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Sliding Mode Control for High-Precision
Motion of a Piezostage

1
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Abstract—In this paper, control of piezostage using sliding mode4
control (SMC) method is presented. Due to the fast dynamics of5
the piezostage and since high accuracy is required the special6
attention is paid to avoid chattering. The presence of hysteresis7
characteristics represents main nonlinearity in the system. Struc-8
ture of proposed SMC controller is proven to offer chattering-free9
motion and rejection of the disturbances represented by hysteresis10
and the time variation of the piezostack parameters. In order11
to enhance the accuracy of the closed loop system, a combina-12
tion of disturbance rejection method and the SMC controller13
is explored and its effectiveness is experimentally demonstrated.14
The disturbance observer is constructed using a second-order15
lumped parameter model of the piezostage and is based on SMC16
framework. Closed-loop experiments are presented using propor-17
tional-integral-derivative controller and sliding mode controller18
with disturbance compensation for the purpose of comparison.19

Index Terms—Discrete-time control, high-precision motion,20
piezostage, sliding mode control (SMC).21

I. INTRODUCTION22

P IEZOELECTRIC actuators have shown a great potential in23

applications that require submicrometer down to nanome-24

ter motion. The advantages that piezoelectric actuators offer are25

the absence of friction and stiction characteristics that exist in26

other actuators. Thus, piezoelectric actuators are ideal for very27

high-precision-motion applications. The main characteristics28

of piezoelectric actuators are: extremely high resolution in29

the nanometer range, high bandwidth up to several kilohertz30

range, a large force up to few tons, and very short travel in31

the submillimeter range (see [1]). Application areas of piezo-32

electric actuators include: micromanipulation, microassembly,33

add-ons for high-precision cutting machinery, and as secondary34

actuators in macro/micromotion systems such as dual-stage35

hard-disk drives. In all of these applications, the accuracy of36

positioning is very important and in many cases the closed loop37

control is the only answer. Despite this, there are many attempts38

(see [2] and [3]) to drive piezoelectric actuators as an open loop39

system with fine compensation of the hysteresis nonlinearity40

in one or another way. With development of accurate position41

transducers, the possibility to use robust feedback-based non-42
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linear control methods is becoming an attractive alternative to 43

the model-based compensation. 44

Despite the fact that a piezoelectric actuator is a distributed 45

parameters system, modeling for control purposes is based on a 46

lumped parameters system. It is possible to drive piezoelectric 47

actuators with either voltage or charge as input. The former 48

is easier to implement in hardware and is the most common 49

mode of controlling these actuators. However, a piezoelectric 50

actuator driven by voltage as input will exhibit nonlinearity 51

between the input (voltage) and output (position). This nonlin- 52

earity is mainly due to the parasitic hysteresis characteristics of 53

piezoelectric crystals. It has been shown in many other works 54

(see [2]) that hysteresis behavior does not exist in the case of 55

a piezoelectric actuator driven by charge and that the actuator 56

exhibits almost linear behavior between charge and position. 57

However, as mentioned before, hardware realization of charge 58

controllers is very difficult and voltage supply-based control is 59

mostly preferred. 60

A major difficulty in using piezoelectric actuators is the 61

hysteresis effect, which causes large positioning errors. There 62

are many techniques used in order to handle the nonlinearities 63

brought by this effect such as feedback and model-based feed- 64

forward control. Also, in [4], iterative method is used in order 65

to find the hysteresis that compensates feedforward input for 66

high-precision positioning. In addition to the hysteresis charac- 67

teristics, piezoelectric actuators also have dynamic creep effect 68

that has to be taken into account. In [5], both the hysteresis and 69

dynamic creep effects are given importance and operator-based 70

inverse feedforward controller is applied. It has been shown 71

that this controller works well for highly dynamic operation and 72

that it is simple and inexpensive for mechatronic devices with 73

hysteresis characteristics. There has been also research on the 74

mathematical modeling of hysteresis, such as in [2], [3], [6]–[8] 75

where new results for the modeling of physical hysteresis and 76

its applications in dynamic research are shown. Complicated 77

models of the hysteresis allow for accurate control of these 78

actuators but are limited due to presence of other internal 79

disturbances such as creep. In [2], complex and accurate model 80

of hysteresis is presented, but is hard to implement and too 81

complex for control applications. In [3], [6], and [7], simpler 82

models of hysteresis are proposed, however, those models fail 83

to precisely represent hysteresis behavior throughout the whole 84

range of input voltage of the piezoelectric actuator. The prob- 85

lem of hysteresis was also approached by using neural-network 86

(NN) technology. In [9], they trained a recurrent NN to mimic 87

the behavior of inverse characteristic of the piezocrystal and 88

they used this trained network in series with the piezoactuator. 89
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Use of a hysteresis model provides some advantages; it does90

not need the measurement of the mechanical coordinates and91

is helpful in applications where the use of sensors for position92

measurement is impractical.93

In [7], H∞-based closed-loop control is presented with94

model-based hysteresis compensation. While the method pro-95

duces good results, it can be made simpler if the hysteresis96

model-based compensation is replaced with a simpler method-97

ology. In [10], a NN-based feed-forward assisted proportional-98

integral-derivative (PID) controller was proposed. A hybrid99

control strategy using a variable structure control is suggested100

for submicrometer positioning control [9], [11]. These methods101

need an explicit system model for the control design, and102

the performance achievable depends on the accuracy of the103

model. In [14], a sliding-mode approach for linear discrete-time104

systems is proposed. Based on the proposed method in [14] and105

[17], O(T 2
s ) bound of the sliding surface is achieved. In this106

paper, we claim the same accuracy, but, with partial knowledge107

of system dynamics.108

In this paper, the aim is to design a motion controller for109

piezostage having position sensor based on the assumption that110

the piezostage can be modeled as a linear lumped parameters111

(T , meff , ceff , keff ) second-order electromechanical system with112

voltage as the input and position as the output coordinate and113

hysteresis nonlinearity being the major disturbance effecting114

the system. Furthermore, it is assumed that the parameters of115

the model are bounded and have some so-called nominal values116

(TN, mN, cN, kN).117

In this paper, the sliding mode methods are applied in the118

design of a high-accuracy piezoactuator position. The solution119

proposed here combines the sliding mode controller and the120

disturbance rejection method in order to achieve high accuracy121

in the actuator trajectory tracking. For the disturbance estima-122

tion, a sliding mode observer-based disturbance compensation123

method is used here. By manipulating model of a piezoactuator124

in a form where nonlinearities due to hysteresis are presented125

as an additive disturbance acting together with external force126

to the mechanical system a simple second-order observer is127

designed to estimate lumped disturbance.128

This paper is organized as follows. In Section II, a suit-129

able model of a piezoactuator, based on already known re-130

sults, is presented. In Section III, the sliding mode-based con-131

troller and in Section IV the observer design is presented. In132

Section V, experimental results verifying theoretical works133

are presented.134

II. MODEL OF THE PIEZOSTAGE135

In this paper, a piezostage that consists of a piezodrive136

integrated with a sophisticated flexure structure for motion137

amplification is used. The flexure structure is wire-EDM-cut138

and is designed to have zero stiction and friction. Fig. 1 shows139

the piezodrive integrated flexure structure.140

In addition to the absence of internal friction, flexure stages141

exhibit high stiffness and high load capacity. Flexure stages142

are also insensitive to shock and vibration. However, since the143

piezodrive exhibits nonlinear hysteresis behavior, the overall144

system will also exhibit the same behavior.145

Fig. 1. Structure of a flexure piezostage.

The dynamics of the piezostage can be represented by the 146

following second-order differential equation coupled with hys- 147

teresis in the presence of external forces 148

meff ÿ + ceff ẏ + keffy = T (u(t) − h(y, u)) − Fext (1)

where meff denotes the effective mass of the stage, y denotes 149

the displacement of the stage, ceff denotes the effective damping 150

of the stage, keff denotes the effective stiffness of the stage, 151

T denotes the electromechanical transformation ratio, u de- 152

notes the input voltage and h(y, u) denotes the nonlinear hys- 153

teresis that has been found to be a function of y and u, [2], and 154

Fext is the external force acting on the stage. 155

The model represented by (1) is found from the work of [2] 156

and it shows that from the mechanical motion the hysteresis 157

may be perceived as a disturbance force that satisfies matching 158

conditions. This means that the sliding mode-based control 159

should be able to reject the influence of the hysteresis nonlin- 160

earity on the mechanical motion. At the same time, it is obvious 161

that the lumped disturbance consisting of the external force 162

acting on the system and the hysteresis can be estimated, thus 163

allowing the application of the disturbance rejection method in 164

the overall system design. 165

III. SLIDING-MODE-CONTROLLER DESIGN 166

A. Controller Design 167

To facilitate the derivation of the control law, (1) is written 168

into the state-space form 169

ẋ1 = ẏ = x2 (2)

ẋ2 = ÿ = − keff

meff
x1−

ceff
meff

x2+
T

meff
u− T

meff
h−Fext

meff
. (3)

It is possible to write (3) in a more general form as shown below 170

ẋ = f(x, h, Fext) + Bu. (4)

The aim is to drive the states of the system into the set S de- 171

fined by 172

S = {x : G(xr − x) = σ(x, xr) = 0} (5)

where G = [λ 1] with λ being a positive constant, x is the 173

state vector xT = [x1 x2], xr is the reference vector (xr)T = 174

[xr
1 xr

2], and σ(x, xr) is the function defining sliding mode 175

manifold. 176
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The derivation of the control law starts with the selection of177

the Lyapunov function, V (σ), and an appropriate form of the178

derivative of the Lyapunov function, V̇ (σ).179

For single-input–single-output systems such as (3), required180

to have motion in manifold (5), natural selection of Lyapunov181

function candidate seems in the form182

V (σ) =
σ2

2
(6)

Hence, the derivative of the Lyapunov function is183

V̇ (σ) = σσ̇. (7)

In order to guarantee the asymptotic stability of the solution184

σ(x, xr) = 0, the derivative of the Lyapunov function may be185

selected to be186

V̇ (σ) = −Dσ2 (8)

where D is a positive constant. Hence, if the control can be187

determined from (7) and (8), the asymptotic stability of solution188

(5) will be guaranteed since V (σ) > 0, V (0) = 0, and V̇ (σ) <189

0, V̇ (0) = 0. By combining (7) and (8), the following result is190

obtained191

σ(σ̇ + Dσ) = 0. (9)

A solution for (9) is as follows192

σ̇ + Dσ = 0. (10)

The derivative of the sliding function is as follows193

σ̇ = G(ẋr − ẋ) = Gẋr −Gẋ. (11)

From (11) and using (4)194

σ̇ = Gẋr −Gf︸ ︷︷ ︸
GBueq

−GBu(t) = GB (ueq − u(t)) . (12)

If (12) is substituted in (10) and the result is solved for the195

control196

u(t) = ueq + (GB)−1Dσ. (13)

It can be seen from (12) that ueq is difficult to calculate. Using197

the fact that ueq is a continuous function, (12) can be written in198

discrete-time form after applying Euler’s approximation199

σ ((k + 1)Ts) − σ(kTs)
Ts

= GB (ueq(kTs) − u(kTs)) (14)

where Ts is the sampling time and k = Z+. It is also necessary200

to write (13) in discrete-time form just as it was done before201

u(kTs) = ueq(kTs) + (GB)−1Dσ(kTs). (15)

If (14) is solved for the equivalent control, the following is 202

obtained 203

ueq(kTs) = u(kTs) + (GB)−1

(
σ ((k + 1)Ts) − σ(kTs)

Ts

)
.

(16)

Since the system is causal, and it is required to avoid calculation 204

of the predicted value for σ, control cannot be dependent on a 205

future value of σ. Having equivalent control as a continuous 206

function, the current value of the equivalent control will be 207

approximated by a single time-step backward value computed 208

from (16) as follows 209

ûeqk
∼= ueqk−1

= uk−1 + (GB)−1

(
σk − σk−1

Ts

)
(17)

where ûeqk
(or ûeq(kTs)) is the estimate of the current value of 210

the equivalent control. If (17) is substituted in (15) 211

uk = uk−1 + (GBTs)−1 ((DTs + 1)σk − σk−1) . (18)

Note that in certain applications where only partial state mea- 212

surements exist, observers can be used to estimate the unknown 213

states in order to compute σk. In this paper, the unknown state is 214

the velocity and is estimated using a discrete derivative. Hence, 215

control (18) is suitable for implementation since it requires 216

measurement of the sliding mode function and value of the 217

control applied in the preceding step. Since, the above control 218

law is derived from discrete-time approximations based on the 219

continuous-time equations. Hence, these approximations will 220

introduce errors in the control that must be analyzed carefully. 221

B. Closed-Loop Behavior With the Approximated Control 222

As a consequence of the approximations that were made in 223

the derivation of the discrete-time control law, some deviations 224

in the sliding surface from the desired sliding manifold may 225

exist. This deviation of the sliding surface from the desired 226

manifold at each sampling instant will be analyzed. Intersam- 227

pling behavior is also analyzed. 228

Considering (4), the derivative of the sliding surface is 229

given by 230

σ̇(t) = G(ẋr − ẋ) = Gẋr −Gf −GBu(t). (19)

The discrete-time equivalent of the sliding manifold can be 231

obtained by taking the integral on both sides of (19) from kTs 232

to (k + 1)Ts 233

σk+1 − σk =

(k+1)Ts∫
kTs

(Gẋr −Gf −GBu(t)) dt. (20)

Applying a sample and hold to the control input between 234

consecutive samples u(t) = uk for kTs ≤ t < (k + 1)Ts 235

σk+1 − σk =

(k+1)Ts∫
kTs

(Gẋr −Gf)dt− TsGBuk. (21)
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Using the assumptions that ẋr and f are smooth and bounded,236

the integrations in (21) can be approximated by using Euler’s237

integration238

σk+1 = σk + TsG (ẋr
k − fk) − TsGBuk + O

(
T 2

s

)
. (22)

Here, O(T 2
s ) is the error introduced due to Euler’s integration,239

[16]. If the control defined by (18) is introduced into (22)240

σk+1 = σk + TsG (ẋr
k − fk) − TsGBuk−1

−TsDσk − σk + σk−1 + O
(
T 2

s

)
. (23)

After some simplifications (23) is reduced to241

σk+1 =TsG (ẋr
k−fk)−TsGBuk−1−TsDσk + σk−1+O(T 2

s ).
(24)

If TsG(ẋr
k−1 − fk−1) is added and subtracted from the r.h.s ofAQ1 242

(24), the following is obtained243

σk+1 =TsG (ẋr
k − fk) − TsG

(
ẋr

k−1 − fk−1

)
− TsDσk

+ TsG
(
ẋr

k−1 − fk−1

)
− TsGBuk−1︸ ︷︷ ︸

σk−σk−1+O(T 2
s )

+ σk−1 + O
(
T 2

s

)
. (25)

After some simplifications, (25) becomes244

σk+1 = σk − TsDσk + TsG (∆ẋr
k − ∆fk) + O

(
T 2

s

)
(26)

where ∆ẋr
k = ẋr

k − ẋr
k−1 and ∆fk = fk − fk−1. Note that if245

D = 1/Ts, then the r.h.s of (26) is of order O(T 2
s ), keeping in246

mind that ẋr and f are smooth and bounded. Hence247

σk+1 = O
(
T 2

s

)
. (27)

Hence, it is shown that the maximum deviation from the sliding248

surface at each sampling instant is of order O(T 2
s ).249

Next, it will be shown that the intersampling deviation of250

the sliding surface from the desired manifold is also of order251

O(T 2
s ).252

Consider the intersampling instant of t = kTs + τ where 0 ≤253

τ ≤ Ts. If (19) is integrated on both sides from kTs to kTs + τ254

σ(kTs + τ) − σk =

kTs+τ∫
kTs

(Gẋr −Gf −GBu(t)) dt. (28)

Applying the sample and hold to the control and Euler’s inte-255

gration to the remaining integral gives256

σ(kTs + τ) = σk + τG (ẋr
k − fk) − τGBuk + O(τ2). (29)

If the control defined by (18) is introduced into (29)257

σ(kTs + τ) = σk + τG (ẋr
k − fk) − τGBuk−1

− τDσk − τ

Ts
(σk − σk−1) + O(τ2). (30)

If τG(ẋr
k−1 − fk−1) is added and subtracted from the r.h.s of 258

(24) and D = 1/Ts, the following is obtained 259

σ(kTs + τ) =σk +
τ

Ts
G (Ts (∆ẋr

k − ∆fk)) − τ

Ts
σk − τ

Ts
σk

+
τ

Ts
G

(
Ts

(
ẋr

k−1 − fk−1

)
− TsBuk−1

)
︸ ︷︷ ︸

σk−σk−1+O(T 2
s )

+
τ

Ts
σk−1 + O(τ2). (31)

Further simplifications lead to 260

σ(kTs + τ)=σk − τ

Ts
σk +

τ

Ts
G (Ts (∆ẋr

k − ∆fk)) + O(τ2).

(32)

If ẋr and f are smooth and bounded then 261

σ(kTs + τ) = σk − τ

Ts
σk + O(τ2). (33)

Note that if σk = O(T 2
s ), as was shown previously, then the 262

maximum intersampling value of the sliding function is O(T 2
s ). 263

Hence 264

σ(kTs + τ) = O
(
T 2

s

)
. (34)

C. Lyapunov Stability of the Closed-Loop System 265

In this section, it will be shown that with discrete-time 266

control defined by (18), it is possible to satisfy the Lyapunov 267

condition (10) in discrete time. 268

Starting with the definition of the Lyapunov function in 269

discrete-time, proportional to one defined by (6) 270

Vk = σ2
k. (35)

The difference of two consecutive values of the Lyapunov 271

function in discrete time can be given by 272

Vk+1 − Vk = σ2
k+1 − σ2

k (36)

where it is required that Vk+1 − Vk < 0 for σk �= 0 0. However, 273

it will be shown that Vk+1 − Vk < 0 for |σk| > O(T 2
s ). The 274

condition Vk+1 − Vk < 0 means that 275

σ2
k+1 − σ2

k < 0. (37)

If (27) is substituted into (37) 276

Vk+1 − Vk = O
(
T 4

s

)
− σ2

k. (38)

Note that if |σk| > O(T 2
s ) then Vk+1 − Vk < 0. Thus, (38) 277

shows that σk is always converging toward a boundary of 278

O(T 2
s ) around the desired sliding-manifold and (34) shows that 279

once σk reaches O(T 2
s ) boundary it will tend to stay in that 280

boundary. 281
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IV. DISTURBANCE OBSERVER282

A. Structure of the Observer283

The structure of the observer is based on (1) under the284

assumption that all the plant parameter uncertainties, nonlinear-285

ities, and external disturbances can be represented as a lumped286

disturbance. As it is obvious, y is the displacement of the plant287

and is measurable. Likewise, u(t) is the input to the plant and288

is also measurable. Hence, the nominal structure of the plant is289

defined as follows290

mNÿ + cNẏ + kNy =TNu(t) − Fd

Fd =TNh + ∆T (νin + νh) + ∆mÿ

+ ∆cẏ + ∆ky (39)

where mN, cN, kN, and TN are the nominal plant parameters291

while ∆m, ∆c, ∆k, and ∆T are the uncertainties of the292

plant parameters. Since y and u(t) are measured, the proposed293

observer is of the following form294

mN
¨̂y + cN ˙̂y + kNŷ = TNu− TNuc (40)

where ŷ is the estimated position u is the plant control input295

and uc is the observer control input. If ŷ can be forced to track296

y, then the control input to the observer becomes TNuc = Fd,297

what can be easily verified by determining the value of the298

equivalent control for system (39), (40) in manifold (41). From299

the structure of it follows that control input to the observer300

uc consists of the terms related to hysteresis effects (TNh +301

∆Tνh), the terms related to the PZT parameters uncertainties302

(∆mÿ + ∆cẏ + ∆ky) and the term related to the uncertainty303

in the conversion parameter (∆Tνin) thus estimating total304

disturbance [as defined in (39)] but not the components of the305

disturbance separately. The observer controller that is used is306

in the sliding-mode-control (SMC) framework. Selecting the307

following sliding manifold308

σobs = λobs(y − ŷ) + (ẏ − ˙̂y) (41)

where λobs is a positive constant. If σobs is forced to zero309

then ŷ is forced to track y. It is known from the analysis in310

the previous section that condition of the same form as (10)311

σ̇obs + Dobsσobs = 0 guarantees σobs → 0. If (41) is plugged312

into σ̇obs + Dobsσobs = 0 then313

(ÿ − ¨̂y) + (λobs + Dobs)(ẏ − ˙̂y) + λobsDobs(y − ŷ) = 0
(42)

where Dobs is a positive constant and it can be seen that the314

transients of the closed-loop system are defined by the roots315

−λobs and −Dobs. The controller that will be used in the316

observer is the same as the controller defined by (18). From317

structure (40), it can be seen that the input matrix B in (18) is318

B =
[
0 − TN

mN

]T

(43)

Fig. 2. Observer implementation.

and the matrix G in (18) for this case is 319

G = [λobs 1]. (44)

Thus, after some simplifications, the controller can be 320

uck
= uck−1 −

mN

TN

(
Dobsσobsk

+
σobsk

− σobsk−1

Ts

)
(45)

here 321

σobsk
= λobs(yk − ŷk) + (yk − yk−1)/Ts − (ŷk − ŷk−1)/Ts.

The observer implementation is best described by Fig. 2. 322

Positive feedback of uc would, ideally, force the system to 323

behave close to an ideal system defined by 324

mNÿ + cNẏ + kNy = TNu0(t) (46)

where u0(t) is the uncompensated control input to the system. 325

However, this is just the ideal case and in reality the dynamics 326

of the observer would lead to differences between the real 327

disturbance and the estimated disturbance. 328

B. Observer Dynamics 329

As it was mentioned previously, the dynamics of the observer 330

has to be analyzed in order to see how close it is possible 331

to force the system to behave ideally as defined by (46). 332

Consider the state-space description of (39) and assuming that 333

the disturbance Fd is matched 334

ẋ = Ax + Bu−Bd (47)

where Fd = Bd, and the matrices A and B are given by 335

A =
[

0 1
−kN/mN −cN/mN

]
and B =

[
0

TN/mN

]
.

(48)

The discrete-time counterpart of (48) is 336

xk+1 = Φxk + Γuk − Γdk (49)

where the matrices Φ and Γ are given by 337

Φ = eATs and Γ =

Ts∫
0

eAτBdτ. (50)
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Fig. 3. Frequency response of estimated disturbance w.r.t. disturbance.

The disturbance observer is also of the form338

x̂k+1 = Φx̂k + Γuk − Γuck
. (51)

If (51) is subtracted from (49) then339

ek+1 = xk+1 − x̂k+1 = Φek − Γ (dk − uck
) . (52)

The discrete-time transfer function of ek can be found from340

ek = −(I · z − Φ)−1Γ (udk
− uck

) . (53)

Similarly, the controller defined by (18) can be written in341

transfer function form342

(1 − z−1)uck
= −(GBTs)−1

(
(1 + DTs) − z−1

)
σobsk

.
(54)

If D = 1/Ts and (54) is simplified further343

uck
= − (GBTs)−1(2z − 1)

z − 1
σobsk

. (55)

Note that σobsk
= Gek; therefore, using (53) and (55)344

uck
=

(GBTs)−1(2z − 1)G(I · z − Φ)−1Γ
(z − 1) + (GBTs)−1(2z − 1)G(I · z − Φ)−1Γ

dk

(56)

From (56), it is possible to analyze the sensitivity of the345

disturbance observer w.r.t. disturbance. Fig. 3 shows the fre-346

quency response of the observer estimated disturbance w.r.t.347

disturbance for cases when the sampling-time is 10, 1, and348

0.1 ms. For the observer characteristics shown in Fig. 3, the349

controller parameters are as follows: Dobs = λobs = 1/Ts.350

It will be interesting to see the effect inclusion of disturbance351

compensation has on the overall closed-loop system.352

C. Closed-Loop Performance With the Disturbance Observer 353

In this section, the sensitivity of the controlled position with 354

respect to disturbance will be analyzed. Consider (49), the 355

open-loop transfer function can be written as 356

xk = (I · z − Φ)−1Γ(uk − dk). (57)

For simplicity, (57) will be written as 357

xk = HOL(z)(uk − dk). (58)

Similar analysis can be done for the controller defined by (18), 358

which can be written as 359

uk = (GBTs)−1 (1 + DTs)z − 1
z − 1

σk. (59)

If D = 1/Ts and (59) is simplified further 360

uk = (GBTs)−1 2z − 1
z − 1

G (xr
k − xk) = Hc(z) (xr

k − xk) .

(60)

If (60) is substituted into (58) and the estimated disturbance uck
361

is added to uk 362

xk = HOL(z)Hc(z) (xr
k − xk) + HOL(z) (uck

− dk) . (61)

If (56) is written as 363

uck
= HObs(z)dk (62)

and substituted into (61) and after simplifications the following 364

result is obtained 365

xk = HCL(z)xr
k + HDis(z)dk (63)

where the transfer matrices HCL(z) and HDis(z) are given by 366

HCL(z) = (I + HOL(z)Hc(z))
−1 HOL(z)Hc(z) (64)

and 367

HDis(z) = (I + HOL(z)Hc(z))
−1 HOL(z) (HObs(z) − 1) .

(65)

Note that the displacement is yk = Cxk where C = [1 0] 368

yk = CHCL(z)xr
k + CHDis(z)dk. (66)

Now, it is possible to see the sensitivity of the controlled 369

position w.r.t. the disturbance for the case of disturbance com- 370

pensation. Note that if there was no disturbance compensation, 371

then the transfer matrix HDis(z) would be 372

HDis(z) = (I + HOL(z)Hc(z))
−1 HOL(z). (67)

Also, note that in the case of open-loop control the transfer 373

matrix HDis(z) can be found from (58) after including the 374

estimated disturbance uc defined by (62) with the control input 375

u. This would result with following form of HDis(z) 376

HDis(z) = HOL(z) (HObs(z) − 1) (68)



IE
EE

Pr
oo

f

ABIDI AND SABANOVIC: SLIDING MODE CONTROL FOR HIGH-PRECISION MOTION OF A PIEZOSTAGE 7

Fig. 4. Sensitivity (micrometer/volt) of the controlled position w.r.t.
disturbance.

Fig. 5. Control scheme.

In Fig. 4 the sensitivity of the closed-loop system for the377

cases with and without disturbance compensation are shown378

along with open-loop system with disturbance compensation.379

Note that when disturbance compensation is included, the sen-380

sitivity of the controlled position with respected to disturbance381

is less than for the case without disturbance compensation382

(Fig. 5). This shows the effectiveness of combining the distur-AQ2 383

bance feed-forward term and the SMC controller. In the used384

design, the structure of the disturbance observer is such that385

the same controller is used in the main control loop and in the386

disturbance observer loop thus simplifying the overall design387

procedure.388

V. EXPERIMENTS389

In order to illustrate the effectiveness of the proposed control390

simulation and experiments are carried out on a single axis of a391

three-axis piezostage manufactured by Physik Instrumente sup-392

plied by E-664 power amplifier. Table I shows the specifications393

of the piezostage. The controller hardware used is the DSPACE394

DS1103 with the control algorithm executed on MATLAB and395

SIMULINK with real-time link to DS1103.396

TABLE I
PROPERTIES OF THE PIEZOSTAGE

Fig. 6. Open-loop with compensation response to a trapezoidal reference.

Fig. 7. Compensation error for open-loop with compensation case.

Initial experiments were conducted on the system with just 397

open-loop disturbance compensation. Figs. 6 and 7 show the 398

response and compensation error with open-loop control. This 399

can easily be understood from the results of the sensitivity 400

analysis shown in Fig. 4. As it can be seen that, although there 401

is no closed-loop controller, the open-loop control with distur- 402

bance compensation produces good results as was expected. 403

Further experiments are conducted with the system with 404

closed-loop SMC with disturbance compensation. Fig. 8 and 405

9 show the response to a position reference similar to that 406

used in the open-loop case. The results show that the proposed 407

controller produces good results. 408

As a means of comparison, the system is experimented with 409

PID controller. The results are shown in Fig. 10 and 11. As it 410

can be seen, the traditional controller such PID fails to provide 411

very good results. 412
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Fig. 8. Response with SMC and compensation.

Fig. 9. Tracking performance of SMC with compensation.

Fig. 10. Closed-loop PID control.

VI. CONCLUSION413

In this paper, the design of a discrete-time sliding mode414

controller based on the Lyapunov is presented. The controller415

is analyzed for a general system and shown to have very good416

performance. It was shown that, similar to [14], the zero-417

order hold causes a limitation on the sliding-mode accuracy.418

However, it was shown that with partial knowledge of system419

dynamics, it is possible to drive the system within O(T 2
s ) of the420

desired sliding manifold S.421

Fig. 11. Tracking performance of PID control.

It was also shown that the introduction of disturbance com- 422

pensation along with discrete-time SMC in the control of a 423

piezostage improves the tracking performance. This can be very 424

useful for applications where simplicity of the controller as well 425

as high-precision control is required. 426
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