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Abstract Apoptosis has been recognized as a central com-
ponent in the pathogenesis of atherosclerosis, in addition to
the other human pathologies such as cancer and diabetes.
The pathophysiology of atherosclerosis is complex, involv-
ing both apoptosis and proliferation at different phases of
its progression. Oxidative modification of lipids and inflam-
mation differentially regulate the apoptotic and prolifera-
tive responses of vascular cells during progression of the
atherosclerotic lesion. Bcl-2 proteins act as the major regu-
lators of extrinsic and intrinsic apoptosis signalling pathways
and more recently it has become evident that they mediate
the apoptotic response of vascular cells in response to ox-
idation and inflammation either in a provocative or an in-
hibitory mode of action. Here we address Bcl-2 proteins as
major therapeutic targets for the treatment of atherosclerosis
and underscore the need for the novel preventive and ther-
apeutic interventions against atherosclerosis, which should
be designed in the light of molecular mechanisms regulating
apoptosis of vascular cells in atherosclerotic lesions.
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Introduction

Apoptosis (programmed cell death) is an essential and
evolutionary conserved process for normal embryogenesis,
organ development, tissue homeostasis and the elimination
of deleterious cells from multicellular organisms. Any dereg-
ulation or aberrant activation of apoptosis can be involved in
the pathogenesis of human diseases such as atherosclerosis,
chronic heart failure, cancer, diabetes and neurodegenerative
disorders [1–5]. Thus, the cellular and genetic integrity of
a cell under stress or oncogenic stimuli have to be strictly
controlled to maintain its functionality and viability. The
cells are targets of various extrinsic and intrinsic stimuli and
they receive and process signals not only from the plasma
membrane but also from different compartments within the
cytoplasm. This dynamic characteristic of cells enables them
to sense signals and response quickly, a fundamental princi-
pal of cellular survival. Multiple death and survival signals
are integrated to generate molecular apoptotic machinery
via protein signaling networks, which are predominantly
regulated by the protein-protein interactions, subcellular
localization and major protein modifications such as phos-
phorylation and proteolytic cleavage. An array of protein
kinase-mediated pathways targets the major components
of apoptotic machinery at the transcriptional and post-
translational level and regulates their level and/or function.
The balance between pro- and anti-apoptotic signaling
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pathways determines the fate of a cell in response to the
external or internal stimuli.

The Bcl-2 protein family members have been impli-
cated as the major regulators of the cell death machinery,
both positively and negatively [6, 7]. The first member of
the family, Bcl-2 was discovered to be overexpressed in
low-grade human follicular B cell lymphoma as a result
of t(14;18) (q32;31) chromosomal translocation [8]. Fur-
ther genetic studies including overexpression and antisense-
mediated suppression of Bcl-2 and molecular characteriza-
tion approaches including dimerization analysis led to the
identification of other members of the family based on con-
served BH (Bcl-2 homology) domains and distinguished the
Bcl-2 protein family members as the central regulators of
apoptotic machinery [9–13]. Despite of intense research on
the Bcl-2 protein family, many questions still remain to
be answered; when and how are they activated? What are
their biochemical activation switches? Do their determined
molecular structures help us to characterize their function
or are they without information? What may be the clini-
cal implication of these proteins on the treatment strategies
targeting apoptosis-related human pathologies?

In this review, we focus on the modulation of human
cellular apoptotic pathways by Bcl-2 protein family members
and argue on their potential clinical implications within the
context of molecular mechanisms of vascular apoptosis in
atherosclerosis.

The apoptotic machinery: Guidance to death

Apoptosis is a multi-component programmed cell death pro-
cess which is characterized by the specific cellular mor-
phological patterns such as chromatin condensation, nuclear
fragmentation, cytoplasmic shrinkage, membrane blebbing,
the formation of apoptotic vesicles and consequent phagocy-
tosis by immune cells [14]. The molecular changes that occur
during apoptosis are the redistribution of phosphotidylser-
ine from the inner to the outer leaflet of the plasma mem-
brane (phosphotidylserine externalization) and internucleo-
somal DNA cleavage. But how does the apoptotic machinery
work? Apoptosis is usually induced by an initiation phase
which depends tightly on the cell type and the characteristic
of the stimuli (origin, duration, amplitude and the presence
of co-stimuli). In a cell under an apoptotic insult either within
or outside of the cell, multiple cellular signalling modules
are activated synchronously, which can be defined as a bat-
tlefield of negative and positive key modulators of apopto-
sis. The battle is for one decision; should the cell survive or
die. During this decisive effector phase, molecular signalling
modules serve as the parts of central apoptotic machinery,
which should be tightly controlled and finely tuned to main-
tain the appropriate biochemical functioning of the cell.

Caspases are cysteine-directed, aspartate-specific pro-
teases, which are the main initiators and executioners of
the programmed cell death process. Initiator caspases in-
volve caspase-8 and caspase-9, which act upstream of the
effector caspases (caspases-3, -6 and -7) [14]. Caspases are
normally inactive or minimally active in the unstimulated
healthy mammalian cells and they are triggered through a
set of signaling events such as activation of a death recep-
tor, a direct DNA damage by chemotherapeutics or cellular
stress. Activation of caspase-9 and caspase-3 has been shown
to be involved in the ox-LDL-induced apoptosis of vascular
endothelial and smooth muscle cells [15, 16, 133]. Further-
more, several reports have demonstrated the involvement of
caspase-8 in the apoptosis of vascular SMCs, macrophages
and endothelial cells [15, 16, 133]. In macrophages, the ac-
tivation of caspases-2, -3, -8, and -9 has been shown to be
involved in the ox-LDL-induced apoptosis [16]. Besides, the
activation of caspases has also been detected in atheroscle-
rotic lesions, which indicates the involvement of caspases in
vascular apoptosis [17].

The molecular apoptotic signaling mechanisms in mam-
malian cells have been a subject of intensive studies for the
past few decades and two main pathways with overlapping
components have been identified (Fig. 1):

(i) an extrinsic pathway which involves direct initiator cas-
cades triggered by death receptors on cell surface

(ii) an intrinsic pathway which involves mitochondria and
intracellular death signals

These two pathways share a couple of adaptor proteins,
proteases, protein kinases and protein phosphatases as a part
of apoptotic signalling modules, but the potential intersec-
tions between these pathways which controls life and death
decisions of a cell are not completely identified, yet. A com-
plete up-to-date history of the genomics and proteomics of
apoptosis can be found in the excellent reviews published
before [18, 19], but a brief outline of the main check points
of the extrinsic and intrinsic apoptosis pathways will be de-
scribed here for a better intervention to describe how the
Bcl-2 family proteins function.

The extrinsic or death receptor-mediated pathway is ac-
tivated in response to the extracellular pro-apoptotic sig-
nals and integrated to the apoptotic machinery via specific
death receptor adaptors (Fig. 1). The death receptor family
members (CD95/Fas/Apo, DR3–6 and TNF-R I-II) are char-
acterized by the presence of cysteine-rich repeats in their
extracellular domains and protein-protein interaction mod-
ules known as the death domain (DD) in their cytoplasmic
portions [20]. Binding of specific ligands induces the re-
ceptor multimerization and the formation of a signalling
complex known as DISC (death inducing signaling com-
plex), which consists of various adaptor proteins including
TRADD, FADD, Daxx, RIP, RAIDD and FLIP [20]. FADD
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Fig. 1 Two main apoptotic pathways have been described in mam-
malian cells. The activation of death receptor-mediated (extrinsic) path-
way is initiated by binding of a ligand and leads to caspase-8 activation.
Once activated, caspase-8 induces either a direct caspase-3-mediated
apoptosis (which could be inhibited by cIAP protein) or a mitochondrial
amplification loop acting through cleavage and mitochondrial translo-
cation of Bid. Bid (tBid) interacts with pro-apoptotic (Bax, Bak) or
anti-apoptotic members (Bcl-2, Bcl-xL) of Bcl-2 family proteins and
stimulates the release of cytochrome c from mitochondria. Transloca-
tion of cytochrome c into cytosol leads to the constitution of a protein
complex (apoptosome) which facilitates caspase-9 activation and apop-
tosis. The intrinsic (mitochondrial) apoptosis pathway is activated upon
cellular and genotoxic stress such as lipid peroxidation and oxidative

stress, growth factor withdrawal or UV radiation. Direct involvement
of Bcl-2 proteins enables integration and interpretation of apoptotic
or survival signals originating either from extracellular or intracellu-
lar stimuli. Multidomain pro-apoptotic Bcl-2 proteins Bak and Bax
form channels on mitochondria and facilitate the release of apoptosis
regulator proteins (cytochrome c, HtrA2, Smac/DIABLO, AIF) while
multidomain anti-apoptotic Bcl-2 proteins (Bcl-2, Bcl-xL) inhibit the
release of these apoptosis regulator proteins. BH3-only pro-apoptotic
Bcl-2 proteins (Bad, Bim, Bid, Noxa, and Puma) selectively interact ei-
ther with multidomain pro-apoptotic (direct activators) or anti-apoptotic
(sensitizers) Bcl-2 proteins and promote apoptosis. Smac/DIABLO and
HtrA2 prevents cIAP-1-mediated inhibition of caspase-3 and facilitate
the progression of apoptosis. (See text for further details)
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acts as a bridge between DISC and caspase-8, which is crit-
ical for the recruitment and oligomerization of caspase-8 in
the DISC, as well as the autocatalytic activation of caspase-8
and the activation of death receptor-mediated programmed
cell death [21–23].

The direct activation of the effector caspases-3 and -7
by caspase-8 may not necessarily involve the mitochondrial
events; however in many cell types death receptor-mediated
apoptotic signalling utilizes a mitochondrial death ampli-
fication loop [21, 24, 25]. The reason for this preference
has not been identified clearly, but insufficient amount of
active caspases or the abundance of downstream inhibitors
of the apoptotic machinery was suggested to be involved
in this paradigm. The mitochondrial amplification loop in-
volves the caspase-8-mediated cleavage of the cytosolic
BH3-only pro-apoptotic Bcl-2 family member, Bid, which
represents an integration of two apoptotic pathways on mito-
chondria (Fig. 1). Upon processing by caspase-8, Bid translo-
cates from cytosol to mitochondria where it oligomerizes
with pro-apoptotic Bcl-2 family members Bax and Bak and
mediates cytochrome c release [14, 18, 25]. The cytoso-
lic cytochrome c induces the formation of the apoptosome
complex, which is composed of seven Apaf-1 (Apoptotic
protease activating factor-1) molecules, each bound to one
molecule of cytochrome c and a dimer of caspase-9. Forma-
tion of the apoptosome results in the activation of caspase-9,
which thereby activates the effector caspases-3 and -7 to
initiate the execution of apoptosis [18, 25]. The intracellu-
lar components which convey the apoptotic stimuli to the
central apoptotic machinery are not identified completely,
but there is one reality that has been shown clearly; mito-
chondria lies in the center of apoptotic machinery in most
cases.

The intrinsic apoptosis pathway involves direct and ac-
tive contribution of mitochondria. This pathway is initiated
by receptor-independent apoptotic stimuli such as DNA-
damaging agents, UV and γ -radiation, hypoxia and growth
factor withdrawal [26–29]. These stimuli target the intra-
cellular signalling components which transmit the apoptotic
signal to the main apoptotic machinery.

In mammalian cells Bcl-2 family proteins are one of
the main “apoptotic sensors” mentioned above and they
act primarily on the mitochondria, where they regulate the
survival or death signals in a preventive or provocative
fashion. Upon exposure to apoptotic insults many apoptosis
regulator proteins such as cytochrome c, SMAC (second
mitochondria-derived activator of caspases)/DIABLO
(direct inhibitor of apoptosis-binding protein with low pI)
and Omi/HtrA2 (high-temperature-requirement protein)
are released from the mitochondria (Fig. 1) [18, 30–32,
133]. Additionally, proteins responsible for the caspase-
independent DNA fragmentation and apoptosis-like nuclear
morphology (apoptosis inducing factor (AIF) and endonu-

clease G) are also released from the mitochondria following
apoptotic stimuli [33]. Increased AIF expression has been
shown to regulate the ox-LDL-induced apoptosis in human
coronary artery endothelial cells [34]. Thus, mitochondrial
integrity is critical for maintaining the cellular homeostasis
and proper compartmentalization of the apoptotic mediators.
The mechanisms for the intrinsic apoptosis pathway and
induction of mitochondrial permeabilization are not com-
pletely understood, but recent studies provide some clues
about how apoptotic stimuli induce the permeabilization of
mitochondrial membranes.

There is more than one model for the cytosolic escape
of mitochondrial proteins in response to apoptotic stimuli
(Fig. 2):

Permeability transition pore opening

The permeability transition pore (PTP) complex is a large
polyprotein channel mainly formed by the mitochondrial
outer membrane voltage-dependent anion channel (VDAC)
and the mitochondrial inner membrane protein adenine nu-
cleotide translocase (ANT). The PTP structure also includes
regulatory components such as mitochondrial matrix protein
cyclophilin D, peripheral benzodiazepine receptor, hexoki-
nase II and creatine kinase. PTP is suggested to span both
outer and inner mitochondrial membranes and its opening
is characterized by mitochondrial depolarization, depletion
of ATP and the release of Ca2+ from the mitochondrial ma-
trix followed by the swelling of the mitochondrial matrix
[35, 36]. The total surface area of inner mitochondrial mem-
brane is greater than the outer membrane; hence an uncon-
trolled expansion of the inner mitochondrial membrane may
lead to the rupture of the outer mitochondrial membrane and
the release of intermembrane proteins to cytosol. The role
of the PTP model in apoptosis has not been confirmed; a
transient opening of the PTP and flicking between open and
closed states have been proposed to allow cytochrome c to
be released although ATP production and mitochondrial in-
tegrity are preserved [37, 38]. Even if this transient opening
may lead to the release of some components out of mitochon-
dria, the PTP model does not seem to completely explain the
structural perturbations of mitochondria during the apoptotic
process.

Bcl-2 family members interact with outer mitochondrial
membrane proteins

The pore size of PTP itself is only sufficient to allow the pas-
sage of molecules as large as 1.5 kDa, which is not sufficient
enough to allow the passage of cytochrome c. Therefore,
it has been suggested that the interaction of Bcl-2 family
proteins with components of PTP can either increase or de-
crease pore size and regulate the mitochondrial permeability
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Fig. 2 Three models for the cytosolic escape of mitochondrial pro-
teins in response to apoptotic stimuli. Upon an apoptotic stimulus such
as cellular stress (oxidative stress, UV irradiation, growth factor with-
drawal) or activation of death receptors, a mitochondrial channel could
be formed by: 1. Voltage-dependent anion channel (VDAC) and adenine

nucleotide translocase (ANT), 2. VDAC-ANT-Bcl-2 proteins (Bax,
Bak), 3. only Bcl-2 proteins (Bax, Bak). Anti-apoptotic members of
Bcl-2 protein family (Bcl-2, Bcl-xL) may interfere with the apoptotic
process through the inhibition of cytosolic escape of mitochondrial
proteins

[39, 40]. The pro-apoptotic Bax protein has been shown to in-
teract with ANT and promote pore opening [41]. In contrast,
anti-apoptotic Bcl-2 and Bcl-xL proteins counteract pore
opening and thereby prevent cytochrome c release through
protein-protein interactions with PTP components [42, 43].
Additionally, it has been shown that Bax and Bak may bind
directly to VDAC and keep the pore in a sustained open state
that allows cytochrome c leakage, while Bcl-xL may lock the
VDAC in a cytochrome c impermeant structure to prevent
the cytochrome c leakage [40, 44]. Although many Bcl-2
proteins are co-immunopurified with some components of
PTP, the exact mechanisms of regulation and the role of
structural constraints on these mechanisms still remains to
be elucidated.

Bcl-2 family members as channel forming proteins

The release of proteins from mitochondrial intermembrane
space has been suggested to be mediated by pores large
enough to allow the passage of intermembrane proteins into
the cytosol. These pores have been reported to be formed
by Bcl-2 family members through their transmembrane do-
mains [45–48]. Bcl-2 family proteins were shown to insert
themselves into synthetic lipid bilayers, which is followed by
oligomerization and channel formation [46, 48]. This crucial
step is regulated either in a provocative or inhibitory man-
ner, which has been proposed to depend on the structural
differences of transmembrane domains that form the chan-
nel [49–51]. This fact determines the molecular behavior
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of protein-transport pores in the outer mitochondrial mem-
brane.

Bcl-2 proteins: regulating apoptosis

The multidomain anti-apoptotic Bcl-2 proteins

The Bcl-2 family proteins can be classified into three groups
based on their structural and functional properties (Fig. 3).
The first group involves the multidomain anti-apoptotic
members Bcl-2, Bcl-xL, Bcl-w, Mcl-1, A1/Bfl-1, Boo/Diva
and NR-13. They exhibit all four Bcl-2 homology domains
(BH1-4) which are essential for their survival function
through mediating the protein-protein interactions and a
transmembrane domain which is formed by a stretch of
hydrophobic amino acids near to their C-terminal. The
C-terminal domain is required for anchoring or insertion

into the cellular membranes of not only mitochondria
but also nucleus and endoplasmic reticulum [52, 53].
The α-helices of BH1, BH2 and BH3 domains form a
hydrophobic pocket and the N-terminal BH4 domain further
stabilizes this structure [54–56]. The protein structure of
Bcl-xL complexed with the BH3 domain of Bak suggested
a functional interaction of the amphiphathic α-helix of
Bak BH3 with the hydrophobic groove formed by BH1-3
domains of Bcl-xL [57]. Both BH3-only and multidomain
pro-apoptotic Bcl-2 proteins appear to act through the
exposure of their BH3 domains following an apoptotic insult
[58–60]. This protein-protein interaction model proposed
that the anti-apoptotic Bcl-2 members act as the functional
traps of pro-apoptotic members, but is the cellular machinery
always in a pro-apoptotic conditioning, which should be
continuously blocked by anti-apoptotic Bcl-2 members? Do
the pro-apoptotic members, which are present ubiquitously
in the local cellular compartments, pro-actively sequester the

Fig. 3 Classification of Bcl-2
protein family members
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“silencers” of apoptotic machinery? Even though the exact
biochemical mechanisms for the actions of anti-apoptotic
Bcl-2 members remain to be elucidated, the efforts to clarify
these mechanisms provided us many clues. Bcl-2 has been
shown to modulate cellular viability through regulating
intracellular calcium homeostasis, cellular redox state,
lipid peroxidation, as well as cytochrome c release from
mitochondria [61–64]. Bcl-2 has been shown to attenuate
apoptosis induced by ionizing radiation, chemotherapy, UV
radiation and death receptors [27, 65–67]. Overexpression
of Bcl-2 protects SW480 cells from TRAIL-induced
apoptosis via the attenuation of caspase-8 activation and the
cleavage of Bid and caspase-3 [68]. In contrast, Fas/FasL-,
TRAIL- and TNFα-mediated apoptosis pathways have been
proposed to be insensitive to the blockage by Bcl-2/Bcl-xL
[69–71]; thereby the exact contribution of Bcl-2/Bcl-xL in
the receptor-mediated extrinsic apoptotic pathway remains
undetermined. Mice deficient in Bcl-2 have been demon-
strated to have gray hair, polycystic kidneys and decreased
number of lymphocytes [72]. Mice deficient in Bcl-xL die
at around day 13 of the gestation due to massive neuronal
and hematopoetic apoptosis [73]. Bcl-xL and Bcl-2 were
shown to inhibit the apoptosome formation by preferentially
sequestering Apaf-1, but these proposed interactions have
yet to be confirmed [74]. Bcl-2 and Bcl-xL were also
reported to abrogate the mitochondrial translocation and
oligomerization of Bax in the outer mitochondrial membrane
[75, 76]. Moreover, they have been shown to interfere with
the oligomerization and activation of Bak [77, 78].

The mechanistic insight, which is derived from the cases
characterized with Bcl-2 overexpression, remains insuffi-
cient to explain the role of Bcl-2 on resistance to apopto-
sis. In addition to the level of expression, post-translational
modifications such as phosphorylation and proteolytic cleav-
age may regulate the activity of Bcl-2 and Bcl-xL. Phos-
phorylation of Bcl-2 at Ser-70 by PKC has been reported
to be required for its anti-apoptotic function [79]. In con-
trast, microtubule-targeting agents such as paclitaxel have
been shown to induce hyperphosphorylation of Bcl-2 (Ser-
70, Ser-87 and Thr-69) and abrogate its anti-apoptotic effect
[80]. Phosphorylation of Bcl-xL at Ser-62 by JNK (c-Jun N-
terminal kinase) in response to taxol or 2-methoxyestradiol
treatment has been reported to oppose the anti-apoptotic
function of Bcl-xL and sensitizes prostate cancer cells to
apoptosis [81]. The caspase-dependent N-terminal cleav-
age of Bcl-2/Bcl-xL and the resulting exposure of their
BH3 domains converts these anti-apoptotic proteins into pro-
apoptotic ones. Chemotherapy-induced cleavage of Bcl-2 is
mediated by caspases and results in the formation of a 23
kDa fragment of Bcl-2 [82]. In PC12 pheochromocytoma
cells cleavage of Bcl-2 was detected in neocarzinostatin-
induced but not in cisplatin-induced apoptosis, which indi-
cates a stimuli-dependent modification of Bcl-2 [83]. The

cleavage site of Bcl-2 by caspase-3 has been mapped at the
loop domain of Bcl-2 at Asp-34 and the C-terminal of the
cleavage product was shown to mediate apoptosis through its
BH3 homology and transmembrane domain [84]. Caspase-
3-dependent cleavage of Bcl-2 appears to further amplify
the caspase activation pathway and act as a positive feed-
back mechanism in the apoptotic signaling [85]. Bcl-xL has
been shown to be cleaved by caspase-3 after Asp-61/Asp-76
and by calpain after Ala-60 and these cleaved products have
been shown to form the cytochrome c-releasing channels in
lipid membranes [86].

The multidomain pro-apoptotic members of Bcl-2
protein family

This second group of Bcl-2 protein family mainly involves
Bax, Bak and Bok/Mtd (Fig. 3). Bax is mainly localized in
the cytosol or loosely attached to the outer membrane of
mitochondria or ER as a monomer. Following an apoptotic
stimuli, Bax undergoes a unique conformational change ex-
posing its C-terminal hydrophobic domain, which is involved
in its anchorage to the mitochondrial membrane [87]. In the
mitochondrial membranes, Bax forms dimers, oligomers or
high-order multimers [45]. Another important multidomain
proapoptotic Bcl-2 protein family member is Bak, which is
an integral protein of the outer mitochondrial membrane and
ER. Similar to Bax, Bak also undergoes a conformational
change -the open conformer- in response to apoptotic stim-
uli such as etoposide and cisplatin [88, 89]. The inhibitory
effect of Bcl-2 on Bak acts through selective interaction of
Bcl-2 with the open conformer (N-terminal exposed confor-
mation) of Bak [77]. The principles of these conformational
changes and oligomerization of Bak and Bax proteins remain
to be explained at structural level. The involvement of Bak
and Bax in apoptosis regulation is demonstrated by the insen-
sitivity of Bak − / − Bax − / − MEFs to multiple apoptotic
stimuli including chemotherapeutics and UV radiation [90].
Afterwards, the requirement of Bak and Bax in the apop-
totic machinery has been confirmed by many studies. Bax
null cells have been shown to be resistant against TRAIL-
induced apoptosis [91]. Bax deficiency did not effect the
processing of caspase-8 or Bid cleavage by TRAIL, but the
release of Smac/DIABLO which is required for the inhibition
of IAP proteins and caspase-3 activation was abrogated [91].
In TRAIL-resistant leukemic cells that are deficient in Bax
and Bak, the release of mitochondrial proteins appear to be
abrogated and the adenoviral transduction of the Bax gene,
but not the Bak gene, to the Bax/Bak-deficient leukemic
cells rendered them TRAIL-sensitive as assessed by the en-
hanced apoptotic death and caspase-3 processing [92]. Re-
cently, the activation of multiple caspases by DNA damage
and ER stress has been shown to be directly regulated by Bax
and Bak in double knock-out MEFs [93]. Post-translational
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modifications of Bax or Bak such as proteolytic cleavage
have been shown to regulate the functional impact of these
proteins on apoptosis. Calpain-mediated conversion of Bax
into a truncated form (arises from cleavage of N-terminal 33
amino acids, p18 Bax) enhances its pro-apoptotic properties
upon stimulation with chemotherapeutics [94]. After trunca-
tion into its p18 form, Bax behaves like a BH3-only protein
and the potentiation of apoptosis by p18 Bax has been pro-
posed to be related to its increased affinity for Bcl-xL. Fur-
thermore, a cathepsin-like cysteine protease is involved in
the degradation of p18 Bax and the stabilization of p18 Bax
by cathepsin inhibitors enhances the drug-induced apoptosis
[95].

BH3-only members of Bcl-2 protein family

The third group of the family involves BH3-only proteins
such as Bid, Bad, Bim, Bik, Blk, Hrk, BNIP3, Nix, BMF,
Noxa and Puma (Fig. 3). These proteins share only the am-
phipathic α-helical BH2 homology domain and mainly act
through inhibition of Bcl-2/Bcl-xL and activation of Bak and
Bax. They act as the sentinels of cell death sensing machin-
ery and they coordinate the fine-tuning of apoptotic response
through their interactions with pro- and anti-apoptotic Bcl-2
members. This fine-tuning phenomenon has been attributed
to the selective interaction of certain BH3-only proteins with
either anti-apoptotic or pro-apoptotic Bcl-2 proteins, but the
definitive mechanisms that lie behind this phenomenon re-
main to be clarified [96]. There are two main pathways which
characterize the function of BH3-only proteins on mitochon-
dria (Fig. 1);

(i) Direct activators: Some BH3-only members (Bid and
Bim) interact with the pro-apoptotic Bcl-2 proteins
such as Bak and Bax and thereby induce their activa-
tion/oligomerization. This type of activity of BH3-only
proteins can be attenuated by Bcl-2 through selective
sequestration and functional silencing

(ii) Sensitizers: Other BH3-only members (Bad) interact
with the anti-apoptotic Bcl-2 proteins and prevent them
binding and sequestering BH3-only members such as
Bid and Bim, which can activate Bak and Bax.

The functional regulation of BH3-only proteins at the
cellular level could be regulated by;

(a) Phosphorylation

Selective phosphorylation of proteins at the different residues
may modulate different molecular and cellular responses.
For example, survival signals have been shown to induce
the phosphorylation of Bad on the Ser-112, Ser-136, and
Ser-155, which leads to the sequestration and inactivation of
Bad by 14-3-3 proteins [97, 98]. Recently, a novel Cdc2- or

JNK-mediated phosphorylation site of Bad has been mapped
at the Ser-128 and this modification has been demonstrated
to inhibit the sequestration of Bad by members of 14-3-
3 family and enhance its pro-apoptotic effect [99, 100].
Cytokine-dependent phosphorylation of Ser-170 has been
demonstrated to negatively regulate the pro-apoptotic activ-
ity of Bad [101]. Furthermore, phosphorylation of Bim at
Ser-65 by JNK has been shown to mediate the trophic factor
withdrawal-induced Bax-dependent apoptosis [102]. Phos-
phorylation of Bad has also been shown to be mediated by
protein phosphatases. Free fatty acids (oleic acid and linoleic
acid as major components) released from lipoproteins in re-
sponse to the lipoprotein lipase treatment have been shown
to induce apoptosis through the activation of protein phos-
phatase type 2Cbeta (PP2Cβ) and the dephosphorylation of
Bad on Ser-112 [141].

(b) Transcriptional control

Puma (p53 up-regulated modulator of apoptosis) and Noxa
are the transcriptional targets for p53 [103, 104]. PUMA
is transcriptionally induced by the chemotherapeutics 5-FU
(5-Fluorouracil) and Adriamycin in a p53-dependent fash-
ion and it is localized to mitochondria where it interacts
with Bcl-2 and Bcl-XL through its BH3 domain [105]. In
contrast to Noxa, the pro-apoptotic effect of Puma has been
shown to depend on the conformational change and the mul-
timerization of Bax [106]. Induction of Noxa did not show
any relevance to the subcellular localization of Bax, but it
selectively interacts with Bcl-2, Bcl-xL and Mcl-1 via its
BH3-only domain [104].

(c) Cleavage

Following death receptor signalling, the full length 22 kDa
Bid is cleaved within its unstructured loop and a 15 kDa trun-
cated form of Bid is created, tBid [107, 108]. Cleavage of Bid
results in exposure of a new terminal glycine residue which
is N-myristoylated [109]. Upon N-myristoylation, tBid is se-
lectively routed to mitochondria and induces oligomerization
of Bax and Bak.

Role of apoptosis in atherosclerosis

Atherosclerosis and its complications such as acute myocar-
dial infarction and stroke are the leading cause of mortality
and morbidity in the industrialized and developing countries
[110]. The pathophysiology of atherosclerosis is character-
ized by an initial fatty streak formation, which progresses
by alteration of endothelial function, expression of adhe-
sion molecules, inflammatory response as well as lipid reten-
tion/oxidation and engulfment by macrophages which forms
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Table 1 A summary of the
implications of the Bcl-2 protein
family in vascular apoptosis and
atherosclerosis

Cell type Pathological implication Involvement of Bcl-2 protein family

Endothelial cells Apoptosis of endothelial cells
leads to endothelial dysfunction,
increased risk of thrombosis and
atherosclerotic lesion
progression

↑ Bax121,122, Bak122, Bad139 expression,
Bax/Bcl-2 ratio125,135

↓ Bcl-2121,125,127,133,139, Bcl-xl122,127,139

expression

Smooth muscle cells Apoptosis of smooth muscle cells
leads to the destabilization and
rupture of the fibrous plaque and
increased risk for thrombosis.

↑ Bax121,122, Bak122 expression
↓ Bcl-2122 and Bcl-xl122 expression

The proliferation and intimal
migration of vascular smooth
muscle cells result in increased
synthesis of collagen and
formation of fibrous plaques

↑ Bcl-xl123 expression

Macrophages Apoptosis of macrophages leads
to formation of highly instable
cellular structures of the plaque
as a result of the necrosis and
apoptosis.

↑ Bax121,122,136, Bak122 expression,
activation of Bad and Bim138

↓ Bcl-2121 and Bcl-xl138 expression,

one of the most characteristic hallmarks of atherosclerosis:
foam cells [111]. The cell proliferation, apoptosis and mi-
gration contribute to the progression of atherosclerotic lesion
(Table 1). The proliferation and intimal migration of vascular
smooth muscle cells results in the increased synthesis of col-
lagen and the formation of fibrous plaques around lipid cores
which are mainly formed by lipid-laden macrophages. In ad-
vanced lesions, the central parts of these lipid cores become
highly instable as a result of the necrosis and apoptosis of
cellular structures of the lipid core. The rupture of the fibrous
plaque occurs usually at the shoulder region of the lesion,
which is followed mostly by the formation of a thrombus and
the increased risk of acute coronary syndromes and stroke
(Table 1).

So what is the role of apoptosis in the mechanistic devel-
opment of atherosclerosis? The progression of an atheroscle-
rotic lesion is evolutionary and chaotic, but we can describe
the pattern of lesion development into two main phases with
overlapping characteristics. The first phase is defined by the
endothelial dysfunction and inflammation with prominent
lipid retention but minimal lipid peroxidation [110, 112].
This pro-inflammatory microenvironment predominantly
provokes a proliferative response for vascular smooth
muscle cells, which is followed by intimal migration and
neointima formation [113, 114]. It has been also speculated
that endothelial cell apoptosis has a role in the development
of endothelial cell dysfunction and atherosclerotic lesion
areas show an extensive endothelial cell turn-over with
dysfunctional endothelial cells [115]. Thereby, functional
involvement of apoptosis in the first phase of lesion devel-
opment targets two cell types: a preferential pro-apoptotic

stimulation for endothelial cells and an anti-apoptotic and
proliferative stimulation for smooth muscle cells. The second
phase of lesion progression involves an increased inflamma-
tory response and lipid retention/peroxidation, which trigger
the formation of oxidized low density lipoprotein (ox-LDL)
particles in the vascular wall, an alteration of redox balance
and the modification of cellular proteins, DNA and lipids
[111]. This leads to the plaque development and stabilization
of the plaque by the extracellular matrix and the cellular
support formed by vascular smooth muscle cells. In more
advanced lesions, extensive apoptosis of cells which form
the plaque (lipid-laden macrophages and SMCs) may lead
to the thinning of fibrous support, plaque destabilization,
rupture and thrombosis, which may result in the clinical
presentation of the lesion such as acute myocardial infarction
[116, 117]. In the second phase of lesion development, there
are mainly two cell types as the targets for pro-apoptotic
insults: macrophages and SMCs. Therefore, therapeutic
strategies aiming the prevention and the treatment of
atherosclerosis should be designed in the light of apoptotic
mechanisms unique for the evolutionary phase of vascular
lesion. Induction of apoptosis of SMCs to prevent the
progressive thickening of vascular wall and the protection
of endothelial cells against apoptosis at the same time may
be beneficial in the initial phase of atherosclerotic lesion
development. Moreover, selective induction of apoptosis in
inflammatory cells residing in the vascular wall could pre-
vent the lesion progression or interventions to prevent plaque
rupture by abrogating SMCs or macrophage apoptosis may
be possible for the prevention of clinical presentation.
The complexity of these interventions could be overcome
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if the molecular and cellular mechanisms that regulate
apoptosis in different vascular cells in the particular phases
of atherosclerotic lesion development are identified. Bcl-2
family protein members potentially lie in the heart of these
mechanisms.

Bcl-2 family proteins: role in vascular apoptosis?

As mentioned previously, the signal transduction pathways
which are involved in vascular apoptosis dictate the regula-
tory interactions between anti- and pro-apoptotic members
of Bcl-2 family as well as the mitochondrial leakage and
activation of caspases.

Both extrinsic and intrinsic apoptosis pathways have
been assumed to play role in vascular apoptosis involved
in atherosclerosis progression. Although apoptosis of vas-
cular cells in response to the activation of extrinsic death
signaling modules such as Fas (CD95), and tumor necro-
sis factor family receptors have been demonstrated [118–
120], the involvement of Bcl-2 protein family members in
this process has not been characterized. The apoptotic pro-
cess in different stages of atherosclerotic lesions has been
studied in human atherosclerotic plaques from whole-mount
carotid endarterectomy specimens and advanced atheroscle-
rotic plaques were characterized by an extensive loss of
SMCs and the presence of lipid-laden macrophages [121].
These lipid-laden macrophages show an increase in the ex-
pression of the pro-apoptotic protein Bax, but not the anti-
apoptotic Bcl-2. In these lesions, fairly low numbers of SMCs
were detected around the necrotic core and these lipid-laden
SMCs were also demonstrated to express a strong cytoplas-
mic Bax expression [121]. The cellular structures in fatty
streaks were also characterized by the expression of Bax
in contrast to the cells in adaptive thickening with no Bax
expression. In another study, expression of Bcl-2 family pro-
teins has been investigated in endarterectomy and atherec-
tomy specimens from renal, coronary and carotid arteries
[122]. SMCs were found to be the primary cell type un-
dergoing apoptosis and in all apoptotic cells Bax and Bak
expression was present, while Bcl-xL and Bcl-2 was missing
in the majority of apoptotic cells. In advanced lesions, non-
apoptotic cells were shown to express higher Bcl-xL levels
than control specimens, which may be an induced protective
response against apoptotic insults. There was no difference in
Bcl-2 expression between non-apoptotic cells in healthy and
advanced atherosclerotic plaques, which points out Bcl-xL
as the primary “inducible” protective factor in vascular apop-
tosis in vivo and the loss of basal Bcl-2 expression in vascular
cells as an initiative factor for the susceptibility of vascular
cells to apoptosis [122]. Increased levels of Bcl-xL have been
observed in the intima of early proliferative lesions in a rab-
bit atherosclerotic model and the downregulation of Bcl-xL

levels in neointima by antisense oligonucleotides resulted
in apoptosis of vascular cells and the regression of lesions,
which indicates the requirement to develop specific treatment
strategies for specific stages of atherosclerosis [123].

The mechanistic role of the expression pattern of Bax
in arterial apoptosis has been partially characterized. Bax
has been shown to be present in normal intimal and medial
SMCs in some studies [123, 124]. Up-regulation or post-
translational modification of Bax, which may create differ-
ent kinetics of interactions between Bcl-2 family members
on mitochondria may regulate the apoptotic response, but
this phenomena still remains to be identified. The selective
expression of Bax and Bak without expresion of Bcl-xL and
Bcl-2 in apoptotic cells, but not in non-apoptotic cells of ad-
vanced plaques underlines the importance of these proteins
in vascular apoptosis and these findings provide valuable
data on the possible modulatory effect of Bcl-2 proteins on
the atherosclerotic lesion progression.

The crosstalk between the inflammatory reactions and
lipid peroxidation may promote the initial atherosclerotic
lesion progression [111], as well as an apoptotic re-shaping
of cellular structures in advanced lesions. Bcl-2 expression
was decreased in primary endothelial cells after treatment
with IFN-γ and to a lesser degree when treated with
TNF-α. Moreover, treatment with combination of IFN-γ
and TNF-α resulted in a more pronounced downregulation
of Bcl-2 [125]. An upregulation of Bax was reported in
response to both cytokines and the Bcl-2/Bax ratio was
proposed to determine the apoptotic effect of cytokines
on primary endothelial cells (HUVECs). TNF-α-induced
apoptotic response in glomerular endothelial cells has
been demonstrated to be mediated by the upregulation of
Bak and downregulation of Bcl-xL [126]. Furthermore,
overexpression of Bcl-2 and Bcl-xL was demonstrated to
protect endothelial cells from TNF-α-induced apoptosis
in another study [127]. Interestingly, inhibition of Bcl-xL
expression by anti-sense interventions sensitized HUVEC
cells to either ceramide or staurosporin and Bcl-xL has
been proposed to protect endothelial cells against the
caspase-dependent and caspase-independent mechanisms of
mitochondrial membrane disruption [128]. Another Bcl-2
family member protein, A1 was shown to be increased upon
TNF-α- treatment but downregulation of A1 by anti-sense
intervention did not have any effect on apoptotic response
[128]. In a recent study, p38 MAP kinase pathway was
shown to regulate TNF-α-induced apoptosis in endothelial
cells via phosphorylation and down regulation of Bcl-xL,
which presented Bcl-xL as a major anti-apoptotic factor
against the cytokine-induced receptor mediated apoptosis
in endothelial cells [129]. Additionally, Kim et al. have
shown that proteasomal inhibition enhances TNF-α-induced
cell death in SMCs, but this effect is independent of
cytochrome c release and Bcl-2 proteins [130]. Ox-LDL
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may induce apoptosis in vascular cells through the activation
of Fas-FasL pathway and FasL is expressed on the vascular
endothelium and it may induce apoptosis in Fas-expressing
cells in the vascular wall [131, 132]. Although vascular
endothelial cells are resistant to the Fas-mediated apoptosis
under physiologic conditions, ox-LDL load may sensitize
them to apoptosis since ox-LDL-induced apoptosis of aortic
endothelial cells cultured from Fas − / − & FasL − / −
mice has been shown to decrease when compared to the
wild-type mice [131]. In a recent study, ox-LDL has been
shown to directly activate the intrinsic apoptotic pathway
in human coronary endothelial cells without the activation
of caspase-8 and the truncation of Bid leading to a decrease
in the expression of Bcl-2 and c-IAP antiapoptotic proteins
[133]. Overexpression of Bcl-2 was also shown to inhibit the
ox-LDL-induced apoptosis in U937 macrophages [134]. Ox-
LDL was shown to increase Bax/Bcl-2 ratio and thereby pro-
moting the susceptibility of vascular cells to apoptosis [135].
Furthermore, loading of macrophages with free cholesterol
was proven to induce both Fas- and mitochondria-mediated
apoptosis and increased the cytoplasmic and mitochondrial
Bax levels through a post-translational modification [136].
Again in a novel study, it has been clearly demonstrated
that the reduction of macrophage apoptosis stimulated
atherosclerosis in LDL-R − / − mice. The aortic lesion area
has been found to be more prominent in LDL-R − / − mice
reconstituted with Bax − / − bone marrow after irradiation
[137]. Oxysterols have been reported to induce apoptosis in
murine macrophages through degradation of protein kinase
B/Akt, activation of BH3-only proapoptotic proteins Bad
and Bim, and downregulation of Bcl-xL [138]. Furthermore,
siRNA knockdown of Bax led to a complete blockage
of 25-hydroxycholesterol-mediated apoptosis in these
cells.

The apoptotic pathways induced by mildly oxidized LDL
in primary cultures of human coronary endothelial and SMCs
were evaluated [139]. It has been demonstrated that apop-
totic signals were mediated by the extrinsic pathway mainly
through Fas and TNF-R I-II receptors. In endothelial cells
a prominent decrease in Bcl-2 and an increase in proapop-
totic Bad protein but no changes in Bax protein levels were
detected in response to mildly oxidized LDL [139]. Addi-
tionally, no noticeable changes have been observed in the
Bcl-2 protein family members in SMCs treated with mildly
oxidized LDL. Bcl-2 expression has also been proposed to
modulate the cellular balance between apoptosis and necro-
sis in response to ox-LDL treatment instead of prevention.
Interestingly Bcl-2 expression seems to potentiate the toxic
effects of ox-LDL and thereby may lead to extensive necro-
sis and plaque destabilization [140]. All these contradictory
results underline the need for further research efforts aiming
to identify the major components in vascular apoptosis.

Conclusions

Atherosclerosis is still the leading cause of mortality and
morbidity in industrialized societies despite of the preven-
tive and curative measures. There should be one important
notification to be emphasized; a higher apoptotic index is ob-
served in advanced atherosclerotic lesions compared to early
lesions, and the role of apoptosis in atherosclerosis patho-
genesis should be defined clearly for each specific phase of
the vascular lesion development. The lack of available data
in literature on the role of Bcl-2 family members in vascu-
lar apoptosis in atherosclerosis models is one of the major
limitations for development of novel therapeutic strategies
against treatment and prevention of atherosclerosis. Identi-
fication of these pivotal decision points and crosstalk is a
critical issue in terms of developing novel therapeutic ap-
proaches for rationalized disease management and effective
patient care.

These novel therapeutic approaches may involve small
molecules such as ABT-737 and HA-14A that target and
inactivate anti-apoptotic Bcl-2 proteins or anti-sense Bcl-2
oligonucleotides (G3139) that target Bcl-2 at expression
level to prevent the proliferation of vascular cells in the
early phase of apoptosis. Moreover, utilization of peptide
and non-peptide BH3 mimetics and natural or synthetic
small molecules to prevent apoptosis in advanced lesion
could protect against plaque destabilization and thrombin
generation.
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