Online Handwritten Mathematical Expression Recognition
Hakan Büyükbayrak, Berrin Yanikoglu*, Aytül Erçil

Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul Turkey 34956

ABSTRACT

We describe a system for recognizing online, handwritten mathematical expressions. The system is designed with a user-interface for writing scientific articles, supporting the recognition of basic mathematical expressions as well as integrals, summations, matrices etc. A feed-forward neural network recognizes symbols which are assumed to be single-stroke and a recursive algorithm parses the expression by combining neural network output and the structure of the expression. Preliminary results show that writer-dependent recognition rates are very high (99.8%) while writer-independent symbol recognition rates are lower (75%). The interface associated with the proposed system integrates the built-in recognition capabilities of the Microsoft’s Tablet PC API for recognizing textual input and supports conversion of hand-drawn figures into PNG format. This enables the user to enter text, mathematics and draw figures in a single interface. After recognition, all output is combined into one LATEX code and compiled into a PDF file.
Keywords: handwriting, recognition, online, mathematical, expression.
1. INTRODUCTION
Automatic recognition of handwritten mathematical expressions has been a focus of study for several years [1-12]. Handwritten input is a natural way of interaction with computers: a pen can be used for writing text, drawing figures, clicking on a button, writing a complex equation, even for playing a game. In particular, there is no easy way of entering mathematical expressions to a computer using a keyboard/mouse combination. While visual interfaces such as the Microsoft Equation Editor, Scientific Notebook and the TEX language are used for entering mathematical formulas, they require knowledge of the language/interface and do not match the convenience of handwritten input. A mathematical expression recognizer can also be incorporated with existing algebra solving software, graphing programs and simulation systems to form a complete system requiring only needs a pen to interact. Online handwriting recognition is particularly attractive as there is no need for scanning the handwritten text and is gaining focus with increasing number of pen-enabled devices and increases in CPU speeds.

Recognizing mathematical expressions has long been studied, even though hardware for online applications have relatively recently achieved an adequate level. Very early work (1968) by R. H. Anderson [1] assumed an error-free symbol recognizer and presented a coordinate grammar for the 2D grammar. Later on, Belaid and Haton [2] proposed a method for symbol recognition based on segmentation into basic primitives. Sakamoto et al. [3] used dynamic programming for segmentation of a sequence of strokes. Chan and Yeung [4] proposed a syntactic approach defining a set of rules for placement of symbols for parsing. After that, Zanibbi et al. [5] used a tree-transformation method for understanding 2D structure of expressions.

Symbol recognition and structural analysis form two separate sub-problems of a mathematical expression recognition system. Several different methods have been proposed for recognizing individual symbols. Hidden Markov Models (HMMs) are used by Koschinski et al. [6] and Winkler et al. [7]; the former achieving an average accuracy of more than 94% with 82 symbols, for a writer dependent task. A combination of HMMs and Artificial Neural Networks (ANNs) is proposed by Kosmala et al. [8]. In another method proposed by Xuejun et al. [9] an improved version of the Kohn-Munkres algorithm is used for symbol matching and a writer-dependent recognition rate of 90.5% is achieved with 94 symbols. Later on, Tapia and Rojas [10] proposed a support vector machine (SVM) based recognizer to recognize a 43-symbol set and achieved an accuracy of more than 99%. A combination of classifiers is tested by Garain and Chaudhuri [11]. They used feature template matching together with HMMs in a 198-symbol set and achieved a 92% correct classification rate. A comprehensive survey of mathematical expression recognition is done by Chang and Yeung [13].

* berrin@sabanciuniv.edu; tel: +90-216-483 9528; fax: +90-216-483 9550

In this paper, different aspects of a complete expression recognition system are presented and developed into an article recognition system, designed to help with the writing of scientific articles. In section 2, we describe the symbol recognition system which uses a neural network. In section 3, a method for parsing and recognizing mathematical expressions is proposed. Finally, an overview for an article recognition system that can recognize all components of a scientific article is presented in Section 4.
2. Symbol Recognition
The first step for building a mathematical expression recognizer is to build a recognizer for individual symbols appearing in a mathematical context: digits, characters, mathematical symbols etc. We have selected 66 most commonly used mathematical symbols, which are sufficient to represent many simple mathematical expressions (shown in Figure 1).
[image: image1.jpg]0¥ 44V 97 33 4% 5% 6 "ﬁ?
{%5 tgl -—b—{&\”ﬂ // D<P/
a%p((_géi?@/ &fﬂ lﬂl B J },k

€}$ Ln ~ F‘D,} CO‘ ur ; “f'\‘J‘ Lu,

Figure 1. The 66 symbols used in our system and their one-stroke drawing.
It is quite typical for an online recognition system to make some simplifying assumptions such as requiring the symbols to be drawn in a particular shape or in one stroke etc. In our system, individual characters are assumed to be written in a single stroke and in a particular order. Single-stroke equivalents are suggested for characters normally written with multiple strokes, as shown in Figure 1. The single stroke assumption resolves the ambiguity of which stroke belongs to which symbol and lets us easily segment overlapping symbols, which would be a lot more complicated otherwise. Though restrictive, many commercial handwriting recognition systems use this assumption.
For collection of handwriting samples, a Tablet PC is used together with the Microsoft’s Tablet PC API. The Ink Collector class inside the Tablet-PC API handles individual strokes, keep them in a collection and stores all the points associated with the strokes. The Ink Collector deals with pen-down pen-up events, storing the movement of a pen from a pen-down position until a pen-up is reached, into a stroke object. So, a stroke consists of several points sampled from the pen movement. Approximately in one second, 130 points are collected by the API.

The number of points in the collected symbols vary depending on how big the symbol was written and how fast it is written (more points are collected during slower writing). To remove size variations, we use sub-sampling in time, so that each symbol, is normalized to 20 points in length. These 20 XY-coordinates form the input vector of the symbol recognizer.

A Multi-layer Perceptron (MLP) is used in classifying individual handwritten strokes representing the mathematical symbols used in our system. The network has 40 inputs (20 points x 2 dimensions), one hidden layer and 66 outputs (one for each symbol). Input to the MLP is normalized to have zero mean and unit standard deviation, by subtracting the mean and dividing by the standard deviation of the individual components of the data. This step usually facilitates the learning process and improves classification performance.

The Halcon Library is used for training and testing the MLP system. Initially, 50 samples are collected for each symbol, from a single user: 40 of them are used for training and 10 are used for testing. Using these 2640 training and 660 test symbols, we experimented with different number of neurons in the hidden-layer, resulting in different classification rates, as shown in Fig. 2. As can be seen, using more than 15 neurons in the hidden-layer does not bring further increase in the classifier performance.
With the network trained with 15 hidden neurons, only 1 out of 641 samples is misclassified, giving a correct classification rate of 99.8% for symbol recognition. While these results are very good, they are for a writer-dependent system. When the same network is trained with data from 5 different users unfamiliar with the system and tested with another person’s data, the symbol recognition performance fell down to 75%. Fully extending the system to multiple users would require further studies to determine the optimal number of hidden nodes, since increasing the number of hidden neurons may be necessary to deal with increased variability brought by multiple users.
[image: image2.emf]
Figure 2: Neural network classifier performance as a function of number of hidden units.
3. Expression Parsing & STRUCTURE ANALYSIS
Structure analysis refers to the problem of analyzing the size and locations of the symbols in order to find the hierarchical structure of the expression. In our system, parsing of a mathematical expression interleaves recognition of the symbols and the structure of the expression, the latter using the geometric positions of the strokes and the output of the symbol recognizer. The system is capable of recognizing fractions, summations, square roots, integrals, superscripts, subscripts, logarithms and trigonometric functions and may be easily extended to other structures, due to its general methodology. It only assumes that the expression is a single mathematical statement; if there is more than one statement, the user is expected to highlight those separately within the interface.
Before starting to parse an expression, all symbols of the expression are sorted from left-to-right. Time order of the symbols is not used during parsing, so that strokes may be added, deleted or rewritten. For instance, it is not uncommon to add or modify the limits of a summation symbol. If the symbols were ordered in time, this would result in the components of the summation symbol being separated.

The parser starts parsing from the left-most symbol and parses to right while not all the symbols are parsed. Every symbol is parsed only once, but when it is parsed depends on where it stands within the mathematical expression. If a special structure is reached, then corresponding routines are called for parsing that structure. These routines differ due to the type of the structure. For instance, integrals can be definite or indefinite, and can be cascaded inside one another. A general descriptive rule for an integral defines three regions around the integral symbol: (1) lower-right region for lower limit, (2) upper-right region for upper limit, (3) right side of the integral sign for inside of the integral. These regions are located by the system as shown in Figure 2.

[image: image3]
[image: image8.png]5
J 5t
TN
3a:2da:

Figure 3. Integral Parsing: input with the three zones marked by the system is shown on top and the output of the system is shown on the bottom.
Note that the parsing process is greatly simplified by the assumption that the binding symbol, such as the integral, or the fraction line, is encountered before the related sub-expressions. If that’s not the case, the overall parse result will not be correct. While it is a limitation, we believe that this is not very important since the user can easily erase and re-write a symbol if the recognition is not correct. On the other hand, this assumption makes it possible to go from left-to-right, as opposed to a more complex structure analysis.
1.1 Recursive Structure

General mathematical expressions have a recursive structure which allows many possible combinations of basic structures. For example a nested square-root structure may appear inside a fraction and this fraction may be part of a summation etc. In order to handle all possible combinations, a recursive parsing function is needed, as the one built in this study. Our parser takes as input only a region of interest and calls itself recursively whenever a special structure is met, passing the appropriate region of interest. An example of this parsing process is illustrated in Figure 4 and explained below step-by-step. The generated LaTeX code developed thus-far is shown after each step, inside the parentheses (in bold).
[image: image4.emf]
Figure 4. Parsing methodology showing the order of the parsing process.
Step 1: Parser is initialized by calling the parser function by defining rectangle 1 as the region of interest.

Step 2: All the symbols are sorted from left-to-right to eliminate the writing time differentiations.

Step 3: Parser starts from left-to-right. It encounters the summation sign and enters the summation routine (\sumˆ{).

This routine locates Rectangle 2 and calls the parser function with this rectangle.

The function reads ”10” and returns. (\sumˆ{10}{)

Rectangle 3 is located and the parser is called with it, returning ”m=1”. (\sumˆ{10}{m=1}{).

Now, the summation routine makes a final call to the parser to parse inside Rectangle 4.

Step 4: Inside rectangle 4, the parser reads from left-to-right and encounters a fraction.

It enters the fraction routine. (\sumˆ{10}{m=1}{\frac{).

This routine locates Rectangles 5 and 6.

First a call with Rectangle 5 is made to the parser, returning ”1”. (\sumˆ{10}{m=1}{\frac{1}{).

Then a call with Rectangle 6 is made.

Step 5: Inside the lower part of the fraction (rectangle 6), parser encounters a square-root.

(\sumˆ{10} {m=1}{\frac{1}{\sqrt{).
Rectangle 7 is located and passed to the parser.
Then another square-root is seen, and Rectangle 8 is generated. A new call is made to the parser function and finally inside Rectangle 8 another square-root is reached.

Final call for parser is done with rectangle 9 and ”m” is returned:

(\sumˆ{10} {m=1}{\frac{1}{\sqrt{\sqrt{\sqrt{m).

Step 6: Now all the recursive calls start returning, so all the remaining brackets are in place resulting in the final LaTeX code: (\sumˆ{10}{m=1}{\frac{1}{\sqrt{\sqrt{\sqrt{m}}}}}). equation.

[image: image5.emf]
Figure 5. The complex mathematical structure shown in Fig.4, along with its corresponding output.

4. Article Recognition
A system for recognizing isolated mathematical expressions is not as useful as a system for recognizing scientific articles including text, figures and mathematical expressions. The system described in this paper is developed as a tool to help with the writing/typing of scientific articles and can handle text, figures and mathematical expressions:

1. Mathematical expressions are recognized using the Expression Recognizer explained in this paper.

2. Recognition of handwritten text is done by calling the Windows Tablet PC recognizer. We have developed a simple word segmentation routine to isolate the words before calling the Windows Tablet PC recognizer with isolated words.

3. Figures should be circled by the user, so as to be left as-is.
The user-interface, shown in Figure 6, is very easy to use. The user writes the article on the right hand side and then marks figures and individual mathematical expressions by circling them. Then, with the click of the ”LaTeX” button, the recognized document’s LATEX source is shown on the left and is compiled into a PDF document, which is displayed with an external viewer. The user can also save the current article or load a previously written article which is saved as an XML file. Finally, by clicking on the ”Recognize” button, the user can evaluate the mathematical expression. Details of the article structure recognition system can be found in [12].
[image: image6.png]

Figure 6. User interface showing a sample article with text, image (circled red) and mathematical expression (highlighted in yellow oval) areas.
[image: image7.emf]
Figure 7. The output of the system corresponding to the input article shown in Fig. 6.
5. Conclusions & Future Work
This paper describes an online mathematical expression recognition system. The equation parser handles fractions, summation notation, matrices, integrals, square roots, superscripts, subscripts, trigonometric and logarithmic functions, and generates LaTeX and PDF output of the input expression. The interface is designed in such a way that it supports modifications in the basic building blocks (symbol recognizer, expression parser, article recognizer); hence the system can easily be improved and extended to handle more mathematical symbols.

Even though the system has some constraints (e.g. user is required to write symbols in single strokes), the basic system architecture and user interface make the system very user friendly and allow for easy extension to cover more symbols and expressions in the future.

References
1. R. H. Anderson, “Syntax-directed recognition of hand-printed two-dimensional mathematics”, Ph.D. dissertation, Dept. Eng. Appl. Phys., Harvard Univ., Cambridge, MA, 1968.

2. A. Belaid and J. Haton, “A syntactic approach for handwritten mathematical formula recognition”, IEEE PAMI, 6, 105-111, 1984.

3. Y. Sakamoto, M. Xie, R. Fukuda, and M. Suzuki, “On-line recognition of handwriting mathematical expression via network”, Proc. 3rd Asian Technol. Conf. Mathematics (ATCM), 271-279, Tsukuba, Japan, 1998.

4. K.-F. Chan and D.-Y. Yeung, “Recognizing on-line handwritten alphanumeric characters through flexible structural matching”, Pattern Recognition, 32, 1099-1114, 1999.

5. R. Zanibbi, D. Blostein, and J. R. Cordy, “Recognizing mathematical expressions using tree transformation”, IEEE PAMI, 24, 1455-1467, 2002.

6. M. Koschinski, H.-J.Winkler, and M. Lang, “Segmentation and recognition of symbols within handwritten mathematical expressions”, Proc. ICASSP, 4, 2439-2442, Detroit, MI, 1995.

7. H.-J. Winkler, H. Fahrner, and M. Lang, “A soft-decision approach for structural analysis of handwritten mathematical expressions”, Proc. ICASSP, 4, 2459-2462, Detroit, MI, 1995.

8. A. Kosmala, G. Rigoll, S. Lavirotte, and L. Pottier, “On-line handwritten formula recognition using hidden Markov models and context dependent graph grammars”, Proc. ICDAR, 107-110, Bangalore, Karnataka, India, 1999.

9. Z. Xuejun, L. Xinyu, Z. Shengling, P. Baochang, and Y. Tang, “On-line recognition handwritten mathematical symbols”, Proc. ICDAR, 645-648, Ulm, Germany, 1997.

10. E. Tapia and R. Rojas, “Recognition of on-line handwritten mathematical formulas in the E-chalk system”, Proc. ICDAR, 980-984, Edinburgh, U.K., 2003.

11. U. Garain and B. B. Chaudhuri, “Recognition of Online Handwritten Mathematical Expressions”, Proc. IEEE Trans. on Sys., Man and Cybern., 34, 6, 2366-2375, 2004.

12. Hakan Büyükbayrak ‘Online Handwritten Mathematical Expression Recognition’, M.S. Thesis, Sabancı University, 2005.

13. 13. K. Chan and D. Yeung, “Mathematical expression recognition: a survey”, IJDAR, 3, 1, 3-15, 2000.

