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Abstract
Given a compact setK in an open setD on a Stein manifold 
; dim
 =

n; the set ADK of all restrictions of functions, analytic in D with absolute
value bounded by 1; is a compact subset of C(K). The problem on the
strict asymptotics for Kolmogorov diameters (widths) :

� ln ds
�
ADK

�
� � s1=n; s!1:

was stated by Kolmogorov in an equivalent formulation for "-entropy of
that set [13, 14, 16]. It was conjectured in [46, 47] that for "good" pairs

(K;D) such an asymptotics holds with the constant � = 2�
�

n!
C(K;D)

�1=n
,

where C (K;D) is the pluricapacity of the "pluricondenser" (K;D), intro-
duced by Bedford-Taylor [6]. In the one-dimensional case it is equivalent
to Kolmogorov�s conjecture about the "-entropy of the set ADK , which has
been con�rmed by e¤orts of many authors (Erokhin, Babenko, Zahariuta,
Levin-Tikhomirov, Widom, Nguyen, Skiba - Zahariuta, Fisher - Miccheli,
et al).

In [46, 47] the above problem had been reduced (the proof was only
sketched there) to the certain problem of pluripotential theory about ap-
proximating of the relative Green pluripotential of the "pluricondenser"
(K;D) by pluripotentials with �nite set of logarithmical singulatities. The
latter problem has been solved recently by Poletsky [25] and Nivoche
[23, 24]. Here we give a detailed proof of the above-mentioned reduction,
which provides, together with the Nivoche-Poletsky result, a positive so-
lution of our conjecture about asymptotics of Kolmogorov diameters.

1 Introduction

Let K be a compact set in an open set D on a Stein manifold 
, H1 (D)
the Banach space of all bounded and analytic in D functions with the uniform
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norm, and ADK be a compact subset in the space of continuous functions C (K)
consisted of all restrictions of functions from the unit ball BH1(D); since it will
be always assumed that the restriction operator is injective, one may infer that
ADK = BH1(D). Kolmogorov raised the problem about strict asymptotics for
"-entropy of this set ([13, 14, 31, 36, 16])

H"

�
ADK
�
� �

�
ln
1

"

�n+1
; "! 0; (1)

with some constant � (the weak asymptotics for H"

�
ADK
�
had been already

proved by him under some natural restrictions on K and D).
For a set A in a Banach space X the Kolmogorov diameters ( or widths) of

A with respect to the unit ball BX of the space X are the numbers (see,e.g.,
[32]):

di (A;BX ) := inf
L2Ls

sup
x2A

inf
y2L

kx� ykX ; (2)

where Li is the set of all i-dimensional subspaces of X . For a pair of normed
spaces Y ,! X with a linear continuous imbedding we shall write simply
di (Y;X) instead of di (BY ;BX ); in particular, di

�
ADK
�
:= di (H

1 (D) ; AC (K)) ;
where AC (K) is the completion of the set of all traces of functions, analytic on
K in the space C (K).
From Levin-Tikhomirov [18] it follows that the asymptotics (1) is equivalent

to the following asymptotics for Kolmogorov diameters of the set ADK :

ln di
�
ADK
�
� �� i1=n; i!1: (3)

with the constant � =
�

2
(n+1)�

�1=n
.

Kolmogorov conjectured that, in the case n = 1; the constant � coincides
with the Green capacity � (K;D) for proper pairs (K;D). Recall that the
Green capacity of a condenser (K;D) on a Riemann surface 
 is the num-
ber � (K;D) := 1

2�

R
�!; where ! (z) = ! (D;K; z) is the generalized Green

potential, de�ned by the formula

! (z) := lim sup
�!z

sup fu (�) : u 2 Sh(D); ujK � 0; u (�) < 1 in Dg ; (4)

here Sh(D) stands for the class of all subharmonic functions in D and �! is
understood as a positive Borel measure (supported by K).
Kolmogorov�s hypothesis has been con�rmed by e¤orts of many authors

([4, 8, 9, 41, 18, 22, 39, 48, 10]). The following statement gives an idea of those
one-dimensional results.

Proposition 1 Let K be a non-polar compact subset of an open set D of on
open one-dimensional Riemann surface 
, K = bKD, and D is a relatively
compact open set in 
 with boundary @D consisted of a countable set of compact
connected components at least one of which has more that one point. Then the
asymptotics (3) holds with n = 1 and � = 1

�(K;D) .
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An important tool in the proof of such results (see, e.g., [48]) is the classical
fact of potential theory about the approximation of the potential (4) by �nite
combinations

Pm
k=1 �k gD(�k; z); where gD(�; z) is the Green function of D with

the unit logarithmic singularity at �; it is for the lack of a proper multidimen-
sional analogue of this fact that the problem on asymptotics (3) for n � 2 was
known for a long time only in some particular cases (see, e.g.,[16, 36, 43])
In [46] (see, also [47]) it was conjectured that for a good enough pair K �

D on a Stein manifold 
; dim
 = n; the asymptotics (3) holds with � =

2�
�

n!
C(K;D)

�1=n
, where C (K;D) is the pluricapacity of the "pluricondenser"

(K;D), introduced by Bedford-Taylor [6]. It was shown there how to reduce
the problem about the asymptotics (3) for n � 2 to the certain problem of
pluripotential theory (suggested as an analogue of the above one-dimensional
fact). We state this problem below after some necessary de�nitions.
The Green pluripotential ! (z) = ! (D;K; z) of a pluricondenser (K;D) on

a Stein manifold 
 is de�ned by the same formula (4) with the class Psh (D) of
all plurisubharmonic functions in D instead of Sh(D) in it. We say that (K;D)
is a pluriregular pair on 
 provided the conditions: (a) K is a compact subset
of an open set D � 
 such that K =. bKD and D has no component disjoint with
K; (b) ! (D;K; z) � 0 on K and lim! (D;K; zj) = 1 for any discrete sequence
fzjg in D. Given F =

�
�1; : : : ; ��; : : : ; �m

	
� D and � = (��) 2 Rn+ the Green

multipole plurisubharmonic function gD (F; �; z) is de�ned ([46, 12, 17, 47]) as a
regularized upper envelope of the family of all functions u 2 Psh (D), negative
in D and satisfying the estimate u (z) � �� ln

��t(��)� t(z)�� + const in some
neighborhood U� of each point �� (in any local coordinates t : U� ! Cn); see
below in section 5 about this function more in detail.

Problem 2 ([46, 47]) Given a pluriregular pair (K;D) on a Stein manifold does
there exist a sequence of multipole Green functions gD

�
F (j); �(j); z

�
converging

to ! (D;K; z)� 1 uniformly on any compact subset of D rK?

This problem has been solved recently by Poletsky [25] and Nivoche [23, 24]
(see below Proposition 38), which covers an important part in the �nal positive
proof of our conjecture on Kolmogorov problem.
In this paper we represent a detailed proof of the reduction part which was

only sketched in the survey [47] (somewhat more comprehensive proof from [46]
has not been published).
It is natural to modify the Kolmogorov problem in the following more general

way. Denote by A(D) the Fréchet space of all functions analytic in D with the
topology of uniform convergence on compact subsets and by A(K) the locally
convex space of all germs of analytic functions on K with the usual inductive
limit topology. We are concerned with the strict asymptotics of the sequence of
Kolmogorov diameters di (X1; X0) of the unit ball of a Banach space X1 with
respect to the unit ball of a Banach space X0 for couples of Banach spaces
X0; X1 satisfying the linear continuous imbeddings:

X1 ,! A(D) ,! A(K) ,! X0 (5)
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and closely related with the spaces A(D) and A(K) in the following sense.

De�nition 3 We say that a couple of Banach spaces X0; X1 satisfying the
imbeddings (5) is admissible for a pair (K;D) if for any other couple of Banach
spaces Y0; Y1 satisfying the linear continuous imbeddings:

X1 ,! Y1 ,! A(D); A(K) ,! Y0 ,! X0;

we have ln di (Y1 ; Y0) � ln di (X1 ; X0) as s!1.

For any pluriregular pair (K;D) there exists an admissible couple X0; X1

(see below, Corollary 18) and the asymptotic class of the sequence ln di (X1 ; X0)
is rather a characteristic of the pair (K;D), than of any individual coupleX0; X1

admissible for this pair. Moreover, since the spaces A(K) and A(D) are nuclear,
there are admissible couples of Hilbert spaces, which allows to apply the Hilbert
scales technics.

Problem 4 ([46, 47]) Let (K;D) be a pluriregular pair "compact set-open set"
on a Stein manifold 
. Does the strict asymptotics

ln di (X1 ; X0) � �2�
�

n! i

C (K;D)

�1=n
; s!1 (6)

hold for some (hence, for any) couple of Banach spaces X0; X1 , admissible for
(K;D)?

Developing our approach from [46, 47] and applying the above-mentioned
result of Nivoche-Poletsky we shall give the positive solution of this problem,
namely the following theorem will be proved in Section 9 after substantial
preparatory considerations in sections 2-8.

Theorem 5 The asymptotics (6) holds for any couple of Banach spaces X0; X1;
admissible for (K;D) if (K;D) is a pluriregular pair on a Stein manifold 
.

Remark 6 The statement of this theorem remains true assuming that the pair
(K;D) satis�es all conditions in the de�nition of a pluriregular pair besides that
K is suposed to be only non-pluripolar (instead of the condition ! (D;K; z) � 0
on K). But in what follows, for the simplicity sake, we will consider only
pluriregular pairs.

As a consequence we obtain an answer to the question about the asymp-
totics (3) specifying the fuzzy terms "good enough" or "proper" in the above
conjectures.

Corollary 7 Given a pluriregular pair (K;D) the asymptotics

ln di
�
ADK
�
� �2�

�
n! i

C (K;D)

�1=n
; i!1: (7)

holds if and only if the couple (AC (K) ;H1 (D)) is admissible for (K;D).
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The last statement, though being �nal, is too general and calls for some con-
crete description of admissibility. We discuss some necessary and su¢ cient con-
ditions of admissibility of a couple (AC (K) ; H1 (D)) in the sections 4,9. On
the other hand, we consider there certain classes of pluriregular pairs (K;D), for

which the asymptotics (3) does not hold with the constant � = 2�
�

n!
C(K;D)

�1=n
but may be true with some smaller constant.

2 Preliminaries

Notation. For a pair of positive sequences we write ai � bi if there is a
constant C such that ai � C bi. If X and Y are locally convex spaces, then
X ,! Y stands for a linear continuous imbedding. We use the notation: jxjF :=
sup fjx (z)j : z 2 Fg. Given a Banach space X the notation BX is for its closed
unit ball.
Some facts of Pluripotential Theory. In what follows 
 is a Stein

manifold, dim
 = n. The set of all plurisubharmonic functions in an open
set D � 
 is denoted by Psh (D) ; MP (D) stands for the set of all maximal
plurisubharmonic functions in D. Let us remind that u 2 Psh (D) is maximal
in D if for any subdomain G b D and for each function v 2 Psh (D) it follows
that the inequality v (z) � u (z) takes place on G provided that it is valid on
the boundary @G. A Stein manifold 
 is called pluriregular (or hyperconvex )
if there is a negative function u 2 Psh (
) such that limu (zj) = 0 for any
sequence fzjg having no limit point in 
. An open set D b 
 is strongly
pluriregular if there is an open set G c D and a function u 2 C (G) \ Psh (G)
such that D = fz 2 G : u (z) < 0g.
The Green pluripotential of a condenser (K;D) on 
 (that is K is a compact

set in an open set D � 
) is the function

! (z) = ! (D;K; z) := lim sup
�!z

sup fu (�) : u 2 P (K;D)g ; (8)

where P (K;D) is the set of all u 2 Psh(D) such that ujK � 0 and u (�) < 1
in D. The following two families of sublevel sets are important for further
considerations:

D� := fz 2 D : ! (z) < �g ; K� := fz 2 D : ! (z) � �g ; 0 < � < 1: (9)

A compact set K � 
 is pluriregular if ! (D;K; z) � 0 on K for any open set
D � K. We say that a pair (condenser) (K;D) is pluriregular if (a) both K
and D are pluriregular; (b) bKD = K; (c) D has no components disjoint with
K. It is known that ! (D;K; z) is continuous in D for a pluriregular condenser
(see, e.g. [43, 40]).
Due to Bedford and Taylor [5, 6] (inspired by [7]), the Monge-Ampére op-

erator u! (ddcu)
n is well-de�ned as an operator from the space L1 (
; loc) \

Psh (
) to the space M (
) of non-negative Borel measures with the weak
convergence topology; it is "continuous" with respect to monotone sequences
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of functions; therewith this operator is continuous as an operator from the
space C (
) \ Psh (D) to the space M (
) . Maximality of a function u 2
Psh (
)\L1 (
; loc) in D � 
 is equivalent to (ddcu)n = 0 in D; in particular,
(ddc! (D;K; z))

n � 0 in D rK for a pluriregular pair (K;D) ([5, 26]).
Of prime importance for our considerations is the notion of pluricapacity of

a condenser, which in the case of a pluriregular condenser can be written in the
form ([6]):

C (K;D) :=

Z
K

(ddc! (D;K; z))
n
: (10)

For facts from Pluripotential Theory which are not explained here (or below)
we send the reader to the book [12] warning only that our notation may di¤er
from used there.
Spaces. Let D be an open set on a Stein manifold 
. Denote by A(D) the

Fréchet space of all functions analytic in D with the topology of locally uniform
( or compact) convergence on D, determined by the sequence of seminorms

kxks := jxjKs
= max fjx (z)j : z 2 Ksg ; x 2 A(D); s 2 N; (11)

where Ks is any non-decreasing sequence of compact subsets exhausting D. By
A(K) we denote the locally convex space of all germs of analytic functions on
K with the usual inductive limit topology.
Given a compact set K on an open set D � 
 the restriction operator

J = JD;K : A (D) ! A(K) is an operator which maps any function f 2 A (D)
to the germ ' = Jf 2 A(K), generated by f .
If X;Y are locally convex spaces and i : X ! Y is a linear continuous

injection we say that X is imbedded (linearly and continuously) into Y , iden-
tifying often X with its image i (X) and writing X ,! Y . If this imbedding
is dense (i.e. i (X) is a dense set in Y ) then the conjugate mapping i� :=
Y � ! X� is also a linear continuous injection, so we can identify any linear
functional y� 2 Y � with its image y0 := i� (y�) = y�jX and write in this case
that Y � = Y 0 := i� (Y �) ,! X� ; this imbedding is also dense if the space X is
re�exive.
In particular, for a pluriregular pair (K;D) we shall write

A (D) = JD;K (A (D)) ,! A (K) ; (12)

A (K)
�
= A (K)

0
:= J�D;K

�
A (K)

��
,! A (D)

�
:

Given an open set D � 
 the elements of the space A (D)� are called usually
analytic functionals on D (see, e.g., [11]); so, any functional from A (K)

� is
identi�ed in (12) with the corresponding analytic functional onD. Given F � D
the non-bounded seminorm is introduced

jx0j�F := sup fjx
0 (x)j : x 2 A (D) ; jxjF � 1g (13)

on A (D)� ; which is de�nitely a norm if (K;D) with K = F is a pluriregular
condenser.
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Scales. A family of Banach spaces X�; �0 � � � �1; is called a scale of Ba-
nach spaces (or simply a scale ) if for arbitrary �0 � � < � � � two conditions

hold: 1) X� ,! X� and 2) kxk
 � C(�; �; 
)
�
kxkX�

�1��(
) �kxkX�

��(
)
with

� (
) = 
��
��� , � < 
 < �. In what follows we send the reader to the monograph

[15] for further notions and results about scales.
Here we turn our attention to a particular case of Hilbert scale H� =

H1��
0 H�

1 ; � 2 (�1;1) ; spanned on a couple of Hilbert spaces with a dense
compact imbedding H1 ,! H0. Since under such assumptions there is a com-
mon orthogonal basis f'ig for H0 and H1, normalized in H0 and enumerated
by non-decreasing of norms in the space H1:

k'ikH0
= 1; i 2 N; �i = �i (H0;H1) := k'ikH1

%1: (14)

this scale is determined by the norms

kxkH�
:=

 X
i2N
j�ij

2
�2�i

!1=2
; x =

X
i2N

�i 'i; (15)

so that the space H� consists of x 2 H0 with a �nite norm (15) if � � 0, while
H� is the completion of H0 by the norm (15)) if � < 0 .
Diameters. We shall use the following equivalent de�nition of the Kol-

mogorov diameters (2):

di (X1; X0) = inf finf f� > 0 : BX1
� � BX0

+ Lg : L 2 Lig ; (16)

where Li is the set of all i-dimensional subspaces of X1.
In the conditions concerned with (14) the following simple expression for the

diameters holds (see, e.g., [21], Corollary 3) :

di (H1;H0) =
1

�i+1 (H0;H1)
; i 2 N: (17)

Hence for the Hilbert scale H� = H1��
0 H�

1 , due to representation (15), we have
the equality

di (H�1 ;H�0) =
1

�i+1 (H0;H1)
�1��0 = (di (H1;H0))

�1��0 ; �1 < �0: (18)

Proposition 8 Let X1 ,! Y1 ,! Y0 ,! X0 be a quadruple of Banach spaces
with dense imbeddings, then there is a constant M such that

di (X1; X0) �M di (Y1; Y0) ; i 2 N: (19)

3 Hadamard type inequalities for analytic func-
tions and functionals

Analogously to the one-dimensional case, one of the main applications of Green
pluripotential is Two Constants Theorem for analytic functions, in particular,
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Hadamard type interpolational estimates ([28], see also [43]), which may be
written, for a pluriregular pair (K;D) ; in the form

jf jD�
� (jf jK)

1��
(jf jD)

�
; 0 < � < 1; f 2 H1 (D) ; (20)

where the intermediate sets D� are de�ned in (9). Those estimates are very
useful for constructing of common bases for the spaces A (K) and A (D) ([41,
43, 46, 47], see also [22, 48, 49]), since they provide good estimates for the
system ffi (z)g, examined for being a basis.
Hadamard type interpolational estimates for analytic functionals are of no

less importance. They are needed to provide good estimates for the biorthog-

onal system of analytic functionals
n
f
0

i

o
. In the one-dimensional case, due to

Grothendieck-Köthe-Silva duality, analytic functionals can be represented as
analytic functions in the complement of K, so one can use the same inequalities
(20) to estimate functionals (see, e.g., [41, 22, 48]). For n � 2, though this
direct way fails, the following analogue of Two Constant Theorem for analytic
functionals holds.

Theorem 9 ( [43, 46, 47]) Let (K;D) be a pluriregular pair on a Stein man-
ifold 
 and D be strongly pluriregular. Then for each " > 0 and � 2 (0; 1)
there is a constant M =M (�; ") such that for any x0 2 AC (K)0 ,! A (D)

� the
estimates hold:

jx0j�D�
�M

�
jx0j�K

�1��+" �
jx0j�D

���"
: (21)

4 Adherent spaces

Let E be a Fréchet space,
n
kxkp ; p 2 N

o
a system of seminorms de�ned its

topology,

kx�k�p := sup
n
jx� (x)j : x 2 E; kxkp � 1

o
; x� 2 E�; p 2 N; (22)

be the system of polar (non-bounded, in general) norms, and

Up :=
n
x 2 E : kxkp � 1

o
; U�p :=

n
x� 2 E� : kx�k�p � 1

o
; p 2 N: (23)

The following interpolation property proved to be useful in studying of struc-
tural properties of Fréchet spaces (see, e.g., [42, 45, 37, 38, 20]).

De�nition 10 A Fréchet space E satis�es the property D2 (we write also E
2 (D2)) if for every p 2 N there is q 2 N such that for each r 2 N there is a
constant C provided the estimate:�

kx�k�q
�2
� C kx�k�p kx

�k�r ; x� 2 E� (24)
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De�nition 11 A Banach space X ,! E is said to be adherent to E if for
each p 2 N and any � > 0 there is q 2 N and a constant C > 0 such that

kx�k�q � C
�
kx�k�X�

�1�� �kx�k�p�� ; x� 2 E�:

It is easy to check that X is adherent to E if and only if one of the following
conditions holds (see, e.g.,[37, 20]):

(i) for any neighborhood V of zero in E and each � > 0 there is p 2 N and a
constant C > 0 such that

Up � t� BX +
C

t1��
V; t > 0; (25)

(ii) for any neighborhood V of zero in E and each � > 0 there is p 2 N and a
constant C > 0 such that

t1�� V � \ 1
t�
BX� � C U�p ; t > 0 (26)

where V � := fx� 2 E� : jx� (x)j � 1; x 2 V g.

Proposition 12 (D. Vogt [37], Lemma 4) Let a Schwartz Fréchet space E
satisfy the property D2. Then there is a Banach space X ,! E adherent to E.

Proposition 13 Let 
 be a Stein manifold, having �nite set of connected com-
ponents. Then the following statements are equivalent: (i) 
 is pluriregular;
(ii) A(
) 2 D2; (iii) there exists a Hilbert space H ,! E adherent to the space
A (
) .

Proof. The relations (i), (ii) and (iii)) (i) are due to [43, 45] (see also, [46,
47]), therewith the proof of (i) ) (ii) is based on Hadamard type inequalities
for analytic functionals (see, Theorem 9 above); (ii), (iii) follows from Vogt�s
result (see, Proposition 12 above), taking into account that A (
) is nuclear.
It should be mentioned that Aytuna [2] constructed, under the assumption

(i), an adherent Hilbert space for A (
) as a weighted L2-space, applying Hör-
mander�s @-problem technics. For good enough domains we have the following
easy description of adherent spaces for A (
) (see, e.g., [46, 47]).

Proposition 14 Let D be a strongly pluriregular domain on a Stein manifold.
Then any Banach space X satisfying the dense imbeddings A

�
D
�
,! X ,!

A (D) is adherent to A (D); in particular, the space H1 (D) is adherent to
A (D).

De�nition 15 Let K be a compact set on a Stein manifold 
 and a Banach
space X satisfy the dense imbedding A (K) ,! X. We say that X is adherent to
A (K) if its dual X� ,! A (K)

� is adherent to A (K)� (in the sense of De�nition
11).
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The following fact cannot be obtained from Proposition 13 for dim
 � 2,
because there is no proper multidimensional analogue of the Grothendieck�
Köthe-Silva duality.

Proposition 16 ([43, 44]) Let K be a compact set on a Stein manifold 
 such
that A (
) is dense in A (K) (i.e. K is a Runge set on 
) and 
 has no
connected component disjoint with K. The following statements are equivalent:
(i) K is pluriregular; (ii) A (K)� 2 D2; (iii) there is an adherent to A (K)
Hilbert space H  - A (K); (iv) the space AC (K) is adherent to A (K).

It follows from (i) ) (ii) any Hilbert space H; satisfying the dense imbed-
dings A (K) ,! H ,! AC (K), is adherent to A (K). A more explicit example
of a Hilbert space adherent to A (K) is the space H = AL2 (K;�) obtained as
a completion of A (K) by the norm

kxk :=
�Z

K

jx (z)j2 d�

�1=2
;

where � := (ddc!)n with ! (z) = ! (D;K; z) and D is any open set composing a
pluriregular pair (K;D) with K ([46, 49, 47], see also [50] for a characterization
of Borel measures � providing that H = AL2 (K;�) is adherent to A (K)).

De�nition 17 Given a pluriregular pair (K;
) a couple of Banach spaces (X0; X1)
is said to be adherent to a couple (A (K) ; A (
)) if

X1 ,! A (
) ,! A (K) ,! X0 (27)

and X1 is adherent to A (
), X0 is adherent to A (K).

Propositions 13 and 16 yield the following

Corollary 18 For any pluriregular pair (K;
) there exists a couple of Banach
(Hilbert) spaces (X0; X1) adherent to (A (K) ; A (
)).

The following statement was proved in [43] for the particular case of Hilbert
couples (X0; X1); here we derive the general case from the Hilbert version using
standard technics of Banach scales (see, e.g., [15]).

Theorem 19 Suppose that (K; D) is a pluriregular pair, D is a Stein manifold.
Let (X0; X1) be a couple of Banach spaces adherent to the couple (A (K) ; A (D))
such that X1 is imbedded normally into X0 and BX1

is closed in X0. Let X�,
0 � � � 1, be any regular normal scale of Banach spaces connecting the spaces
X0; X1. Then the following linear continuous imbeddings are true:

A (K�) ,! X� ,! A ( D�) ; 0 < � < 1; (28)

where K�; D� have been de�ned in (9):

10



Proof. Consider any regular normal scale X�; 0 < � < 1; connecting X0 and
X1. First we are going to show that the imbeddings

A (D) - X�  - A (K) (29)

hold for each � 2 (0; 1). By the adherence of X1 to A (D) ; for each � < 1 there
is � < 1 such that

jx0j�D�
� C

�
kx0kX�

0

�1�� �
kx0kX�

1

��
; x0 2 A (D)� :

Therefore for the minimal scale Xmin
� connecting the spaces X0 and X1 ([15])

we obtain the estimate

kxkXmin
�

:= sup
x02X�

0

8><>: jx0 (x)j�
kx0kX�

0

�1�� �
kx0kX�

1

��
9>=>; � C sup

xn2Xn
0

(
jx0 (x)j
jx0j�D�

)
= C jxjD�

:

Hence A (D)  - Xmin
� , 0 < � < 1. Then, due to Lions-Peetre [19] (see, also

[15], Chapter IV, Theorem 2.20), the left imbedding in (29) holds for any scale
X�; 0 < � < 1; connecting X0 and X1.
The imbeddings (27) imply the natural dense imbeddings X�

0  - A (K)
�  -

A (D)
�  - Y0;where Y0 is the closure of A (
)� in X�

1 . Since BX1
is closed

in X0 we have, by Aronszajn-Gagliardo [1], that Y0 is a norming set for X1.
Therefore, taking into account the re�exivity of A (K), the adherence of X1 to
A (K) implies that for any 
 > 0 there is � > 0 and C > 0 such that

jxjD�
� C

�
kxkX0

�1�
 �kxkX1

�

; x 2 X1:

Then bX
 ,! AC (D�) ,! A(K), where bX� := (X0; X1 )�;L1;�;L1;� is the maximal
scale of means ([15], Chapter IV, Lemma 2.6). Therefore, applying this imbed-
ding with 
 < �=2 and taking into account that any regular scale is almost
imbedded into any scale ([15], Chapter IV, Corollary 3), we obtain the right
imbedding in (28).
Now we take any pair of Hilbert spaces H0; H1 satisfying the imbeddings

X1 ,! H1 ,! A(D) ,! A(K) ,! H0 ,! X0:

Then by (29) the imbeddings

X1 ,! H1 ,! X1�" ,! X" ,! H0 ,! X0

hold for every " : 0 < " < 1=2. Applying now (29) to the Hilbert scale H� =

(H0)
1��

(H1)
�, which is true due to [43, 46, 47], and using the interpolation

property of scales [15], we obtain the imbeddings

X�+"(1��) ,! H� ,! A ( D�) ; A (K�) ,! H� ,! X�(1�") ; 0 < � < 1:

Since " > 0 may be taken arbitrarily small here, we obtain (28) what ends the
proof.
The following result will be useful for investigating the problem about as-

ymptotics (7).

11



Theorem 20 Let a couple of Banach spaces (X0; X1) be adherent to the couple
(A (K) ; A (
)). Then it is admissible for (K;
).

Proof. First we show that any couple of Hilbert spaces (H0;H1), which is
adherent to (A (K) ; A (
)) ; is admissible for (K;
). Indeed, let (Y0; Y1) be any
couple of Banach spaces with the imbeddings

H1 ,! Y1 ,! A(
) ,! A(K) ,! Y0 ,! H0:

Then, by Proposition 8, di (H1;H0) � di (Y1; Y0). On the other hand, due to
(18),(28),

di (Y1; Y0) � di (H1�";H") = (di (H1;H0))
1�2"

for arbitrary " > 0. Therefore ln di (Y1; Y0) � ln di (H1;H0) : So, (H0;H1) is
admissible for (K;
).
Let (X0; X1) be an arbitrary couple of Banach spaces (X0; X1) adherent to

(A (K) ; A (
)). Then, due to Propositions 13 and 16 , we can �nd a couple of
Hilbert spaces (H0;H1) admissible for (K;
) and such that

X1 ,! H1 ,! A(
) ,! A(K) ,! H0 ,! X0:

Without loss of generality we may assume that the marginal imbeddings are
normalized.
Fix any � > 0 and choose any sequence of positive numbers �p " 1. Then,

by the imbeddings (28), the system of norms
n
kxkH�p

; p 2 N
o
de�nes the

original topology of the spaceA(
). SinceX1 is adherent to the space E = A(
),
we obtain, applying (25) with V = BX0

\ E, Up = BH�p
\ E; that there is

p = p (�) and C = C (�) > 0 such that

BH�p
�
�
1

�

��
BX1

+ C�1�� BX0
; � > 0: (30)

On the other hand, consider a sequence �q # 0: Then, due to (28), the se-
quence of non-bounded norms

n
kxkH�q

; q 2 N
o
de�nes the original inductive

limit topology on the space A (K) : Since X0 is adherent to A (K), applying (26)
and taking into account re�exivity of the space A (K), we obtain that there is
q = q (�) and C1 = C1 (�) > 0 such that

� BX0
\ BX1

� C1�1�� BH�q
; � > 0: (31)

Now take an arbitrary � > 0 such that

di (X1; X0) < � < 2di (X1; X0) : (32)

By the de�nition, there is L 2 Li such that

BX1
� � BX0

+ L: (33)

12



Combining (30), (31), (32), (33), we obtain that

BH�p
= BH�p

\ BX1 � (1 + C)�1�� BX0 \ BX1 + L

� C1 (1 + C)�
(1��)2 BH�q

+ L:

By the de�nition of diameters (16), we have

di (H1;H0) � di
�
H�p ;H�q

�
� (di (X1; X0))

(1��)2
:

Together with the evident relation di (X1; X0) � di (H1;H0) and due to arbi-
trariness of � > 0, this yields

ln di (X1; X0) � ln di (H1;H0) ; i!1;

hence the couple of Banach spaces (X0; X1) is admissible for (K;
).

Remark 21 The admissibility is, in general, essentially weaker than the ad-
herence. Indeed, consider the simplest pair of two concentric disks K = D,
D = DR; R > 1. De�ne the couple of Hilbert spaces (H0;H1) by the norms

kxk� :=
 1X
k=0

j�kj
2
a
(�)
k

!1=2
; x (z) =

1X
k=0

�k z
k; � = 0; 1 (34)

with a(�)k := R��k if k 6= 2j and a(�)k := (2R)
��k if k = 2j, j 2 N. An easy cal-

culation shows that ln di (H1;H0) � � i
lnR = �

i
�(K;D) as i!1, hence the cou-

ple (H0;H1) is admissible for (K;D), but it is not adherent to (A (K) ; A (D)).

Problem 22 Let (AC (K) ;H1 (D)) be an admissible couple for a pluriregular
pair (K;D). Is then H1 (D) adherent to A (D)?

5 Maximal plurisubharmonic functions with iso-
lated singularities

Let 
 be a pluriregular Stein manifold. Given a �nite set � =
�
�� : � = 1; : : : ;m

	
�


, denote by G� (
) the class of all functions u 2 Psh (
)\MP (
r �) taking
the value �1 on � and satisfying the conditions lim

j!1
u (zj) = 0 for any sequence

fzjg discrete in 
 (or, shortly, lim
z!@


u (z) = 0). In particular, if 
 is a regular

one-dimensional Stein manifold, then every function u 2 G (
) is represented in
the form

u (z) = �
mX
�=1

�� G

�
��; z

�
; (35)

where �� > 0 and G
 (�; z) is the Green function for 
 with the unit loga-
rithmic singularity at the point �. It is well-known how important are those
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functions in one-dimensional complex analysis, especially in the approximation
and interpolation theory.
By contrast, the multidimensional case is much more complicated: on the

one hand, usually a function u 2 G (
) with more than one pole is not repre-
sentable as a sum of functions with single poles and , on the other hand, isolated
singularities of such functions are extremely varied (as seen from the following
example).

Example 23 Let � be a complete logarithmically convex n-circular domain,
relatively compact in a unit polydisc Un; and

h (�) = h� (�) := sup

(
nX
�=1

�� ln jz� j : z = (z�) 2 �
)

its characteristic function. Then every function

k� (z) := sup

�Pn
�=1 �� ln jz� j
�h (�) : � = (��) 2 �

�
; z 2 Un (36)

is of the class Gf0g (Un). All this singularities at the origin are di¤erent, in the
sense of the following:

De�nition 24 Given a point � 2 
 we consider the set of all functions ' 2
Psh (U)\MP (U r f�g) with ' (�) = �1, where U = U (') is an open neigh-
borhood of � and de�ne the equivalence relation by

' �  def
= lim

z!�

' (z)

 (z)
= 1: (37)

Denote by S� the set of all equivalence classes under the relation (37) (we
call them also "standard singularities" at the point �) and write � = ['] if
' 2 � 2 S� . A singularity � 2 S� is called continuous if there is a representative
' 2 �, continuous in some punctured neighborhood of �.

Theorem 25 ([46, 47]) Given a pluriregular Stein manifold 
, a �nite set F =�
�� : � = 1; : : : ;m

	
on it and continuous standard singularities �� =

�
'�
�
2

S�� , � = 1; : : : ;m, there exists the unique function g 2 GF (
) having the
singularities �� at the points ��. This function is continuous in 
 r F and is
de�ned by the formula:

g (z) = g
 (F; (��) ; z) := sup fu (z) : u 2 P (
; F; (��))g ; (38)

where P (
; F; (��)) is the class of all functions u 2 Psh (
) such that u (z) < 0
in 
 and there is a constant c = c (u) provided the estimate u (z) � '� (z) + c
in some neighborhood of ��; � = 1; : : : ;m:

Proof. We suppose, without loss of generality, that the neighborhoods U� =
U
�
'�
�
are disjoint, set U := [U� and de�ne a function ' on U so that ' (z) :=

'� (z) for z 2 U�: Consider the sets

�� = fz 2 U : ' (z) < ��g ; F� = fz 2 U : ' (z) � ��g ; 0 < � <1: (39)
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Choose � > 0 such that F� is compact in 
. For any u 2 P (
; F; (��)) �nd
constants c and � � � such that u (z) � ' (z)+c if z 2 F� : Take �0 = max fc; �g.
The function  (z) = ��c

��� (' (z) + �) is maximal plurisubharmonic function in
U for � > �0 and, by the construction, u (z) �  (z) if z 2 @ (�� r F�). Hence,

u (z) � �� c
�� � (' (z) + �) ; z 2 �� r F�; � > �0 :

Tending � to in�nity in this inequality, we obtain the estimate u (z) � ' (z)+ �
in �� for any u 2 P (
;�; (��)) and derive from here that the function eg :=
lim sup
�!z

g (&) satis�es the estimate

eg (z) � ' (z) + �; z 2 ��; (40)

hence belongs to the class P (
; F; (��)), therefore g (z) � eg (z). Then the
function

v (z) :=

�
g (z) ; z 2 
r ��

max fg (z) ; ' (z) + � � 
g ; z 2 ��
;

where 
 := � inf fg (z) : z 2 @��g, belongs to the class P (
; F; (��)) itself,
hence v (z) � g (z). Therefore

' (z) � g (z)� � + 
; z 2 ��: (41)

From g (z) = eg (z) � 0 and (39), (40) we derive that
g (z) � (�+ �) (! (
; F�; z)� 1) ; z 2 
r F�; � > �0 : (42)

On the other hand, due to (41), if � > �1 := max f
; �0 g, the function

w (z) :=

�
max fg (z) ; (�+ � � 
) ((! (
; F�; z)� 1))g ; z 2 
r F�

g (z) ; z 2 F�

belongs to the class P (
; F; (��)), which provides, together with (42), the esti-
mates

(�+ � � 
) ((! (
; F�; z)� 1)) � g (z) � (�+ �) (! (
; F�; z)� 1) (43)

for z 2 
r F�; � > �1. We conclude from here that

g (z) = lim
�!1

� (! (
; F�; z)� 1) ;

with uniform convergence on any compact subset of 
 r F . Since the pair
(
; F�) is pluriregular for each �, the function � (! (
; F�; z)� 1) is continuous
in 
 for each �, hence the function g is continuous in 
 r F . From (43) we
derive also that limz!@D g (z) = 0, so g 2 GF (
).
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Corollary 26 Given a �nite set F =
�
�� : � = 1; : : : ;m

	
on a pluriregular

Stein manifold and a vector � = (��) 2 Rm+ there is the unique function g (z) =
g
 (F; �; z) 2 GF (
) having at the point �� the standard singularity �� =

�
'�
�

de�ned by the function '� (z) := �� ln
��t�(��)� t�(z)��, where t� : U� ! Cn

are local coordinates in a neighborhood U� of the point ��; � = 1; : : : ;m (we
call this function multipolar Green function).

De�nition 27 ([46, 47]; cf.,[6], section 9) Let u 2 Psh (
), E b 
. The MP -
balayage (sweeping out) of of the function u with respect to to the set 
r E is
the function

s (z) = s (E; u; z) := lim sup
�!z

sup fv (�) : v 2 P (
; E;u)g ; (44)

where P (
; E;u) is the class of all functions v 2 Psh (
), satisfying v (z) �
u (z) ; z 2 
r E.

The following lemma can be easily deduced from the Minimum Principle for
plurisubharmonic functions (see, e.g., [5, 26]).

Lemma 28 If u1; u1 2 C (
) \ Psh (
) and G b 
 is a strongly pluriregular
open set, then

sup fs (G; u1; z)� s (G; u2; z) : z 2 
g � sup fu1 (z)� u2 (z) : z 2 
g :

Proposition 29 Let u 2 C (
) \ Psh (
), G b D b 
. ThenZ
D

(ddcu (z))
n
=

Z
D

(ddcs (G; u; z))
n
: (45)

Proof. Let �rst u 2 C2 (
0) ; D b 
0 b 
; @D 2 C1. Then, by Stokes�
formula, Z

D

(ddcu)
n
=

Z
@D

dcu ^ (ddcu)n�1 : (46)

It is easily seen that Stokes�formula can be applied to functions which are C2

only in a neighborhood of the boundary @D and so, to the function s (z) :=
s (G; u; z). Since u (z) � s (z) in a neighborhood of @D, we obtain (45) and,
furthermore, the smoothness assumption on @D can be dropped.
In the general case, take an approximating sequence u� 2 C2

�

0
�
\Psh (
0),

D b 
0 b 
, such that ju� u� j
0 ! 0. Then, by Lemma 28, js� s� j
0 !
0, where s� (z) = s (G; u� ; z). Taking into account continuity of the Monge-
Ampére operator (see, e.g., [5, 26]), the limit transition in the formula (45),
with u� ; s� instead of u; s; gives this formula in the general case.

De�nition 30 Given a point � on a Stein manifold 
; dim
 = n, and � = [']
2 S� the charge of the standard singularity � is the value

�� (�) = �� f'g :=
�
1

2�

�n Z
D

(ddcs (��; '; z))
n
; � > �; (47)
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where �� := fz 2 � : ' (z) < �g, � = �(') b 
 is an open neighborhood of �
provided ' 2 Psh (�) \MP (�r f�g) and � = � (') is such that �� b 
.

It is clear that

!
�
��1 ;��0 ; z

�
=
s (��0 ; '; z) + �0

�0 � �1
(48)

and
�� f'g = (�0 � �1)n C

�
��0 ;��1

�
; (49)

where � < �1 < �0:

Proposition 31 The charge of a standard singularity is well-de�ned, i.e. the
value (47) does not depend on a choice of � or '.

Proof. The value (47) does not depend on � > �, due to Proposition 29. To
show that it is independent also of a choice of a representative ' in the class
�, we take another representative '0 2 � = ['] Then for each " > 0 there is

 = 
 (") such that

�(1+")� � �0� � �(1�")�; � � 
;

where �0� are sublevel domains for the function '
0. Using monotonicity of the

capacity ([26, 6]) and the relations (46), (48), (49) with �1 = � > 
 and �0 = 2�,
we get

�� f'g
(1 + 3")�

� �� f'0g
�

� �� f'g
(1� 3")�; � � 
;

which implies the equality �� f'g = �� f'0g, since " > 0 is arbitrary.

De�nition 32 Given a function g 2 G (
) with the set of singularities F =
F (g) =

�
�� : � = 1; : : : ;m

	
consider its sublevel domains


� := fz 2 
 : g (z) < �g ; 0 < � <1: (50)

The charge of g (supported by the set F ) is de�ned as the value

� fgg :=
�
1

2�

�n Z
�

(ddcs (
�; g; z))
n
=

mX
�=1

��� [g] ; � > 0: (51)

Proposition 33 The charge of the multipole Green plurifunction
g (z) = g
 (F; �; z) is the value

� (g) =
(2�)

n
C (K;
�)

�
=

mX
�=1

(��)
n (52)

where 
� are the sublevel domains (50), 0 < � <1.
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Proof. Proposition 29 gives that the charge � (g) does not depend on the choice
of local coordinates in the de�nition of the function g
 (F; �; z). Therefore,
applying (47), (51) and the well-known Jensen equality (see, e.g.,[12], Example
6.5.6): �

1

2�

�n Z
@B(o;r)

dc (ln jzj) ^ (ddc (ln jzj))n�1 = 1;

we obtain (52).

6 Generalized Schwartz and Bernstein Lemmas

Let 
 be a pluriregular Stein manifold, dim
 = n, F =
�
�� : � = 1; : : : ;m

	
�


; � = (s�) 2 Zn+. Denote by A0 ((F; �) ;
) the ideal consisted of functions f 2
A (
) vanishing on F and having zero of order s� at the point ��; � = 1; : : : ;m;
and set

A?0 (F; �) :=
n
f 0 2 A (F )0 : f

0
(f) = 0 for all f 2 A0 ((F; �) ;
)

o
(53)

An analytic functional f 0 2 A?0 (F; �) � A (
)
0 is called discrete rational func-

tional having the poles of order at least s� at the point ��, � = 1; : : : ;m:
The following statement may be considered as a generalization of the classical

Schwartz Lemma.

Theorem 34 Let 
 be a pluriregular Stein manifold, dim
 = n, and

F =
�
�� : � = 1; : : : ;m

	
� 
;� = (s�) 2 Zn+:

Let f 2 A0 ((F; �) ;
). Then the estimates

jf (z)j � jf j
 exp s (�) g
 (F; �; z) ; z 2 
; (54)

hold with s (�) := inf
�
s�
��

: � = 1; : : : ;m

�
.

Proof. It makes sense to consider (54) only for bounded functions f . The

function u (z) :=
ln jf (z)j � ln jf j


s (�)
belongs to the class P (
; F; (��)) with the

singularities �� de�ned by the function '� (z) := �� ln
��t(��)� t(z)��, where

t : U� ! Cn are a local coordinates in a neighborhood U� of the point ��; � =
1; : : : ;m . Therefore u (z) � g
 (F; �; z) in 
 which is equivalent to (54) .
Now we consider the statement which is a generalization of the classical

Bernstein-Walsh-Siciak Lemma (see, e.g., [28, 44]) in order to �t estimates of
discrete rational functionals.

Theorem 35 Let D be a strictly pluriregular open set on a Stein manifold 
,
F =

�
�� : � = 1; : : : ;m

	
� D; � = (s�) 2 Zn+ and

�� = �� (F; �) := fz 2 D : gD (F; �; z) < ��g ; 0 < � <1: (55)
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Suppose f 0 2 A?0 (F; �) : Then for each � > 0 the estimates

jf 0j��� � C jf
0j�D exp (�+ �) s; 0 < � <1; (56)

hold with some constant C = C (�; �) and s = s (�) := sup

�
s�
��

: � = 1; : : : ;m

�
.

Proof. For each point �� 2 F we choose some local coordinates

t(�) =
�
t
(�)
j

�
: �(�) ! Un; (57)

with mutually disjoint neighborhoods �(�) and set � = [m�=1�(�). Then

g� (F; �; z) =
n
sup

n
ln
���t(�)j (z)

��� : j = 1; : : : ; no ; z 2 �(�); � = 1; : : : ;m: (58)
and

�� := fz 2 � : g� (F; �; z) < �g = [m�=1�(�)� (59)

where �(�)� =
n
z 2 �(�) :

���t(�)j (z)
��� < exp�� �

��

�o
; 0 < � <1. The system

fk;� (z) :=

�
t(�) (z)

k
:= t

(�)
1 (z)

k1 � � � t(�)n (z)
kn ; z 2 �(�)

0; z 2 �r�(�)
;

with k = (k1; : : : ; kj ; : : : ; kn) 2 Zn+ and � = 1; : : : ;m, forms a common basis for
all the spaces A (�� ) and the space A (F ). Its biorthogonal system

n
f 0k;�

o
�

A (F )
0 � A (�� )0 may be expressed by the formula

f 0k;� (f) =

�
1

2�i

�n Z
S
�
Un
r(���)

�
f (v� (t)) dt

tk+I
; f 2 A (�� ) ; 0 < � <1; (60)

where v� : Un ! �� is the mapping inverse to the coordinate mapping (57),
� = 1; : : : ;m, k = (k1; : : : ; kj ; : : : ; kn) 2 Zn+, I = (1; : : : ; 1); r (�) := exp (��) ;
0 < � <1. It is easily seen that

jfk;�j��
= exp

�
�� jkj
��

�
;
��f 0k;������

= exp

�
� jkj
��

�
; 0 < � <1: (61)

Since any functional f 0 2 A?0 (F; �) is represented in the form

f 0 =
mX
�=1

X
jkj�s�

f 0 (fk;�) f
0
k;�;

using (61), we obtain the estimate:

jf 0j���
�

mX
�=1

(��)
n

�
s�
��

�n
exp

�s�
��
�

mX
�=1

(��)
n
s (�)

n
exp �s (�)

19



with 0 < � <1. So, for each " < 0 the estimates

jf 0j���
� L (") jf 0j�� exp (� + ") s; 0 < � <1; (62)

hold with L (") =
mP
�=1

(��)
n
sup fsn exp (�"s) : s 2 Ng, where s = s (�) :=

sup

�
s�
��

: � = 1; : : : ;m

�
.

Choose 
 > 0 so that �
 b �: Since �� � �� ; 0 < � <1, we �rst derive
from (62) a quite rough estimate for the left-hand side of (56):

jf 0j��� � L (") jf
0j��
 exp (� + ") s; 0 < � <1: (63)

Using the notation F� := fz 2 D : gD (F; �; z) � ��g ; we have the relation:

! (D;F� ; z) =
1

�
gD (F; �; z) + 1; z 2 D r F� ; 0 < � <1;

which implies that

D(�)
� := fz 2 D : ! (D;F� ; z) < �g = �(1��)� ; 0 < � < 1; 0 < � <1: (64)

Therefore, applying (21) with K = F� , � = 1 � �=� , 0 < � < � , " < 0, we
obtain the estimate

jf 0j��� �M
�
jf 0j�F�

��=�+" �jf 0j�D�1��=��" (65)

with some constant M =M (� ; �; ").
Since the relation (56) is homogeneous, it is su¢ cient to prove it in the case

when jf 0j�D = 1. Under this assumption, taking into account (63) and (65), we
obtain the estimate:

jf 0j��� �M
�
L (") jf 0j��
 exp (� + ") s

��
� +" �M 0

�
jf 0j��


��=�+"
exp (�+ "0) s

(66)
with some constantM 0 =M 0 (� ; �; ") and "0 = �"+"+"2; 0 < � < � . Applying
this estimate for � = 
 with � = 4
 and " = 1=4 we obtain that

jf 0j��
 � (M
0)
2
exp 2 (2
 + 1) s : (67)

Given � > 0 and � > 0 we choose � = � (�; �) and " = " (�; �) so that

2 (2
 + 1) (�=� + ") < �=2; �"+ "+ "2 < �=2: (68)

Then putting (67) into (66) considered with parameters satisfying the conditions
(68) we obtain the estimate (56) in the case jf 0j�D = 1 with some constant
C = (�; �). This completes the proof.
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Corollary 36 Let 
 be a pluriregular Stein manifold of dimension n and F =�
�� : � = 1; : : : ;m

	
� 
; � = (s�) 2 Zn+. Let H ,! A (
) be a Hilbert space

adherent to A (
) and the dual space A (
)� is considered as imbedded naturally
into H�. Then for each f 0 2 A?0 (F; �) and for any � > 0 the estimates

jf 0j�D�
� C kfk0H� exp (�+ �) s; 0 < � <1; (69)

hold with some constant C = C (�; �) and s = s (�) := sup

�
s�
��

: � = 1; : : : ;m

�
.

7 Extendible bases

Theorem 37 ([46, 47] ) Let F =
�
�� : � = 1; : : : ;m

	
be a �nite set on a

pluriregular Stein manifold, dim
 = n, having no connected component dis-
joint with the set F ; � = (��)

m
�=1, �� > 0, � = 1; : : : ;m. Let g
 (F; �; z) be the

corresponding Green multipole function,


� := fz 2 
 : g
 (F; �; z) < ��g ; F� := fz 2 
 : g
 (�; �; z) � ��g ; (70)

with 0 < � <1; and

�n =

 
n!Pm

�=1 (��)
n

!1=n
: (71)

Then there exists a common basis ffi (z)gi2N for all the spaces

A (
) ; A (F ) ; A (
�) ; A (F�) ; 0 < � <1; (72)

such that for each " > 0 and 0 < � <1 the estimates

1

C
exp�n (��� ") i1=n � jfi (z)jF� � C exp�n (��+ ") i1=n; i 2 N; (73)

hold with some constant C = C (�; ") :The Green multipole function can be
expressed via the basis by the formula:

�n g
 (F; �; z) = lim sup
�!z

lim sup
i!1

ln jfi (z)j
i1=n

; z 2 
r �: (74)

Proof. We enumerate the system of analytic functionals�
f 0k;�; k 2 Zn+; � = 1; : : : ;m

	
� A (F )0 � A (
)0 ;

biorthogonal to the basis in A (F ) consisted of monomials in local coordinates
(see the beginning part of the proof of Theorem 35), into the sequence

e0i = f 0k(i);�(i); i 2 N; (75)

so that the sequence s� (i) :=
jk (i)j
��(i)

will be non-decreasing.
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Taking any Hilbert space H adherent to A (
), we consider the dual space
A (
)

�as imbedded naturally into H� (see, Preliminaries, Spaces). The system
(75) is linearly independent and complete in H�. Orthonormalizing it in the
space H�, we obtain the system of analytic functionals ("polynomials" with
respect to the system (75)):

'0i =
X
j�i

bij e
0
j ; i 2 N; (76)

belonging to A (F )0 � A (
)� � H�.
We are going to show that the system f'igi2N � H � A (
) � A (F ),

biorthognal to this system, is a required basis. This system is orthonormal in H.
For any f 2 A (F ) the relation '0i (f) = 0; i 2 N, implies that e0i (f) = 0; i 2 N,
so the function f vanishes on the set F with all its derivatives, hence f � 0
in a neighborhood of F . Therefore the system is total and hence complete
in the spaces (72), due to re�exivity all of them. Since '0i (f) = (f; 'i)H , the
orthogonal system f'ig is maximal in H and hence complete also in H.
From (76) we have that '0i 2 A?0 (F; �) with � = ([�� s� (i)] + 1). Therefore

remembering that k'0ik = 1 we obtain, by Corollary 36, the estimates

j'0ij
�

�
�M exp (�+ �) s� (i) ; i 2 N; 0 < � <1 (77)

with M = C (�; �) exp (�+ �), � > 0.
On the other hand, due to H ,! A (
), for each � > 0 there is a constant

L = L (�) such that j'ij
� � L k'ikH = L and 'i 2 A0 ((F; �) ;
�) with � =
([�� s� (i)]). Therefore, taking into account that g
� (F; �; z) = g
 (F; �; z)+ �;
we obtain that the estimates

j'ij
� � N exp (��+ �) s� (i) ; i 2 N; 0 < � <1; (78)

hold with some constant N = N (�; �). The estimates (77) and (78) provide
that, for each function f belonging to any space from the list (72), its basis
expansion f (z) =

P
i2N '

0
i (f) 'i (z) converges in the topology of that space.

The estimates (73) follows immediately from the strict asymptotics

s� (i) � �n ii=n; i!1;

which is derived from the evident strict asymptotics of the counting function:

c (t) := jfi : s� (i) � tgj �
mX
�=1

(�� t)
n

n!
; t!1:
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8 Strict asymptotics for Kolmogorov diameters

Now we are ready to prove the main results (Theorem 5 and Corollary 7).
As it was emphasized in the introduction, an important part of the proof is
covered by the following recent result of Poletsky-Nivoche (solving positively
our conjecture from [46, 47]; see Problem 4 above).

Proposition 38 Let (K;D) be a pluriregular pair on a Stein manifold 
 . Then
there exist a sequence of �nite sets Fj =

n
�(j)� : � = 1; : : : ;mj

o
� D and a se-

quence �(j) =
�
�
(j)
�

�
2 Rmj , �(j)� > 0, � = 1; : : : ;mj such that the sequence

gD
�
Fj ; �

(j); z
�
converges to the function ! (D;K; z)�1 uniformly on any com-

pact subset of D rK.

Applying this result and our considerations developed in the previous sec-
tions, we prove now Theorem 5.
Proof. Let ! (z) := ! (
;K; z). Take any pair of Hilbert spaces (H0;H1)
adherent to the pair (A (K) ; A (
)), hence, by Theorem 20, admissible for the
couple (K;
)). Since the strict asymptotics is the same for all admissible pairs
of Banach spaces it is su¢ cient to prove that

lim
i!1

ln di (H1;H0)

i1=n
= �C (K;
)

(2�)
n : (79)

First, by Theorem 19, the continuous linear imbeddings

A (K� ) ,! H1��
0 H�

1 ,! A (
� ) ; 0 < � < 1; (80)

hold for the Hilbert scale H� := H1��
0 H�

1 with

K� := fz 2 
 : ! (z) � �g ; 
� := fz 2 
 : ! (z) < �g : (81)

Take some sequences "j # 0 and �j # 0 so that

"j+1 < "j � 2 �j ; j 2 N: (82)

By the Nivoche-Poletsky result (Proposition 38), for each j 2 N there exists a
�nite set

F (j) =
�
�j;� : � = 1; : : : ;mj

	
� 


and a vector �(j) = (�j;�) 2 Rmj

+ such that

jgj (z)� ! (z)j < �j ; z 2 K1�"j r 
"j ; (83)

where gj (z) := g

�
F (j); �(j); z

�
; z 2 
. Denote for j 2 N

�j := fz 2 
 : gj (z) � �1 + "jg ; Dj := fz 2 
 : gj (z) < �1 + "jg (84)
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and consider the function

!j (z) := s

�
�j ;

gj + 1� "j
1� "j

; z

�
=

8<:
gj (z) + 1� "j

1� "j
; z 2 
r �j

0; z 2 �j
(85)

It is clear that !j (z) = ! (
;�j ; z) ; z 2 
. We show that

!j (z) " ! (z) ; z 2 
: (86)

Indeed, taking into account (81),(82),(83),(84),(85), we get the inclusions:

K"j+1� �j+1 � �j+1 � 
"j+1+ �j+1 � K"j� �j � Dj � �j � 
"j+ �j (87)

Therefore the sequence !j (z) is non-decreasing and

!
�

;K"j� �j ; z

�
� !j+1 (z) � !

�

;K"j+1� �j+1 ; z

�
; j 2 N: (88)

So (86) is proved.
Due to [5, 6], we have

C (�j ;
) :=

Z
(ddc!j (z))

n #
Z
(ddc! (z))

n
=: C (K;
) : (89)

On the other hand, (51),(52),

C (�j ;
) = (2�)
n

mX
�=1

(�j;�)
n
: (90)

Given " > 0, due to (89), we can choose j 2 N so that

C (K;
) � C (�j ;
) � (1 + ")C (K;
) and "j < ": (91)

Now we consider the basis f'ig from Theorem 37 with the Hilbert spaceH = H1

chosen in the beginning of the proof and with F = F (j); � = �(j). Let G be
the Hilbert space of all x =

P
i2N

�i'i such that

kxkG :=
 X
i2N
j�ij

2
exp 2�n (�1 + "j) i1=n

!1=2
<1; (92)

where

�n =

mjX
�=1

(�j;�)
n
=
C (�j ;
)

(2�)
n : (93)

By (17), (92) we have

di (H1 ; G) = exp�n (�1 + "j) i1=n (94)
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which together with (91), (93) implies that

� (1 + ")C (K;
)
(2�)

n � ln di (H1 ; G)

i1=n
� � (1� ")C (K;
)

(2�)
n (95)

Due to the estimates (73), (80), we get the imbeddings:

H"j+ �j ,! A
�

"j+ �j

�
,! A (�j) ,! G ,! A (Dj) ,! A

�
K"j� �j

�
,! H

"j� �j
:

Hence, by Proposition 8, there is a constant M > 0 such that

1

M
di
�
H1;H"j� �j

�
� di (H1; G) �M di

�
H1;H"j+ �j

�
: (96)

By (18), we have

di (H1;H� ) = (di (H1;H0))
1��

; 0 < � < 1: (97)

Therefore, combining (96),(97),(95), we get that

lim sup
i!1

ln di (H1;H0)

i1=n
� � (1� ")C (K;
)

(2�)
n ; (98)

lim inf
i!1

ln di (H1;H0)

i1=n
� � (1 + ")C (K;
)

(1� 2") (2�)n : (99)

Since " > 0 is arbitrary, we conclude from (98),(99) that (79) is true. This
completes the proof.

9 Final remarks and some problems

The following su¢ cient condition for the asymptotics (7) �ows out from Propo-
sition 14 and Theorem 20.

Corollary 39 Let D be strongly pluriregular. Then the strict asymptotics (7)
holds for any compact set K making up a pluriregular pair with D.

Some more general su¢ cient condition (covering the one-dimensional Propo-
sition 1) is represented by

Proposition 40 Let (K;D) be a pluriregular pair on a Stein manifold, such
that D is an intersection of a countable decreasing sequence of open sets Ds

such that H1 (Ds) is adherent to A (Ds) for each s. Then H1 (D) is adherent
to A (D) and the asymptotics (7) holds.

Whereas the pluripotential ! (D;K; z) is an appropriate tool for the modi�ed
Kolmogorov problem (see, Theorem 5), for the solution of the original problem
of Kolmogorov (3) in general case one needs to deal also with another maximal
function:


 (D;K; z) := lim sup
�!z

sup fu (�) : u 2 A(D;K)g ; (100)
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here A(D;K) consists of all functions u (z) = � ln jf (z)j with � > 0; f 2
H1 (D) and ujK � 0, u (z) < 1 in D. This is supported by the observation that
in the conditions of Corollary 39 or Proposition 40 we have ([43, 46, 47]):


 (D;K; z) = ! (D;K; z) ; z 2 D; (101)

and by the following result.

Theorem 41 Let the space H1 (D) be adherent to A (D). Then (101) holds
for any compact set K � D making up a pluriregular pair (K;D).

Proof. The space X0 = AC (K) is adherent to A (K) ([43]) and X1 = H1 (D)
is adherent to A (D) by the assumption. Therefore, by Theorem, for any regular
normal scale X�; connecting X0 and X1; the imbedding

A (K�) ,! X�; 0 < � < 1; (102)

holds. Suppose now that (101) is not valid. Then, since the function does not
exceed ! (D;K; z), there is a point z0 2 D rK such that � := 
 (D;K; z0) <
! (D;K; z0) =: �:Take � : � < � < � and denote�� := fz 2 D : 
 (D;K; z0) < �g.
By the de�nition (100), the estimate

jxjL �
�
kxkX0

�1�� �kxkX1

��
; x 2 X1;

holds for any compact set L � ��. Therefore the imbedding bX� ,! A (��)

is true, where bX�; 0 � � � 1; is the maximal scale of means spanned by
X0; X1 ([15], IV, Lemma 2.6). Since any regular scale is almost imbedded
into any scale ([15], IV.11, Corollary 3) , we obtain from here and (102) that
A (K�) ,! X� ,! bX� ,! A (��). Since z0 2 K� is an interior point of �� we
obtain from here that each germ x 2 A (K�) has an analytic extension onto
some �xed neighborhood of the point z0, which is impossible, because K� is
holomorphically convex with respect to D. This contradiction completes the
proof.

Problem 42 Let (K;D) be a pluriregular pair on a Stein manifold 
. Is the
condition (101) su¢ cient for the adherence of H1 (D) to A (D)?

Also, in connection with Theorem 20 and Problem 22, the following question
arises.

Problem 43 Let (K;D) be a pluriregular pair on a Stein manifold 
. Does
the condition (101) characterize the asymptotics (3) with the constant � =

2�
�

n!
C(K;D)

�1=n
?

In conclusion we consider some examples.
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Example 44 Let E � R � C be the usual Cantor set. Then for the domain
D := C r E the space H1 (D) is trivial (consists only of constants and hence

 (D;K; z) � 0), so for any compact set K � D the asymptotics (3) has no
sense.

Example 45 Let E be again the usual Cantor set, G � E be any domain in
C satisfying the conditions of Proposition 1. Then for any regular compact set
K � D := G r E the asymptotics (3) holds with the constant � = 1

�(K;G) <
1

�(K;D) .

So, in this case the constant � is de�ned by ! (G;K; z) ; which is the har-
monic extension of the function 
 (D;K; z) onto the domain G, obtained after
removing of the non-polar portion E � @D having zero analytic capacity.

Example 46 Let E be a compact set of positive length on a recti�able curve
in C, having no portion of zero length, and D := C r E. Though, due to
the positive solution of Denjoy conjecture (see, e.g., [35]), the space H1 (D) is
non-trivial it seems that there is no answer to the following questions (even in
the simplest case of Cantor sets of positive Lebesgue measure):

1. Is H1 (D) adherent to A (D)?

2. Is the equality (101) true with some (hence with any) regular compact set
K � D such that bKD = K?

3. Is the couple (AC (K) ;H1 (D)) admissible for (K;D) if K is as above
or, what is the same, does the asymptotics (6) hold in this case?

Finally, if the answer is not always "yes" in the above questions what are
additional properties of E providing the positive answer to them?
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