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Abstract

We discuss the asymptotic behaviour of the genus and the number of rational places in
towers of function fields over a finite field.
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1. Introduction

Y. Ihara and Y.I. Manin discovered independently that the classical Hasse–Weil bound
for the number of rational points on a curve over a finite field can be improved
substantially if the genus of the curve is large with respect to the cardinality of the
underlying finite field.
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Manin’s proof is based on coding theory. In his paper[13] with the title “What is
the maximum number of points on a curve overF2?” he recalls Goppa’s construction
of error-correcting codes using algebraic curves over a finite field (these codes are
nowadays known as algebraic geometric codes), and he shows then that well-known
bounds for the parameters of codes (like the Mc Eliece–Rodemich–Rumsey–Welch
bound) imply an improvement of the Hasse–Weil upper bound

N(�)�q + 1 + 2g(�)
√
q (1.1)

for q = 2 or 3 and large genus. Here� denotes a non-singular, absolutely irreducible,
projective algebraic curve over the finite fieldFq , andN(�) (resp.g(�)) is the number
of Fq -rational points (resp. the genus) of�.

While Manin’s arguments work only forq = 2 and q = 3, Ihara’s results hold for
all q. In his short note “Some remarks on the number of rational points on algebraic
curves over finite fields” he introduces, for any prime powerq, the real number (see
[11])

A(q) := lim sup
�

N(�)/g(�),

where � runs over all non-singular, absolutely irreducible, projective curves over the
field Fq with genusg(�) > 0. It follows immediately from the Hasse–Weil bound (1.1)
that A(q)�2

√
q. Ihara’s first result is that one has the much stronger estimate

A(q)�(
√

8q + 1 − 1)/2. (1.2)

The idea of his proof is very simple: LetNr(�) denote the number of rational points
on � over the fieldFqr , for eachr�1. The Hasse–Weil bound for�/Fq and for�/Fq2

and the trivial observation thatN(�) = N1(�) is less or equal toN2(�) yield easily the
proof of Inequality (1.2).

It turns out to be much harder to obtain non-trivial lower boundsC > 0 for A(q).
To this end one has to provide an infinite sequence(�n)n�0 of curves�n/Fq such that
limn→∞ N(�n)/g(�n)�C. Ihara proved in[11] already the fundamental result

A(q)�√
q − 1 for square cardinalitiesq, (1.3)

by showing that certain (Shimura-) modular curves have sufficiently manyFq -rational
points, whenq is a square. The Inequality (1.3) was again proved by Tsfasman et al.
[17,18], and these authors showed that (1.3) implies an improvement of the Gilbert–
Varshamov bound (which is a fundamental bound in coding theory) for all square
cardinalitiesq�49.
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Refining Ihara’s method, Drinfeld and Vladut[3] improved Inequality (1.2) further
and showed that

A(q)�√
q − 1 for all q. (1.4)

In particular it follows from (1.3) and (1.4) that

A(q) = √
q − 1, if q is a square. (1.5)

For non-squaresq = p2m+1 much less is known aboutA(q). Based on classified towers
and the Golod–Shafarevic theorem, Serre[15] proved that

A(q)�c logq > 0 (1.6)

with some constantc > 0, independent ofq (see also[14]). For q = p3 (p a prime
number), Zink [20] proved the lower bound

A(p3)� 2(p2 − 1)

p + 2
. (1.7)

He obtained Inequality (1.7) by using degenerations of Shimura modular surfaces.
All above-mentioned results on lower bounds forA(q) are based on deep meth-

ods from number theory and algebraic geometry (classified towers, classical modular
curves, Shimura modular curves and surfaces, Drinfeld modular curves). Moreover,
most sequences(�n)n�0 of curves�n/Fq with limn→∞ N(�n)/g(�n) > 0 which were
constructed by those methods are far from being explicit. However, for applications
(e.g., in coding theory or cryptography) one needs curves overFq with large genus and
many rational points, which are given by explicit equations and such that their rational
points are given explicitly by coordinates.

Following an attempt by Feng, Rao and Pellikaan, Garcia and Stichtenoth pub-
lished in 1995 the first explicit example of a sequence(�n)n�0 of curves overFq
with q = �2 and limn→∞ N(�n)/g(�n) = √

q − 1, hence attaining the Drinfeld–
Vladut bound (1.4) (see[6]). In subsequent papers, these ideas were further developed
(see [7–9]). For explicit equations for certain modular curves we refer to [4]. Our
approach is, in comparison with all others mentioned above, fairly elementary and
explicit.

The aim of this paper is to explain our construction of infinite sequences of curves,
by presenting one typical example in detail. We will use the language of algebraic
function fields which is essentially equivalent to that of algebraic curves. We assume
only some basic facts from the theory of function fields: the main tool is ramification
theory in finite extensions.
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2. Preliminaries and notations

Our reference for the theory of algebraic function fields is the book[16]. We fix
now some notations which will be used throughout this paper:

Fq the finite field with cardinalityq.

p the characteristic ofFq .

F,E, Fn, . . . algebraic function fields (in one variable) overFq .
We always assume thatFq is the full constant field
of F (resp.E,Fn, . . .).

g(F ) the genusof the function fieldF .

P,Q, . . . places of a function field.

degP the degreeof the placeP . In particular, the place
is said to berational (or Fq -rational) if degP = 1.

vP the (normalized) discrete valuation associated with
the placeP .

P(F ) the set of places ofF .

N(F) = N(F/Fq) the number ofFq -rational places ofF .

Let E/F be a finite algebraic extension of function fields overFq . For any place
P ∈ P(F ) there are finitely many placesQ ∈ P(E) lying aboveP . We then write
Q|P and denote by

e(Q|P) the ramification indexof Q|P ,
f (Q|P) the inertia degreeof Q|P .

Then degQ = f (Q|P)degP , and we have thefundamental equality

∑
Q|P

e(Q|P)f (Q|P) = [E : F ]. (2.1)

The placeP ∈ P(F ) is said to be

ramified in E/F if e(Q|P) > 1 for someQ|P ,
wildly ramified in E/F if gcd(e(Q|P), q) > 1 for someQ|P ,
tame in E/F if it is not wildly ramified,
totally ramified in E/F if e(Q|P) = [E : F ] for someQ|P (it follows from
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Eq. (2.1) thatQ is then the only place aboveP and that degQ = degP ),
completely splittingin E/F if there are exactlym = [E : F ] distinct places

Q1, . . . ,Qm ∈ P(E) lying aboveP . Then degQi = degP for all Qi |P , as
follows from Eq. (2.1).

From the fundamental equality (2.1) we also conclude an estimate for the number
of rational places ofE/Fq :

t[E : F ]�N(E)�[E : F ]N(F), (2.2)

where t is the number of rational places ofF which are completely splitting in the
extensionE/F .

In addition we assume now that the extensionE/F is separable. Then the following
formula due to Hurwitz relates the genera ofE andF :

2g(E) − 2 = [E : F ](2g(F ) − 2) + deg Diff(E/F). (2.3)

Here Diff(E/F) denotes thedifferent of E/F which is a divisor of the function field
E/Fq :

Diff (E/F) =
∑

P∈P(F )

∑
Q|P

d(Q|P)Q.

The integerd(Q|P) is called thedifferent exponentof Q|P , and Dedekind’s different
theorem asserts that

d(Q|P)�e(Q|P) − 1 (2.4)

with equality if and only ifQ|P is tame; i.e., if and only if the characteristicp does
not divide e(Q|P).

We will need some results about the behaviour of places in the composite of two
function fields. So we consider now a finite extensionE/F of the function fieldF/Fq
and two intermediate fieldsF ⊆ Ei ⊆ E (for i = 1,2) such thatE is the composite
field E = E1E2. Let Q ∈ P(E) be a place ofE, and letQi = Q|Ei

and P = Q|F
be the places belowQ in Ei and inF . Then the following results hold (see[16, Ch.
III]).

(a) If e(Q1|P) = 1 and e(Q2|P) = [E2 : F ], then it follows that e(Q|Q1) =
e(Q2|P) = [E : E1] and e(Q|Q2) = 1. Moreover, if Fq is algebraically closed
in E1, then it is also algebraically closed in the fieldE. (2.5)

(b) If P is completely splitting inE2/F , then the placeQ1 splits completely in
E/E1. (2.6)

The assertion in (2.5) is a special case of Abhyankar’s lemma (see[16, Prop. III.8.9]).
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3. Basic theory of towers of function fields

As we pointed out in the Introduction, we want to construct explicitly sequences
(Fi)i�0 of function fieldsFi/Fq such thatg(Fi) → ∞ and lim supi→∞ N(Fi)/g(Fi)

is large. By the Drinfeld–Vladut bound (1.4) we always have that

lim sup
i→∞

N(Fi)/g(Fi)�A(q)�√
q − 1 (3.1)

and any sequence with lim supi→∞ N(Fi)/g(Fi) > 0 yields by (3.1) a non-trivial lower
bound forA(q). We will not consider arbitrary infinite sequences of function fields but
we will focus on towers only.

Definition 3.1. A tower of function fields overFq is an infinite sequenceF = (F0, F1,

F2, . . .) of function fieldsFi/Fq having the following properties:

(i) F0 ⊆ F1 ⊆ F2 ⊆ . . . , and for eachn�1 the extensionFn/Fn−1 is separable of
degree[Fn : Fn−1] > 1.

(ii) g(Fj ) > 1 for somej�0.

It is clear by the Hurwitz genus formula (2.3) thatg(Fi) → ∞ for i → ∞. As we
will show, the limit limi→∞ N(Fi)/g(Fi) exists for any towerF = (F0, F1, F2, . . .)

over Fq .

Lemma 3.2. Let F = (Fi)i�0 be a tower of function fields overFq . Then the two
sequences

(N(Fi)/[Fi : F0])i�0 and (g(Fi)/[Fi : F0])i�0

are convergent, with

0� lim
i→∞ N(Fi)/[Fi : F0] < ∞ and 0 < lim

i→∞ g(Fi)/[Fi : F0]�∞.

Proof. (i) For i�1 we have

N(Fi)/[Fi : F0]
N(Fi−1)/[Fi−1 : F0] = N(Fi)

[Fi : Fi−1]N(Fi−1)
�1

by (2.2). The sequence(N(Fi)/[Fi : F0])i�0 is therefore monotonously decreasing,
hence convergent.

(ii) Choosej�0 such thatg(Fj ) > 1. As in item (i) one shows that the sequence
((g(Fi)−1)/[Fi : F0])i� j is monotonously increasing, using the Hurwitz genus formula
(2.3). Hence the sequence((g(Fi) − 1)/[Fi : F0])i�0 converges inR ∪ {∞}, and the
sequence(g(Fi)/[Fi : F0])i�0 has the same limit. �
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Now the following definitions make sense:

Definition 3.3. For a towerF = (Fi)i�0 of function fields overFq we define

�(F/F0) := lim
i→∞ N(Fi)/[Fi : F0], the splitting rate of F/F0

and

�(F/F0) := lim
i→∞ g(Fi)/[Fi : F0], the genusof F/F0.

By Lemma 3.2 we have that

0��(F/F0) < ∞ and 0< �(F/F0)�∞.

Corollary and Definition 3.4. The limit of the towerF ,

�(F) := lim
i→∞ N(Fi)/g(Fi),

exists and one has

�(F) = �(F/F0)/�(F/F0).

Hence it follows that�(F) > 0 if and only if �(F/F0) > 0 and �(F/F0) < ∞.

Proof. Since

N(Fi)

g(Fi)
= N(Fi)/[Fi : F0]

g(Fi)/[Fi : F0] ,

all assertions follow from Lemma 3.2.�

The inequality 0��(F)�A(q) motivates the following definition:

Definition 3.5. The towerF = (Fi)i�0 of function fields overFq is said to be

asymptotically good, if �(F) > 0;
asymptotically bad, if �(F) = 0;
asymptotically optimal, if �(F) = A(q).

By Corollary 3.4 a tower is asymptotically good if and only if its splitting rate is
positive and its genus is finite. Therefore we study these two properties separately and
give simple sufficient conditions for them to hold.
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Definition 3.6. Let F = (Fi)i�0 be a tower overFq . We define two sets of places in
the function fieldF0:
V (F/F0) := {P ∈ P(F0) | P is ramified inFn/F0 for somen�1}, and
S(F/F0) := {P ∈ P(F0) | P is a rational place which splits completely in all

extensions Fn/F0}.
The setV (F/F0) is called theramification locusof F/F0, andS(F/F0) is the com-
pletely splitting locusof F/F0.

Lemma 3.7. Suppose thatF = (Fi)i�0 is a tower overFq , whose completely splitting
locus S(F/F0) is non-empty. Then

�(F/F0)� t > 0,

with t := |S(F/F0)|.

Proof. Let P ∈ S(F/F0); then there are[Fn : F0] rational places inP0(Fn) lying
aboveP , for anyn�0. HenceN(Fn)� t[Fn : F0], and the lemma follows immediately
from the definition of�(F/F0). �

Now we give a sufficient condition for the genus�(F/F0) to be finite.

Lemma 3.8. Let F = (Fi)i�0 be a tower overFq . Suppose that the following condi-
tions hold:

(1) the ramification locusV (F/F0) is finite;
(2) all extensionsFn/F0 are tame.

Then the genus�(F/F0) is finite. More precisely,

�(F/F0)�g(F0) + (s − 2)/2,

where s := ∑
P∈V (F/F0)

degP .

Proof. Let P ∈ P(F0) andQ ∈ P(Fn) with Q|P . Then the different exponentd(Q|P)
is equal toe(Q|P) − 1, since the extensionFn/F0 is tame. We obtain therefore

deg Diff(Fn/F0) = ∑
P∈V (F/F0)

∑
Q|P d(Q|P)degQ

� ∑
P∈V (F/F0)

(
∑

Q|P e(Q|P)f (Q|P))degP
= [Fn : F0]s

with s = ∑
P∈V (F/F0)

degP . The Hurwitz genus formula gives now

2g(Fn) − 2�[Fn : F0](2g(F0) − 2 + s)

and the assertion of Lemma 3.8 follows.�
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Corollary 3.9. LetF = (Fi)i�0 be a tower overFq satisfying the following conditions:
(1) the ramification locusV (F/F0) is finite;
(2) all extensionsFn/F0 are tame;
(3) the completely splitting locusS(F/F0) is non-empty.

Then the tower is asymptotically good.

4. A simple example

In this section we present in detail a very simple example of an optimal tower
over the field with 9 elements. The analysis of this particular tower is typical for
many other examples of asymptotically good towers, see Section 5 below. The tower
F = (F0, F1, F2, . . .) is defined as follows:F0 := F9(x0) is the rational function field
over F9, and for alln�1 let Fn = Fn−1(xn), wherexn satisfies the equation

x2
n = x2

n−1 + 1

2xn−1
. (4.1)

We must first show that the sequence of function fields(F0, F1, F2, . . .) is in fact
a tower over the fieldF9; in particular we have to show thatFi�Fi+1 and thatF9
is algebraically closed inFi , for all i�0. Before proving this, we study the “basic
function field” corresponding to Eq. (4.1); this is the function field

F = F9(x, y), with y2 = x2 + 1

2x
. (4.2)

We also fix an element� ∈ F9 with �2 = −1. The following notation will be useful. Let
E/Fq be a function field andQ ∈ P(E) be a place ofE. Let z ∈ E and� ∈ Fq ∪{∞}.
Then for � ∈ Fq we write z = � (at Q) if Q is a zero ofz − �, and z = ∞ (at Q) if
Q is a pole ofz.

Lemma 4.1. Let F = F9(x, y) be defined by Eq.(4.2). Then we have:

(i) [F : F9(x)] = [F : F9(y)] = 2, and F9 is the full constant field of F.
(ii) In the extensionF/F9(x), exactly the places withx = 0, x = ∞ and x = ±� are

ramified.
(iii) LetQ ∈ P(F ) be the place withx = ∞ (by item(ii) there exists exactly one such

place). Theny = ∞ (at Q), and Q is unramified inF/F9(y).

Proof. Clear from the theory of Kummer extensions of algebraic function fields (see
[16, Prop. III.7.3]). �

Corollary 4.2. Let F0 = F9(x0), and for all n�1 let Fn = Fn−1(xn), wherexn satisfies
Eq. (4.1). Then the following holds:

(i) [Fn : F0] = 2n, for all n�0.
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(ii) The pole ofx0 is totally ramified in the extensionFn/F0, and F9 is algebraically
closed inFn.

(iii) Let Q ∈ P(Fn) be the pole ofx0 in Fn (which is unique by item(ii)). Then Q is
unramified in the extensionFn/F9(xn).

Proof. The casen = 1 is clear from Lemma 4.1, and we assume that the corollary
holds for n. Let Q ∈ P(Fn+1) be a pole ofx0 in Fn+1, and denote byQ1,Q2 and
P the places belowQ in the fieldsFn,F9(xn, xn+1) and F9(xn). ThenQ1 is the pole
of x0 in Fn and (by induction hypothesis)e(Q1|P) = 1, andP is the pole ofxn in
F9(xn). MoreoverQ2 is a simple pole ofxn+1, andQ2|P is totally ramified. Now we
apply (2.5) (Abhyankar’s lemma) and obtain all assertions for the casen + 1. �

For the rest of this section we consider the sequenceF = (F0, F1, F2, . . .) of function
fields overF9 which is defined by Eq. (4.1). Note that we have not proved yet that
F is indeed a tower, since we haven’t shown thatg(Fj )�2 for somej . Thus will be
done in Lemma 4.3 below.

For � ∈ F9 we denote byP� ∈ P(F0) the zero ofx0 − � and byP∞ the pole of
x0 in the rational function fieldF0 = F9(x0). Recall that� ∈ F9 is an element with
�2 = −1.

Lemma 4.3.With notations as above, we have:

(i) The four placesP0, P∞, P� and P−� are totally ramified in the extensionF2/F0,
and the genus ofF2 is at leastg(F2)�3.

(ii) In the extensionF5/F0 also the placesP1 and P−1 are ramified.

Proof. (i) The assertion about ramification follows easily from Lemma 4.1 and (2.5),
and then the Hurwitz genus formula (2.3) for the extensionF2/F0 gives

2g(F2) − 2�4(−2) + 4(4 − 1) = 4,

henceg(F2)�3. In fact it is easily shown thatg(F2) = 3.
(ii) Since we will not need this result, we leave the proof to the reader (use Lemma

4.1 again!). �

We are now going to determine the ramification locus and the genus of the above
tower (see Def. 3.6).

Lemma 4.4. Let F = (Fi)i�0 be the tower overF9 which is defined by Eq.(4.1).
Then we have:

(i) The ramification locus ofF/F0 is the setV (F/F0) = {P� | � ∈ A}, with A =
{0,∞,±1,±�}, and hence|V (F/F0)| = 6.

(ii) The genus ofF/F0 satisfies�(F/F0)�2.
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Proof. (i) Let A be as above, and consider a placeP ∈ V (F/F0). Then for some
n�1 there exists a placeQ ∈ P(Fn) such thatQ|P and Q is ramified overFn−1.
ConsideringFn as the composite field ofFn−1 and F9(xn−1, xn) over F9(xn−1), we
conclude from (2.5) (Abhyankar’s lemma) thatQ is ramified inF9(xn−1, xn)/F9(xn−1),
and then it follows from Lemma 4.1 thatxn−1 = 0 or ∞ or ±� atQ. We have therefore
xn−1 = � ∈ A, for some� ∈ A.

Suppose now thatxi = � ∈ A at the placeQ, for some 1� i�n − 1. If we can
show that this impliesxi−1 = � ∈ A at Q, it will follow that V (F/F0) is contained in
the set{P�|� ∈ A}, and in particular that|V (F/F0)|�6. Now we see from Eq. (4.1)

x2
i = x2

i−1 + 1

2xi−1
,

that

xi = 0 at Q ⇒ xi−1 ∈ {±�} at Q,

xi = ∞ at Q ⇒ xi−1 ∈ {0,∞} at Q,

xi = ±1 at Q ⇒ xi−1 = 1 at Q,

xi = ±� at Q ⇒ xi−1 = −1 at Q.

This proves our claim thatV (F/F0) ⊆ {P�|� ∈ A}. From item (ii) of Lemma 4.3
follows equality (but in the following we need only the inclusion “⊆”).

(ii) Follows from item (i) and Lemma 3.8. Note that we have just used that the
cardinality ofV (F/F0) is at most 6. �

Now we consider the completely splitting locusS(F/F0) and the splitting rate
�(F/F0).

Lemma 4.5. Let F = (Fi)i�0 be the tower overF9 which is defined by Eq.(4.1).
Then we have:

(i) The completely splitting locus ofF/F0 is S(F/F0) = {P� | � ∈ B}, with B =
{1 + �,1 − �,−1 + �,−1 − �}, and hence|S(F/F0)| = 4.

(ii) The splitting rate ofF/F0 satisfies�(F/F0)�4.

Proof. (i) One checks that forx = � ∈ B the equation

y2 = x2 + 1

2x
= �2 + 1

2�

has both roots in the setB (here one uses thatp = 3). It follows by induction
(using (2.6)) that the placesP� with � ∈ B split completely in the towerF . For
� ∈ (F9∪{∞})\B, the placeP� belongs to the ramification locusV (F/F0) by Lemma
4.4, and thereforeP� �∈ S(F/F0). This proves item (i).
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(ii) This follows from item (i) and Lemma 3.7. Note that here we have just used
that |S(F/F0)|�4. �

Theorem 4.6. The towerF = (Fi)i�0 over the fieldF9 which is defined by Eq.(4.1)
has the limit

�(F) = 2 = √
9 − 1;

so it attains the Drinfeld–Vladut bound, and it is therefore an asymptotically optimal
tower overF9.

Proof. Since�(F) = �(F/F0)/�(F/F0) (see Corollary 3.4), we get from Lemmas 4.4
and 4.5 that�(F)�4/2 = 2. On the other hand, the Drinfeld–Vladut bound (1.4) gives
the estimate�(F)�2, and so we obtain that�(F) = 2. �

Remark 4.7. One can consider the towerF given by Eq. (4.1) over the fieldFp2, for

any odd prime numberp. Fixing an element� ∈ Fp2 with �2 = −1 one can easily see
that Lemma 4.4 holds also forp > 3, and hence that

�(F/F0)�2 for all p�3. (4.3)

The determination of the completely splitting locusS(F/F0) is for arbitrary prime
numbersp�3 much harder than in the special casep = 3. One can prove that

|S(F/F0)| = 2(p − 1). (4.4)

It follows from (4.4) that the splitting rate�(F/F0) satisfies�(F/F0)�2(p − 1),
therefore

�(F) = �(F/F0)/�(F/F0)�p − 1.

This lower bound for�(F) is equal to the Drinfeld–Vladut bound, and so the towerF
given by Eq. (4.1) is in fact asymptotically optimal over the quadratic fieldsFp2, for
all prime numbersp�3.

The analysis of the setS(F/F0) involves the so-called Deuring polynomialHp(X) ∈
Fp[X] which is defined by

Hp(X) =
(p−1)/2∑
j=0

(
(p − 1)/2

j

)2

Xj .

The key point of this analysis is to show that all roots of the equationHp(�
4) = 0 are

in Fp2 and that

S(F/F0) = {P� | Hp(�
4) = 0}. (4.5)



446 A. Garcia, H. Stichtenoth /Finite Fields and Their Applications 11 (2005) 434–450

We proved these assertions forp = 3 in Lemma 4.5 (note thatH3(X
4) = X4 + 1).

For p = 5 one hasH5(X
4) = X8 − X4 + 1 ∈ F5[X] and we leave it to the reader as

an exercise to prove (4.5) in this case. Forp = 7 one has to consider the polynomial
H7(X

4) = X12 + 2X8 + 2X4 + 1 over the fieldF49, and already in this case it is
non-trivial to prove (4.5) directly. For generalp�3 we refer to[8, Section 5].

5. Further examples

In this section, we present some further examples of recursively defined towersF
over a finite fieldFq . We say that a towerF = (F0, F1, F2, . . .) over Fq is defined
recursivelyby the equation

�(y) = 	(x) (5.1)

(with rational functions�(Y ),	(X) with coefficients inFq ) if the following conditions
hold:

(i) F0 = Fq(x0) is the rational function field overFq , and for all i�0,

Fi+1 = Fi(xi+1) with �(xi+1) = 	(xi).

(ii) [Fi+1 : Fi] = deg�(Y ), for all i�0.

For instance, the towerF over F9 that we analyzed in Section 4, is recursively
defined by the equationy2 = (x2 + 1)/2x.

Remark 5.1. Observe that it is not clear a priori, if an equation�(y) = 	(x) defines
a tower: it can happen that the equation�(Y ) = 	(xi) becomes reducible over the
field Fi = Fq(x0, . . . , xi) for somei�0, or that the constant field ofFq(x0, . . . , xi) is
larger thanFq . Therefore one has to investigate in every specific case if a particular
Eq. (5.1) actually defines a tower.

Example 5.2. (Towers of Fermat type, see Garcia and Stichtenoth[8] and Wulftange
[19]). A tower overFq which is defined recursively by the equation

ym = a(x + b)m + c, with a, b, c ∈ Fq and (m, q) = 1 (5.2)

is called aFermat towerover Fq . One can show that Eq. (5.2) defines a tower if and
only if m > 1 andabc �= 0. The condition(m, q) = 1 ensures that Fermat towers are
tame; i.e., all extensionsFn/F0 are tame. For specific values ofm, a, b and c, Fermat
towers have nice properties, e.g.

(a) If q ≡ 1 modm and a = 1, then the poleP∞ of x0 in F0 splits completely in the
Fermat towerF ; hence�(F/F0)�1, by Lemma 3.7.

(b) There are examples of Fermat towers with finite ramification locus.
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We point out two special cases of Fermat towers:

Example 5.3 (see Garica et al.[9] ). Let q = pe with e > 1 andm = (q−1)/(p−1).
Then the Fermat towerF/Fq which is defined recursively by the equation

ym = 1 − (x + 1)m (5.3)

is asymptotically good; its limit satisfies�(F)�2/(q−2). In fact, it is easily seen that
in this specific case the ramification locus satisfiesV (F/F0) ⊆ {P�|� ∈ Fq} and hence
it has cardinality at mostq. Moreover the pole ofx0 splits completely inF . We then
conclude from Lemmas 3.7 and 3.8 that

�(F)�2/(q − 2) > 0.

Note that Example 5.3 gives an easy proof for all non-primeq of the fact that
A(q) > 0 (see the Introduction, Eq. (1.6)).

Example 5.4 (see Garcia et al.[9] ). Let ��3 and q = �2 be a square. Then the
Fermat towerF over Fq which is defined by

y�−1 = 1 − (x + 1)�−1 (5.4)

is asymptotically good overFq , with �(F)�2/(� − 2). In fact, in this example one
shows easily that the ramification locus satisfiesV (F/F0) ⊆ {P�|� ∈ F�} and that the
pole of x0 splits completely overF�2.

Observe that Example 5.3 yields an optimal tower overF4, and Example 5.4 yields
an optimal tower over the fieldF9. For other applications of Lemmas 3.7 and 3.8 we
refer to [8].

Now we will consider some wild (i.e., non-tame) towers.

Example 5.5 (see Garcia and Stichtenoth[7] ). Let q = �2 be a square, and letF =
(Fi)i�0 be the tower overFq which is recursively defined by

y� + y = x�/(x�−1 + 1). (5.5)

One can easily determine the ramification locusV (F/F0) and the completely splitting
locus S(F/F0) in this case:

V (F/F0) = {P∞} ∪ {P� | �� + � = 0},
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and

S(F/F0) = {P� | � ∈ Fq and �� + � �= 0}.

It follows that the splitting rate satisfies�(F/F0)��2−�. However, it is much harder to
determine the genus�(F/F0), since in case of wild ramification one has in general no
control on the different exponents. A very careful analysis of the ramification behaviour
of this tower shows that�(F/F0) = �, and therefore�(F)�(�2 − �)/� = � − 1. Now
it follows from the Drinfeld–Vladut bound that we have equality�(F) = � − 1; i.e.,
the towerF which is defined by Eq. (5.5) is optimal over the fieldF�2.

We remark that the tower in Example 5.5 is closely related to the optimal towers
over Fq (with q = �2) which were considered in[1,6]. Its interpretation as a Drinfeld
modular tower was established in [5].

If q is not a square, it seems to be harder to find towers overFq with “large” limits.
The tower in Example 5.3 is asymptotically good overFq for each non-primeq, but
the limit �(F)�2/(q − 2) is rather small. We give now two other examples of wild
towers with large limits, over finite fields with cubic cardinality.

Example 5.6 (see van der Geer and van der Vlugt[10] ). This is a wild tower over
the field with eight elements; it is recursively defined by the equation

y2 + y = x + 1 + 1/x over F8. (5.6)

It is not difficult to determine the ramification locusV (F/F0) and the completely
splitting locusS(F/F0):

V (F/F0) = {P� | � = ∞ or � ∈ F4} and S(F/F0) = {P� | � ∈ F8 \ F2}.

The difficult part here is to investigate the behaviour of the ramified places, since they
are all wildly ramified. One can show that�(F/F0) = 4 and hence that�(F)�3/2;
this is just Inequality (1.7) forp = 2.

Example 5.7 (see Bezerra et al.[2] ). The equation

(1 − y)/y� = (x� + x − 1)/x (5.7)

defines a very interesting recursive towerF over the fieldFq with q = �3 (one can
easily show that for� = 2 this tower is the same as the tower of Example 5.6). There
are �(� + 1) rational places ofF0/Fq which split completely in the towerF (but one
does not see them as easily as in the towers of Examples 5.2–5.6). For� �= 2 the
extensionsFi+1/Fi in this tower are non-galois, and ramification is very complicated:
some places are tamely ramified, others are wild, and the computation of the different
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exponents is rather involved. The result of a careful analysis gives

�(F/F0) = �(� + 2)/(2� − 2)

and therefore

�(F) = �(F/F0)/�(F/F0)�2(�2 − 1)/(� + 2).

So the tower in Example 5.7 attains Zink’s lower bound (1.7) forA(p3) (in case
� = p is a prime), and it also proves the bound

A(�3)�2(�2 − 1)/(� + 2) for all prime powers�.

Problem 5.8. We finish this paper with an obvious problem: Find asymptotically good
recursive towers with large limits over any finite fieldFq . For example, can one produce
towers F over Fq with q = p2n+1 such that the limit�(F) is close to a constant
multiple of pn? How to find explicit equations leading to recursive towersF with
positive limit �(F) > 0 over prime fieldsFp?
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