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Abstract We study a variational inequality problem whose domain is defined by infi-
nitely many linear inequalities. A discretization method and an analytic center based
inexact cutting plane method are proposed. Under proper assumptions, the conver-
gence results for both methods are given. We also provide numerical examples to
illustrate the proposed methods.
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1 Introduction

Let X be a nonempty subset of Rn and F be a function from Rn to itself. The finite-
dimensional variational inequality problem, denoted by VI(X,F ), is to find a vector
x∗ ∈ X such that

F(x∗)T (x − x∗) ≥ 0 for all x ∈ X. (1.1)

The development of the theory, algorithms and applications of finite-dimensional
variational inequalities can be found in [6, 15]. The theory is very rich and a large
collection of algorithms exist for solving finite-dimensional variational inequalities.
However, most algorithms work practically only when X exhibits a certain geometric
structure (such as the positive orthant of Rn or a polyhedral set) or when X is defined
by finitely many convex constraints (such as the one studied in [29]). Motivated by
the recent development in semi-infinite programming [9, 24, 25], the authors of [8]
propose to study variational inequalities with X being defined by infinitely many con-
vex constraints. They call this class of problems “semi-infinite variational inequality
problems” and show that such problems can be reduced to a convex feasibility prob-
lem. In this paper, we focus on studying the variational inequality problem whose
domain is explicitly defined by infinitely many linear inequalities, using the concepts
of semi-infinite linear programming [1].

Like in [8], in this paper we consider a setting for which X is a nonempty, bounded
set defined by

X = {
x ∈ Rn | 〈u(t), x〉 − λ(t) ≤ 0 for all t ∈ T

}
(1.2)

where T is a nonempty compact subset of R1, u(t) : T → Rn and λ(t) : T → R1 are
continuous on T . Since there may be infinitely many linear inequalities involved in
defining X, we call this setting a linear semi-infinite variational inequality problem,
or LSIVI(X,F ) in short.

Notice that x ∈ X if and only if h(x) = maxt∈T {〈u(t), x〉 − λ(t)} ≤ 0. The exis-
tence of a solution to X can be traced back to [30] and characterized by the concepts
of the “1st moment cone,” “2nd moment cone,” “characteristic cone,” and “cone of
ascent rays” as described in [9]. The geometry of X can also be found in [9]. Find-
ing a feasible solution of X is in general as hard as solving a semi-infinite linear
programming problem with an initial solution [8, 24]. Also notice that when F is a
continuous pseudomonotone mapping (to be defined in later sections) from X to Rn,
it is not difficult to prove that x∗ ∈ X solves LSIVI(X,F ) if and only if it solves the
following problem:

F(x)T (x − x∗) ≥ 0 for all x ∈ X, (1.3)

which we denote as DLSIVI(X,F ). Actually, this problem is equivalent to a convex
feasibility problem [10–13, 18, 19], i.e., finding a point x∗ in a convex set defined by
an infinite number of linear inequalities

S = {
x∗ ∈ X | F(x)T x∗ ≤ F(x)T x for all x ∈ X

}
. (1.4)

The cutting plane approach has been used to solve finite convex optimization prob-
lems since the very beginning of the development of nonlinear programming. The
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methods of Kelley–Cheney–Goldstein [3, 17], Veinott [27], and Elzinga–Moore [5]
were widely applied and modified in various manners [4, 16, 25, 26]. A recent de-
velopment is using analytic center based cutting plane methods to solve variational
inequalities [8, 12, 20–23]. This approach combines the feature of interior point meth-
ods with the classical cutting plane scheme. Recently, the authors in [8, 24] presented
an analytic center based cutting plane method for solving a general semi-infinite vari-
ational inequality problem.

In this paper, we focus on a semi-infinite variational inequality problem whose
domain is defined by infinitely many linear constraints. We first study a discretization
approach for solving LSIVI(X,F ) and show a convergence result under proper as-
sumptions. The quality of solutions obtained by the discretization approach depends
on the expansive sequence used. It is hard to provide any quantitative statement. Then,
we propose an analytic center based inexact cutting plane method and give its con-
vergence proof. Unlike other cutting plane methods, such as the one used in [8], the
proposed method requires only an inexact solution to a variational inequality prob-
lem at each iteration. Also, the quality of solutions obtained by the proposed inexact
method can be carefully analyzed.

This paper is organized as follows. Some preliminaries are given in Sect. 2. We
discuss the discretization method for LSIVI(X,F ) and show a convergence result in
Sect. 3. An analytic center based inexact cutting plane method is proposed with a
convergence proof in Sect. 4. The computational results over a set of problems are
reported in Sect. 5. We conclude the paper in Sect. 6.

2 Preliminaries

Since an analytic center is usually defined at an interior point of a given region, we
make the following interior point assumption throughout this paper:

Assumption 1 There exists an x̂ ∈ Rn such that

〈
u(t), x̂

〉 − λ(t) < 0 for all t ∈ T . (2.1)

The interior point assumption assures that X has a nonempty interior. It is easy to
see that X is a convex set. Moreover, the continuity of 〈u(t), x〉 − λ(t) on Rn × T

implies that X is a closed set. Remember that in our setting, X is assumed to be
bounded. Consequently, X is a nonempty, convex, and compact subset of Rn and the
next result follows:

Proposition 1 In our setting, if F is a continuous mapping from X to Rn, then there
exists a solution to LSIVI(X,F ).

Let us recall some definitions of the mappings commonly used for a variational
inequality problem VI(X,F ).

Definition 1 [12, 22] A mapping F is said to be:
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• Monotone on X if for every pair of points x, y ∈ X,

(
F(x) − F(y)

)T
(x − y) ≥ 0. (2.2)

• Strongly monotone on X if there exists β > 0 such that for every pair of points
x, y ∈ X,

(
F(x) − F(y)

)T
(x − y) ≥ β‖x − y‖2. (2.3)

• Pseudomonotone on X if for every pair of points x, y ∈ X,

F(x)T (y − x) ≥ 0 implies F(y)T (y − x) ≥ 0. (2.4)

• Pseudomonotone-plus on X if it is pseudomonotone on X and for every pair of
points

F(x)T (y − x) = 0 and F(y)T (y − x) = 0 imply F(x) = F(y). (2.5)

• Pseudo-co-coercive with modulus α > 0 on X if for every pair of points x, y ∈ X,

F(x)T (y − x) ≥ 0 implies F(y)T (y − x) ≥ α
∥∥F(x) − F(y)

∥∥2
. (2.6)

It is not difficult to see that a monotone mapping is pseudomonotone and a strongly
monotone mapping is pseudo-co-coercive. Moreover, the following result follows.

Proposition 2 Let F be a continuous pseudomonotone mapping over X. Then
x∗ ∈ X is a solution to LSIVI(X,F ) if and only if x∗ solves DLSIVI(X,F ).

The following concept of gap function g(x) associated with a general VI(X,F )

will be utilized in this paper:

Definition 2 Given a problem VI(X,F ), the gap function is defined to be

g(x) = max
y∈X

{
F(x)T (x − y)

}
for x ∈ X. (2.7)

Note that g(x) ≥ 0 for x ∈ X and g(x∗) = 0 if and only if x∗ is a solution to
VI(X,F ). In general, g(x) may be nonconvex and nonsmooth. However, in our set-
ting the value of g(x) can be computed by some semi-infinite programming algo-
rithms [7, 24, 28].

Also note the following definition for any ε > 0:

Definition 3 A point x̄ ∈ X is called an ε-solution of the problem VI(X,F ), if the
gap g(x̄) ≤ ε.

In this case, it is not difficult to see that F(x̄)T (x − x̄) ≥ −ε for all x ∈ X.
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3 Discretization approach for LSIVI(X,F)

We first introduce a discretization approach for solving LSIVI(X,F ). Since in our
setting T is a compact subset of R1, there exist a positive-valued, strictly monotone
decreasing function � from the natural numbers I+ to the positive orthant R+ such
that �(n) → 0 as n → ∞ and an expansive sequence {Ti} of finite subsets of T with
the property that for each t ∈ T , there exists an n0 ∈ I+ such that for n ≥ n0, there
exists t ′ ∈ Tn with ‖t − t ′‖ ≤ �(n). Using Ti , we define

X̄i = {
x ∈ Rn | 〈u(t), x

〉 − λ(t) ≤ 0 for all t ∈ Ti

}
. (3.1)

Note that Ti is a finite subset of T and Ti ⊂ Ti+1 for each i. Consequently, X ⊂
X̄i+1 ⊂ X̄i .

Now consider the following variational inequality problem:
VI(X̄i,F ): Find xi ∈ X̄i such that

F(xi)T (x − xi) ≥ 0 for all x ∈ X̄i . (3.2)

Note that X̄i is closed and convex and we have the following result.

Lemma 1 If X̄i is bounded and F is continuous on X̄i , then there exists a solution
to VI(X̄i ,F ).

In this case, we let xi be a solution of VI(X̄i,F ). When X̄i is not bounded, the
existence of a solution to VI (X̄i ,F ) may become an issue. The solvability of a varia-
tional inequality problem with a continuous function over a general unbounded closed
convex set can be found in [14, 29]. Here we assume the existence of xi and show that
there exists a subsequence of the sequence of solutions {xi} converging to a solution
of LSIVI(X,F ).

Theorem 1 If there exists an M > 0 such that ||xi || ≤ M for each i, then there exists
a subsequence {xki } of {xi} converging to the solution of LSIVI(X,F ).

Proof Since ||xi || ≤ M for each i, there exists a subsequence {xki } converging to x∗.
We claim that 〈u(t), x∗〉−λ(t) ≤ 0, ∀t ∈ T . If not, there exists at least one t̄ ∈ T such
that 〈u(t̄ ), x∗〉 − λ(t̄ ) > 0. Hence there exists an n1 ∈ {ki} such that

〈
u(t̄ ), xn

〉 − λ(t̄) > 0 for each n ∈ {ki} and n ≥ n1. (3.3)

From the definition of Ti , there exists ti ∈ Ti such that ti → t̄ as i → ∞. Conse-
quently, there exists n2 such that, for i ≥ n2,

〈
u(ti), x

n
〉 − λ(ti) > 0 for each n ∈ {ki} and n ≥ n1. (3.4)

Choose n3 ≥ max{n1, n2}, then

〈
u(tn2), x

n3
〉 − λ(tn2) > 0. (3.5)
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Since xn3 is a solution of VI(X̄n3,F ),
〈
u(t), xn3

〉 − λ(t) ≤ 0 for each t ∈ Tn3 . (3.6)

For tn2 ∈ Tn2 ⊆ Tn3 , we know that 〈u(tn2), x
n3〉−λ(tn2) ≤ 0, which contradicts (3.5).

Hence 〈u(t), x∗〉 − λ(t) ≤ 0 for any t ∈ T .
Now we show that F(x∗)T (x − x∗) ≥ 0 for each x ∈ X. If not, we assume there

exists at least one x̄ ∈ X such that F(x∗)T (x̄ − x∗) < 0. Since F is continuous, there
exists n̄ ∈ {ki} such that

F
(
xn̄

)T (
x̄ − xn̄

)
< 0. (3.7)

On the other hand, since x̄ ∈ X ⊂ X̄n̄, we have

F
(
xn̄

)T (
x̄ − xn̄

) ≥ 0, (3.8)

which contradicts (3.7). Thus, for all x ∈ X, F(x∗)T (x − x∗) ≥ 0. �

Although Theorem 1 assures the convergence of the discretization approach, the
quality of solutions obtained by this approach depends on the choice of the expansive
sequence {Ti}. Usually finer discretization results in better approximation, but it is
hard to provide any quantitative statement.

4 Inexact cutting plane approach for LSIVI(X,F)

In this section, we present an analytic center based inexact cutting plane method for
solving LSIVI(X,F ).

Let t∗1 , . . . , t∗m be m given distinct points in T , define

T ∗ = {t∗1 , . . . , t∗m} ⊂ T (4.1)

and

X∗ = {
x ∈ Rn | 〈u(t), x

〉 − λ(t) ≤ 0 for all t ∈ T ∗}. (4.2)

Since u : T ∗ ⊂ T → Rn, we can define an m × n matrix A with Ai = u(ti) being
its ith row for i = 1, . . . ,m. Similarly, since λ : T ∗ → R, we define b to be an m

vector with bi = λ(ti) being the ith component of b for i = 1, . . . ,m. Then X∗ can
be rewritten as a polyhedral set {x ∈ Rn | Ax ≤ b}.

For a variational inequality problem like VI(X∗,F ), Goffin et al. [12] presented an
analytic center based cutting plane method to solve it. They showed that under some
technical conditions (such as F is pseudomonotone-plus and Lipschitz continuous
on X∗ and the inequalities 0 ≤ x ≤ e (where e is the vector of all 1’s) are included
in the system Ax ≤ b), their algorithm either terminates with an exact solution of
VI(X∗,F ) in a finite number of iterations, or generates an infinite sequence {xk} that
has a subsequence converging to a solution of VI(X∗,F ). In the latter case, when k

is sufficiently large, xk becomes an ε-solution to VI(X∗,F ), for any given ε > 0.
With a given T ∗ ⊂ T and a prescribed small number δ > 0, we propose a general

scheme as follows.
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Algorithm 1

Step 0. Given � > 0, ε ∈ (0,1), T1 = T ∗, and X1 = {x ∈ Rn|〈u(t), x〉 − λ(t) ≤ 0
for all t ∈ T1}. Set k = 1 and �1 = �.

Step 1. Solve problem VI(Xk,F ) with a �k-solution xk . Define ωk(t) = 〈u(t), xk〉−
λ(t) for t ∈ T .

Step 2. Find any tk ∈ T such that ωk(tk) > δ.
(i) If such tk does not exist and �k ≤ δ, then stop and output xk as a solu-

tion.
(ii) If such tk does not exist and �k > δ, then set �k = (1 − ε)�k and go to

step 1.
(iii) If such tk exists, then set Tk+1 = Tk ∪{tk}, Xk+1 = {x ∈ Rn | 〈u(t), x〉−

λ(t) ≤ 0 for all t ∈ Tk+1}, �k+1 = (1 − ε)�k , and go to step 3.
Step 3. Update k ← k + 1 and go to step 1.

Note that in step 1, only an inexact solution to a subprogram VI(Xk,F ) is needed
at each iteration. This task can be carried out by using the analytic center cutting plane
method proposed in [12], assuming that Xk is bounded in our setting. In step 2, to find
tk ∈ T such that ωk(tk) > δ is not always easy. Strictly speaking, this involves global
optimization theory and techniques. In our case, when u(t) and λ(t) are continuous
in t over a compact set T in R1, there exist many practical methods [25] and heuristics
[2] for the computation. But no algorithm with exact complexity analysis is known.
Also note that in step 2(iii), only one cutting plane is added at each time.

Theorem 2 In our setting, Algorithm 1 terminates in a finite number of iterations.

Proof Suppose that the algorithm does not terminate in a finite number of iterations,
instead it generates a sequence {xk}. Since Xk is assumed to be bounded, we let {xnk }
be a subsequence of {xk} such that xnk → x∗ as tnk

→ t∗.
Define

ω∗(t) = 〈
u(t), x∗〉 − λ(t).

We claim that

ω∗(tnk
) ≤ 0 for k = 1,2, . . . .

If not, then there exists a positive integer N such that

ω∗(tnN
) > 0.

Consequently, there exists a sufficiently large positive integer N̄ > N with

ωnN̄ (tnN
) = 〈

u(tnN
), xnN̄

〉 − λ(tnN
) > 0.

Since N̄ > N and tnN
∈ TnN̄

, we have

ωnN̄ (tnN
) ≤ 0,

which yields a contradiction. This implies that

ω∗(tnk
) = 〈

u(tnk
), x∗〉 − λ(tnk

) ≤ 0 for k = 1,2, . . . . (4.3)
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Taking limit of (4.3) yields the result of ω∗(t∗) ≤ 0. From step 2 of the algorithm, we
know

ωnk (tnk
) > δ for k = 1,2, . . . . (4.4)

As k → ∞, (4.4) implies

ω∗(t∗) ≥ δ.

Hence we have δ ≤ ω∗(t∗) ≤ 0, which is again a contradiction. Therefore, Algo-
rithm 1 indeed terminates in a finite number of iterations. �

The above theorem assures that, for each δ > 0, Algorithm 1 terminates in finitely
many iterations with an inexact solution x(δ). Here we aim to show that x(δ) con-
verges to a solution of LSIVI(X,F ) as δ → 0. To achieve this, we introduce the
following modified algorithm.

Given that T ∗ ⊂ T and {δi} be a sequence of positive numbers such that δi → 0
as i → ∞.

Algorithm 2

Step 0. Let � > 0, ε ∈ (0,1), T1 = T ∗ and X1 = {x ∈ Rn|〈u(t), x〉 − λ(t) ≤ 0
for all t ∈ T1}. Set k = 1, l = 0 and �1 = �.

Step 1. Solve problem VI(Xk,F ) with a �k-solution xk . Define ωk(t) = 〈u(t), xk〉−
λ(t) for t ∈ T .

Step 2. Find a tk ∈ T such that ωk(tk) > δl+1.
(i) If such tk exists, then set Tk+1 = Tk ∪ {tk}, Xk+1 = {x ∈ Rn|〈u(t), x〉 −

λ(t) ≤ 0 for all t ∈ Tk+1}, �k+1 = (1 − ε)�k . Update k ← k + 1 and go
to step 1.

(ii) If such tk does not exist and �k > δl+1, then set �k = (1 − ε)�k and
go to step 1.

(iii) If such tk does not exist and �k ≤ δl+1, then set l ← l + 1, k∗
l ← k, and

go to step 3.
Step 3. If ωk(t) ≤ 0 for all t ∈ T and xk is an exact solution for problem VI(Xk,F ),

then stop and output xk as solution. Otherwise, go to step 2.

Note that if Algorithm 2 does not stop in step 3, then we obtain xk∗
l and update l

by l + 1 each time going through (iii) of step 2. Therefore, for t ∈ T and l = 1,2, . . .

ωk∗
l (t) ≤ δl+1. (4.5)

In the next theorem, we show that there exists a subsequence of {xk∗
l } that converges

to a solution of LSIVI(X,F ) as δl → 0.

Theorem 3 In our setting, if δl → 0 as l → ∞, then there exists a subsequence of
{xk∗

l } converging to a solution of LSIVI(X,F ).

Proof Since Xk is bounded in our setting, we know that there exists a subsequence
x

k∗
nl of xk∗

l converging to some x∗ and δnl+1 → 0 as l → ∞. From (4.5) we have

ω
k∗
nl (t) ≤ δnl+1 for t ∈ T .
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Let l → ∞, we have ω∗(t) = 〈u(t), x∗〉 − λ(t) ≤ 0 for t ∈ T .
Now we show that

F(x∗)T (x − x∗) ≥ 0 for all x ∈ X.

For each l, since x
k∗
nl is a (1 − ε)

k∗
nl

−1
�-solution of VI(Xk∗

nl
, F ),

F
(
x

k∗
nl

)T (
x − x

k∗
nl

) ≥ −(1 − ε)
k∗
nl

−1
� for x ∈ X ⊂ Xk∗

nl
.

As l → ∞, we have

F(x∗)T (x − x∗) ≥ 0 for all x ∈ X.

Therefore, x∗ is a solution of LSIVI(X,F ). �

Suppose that Algorithm 2 does not terminate in a finite number of iterations, but
after sth iteration we have a �s -solution xs for VI(Xs,F ). Assume that there exists
a small δ′ > 0 such that

ωs(t) = 〈
u(t), xs

〉 − λ(t) ≤ δ′ for all t ∈ T . (4.6)

From Theorem 2, xs can be viewed as an approximate solution of LSIVI(X,F ), if
δ′ > 0 is sufficiently small. An interesting, yet important, question is “how good such
an approximate solution can be”? In this case, we let δ∗ = max{δ′, (1 − ε)s−1�},
c > δ∗ and a > 0 be given positive numbers, and S = {t : −c ≤ ωs(t) ≤ δ′}. The fol-
lowing theorem addresses the approximation issue under some technical conditions.

Theorem 4 Let F be a continuous and pseudo-monotone mapping over X. In our
setting, if there exists an x̄ ∈ Rn such that (i) 〈u(t), x̄〉 ≥ a for t ∈ S, (ii) −a ≤
〈u(t), x̄〉 for t ∈ T − S; and (iii) F(x)T x̄ ≥ a for all x ∈ X, then xs − (δ∗/a)x̄ is
a solution of LSIVI(X,F ).

Proof Since for t ∈ S

ωs(t) = 〈
u(t), xs

〉 − λ(t) ≤ δ′ (4.7)

and
〈
u(t), (δ∗/a)x̄

〉 ≥ δ∗, (4.8)

we know that
〈
u(t), xs − (δ∗/a)x̄

〉 − λ(t) = 〈
u(t), xs

〉 − λ(t) − 〈
u(t), (δ∗/a)x̄

〉

≤ δ′ − δ∗ ≤ 0. (4.9)

Moreover, for t ∈ T − S, we have ωs(t) < −c and 〈u(t), (δ∗/a)x̄〉 ≥ −δ∗. Therefore,
for t ∈ T − S, we have

〈
u(t), xs − (δ∗/a)x̄

〉 − λ(t) = 〈
u(t), xs

〉 − λ(t) − 〈
u(t), (δ∗/a)x̄

〉

< −c + δ∗ ≤ −δ∗ + δ∗ = 0. (4.10)
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Consequently, xs − (δ∗/a)x̄ ∈ X.
Now, since for each x ∈ X

F(x)T
(
x − xs

) ≥ −(1 − ε)s−1� (4.11)

and

F(x)T
(
(δ∗/a)x̄

) ≥ δ∗, (4.12)

we know

F(x)T
(
x − (

xs − (δ∗/a)x̄
)) = F(x)T

(
x − xs

) + F(x)T
(
(δ∗/a)x̄

)

≥ −(1 − ε)s−1� + δ∗ ≥ 0. (4.13)

Therefore, xs − (δ∗/a)x̄ is a solution of DLSIVI(X,F ). From Proposition 2, we
know xs − (δ∗/a)x̄ must be a solution of LSIVI(X,F ). �

Notice that the conditions assumed in Theorem 4 are technical conditions that
may be difficult to check in general. But when they are satisfied, we know how
close xs can be a solution to LSIVI(X,F ). In some cases, the technical conditions
can be verified easily. For example, if u(t) = (u1(t), . . . , un(t)) > 0 for t ∈ T and
F(x) = (F1(x), . . . ,Fnx) > 0 for x ∈ X, then the conditions are clearly satisfied.
Also notice that when the analytic center cutting plane algorithm of [12] is used, un-
der the assumption that F is pseudo co-coercive and Lipschitz continuous on Xi , an
approximation solution xi to VI(Xi,F ) can be found in polynomial time. Therefore,
in this case, an ε-solution of LSIVI(X,F ) can be achieved in polynomial time.

5 Numerical examples

In this section we provide some examples to illustrate the potentials of the discretiza-
tion approach and the inexact cutting plane approach. We have implemented both
approaches using MATLAB on a 1000 MHz Pentium III personal computer running
Linux.

Recall that for both approaches, a finite-dimensional variational inequality sub-
problem has to be solved. For this purpose, we have implemented the method pro-
posed by Goffin et al. [12] that has been cited in the previous sections. To compute
the approximate analytic center in Goffin’s method, we have used Newton’s linear
approximation along with a dual scaling procedure [11].

The following examples are studied in the sequel:

Example 1 n = 7, T = [0,1], and

X =
{

x ∈ R7
∣∣∣

7∑

j=1

tj−1xj ≤
4∑

l=1

t2l + 1, t ∈ T and 0 ≤ xj ≤ 1, j = 1, . . . ,7

}

,

F = (F1, . . . ,F7) with Fj = xj − 1√
xj

, j = 1, . . . ,7.
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Example 2 n = 7, T = [0,1], and

X =
{

x ∈ R7
∣
∣∣

7∑

j=1

tj−1xj ≤ 4t5 + 1, t ∈ T and 0 ≤ xj ≤ 1, j = 1, . . . ,7

}

,

F = (F1, . . . ,F7) with Fj = 3xj − 1

x2
j

, j = 1, . . . ,7.

Example 3 n = 7, T = [0,1], and

X =
{

x ∈R7
∣∣∣

7∑

j=1

tj−1xj ≤3t5 + 2t2 + 1

3
, t ∈ T and 0 ≤ xj ≤ 1, j = 1, . . . ,7

}

,

F = (F1, . . . ,F7) with Fj = √
xj − 1

x2
j

, j = 1, . . . ,7.

Notice that, for the above examples the interior point assumption (2.1) is satisfied
when we set x̂ to 0.1e (e is the vector of all 1’s). To apply Goffin’s method, the
inequalities 0 ≤ x ≤ e are included in the system of linear inequalities. Consequently,
for each example the set X becomes nonempty, convex and compact.

Table 1 shows the solutions found by the discretization approach. The set T has
been divided into equally spaced partitions, and to analyze the effect of finer dis-
cretization, the number of partitions (NOP) has been varied from 10 to 100. The first
column shows the example number. The second column gives the NOP required to
achieve the solution x∗ reported in the third column. The total number of iterations
(Iter) spent for solving the variational inequality subproblems are reported in column

Table 1 Solutions using the discretization approach

Ex. NOP x∗ Iter. Gap RT

1 10 x∗ = (0.4768,0.5603,0.6340,0.6992,0.7540,0.7999,0.8384)T 62 0.001 15 s

20 x∗ = (0.5053,0.5718,0.6303,0.6845,0.7312,0.7698,0.8054)T 74 0.0009 29 s

40 x∗ = (0.4958,0.5663,0.6303,0.6867,0.7364,0.7794,0.8158)T 89 0.0004 1 min 13 s

80 x∗ = (0.4964,0.5654,0.6289,0.6881,0.7381,0.7795,0.8141)T 116 0.0004 4 min 31 s

100 x∗ = (0.4996,0.5678,0.6302,0.6852,0.7338,0.7753,0.8112)T 134 0.0002 8 min 1 s

2 10 x∗ = (0.4824,0.5286,0.5680,0.6001,0.6252,0.6440,0.6578)T 70 0.0086 17 s

20 x∗ = (0.4719,0.5274,0.5736,0.6093,0.6357,0.6546,0.6671)T 74 0.0038 28 s

40 x∗ = (0.4738,0.5265,0.5705,0.6059,0.6321,0.6510,0.6640) 95 0.0046 1 min 18 s

80 x∗ = (0.4753,0.5262,0.5693,0.6049,0.6298,0.6492,0.6633)T 134 0.0012 5 min 47 s

100 x∗ = (0.4754,0.5255,0.5702,0.6047,0.6307,0.6499,0.6630)T 149 0.0031 10 min 3 s

3 10 x∗ = (0.2785,0.4766,0.7150,0.8853,0.9623,0.9880,0.9957)T 73 0.001 30 s

20 x∗ = (0.2785,0.4766,0.7143,0.8852,0.9623,0.9880,0.9970)T 84 0.0026 52 s

40 x∗ = (0.2769,0.4793,0.7215,0.8912,0.9647,0.9895,0.9969)T 119 0.0011 2 min 38 s

80 x∗ = (0.2760,0.4807,0.7256,0.8948,0.9667,0.9902,0.9971)T 173 0.0003 14 min 14 s

100 x∗ = (0.2762,0.4801,0.7238,0.8933,0.9662,0.9899,0.9969)T 204 0.0002 23 min 7 s
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Table 2 Solutions using the inexact cutting plane approach

Ex. k x∗ and Tk Iter. Gap RT

1 5 x∗ = (0.4995,0.5678,0.6300,0.6857,0.7337,0.7752,0.8111)T 660 0.0002 1 min 47 s

T5 = {0.0,0.8131,0.8268,0.8299,0.8338,1.0}
2 4 x∗ = (0.4756,0.5253,0.5707,0.6045,0.6299,0.6496,0.6629)T 768 0.002 2 min 9 s

T4 = {0.0,0.6678,0.6738,0.7333,1.0}
3 6 x∗ = (0.2764,0.4799,0.7234,0.8933,0.9659,0.9896,0.9970)T 629 0.0001 2 min 5 s

T6 = {0.0,0.2745,0.2876,0.2930,0.2993,0.5891,1.0}

four. The fifth column with the title Gap gives the results of the gap function (2.7)
evaluated at the corresponding solution x∗. The last column of the table gives the
running time (RT) of the algorithm for the corresponding example.

Next we have solved the examples using the inexact cutting plane approach (Al-
gorithm 1). For all the examples, the parameters δ, � and ε are set to 1.0e−5, 0.1
and 0.5, respectively. Also, the initial set T1 is taken as {0.0,1.0}. The results with
the inexact cutting plane approach are reported in Table 2. The first column shows
the example number whereas the second column gives the number of iterations (k)
for finding the solution x∗. The third column shows the solution x∗ and the final set
Tk reported by the algorithm. Similar to Table 1, the last three columns show the total
number of iterations spent for solving the variational inequality subproblems, the gap
function values and the running times, respectively.

In step 2 of Algorithm 1 if xk is not an exact solution, at the next iteration the algo-
rithm moves back to step 1 without adding a new cutting plane. Therefore, in Table 2
the number of iterations in the second column may be higher than the cardinality of
the final sets (Tk) in the third column.

Recall that we need to solve a semi-infinite programming problem to evaluate the
gap function (2.7). In order to report the gap function results, we have used the semi-
infinite programming procedure, called fseminf of MATLAB. This procedure uses
interpolation to estimate the peak values of the constraints and then proceeds with a
sequential quadratic programming method.

Analyzing Tables 1 and 2, we see that the inexact cutting plane approach con-
verges to the solutions of the three examples after adding, respectively, 4, 3, and
5 points to the initial sets (T1). Meanwhile, the third column in Table 1 shows that
at the expense of high number of partitions, the discretization approach leads to the
solutions that are closer to the solutions confirmed by the inexact cutting plane ap-
proach. As the fourth columns show, the number of iterations used in the variational
inequality subproblems with the discretization approach is less than the number with
the inexact cutting plane approach. However, the time required to solve a problem by
the discretization approach is much longer than that of the cutting plane approach.
This is a direct consequence of the fact that the solution methods for the inner vari-
ational inequality problems slow down as the number of inequalities increase. When
we look at the gap function values, we see that the inexact cutting plane approach
gives promising gap function values for an inexact algorithm. On the other hand, as
expected, the gap function values with the discretization approach improve by finer
partitioning.
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We have also tried to test the estimated infeasibility of the solutions with both ap-
proaches. First, we have partitioned the set T = [0,1] into 100,000 partitions. Then
among these 100,000 inequalities, we have checked the violated ones. Table 3 shows
the estimated infeasibility figures with the discretization approach. The first column
gives the example number and the second column shows the number of partitions
(NOP). The number of violated inequalities are reported in column three. The fourth
column gives the average (Avg.) infeasibility, i.e., the average of the differences be-
tween the right and left hand-sides of the violated inequalities. The last three columns
give the standard deviation (Std. Dev.) of the infeasibility, the maximum (Max) infea-
sibility and the minimum (Min) infeasibility, respectively. Similarly, Table 4 shows
the estimated infeasibility figures with the inexact cutting plane approach. The first
column gives the example number and the remaining columns are same as the last
five columns of Table 3.

Our test results indicate that the level of infeasibility using the cutting plane ap-
proach is not a problem. It is better than that produced by the discretization approach
in our experiments. Of course, one may take longer running time with further parti-
tioning to decrease the level of infeasibility for the discretization approach.

Table 3 Estimated infeasibility
with the discretization approach Ex. NOP Num. Avg. Std. Dev. Max Min

1 10 8507 7.4e−3 3.3e−3 1.1e−3 3.3e−6

20 4998 2.4e−3 1.1e−3 3.5e−3 1.2e−6

40 1191 1.3e−4 6.1e−5 2.6e−4 2.3e−7

80 989 1.1e−4 5.9e−5 2.0e−4 2.4e−8

100 259 6.4e−6 2.8e−6 9.6e−6 4.4e−8

2 10 6151 2.9e−3 1.3e−3 4.4e−3 1.9e−6

20 2990 1.9e−3 8.6e−4 2.9e−3 1.2e−6

40 656 3.3e−5 1.5e−5 5.1e−5 3.6e−8

80 504 1.9e−5 8.2e−6 2.9e−5 1.9e−8

100 454 1.6e−5 7.2e−6 2.4e−5 2.6e−8

3 10 4320 1.4e−4 6.1e−5 2.1e−4 1.7e−7

20 3800 1.2e−4 5.5e−5 1.8e−4 3.1e−8

40 1499 4.2e−5 1.9e−5 6.3e−5 6.9e−8

80 995 9.9e−6 4.4e−6 1.5e−5 3.5e−8

100 567 9.8e−7 7.7e−7 9.1e−6 2.1e−8

Table 4 Estimated infeasibility
with the inexact cutting plane
approach

Ex. Num. Avg. Std. Dev. Max Min

1 244 5.6e−6 2.5e−6 8.5e−6 7.9e−6

2 250 4.8e−6 1.0e−6 3.4e−6 3.8e−7

3 233 1.8e−6 8.3e−7 2.8e−6 1.3e−8
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6 Conclusion

In this paper, we have studied a special class of variational inequalities over a domain
defined by infinitely many linear inequalities. A discretization approach for solving
such problems is introduced with a convergence proof. We also propose an inexact
cutting plane method based on analytic centers. A convergence proof and several nu-
merical examples are included. Under proper conditions, we can examine the quality
of solutions obtained. When F is pseudo co-coercive and Lipschitz continuous, an
ε-optimal solution may be generated by the proposed algorithm in polynomial time.
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