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ABSTRACT 
This work aims the precise control of the piezoelectric 
actuators that can theoretically provide unlimited motion 
resolution. For this purpose Sliding Mode Controller 
(SMC) is used. The proposed algorithm is known to have 
order of sampling time square and therefore faster 
application than DSP was required. The application of the 
algorithm via analog electronics is suggested. Preliminary 
work, simulation and experimental results are presented. 
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1.  Introduction 

Piezoelectric actuators (PEA), based on crystalline effects 
do not suffer from “stick slip” effect and theoretically 
provide unlimited resolutions. Therefore, they are already 
widely used in many applications, some requiring sub-
micrometer resolution, such as in ultrasonic motors, 
sports materials like skis and bikes  [1], in aerospace  [2], 
in hard disk drives  [3] etc… Another main application of 
these ceramics is the scanning tunneling microscope 
(STM) and atomic force microscope (AFM) [4]. 
Precision control of piezoelectric actuators is hardly 
acquired due to highly nonlinear input/output behavior 
dominated by hysteresis behavior between electrical 
voltage and strain  [5,[6,[7]. Hysteresis yields a rate-
independent lag and residual displacement near zero 
input, significantly reducing the precision of the actuators  
[8]. Another undesired characteristic of piezoelectric 
actuators is the “creep effect”  [7]. Both hysteresis and 
creep effects are shown in Figure 1. 
Most of the piezoelectric actuator applications require 
high precision motion control where closed loop control is 
the only answer. Despite that fact, many attempts to drive 
the piezoelectric actuator as open loop system with 
compensation of the nonlinearities are investigated  
[5,[6,[7,[8]. However, the position tracking of those 
systems hardly satisfied the requirements. 

In order to design a control scheme with successful 
tracking performance without precise dynamic modeling 
some fuzzy logic and neural network solutions are 
presented in the literature. However, due to the limited 
performance, this research area did not find much 
popularity  [9].  
On the other hand, sliding-mode control is one of the 
effective nonlinear robust control approaches. One of the 
most important aspect of SMC is the discontinuous nature 
of the control action which switches between two values 
to move the system motion on so-called “sliding mode” 
that exist in a manifold. SMC provides system invariance 
to uncertainties once the system is in the sliding mode  
[10,[11]. Beside switching control action, continuous 
control is also possible with appropriate formulation.  

 

Figure 1: Open loop step response of the piezoelectric actuator: 
“d” is the displacement difference due to hysteresis. Creep effect 

is magnified in the circular view  [7]. 

Abidi et al. used SMC with continuous control action in 
conjunction with the disturbance observer for both 
position and force tracking in piezoelectric actuators  
[11]. In their work, the discrete time formulation and 
application of the SMC is shown and applied for PEA 
control. Abidi et al. showed that discrete time SMC can 
track nanometer size references with strain gage feedback 
in the presence of a disturbance observer. Proven that the 
controller has error on the order of the square of the 
sampling time, improvements on the speed of the 



controller are required. Although DSP based controllers 
are easier to build and run, their speed is limited. Analog 
circuits based on large bandwidth op-amp circuits on the 
other hand, promise much more speed. 
The aim of this work is to apply the discrete time SMC 
algorithm on analog control circuit. By the way speed 
limitation introduced by the DSP will be eliminated and 
improvement of the tracking performance is expected. 

2.  Discrete Time Sliding Mode Control 

With the assumption that the PEA can be modeled as a 
linear lumped parameters T, m, b, k second order 
electromechanical system with voltage as the input u(t), 
position x as the output and hysteresis nonlinearity h(x,u) 
being the major disturbance, the model can be written as  
[5,[6,[12], 

( ) extFuxhtuTxkxcxm −−=⋅+⋅+⋅ ),()(&&&  (1)  
For such a system, we can design a SMC both on discrete 
and continuous time domains  [11]. To start it is possible 
to write (1) in a more general form; 

( ) uBFuxhxfx ext ⋅+= ),,(,&  (2)  
The aim is to derive the states of the system into the set 

( ) ( ){ }0,: ==−⋅= xxxxGxS refref σ  (3)  

Where [ ]Txxx 21=  is the state vector, 

[ ]Trefrefref xxx 21=  is the reference vector, ( )xxref ,σ  is the 
function defining the sliding manifold and [ ]1CG =  
with C  being a positive constant. The derivation starts 
with the selection of a positive definite Lyapunov 
function ( )σV  with negative derivative 

( ) 02 ≥⋅= TV σσσ  (4) 

( ) σσσ && ⋅=⇒V  (5) 

In order to guarantee the asymptotic stability, ( )σV&  may 
be selected as 

( ) 0≤⋅⋅−= TDV σσσ& , +ℜ∈D  (6)  
If the control can be determined from (5) and (6), the 
asymptotic stability of solution (3) can be obtained. 
Combining those two equations 

( ) 0=⋅+⋅ σσσ D&  (7) 
A solution for this last equation is 

0=⋅+ σσ D&  (8) 
The derivative of the sliding function is as follows 

( ) xGxGxxG refref &&&&& ⋅−⋅=−⋅=σ  (9) 
From this last equation and using (2) we obtain 

( ))()( tuuGBtGBuGfxG eq
ref −=−−= &&σ  (10) 

where equ  is defined as the control on the sliding surface 
(when 0=σ& ). If this last equation is inserted in (8) and 
the result is solved for the control 

( ) σDGButu eq
1)( −+=  (11) 

is obtained. It can be seen from (11) that equ  is difficult to 
calculate. Using the fact that equ  is a continuous function, 

(10) can be written in discrete-time form after applying 
Euler’s approximation, 
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where sT  is the sampling time and +∈Zk . It is also 
possible to write (11) in discrete-time form just as it was 
done before 

( ) kkkeq DGBuu σ⋅⋅+= −1
,  (13) 

If (12) is solved for equ , the following is obtained 
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Since the system is causal and it is required to avoid 
calculation of the predicted value for σ , control cannot 
be dependent on a future value ofσ . Having equivalent 
control as a continuous function, the current value of the 
equivalent control will be approximated by a single time-
step backward value, 
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Here kequ ,ˆ  is the estimate of the current value of the 
equivalent control. If (15) is inserted in (13); 

( )kkkk DKuu σσ &+⋅+= −1 , ( ) 1−= GBK  (16) 
It easily seen that the above control law is derived from 
discrete-time approximations based on the continuous-
time equations. Hence, these approximations will 
introduce errors in the control that must be analyzed 
carefully. Closed loop behaviour of this control is 
investigated by Abidi et al. and proven that the maximum 
deviation of the system (1), from manifold (3) under the 
control (16), both at each sampling time and at the 
intersampling time, is on the order of the square of the 
sampling time: ( )2

sTO   [11]. Moreover the same work 
proves the Lyapunov stability of the closed loop system. 

3.  Analog Solution Design and Simulations 
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Figure 2: Draft analog circuit scheme to calculate the control. 

 
A. Analog Solution Design 
Control presented in previous section can algorithmically 
be summarized as follows; 
• Calculate the error: xxe ref −=  
• Calculate sliding manifold function: eeC &+⋅=σ  
• Calculate: ( )σσϕ &+⋅= D  
• Finally calculate the control ϕ⋅+= − Kuu kk 1  



A draft circuit for the algorithm can be drawn as shown in 
Figure 2. From that draft it is then easy to generate analog 
circuit scheme for the SMC using differentiation and 
summing operational amplifier blocks. 
Table 1: Assumed maximum values for signals and parameters. 

Parameter Determined 
Value Signal Assumed  

Max Value 
C  400 e  0.05V 
D  120 e&  10V 
K  3.10-3 σ  25V 
  σ&  5000V 
  ϕ  5000V 
  U  1V 

 
B. Analog Scaling 
Once the scheme is present and C , D  and K  constants 
are roughly known, designing the circuit is straight 
forward. However there is one key issue about the signal 
magnitudes: the amplifier outputs (or signal strengths) 
cannot be numerically equal to the problem variables they 
represent, except in very special cases, since the outputs 
of the amplifiers are limited to the supply voltage which is 
generally smaller than the problem variables. Therefore, 
represented signals may reach higher values than the 
supply voltage and saturate the outputs. Moreover, some 
gains used in the algorithm, namely the problem 
variables, may be too high or too small for a practical 
realization. Therefore, signal strengths cannot be 
numerically equal to the program variables, but merely 
proportional to them. They must be multiplied by 
appropriate coefficients, called “scale factors” to assure 
that the amplifier output or magnitude of the parameters is 
realistic. 
To determine the scaling factors, so called “analog 
scaling” technique is used as it was once used in analog 
computers. In this technique each signal is normalized 
according to its estimated maximum value. Then signal 
equations are rewritten to find actual op-amp gains. As an 
example we can study the following equation 

eeC &+⋅=σ  with assumed maximum values for signals 
and parameters that are presented on the Table 1. 
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Equation (18) is equivalent to eeC &+⋅=σ  since we 
have substituted equivalent expressions. But it guarantees 
that the signals will be in the range of the op-amps unless 
the expected maximum values are exceeded. To obtain 
problem variables, one must rescale those values 
according to the obtained equations. 
 
C. Circuit Design 
All 4 control equations together with the two derivative 
equations, one for e&  and the other for σ& , must be scaled 
(equations 18-24).  
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The analog application of those equations in analog 
electronics is straight forward. The circuit is composed of 
summing and difference amplifiers, differentiators and a 
low pass filter. 

 

Figure 3: Analog circuit scheme for the calculation of σ.. 

The part calculating eeC &+⋅=σ  can be seen in Figure 
3 above. σσϕ &+⋅= D  calculation is the repetition of the 
same block with different gains, therefore it is not given 
as separate schematic.  
The realization of the last part is shown in Figure 4. In 
this part, an inverting summing amplifier, amplifier B, is 
adding the scaled ϕ  value by amplifier A to the previous 
value of the output which is the output signal retarded by 
a low pass filter (amplifier C). 
Amplifier C, is a low pass first order filter with corner 
frequency, Hzfcorner 318≅ , high enough not to interfere 
with the motion. As a transfer function this circuit is 
equivalent to; 

( )
1

1
+

=
s

sF
τ

, 4105 −⋅=τ  (25) 



This filter creates a phase delay in the signal. Due to this 
delay, the output signal can be fed back to the amplifier B 
as the delayed or “previous value” of the control U . 

 

Figure 4: Realization of the integration part. 

 
D. Circuit Simulations 

 

Figure 5: 2nd order plant used for simulations. 

Designed circuit is first simulated using PSpice v9.2 by 
Cadence Design Systems. To check the functionality a 
sample plant is required. Therefore a 2nd order system 
transfer function is imitated with a plant circuit. The plant 
transfer function given in (26) is equivalent to the mass-
spring-damper system with mass m , damping b , spring 
constant k  and input gain τ . This plant is close to the 
lumped parameter PEA model except the hysteresis that is 
missing (see Figure 5 for the circuit realization). 
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Once the circuit design is complete simulations for 
sinusoidal reference inputs are studied. The position 
tracking, control voltage and related error for the tracking 
of a 0.2V sinusoidal input reference. The tracking error is 
on the order of 0.17%.  
Another simulation is run for exponentially increasing 
and decreasing pulse input of 0.8V maximum amplitude. 
Related figures are below. 

 

 
Figure 6: Real and actual position signals (top), control input 
(middle) and tracking error (bottom) for a 200mV sinusoidal 

input. 

 

 
Figure 7: real and actual position signals (top) and tracking error 

(bottom) for a 0.8V exponential pulse. 

4.  FPAA Application & Experiments 

Once the design is completed and simulations verified the 
circuit design, real experiments are aimed. For this 
purpose a print circuit board (PCB) that assembles 
designed circuits is designed and produced. This board 
contains 4 integrated circuits with 2 operational amplifiers 
in each. The size of the board is 20x14cm. Position 

A 

C 

B



tracking experiments for the piezoelectric actuator with 
DSP and produced analog circuit are realized separately 
for comparison purposes. 
 
A. Experimental Setup 
For experimental purposes, the setup shown in Figure 8 
below is constructed; voltage amplifier is the 
Piezomechanik SVR 150-3 voltage amplifier, PEA is the 
piezoelectric actuator with embedded strain gage for 
position measurement and the strain gage amplifier is the 
BA501 strain gage amplifier from Vishay's Measurement 
Group. Here SMC is the designed sliding mode control 
algorithm implemented in DSP (for DSP experiments) or 
is the analog circuit (for analog controller experiments). 

 

Figure 8: Piezoelectric actuator control setup. 

In those experiments, both DSP and analog control, we 
should remind that the effect of the voltage amplifier, 
designed and produced by Piezomechanik GMBH, is 
unknown. We assume that it is limited with a low pass 
filter. 
 
B. DSP Position Tracking Experiments 
For comparison of the results DSP application of the 
algorithm is realized on dSpace DS1102 platform which 
possesses TMS320C31 DSP chip running at 40 MHz with 
50ns cycle time. The platform does have 2 16-bit ADC 
(Input) ±10V and 4 12-bit DAC (Outputs) ±10V. Results 
for the position tracking of the nm100  peak to peak, 
2.25Hz sinusoidal reference is presented. From the 
experiment we can see that tracking of this reference is 
realized with maximum error less than nm4  or nm11.7  
peak to peak. The error is 7.11% for the algorithm that 
runs at 8kHz as maximum speed.  
 
C. Analog Circuit, Position Tracking Experiments 
In analog circuit experiments, the data is captured by 
Agilent Technologies 54622D digital oscilloscope. The 
reference and actual signals are given without offset to 
better have feeling on the tracking error. The third 
channel shown in figures is the difference between the 
signals, the error, as calculated by the oscilloscope.  
According to our experiments, the tracking of a 600mVpp 
(Volt peak to peak) sinusoidal voltage reference is 
successfully tracked with 18mVpp tracking error 
corresponding to 3.00%. Naturally those voltage values 
are the readings of the strain gage amplifier. The 

performance can be better understood when those values 
are converted to metric correspondents. 17.96um 
(micrometers) corresponds to 1V of the strain gage 
amplifier reading, and 1um position deflection results 
55.68mV. According to those conversion values the given 
reference is 10.776um and the tracking error is 323nm. 
Very similar results are obtained with a triangular wave 
reference; the error is 58.6mVpp (1.053um) for the 
reference of 2.016Vpp (36.21um); 2.91%. 

 

Figure 9: Tracking of 100nm pp sinus reference; tracking on the 
left and error on the right. 

 
Figure 10: Position tracking of the piezoelectric actuator for 

300mHz, 600mVpp sinusoidal reference. 

 
Figure 11: Position tracking of the piezoelectric actuator for 

300mHz, 2Vpp sinusoidal reference. 



5.  Conclusion 

In this work we have presented the design of a SMC for 
PEAs. The control is known to have order of sampling 
time square error. DSP application of the control could 
run at speeds up to 8kHz. For the improvement of the 
performance analog application of the control is proposed. 
Circuit simulations showed good performance. For the 
experimental works PCB design and prototyping is 
realized.  
Experimental results proved that the analog production of 
the proposed SMC is possible and its performance is 
acceptable. Although the error in DSP application is 
around 7%, analog application resulted with around 3% 
error.  
The main problem in the system is the noise due to the 
interaction with the environment and the twice derivation 
that amplifies the noise. 
With the proposed analog circuit good tracking 
performance is obtained. Moreover the cost for such a 
controller is less than 25$. Compare to 5000$ DSP 
solution, this analog controller deserves further 
improvements. 
Finally, the use of such a controller in systems controlled 
by digital controllers including DSP, PC, microchip, 
FPGA etc… will help users to save from heavy 
computational load. 
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