are the unmodified height and vis-

cosity of the fluid inside the V-channel for zero refer-

ence pressure difference, ∆Pch = 0, and hch and µch are 

modified channel height and the modified viscosity 

corresponding to hch. 

Furthermore, the displacement of the prism due 

to the pressure difference can be assumed as linear if 

springs attached to the prism are linear. Then, we also 

have: 

max0

1ch in out
h P P

h P

−
= −

∆
             (10) 

where Pin and Pout are pressures at inlets and exits of 

V-channels respectively, and ∆Pmax is the maximum 

pressure which results in the collapse of the gap be-

tween the prism and wedge and preferably higher 

than pressures which are encountered in simulations, 

so as not to violate the linearity assumptions of 

springs (in Eq. (10)) and avoid unrealistic negative 

values for the channel effective-viscosity in Eq. (9).  

Thus, from Eq. (8,9,10) the modified effective 

viscosity in V-channels can be determined  from the 

pressure difference between inlets and exits of V-

channels. Note that channel pressure difference at the 

inlet is negative of the pressure difference at the exit 

when both inlet and exit of the micropump is exposed 

to the same pressure boundary conditions. According 

to Eq. (10), when the chamber pressure is lower than 

outside, V-channel height at the inlet (exit) increases 

(decreases), and when the chamber pressure is higher 

than outside, then channel height at the inlet (exit) 

decreases (increases).  

 

 

Figure 2: The simple valve used in testing of the 

Poiseuille-flow assumption and viscosity modifica-

tion. Streamlines indicate the trajectory of fluid pack-

ets, 3D arrows (scaled with respect to the strength) 

show the flow direction. Sliced color surfaces corre-

spond to the the x-velocity. 

 

The validity of the Poiseuille flow approximation 

is tested for a flow inside a channel that contains a 

single valve, which is subject to zero inlet pressure 

and time-periodic outlet pressure (Fig. 2). The varia-

tion of the V-channel height (gap thickness) with the 

pressure difference between the inlet and outlet of the 

channel is specified according to Eq. (10). Time-

averaged flow rates calculated from moving-valve 

and Poiseuille-flow-based modified viscosity simula-

tions, and are compared in Fig. 3 for different fre-

quencies of the exit pressure.  For frequencies up to 
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1000 Hz, the time-averaged flow rates from modi-

fied-viscosity and moving prism simulations are 

nearly identical. Moreover, instantaneous flow rates 

are also observed to be nearly identical (not shown 

here). Thus, one can assume that modified-gap-

viscosity assumption can be used safely instead of 

actually simulating the motion of prisms in passive 

valves.  

 

 
Figure 3: Time averaged flow rate for moving wedge 

(blue) and time averaged flow rate for stationary 

wedge (red). 

 

Performance metrics 
 

Instantaneous flow rate is determined from the 

integral of the x-velocity at the outlet of the pump: 

( ) ( ), ,

exitA

Q t u y z t dA= ∫  (11) 

Time-averaged flow rate is determined from last two-

cycles of the simulations that correspond to two full-

cycles of the diaphragm deformation, leading to: 

( )
2

2

t fo

av

to

f
Q Q t dt

+

= ∫  (12) 

Instantaneous rate of work done on the fluid (hy-

draulic power) by the moving diaphragm is calcu-

lated from the area integration of the product of the 

total z-stress and the local z-velocity, i.e. 

( ) ( , )z

Adiaphragm

t w r t dAΠ = Σ∫   (13) 

where r is the position measured from the center of 

the diaphragm, Σz is the z-component of the full stress 

tensor, which is given by [16]:  

2

z

u w

z x

v w

z y

w
P

z

  
  

  
  
 =  
  
 
  
    

∂ ∂
µ +

∂ ∂

∂ ∂∑ µ +
∂ ∂

∂
µ −

∂

 (14) 

Similarly to Eq. (12), time-averaged hydraulic power 

is calculated by integrating the instantaneous power 

over the last two cycles of simulations: 

 ( )
2

2

t fo

av

to

f
t dt

+

Π = Π∫  (15) 

Lastly, the efficiency of the micropump is deter-

mined by the ratio of the work-rate output of the 

pump to the time-averaged hydraulic power [17]: 

pump,max av,max
η

4 av

P Q∆
=

Π
 (16) 

where 
,maxpump

P∆ is the maximum pressure head, 

Qav,max is the maximum flow rate that the pump can 

deliver. Note that Qav,max is essentially the average 

flow rate calculated from Eq. (12) from the simula-

tions where the inlet and exit of the pump are subject 

to zero pressure boundary conditions.  

  

RESULTS 
Numerical simulations are carried out with the 

third-party software COMSOL, which utilizes the 

finite-element method. Simulations that are presented 

here are based on about 150000 degrees of freedom 

from about 12000 prismatic and 1500 hexahedral 

second order Lagrangian elements with first order 

pressure. Deformation velocity of the mesh, i.e. the 

Lagrangian strain-rate is calculated with the arbitrary 

Lagrangian-Eulerian method that utilizes Winslow 

smoothing in COMSOL. Linear systems coming out 

of finite-element discretization are solved with the 

PARDISO solver of the COMSOL along with Intel’s 

MKL-BLAS libraries [15], which are invoked to take 

advantage of the automatic parallelization of the 

code. Each simulation takes between 1 to 3 hours on 

a double dual-core 3.7-GHz-Xeon workstation with 

16GB of RAM running on SUSE Linux 10.0 operat-

ing system. 

 
Effect of the deformation amplitude 
 

In variable amplitude simulations, we use a non-

dimensional geometry whose parameters are speci-

fied in Table 1.  

Simulations are carried out using nondimen-

sional amplitude which is given by: 

0
* /B B L= , (17) 

where L0 is the length scale which corresponds to the 

height of the undeformed pump and its inlet and exit 

channels as specified in Table 2.   Other characteristic 

scales used in variable amplitude runs are also speci-

fied in Table 2.  
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Geometric variables  

(dimensionless) 

Value 

Channel height, t
* 

1 

Inlet-exit channel width, w
* 

1 

Diaphragm radius, R
* 

1.5 

Deformation amplitude, B
* 

0.1 (in constant 

amplitude simula-

tions) 

Driving frequency, f
*
 1 (in constant 

frequency runs 

Table 1. Default values for geometric variables used in 

simulations, unless otherwise noted 

 

 

Characteristic 

scales in constant 

frequency simula-

tions 

Representative values 

Length, L0 H  = 10
-3

 m 

Velocity, U0   Hf = .0112 ms
-1 

Time, t0  1/f = 0.0893 s 

Pressure, P0 ρH 
2
f 

2
 = 0.1254 Pa 

Flow rate, Q0  H 
3
f = 1.12×10

-7
 m

3
s

-1
 

Hydraulic power, Π0  ρH
5
f
3 
= 1.4×10

-8
 W 

Table 2. Characteristic scales and their base values used in 

simulations and comparison of results. Here f is the driving 

frequency, and H is the dimensional height of the pump and 

its inlet and exit channels.  

 

As the amplitude of deformations of the dia-

phragm increases, more fluid is displaced volumetri-

cally and one expects a linear dependence between 

the flow rate and the amplitude as observed in Fig. 4. 

However, if the time-averaged flow rates are com-

pared, we observe a quadratic dependence on the 

amplitude of the diaphragm deformation as shown in 

Fig. 5. In fact, this behavior manifest itself in Fig. 4, 

as the deformation amplitude increases, even though 

the maximum of the time-dependent flow remains 

nearly linear, amplitude of the backflow does not 

keep its linear dependence on the deformation ampli-

tude. Thus the (im)balance indicates higher than first 

order increase of the time-averaged net-flow with the 

deformation amplitude. 

In Figure 6, the effect of amplitude on hydraulic 

power (rate of work done on the fluid by the moving 

diaphragm) is plotted. Due to increasing vertical 

velocity of the diaphragm and increasing pressure in 

the chamber, the overall increase in the hydraulic 

power is quadratic with increasing deformation am-

plitude.  

 
Figure 4: Time-dependent flow rate (at the exit) 

against non-dimensional time for which maximum 

displacement takes place at t* = 5.5 in the plot. Am-

plitude of the flow rate increases linearly with the 

amplitude of deformations.  

 

 
Figure 5: The effect of the amplitude of the dia-

phragm’s deformation on time-averaged flow rate at 

the exit.  

 
Figure 6: Effect of the deformation amplitude on the 

time-averaged hydraulic power. 

 

Effect of the driving frequency 
 

In variable frequency simulations, nondimen-

sional time and the frequency in simulations are kept 

constant, as 1. The Reynolds number, which is given 

by Eq. (18) is varied in the simulations: 
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0 0Re
LUρ

µ
= . (18) 

Characteristic scales used in Eq. (18) and others are 

specified in Table 3 for constant amplitude, B = 100 

µ, and  variable frequency simulations.  

Characteristic scales 

used in constant ampli-

tude simulations 

Representative values 

Length, L0 [m] H  = 10-3 

Velocity, U0  [ms
-1

] 2 fBπ  

Time, t0 = L0/U0 [s] / 2H fBπ  

Pressure, P0 [Pa] 
( )

2

2 fBρ π  

Flow rate, Q0 [m
3
s

-1
] ( )2 2H fBπ  

Hydraulic power, Π0 [W] 
( )

3
2 2H fBρ π  

Table 3. Characteristic scales and their base values used in 

simulations and comparison of results. Here f is the driving 

frequency, and H is the dimensional height of the pump and 

its inlet and exit channels.  

 

As shown in Fig. 7, the average flow rate varies 

quadratically with the driving frequency at relatively 

low frequencies. This behavior is somewhat counter 

intuitive, as one would expect a linear dependence 

between the frequency and the average flow rate. 

Simply put, as one doubles the number of deforma-

tion cycles with fixed amplitude in a fixed period of 

time, the total flow must also double; hence one must 

obtain twice as much flow rate. However, essentially, 

the same argument applies for the relationship be-

tween the flow rate and the amplitude (Figs. 4 and 5), 

yet we observe that, even though the time-dependent 

flow rate obeys to that argument, time-averaged flow 

rate deviates from the linear dependence due to the 

behavior of the passive valves. A similar behavior, is, 

thus, expected here. 

 
Figure 7: Driving frequency vs. time averaged flow 

velocity power consumption. 

 

In Fig. 8, the variation of the hydraulic power 

with the varying frequency is depicted. The hydraulic 

power varies quadratically with the frequency. Hy-

draulic power has two components (see Eqs. (13) and 

(14)). As the frequency increases, so does the veloc-

ity and one would expect a proportional increase in 

the pressure as well. Thus, a quadratic dependence 

between the hydraulic power and the frequency is 

somewhat expected.  

 
Figure 8: Driving frequency vs. time averaged hy-

draulic power consumption. 

 

Efficiency of the micropump 
 

To obtain the characteristic curves of the micro-

pump, we carried out a number of additional simula-

tions in which the inlet pressure is set to a negative 

value. We then computed the average flow rate using 

Eq. (12). As one would expect, typical characteristic 

curves which exhibit linear dependence between the 

flow rate and the pressure head are obtained. Thus, 

the efficiency of the pump can be calculated from Eq. 

(16).  

The maximum pressure head is calculated from 

the characteristic curves by extracting the pressure 

head that corresponds to the zero time-averaged flow-

rate. The maximum flow rate corresponds to the one 

for which the zero inlet and exit pressures are speci-

fied for the pump’s inlet and exit, and are readily 

calculated from variable amplitude and frequency 

simulations.  

In Fig. 9, the efficiency of the micropump is 

plotted against the deformation amplitude. For small 

amplitudes, the efficiency varies quadratically with 

the amplitude. However, one expects leveling-off of 

this behavior as the amplitude becomes large enough 

in comparison with the height of the pump.  

In Fig. 10, the efficiency of the micropump is 

plotted against the driving frequency. According to 

the plot, for small frequencies the efficiency of the 

pump increases cubically with the frequency. Similar 

to the case for the varying amplitude, as the fre-

quency becomes large enough the cubic increase of 
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efficiency must stall. Numerical problems are cur-

rently being sorted out to elucidate the behavior of 

the micropump for large amplitudes and frequencies.  

 

 
Figure 9: Efficiency of the micropump plotted as a 

function of deformation amplitude of the diaphragm. 

 

 
Figure 9:  Efficiency of the micropump plotted as a 

function of drive frequency of the diaphragm. 

 

CONCLUSIONS 
 

A displacement-type micropump design is ana-

lyzed with respect to its operating conditions using 

simulation-based experiments. The micropump con-

sists of a moving circular diaphragm which is placed 

at the top of a cylindrical chamber and two passive 

valves placed at the inlet and exit channels attached 

to the main chamber. Passive valves consist of pris-

matic parts attached to springs, and can move in and 

out of a V-shaped channel according to the pressure 

difference between the chamber and the inlet and 

outlet. The varying flow conditions due to the motion 

of  prisms are modeled using Poiseuille flow assump-

tion in the narrow channels between the prisms and 

V-channels. The viscosity of the fluid in the gap is 

modified to mimic the changing gap thickness.  

The flow inside the micropump is modeled using 

time-dependent three-dimensional Navier-Stokes 

equations and arbitrary Lagrangian Eulerian method 

(ALE) in a deforming coordinate system due to mo-

tion of the diaphragm boundary. A number of simula-

tions are carried out to determine the average flow 

rate, hydraulic power and the efficiency of the micro-

pump as a function of the deformation amplitude and 

the driving frequency of the diaphragm.  

According to simulation results, which concen-

trate on the small amplitude and small frequency part 

of the scale, the average flow rate and hydraulic 

power have quadratic dependence on both the ampli-

tude and the frequency, i.e. 

( ) ( )
2 2

~ , ~
av av
Q Bf BfΠ  (19) 

The efficiency of the micropump, which has a linear 

characteristic curve, varies quadratically with the 

amplitude and cubically with the frequency, i.e. 
2 3~

av
B fη . (20) 

Work is underway to elucidate the behavior of the 

micropump for large deformation amplitudes and 

drive frequencies of the diaphragm. 
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