
Efficient Privacy Preserving Distributed
Clustering Based on Secret Sharing�

Selim V. Kaya, Thomas B. Pedersen, Erkay Savaş, and Yücel Saygın

Sabanci University
Istanbul, 34956, Turkey

selimvolkan@su.sabanciuniv.edu, {pedersen,erkays,ysaygin}@sabanciuniv.edu

Abstract. In this paper, we propose a privacy preserving distributed
clustering protocol for horizontally partitioned data based on a very ef-
ficient homomorphic additive secret sharing scheme. The model we use
for the protocol is novel in the sense that it utilizes two non-colluding
third parties. We provide a brief security analysis of our protocol from
information theoretic point of view, which is a stronger security model.
We show communication and computation complexity analysis of our
protocol along with another protocol previously proposed for the same
problem. We also include experimental results for computation and com-
munication overhead of these two protocols. Our protocol not only out-
performs the others in execution time and communication overhead on
data holders, but also uses a more efficient model for many data mining
applications.

1 Introduction

Recent advances in data collection and storage technologies enabled organiza-
tions to handle vast amounts of data related to their customers or users. How-
ever, this vast amount of plain data needs to be converted into useful knowledge
through data mining techniques for high level decision making.

In many cases, databases are distributed among several organizations, which
need to collaborate to achieve a more significant and accurate data mining
model. Simply sharing the databases is not a feasible approach due to privacy
concerns. As a result, Privacy Preserving Distributed Data Mining(PPDDM)
techniques are developed for constructing a global data mining model over dis-
tributed databases without actually sharing the confidential data.

Efficiency in communication and computation is crucial in PPDDM since
databases are often of considerable size. Sample scenarios are sensor networks or
RFID applications, where the sensor nodes or RFID readers that contain the data
(data holders) have very limited computation and communication capacity. In
such scenarios, reducing the communication and computation costs is of utmost
importance.
� This work was partially funded by the Information Society Technologies Programme

of the European Commission, Future and Emerging Technologies under IST-014915
GeoPKDD project.

T. Washio et al. (Eds.): PAKDD 2007, LNAI 4819, pp. 280–291, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Efficient Privacy Preserving Distributed Clustering Based on Secret Sharing 281

In this paper we propose a new protocol for privacy preserving clustering over
horizontally partitioned data with only a small constant communication and
computation overhead for data holders with no loss of accuracy. We reduce the
privacy preserving clustering problem to privacy preserving dissimilarity matrix
construction which was proposed by Inan et al. [1]. After the dissimilarity matrix
is computed privately, it can be fed into any hierarchical clustering algorithm.
Our protocol uses two non-colluding third parties, which receive secret shares
of inputs and compute intermediary results, while a data miner performs the
actual clustering.

2 Related Work and Background

The pioneering research on privacy preserving data mining was conducted by
Agrawal and Srikant[2], and Lindell and Pinkas[3] in 2000. In [2], Agrawal and
Srikant use data perturbation for construction of a classification model privately.
The basic idea is that original data values can be perturbed in such a way that
original distribution of the aggregated data can be recovered but not the indi-
vidual data values. Perturbation technique is efficient to implement however it
has several problems. First of all, even though the distribution of original values
can be predicted with a certain confidence level, some accuracy is lost. Secondly,
modification of data does not fully preserve privacy of individual values, and
may cause privacy breaches as shown in [4,5]. Finally, perturbation has a pre-
dictable structure for certain cases and hence may not fully preserve privacy
[6]. A different perturbation method is proposed by Saygin et al.[7] in 2001 for
association rule hiding, where unknown values are introduced to hide sensitive
association rules.

Authors in [3] employ cryptography as its main tool and implements a decision
tree learning protocol. However oblivious transfer, which is the main building
block of this protocol, causes huge computation and communication overhead
due to exponentiation operation for each bit of private data and expansion of
each bit of private data as a result of exponentiation respectively. Authors in [8]
propose a privacy preserving association rule mining protocol over horizontally
partitioned data taking advantage of commutative encryption. Nevertheless the
protocol requires encryption and decryption operations to be performed over
each private input by all of the participants resulting in a large communication
and computation cost.

Several protocols are proposed for privacy preserving clustering. Oliveira and
Zaiane [9] introduce geometric data transformation methods(GDTMs) to dis-
tort confidential data values. The protocol tries to preserve main features of
the confidential data for clustering while perturbing the data to meet privacy
requirements. However, perturbation causes accuracy loss in clustering, and pri-
vacy of the data is not fully guaranteed. Consequently, Oliveira and Zaiane [10]
introduce the notion of Rotation-Based Transformation(RBT). RBT provides
confidentiality of attribute values while completely preserving the original clus-
tering results. However RBT method has a computation overhead since attribute

282 S.V. Kaya et al.

values are transformed pairwise, and selection of attribute pairs should be done
in such a way that variance between the original and transformed attributes are
maximum. In [11], Oliveira and Zaiane propose Object Similarity-Based Repre-
sentation(OSBR) and Dimensionality Reduction-Based Representation(DRBT)
methods for clustering over centralized and vertically partitioned databases.
Therefore, OSBR has high computation cost since each data owner sends a
dissimilarity matrix to a central party yielding a communication complexity of
O(n2), while DRBT can cause loss of accuracy due to dimensionality reduction
in the original data.

Merugu and Ghosh [12], and Klusch, Lodi and Moro [13] propose privacy
preserving clustering methods based on sharing models representing the original
data instead of sharing the original data itself. Accordingly, clustering can be
performed over the model without revealing the original data points. However
clustering over low quality representatives of the original data causes loss of
accuracy while efforts for high quality representatives means loss of privacy.

Vaidya and Clifton [14] propose a privacy preserving k-means clustering pro-
tocol based on secure multi-party(SMC) computation. Nevertheless there is a
huge communication and computation cost due to iterative execution of several
SMC protocols till a convergence point for the clusters is obtained. Jha, Kruger
and McDaniel propose two privacy preserving k-means clustering protocols for
horizontally partitioned data in [15]. The protocols use homomorphic encryption
and oblivious polynomial evaluation as their building block which are inefficient
to be applied over large databases due to cost of modular exponentiation and
oblivious transfer respectively.

The most recent study for privacy preserving clustering is proposed by Inan
et al. [1] over horizontally partitioned data and the problem is reduced to secure
computation of dissimilarity matrix. Each entry of the dissimilarity matrix is
computed by a secure difference protocol where confidential data points are dis-
guised by pseudo-random values and the disguise is removed by a trusted third
party revealing the final difference. However secure difference protocol leads to
privacy breaches because of the way pseudo-random values are used. According
to the secure difference protocol, initiator of the protocol creates two disguise
factors; one for the follower of the protocol to disguise initiators value and the
other for the trusted third party to disguise which participant’s input is sub-
tracted from the other. Nevertheless, the latter disguise factor is the same for
each entry point within a row of dissimilarity matrix. In other words, trusted
third party can guess which site’s input is subtracted from the other with a
probability of 1

2 for each row. On the other hand, quadratic communication cost
for dissimilarity matrix computation is a huge burden for data holders.

3 Preliminaries

In our scenario we have � data holders : DH1, . . . , DH� where DHi has a database
with ni objects (tuples): oi

1, . . . , o
i
ni

. The databases all have the same schema
with m numeric attributes (from an algebraic field). Since all databases have the

Efficient Privacy Preserving Distributed Clustering Based on Secret Sharing 283

same schema, we can write the union of the databases as o1, o2, . . . , oN , where
N =

∑�
i=1 ni, and where object oi has attribute values ai

1, . . . , a
i
m. We say that

the collective database is horizontally partitioned among the � data holders.
The goal of our protocol is to compute the dissimilarity matrix of all objects

in all databases, while keeping the actual values secret. At the end, each entry of
the dissimilarity matrix will contain the weighted Manhattan distance between
two elements from the collective database.

Dij =
m∑

k=1

wk|ai
k − aj

k|, (1)

where i, j = 1, . . . , N , and w1, . . . , wm are predefined weights. We introduce the
notion of partial dissimilarity matrices which contain the numerical distance for
a single attribute, so that the dissimilarity matrix can be written

D =
m∑

k=1

wkDk, (2)

where Dk is the dissimilarity matrix with entries Dk[i, j] = |ai
k − aj

k| which
results from considering only the kth attribute.

3.1 Homomorphic Secret Sharing

Informally speaking, (m, t)-secret sharing is a method to share a secret among
m parties in such a way that t − 1 or less colluding parties cannot compute any
information about the secret; but t arbitrary parties can recover the secret. A
data holder that wishes to share his secret s will create m secret-shares s1, . . . , sm

and send one share to each party [16,17].
The protocols we present in this paper rely on additive secret sharing. To

share a secret integer1 s between two parties, we choose a random integer r and
give the share r to the first party and the share s−r to the second party. Clearly
both shares are random when observed alone, so no single party can compute
any information about the secret. The secret is revealed by simply two parties
adding their shares, hence they can recover the secret together.

Additive secret sharing we used in our protocol is homomorphic with respect
to addition since adding shares pairwise gives an additive sharing of the sum of
the secrets.

4 Our Protocol

There are two challenges for designing a protocol for computing Manhattan
distance: (i)not to reveal private inputs, (ii) to hide which input is the largest.
We employ additive homomorphic secret sharing to fulfill the first challenge, with
a very small communication and computation overhead for the data holders.
1 Or more precisely: to share an element from an additive group.

284 S.V. Kaya et al.

a
k
− α

k

a
k b

k

α
k

β
k

b
k
− β

k

A B

TP
1

TP
2

DM

α
k
−β

k
(a

k
−α

k
)−(b

k
−β

k
)

Fig. 1. Overview of the numerical distance protocol

The inputs are shared between two non-colluding third parties, TP1 and TP2,
who can compute a secret sharing of the difference by using the homomorphic
property. To avoid revealing the sign of the difference (which input is larger),
TP1 and TP2 share a pseudo random number generator. Before the protocol
starts, TP1 and TP2 will each prepare an m × N × N table, whose entries are
one-bit binary values from a pseudo random number generator (prng), which is
initialized with a shared seed.

Let ak and bk be the private values for the kth attribute of oA
i and oB

j held
by DHA and DHB, respectively. The (i, j)th entry in the Dk is |ak − bk|. To
compute this Euclidean distance DHA selects a random number αk, and sends
additive shares αk and ak − αk to TP1 and TP2, respectively. Likewise, DHB

creates its own additive shares βk and bk − βk and sends them to TP1 and TP2,
respectively. TP1 computes sh1 = (−1)prng(k,i,j)(αk − βk) and TP2 computes
sh2 = (−1)prng(k,i,j)((ak − αk) − (bk − βk)), and they send the results to the
data miner (DM). When DM adds the two received values the result is

sh1 + sh2 = (−1)prng(k,i,j)(ak − bk). (3)

After receiving the numerical values the miner gets the result |sh1+sh2| = |a−b|,
which is the required (i, j)th entry of Dk. Overview of our Euclidean distance
protocol is depicted in Figure 1.

To construct the dissimilarity matrix for the kth attribute, each data holder
DHi computes additive shares of its private values a1

k, a2
k . . . ani

k , which are stored
in arrays si,k

1 and si,k
2 . The arrays si,k

1 and si,k
2 are, then, sent to TP1 and

TP2, respectively. Steps of the protocol for data holders are demonstrated in
Algorithm 1.

Receiving s1,k
1 , s2,k

1 , . . . , s�,k
1 from all of the data holders, TP1 merges these

arrays into sk
1 . After merge operation, sk

1 contains additive shares of the collective
database for the kth attribute. Then, TP1 initializes an N × N matrix Dk

1 and

Efficient Privacy Preserving Distributed Clustering Based on Secret Sharing 285

Algorithm 1. DHi

Input: private values for attribute k: a1
k, a2

k . . . ani
k

Output: secret share arrays si,k
1 and si,k

2
1: Initialize secret share arrays si,k

1 and si,k
2 of size ni

2: for j = 1 to ni do
3: (si,k

1 [j], si,k
2 [j]) = secretshare(aj

k)
4: end for
5: Sends si,k

1 to TP1

6: Sends si,k
2 to TP2

fills each entry (i,j) with value (−1)prng[k,i,j](sk
1 [a]−sk

1 [b]). The resulting matrix
Dk

1 contains additive shares of Dk. TP1 sends Dk
1 to DM . The details of the

protocol for TP1 are depicted in Algorithm 2. TP2 performs the same steps.

Algorithm 2. TP1

Input: Secret share arrays s1,k
1 , s2,k

1 , . . . , s�,k
1 , matrix prng shared with TP2

Output: Secret share matrix Dk
1

1: Initialize secret share array sk
1 of size N =

∑�
i=1 ni

2: Initialize secret share matrix Dk
1 of size N × N

3: Merge s1,k
1 , s2,k

1 , . . . , s�,k
1 into sk

1

4: for a = 1 to N do
5: for b = 1 to N do
6: Dk

1 [a, b] = (−1)prng[k,a,b](sk
1 [a] − sk

1 [b])
7: end for
8: end for
9: Sends Dk

1 to DM

It is trivial for DM to construct Dk from matrices Dk
1 and Dk

2 by simply
computing Dk

1 [i, j] + Dk
2 [i, j] for each entry (i,j) of Dk, where i, j = 1, 2, . . . , N .

Security of our Protocol: Our security definition reflects that not more than
a negligible amount of information is revealed about any object in the collective
database. One must also note that information leakage is limited to whatever can
be deduced from the final result. The following standard definition for security
of our protocol relies on negligibly small values of ε.

Definition 1. A protocol for computing partial dissimilarity matrices is ε-secure
if for all parties, and for all attributes Ai

j

∣
∣P [Ai

k = x|Dk, M] − P [Ai
k = x|Dk]

∣
∣ < ε, (4)

where M is a transcript of all messages send to a given party, where P stands
for probability.

286 S.V. Kaya et al.

From this definition, one can conclude that the proposed protocol is ε-secure.
Since data holders never receive any information, Equation (4) is satisfied for
these parties. Since blinding factors αi are chosen randomly and independently,
Equation (4) is also satisfied for TP1. Since attributes ai are chosen from alge-
braic fields and ai − αi are also independent of the data, Equation (4) is also
satisfied for TP2. The values received by DM enables to build D, where each
entry has a random sign depending on prng. If prng is secure, no additional
information can be computed.

5 Complexity Analysis

In this section, we analyze computation and communication complexities of our
protocol for numeric attributes 2. Each analysis will be performed for DHs, TPs,
and DM separately. We also show complexity analysis of the privacy preserving
clustering protocol proposed by Inan et al. [1].

Since computation of secret shares of private inputs can be performed in par-
allel by each DH , computation complexity of our protocol for DHs is O(nmax),
where nmax = max(n1, n2, . . . , n�). On the other hand, for the protocol in [1]
computation complexity of DHs is O(N2) (where N is the total number of ob-
jects) since data holders compute shared dissimilarity matrices pairwise which
requires serial execution.

In our protocol, for TP s, computation of secret share of Dk yields complexity
of O(N2) which is due to computation of the global dissimilarity matrix, if we
assume TPs operate in parallel and pseudo random numbers prn are generated
in advance. In [1], there is only one TP and computation complexity of TP
is O(N2). Complexity of our protocol for DH is O(N2), which is the cost of
computing Dk.

In our protocol, each DH sends secret shares of their private inputs to TPs
resulting in a total communication complexity of O(N). TPs send secret shares
of Dk to DM and the total communication complexity is O(N2). Since final
clustering is done by DM , there is no further communication cost. On the other
hand, in [1], each DH sends local and shared dissimilarity matrices to TP where
global dissimilarity matrix is computed. Accordingly, communication complexity
is O(N2). Summary of the computation and communication complexity analysis
is depicted in Table 1.

Table 1. Computation/Communication Complexities of our Protocol and the protocol
in [1]

Attribute Type DH TP DM Total
Numeric O(nmax)/O(N) O(N2)/O(N2) O(N2)/− O(N2)/O(N2)

Numeric for [1] O(N2)/O(N2) O(N2) −/− O(N2)/O(N2)

2 Due to space limitations, we did not include the extension of our protocol to other
attributes types.

Efficient Privacy Preserving Distributed Clustering Based on Secret Sharing 287

6 Implementation and Performance Evaluation

In this section, performance evaluation of our protocol is explained and discussed
in detail in comparison with the protocol proposed in [1]. Since both protocols
do not result in any loss of accuracy, we perform only two tests: communication
cost analysis and computation cost analysis. The experiments are conducted on
an Intel Dual-Core Centrino PC with 2 MB cache, 2 GB RAM and 1.83 GHz
clock speed. We used C# programming language to implement the algorithms.

Experimental Setup: To measure the performance of our protocol and the
one in [1], two test cases are identified for varying: i) total number of entities
(total database size), and ii) number of data holders.

Each test case is performed over numeric attributes. For each experiment, we
measure the communication and computation overhead of our protocol against
the protocol proposed in [1]. Comparison of the protocols in the experiments are
confined to the formation of the global dissimilarity matrices and clustering is
not taken into consideration. For all the experiments, we denote our protocol
as “our protocol” and the one in [1] as “protocol” in the figures. In order to
measure the effect of the database size, we fixed the number of data holders to
four, where each data holder has an equal share of database.

For the test case (i), we used total database sizes of 2K, 4K, 6K, 8K and 10K.
In test case (ii), number of data holders, excluding TPs, is 2, 4, 6, 8, and 10.
For each test case, we use synthetically generated datasets. Synthetic datasets
are more appropriate for our experiments since we try to evaluate scalability
and efficiency of our protocol for varying parameters, and synthetic datasets
can be generated by controlling the number of entities, number of data holders,
and average length of attributes. Data generator is developed in Eclipse Java
environment. For the numeric attributes, each entity is chosen from the interval
[0, 10000].

In our experiments, we use 128-bit Advanced Encryption Standard (AES) ci-
pher to generate PRNs to disguise data holders’ inputs. We use Cryptography
namespace of MS .Net platform to perform AES encryption in the implemen-
tation of our protocol and [1]. For our protocol, keys and initialization vectors
(IVs) are chosen by each data holder independent of the others, while for [1],
seeds for pseudo-random number generator shared between data holders are used
as keys and an initialization vector (IV) globally known to every data holder is
used. Ciphertext as a result of encryption of IV by AES key is used as the
pseudo-random number.

Computation Cost Analysis: Comparison of computation costs between our
protocol and the protocol in [1] for varying database sizes from 2K to 10K is
depicted in Figure 2. Figure 2 shows that both our protocol and the one in [1]
behave quadratically which is due to formation of global dissimilarity matrix.
However, our protocol performs better than the one in [1] since data holders
operate in parallel in our protocol and the overall computation cost for each data
holder is n AES encryptions for computing secret shares of the data, where n is

288 S.V. Kaya et al.

database size of each data holder. However, the protocol in [1] performs n AES
encryptions at each data holder to disguise data values and n AES encryptions
at TP to remove these disguise factors. As a result, the protocol in [1] performs
k ∗ n more AES encryptions than our protocol where there are k data holders.
As Figure 2 shows, execution time difference between our protocol and the one
in [1] gets larger as database size increases since number of AES encryptions
performed at TP also increases. On the other hand, in our protocol no encryption
is performed by any party other than data holders.

2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

DB Size (in thousands)

E
xe

cu
tio

n
T

im
e

(S
ec

.)

Our Protocol
Protocol

Fig. 2. Computation cost for different
database sizes

2 3 4 5 6 7 8 9 10
50

60

70

80

90

100

110

120

130

140

Number of Data Holders

E
xe

cu
tio

n
T

im
e

(S
ec

.)

Our Protocol
Protocol

Fig. 3. Computation cost for different
number of data holders

Our protocol scales better than the one in [1] with the number of data hold-
ers. For this experiment, we generate a dataset of 10K entities and then hori-
zontally partitioned this dataset by distributing the complete dataset over the
data holders so that each party holds the same number of entities. As depicted
in Figure 3, execution time for the protocol in [1] increases as number of data
holders increases. This is due to the fact that, Ck

2 number of pairwise computa-
tion between data holders have to be performed to compute shared dissimilarity
matrices where k is total number of data holders. However, increase in total exe-
cution time for [1] gets smaller as number of data holders increases since amount
of data owned by each data holder gets smaller. On the other hand, increase in
number of data holders reduces total execution time for our protocol since share
of each data holder gets smaller which means fewer numbers of encryptions are
performed by data holders in parallel. In our protocol, the computation cost of
TPs and DM are not affected by the change in number of DH.

Communication Cost Analysis: Overall communication costs of our protocol
and the protocol in [1] for various database sizes are depicted in Figure 4. As
seen in the figure, overall communication cost of our protocol is more than the
one in [1] due to the secret sharing employed in our protocol where two shares
are created for each attribute value. Both protocols behave quadratically since
overall communication cost is dominated by communication cost of dissimilar-
ity matrices. On the other hand, communication cost of data holders for our

Efficient Privacy Preserving Distributed Clustering Based on Secret Sharing 289

2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8
x 10

5

DB Size (in thousands)

C
om

m
un

ic
at

io
n

C
os

t (
K

B
)

Our Protocol
Protocol

Fig. 4. Overall communication cost for
different database sizes

2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

5

DB Size (in thousands)

C
om

m
un

ic
at

io
n

C
os

t (
K

B
)

Our Protocol
Protocol

Fig. 5. Communication cost of data hold-
ers for different database sizes

2 3 4 5 6 7 8 9 10
3.5

4

4.5

5

5.5

6

6.5

7

7.5

8
x 10

5

Number of Data Holders

C
om

m
un

ic
at

io
n

C
os

t (
K

B
)

Our Protocol
Protocol

Fig. 6. Overall communication cost for
different numbers of data holders

2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

5

Number of Data Holders

C
om

m
un

ic
at

io
n

C
os

t (
K

B
)

Our Protocol
Protocol

Fig. 7. Communication cost of data hold-
ers for different numbers of data holders

protocol and the one in [1] is depicted in Figure 5. Communication cost of our
protocol for data holders is linear with respect to the size of each data holder’s
dataset while the protocol in [1] requires quadratic communication cost for data
holders. For that reason, communication cost of our protocol for data holders is
negligible compared to the protocol in [1]. Accordingly, our protocol shifts the
communication burden to the third parties and requires negligible amount of
communication from data holders which are assumed to be resource limited. On
the other hand, the protocol in [1] requires all the communication to be per-
formed by data holders, which is not appropriate for our scenario where data
holders (e.g. sensor nodes and RFID readers) have limited resources.

Analysis of overall communication costs for different number of data holders
are depicted in Figure 6, which shows that communication cost of our protocol
remains the same for varying number of data holders. On the other hand, com-
munication cost of the protocol in [1] increases with increasing number of data
holders. However, the amount of increase in communication cost gets smaller as
number of data holders increase, due to the same reasoning as in Figure 3. As

290 S.V. Kaya et al.

Figure 6 shows, overall communication cost of our protocol is more than the pro-
tocol in [1]. However when communication costs of data holders are compared,
our protocol outperforms the protocol in [1] as shown in Figure 7.

7 Discussions and Conclusion

In this paper, we proposed a privacy preserving distributed clustering protocol
for horizontally partitioned data using secret sharing scheme, which is homo-
morphic with respect to addition operation. The model that we adopted is un-
precedented in the sense that it uses two non-colluding third parties. The idea of
using two third parties that greatly alleviates the computation and communica-
tion burden of the data holders is especially useful in applications such as sensor
networks and RFID where data holders are resource-limited sensor nodes and
RFID readers. When compared to the most efficient former techniques, which
exclusively rely on the computation and communication capabilities of the data
holders, our protocol can run even on the most simple data holders, such sensor
nodes or RFID readers. One can even think that there is no need for the data
holders to store the actual data. It is true that the communication overhead
between the two third parties is greater than the other protocols. Neverthe-
less, third parties can easily be equipped with high computation capability and
bandwidth.

The use of two third parties and non-collusion property are realistic when
they are chosen to have conflicting interests in the data mining results of the
actual data. As an example, one third party can be a consumer organization who
is interested in the privacy of consumers, while the other is representative of the
industry - they both have interests in the right outcome, but will never collude.

We proved information theoretically that the third parties cannot gather any
information about the data under the non-colluding assumption. Therefore, our
protocol adopts a stronger security model than computational infeasibility, which
is used by the majority of other privacy preserving data mining algorithms.

Other two benefits of the proposed protocol are that the data holders do
not need to be synchronized or to share keys. Almost all previously proposed
methods rely on synchronous and interactive protocols, where data holders must
always be on-line during the protocol execution, while the data holders in our
protocol can send the shares of their data asynchronously at their convenience.
Since there is no communication between the data holders, there is no need for
them to share keys; therefore there is no key distribution problem.

And finally, the model based on the use of two third parties and homomorphic
secret sharing can be extended to other data types and different dissimilarity
metrics.

References

1. Inan, A., Saygın, Y., Savaş, E., Hintoğlu, A.A., Levi, A.: Privacy preserving clus-
tering on horizontally partitioned data. In: Privacy Preserving Clustering on Hor-
izontally Partitioned Data, p. 95. IEEE Computer Society, Los Alamitos (2006)

Efficient Privacy Preserving Distributed Clustering Based on Secret Sharing 291

2. Agrawal, R., Srikant, R.: Privacy-preserving data mining. In: SIGMOD 2000. Pro-
ceedings of the 2000 ACM SIGMOD international conference on Management of
data, pp. 439–450. ACM Press, New York (2000)

3. Lindell, Y., Pinkas, B.: Privacy preserving data mining. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880, pp. 36–54. Springer, Heidelberg (2000)

4. Evfimievski, A., Gehrke, J., Srikant, R.: Limiting privacy breaches in privacy pre-
serving data mining. In: PODS 2003. Proceedings of the twenty-second ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database systems, pp.
211–222. ACM Press, New York (2003)

5. Evfimievski, A., Srikant, R., Agarwal, R., Gehrke, J.: Privacy preserving mining of
association rules. Inf. Syst. 29(4), 343–364 (2004)

6. Kargupta, H., Datta, S., Wang, Q., Sivakumar, K.: Random-data perturbation
techniques and privacy-preserving data mining. Knowl. Inf. Syst. 7(4), 387–414
(2005)

7. Saygin, Y., Verykios, V.S., Clifton, C.: Using unknowns to prevent discovery of
association rules. SIGMOD Rec. 30(4), 45–54 (2001)

8. Kantarcıoğlu, M., Clifton, C.: Privacy-preserving distributed mining of association
rules on horizontally partitioned data. IEEE Transactions on Knowledge and Data
Engineering 16(9), 1026–1037 (2004)

9. Oliveira, S., Zaiane, O.R.: Privacy preserving clustering by data transformation.
In: 18th Brazilian Symposium on Databasesn, pp. 304–318 (2003)

10. Oliveira, S., Zaiane, O.R.: Achieving privacy preservation when sharing data for
clustering. In: Jonker, W., Petković, M. (eds.) SDM 2004. LNCS, vol. 3178, pp.
67–82. Springer, Heidelberg (2004)

11. Oliveira, S., Zaiane, O.R.: Privacy-preserving clustering by object similarity-based
representation and dimensionality reduction transformation. In: Workshop on Pri-
vacy and Security Aspects of Data Mining (PSDM 2004) in conjunction with the
Fourth IEEE International Conference on Data Mining (ICDM 2004), pp. 21–30
(2004)

12. Merugu, S., Ghosh, J.: Privacy-preserving distributed clustering using generative
models. In: ICDM 2003. Proceedings of the Third IEEE International Conference
on Data Mining, Washington, DC, USA, pp. 211–218. IEEE Computer Society,
Los Alamitos (2003)

13. Klusch, M., Lodi, S., Moro, G.: Distributed clustering based on sampling local
density estimates. In: IJCAI 2003. Proceedings of the 18th International Joint
Conference on Artificial Intelligence, pp. 485–490. AAAI Press (2003)

14. Vaidya, J., Clifton, C.: Privacy-preserving k-means clustering over vertically parti-
tioned data. In: KDD 2003. Proceedings of the ninth ACM SIGKDD international
conference on Knowledge discovery and data mining, pp. 206–215. ACM Press,
New York (2003)

15. Jha, S., Kruger, L.P.M.: Privacy preserving clustering. In: ESORICS’05:10th
European Symposium On Research In Computer Security, pp. 397–417 (2005)

16. Asmuth, C., Bloom, J.: A modular approach to key safeguarding. IEEE Transac-
tions on Information Theory 29(2) (1983)

17. Shamir, A.: How to share a secret. Communications of the ACM 22(11), 612–613
(1979)

	Introduction
	Related Work and Background
	Preliminaries
	Homomorphic Secret Sharing

	Our Protocol
	Complexity Analysis
	Implementation and Performance Evaluation
	Discussions and Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

