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Abstract— In this paper, we explore model free visual servo-
ing algorithms by experimentally evaluating their performances
for various tasks performed on a microassembly workstation
developed in our lab. Model free or so called uncalibrated
visual servoing does not need the system calibration (microscope-
camera-micromanipulator) and the model of the observed scene.
It is robust to parameter changes and disturbances. We tested its
performance in point-to-point positioning and various trajectory
following tasks. Experimental results validate the utility of model
free visual servoing in microassembly tasks.

I. INTRODUCTION

Fabrication of tiny devices has become extremely important
and much recent work has focussed on how to manipulate
and assemble microparts using microassembly strategies. Mi-
croassembly lies between conventional (macro-scale) assem-
bly, parts with dimensions greater than one millimeter, and
the emerging field of nanoassembly that contain parts on
the molecular scale, i.e. less than a micrometer [1]. Since
microassembly is a relatively new area and suffers from several
problems such as inefficiency, unreliability, less throughput
and high costs, it has induced the evolution of visually guided
microrobotic systems to overcome such issues. In order to
ensure desired properties, the real-time visual feedback control
or so called visual servoing strategies can effectively and
economically be used in microrobotic systems.

As detailed in [2], visual servoing strategies can be classified
into two broad categories: position-based and image-based
visual servoing. In position-based visual servoing, the error is
defined in the task space which necessitates estimation of the
pose with known camera and manipulator model, while image-
based one does not need estimation of the pose. Image-based
approach is robust to system modeling and camera calibration
errors and computationally efficient, since the error is defined
over the features on the image plane. Image Jacobian matrix
was introduced by Weiss in image-based visual servoing to
relate changes in image features to changes in the pose [3]. To
compute image Jacobian one needs calibration of the system
which is not always an easy task.

Model free or so called uncalibrated visual servoing pro-
vides an online estimation to the Jacobian matrix without
any knowledge of the optical and robotic system. So far it
has been mostly used in macro domain robotic applications.
However, it can provide more flexibility in microsystems since
the calibration of the optical system is a tedious and error

prone process, and recalibration is required at each focusing
level of the optical system. Hosoda and Asada have estimated
the Jacobian matrix using an extended least squares algorithm
with exponential data weighting [4]. Jagersand employed a
Broyden’s method in the Jacobian estimation [5]. Piepmeier
used a recursive least squares (RLS) estimate and a dynamic
Quasi-Newton method for model free visual servoing [6]-[7].
Qian exploited the Kalman filtering technique to estimate the
Jacobian elements [8]. Lv has employed the Kalman filtering
with fuzzy logic adaptive controller to ensure stable Jacobian
estimation [9].

In this paper, we employ a specific model free visual
servoing algorithm [6]-[7] in experiments on a microassembly
workstation developed in our microsystem lab and evaluate its
performance for various positioning and trajectory following
tasks. Model free visual servoing which we employ in this
paper, consists of a recursive least-square (RLS) dynamic
Jacobian estimator proposed by Piepmeier in [6]-[7], and two
different controllers: a Dynamic Gauss-Newton controller [6]-
[7] and an Optimal controller similar to the one in [10].

The remainder of this paper is organized as follows: In
Section II, we briefly describe the visual tasks to be performed.
Visual tracking is also explained in this section. Section III
presents dynamic Jacobian estimation and visual controllers
for image based visual servoing. Section IV is on experimental
results and discussions. Finally Section V concludes the paper
with some remarks.

II. VISUAL TASK DESCRIPTION AND TRACKING

We would like to locate a microgripper with respect to
a static target or to make it follow desired trajectories by
controlling its velocity using model free visual servoing. In
order to perform these tasks we shall need to measure, in
the image plane, the motion of the features related to the
microgripper. This necessitates a tracking algorithm which
must be efficient, accurate and robust in order to track features
in real-time or near video rate. In this work, we used the
efficient second-order minimization (ESM) algorithm [11]
which is based on minimizing the sum-of-squared-differences
(SSD) between a given template image and the current image.
Theoretically, amongst all standard minimization algorithms,
the Newton method has the highest local convergence rate
since it is based on a second-order Taylor series of the SSD.
However, the Hessian computation in the Newton method is



time consuming. In addition, if the Hessian is not positive
definite, convergence problems occur. The ESM method has
two main advantages. First, it has a convergence rate similar to
the Newton method, but the ESM does not need to compute
the Hessian because it uses only first order derivatives, and
second it avoids local minima close to the global one. It is
shown that ESM has a higher convergence rate than other
minimization techniques. The algorithm is intrinsically robust
to partial occlusion and illumination changes. Strong camera
displacements can be handled in real-time by the ESM visual
tracking. A more complete description of the algorithm and
its implementation can be found in [11].

III. MODEL FREE VISUAL SERVOING

We consider image-based visual servoing where the error
signal that is directly measured in the image is mapped to
the robot actuators’ command input. Visual controllers are
designed to determine the joint velocities.

A. Background and Problem Formulation

Let θ ∈ �n, f ∈ �m and x ∈ �6 denote the vectors of joint
variables, image features obtained from visual sensors and the
pose of end-effector, respectively. The relation between θ and
x is x = x(θ). Differentiating it with respect to time implies

ẋ = JR(θ)θ̇ (1)

where JR(θ) = ∂x/∂θ ∈ �6×n is the robot Jacobian which
describes the relation between the robot joint velocities and the
velocities of its end-effector in Cartesian space. The relation
between f and x is given as f = f(x) and its differentiation
with respect to time yields

ḟ = JI(x)ẋ (2)

where JI(x) = ∂f/∂x ∈ �m×6 is the image Jacobian
which describes the differential relation of the image features
and position and orientation of the robot end-effector. The
composite Jacobian is defined as

J = JIJR (3)

where J ∈ �m×n is a matrix which is the product of
image and robot Jacobian. Thus, the relation between joint
coordinates and image features is given by

ḟ = Jθ̇ (4)

The error function in the image plane for a moving target
at position f∗(t) and an end-effector at position f(θ) is given
as

e(θ, t) = f(θ) − f∗(t) (5)

where f∗(t) represents desired image features at time t.

B. Dynamic Jacobian Estimation

Since the system (microgripper and optical microscope)
model is assumed to be unknown, a recursive least-squares
(RLS) algorithm [6] is used to estimate the composite Jacobian
J . This is accomplished by minimizing the following cost
function, which is a weighted sum of the changes in the affine
model over time,

εk =
k−1∑

i=0

λk−i−1‖∆mki‖2 (6)

where
∆mki = mk(θi, ti) − mi(θi, ti) (7)

with mk(θ, t) being an expansion of m(θ, t), which is the
affine model of the error function e(θ, t), about the kth data
point as follows:

mk(θ, t) = e(θk, tk) + Ĵk(θ − θk) +
∂ek

∂t
(t − tk) (8)

In light of (8), (7) becomes

∆mki = e(θk, tk) − e(θi, ti) − ∂ek

∂t
(tk − ti) − Ĵkhki, (9)

where hki = θk − θi, the weighting factor λ satisfies 0 < λ <
1, and the unknown variables are the elements of Ĵk.

Solution of the minimization problem yields the following
recursive update rule for the composite Jacobian:

Ĵk = Ĵk−1+(∆e−Ĵk−1hθ−∂ek

∂t
ht)(λ+hT

θ Pk−1hθ)−1hT
θ Pk−1

(10)
where

Pk =
1
λ

(Pk−1 − Pk−1hθ(λ + hT
θ Pk−1hθ)−1hT

θ Pk−1) (11)

and hθ = θk − θk−1, ht = tk − tk−1, ∆e = ek − ek−1,
and ek = fk − f∗

k , which is the difference between the end-
effector position and the target position at kth iteration. The
term ∂ek

∂t predicts the change in the error function for the next
iteration, and in the case of a static camera it can directly be
estimated from the target image feature vector with a first-
order difference:

∂ek

∂t
∼= −f∗

k − f∗
k−1

ht
(12)

The weighting factor is 0 < λ ≤ 1 and when close to 1
results in a filter with a longer memory. The Jacobian estimate
is used in the visual controllers to determine the joint variables
θk that track the target.

C. Design of Visual Controllers

1) Dynamic Gauss-Newton Controller: The dynamic
Gauss-Newton method [6] minimizes the following time vary-
ing objective function

E(θ, t) =
1
2
eT (θ, t)e(θ, t) (13)



By minimizing above objective function it computes the joint
variables iteratively as follows:

θk+1 = θk − (ĴT
k Ĵk)−1ĴT

k (ek +
∂ek

∂t
ht) (14)

Control is defined as

uk+1 = θ̇k+1 = −KpĴ
†
k(ek +

∂ek

∂t
ht) (15)

where Kp and Ĵ†
k are some positive proportional gain and

the pseudo-inverse of the estimated Jacobian at kth iteration,
respectively.

2) Optimal Controller: Equation (4) can be discretized as

f(θk+1) = f(θk) + T Ĵkuk (16)

where T is the sampling time of the vision sensor and uk = θ̇k

is the velocity vector of the end effector. An optimal control
law as in [10] can be developed based on the minimization of
an objective function, which penalizes the pixelized position
errors and the control energy as:

Ek+1 = [fk+1 − f∗
k+1]

T Q[fk+1 − f∗
k+1] + uT

k Luk (17)

where Q and L are the weighting matrices. The resulting
optimal control input uk can be derived as

uk = −(T ĴT
k QTĴk + L)−1T ĴT

k Q[fk − f∗
k+1] (18)

Since there is no standard procedure to compute the weight-
ing matrices Q and L, they are adjusted to obtain desired
transient and steady state response.

IV. EXPERIMENTS

A. System Setup

Our microassembly workstation consists of a Nikon
SMZ1500 optical stereomicroscope that has a CCD camera
module adapter onto which a Basler A602fc camera with
9.9µm × 9.9µm cell sizes is mounted. The microscope has
1.6X objective and additional zoom. Zoom levels can be varied
between 0.75X-11.25X, implying 15 : 1 zoom ratio. Fig. 1
shows the complete microassembly system. The gripper that
was used in the experiments is a Zyvex microgripper with
an opening gap of 100µm and it is rigidly fastened to a PI
M-111.1 high-resolution micro-translation stage with 50nm
incremental motion in x, y and z positioning axes (see Fig. 2).
The controllers for linear stages were implemented on dSpace
ds1005 motion control board which steers the microgripper.
The visual tracking algorithm (ESM) accomplished to track a
50 × 50 window up to 250 pixels/sec velocity at 33 Hz.

B. Tasks

Experiments were conducted on our microassembly station
and visual feedback has been provided through coarse visual
path of the microscope. In experiments, visual servoing was
accomplished with dynamic Gauss-Newton and Optimal con-
trollers for micropositioning and trajectory following tasks at
1X and 4X zoom levels. Fig. 3 depicts the microgripper for
two different zoom levels.

Fig. 1. Microassembly workstation and attached visual sensors

Fig. 2. Microgripper mounted on linear stages in assembly workspace

Fig. 3. Views of microgripper at 1X and 4X

Last two columns of Table I show the area in mm2 of
the microscopic view and the effective pixel size (resolution)
for the zoom levels indicated in the first column. All exper-
imental outcomes were assessed in terms of accuracy and
precision. Accuracy and precision values were determined as
the mean and the standard deviation of the error-norms. To
estimate initial microscopic system Jacobian, each linear stage
is successively moved by a small amount and the change of



microgripper position in image is used to build its components.
The microgripper is then servoed in workspace for a while to
ensure convergence of the Jacobian to its true values.

TABLE I

Z Area ∆P
(mm2) (µm)

1X 4 × 3 6.18
4X 1 × 0.75 1.55

1) Micropositioning: In this task the microgripper was sent
to a desired position from an arbitrary initial position by
giving step inputs of 50 pixels both in x and y directions
as references. This corresponds to 70.8 pixels from the initial
position. Results of these experiments for the Dynamic Gauss-
Newton and the Optimal control, are tabulated in Tables II
and III where Z, {Kp, Q, L}, Step, ts, Acc. and Prec.
represent zoom level, control gains, step input, settling time,
accuracy and precision, respectively. The positioning errors
were calculated after the response was settled and remained
in 3% of its final value. Figs. 4 and 5 demonstrate the step
responses and the corresponding Optimal control signals for a
trial under 1X and 4X zoom levels .

TABLE II

DYNAMIC GAUSS-NEWTON CONTROL RESULTS FOR MICROPOSITIONING

Z Kp Step ts Acc. Prec.
(pix) (sec) (µm) (µm)

1X 4 50 1.6 4.37 1.32
4X 2 50 3 2.81 1.44

TABLE III

OPTIMAL CONTROL RESULTS FOR MICROPOSITIONING

Z Q L Step ts Acc. Prec.
(pix) (sec) (µm) (µm)

1X 0.9 0.05 50 1.6 8.60 3.65
4X 0.6 0.4 50 1.6 4.74 1.92

2) Trajectory Following: Apart from micropositioning, the
same model free visual servoing was tested in trajectory
following tasks with square, circle and sine trajectories. A
linear interpolator was used to generate midway targets to
make the microgripper pursue them along these reference
trajectories. The upshots for these trials are depicted in Tables
IV and V. The tracking error was computed as the distance
between the microgripper and the current midway target at
each frame. Figs. 6, 7 and 8 depict results of trajectory
following experiments and the error-norms versus time graphs.
Performance versus microassembly tasks for two controllers
are also depicted in Figs. 9 and 10 where each ellipse defines
the accuracy (center of the ellipse) and the precision (half
length of the major axis of the ellipse) of the performed task.

C. Discussions

It can be seen from the presented tables and graphs that
model free visual servoing performs positioning and trajectory
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Fig. 4. Step responses and optimal control signals at 1X
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Fig. 5. Step responses and optimal control signals at 4X
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Fig. 6. Square trajectory and the tracking error using optimal control at 1X
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Fig. 7. Circle trajectory and the tracking error using optimal control at 1X

240 260 280 300 320 340 360 380 400 420

180

200

220

240

260

280

300

320

x (pixels)

y 
(p

ix
el

s)

Sine trajectory following

0 50 100 150 200
0

0.5

1

1.5

2

2.5

3

3.5

t (sec)
er

ro
r 

(p
ix

el
s)

Tracking error vs time.

Fig. 8. Sine trajectory and the tracking error using optimal control at 1X

TABLE IV

DYNAMIC GAUSS-NEWTON CONTROL RESULTS FOR TRAJECTORY

FOLLOWING

Z (µm) Square Circle Sine
Acc. 3.78 24.87 11.36

1X Prec. 3.43 4.62 5.87
Acc. 1.45 6.08 2.86

4X Prec. 1.45 2.95 1.85

TABLE V

OPTIMAL CONTROL RESULTS FOR TRAJECTORY FOLLOWING

Z (µm) Square Circle Sine
Acc. 8.65 21.05 6.14

1X Prec. 2.70 2.90 2.74
Acc. 1.64 3.30 1.17

4X Prec. 1.12 1.17 0.57

following tasks with micron accuracies. On the average, the
tasks were achieved with 5µm and 3µm accuracies for po-
sitioning and with 12µm and 3µm accuracies for trajectory
following at 1X and 4X zoom levels, respectively. Upon
comparison of controllers, we see that the performance of
Dynamic Gauss-Newton is better than the Optimal control in
linear motions (positioning and square trajectory following)
while Optimal controller performs better than the previous
one in nonlinear motions (circle and sine trajectory following).
Furthermore, task precision for Dynamic Gauss-Newton con-
trol is worse than that of Optimal control at both zoom levels.
If time considerations are important for the tasks, uncalibrated
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visual servoing is more sluggish than the calibrated one.

V. CONCLUSION

In this paper, we have investigated and experimentally vali-
dated the use of model free visual servoing in micropositioning
and trajectory following tasks. Model free servoing has the
advantages of carrying out a task without requiring a model
of the system and adapting itself to different operating modes
through a dynamic estimation of the composite Jacobian.
Experimental results show that positioning and trajectory fol-
lowing tasks can be performed in a robust manner with micron
accuracies. The performance of model free visual servoing
has been evaluated with two different controllers. It has
been observed that for linear motion Dynamic Gauss-Newton
controller shows slightly better performance, while Optimal
controller does better job for the rest of the trajectories. Since
the objective of this study was to demonstrate the potential of

model free visual servoing in microworld with the advantages
it has in macro domain, we did not try to force the limits of
visual servoing.
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