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ABSTRACT
In this paper, model-based and model-free image based vi-
sual servoing (VS) approaches are implemented on a mi-
croassembly workstation, and their regulation and tracking
performances are evaluated. A precise image based VS re-
lies on computation of the image jacobian. In the model-
based visual servoing, the image Jacobian is computed via
calibrating the optical system. Precisely calibrated model
based VS promises better positioning and tracking per-
formance than the model-free approach. However, in the
model-free approach, optical system calibration is not re-
quired due to the dynamic Jacobian estimation, thus it has
the advantage of adapting to the different operating modes.
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1 Introduction

Visual servoing is one of the effective methods to compen-
sate the uncertainties in the calibration of systems, manip-
ulators and workspaces. Over the past years, intense re-
search effort in this area has resulted in a number of suc-
cessful applications. Two major approaches are presented
in the visual servoing (VS) literature, position-based and
image-based VS [1]-[5]. The first approach is based on
reconstruction of 3D model of the object and a calibrated
camera to provide feedback in the cartesian space. In the
second one, control values are defined in terms of image co-
ordinates and no estimation of robot pose is required. The
complex geometry of the observed micro-objects and high
numerical apertures of optical microscope which results in
small depth of field lead to a challenging 3D construction
and pose estimation problem. Therefore, an image based
approach is preferred in our micro visual servoing experi-
ments since it does not require an inverse perspective pro-
jection.

In this paper, model-based and model-free visual ser-
voing approaches are experimentally tested in point-to-
point positioning and trajectory following tasks. Since the
accuracy of image based VS depends on the computation of
the image Jacobian matrix, which relates the changes in the
cartesian pose to the corresponding changes in the visual

features, includes the intrinsic and extrinsic parameters of
the microscope-camera system. Thus, the calibration infor-
mation is vital for computation of the image Jacobian ma-
trix and thus the control design. On the other hand, model-
free visual servoing does not require a priori information of
the (robot + optical) system since the composite Jacobian,
i.e. product of robot and image Jacobians, is estimated dy-
namically [6]. Thus, model-free visual servoing approach
eliminates the dependence to the system parameters.

The paper is organized as follows: Section 2 defines
image based model-free and model-based visual servoing
along with controller synthesis. Section 3 introduces hard-
ware setup and real-time tracking algorithm, and presents
experimental results and discussions. Finally, Section 4
concludes the paper with some remarks.

2 Image Based Visual Servoing

Image based visual servoing approaches employ the fol-
lowing differential relation

ṡ= Jṙ (1)

wheres is a vector of visual features,J is the image Jaco-
bian matrix which is a function of the visual features and
intrinsic/extrinsic parameters of the visual sensor, andṙ is
a velocity screw in the task space.

Depending on the computation of the Jacobian ma-
trix, one can talk about model-based or model-free visual
servoing strategies. In the sequel, we will review these ap-
proaches.

2.1 Model Based Visual Servoing

Model based visual servoing implies analytical computa-
tion of the Jacobian matrix through the calibration of the
optical system.

To develop an analytical model of the Jacobian for
calibration purposes, let the objective frame coordinates of
an observed feature point bePo = (Xo,Yo,Zo). Locating
the image coordinate frame at the center of the CCD array
and assuming weak perspective projection, the undistorted
image coordinates (x′s,y′s) in objective frame are given as

x′s = MXo, y′s = MYo (2)



Figure 1. Ray Diagram of the Optical Model

where M = Top+ f
f+d is the total magnification of the opti-

cal system,f is the objective focal length,Top is the tube
length, andd is the working distance, as shown in Fig.
1. Since the lens radial distortion parameter (κ1) is very
small, the distorted image coordinates(xs,ys) in pixels can
be written as

xs≈ x′s =
M
sx

Xo, ys≈ y′s =
M
sy

Yo (3)

wheresx andsy are the effective pixel sizes.
The optical flow equations can be obtained by differ-

entiating (3) with respect to time

ẋs =
M
sx

Ẋo, ẏs =
M
sy

Ẏo (4)

Assume that the pointP is rigidly attached to the
end effector of the manipulator and moves with an angu-
lar velocity Ωo = (ωx,ωy,ωz) and a translational velocity
Vo = (Vx,Vy,Vz). The motion in the objective frame is given
by
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(5)
Substituting (5) into (4) and using (3) implies

ẋs =
M
sx

Vx +
M
sx

Zoωy− sy

sx
ysωz (6)

and

ẏs =
M
sy

Vy− M
sy

Zoωx +
sx

sy
xsωz (7)

In light of (6) and (7), the Jacobian matrix is obtained as

J =

(
M
sx

0 0 0 M
sx

Zo − sy
sx

ys

0 M
sy

0 −M
sy

Zo 0 sx
sy

xs

)
(8)

2.2 Model-Free Visual Servoing

Let θ denote the vector of joint variables of the robot. The
error function in the image plane is defined as

e(θ , t) = s(θ)−s∗(t)

wheres∗(t) ands(θ) denote the positions of a moving tar-
get and the end-effector at timet, respectively.

Since the system (robot+optical microscope) model
is assumed to be unknown, a recursive least-squares (RLS)
algorithm [6], main steps of which are briefly summarized
below, is used to estimate the composite JacobianJ = JI JR,
whereJI and JR are the image and the robot Jacobians.
Jacobian estimation is accomplished by minimizing the
following cost function, which is a weighted sum of the
changes in the affine model over time,

εk =
k−1

∑
i=0

λ k−i−1‖∆mki‖2 (9)

where
∆mki = mk(θi , ti)−mi(θi , ti) (10)

where mk(θ , t) is an expansion ofm(θ , t), which is the
affine model of the error functione(θ , t), about thekth data
point as follows:

mk(θ , t) = e(θk, tk)+ Ĵk(θ −θk)+
∂ek

∂ t
(t− tk) (11)

In light of (11), (10) becomes

∆mki = e(θk, tk)−e(θi , ti)−
∂ek

∂ t
(tk− ti)− Ĵkhki, (12)

wherehki = θk− θi , the weighting factorλ satisfies0 <
λ < 1, and the unknown variables are the elements ofĴk.

Solution of the minimization problem yields the fol-
lowing recursive update rule for the composite Jacobian:

Ĵk = Ĵk−1+(∆e− Ĵk−1hθ−
∂ek

∂ t
ht)(λ +hT

θ Pk−1hθ )−1hT
θ Pk−1

(13)
where

Pk =
1
λ

(Pk−1−Pk−1hθ (λ +hT
θ Pk−1hθ )−1hT

θ Pk−1) (14)

andhθ = θk−θk−1, ht = tk−tk−1, ∆e= ek−ek−1, andek =
sk− s∗k, which is the difference between the end-effector
position and the target position atkth iteration. The term
∂ek
∂ t predicts the change in the error function for the next

iteration, and in the case of a static camera it can directly
be estimated from the target image feature vector with a
first-order difference.

2.3 Visual Controller Design

Discrete-time equivalent of equation (1) can be written as

s(k+1) = s(k)+TJ(k)u(k) (15)

wheres∈R2N is the vector of image features being tracked,
N is the number of the features,T is the sampling time of
the vision sensor, andu(k) is the velocity vector of the end
effector.

Controller synthesis in this paper is done by optimiz-
ing the following cost function

E(k+1) = (s(k+1)−s∗(k+1))TQ( f (k+1)−s∗(k+1))



+uT(k)Lu(k) (16)

whose solution yields the following control input

u(k) =−(TJT(k)QTJ(k)+L)−1TJT(k)Q(s(k)−s∗(k+1))
(17)

whereQ andL are adjustable weighting matrices.

3 Experimental Results and Discussion

The Microassembly Workstation is shown in Fig. 2. It
consists of PI M-111.1 high-resolution micro-translation
stages with50 nm incremental motion inx, y andz posi-
tioning axes, and is controlled by a dSpace ds1005 motion
control board. A Zyvex microgripper, with a100µm open-
ing gap is rigidly attached to the translational stage to grasp
and pick objects.

Nikon SMZ 1500 stereomicroscope coupled with
a Basler A602fc camera, orthogonal to XY plane with
9.9 µm× 9.9 µm cell sizes was utilized to provide vi-
sual feedback. The microscope has1.6X objective and
additional zoom. Zoom levels can be varied between
0.75X−11.25X, implying 15 : 1zoom ratio.
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Figure 2. Microassembly Workstation

3.1 Calibration Results

For model-based visual servoing, an accurate calibration
of the optical system is required and it was accomplished
through a parametric model [7]. A round calibration pattern
(Fig. 3) is used to establish the correspondence between the
world and image coordinates under1X and4X zoom levels.
The center coordinates of the circles are calculated through
a least square solution.

Computed extrinsic parameters (rotation anglesα, β ,
γ; components of the translation vector,Tx, Ty, Tz) and in-
trinsic parameters (total magnificationM, objective focal

Figure 3. Circular Calibration Pattern

length f , tube lengthTop, working distanced and radial
distortion coefficientκ1), and the3D reprojection errors
for the calibration are tabulated in Table 1 and Table 2 re-
spectively. It can be observed from Table 1 that the radial
distortion coefficient is very small. This proves that the mi-
croscope lenses are machined very precisely. Moreover,β
andγ angles have non-zero values which can be resulted
from a mechanical tilt of the microscope stage or from an
inaccurate design of the calibration pattern.

Table 1. Computed Extrinsic and Intrinsic Parameters

1X 4X
α (degrees) 90.7144 88.9825
β (degrees) -2.7912 2.6331
γ (degrees) 175.9179 0.9088
Tx (µm ) -781.4 76.755
Ty (µm ) -55.002 -156.58
Tz (µm ) 204900 36370

M 1.5893 6.3859
d (µm ) 78750 4955.5
f (µm ) 126150 31415

Top (µm ) 200490 200610
κ1 (µm−2 ) −8.4408×10−10 1.5399×10−11

Table 2. 3D Reprojection Errors for1X and4X Zoom

1X 4X
Mean Error (µm) 0.2202 0.0639

Standard Deviation (µm) 0.3869 0.1321
Maximum Error (µm) 1.7203 0.5843

3.2 Visual Servoing Results

In order to implement visual servoing algorithms real-time
measurement of the image features are needed. This is
achieved by the ESM algorithm [8], which is based on the
minimization of the sum-of-squared-differences (SSD) be-
tween the reference template and the current image using
parametric models.

Model-based and model-free visual servoing (VS) al-
gorithms were experimentally compared in microposition-



ing and trajectory following tasks at1X and4X zoom lev-
els. Micropositioning VS results are plotted in Figs. 4-
7, and the trajectory following results for sinusoidal and
square trajectories are depicted in Figs. 8-11.
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Figure 4. Step responses and control signals of model-
based VS at1X

Regulation performances of both approaches for mi-
cropositioning tasks in terms of settling time (ts), accuracy
and precision are tabulated in Table 3. In the trajectory fol-
lowing task, tracking performances of both approaches for
square and sinusoidal trajectories are presented in Tables
4-5.

The experimental results illustrate that both of the vi-
sual servoing approaches ensure convergence to the desired
targets with sub-micron error when time considerations are
not primarily important. When the time performance has
priority for the task, the model-based, so called calibrated
approach performs better than model-free one in terms of
settling time, accuracy and precision (Table 3). Moreover,
the tracking performance of the calibrated approach is more

Table 3. Micropositioning for model-based and model-free
VS

Model-based Model-free
Step ts Acc. Prec. ts Acc. Prec.
(pix) (s) (µm) (µm) (s) (µm) (µm)

1x 50 0.80 9.86 2.71 1.6 8.60 3.65
4x 50 0.45 1.35 0.57 1.6 4.74 1.92
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Figure 5. Step responses and control signals of model-free
VS at1X
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Figure 6. Step responses and control signals of model-
based VS at4X
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Figure 7. Step responses and control signals of model-free
VS at4X
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Figure 8. Actual sinusoidal trajectory and resulting track-
ing error in model-based VS at1X

accurate and precise than the model-free one. Thus, the cal-
ibrated method is more preferable, when accurate and pre-
cise manipulation are strongly demanded in a limited time.
However, at small magnifications such asM = 1.5893and
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Figure 9. Actual sinusoidal trajectory and resulting track-
ing error in model-free VS at1X
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Figure 10. Actual square trajectory and resulting tracking
error in model-based VS at1X

M = 6.3859 over a large workspace (4× 3 mm2), only a
coarse microvisual servoing task could be assumed. There-
fore, the accuracy and precision of the model-free approach
in the regulation and tracking problems are also acceptable,
and the difference between two approaches are not that sig-
nificant.
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Figure 11. Actual square trajectory and resulting tracking
error in model-free VS at1X

Table 4. Trajectory tracking for model-based VS

Square Sinusoidal
Acc. Prec. Acc. Prec.
(µm) (µm) (µm) (µm)

1x 5.93 2.28 4.79 2.37
4x 1.47 1.19 1.12 1.31

Table 5. Trajectory tracking for model-free VS

Square Sinusoidal
Acc. Prec. Acc. Prec.
(µm) (µm) (µm) (µm)

1x 8.65 2.70 6.14 2.74
4x 1.64 1.12 1.17 0.57

4 Conclusion

Model-based and model-free visual servoing were ex-
perimentally evaluated in micropositioning and trajectory
tracking tasks. In these experiments, model-based ap-
proach performed better in terms of accuracy, precision and
settling time than the model-free approach, however, this
difference does not necessarily imply a superiority for a
coarse manipulation strategy. In addition, the model-free
visual servoing is advantageous due to the fact that there is
not a requirement of the system model in the implementa-
tion of the tasks and it can be adapted to different operating
modes through a dynamic estimation of the composite Ja-
cobian.
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