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Abstract—In this work, a new model that combines the concepts of wavelet transformation and subspace anal-
ysis tools, like independent component analysis (ICA), topographic independent component analysis (TICA),
and Independent Subspace Analysis (ISA), is developed for the purpose of defect detection in textile images.
In previous works, it has been shown that reduction of the textural components of the textile image by prepro-
cessing has increased the performance of the system., Based on this observation, in the present work, the afore-
mentioned subspace analysis tools are applied to subband images, The feature vector of a subwindow of a test
image is compared with that of a defect-free image in order to make a decision. This decision is based on a
Euclidean distance classifier. The increase performance that results from using wavelet transformation prior to
subspace analysis has been discussed in detail, While it has been found that all subspace analysis methods lead
to the same detection performances, as a further step, independent subspace analysis is used to classify the

detected defects according to their directionalities.
DOI: 10.1134/5105466180704027X

1. INTRODUCTION

Automated industrial inspection systems based on
hardware and/or software tools have been very success-
ful in application to on-line quality control applications
by virtue of their ability to make repetitive measure-
ments accurately, fast, and objectively. One of the
industry fields where antomated visual inspection sys-
tems are mostly needed is the textile industry. Espe-
cially, the quality control of products in the textile
industry is a significant problem, while the detection of
defects in a fabric quality control system with a width
of 1.60-2.0 m and which moves with an average speed
of 10 m per minute is difficult for human observers.
Thus, automated visual inspection systems play a great
role in assessing the quality of fabrics. Other than clas-
sifying a certain appearance of the fabric, detection of
the exact location of the defects and determination of
their type are also important in some applications. An
important point for the manufacturer is to get a warning
when a certain amount of anomalies or imperfections
oceur during the production of fabric so that necessary
precautions can be taken before the product reaches the
market.

Texture analysis plays an important role in the auto-
mated visual inspection of surfaces. There have been
number of works on the use of texture analysis for
inspection purposes by artificial visual methods, Amet
et al. [1] have used subband domain cooccurrence
matrices for texture defect detection; Karras et al. [18]
have suggested focusing on detecting defects from the
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wavelet transformation of images and to vector-quan-
tizing related properties of the associated wavelet coet-
ficients. Chen and Jain [6] used a structural approach to
detecting defects in textured images. Dewaele et al. [9]
used signal processing methods to detect point defects
and line defects in texture images, Cohen et al, [7] used
MRF models for inspecting defects of textile surfaces,
while Ercil et al. [10] used similar techniques for
inspection of painted metallic surfaces, Atalay [2] has
implemented an MRF model-based method on a
TMS320C40 parallel processing system for real-time
defect inspection of textile fabrics, Lambert et al, [20]
introduced an approach to exploit multiscale wavelet
methods for texture defect detection, whereas Meylani
et al, [23, 24] used lattice filters for the same purpose,
livarinen [17] compared the performances of histo- 2
gram-based texture analysis techniques, namely, the
cooccurence matrix method and the local binary pattern 3
method for surface defect detection. Bodnarova et al.
[3] computed the parameters of a Gabor filter through
optimization of the Fisher cost function and con-
strained these parameters to specific values to detect
specific defects. Chan and Pang [5] used a three-dimen-
sional frequency spectrum for the analysis of defects.
For surveys of texture analysis, see Van Gool et al, [31],
Reed et al, [26], Rao [25], and Tuceryan and Jain [30].
The first application of independent component analy-
sis {ICA) on image data was the pioneering work of
Hurri [11], in which he examined the general character-
istics of independent components of texture images,
Some preliminary results on the use of ICA for defect
detection are presented in [27-29],
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In this work, we propose a new defect detection
algorithm based on [CA of subband images obtained by
decomposing the original texture images. Wavelets are
shown [22] to form a complete basis for multiresolution
representation of images. Wavelet transform analysis
facilitates inspection of the spatial-spatial-frequency
contents of a signal in a unified framework. This consti-
tutes the background for their use in texture analysis,

Our work is intended to be a continuation of the
studies conducted by Amet et al, [1], and Sezer et al.
[28]. In [1], a method that depends on the principle of
decomposing grayscale images into their subbands
using the pyramid structured wavelet transform
(PSWT) and wavelet packet signatures (WPSs), and
then extracting the cooccurrence properties using these
subband images, was built. In [28], Sezer et al.
increased defect detection performance by applying
certain preprocessing methods like median filtering and
histogram modification on the textile fabric images
betore applying ICA. These two works announced the
idea that decomposing a textile fabric image into its
subbands by wavelet transforms as a preprocessing step
and applying ICA on these subbands will increase per-
formance. A previous work by Serdaroglu et al. showed
that defect detection performance in textile fabric
images improved when the concepts of wavelet trans-
formation were combined with ICA [27].

In this paper, we have conducted several experi-
ments with combining wavelet transformation and
ICA, We also investigated topographic independent
component analysis (TICA) and independent subspace
analysis (ISA) as a feature extraction step on these sub-
bands. General concepts about ICA, TICA, and ISA are
provided in Section 2, Section 3 gives a short explana-
tion about the theory of wavelet transforms and wavelet
packets. The methodologies used to conduct the exper-
iments are explained in Section 4. Section 5 describes
the performed experiments, and Section 6 concludes
the paper.

—

2. SUBSPACE ANALYSIS METHODS
2.1, Independent Component Analysis

ICA has the goal of finding a linear transformation
of original data such that the new representation mini-
mizes the statistical dependence of the components of
the representation, In other words, ICA tries to tind the
hidden components inside the original data, and these
components capture the essential structure of the
data. The representation achieved by ICA facilitates
the analysis of the data encountered in such fields

4 like data compression, pattern recognition, denoising,
etc. [12, 13].

Transformation methods like principal component
analysis (PCA), factor analysis, and projection pursuit
are closely related to ICA. As in projection pursuit, ICA
tries to find the inferesting directions that give the inde-

pendent components. [CA can also be considered as a
nongaussian factor analysis. Both PCA and ICA for-
mulate an objective function in order to define a linear
representation and then maximize that function, From
this perspective, PCA and ICA appear similar; how-
ever, they define their objective functions in very differ-
ent ways, While PCA uses second-order statistics in
order to find the principal components, [CA needs
higher order statistics in order to find the independent
components. A much stronger relation can be seen
between ICA and nonlinear principal component anal-
ysis (NLPCA) [32]. In [32], Xu uses the concept of
least mean square error reconstruction (LMSER} in
order to estimate the nonlinear principal components. It
turns out that the nonlinear principal components are,
in some cases, aligned with the independent compo-
nents of the input data.

The basic ICA model is given as [12, 13]

X =AS, 2.1

where x is a random vector containing the mixtures, s is
a random vector containing the independent sources,
and A is the mixing matrix. No a priori information
about the mixing matrix or the sources is known. These
sources can be different parts of the brain emitting dif-
ferent signals, people speaking at a cocktail party so
that many speech signals are emitted, different mobile
phones radiating different electromagnetic signals from
their antennas, or some other sources that are not
known but are assumed to exist that are somehow pro-
ducing the observed signals. In order to estimate the
independent components by observing the mixtures x,
the sources s must be assumed to be independent from
each other, with each having a nongaussian probability
distribution. The sources § can be estimated after find-
ing the demixing matrix B, given in Eq. (2.2):

s = Bx,
where B is the (pseudo) inverse of A.

These estimated sources are called independent
components. The ICA model can estimate the indepen-
dent components up to such ambiguities as scaling and
ordering. The scaling problem can be solved by restrict-
ing the variances of the independent components to
unity, However, there still remains a sign ambiguity,
which is not a problem in many cases. In order to solve
the ordering problem, certain ordering methods have
been advised in [12, 13].

The demixing matrix can be estimated by maximi-
zation of the nongaussianity of the sources [12, 13],
Using the approximation of the negentropy or kurtosis
in measuring the nongaussianity of data, a correspond-
ing cost function can be built and maximized by either
the gradient ascent method or by a fixed point algo-
rithm,

There are two standard preprocessing steps, center-
ing and whitening, that are used in [CA [12, 13]. These
steps are applied in order to make IC A estimation better

(2.2)



conditioned and simpler: hence they do not change the
ICA model given in Eq. (2.1). After whitening of the
data, which can be achieved by PCA, the independent
sources can be obtained as

s =Wz, (2.3)

where W is the whitened demixing matrix that we are
attempting to estimate and z is the whitened data, After
finding W, the estimation of the original mixing matrix
A can be performed using Eq. (2.4):

A = ED'"W", (2.4)
where D is a diagonal matrix consisting of the eigenval-
ues of the correlation matrix of x and E is the matrix of
corresponding eigenvectors. So, only the estimation of
the rows of W is left to be done, As mentioned before,
this is achieved by maximizing the nongaussianity of
the data. In order to maximize nongaussianity. either
the absolute value of the kurtosis or the negentropy can
be maximized [12, 13]. Then the rows of the demixing
matrix can be updated using a gradient-based algorithm
or a fixed-point algorithm [14],

2.2. Topographic Independent Component Analysis

In ordinary ICA, the components are assumed to be
independent. However, the estimated independent com-
ponents are not often statistically independent. In fact,
it is not possible, in general, to decompose a random
vector x linearly into components that are perfectly
independent. One of the possible solutions to this prob-
lem is to relax the independence assumption and 0 use
the dependence of the neighboring independent compo-
nents as a way to develop new tools for feature extrac-
tion. Multidimensional ICA [4], ISA [15], and TICA
[16] are concepts that have been built using this inde-
pendence relaxation idea.

In TICA, an independent component is made depen-
dent with its neighboring independent components
according to a predefined topographic neighborhood
scheme. In this way, an ordering of the independent
components in terms of dependences can be achieved.
The dependency between nearby components is mod-
eled by correlation of energies, which is a certain kind
of high-order correlation, This means that

cov(sf,sf) = E{S?S?} —E{s?}E{s?};ﬁ() (2.5)

if 5; and 5; are close in topography.

The topography scheme is defined according to a
predefined 1D or 2D neighborhood function, A simple
one-dimensional topography can be defined by the fol-
lowing neighborhood function [16]:

1, if |i-jl<m
neigh(i, j)} = 2.6
ghir. j) {(), otherwise, (26)
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The learning rule can be defined as in Egs. (2.7) and
(2.8), where the ith row vector w, of W is updated by a
gradient algorithm:

Aw, o< E{z(w/Z)1,}, 2.7)

where

r,o= Zneigh(i,k)g(z neigh(k,j)(w;-rz)z} (2.8)

k=1 i=1

The vectors w; must be normalized to unit variance
and orthogonalized after every step.

2.3. Independent Subspace Analysis

In ISA [15], on the other hand, some dependences
between the components are modeled. It combines the
concepts of multidimensional ICA [4] with the princi-
ple of invariant-feature subspaces [19].

2.3.1 Invariant-feature subspaces. In the classical
approaches of feature extraction, the presence of a
given feature is detected taking the dot product of input
data with a given feature vector. Linear features found
in this way have the disadvantage of no invariance with
respect to spatial shift or change in phase. Kohonen
[19] developed the concept of invariant-feature sub-
spaces in order to represent features with some invari-
ances,

2.3.2 Multidimensional ICA. In multidimensional
independent component analysis, [4]. it is assumed that
the independent components, s;, can be divided into
couples, triplets, or in general, n-tuples, such that the s,
inside a given #-tuple may be dependent on each other,
but dependences among different n-tuples are not
allowed,

In order to combine the concepts of invariant-fea-
ture subspaces and multidimensional ICA, the proba-
bility distributions of the n-tuples of the independent
components §; that are taken to be spherically symmet-
ric; i.e., they depend only on the norm. So, the loga-
rithm of the likelihood L of the data, that is, the K
observed image subwindows (or patches) I(x, v), k =
1, .... K, given the model, can be expressed as follows:

log L{l (x, yrho k=1, . K;wi(x,¥)i=1,...,m)
k

= J logp {w, I)" |+ Klog|detw], 9)
2 loep|

k=1j=1 ics,

where P(ch S_s?) = p;(s;, { € §;) gives the probability

density inside the jth n-tuple of s;, J is the number of
subspace groups. w; are the rows of the demixing
matrix W. Since a prewhitening is done, W is ane
orthogonal matrix; therefore, the second term in the
above summation is zero.
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By gradient ascent of the log likelihood given in
Eq. (2.9), the learning algorithm for the extraction of
independent subspaces can be obtained. The vectors w,
are constrained to be orthogonal and of unit norm, as in
ordinary ICA. The learning rule for ISA can be stated
as in Eq. (2,10);

Dwi(x, yyoel(x. }')<w;,1>g[ Y (w, I>2], (2.10)

F S8

where j(i) is the index of the subspace t0 which w,
belongs and g = p'/p is 4 nonlinear function.

2.4, Independent Components of Images

In this project, our goal is to find the independent
components of textile fabric images for the purpose of
defect detection, In the work by Hurri et al, [11], sub-
windows from images are taken in order to form the
samples of the data vector x. Each pixel of the image
subwindow is a random variable, and as the number of
image subwindows taken from images is increased, we
can get a more thorough picture of the statistics of that
random variable. The aim of ICA is to make these
image pixels as mutually independent as possible,

An image subwindow I(x, v} can be represented as a
linear sum of its basis functions (i.e. independent com-
ponents) which can be exwracted by ICA (or TICA or
ISA).

I(x,y) = Y ai(x, v)s;
i=1
Here, a,(x, y) are called basis functions, and the s, con-

stitute the feature vector used in the proposed defect
detection system.

(2.11)

3. WAVELET TRANSFORMS

Wavelet transformation is a tool used to decompose
a signal into its subbands. The advantages of multires-
olution analysis have been widely investigated. Any
signal can be decomposed into multiple frequency
bands using a single set of filter coefficients. Further-
more, wavelet transtorms have good spatial—spatial-
frequency localization, Directional information is
inherent in wavelet coefficients. Namely the LH, HL
and HH bands contain details in the horizontal, vertical
and diagonal directions respectively.

Wavelets, although known for many years, received
the attention of the image processing society only after
the papers by Daubechies [8]. who provided the discret-
ization of the wavelet ransform, and Mallat [22], who
established the connection between multiresolution
theory and wavelet transforms.

In this section, the background theory about discrete
wavelet transform and decomposition of a signal using
wavelet filters are given. By virtue of the translations

and dilation of a function represented as y(r) and
known as the mother wavelet, one can obtain a family
of orthonormal basis functions, These bases are repre-
sented as W, (7). and the decomposition of a signal is
performed with these bases. The construction of the
basis function from the mother wavelet can be repre-
sented by the following formula:

#1142

W, (D) = 277927 —n). 3.1

The analysis and synthesis formulas for a signal x(#)
are given as follows:

4o

Cnn = [ O (),

—o

(3.2)

X0 = Cnn W), (33)

H.on

For the construction of the mother wavelet, a func-
tion known as scaling function ¢,, ,(f), is used:

Ot} = N2 80(K) D 4(20 = k). (3.4)
k

Then w,, , is found as follows

V(1) = 42 810008, (21 - k). (3.5)
k

Here go(n) and g,(n) are called the reconstruction
low-pass filter and reconstruction high-pass filter,
respectively. Their mutual relation can be given by

g1(ky = (-1)°go(1-k). (3.6)

The transtormation coefficients can be obtained
recursively; there is no need to explicitly calculate the
scaling and mother wavelet functions. J-level decom-
position can be written as in Egs. (3.7) to (3.9):

. ; .
X = Z[C,u 1xQr 4 1.6(R) + zdj+ l,k‘{,j+l,k(t)]s (3.7

& j=0

where

Cratn = D Ciu8olk=2n) (3.8)
&

and

djrn = D, d;08:(k—2n) (3.9)
k

for 0 <j < J, Equations (3.8) and (3.9) are in fact the

convolution of coefficients ¢; , and d; , at resolution j
with filters h;, and ,(m), then down-sampling by two to

obtain ¢;, ; , and d;, .. The coefficients ¢; , are called



fi ()

h’l(n] —-@—.‘1; 0

Fig. 1. Two-level wavelet decomposition diagram.

low-resolution coefficients, and the coefficients d; , are
called detail coefficients. hy(n) is the decomposition
low-pass filter, and h,(n) is the decomposition high-
pass filter. They have a mutual relationship given as

ho(n)y = go(-n), h(n) = g, (-n) (3.10)

Decomposition. The output of J-level decomposi-
tion will contain the low-resolution coefticient ¢; , and
detail coefficients d; , for each level (1 £ < J). The
decomposition scheme is shown in the Fig. 1.

Svathesis: The procedure works opposite to this
case. The low-resolution coefficient ¢; , and detail
7 coefficients d; , are first upsampled and then filtered

with the reconstruction low-pass and high-pass filters

golry and g,(n), respectively,

3.1, Waveler Packets

The decomposition of a signal can be performed via
the conventional method of wavelet transtorm and is
called the pyramid structured wavelet transforin. Each
time the low frequency band is split, the other bands are
not touched. This is suitable for signals with most of
their energy concentrated in the low trequency regions.
However, for some signals, energy is concentrated at
the middle frequencies. In this case, we have to split all
the bands. This is called wavelet packet decomposition.
The two-dimensional wavelet packet tree decomposi-
tion and the terminology we used are shown (Fig. 2).
Letter A represents approximation; letters H, V. and D
represent horizontal, vertical, and diagonal details,
respectively. The left letter is the first, and the right let-
ter is the second decomposition.

4. METHODOLOGY

We can summarize as follows a method that depends
on the idea that the performance will increase by
decomposing the textile fabric images into their sub-
bands by wavelet transforms as a preprocessing step
and applying the three subspace analysis tools, ICA,
TICA, and ISA, on these subbands.

The mean of every image is subtracted from itself,
and then every image is divided by its variance in order
to better condition the ICA (or TICA., or ISA) estima-
tion [12, 13].
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Fig. 2. Two-dimensional wavelet packet tree decomposi-
tion.

A block scheme of the proposed method is given in
Fig. 3.

In the off-line block or the learning phase, the inde-
pendent components for a set of texture images are
extracted to be used as the basis vectors in the online 8
block. Once the ICA (or TICA or ISA) basis vectors are
calculated, they are used to construct the columns of
matrix A in the ICA (or TICA or ISA) model. Hence,
the columns of A represent the ICA (or TICA or ISA)
basis vectors. A fix-point algorithm with tanh nonlin-
earity is used to extract the independent components.
The number of iterations is taken as 2000 in order to
guarantee convergence [ 14].

The feature vector {(which will also be referred to as
the coefficient vector) is a vector whose elements are
the coefficients of the corresponding independent com-
ponents. It is calculated for a defect-free image in the
off-line part using Eq. (2.3) and is stored as the refer-
ence feature vector, §; ;... t0 be used in the on-line
detection part. The subscript & here denotes the corre-
sponding subband. The calculation of the true feature
vector, §; .. can be summarized as follows: After the
subwindows of the defect-free image(s) are extracted,
the subbands of these image subwindows are decom-
posed before constructing the data matrix X. These sub-
bands are extracted by two-level wavelet transforma-
tion, According to the application, one or more sub-
bands can be taken from the possible 16 subbands of
the two-level wavelet packet tree scheme, Let K repre-
sent the number of subbands taken during the algo-
rithm.

Since two-level wavelet transformation is used, the
resulting size of the subband will be (N/C(N/A4),
where N is the size of the subwindows if no subband
analysis is done. This makes the size of each X matrix
(N*16)C10000. The ith column of the X matrix corre-
sponds to the ith subwindow of the corresponding sub-
band. The number of X matrices generated depends on
the number of subbands used in the analysis. There will
be K X matrices each corresponding to a different sub-
band of the image subwindows. If only the AA subband
is used, the ith column of the X will be the AA subband
of the ith subwindow. Accordingly, other X matrices
will be constructed for other subbands.

After the data acquisition part, the dimension of the
data is reduced to a number that is equal to the number
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Fig. 3. Proposed defect detection system.

of desired independent components. However, note
that, if the dimension has already been reduced to the
number of desired independent components by wavelet
transform, this step can be skipped without loss of gen-
erality. Dimension reduction is performed by PCA w0
reduce the computation time, If » represents the num-
ber of desired independent components, s eigenvectors
with the m highest eigenvalues of the covariance matrix
of X are chosen in PCA.

As mentioned previously, the feature vectors used
are the coefficients of the independent components,
namely, the s;’s constitute the feature vectors. Feature
vectors s, ; are extracted for the kth subband of the ith
subwindow by multiplying the pixel values of the sub-
window by the corresponding demixing matrices which
are found by the ICA (or TICA, or ISA) algorithm. The
demixing mairix is the (pseudo) inverse of the A matrix
that is constructed in terms of the ICA (or TICA, or
ISA) basis vectors in the oft-line part. This makes a
total of K feature vectors of size s for each subwindow,
In order to find the s, ,,,, vector, which is the true fea-
ture vector representing the nondefective regions, the
mean of those 10000 feature vectors (coefficients of the
independent components) are taken for each subband.

This makes a total of X s,,,,, VeCLOLS (S ..}, Where each
true vector corresponds to the appropriate subband
used.

In the on-line detection part, the demixing matrix
found in the off-line part is used. The image to be tested
is divided into NCN nonoverlapping subwindows mak-
ing a total of 256%/N* subwindows, since the size of
each fabric image is 256(C256. Each subband of each
subwindow is multiplied by the corresponding demix-
ing matrices, and the related s vectors (feature vectors)
are obtained. The Euclidian distances between these
vectors and the X true feature vectors are computed, If
the mean of these K distances is above the threshold
value, ¢, determined using Eq. (4.1}, the corresponding
subwindow is said to be defective, otherwise it is said
1o be nondefective, This procedure is done for all the
test windows:

o= Dm"‘n(Du_Df)a (41)
where D, is the median value of the feature vector of a
subwindow, D, — D, = IQR (I0R is the inter quartile
range) and 1 is a constant determined experimentally.
1 can be found by trial and error or antomatically by
methods like cross-validation. In the simulations, the
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choice of the n value is a compromise to reduce the
false alarm rate in defect-free images and o increase
the detection rate in defective images.

I wavelet analysis is not used, the formation of the
X matrix will be performed using the original pixel val-
ues of the subwindows of the texture image and there
will be one true feature vector s; ., to be used in the on-
line part for defect detection.

The algorithm we usc has two basic parameters (0 be
determined: (i) Defect threshold value, o, for each tex-
tile type, and (ii) the size of subwindows. The threshold
value for best performance can be determined by trial
and error for each type of textile separately. It is also
important to decide on the appropriate subwindow size

for better defect detection performance. The choice of

subwindow size depends on two lactors [7,]: (i) How
localized the defects are, (i.c., size of the defects); the
size of the subwindow must be small enough to contain
almost only the defect in it; and (ii) for a nondefective
sample, how representative of the texture the data is in
a window of such size. The subwindow must be large
enough to represent the textural propertics of the
images.

The performance rate of defect detection is calcu-
lated by the following formula;

Detection Rate (%) = 100 X (Nee + Nop)/ Ny (4:2)

where Nee is the number of subwindows being cor-

rectly classified as nondefective, Ny, is the number of

subwindows being correctly classified as defective, and
Ny 18 the total number of subwindows being tested.

5. EXPERIMENTS

The method explained in the previous section is
used to detect the weaving defects in textile fabric
images. For this purpose, real fabric images were
obtained in a laboratory environment by using a CCD
camera. Our database contains 36 8-bit grayscale
images each 256 x 256 in size. Sixteen of these images
are defect-Iree, and the others are chosen as to represent
the several defect types that may be encountered in the
textile industry. Several experiments are conducted in
order to assess and compare the defect detection perfor-
mances of our method. Many diflerent scenarios are
generated by using various wavelet transformation
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Fig. 5. Sixteen independent components of the (a) AA sub-
band images.

methods, different subwindow widths, different num-
bers of independent components, and several subbands.

The first 13 scenarios rely on the intuition obtained
from previous works [27] that, combining the concepts
of wavelet transformation and ICA, should increase the
defect detection performance in textile images as com-
pared to the performances obtained by applying these
methods separately on the same images. Further exper-
iments are performed by applying two other subband
analysis tools, TICA and ISA, instead of ICA on the
subbands. We used the lastICA algorithm [ 14], which
estimates the independent components by maximizing
the nongaussianity.

As a first scenario, defects are detected by using
only ICA. In this case, the wavelet transformation block
is ignored and ICA is applied on the original subwin-
dows rather than on the subbands of them. Sixteen
independent components are extracted with a window
size of 16 x 16, The independent components show the
textural properties of the delect free images as shown in
Fig. 4. Independent components corresponding to high
frequency characteristics show directional properties as
verlical, horizontal, and diagonal, and those compo-
nents corresponding 1o low [requency characteristics,
on the other hand, do not show any directional charac-
teristics, or the directional characteristics are weak,

We then applied subband analysis prior to ICA. The
data matrix X is formed by the AA subbands of the sub-
windows. The wavelet transformation is performed by
16-tap Daubachics wavelet filters. Battle—Lemarie
wavelet lilters, symlets, coiflets, Haar, discrete Meyer,
and biorthogonal wavelets were also tried. The best per-
formance is provided by 16-tap Daubachies wavelet fil-
ters. Sixteen independent components are extracted,
and the subwindow size is taken as 16 X 16. The perfor-
mance rate increases by applying subband analysis
prior 10 ICA. We also used the other subbands namely,
AH, AV, and AD for subband analysis, With 16 inde-
pendent components, it is observed that most of the
components corresponding to the AH, AV, and AD sub-
bands are composed of zeros which indicates over-
learning. Thus, only the independent components cor-
responding to the AA subband are shown I4g. 5. Since
most of the energy is concentrated in the AA band and
the energy in the other bands is insignificant, which is
also consistent with the findings of Amet et al. [1], the
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Fig. 6. Eight independent components of the (a) AA;
(b) AH; (c) AV; (d)AD subband images.

Fig. 8. Intensity defects obtained with 16 independent com-
ponents by using (a) 1 subband—AA subband, and (b) 4
subbands—AA, AV, AH and AD subbands.

number of significant components corresponding to
these bands will be less. A lesser number of compo-
nents will be sufficient to represent the AH, AV and AD
bands; this representation will prevent overlearning.
Further dimension reduction by PCA solves this prob-
lem as shown in Figs. 6 and 7.

Many reasonable combinations of subbands from
the two-level wavelet packet tree scheme have been
tried, and the best results are obtained by taking the AA
subband since most of the energy is concentrated in this
band. This conclusion is consistent with the fact that
textile images have low-pass characteristics [1].

It is observed that when only the AA subband is
used, better detection rates are attained for intensity
defects where the grayscale values of the defective
parts are different from those of the overall image. On
the other hand, satisfactory defect detection rates for
geometrical defects where the textural characteristics
are different than those of the general fabric image are
obtained when the four subbands, namely, AA, AH, AV

(a)

(b)
T
c
AR

- (d)
A

Fig. 7. Five independent components of the (a) AA; (b) AH;
(c) AV: (d) AD subband images.

Fig. 9. Geometrical defects obtained with 16 independent
components by using (a) | subband—AA subband; and (b)
4 subbands—AA, AV, AH and AD subbands.

and AD, are used. This phenomenon can be observed in
Figs. 8 and 9, where defect detection is performed both
for intensity defects and for geometrical defects,
respectively. To increase the overall performance of the
system, decision fusion (the logical OR operator) of the
results of different subbands are used.

Below is a summary of some of the scenarios that
give thorough information about what subband analysis
adds upon ICA. The following abbreviations are used
for the scenarios.

WS: Window Size.

SB: Number of Subbands.

IC: Number of Independent Components.
ICA: Independent Component Analysis.
W: Wavelet Transform.

WICA: Wavelet applied prior to ICA.

DecFus: Decision Fusion of two methods where in
one method only the AA subband is used, and in the
other method all the AA, AH, AV, and AD subbands are
used.

The scenarios are as follows:
Scenario 1: ICA_16IC_WS16
Scenario 2: WICA_1SB_16IC_WS16
Scenario 3: WICA_4SB_16IC_WS16
Scenario 4: W_ISB_WSI16



Scenario I Defect detection rate, %

Seenario 2 100
Scenario 3
99

Scenario 4 (a)
. 98

Scenario 5

Scenario 6 97

Scenario 7 96
Scenario 8 95
Scenario 9 94
Scenario 10 Q3
Scenario 11 92
Scenario 12 91

Scenario 13 [

e 123456738

r  Defect detection rates of application 1-13,
1 is optimized method.
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Probability of defect detection versus
probability of false alarm

910111213 0 0.1 0.2 0.3 0.4 0.5

Application number

Fig. 10. (a) Defect Detection Rates of Applications: (b) Receiver Operating Curves.

Scenario 5: W_4SB_WSI16

Scenario 6: WICA_1SB_BIC_WSI16
Scenario 7: WICA_4SB_8IC_WSI16
Scenario 8: WICA_1SB_5IC_WSI16
Scenario 9: WICA_4SB_5IC_WS16
Scenario 10: DecFus_16IC_WS16
Scenario 11; DecFus_8IC_WS16
Scenario 12: WICA_1SB_8IC_WS32
Scenario 13: WICA_4SB_8IC_WS32

In scenarios 4 and 5, only wavelet transformation
(without ICA) is used. In this case, the feature vectors
are calculated directly from the energies of the selected
subbands. In the last two scenarios, the window size is
chosen as 32 x 32. A comparison of the defect detection
rates of all the methods is shown in Fig. 10a. For prac-
tical purposes, the 1} value used in determining the deci-
sion threshold given by Eq. (4.1) is optimized for each
method. The receiver operating curves (ROCs) are plot-
ted in Fig. 10b for the sake of comparison.

As seen from these experiments, when ICA is
applied on the subband images extracted by wavelet
transformation tools, the defect detection performance
is increased. When the subwindow size is chosen as 16
x 16 and the number of independent components is
chosen as 8, a better performance is obtained compared
to the other choices. The best performances are
obtained when decision fusion is applied as in scenarios
10 and 11.

Another subspace analysis technique for feature
extraction was the use of TICA and ISA. It is observed
that these two methods, obtained by relaxing the inde-
pendence assumption in ICA, lead exactly the same
detection rates as ICA. However, it has been observed
that they emphasize the directional characteristics of
the textures better than ICA does. So, after detecting the
defects by ICA, TICA or [SA can be used to classify the
defects according to their orientations. For this purpose
ISA is found to be a better tool when compared to

TICA. The different experiments carried out are
detailed below.

The first experiment was to extract 16 independent
components to 16 clean images by applying TICA with
the standard neighborhood scheme given in Eq. 2.6.
The defect detection system described in Fig. 3 is used,
where the basis vectors are extracted using TICA. The
independent components are shown in Fig. 11.

When we compare the results with those in Fig. 4,
we notice that independent components obtained with
ICA have some directional behavior. However, this is
not the case for components obtained using TICA (see
Fig. 11). For example, there are no independent compo-
nents with diagonal textures in Fig. 11, whereas the ori-
entations of independent components were very obvi-
ous in Fig. 4. As mentioned before, the detection rate
was the same as ICA. Other topographies have also
been tried, but it has been observed that TICA does not
add anything on top of ICA in terms of defect detection
rate.

ISA has also been tried for feature extraction; how-
ever, the same observations were valid; i.e., ISA does
not add anything on top of ICA. However, ISA can be
used to cluster defect orientations into groups, such as
horizontal and vertical. We were inspired by the idea in
Li, Lv, and Zhang [21] where they clustered face orien-

Fig. 11. Sixteen independent components of defect free tex-
tile fabric images extracted by TICA, with standard neigh-
borhood scheme.
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Fig. 12. Four subspace groups, with eight independent com-
ponents in each, extracted by ISA from defective images.

tations by using ISA. For the purpose of orientation
detection of defects, in the training set, both defective
and nondefective samples must be included in order for
the system to learn the directions of defects. Many
experiments with different numbers of groupings and
different numbers of independent components were
carried out. Figure 12 shows the four groups and eight
independent components in each group.

Once the feature vector s is obtained, it is partitioned
into four vectors eight in size. Each of the resulting four
feature vectors contains the coefficients of the indepen-
dent components of the corresponding subspace group.
The norms of these four feature vectors are compared
while deciding on the direction of that subwindow
which has been labeled as defective by one of the defect
detection algorithms given above.

The four mean values of the norms of the subspaces
are plotted next to that figure for all the defective sub-
windows of the textile fabric image shown in Fig. 13.

As seen in Fig. 13, the average norm corresponding
to the first subspace group is much larger than those of
the other groups. If we look at Fig. 12, it can be seen
that the first group indeed has vertical characteristics.
From experiments performed on different images with
different defect orientations, it is observed that the sub-
space group representing the directional characteristics
of the defects in a textile fabric image always has the
highest energy among other subspace groups.

6. CONCLUSIONS

In this work, a new and efficient defect detection
algorithm is developed that combines the concepts of
subband domain and subspace analysis methods. This
method uses the wavelet transformation as a prepro-
cessing step for the feature extraction problem, which
is achieved by subspace analysis tools like ICA, TICA,
and ISA. When textures with frequency content mostly
concentrated on a single band are considered, focusing
on that particular band and discarding the others
improves the detection performance. In general, it can
be stated that the method applied to subband images is

Average of norm values
60

50
40
30F
20
10
0 L 0
1 2 3 4
Number of subspace group

Fig. 13. (a) Defective textile fabric image: (b) Average
norms of the four subspace feature vectors extracted from
the defective subwindows of the textile image.

superior to the same method applied to raw images.
Since the textural characteristics of geometrical and
intensity defects are different, different subbands lead
to different detection rates for those classes of defects;
thus, decision fusion of the results of different subbands
may be a solution to increase the detection perfor-
mances.

The performances of TICA and ISA where the inde-
pendence assumption of the independent components
are relaxed were not superior of that of ICA. On the
other hand, it is shown that ISA is a powerful tool for
characterizing the orientations of the defects after they
are detected by a certain powerful defect detection
algorithm. This is a further step to defect detection,
because not only the defects but their orientations can
also be detected. It can be said that ISA is a method to
classify the defects according to their directionalities.

Considering the results obtained, the new approach
seems to be a feasible method for real-time factory
implementations.
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