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Abstract —Design optimization has become an inevitable task
to accommodate for stringent performance requirements of
wireless applications. Existing techniques are mainly
restricted to parametric design of the size or more recently
material of the device. However, to allow for global
exploration of novel designs, large-scale design optimization
problems need to be solved possibly via efficient reanalysis
based on electromagnetic analysis tools. Needless to say,
reanalysis is very time consuming, hence is the bottleneck of
iterative synthesis problems.. In this paper, a simple but
effective technique based on Bayesian trained rational
functions is introduced to lower the number of reanalysis
calls to a full wave analysis tool. It allows for robust
interpolation of frequency based response data, i.e. return
loss. The technique is also implemented on a design example.

1 INTRODUCTION

Design Optimization has been a difficult, demanding
but necessary task for the development of novel
wireless applications. Among others, particular
applications include miniaturized antennas without
sacrifice in their bandwidth and radiation efficiency.
The need for design, preferably design optimization
is pertinent to the competing physics of these metrics,
which has been the focus of researchers for the past
two decades. It is reasonable to expect that designs
resulting from global design optimization studies
possibly allowing for full design space exploration
including antenna shape, size, feed location and
material will lead to novel configurations with
enhanced performance. However, global synthesis via
heuristic search techniques especially within the
topology optimization framework allowing for such
explorations is a challenging task due to the
bottlenecks of fast and accurate reanalysis.
Therefore, unless design studies are limited to only a
few number of design variables, heuristic/
evolutionary search studies can become impractical.
To address this issue, in this paper an approximation
scheme suitable for frequency sampled Finite
Element Analysis response of electromagnetic
systems such as miniature broadband antennas is
investigated. The goal is to develop an efficient and
reliable scheme that will allow for fast reanalysis to
be implemented in large scale global design
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optimization studies. Polynomials, multiquadrics [1],
kriging [2] and artificial neural networks (ANNSs) [3]
are examples of interpolating techniques/surrogate
models used so far. They all serve a common purpose
to provide a ’virtual’ objective function to be called
by the optimization algorithm. Many Response
Surface Methods [4], [5], space mapping techniques
[6] or combinations thereof [7] are documented
recently coupling especially the aforementioned
approximation techniques with stochastic algorithms.
The scheme in this paper is based on the Bayesian
trained quadratic rational functions. Unlike other
naive techniques such as linear approximation that
fails to predict resonance behavior, the proposed
quadratic rational function effectively emulates
resonance with an overall better accuracy than
uniformly sampled data with twice as many
frequency points. When compared with other known
data training approaches, the Bayesian trained
rational function proves to present a powerful yet
simple approximation capability based on statistics
and just a single controlling parameter, coef. An in-
depth analysis of the proposed interpolation’s
efficiency and reliability follows its use in designing
miniaturized broadband antennas via the dielectric
and conductor topologies.

2 Approximation Method: Bayesian trained
quadratic rational functions

The trained data in this paper relates to the return
loss response of an antenna model that comprises a
geometry discretized by 400 volumetric and 400
surface finite elements. Properties such as
permittivity, permeability and conductivity of each
cell could be assigned as design variables in a
topology optimization problem. Conductors could
attain discrete values of 0 or 1 representing the on/off
feature of a conductor, hence a possibly conductor
topology. The use of popular heuristic (global) based
techniques to optimize the device and locate the
global optimum will call for multiple reanalysis of
the full-wave bandwidth response of a binary
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encoded large scale design problem. In order to
predict the return loss response accurately, a
frequency sampling of 10 MHz is needed (Fig. 1).
The on/off nature of conductors is observed to result
in high oscillations/multiple resonances within the
frequency range of interest (1-2GHz) for various
topologies. This makes accurate interpolation of the
response an extremely challenging task. The
optimization model with 101 frequency points and N
individuals/function of a micro-GA, micro-Genetic
Algorithm, would call the FEA model 101N times for
each generation until convergence is achieved.
Carefully reselecting design variables, speeding-up
the simulation runs for the analysis and optimization
are among remedies to reduce computation time. In
this paper we focus on sampling with lower number
of frequency points (21 vs. 101) and investigate the
possibility of predicting the cost function reliably by
interpolation using quadratic rational functions. The
numerator and denominator of the chosen rational
function are of second order, and are therefore named
as ‘quad-quad’. The minimum order is chosen to
closely follow the behavior of the return loss curve.
To ensure smooth continuity of successive intervals
for highly oscillatory response, we impose boundary
conditions for zeroth and first order derivatives at
end points. Quad-quad equation (Eq. 1) is solved
analytically for f; coefficients satisfying these
boundary conditions.
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Figure 1: Representative return loss response of multi-
resonant patch antenna: Sampled with 10 MHz interval
(blue) and 100 MHz interval (red).
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In addition to the 4 boundary conditions, a
constraint is imposed on the denominator to attain
complex roots inside the frequency interval of
interest, the imaginary part of which is required to be
small enough (by 0.5 determined empirically) in
order to emulate poles of the return loss response.
This constraint is enforced via a tuning coefficient,
coef that relates f,to f5. The boundary conditions in
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Complex roots of the of quadratic function
denominator are calculated via Eq. 3. Roots are
enforced to be complex in intervals where a pole is
desired. Moreover, their real part has to fall within [0
1], i.e. the desired interval and the imaginary
component has to fall within the interval [0.1 0.5] to
ensure a good pole prediction in that interval. To
ensure satisfaction of these conditions, piecewise
defined equations are solved for various feasible coef
ranges. Complex roots of the denominator and/or
possible complex solutions of f’s still ensure
boundary condition satisfaction at the interval
endpoints since the possible imaginary component of
quad-quad vanishes at the boundaries (i.e. BCs are
real).
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In order to predict the optimum coef of a specific
interval, the use of Bayesian classifier [8] seems to
be appropriate since it recognizes the probabilistic
nature of the training set and assigns classes to the
test sets accordingly. The goal is to classify the
intervals’ BCs so as to minimize the probability of
coef misclassification. In d-dimensions the general
multivariate normal probability density function is
written as:

p(x)= - exp{— % (x—n) =" (x- u)} )
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where X is the variable vector (i.e. BC), B and X

are, the mean vector and covariance matrix of the
training set and d refers to the dimension of the
problem (i.e. number of BC). coef for each interval is
assigned to the class with maximum probability.

3 Design optimization example

The proposed approximation scheme is adopted in
this section to a design example. The goal is to
identify in some automatic process the conductor
composition and material permittivity of a probe fed



antenna subject to maximum bandwidth performance.
By definition this is a large scale conductor topology
optimization problem. The design optimization
procedure is based on the integration of an analysis
module (via the hybrid Finite-Element Boundary-
Integral method) with the on/off design approach to
be solved via a heuristic optimization tool, the micro-
GA. By virtue of the Finite Element Modeling, the
simulator is suitable for complex structures such as
those involving inhomogeneous dielectrics and
resistive or conducting patches, etc. The optimization
process systematically and iteratively eliminates and
re-distributes conductor topologies throughout the
design domain, comprised of surface conductor cells
and varies the dielectric constant to obtain a concept
structure.

The antenna volume is 0.3173x2.5x2.5 cm and the
conductor patch area comprises top surface on the
dielectric substrate and the feed is located as shown
in Fig. 2. The substrate is discretized into 20x20=400
volumetric FE cells (see Fig. 2), the pemittivities of
which are the same as the layer permittivity in the
chosen design problem but could also be assigned as
design variables.
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Figure 2: Schematic of patch antenna on homogeneous
substrate (left) and discretized model with arbitrary metallic
patch cells (right)

In this design case, the conductor is a random
arrangement that can occupy 40x20=800 triangular
FE cells. To allow for more practical geometries, a
single design variable is assigned to two adjacent
triangular cells, resulting in various conductor
topologies via on/off nature of 400 cells. Also,
permittivity of the supporting homogeneous substrate
is an additional design variable. We will refer to this
case as MPE, multi-patch epsilon problem. The
return loss response is calculated at 10 MHz and 50
MHz frequency samples with both a linear and the
proposed quad-quad interpolation schemes within a
frequency range of operation of 1-2 GHz. The initial
design of the MPE problem is shown in Fig. 3. It
corresponds to an arbitrary initial conductor
distribution provided by GA on a dielectric substrate
with relative permittivity ¢, = 13.07. The results of
the optimization study are provided in the next

section
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Figure 3: MPE Initial design return loss performance (left)
and conductor (red patches) distribution (right) on er = 13.07
substrate.

5 Results

The quad-quad response relies on first order
derivatives computed numerically at ‘close (~0.1%)’
points via forward finite difference at sampled data
points. The efficiency and accuracy of the quad-quad
is compared with linear interpolation of exact same
frequency points and with double number of
frequency points (i.e. same number of analysis runs
as the quad-quad). The first error measure is the
square sum of error difference between predicted and
original return loss curves at 550 intervals. Bayesian
classifiers are used to predict the optimum coef of the
fitted curves. The results indicate an overall error
increase of the quad-quad vs. the double sampled
linear fitting by 52% and a decrease by 11% vs.
single sampled one, as shown in Fig. 5. However,
better matched nulls with quad-quad prompt for
reinvestigation of the error measure such as the
bandwidth, where bandwidth is defined based on
matched nulls in the original and fitted curves. Their
difference is summed up over the entire frequency
range to predict the overall error (see Fig.6). Results
show that quad-quad predicts an error decrease by
25% and 54% with respect to double and single
sampled linear fitting, respectively -a significant
improvement over the previous case. The design
cases with larger error are re-examined and displayed
for a specific interval in Fig.7. Although the center
plot is in favor of the double sampled linear
interpolation, perturbing sampling points to the left
or to the right (left and right plots, respectively)
shows that double sampled linear approach is more
viable to data change whereas the quad-quad
consistently predicts the null and approximates
bandwidth. This qualitatively shows that the quad-
quad is more robust with respect to sample data but
adaptive sampling for non-uniform frequency
sampling might reduce computational efficiency.
This is a topic for future work. The GA converged to
the final result shown in Fig. 8 with a 27% bandwidth
at -5dB. Considering no resonance initially the results
attained with only 20 frequency point sampling of the
quad-quad interpolation and a single homogeneous
dielectric layer, the results motivate its use and



further work. Moreover, an impossible design search
(lasting about a week for a single trial) has become
practical via proposed interpolation technique (about
90 generations in about 1.5 days on 3.4 GHz CPU
processor). It is noted that variation of a multi-layer
dielectric substrate could enhance matching of the
attained -5dB return loss and will be explored next.
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Fig. 5: Square of error vs. design number
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Fig. 7: Data point (triangle) perturbation effect on quad-quad
(red) and linear double sampled (black)
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Fig. 8: Optimization results for MPE problem: Return
loss (left) of conductor (red patch) distribution (right)
on a dielectric substrate with ¢, = 6.7515

6 Conclusions

In this paper we proposed an interpolation scheme
based on Bayesian trained quadratic rational
functions for approximating frequency based
electromagnetic functions, here the return loss.
Results indicate that this scheme is able to predict
poles and characterize resonance behavior efficiently.
The method was demonstrated on a large scale design
optimization problem. Future work includes adaptive
selection of sample points and additional tuning on
poles of quad-quad for better Bayesian classifier,
hence a more efficient and reliable fitting scheme.
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