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Abstract: Design of motion control systems should take into account (a) unconstrained 
motion performed without interaction with environment or other systems, (b) constrained 
motion performed by certain functional interaction with environment or other system. 
Control in both cases can be formulated in terms of maintaining desired system 
configuration what makes essentially the same structure for common tasks: trajectory 
tracking, interaction force control, compliance control etc. It will be shown that the same 
design approach can be used for systems that maintain some functional relations like 
parallel robots.  Copyright © 2007 IFAC 
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1. INTRODUCTION 
 

Modern motion control systems are acting as 
“agents” between skilled human operator and 
environment (surgery, microparts handling, 
teleoperation, etc.). In such situations design of 
control should encompass wide range of very 
demanding tasks. At the lower level one should 
consider tasks of controlling individual systems - like 
single DOF systems, motor control, robotic 
manipulator or mobile robot. On the system level 
control of multilateral interaction between systems of 
the same or different nature, the remote control in 
master-slave systems, haptics, parallel mechanisms 
etc. should be considered. In general design of 
motion control system should take into account (i) 
unconstrained motion - performed without 
interaction with environment or other system - like 
trajectory tracking, (ii) motion in which system 
should maintain its trajectory despite of the 
interaction with other systems - disturbance rejection 
tasks, (iii) constrained motion where system should 
modify its behaviour due to interaction with 

environment or another system or should maintain 
specified interconnection - virtual or real - with other 
system and (iv) in remote operation control system 
should be able to reflect the sensation of unknown 
environment to the human operator.  
 
Decentralized control seems a promising framework 
for application in motion control. It posses many 
good features such as flexibility, fault tolerance, 
expandability, and fast response. There are many 
applications to robot control systems, with concepts 
such as multi-agent system (Sabattucci and Chella, 
2003), cell structure (Ueyama, et al., 1992), and fault 
tolerant systems (Fujimoto, and Sekguchi, 2003). 
Decomposition block control (Hernandez, et al., 
2001). Arimoto and Nguyen (Arimoto and Nguyen, 
2001) showed that under certain conditions overall 
control input can be designed by linear superposition, 
Tatani and Nakamura proposed a method based on 
the singular value decomposition (Okada, et al., 
2002). Tsuji, Nishi and Ohnishi proposed a 
framework of controller design based on 
functionality (Tsuji and Ohnishi, 2005), Onal and 



     

Sabanovic implemented a bilateral control using 
sliding mode control applying functionality (Onal, 
and Sabanovic, 2005).  
 
In this paper we will present a framework in motion 
control systems design based on the idea that by 
enforcing certain functional relations between 
coordinates one can determine the functional 
behaviour of the system. The approach will be 
demonstrated on the control of the Stewart Platform 
like parallel mechanism in which the position and 
orientation of platform is defined by the length of the 
supporting linear actuators. By enforcing certain 
relations among these actuators (for example if all 
are forced to maintain the same length the motion of 
the platform will be than in z axis only) the 
constrained motion of the system can be performed. 
By representing the task as a combination of these 
constrained motion in some cases the oveall 
controller design becomes simpler and decoupling of 
the nonlinear dynamics can be achieved. In essence, 
the method is using Sliding Mode Control (SMC) 
design procedure.  
 
The body of paper begins in section II with 
mathematical formulations of control and motion of 
systems, extension to general systems in interactions 
and parallel manipulator example  takes place in 
section III and in section IV, simulation results are 
presented to compare the performance of observers 
on  robot and function coordinates. Finally, Section 
V, concludes the paper. 

 

2. MATHEMATICAL FORMULATIONS 
 

For fully actuated mechanical system (number of 
actuators equal to the number of the primary masses) 
mathematical model may be found in the following 
form 

( ) ( )
( ) ( ) ( )qqNqqHqqq,L

FFqqHqqq,LqqM
&&&&

&&&&&

,,,
,)(

=+
−=++ ext         (1) 

where nℜ∈q  stands for vector of generalized 

positions, nℜ∈q& stands for vector of generalized 

velocities, ( ) nxnℜ∈qM  ( ) +− ≤≤ MM qM is 
generalized positive definite inertia matrix with 
bounded parameters, ( ) 1, nxℜ∈qqN &  ( ) +≤ NqqN &,  
represent vector of coupling forces including gravity 

( )qqH &, and friction ( )qqq,L && , 1nxℜ∈F , +≤ FF  
stands for vector of generalized input forces, 

1nx
ext ℜ∈F , extext F0≤F  stands for vector of 

external forces. +− MM , , +N  and +F  extF0  are 
known scalars. 

External force is a result of system’s interaction 
with environment at position eq and in general can 
be represented as  
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if   
if   
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In many cases interaction of the systems is modeled 

as spring-damper so than the interaction force is 
represented as a linear combination in the form 

( ) ( )eDeSext qqKqqKF && −+−= . The same reasoning 
can be applied for modeling virtual interaction 
between systems. 

 
 

2.1  Control Problem Formulation  
 
Vector of generalized positions and generalized 
velocities defines configuration ( )qq &,ξ  of a 
mechanical system. The control tasks for the system 
(1) are usually formulated as selection of the 
generalized input such that: (i) system executes 
desired motion specified as position tracking, (ii) 
system exerts a defined force while in the contact 
with environment and (iii) system reacts as a desired 
impedance on the external force input or in contact 
with environment. The task (i) requires tracking of 
the reference trajectory with or without interaction 
with environment – thus requiring very high stiffness 
and good disturbance rejection. The tasks (ii) and 
(iii) are specified for a system being in interaction 
with environment and both require modification of 
the system state in order to achieve desired behavior 
while in the contact. In literature these problems are 
generally treated separately (Onal, and Sabanovic, 
2005)and motion that requires transition from one to 
another task are treated in the framework of hybrid 
control (Raibert, and Craig, 1981). The most general 
formulation of the fully actuated mechanical systems 
can be formulated as a task to maintain desired 
configuration ( )refrefref qq &,ξ  of the system. Assume 
that the control system requirements are satisfied if 
real and desired configurations of mechanical system 
satisfy an algebraic constraint expressed as 

( ) ( )( ) 1,,, nx
refrefref 0qqqqσ =&& ξξ  and for 

( )ref
nx ξξ0σ =⇒= 1 . Now the control problem can 

be formulated as selection of control input so that 
solution ( ) 1, nx

ref 0σ =ξξ  is stable on the trajectories 
of system (1). Note that this formulation is similar to 
SMC control with a difference that in SMC the 
reaching time to ( ) 1, nx

ref 0σ =ξξ  is required to be 
finite. In this paper, without loss of generality, it will 
be assumed that system configuration can be 
expressed as a linear combination of generalized 
positions and velocities ( ) qQCqqq, && +=ξ  and 
consequently refrefref qQCqξ &+= . Now control 
problem can be formulated as a selection of the 
control so that the state of the system is forced to 
remain in manifold Sq:   

( ) ( )( ) ( ) ( ){ }

[ ]T
n

nnnxref

refrefrefrefrefref
qS

σσσ

ξ

,....,,

,0;;,

  ,,:

21

1

=

>ℜ∈ℜ∈

=−==
×

σ

QC,QC,ξξ,σ

0q,qξqq,q,qξqq,ξσqq, &&&&&

  (3) 

Where ( ) 1nxref ℜ∈qq,ξ &  stands for reference 
configuration of the system and is assumed to be 
smooth bounded function with continuous first order 
time derivative, matrices nn×ℜ∈QC,  have full rank 



     

( ) ( ) nrankrank == QC . By selecting nxnℜ∈QC,  as 
diagonal (3) can be represented by a set of n first 
order equations ( ) ( ) 0=−+−= i

ref
iii

ref
iii qqhqqgσ && , 

i=1,2,..,n.  
 
 
2.2  Selection of control input 
 
Design of control inputs for system (1), (2) that will 
enforce the stability of ( ) 1, nx

ref 0σ =ξξ  and that 
manifold (3) is reached asymptotically or in finite 
time. The simplest and the most direct method to 
derive control is to enforce Lyapunov stability 
conditions for solution ( ) 1, nx

ref 0σ =ξξ  on the 
trajectories of system (1), (2). Lyapunov function 
candidate may be selected as 02

1 >= σσTv  with first 

time derivative σσ && Tv = . To ensure stability the 
derivative of Lyapunov function is required to be 
negative definite so one can require that 

( ) 0<−== σΨσσσ TTv && . For ( ) 0<−=− δρvT σΨσ  
with 0>ρ  and 12

1 <≤ δ  stability conditions are 
satisfied and finite time convergence to sliding mode 
manifold is obtained. From ( )σΨσσσ TTv −== &&  one 
can derive ( )( ) 0=+ σΨσσ &T  and consequently 
control should be selected to satisfy 

( ) 00 =+ ≠σσΨσ& . By differentiating (3) and 
substituting (1) under the assumption that 

nxnℜ∈QC,  are constant and ( ) 11 −−QM  exists, from  
( )( ) ( ) ( ) 01

0
=+−=+ −

≠
σΨFFQMσΨσ eqσ

&  one can find  
control input as in (4)  
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         (4) 

The eqF  is the control input determined from 
algebraic equation 0=σ& . This value of the control 
input will maintain solution 0=σ  for zero initial 
conditions. Obviously the structure of control input 
depends on the selection of ( )σΨ , which should be 
determined in such a way so to ensure stability 
conditions for solution 0=σ  are guarantied and 
that 0→σ .  
 
Equations of motion for system (1) with control (4)  
enforcing stable solution  (3) can be derived as  
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   (5) 

Since matrices nn×ℜ∈Q  and nn×ℜ∈M are full rank 
matrices than ( ) 111 −−− = MQQM  and (4) can be 
rewritten as  

( ) ( )1 ;    des ref des− ⎡ ⎤= − − =⎣ ⎦q Q ξ Cq Ψ σ q q&& & && &&                      (6) 

Motion (6) of the system (1), (2) under control (4) 
depends on selection of the manifold (3) (matrices C 
and Q) and the reference configuration 1nxref ℜ∈ξ . 

Closed loop system realizes an acceleration 
controller with desired acceleration defined by 

( ) ( )[ ]dtref
dt
d ∫Ψ−−− σCqξQ 1 . For  ( ) DσσΨ =  and    

refrefref qQCqξ &+=  motion (6) becomes  

( )[ ]
( )( ) ( )

0Dσσ
qqDCQqqDQCQqq

DσqCqQCqq
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−−−+−=

−−+=
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&&&&&&

&&&&
refrefref

refref
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Motion (7) depend only on the selection of the design 
parameters (matrices C, Q and D) and if matrix 

nn×ℜ∈D is selected diagonal and large enough the ε  
vicinity of the manifold (3) will be reached fast and 
then motion of the system will mostly determined by 
predominant pole defined by matrices C and Q. If 
control is selected in such a way that the manifold (3) 
is reached in finite time and sliding mode motion 
instead of n poles defined by D will have n poles in 
origin and the motion will be governed by 

0qQqC =Δ+Δ & . qqq −=Δ ref

 so that 
0qqq →−=Δ ref

 when ∞→t . Equations (7) shows that 
in ideal case motion of the system will not be 
modified when it comes in contact with environment, 
thus this solution is suitable for solving position-
tracking problem of mechanical systems. 
 
Equivalent control 

eqF is smooth bounded function 
and one can resort of using its value in ( )Tkt 1−=  
instead of the exact value at kTt =  and thus have 
some approximation it. The value of the 

eqF  at the 
end of interval ( )Tkt 1−=  can be determined from  
the projection of the system motion in manifold (3) 

( ) ( )
( )TkteqTkt −=

−

−=
−=

1

1

1
FFQMσ&  as ( ) ( ) ( )( )111 1 −−−=− − kkkeq σMQFF &  

and with ( ) ( ) ( )( ) ( )2/11 ToTkkk +−−=− σσσ&  one have 
( ) ( ) ( ) ( )( )( )111 11 −−−−=− −− kkTkkeq σσMQFF  approximation 

error of o(T2) order. Now approximated control input 
can be expressed as  

( ) ( ) ( )
( ) ( ) ( ) ( )( )( ) ( )( )

1

1 1 1

1

1 1

eq k

k

k k

k sat k T k k

−

− − −
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F F MQ σ σ MQ Ψ σ
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here ( )•sat  stands for saturation function. In 
implementation of algorithm (8) information on 
control,  σ  at ( )Tkt 1−=  and at t=kT and inertia 
matrix are needed. In order to verify the validity of 
approximation the evaluation of the σ  within 
sampling interval ( )TktkT 1+≤≤  should be 
considered. By inserting control (8) into (1) and 
assuming that its value is within unity gain of the 
saturation function, one has system dynamics at t=kT 
as 

( ) ( ) ( )( ) ( ) ( ) ( )( )( )kkkkkk exteq q,qNFσΨMQFqM &&& +−−−= −11        (9) 
By adding and subtracting ( )keqF  to the right hand 
side of (8) after some algebra one can obtain the 
following relation 

( ) ( )( ) ( ) ( )( ) ( ) ( )( )1 1k k k k k keq eq
−=− + − − − −Mq MQ Ψσ Gq f F F&&& &  (10) 

Taking into account ( ) ( ) ( ) ( )kkkk refξqCqQσ &&&&& −+= , (10) 
can be rearranged to 



     

 
( ) ( )( ) ( ) ( )( )11 −−−=+ − kkkk eqeq FFQMσΨσ&        (11) 

 
The inter-sampling change of ( )tσ  can be evaluated  

( ) ( ) ( )( ) ( ) ( )( )∫∫
+

−
+

−−+−=−+
ττ

τ
kT

kT
eqeq

kT

kT
dtkkdttkTkT 11 FFQMσΨσσ      (12) 

Since equivalent control is smooth function it is easy 
to show, by inspection of integral 

( )( )
( )

( )2

0 1

1 Todtd
T kT

Tk
eq =−=Δ ∫ ∫

−

−−

−
λ

λ
λλFQM & , that the error in Δ  

introduced by the control input approximation is of 
the ( )2To=Δ  order and that Δ  remains within the 

( )2To  boundary layer during inter-sampling interval 
( )TktkT 1+≤≤ . The thickness of the boundary 

layer of sliding mode manifold is defined by 
( ) ( ) ( )( ) ( )2TodttkTkT

kT

kT

+−=−+ ∫
+τ

τ σΨσσ  and in obvious 

way depends on the selection of ( )( )tσΨ . By changing 
the reference configuration of the 
system ( )refrefref q,qξ & , system’s motion can be 
modified. Definition of control goal and behavior of 
the system is clearly resting on the selection of the 
reference configuration and its dependence on 
desired specification. In the following sections, we 
will concentrate on the selection of the reference 
configuration for problems of controlling systems 
required to satisfy certain functional relations (real or 
virtual). Assume that the overall external force 
consists of the disturbance dF  that should be rejected 
by the system controller and the interaction force 
between system and environment ( )eij qq,g  that 
should be maintained so that ijdext gFF += . As a 
control task assume the requirement of trajectory 
tracking and the modification of the system 
configuration in such a way that the desired 
interaction between system and environment is 
maintained. Since trajectory tracking is basic task in 
mechanical systems it will be natural to assume that 
function ( )refrefref q,qξ &  depends on the desired 
trajectory and that the trajectory should be modified 
is system is in contact with environment in order to 
maintain desired interaction. For such a behavior of 
the system (1) the desired manifold (3) should be 
changed to include the environmental interaction 
control. In addition, while in contact with the 
environment motion system is required to modify its 
trajectory in order to control interaction between 
system and environment. One possible structure that 
includes both requirements may be selected as in 
(13) 

( ) ( ){ }
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;
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ref
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ref ref ref ref ref
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    (13) 

The interaction control input ( )eFΔϑ  should be 
determined the same way as the control (8) to 
maintain stability of system motion in manifold 

( ) ( ) ( ){ }0qq,qq ==−= F
ref

F tFS σ&& F :, . Selection of 

manifold as in (13) leads to the proposed control (8) 
( ) ( ) ( ) ( ) ( )( ) ( )[ ]( )kkkTksatk σΨσσQMFF −−−−−= −−− 11 111

 and the only change is reflected in the calculation of 
the distance from manifold. ( )ijii gΔϑ  should have 
zero value if systems are not in interaction. For 
system (1), the sliding mode motion in the manifold 
(13) results in 

( ) ( ) ijij
ref Γggξqq,ξ +Δ=− ϑ&       (14) 

3. EXTENSION TO THE GENERAL SYSTEMS IN 
INTERACTIONS 

 
In the situation depicted above control modifies the 
behaviour of only one of the systems in interaction 
while motion of other system is treated as a 
disturbance. For motion control systems of particular 
interest systems configurations maintain desired 
functional relation (for example bilateral control or 
cooperating robots etc.). In such systems control 
should be selected to maintain a functional relation 
by acting on all of the subsystems. Similar situation 
is examined in so-called “function control” 
framework (Tsuji, and Ohnishi, 2005; Tsuji, 2006; 
Tsuji, et al., 2006), where the notion of system role 
“description on the requirement from a user to a 
robot” and its representation by “elementary 
functions” defined as “a minimum component of a 
system role“ is discussed and the following design 
procedure is suggested: (i) the system role is 
determined by a designer, (ii) the designer divides 
the system role into functions, (iii) a priority order of 
functions is determined, (iv) the transformation to a 
“function subspace” is derived, and (v) function-
based controllers are designed individually and back 
transformation is applied in order to determine actual 
control inputs.  

Assume a set of n single DOF motion systems 
each represented by ( ) iextiiiiiiii fftqqnqqmS −=+ ,,)(: &&&  

ni ,...,2,1=  or ( ) Σ−=+ dBFqqNqqMS t,,)(: &&& , 

nrankrankn ==ℜ∈ × MBq ,1 , vectors ΣdN, satisfy 
matching conditions. Assume also that required role 

1×ℜ∈ nΦ of the system S may be represented as a 
set of smooth linearly independent functions  

( ) ( ) ( )qqq nζζζ ,...,, 21  and role vector can be defined 

as ( ) ( )[ ]qq n
T ζζ ...1=Φ . Consider problem of designing 

control for system ( ) Σ−=+ dBFqqNqqMS t,,)(: &&&  such 

that role vector 1×ℜ∈ nΦ  tracks its smooth 

reference 1×ℜ∈ nrefΦ . Let sliding mode manifold 
nℜ∈Φσ  be defined as 

( ) ( ) ( ){ }0 : ==−= ΦΦΦΦ σΦ,ΦξΦΦ,ξqq, refrefrefS &&&        (15) 

By calculating [ ] qJqΦ q &&&
Φ∂

Φ∂ ==  with [ ]qJ ∂
Φ∂

Φ = ,  one 

can determine Σ+= dFBΦ ˆˆ&&  where BMJB 1−
Φ=ˆ  

and ( )( ) qJdqqNMJd &&& ΦΣ
−

ΦΣ +−−= t,,ˆ 1 . By 

introducing [ ] ΦΦ∂
∂ =Φ Qξ
&  and [ ] ΦΦ∂

∂ =Φ Cξ  projection of 



     

the system motion on manifold ΦS , can be 
expressed as ( )ref

dt
d

ΦΦΣΦ
Φ −++= ξΦCdFBQ &&ˆˆσ . With 

ref
ΦΦΣΦ −Φ+= ξCdd &&ˆˆ  and FBQF ˆ

ΦΦ = , it can be 

simplified as ΦΦΦ += dF ˆσ&  what represents a 
virtual plant described by n first order systems of the 
form iii dF ΦΦΦ += ˆσ&  ni ,...,1=  for which design of 
control iFΦ  is straightforward and the algorithm (7) 
or its modifications may be applied directly. If 
( ) ( ) 11ˆ −−

ΦΦ

−

Φ = BMJQBQ 1  exists then inverse 

transformation ( ) Φ

−

Φ= FBQF
1ˆ  gives control in the 

original state space. Since nn×ℜ∈M  and nn×ℜ∈B  
are square full rank matrices then one can determine 
conditions that matrices ΦJ  and ΦQ  should satisfy 

in order that ( ) 1−−
ΦΦ BMJQ 1  exists. Since 

nn
Φ

×
Φ ℜ∈BM,,QJ , , sufficient conditions for 

having unique solution for control F is 
( ) nrank Φ =ΦJQ .  

 
Model of 3 DOF parallel manipulator is shown in 
Fig. 1. Each of the legs can be described by 

( ),    1, 2,3i i i i i i disim x n x x F F i+ = − =&& & . Motion of 
the platform consists of the translational, which 
relates to the sum of the three legs positions and 
rotational motion with respect to some axis the 
simplest being defined by one leg length constant 
and the others varying in time so the rotation appears 
related to the difference in length of two legs. Based 
on this one can define the following functions to be 
controlled:  

1 2 3x x xε = + +     translation along z axis         (16) 

12 1 2x xε = −          rotation along AM3 axis        (17) 

13 1 3x xε = −          rotation along BM2 axis        (18) 

23 2 3x xε = −    rotation along CM1 axis         (19) 
 
The projection of the parallel mechanism motion on 
the subspace defined by these functions may be 
easily obtained as in the following forms: 
 
Translational movement of common mode 

1 2 3
1 2 3

1 1 2 2 3 3

1 1 1dis dis disF F FF F F
m m m m m m

ε = − + − + −&&       (20) 

3

123
1

, 1, 2,3,i disi
i

ii i

F Fu i d
m m=

= = =∑  

1 2 3 123 123 123u u u d u dε ε= + + − → = −&& &&                      (21)  
 
The dynamics on differential coordinates according 
to one of the rotating axis (AM3, BM2) are figured 
out as follows: 
 
Rotation through the AM3 axis 

1 2
12 1 2

1 1 2 2

1 1( )d is d isF FF F
m m m m

ε = − − −&&                    (22) 

12 1 2 12 12 12 12u u d u dε ε= − − → = −&& &&            (23) 

 
Rotation through the BM2 axis 

1 3
13 1 3

1 1 2 3

1 1( )dis disF FF F
m m m m

ε = − − −&&           (24) 

    13 1 3 13 13 13 13u u d u dε ε= − − → = −&& &&                        (25) 

Fig. 1 General structure of bilateral control system 
 
Following results presented in section 3 one should 
select such a set of functions so that transformation 
of control from functional space back to original 
space is unique. In our case we can select only three 
functions to be controlled at the same time. Assume 
we select ε, ε12, ε13 for which transformation matrix 
from original to function space can be written as in 
(26) and selected functions (or “virtual plants”) are 
defined as in (21), (23), (25).  

                   1 1 1
1 1 0
1 0 1

f
lT

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

                   (26)  

Since all “virtual plants” are of the second order the 
controller should be designed in such a way that 
sliding mode is enforced on the intersection of the 
manifolds Sεi (i=1,2,3) :  

( ) ( ) ( ){ }0 : ==−=
iiii ii

ref
iiS εεεε εεεε σ,ξ,ξqq, &&&  

Controllers that enforce sliding mode on each of the 
surfaces are easy to determine as in (8). In order to 
look at different scenarios in designing the 
controllers we have developed two computer 
simulation models to check the dynamic formulation 
of three-legged parallel manipulator and compare the 
performance of disturbance observer on functional 
coordinate and on robot coordinates. The structure of 
the control system is depicted in Fig. 2. For 
simulation of the proposed system three-legged 
parallel manipulator and Faulhaber 2642 012 CR 
series motor parameters (J=11*10-7kgm2, 
Kt=16.9Nm/A) are used, the parameters of sliding 
mode controller are Ku=10-5, D=50, C=30, g=500 
rad/s (cut off frequency of DOB), sampling time 0.1 
ms. 



     

4. SIMULATION RESULTS 
 
System responses are shown in robot space by Fig.2 
& Fig.3 and functional space by Fig.4 & Fig.5  for 
2x10-6xsin(t) m reference with band-limited white 
noise (Amplitude: 2x10-6). As translational 
movement of common mode and rotational motions 
of difference mode of three legs positions are shown 
in the figures. The simulation results show that 
performance of functional controllers is satisfactory. 
When we have disturbance in our functional space, 
controller performs better in function coordinate with 
disturbance observer. 

0 1 2 3 4 5
-2

0

2
x 10-6 ref/position

0 1 2 3 4 5
-2

0

2
x 10-6

[m
]

leg1+leg2+leg3

0 1 2 3 4 5
-1

0

1
x 10-5 leg1-leg2

0 1 2 3 4 5
-2

0

2
x 10-6

Time[s]

leg1-leg3

 
Fig. 2 Positions with disturbance 
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Fig. 3 Error and control output with disturbance  
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Fig. 4 Positions with disturbance 
 

5. CONCLUSIONS 
In this paper we presented a generalized approach to 
motion control system and a possibility project the 
system motion to a “functional space” in which a  
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Fig. 5 Error and control output with disturbance 

 
natural tasks of the system are presented (like move 
up, move down, role for this angle etc.). It has been 
shown that due to system structure design can be 
performed so to guaranty the tracking in the 
“function space”. The conditions for stability and 
integrity of such system design are found. As an 
example the manipulation of three-legged parallel 
manipulator is presented. 
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