
AREA-TIME PRODUCT EFFICIENT RNS POLYNOMIAL BASE
EXTENSION ON FPGA

by
SELİM KIRBIYIK

Submitted to the Graduate School of Engineering and Natural Sciences
in partial fulfilment of

the requirements for the degree of Master of Science

Sabancı University
July 2025

AREA-TIME PRODUCT EFFICIENT RNS POLYNOMIAL BASE
EXTENSION ON FPGA

Approved by:

Prof. ERKAY SAVAŞ .
(Thesis Supervisor)

Prof. ÖZCAN ÖZTÜRK .

Assoc. Prof. SUJOY SINHA ROY .

Date of Approval: July 22, 2025

Selim Kırbıyık 2025 ©

All Rights Reserved

ABSTRACT

AREA-TIME PRODUCT EFFICIENT RNS POLYNOMIAL BASE EXTENSION
ON FPGA

SELİM KIRBIYIK

Computer Science and Engineering M.Sc. Thesis, July 2025

Thesis Supervisor: Prof. Erkay Savaş

Keywords: FPGA, FHE, RNS, BFV, accelerator

Homomorphic Encryption (HE) allows us to perform privacy-preserving processing
of data by computing on ciphertexts. Using HE can eliminate the trust required to
offload computation to third parties that have more scalable computational power.
A barrier to adopting HE in more practical processing of data is its inherent compu-
tational complexity. Current HE schemes such as Brakerski-Fan-Vercauteren (BFV)
can be accelerated through loosely coupled accelerator devices to accommodate the
performance requirements of even more applications. Developing an accelerator for
HE requires implementation of algorithms that have irregular memory accesses, such
as Number Theoretic Transform (NTT). Even after accelerating the NTT algorithm,
the communication overhead between the host and the device offsets some of the
benefits of this acceleration. To achieve further performance gains, the implemen-
tation of a larger set of arithmetic operations is required. One such operation is
base extension, needed when the Residue Number System (RNS) is utilized to per-
form efficient arithmetic of larger integers. For example, the modulus used for the
ciphertext Q is chosen as 1747-bits to satisfy the 128-bit security level with ring
dimension N = 216. Utilizing RNS, we can choose 28×64-bit primes or 55×32-bit
primes to satisfy the required parameters. During homomorphic multiplication, our
results may not fit within the range afforded by the current RNS base. Then, a base
extension is required before the operation to increase the representation range. In
a complete HE accelerator, the NTT unit produces residues that will be consumed
by the base extension unit and vice versa to compute homomorphic multiplication
operations on the accelerator device. By not communicating back to the host, the
data movement overheads will be avoided. Our base extension implementation is

iv

optimized for its Area-Time Product (ATP) metric for HE accelerators that have
multiple units competing for device programmable logic area. We present a compile-
time configurable hardware generator for exact base extension with parameters for
the available memory bandwidth on the device. The design features a scalable archi-
tecture that decouples performance from the underlying base extension arithmetic.
A compile-time tunable throughput parameter can increase the performance of the
operation at the cost of additional logic area. We provide our Field Programmable
Gate Array (FPGA) utilization results for ring sizes from 212 to 216. We com-
pare our base extension architecture to architectures available in the literature. We
demonstrate comparisons with the state-of-the-art open source HE software library
OpenFHE against our FPGA implementation and show that our implementation
achieves a ×10−17 speedup over the software implementation.

v

ÖZET

ALAN-ZAMAN FAKTÖRÜ AÇISINDAN VERİMLİ RNS POLİNOM TABAN
GENİŞLETME FPGA DONANIMI

SELİM KIRBIYIK

Bilgisayar Bilimleri ve Mühendisliği Yüksek Lisans Tezi, Temmuz 2025

Tez Danışmanı: Prof. Dr. Erkay Savaş

Anahtar Kelimeler: FPGA, FHE, RNS, BFV, hızlandırıcı

HE, şifreli metinler üzerinde hesaplama yaparak verilerin gizliliğini koruyan işlem-
ler gerçekleştirmemizi sağlar. HE kullanımı, daha ölçeklenebilir hesaplama gücüne
sahip üçüncü taraflara hesaplamayı devretmek için gereken güveni ortadan kaldıra-
bilir. HE’nin daha pratik veri işlemlerinde benimsenmesinin önündeki engel,
doğasında bulunan hesaplama karmaşıklığıdır. BFV gibi mevcut HE şemaları, daha
fazla uygulamanın başarım gereksinimlerini karşılamak için gevşek bağlı hızlandırıcı
cihazlar aracılığıyla hızlandırılabilir. HE için bir hızlandırıcı geliştirmek, NTT gibi
düzensiz bellek erişimlerine sahip algoritmaların gerçeklenmesini gerektirir. NTT
algoritması hızlandırıldıktan sonra bile, ana bilgisayar ve cihaz arasındaki iletişim
yükü bu hızlandırmanın bazı avantajlarını ortadan kaldırır. Daha fazla başarım
artışı elde etmek için daha geniş bir aritmetik işlemler kümesinin hızlandırıcıda
gerçeklenmesi gerekir. Bu tür işlemlerden biri de büyük tamsayılarla verimli işlem-
ler gerçekleştirilmesi gerektiğinde kullanılan RNS için taban genişletmedir. Örneğin,
şifre metni için kullanılan modül Q, halka boyutu N = 216 ile 128 bit güvenlik se-
viyesini karşılamak için 1747-bit olarak seçilir. RNS kullanarak, gerekli parame-
treleri karşılamak için 28× 64-bit asal sayı veya 55× 32-bit asal sayı seçebiliriz.
Homomorfik çarpma sırasında, sonuçlarımız mevcut RNS tabanının sağladığı ar-
alığa sığmayabilir. Bu durumda, temsil aralığını artırmak için işlemden önce taban
genişletmesi gerekir. Kapsamlı bir HE hızlandırıcısında, NTT birimi, hızlandırıcı
cihazda homomorfik çarpma işlemlerini hesaplamak için taban genişletme birimi
tarafından tüketilecek kalıntılar üretir ve bunun tersi de geçerlidir. Ana bilgisa-
yara geri iletişim kurmayarak, veri taşıma ek yükleri önlenir. Taban genişletme
gerçeklememiz, cihazın programlanabilir mantık alanı için rekabet eden birden fazla

vi

birime sahip HE hızlandırıcıları için ATP ölçütü açısından eniyilenmiştir. Cihazda
bulunan bellek bant genişliği parametrelerini kullanarak hatasız taban genişletme
için derleme zamanında yapılandırılabilir bir donanım üreteci sunuyoruz. Tasarım,
başarımı taban genişletme aritmetiğinden ayıran ölçeklenebilir bir mimariye sahip-
tir. Derleme zamanında ayarlanabilir bir iş hacmi parametresi, ek mantık alanı pa-
hasına işlemin başarımını artırır. 212 ile 216 arasındaki halka boyutları için FPGA
kullanım sonuçlarımızı sunuyoruz. Taban genişletme mimarimizi literatürde bulu-
nan mimarilerle karşılaştırıyoruz. En son teknolojiye sahip açık kaynaklı HE yazılım
kütüphanesi OpenFHE ile FPGA gerçeklememizi karşılaştırıyoruz ve gerçeklemem-
izin yazılım gerçeklemesine göre ×10−17 hız artışı sağladığını gösteriyoruz.

vii

ACKNOWLEDGEMENTS

Like many before me, I am fortunate to stand on the shoulders of giants. I want to
express my heartfelt gratitude to my advisor, Professor Erkay Savaş. His attention
to detail, along with his expertise and patience, helped me to understand, approach,
and ultimately solve complex problems. I am particularly grateful for his support
and understanding in such an early stage of my education. I wouldn’t have been
able to work on the exciting problems I had before joining his group.

I express my gratitude to Asst. Prof. Erdinç Öztürk for introducing me to digital
design, FPGAs, and the joy of creating circuits to solve challenging problems. His
unique teaching style, combined with his passion for computers, enchanted me during
my bachelor’s studies.

I want to thank the research group at ISEC, TU Graz. I want to thank Aikata,
Anisha Mukherjee, David Jacquemin, Florian Hirner, and Florian Krieger for their
friendship and helpful discussions.

I thank Prof. Ingrid Verbauwhede for the opportunity to participate in an internship
at COSIC, KU Leuven. The excellent researchers at COSIC, Dr. Furkan Turan,
Robin Geelen, Jonas Bertels, and Xander Pottier, made us feel welcome.

I would also like to thank my jury committee members, Prof. Özcan Öztürk and
Assoc. Prof. Sujoy Sinha Roy for assessing the quality of my thesis and allowing
me to improve its clarity and impact.

Thinking critically about my research has allowed me to justify and evaluate my
work. Prof. Elisabeth Oswald has helped us evaluate our work by preparing study
sessions and encouraging thought-stimulating discussions. I thank her for her valu-
able time.

Experienced researchers, such as Dr. Ahmet Can Mert, Can Ayduman, and
Dr. Tolun Tosun, have guided me through the challenges of navigating research.
Dr. Mert has been a trailblazer for our group, paving the way for researchers who
follow in his footsteps. His sincere dedication to research is truly influential. I have
immense gratitude to Can Ayduman for dedicating his valuable hours to us, de-
bugging designs, and serving as a constant source of inspiration. His determination
has not only encouraged me to overcome complex problems but also to seek them
actively. Dr. Tosun has taught me how to approach engineering problems method-

viii

ically. His work ethic and professionalism motivate the people working with him to
strive for their best.

I would like to extend my gratitude to my peers and fellow researchers at CISEC,
Sabancı University, for the enjoyable years I spent there, Ali Şah Özcan, Dr. Arsalan
Javeed, Dr. Atıl Utku Ay, Ceren Yıldırım, Efe İzbudak, Emre Koçer, Enes Recep
Türkoğlu, Dr. Kübra Kaytancı, Dr. Melik Yazıcı, and Yusuf Sür.

My parents taught me to value knowledge and education. Their tireless support
and patience have allowed me to pursue this degree. They have instilled in me the
resilience necessary to endure challenging situations and overcome obstacles. My
father has allowed me to pursue my own path and supported me every step of the
way. My mother has prepared me to meet the challenges I encounter today. I am
deeply humbled by their faith in me.

Finally, I want to mention the single most important person in my life. My significant
other, best friend, and lab partner, Eda. She is the toughest person I know. I cherish
every moment with you. I will support you just as you supported me through
everything. I am fortunate to have met you. Your love is the utmost joy I find in
life. It is my hope to stand by your side through every step of our lives.

This thesis has been kindly supported by TÜBİTAK under grant number 122E222.

ix

Hayatımın anlamına...

x

TABLE OF CONTENTS

LIST OF TABLES . xiii

LIST OF FIGURES . xiv

LIST OF ABBREVIATONS . xv

1. INTRODUCTION . 1
1.1. Contributions . 3
1.2. Relevant Works . 4
1.3. Thesis Outline . 5

2. BACKGROUND . 6
2.1. Notation . 6
2.2. Homomorphic Encryption . 6

2.2.1. BFV Scheme . 7
2.2.1.1. BEHZ Method . 9
2.2.1.2. HPS Method . 9

2.3. Residue Number System . 11
2.4. Number Theoretic Transform . 11
2.5. Base Extension . 12

2.5.1. CRT-Based Algorithms . 12
2.5.1.1. Fast Base Conversion Algorithm . 13
2.5.1.2. Shenoy-Kumaresan Algorithm. 13
2.5.1.3. Kawamura et al. Algorithm . 15
2.5.1.4. Halevi-Polyakov-Shoup Optimization 18

2.5.2. Mixed-Radix-Based Algorithm . 18
2.6. Homomorphic encryption libraries . 21

2.6.1. OpenFHE . 22
2.6.2. Microsoft SEAL . 22
2.6.3. Lattigo . 22
2.6.4. Swift Homomorphic Encryption . 22

xi

2.6.5. Comparing Against Libraries. 23

3. AREA-TIME PRODUCT EFFICIENT RNS POLYNOMIAL
BASE EXTENSION . 24
3.1. Loosely Coupled FPGA Accelerator . 24
3.2. Efficient Arithmetic on FPGA . 27

3.2.1. Modular Arithmetic . 27
3.3. Architecture Overview . 28

3.3.1. Data Flow of Algorithm 1 . 29
3.3.2. Fully Pipelined Architecture . 30
3.3.3. Folded Architecture . 32

3.3.3.1. Memory Requirements . 35
3.3.3.2. Arithmetic Requirements . 36

3.4. Optimizations for Polynomial Residues . 37
3.4.1. Avoiding Communication Overhead by Integration 37

4. RESULTS AND COMPARISON . 39
4.1. Architecture Comparison . 39

4.1.1. Cox-Rower Architecture . 39
4.1.1.1. Memory Requirements . 40
4.1.1.2. Arithmetic Requirements . 40
4.1.1.3. Comparison to Our Work . 41

4.1.2. Mixed-Radix Architecture. 42
4.1.2.1. Architecture Design . 42
4.1.2.2. Memory Requirements . 44
4.1.2.3. Arithmetic Requirements . 44
4.1.2.4. Comparison to Our Work . 45

4.1.3. Overview of the Comparison of Algorithms and Architectures. 45
4.2. Utilization Results . 47
4.3. Comparison with OpenFHE . 48

5. CONCLUSION AND FUTURE WORK . 51
5.1. Conclusion . 51
5.2. Future Work . 51

BIBLIOGRAPHY. 53

xii

LIST OF TABLES

Table 2.1. Homomorphic encryption libraries . 21

Table 3.1. Number of precomputed terms required by Shenoy-Kumaresan 36
Table 3.2. Number of arithmetic units required by Shenoy-Kumaresan to

produce one residue . 37

Table 4.1. Number of precomputed terms to store by Cox-Rower architecture 40
Table 4.2. Number of arithmetic units required by Cox-Rower architecture

to produce l residues . 41
Table 4.3. Number of precomputed terms required by Mixed-Radix archi-

tecture . 44
Table 4.4. Number of arithmetic units required by Mixed-Radix architec-

ture to produce one residue . 44
Table 4.5. Comparison of algorithms and architectures where k = l 45
Table 4.6. Comparison of iteration counts for given parameters 46
Table 4.7. Device utilization results for logN = 16, l = 17 47
Table 4.8. Device utilization results for logN = 14, l = 7 47
Table 4.9. Device utilization results for logN = 12, l = 30 47
Table 4.10. Timings for logN = 16, logqi = 60 . 48
Table 4.11. Timings for logN = 14, logqi = 60 . 49

xiii

LIST OF FIGURES

Figure 1.1. Memory hierarchy for the accelerator . 2

Figure 2.1. Example HE computation . 7
Figure 2.2. Homomorphic multiplication in BEHZ method for BFV HE

scheme Bajard et al. (2017) adapted from Mert (2021) 10

Figure 3.1. High-level overview of the accelerator. 25
Figure 3.2. High Bandwidth Memory (HBM) interface on AMD Alveo

U280 FPGA (AMD Xilinx (2022)) . 26
Figure 3.3. Data flow of Shenoy-Kumaresan algorithm, where j =

0, . . . ,k−1. 30
Figure 3.4. Architecture overview for a fully pipelined version where TP = 4 31
Figure 3.5. Folded architecture overview where TP = 4. 34
Figure 3.6. Architecture comparison in terms of number of iterations 35
Figure 3.7. Example BRAM coefficient placement for TP = 4, N = 25 36

Figure 4.1. Cox and Rower units . 40
Figure 4.2. Cox-Rower architecture overview. 41
Figure 4.3. Mixed-Radix iterative architecture overview 43
Figure 4.4. Mixed-Radix fully pipelined architecture overview 43

xiv

LIST OF ABBREVIATONS

ASIC Application Specific Integrated Circuit . 1, 2, 9, 41, 52

ATP Area-Time Product . v, vii, 24, 47, 48, 51

BEHZ Bajard-Eynard-Hasan-Zucca . 9, 47

BFV Brakerski-Fan-Vercauteren . iv, vi, 3, 4, 7, 8, 9, 22

BGV Brakerski-Gentry-Vaikuntanathan . 7, 22

CC clock cycle. 30

CGGI Chillotti-Gama-Georgieva-Izabachène . 7, 22

CKKS Cheon-Kim-Kim-Song . 4, 7, 22

CPU Central Processing Unit. 9, 18, 27, 49

CRT Chinese Remainder Theorem . 12, 13, 18

DFT Discrete Fourier Transform. 11

DM Ducas-Micciancio. 7, 22

DSP Digital Signal Processing . 27, 29, 42

FHE Fully Homomorphic Encryption 1, 2, 3, 6, 7, 17, 21, 24, 37

FIFO First In First Out . 25

FPGA Field Programmable Gate Array v, vii, xiv, 1, 2, 3, 4, 5, 9, 14, 18, 20, 21,
24, 25, 26, 27, 29, 32, 35, 39, 41, 42, 44, 51, 52

GPU Graphics Processing Unit. 1, 27, 42

HBM High Bandwidth Memory . xiv, 2, 25, 26, 35

HE Homomorphic Encryption iv, v, vi, vii, xiv, 1, 2, 3, 4, 5, 6, 7, 8, 10, 21, 22, 23,
48

xv

HPS Halevi-Polyakov-Shoup . 9

LMKCDEY Lee-Micciancio-Kim-Choi-Deryabin-Eom-Yoo 7, 22

LUT Look-Up Table . 27, 29

LWE Learning With Errors . 7

MC Memory Controller. 25

MS Mini Switch . 25

NTT Number Theoretic Transform iv, vi, 1, 11, 17, 24, 29, 32, 37, 39, 51

PC Pseudo Channel . 25

PHE Partially Homomorphic Encryption . 6

RLWE Ring-Learning With Errors . 1, 7

RNS Residue Number System . iv, vi, 2, 3, 4, 7, 8, 9, 11, 18, 19, 20, 25, 32, 39, 42

RSA Rivest–Shamir–Adleman . 4

SWHE Somewhat Homomorphic Encryption . 6, 7

VLSI Very-large-scale Integration. 41

xvi

1. INTRODUCTION

As the demand for processing data increases, the need to secure data and the ability
to offload this data processing become increasingly relevant. Currently, data is being
secured in transit via public-key cryptosystems. However, attacks on data at rest,
where it is in plaintext, are a more lucrative target for malicious actors. Traditional
cryptosystems do not provide security guarantees in such threat models. Thus, ac-
cessing, processing, and securing data simultaneously is an important task (Defense
Advanced Research Projects Agency (2021)). To alleviate this vulnerability, HE
provides a unique ability to process data without gaining knowledge of its contents.
It was first conceptualized by Rivest et al. (1978). The first Fully Homomorphic
Encryption (FHE) scheme was introduced by Gentry (2009), based on the ideal
coset problem now considered insecure, which used the “bootstrapping” operation
to achieve the full homomorphism. Later schemes utilized the Ring-Learning With
Errors (RLWE) problem, which is still in use today. Hence, the schemes currently
rely on operations with integer polynomials with a degree N−1 where the practical
range is 212 <N < 216.

The current implementation of FHE requires computationally expensive operations
such as NTT, base extensions found in homomorphic multiplication, and relineariza-
tion. Homomorphic multiplication and relinearization enable us to multiply two
encrypted ciphertexts, each comprising two polynomial terms, and are fundamental
operations for realizing privacy-preserving machine learning applications. NTT is
used for improving the computational complexity of polynomial multiplication found
in homomorphic multiplication within FHE. It reduces the complexity from school-
book approach O(N2) to O(N logN). NTT has irregular memory accesses, and
throughput requirements cannot be met utilizing traditional software approaches.
Thus, there are works on accelerating the computationally expensive operations on
accelerators such as Graphics Processing Unit (GPU) (Badawi et al. (2018), Özcan
et al. (2023)), FPGA (Mert et al. (2022), Agrawal et al. (2023)), and Applica-
tion Specific Integrated Circuit (ASIC) (Samardzic et al. (2021)) devices. Although
GPUs have become prevalent due to their ubiquitous presence in accelerating artifi-

1

cial intelligence workloads, their main performance advantages are again specialized
for artificial intelligence workloads. The low-precision floating-point operations uti-
lized in artificial intelligence workloads do not directly translate into performance
benefits for FHE use cases. ASICs on the other hand, are specifically designed
for accelerating FHE workloads, which provides a wide design space for accelera-
tion. However, the state-of-the-art FHE parameters and use cases are still evolving.
Hence, the lead time for an ASIC may be disadvantageous for use in FHE research.
FPGAs provide a middle ground between these options. Their reconfigurability al-
lows for relatively fast prototyping and experimentation, but their performance is
limited by the amount of input-output bandwidth to and from the FPGA device.

Figure 1.1 Memory hierarchy for the accelerator

To overcome this limitation of FPGA devices, we aim to reduce the communication
overhead between the host and the device. We choose a data center acceleration
card from AMD, which features a HBM off-chip memory coupled to the FPGA
fabric. HBM provides high input/output bandwidth storage, which reduces the
impact of memory read/write bottlenecks compared to traditional DRAM. It allows
us to store the coefficients required to compute FHE on the device. Accessing the
HBM memory is faster than copying data from the host to the device and vice versa.
We make use of this memory hierarchy shown in Figure 1.1 to fit as many functions
on the device itself.

The current generation of HE schemes usually requires large integer arithmetic. The
required modulus for arithmetic may be as large as a thousand bits. Implementing
this arithmetic naively is not practical. The state-of-the-art methods utilize RNS
arithmetic to handle these large integers. RNS representation allows us to work with

2

machine word-size arithmetic and parallelize computations. One such operation
is the homomorphic multiplication. Homomorphic multiplication, together with
relinearization, consumes a significant amount of time in HE computations (Halevi
et al. (2018)). In homomorphic multiplication, we are multiplying two ciphertexts,
each containing two polynomials of degrees in the range of 212 ≤ N ≤ 216 that are
represented in a large RNS modulus Q with l many ⌈log2 (qi +1)⌉−bit residues.
However, when the results of an operation do not fit within the provided precision,
a base extension operation must be performed before the operation.

Base extension operations require reading the source residues, remainders in coprime
moduli, and performing operations to get the results in the target moduli. Hence, it
is a memory-intensive operation. For 64-bit residues, an example parameter setting
would be to read 18 residue polynomials, each with size N = 216 and produce 17
residue polynomials . Our work aims to provide a flexible and scalable solution for
performing base extensions by leveraging the parallel nature of FPGAs. We outline
a specific algorithm implementation in a relinearization operation accelerator for
FHE. We focus on the Shenoy and Kumaresan (1989) exact base extension algorithm
implementation on FPGA.

1.1 Contributions

Our goal is to accelerate homomorphic multiplication and relinearization operations
of BFV (Brakerski (2012), Fan and Vercauteren (2012)). By implementing base
extension functionality on a FPGA loosely coupled accelerator hardware, we avoid
costly transfers between the host and the device for homomorphic multiplication and
relinearization. This design choice theoretically improves end-to-end acceleration
times on the order of milliseconds. Our contributions in this thesis are as follows.

• To the best of our knowledge, this is the first configurable exact polynomial
base extension architecture for FHE use on FPGA.

• We improve the overall runtime of FHE accelerators by staying on the device
for a longer period. Implementing more functionality on the device itself.

• We implement the base extension algorithm optimized for use with polynomi-
als in RNS domain.

• We provide a scalable parametric base extension hardware generator for
3

FPGA, where we are limited by the throughput of the available interface.

• We optimize our hardware architecture in terms of area-time product, which
is necessary for the rest of the HE acceleration functions to fit to the FPGA
programmable logic.

• We provide a base extension architecture where memory requirements grow
linearly with the number of target bases we are extending to. Our memory
requirements do not change noticeably with the number of source bases.

• We measure our implementation against the state-of-the-art HE library
OpenFHE and show that we are consistently an order of magnitude faster
with the given parameters.

1.2 Relevant Works

There are existing works that primarily focus on public key cryptography ap-
plications where representations have a low number of source and target base
residues. Early works with applications in cryptography have focused on the
Rivest–Shamir–Adleman (RSA) algorithm, specifically modular exponentiation.
The work by Kawamura et al. (2000) serves as the foundation for accelerating base
extensions in RSA. Their selection of parameters for correctness guarantees allows
them to reduce the complexity of their circuit. This selection, however, limits the
number of available primes that can be used in the cryptosystem. For HE schemes,
this hinders their usability due to the lack of options for the RNS representation.

The current implementations of base extension for use in HE utilize the Fast Base
Conversion algorithm, which actually computes an approximation of the base exten-
sion rather than an exact one. This approach is utilized and accommodated in the
Cheon-Kim-Kim-Song (CKKS) (Cheon et al. (2017)) scheme, but introduces errors
that are incompatible with the BFV scheme, which cannot recover from these er-
rors. Works such as Halevi et al. (2018) that target BFV (Brakerski (2012), Fan and
Vercauteren (2012)), make use of floating-point arithmetic for computing the base
extension without error but are limited by precision and availability of floating-point
units. Works that utilize fixed-point approximations for floating-point arithmetic
exist, but the circuit complexity for computing this approximation is high (Turan
et al. (2020), Su et al. (2022), Van Beirendonck et al. (2023)). Lack of configurability

4

and scalability among the works has also widened the research gap in the literature.

Work by Badawi et al. (2018) utilizes mixed-radix conversions, which do not require
any floating-point operations or approximations. However, we justify that on devices
with limited input-output bandwidth, such as FPGAs, the mixed-radix conversion
is difficult to implement due to its sequential nature and quadratic complexity for
a pipelined implementation.

1.3 Thesis Outline

The thesis is organized as follows .

• In Chapter 2, we introduce the background and notation necessary for under-
standing the contributions being made in the thesis.

• In Chapter 3, we present our work and methodology in achieving the results.
We present insights into the design decisions being made.

• In Chapter 4, we present the FPGA utilization results for various parameter
sets and discuss their implications. We also present a comparison with the
state-of-the-art HE library OpenFHE for context.

• In Chapter 5, we present insights resulting from our work and suggest future
research directions.

5

2. BACKGROUND

In this section, we will provide the necessary background for understanding the
contributions made in this thesis. For simplicity, we will be giving overviews of only
the parts that are relevant to our work.

2.1 Notation

T(x) represents a polynomial in RQ, where RQ represents the ring ZQ/(xN + 1),
and Q = ∏l

i=0 qi. A polynomial residue of T(x) in qi is shown as ti(x) and the
coefficient with power r, tir ·xr

i , is shown as tir . Individual digits of an integer are
shown as a{i}, with the base stated within the context. For example, in base-2 let
a= 1110011 then a{4} = 1.

2.2 Homomorphic Encryption

HE allows us to perform processing on ciphertexts. Once decrypted, the results are
the same as if we had performed the operation on plaintexts. Thus, eliminates the
trust needed to delegate the computation to a third party. An example computation
is shown in Figure 2.1.

There are three types of HE: Partially Homomorphic Encryption (PHE), Somewhat
Homomorphic Encryption (SWHE), and FHE. PHE only allows additive or multi-
plicative operations and has very limited applicability . SWHE allows both additive
and multiplicative operations, but is limited in terms of operation depth. FHE

6

Figure 2.1 Example HE computation

allows us to perform an arbitrary number of operations of both additive and multi-
plicative types. FHE is usually achieved by performing a “bootstrapping” operation
on SWHE to reset the noise on the ciphertext.

There are several HE schemes in the literature. We will make a distinction be-
tween two scheme categories. We follow the categorization of the OpenFHE
(Al Badawi et al. (2022)) library. First is Brakerski-Gentry-Vaikuntanathan (BGV)-
like schemes; BFV, CKKS. Second, Ducas-Micciancio (DM)-like schemes, Chillotti-
Gama-Georgieva-Izabachène (CGGI), Lee-Micciancio-Kim-Choi-Deryabin-Eom-Yoo
(LMKCDEY). Our contributions target the BGV-like schemes, specifically BFV.

2.2.1 BFV Scheme

The BFV scheme (Fan and Vercauteren (2012)) builds upon the work of Brakerski
(2012) by adapting the underlying arithmetic from Learning With Errors (LWE)
to RLWE. It is particularly targeting integer operations with representation limited
by the plaintext modulus. It does not induce additional constraints regarding the
moduli required to implement the scheme, given that the security conditions are
met, unlike BGV and CKKS. However, current bootstrapping approaches for BFV
are not as practical as for CKKS.

We will consider the RNS version of the BFV scheme and give an overview of the
two methods for implementing it. We follow the notations of Kim et al. (2021).
Secret key sk is sampled from the distribution χk, {−1,0,1} uniformly randomly.

7

Error e is sampled from a discrete Gaussian distribution χe. Otherwise, coefficients
are sampled from RQ uniformly. Plaintext modulus is t and ∆ = ⌊Q

t ⌋. The basic
operations for the BFV HE scheme are as follows.

• SKeyGenBFV(): sk $←− χk

• PKeyGenBFV(sk): a $←−RQ, e $←− χe, pk← (|a ·sk+e|Q ,−a) ∈R2
Q

• EvalKeyGenBFV(sk,T): rlk ← (
∣∣∣−(a ·sk+ei)+T i ·sk2

∣∣∣
Q
,ai) where i ∈

[0,⌊logT Q⌋], T is the base for decomposition. The method utilized here is
referred to as version 1 in Fan and Vercauteren (2012).

• EncryptBFV(pk,pt): ct← (|pk0 ·u+e1 +∆ ·pt|Q , |pk1 ·u+e2|Q) where pt ∈

Rt, u $←− χk, ei
$←− χe

• DecryptBFV(sk,ct): pt←
∣∣∣∣⌊ t·|ct0+ct1·sk|Q

Q ⌉
∣∣∣∣
t

• AddBFV(ct1,ct2): (|ct10 +ct20 |Q , |ct11 +ct21 |Q)

• MultiplyBFV(rlk,ct1,ct2):

ct⋆ = ct⋆0 ←
∣∣∣∣∣⌊t · (ct10 ·ct20)

Q
⌉
∣∣∣∣∣
Q

,

ct⋆1 ←
∣∣∣∣∣⌊t · (ct10 ·ct21 +ct11 ·ct20)

Q
⌉
∣∣∣∣∣
Q

,

ct⋆2 ←
∣∣∣∣∣⌊t · (ct11 ·ct21)

Q
⌉
∣∣∣∣∣
Q

Then relinearize as follows, where ct⋆2 = ∑⌊logT Q⌋
i=0 ct⋆2{i}

T i,

ctmult1 ←

∣∣∣∣∣∣ct⋆0 +
⌊logT Q⌋∑

i=0
rlki0 ·ct⋆2{i}

∣∣∣∣∣∣
Q

,

ctmult2 ←

∣∣∣∣∣∣ct⋆1 +
⌊logT Q⌋∑

i=0
rlki1 ·ct⋆2{i}

∣∣∣∣∣∣
Q

As with most HE schemes, BFV also has RNS versions. Specifically, there are two
RNS variants of BFV.

8

2.2.1.1 BEHZ Method

The first RNS version of BFV is by Bajard et al. (2017), referred to as Bajard-
Eynard-Hasan-Zucca (BEHZ), which introduces RNS versions of homomorphic mul-
tiplication and decryption. It proposes methods to perform the division and round-
ing steps, called DR in the paper, which are traditionally incompatible with RNS
representation, as it is a non-positional number system. BEHZ method presents
RNS compatible versions of the DR method, they introduce an approximate DR which
can be computed in RNS.

The algorithm shown in Figure 2.2 closely follows the notation used in OpenFHE
implementations. For the actual algorithm, please refer to Bajard et al. (2017). We
will be utilizing the BEHZ method for our homomorphic multiplication acceleration.

Our contribution is to implement and accelerate the “BaseConvSK” block shown
in Figure 2.2. Where the source base is Bsk and the target base is Q. Bsk is the
auxiliary basis comprised of B and msk. Note that msk is our redundant residue
that will be consumed by Algorithm 2. Unlike the Halevi-Polyakov-Shoup (HPS)
method, it can be implemented utilizing purely integer arithmetic, which increases
its suitability for FPGA acceleration.

2.2.1.2 HPS Method

Following on the BEHZ method, the work by Halevi et al. (2018) introduced the
HPS variant. Claiming improved and simpler routines for computing base exten-
sions, which introduce less noise than BEHZ. The claim has been challenged by
Bajard et al. (2019), arguing that the implementations do not follow the paper.
Currently, the software implementation of HPS is slightly faster than the BEHZ
method in the OpenFHE library. It utilizes floating-point arithmetic for computing
base extensions and reduces the number of integer multiplications by shifting some
of the integer arithmetic load to floating-point arithmetic. The authors mention
the works by Shenoy and Kumaresan (1989) and Kawamura et al. (2000) and claim
that these works increase the number of integer operations significantly. For Central
Processing Unit (CPU) implementations, where floating-point units are ubiquitous,
this claim may be conclusive. Still, on platforms where floating-point arithmetic
usage costs more logic area than the integer counterparts, such as FPGAs, ASICs,
this method becomes less practical. Their timing results show that with increasing

9

2 2

2 2

2 2

Figure 2.2 Homomorphic multiplication in BEHZ method for BFV HE scheme Ba-
jard et al. (2017) adapted from Mert (2021)

sizes of modulus Q, the base extension consumes a non-negligible amount of time
while computing homomorphic multiplications.

10

2.3 Residue Number System

Here we introduce an overview of the RNS, a non-positional representation of in-
tegers. Positional representations are utilized in schoolbook arithmetic where the
radices are in the powers of the radix. It is straightforward to compare two numbers
in the same positional representation. However, in RNS we do not have ordered posi-
tional radices. Each radix, or residue, is the remainder of the division of the original
integer by a coprime integer. The multiplication of these coprime integers, usually
a smooth number, forms our representation range. Using the following theorem, we
see that this representation exists and is unique.
Theorem 2.1 (Chinese Remainder Theorem). Given l coprime integers q =
(q0, . . . , ql−1) and their product Q = ∏l−1

i=0 qi, consider ai ∈ (a0, . . . ,al−1) | ai < qi.
Then,

(2.1) ∃A | 0≤ A<Q, ai ≡ A (mod qi), ∀i ∈ 0≤ i≤ l−1

The factors of Q are generally chosen to be within machine word sizes. This design
choice allows us to perform arithmetic on large integers by working with smaller,
word-sized integers. For our use case, these word sizes will be either 32 or 64 bits.

2.4 Number Theoretic Transform

NTT is Discrete Fourier Transform (DFT) performed over a ring, specifically RQ

where N is a power of two . Due to the modulus Q being in RNS representation, our
NTTs are defined over factors of Q, denoted as qi. We will assume this condition
on the polynomial degree for the rest of the thesis. We will also assume that we
will work with the nega-cyclic convolution variant of the NTT. To perform NTT,
we have to first choose prime moduli with the following condition for the existence
of 2N−th root of unity.

(2.2) q ≡ 1 (mod 2N)

11

Then the 2N−th root of unity with the following condition is guaranteed to exist.

ψ2N ≡ 1 (mod q)

ψs ̸≡ 1 (mod q) | s ∈ [1,2N −1]
(2.3)

2.5 Base Extension

There are two approaches to computing target base residues from the source base
residues. The first way is to reconstruct the number using Chinese Remainder
Theorem (CRT). The second way to compute residues is by using Mixed-Radix
Conversion.

2.5.1 CRT-Based Algorithms

Given the residues aqi , we can reconstruct the full integer A utilizing the following
formula.

(2.4) A=

∣∣∣∣∣∣
l−1∑
i=0

∣∣∣aqi · Q̂
−1
i

∣∣∣
qi
· Q̂i

∣∣∣∣∣∣
Q

Where, Q̂i = Q
qi

. This formula has the crucial limitation of requiring a modulo
operation by the full precision Q integer, which can be represented in the following
equation.

(2.5) A=
l−1∑

i=0

∣∣∣aqi · Q̂
−1
i

∣∣∣
qi
· Q̂i

−α ·Q

To compute new residues exactly from the existing base, we have to calculate the

12

α term, where α is in the range [0, l− 1]. In the literature, methods exist that
compute α by successively computing its binary representation or using floating-
point arithmetic and rounding operations.

Algorithms based on CRT involve computing cascaded summation operations and
can be easily pipelined. However, there needs to be a bound on the input or an
extra residue to compute the new residues without reconstructing the full precision
number.

2.5.1.1 Fast Base Conversion Algorithm

If the errors in the produced representation can be tolerated, we can skip computing
α to reduce design and computation complexity. Fast Base Conversion, shown in
Algorithm 1, utilizes the CRT Equation 2.5 without the −|α ·Q|pj

computation .

(2.6) a′
pj

=

∣∣∣∣∣∣
l−1∑
i=0

∣∣∣aqi · Q̂
−1
i

∣∣∣
qi
· Q̂i

∣∣∣∣∣∣
pj

Algorithm 1 Fast Base Conversion Algorithm
Input: AQ = aqi(∀i),A < Q; Q= {q0, . . . , ql−1}, P = {p0, . . . ,pk−1}
Precompute:

∣∣∣Q̂−1
i

∣∣∣
qi
,
∣∣∣Q̂i

∣∣∣
pj
,
∣∣∣Q̂i

∣∣∣
ql
,
∣∣∣Q−1

∣∣∣
ql
, |Q|pj

(∀i, j)
Output: A′

P = a′
pj

(∀j),a′
pj
< apj +α ·Q (mod pj)

1: µqi ← aqi ·
∣∣∣Q−1

i

∣∣∣
qi

(mod qi)(∀i)

2: µpj,i ← µqi ·
∣∣∣Q̂i

∣∣∣
pj

(mod pj)(∀i, j)

3: a′
pj
←∑l−1

i=0µpj,i (mod pj)(∀j)

Due to not computing the actual result by skipping the α computation, the result
may contain errors.

2.5.1.2 Shenoy-Kumaresan Algorithm

In this method of calculating base extension Shenoy and Kumaresan (1989), we
utilize the CRT algorithm directly. To calculate the new residue without calculat-

13

ing the full precision number, a redundant residue aql
≡ |A|ql

, such that ql > l, is
calculated alongside the regular source residues.

(2.7) aql
≡

∣∣∣∣∣∣∣
∣∣∣∣∣∣
l−1∑
i=0

∣∣∣aqi · Q̂
−1
i

∣∣∣
qi
· Q̂i

∣∣∣∣∣∣
ql

−|α ·Q|ql

∣∣∣∣∣∣∣
ql

Adding |α ·Q|ql
to both sides yields the following.

(2.8) aql
+ |α ·Q|ql

≡

∣∣∣∣∣∣
l−1∑
i=0

∣∣∣aqi · Q̂
−1
i

∣∣∣
qi
· Q̂i

∣∣∣∣∣∣
ql

Then the term α becomes,

(2.9) |α|ql
≡

∣∣∣Q−1
∣∣∣
ql
·

∣∣∣∣∣∣∣
∣∣∣∣∣∣
l−1∑
i=0

∣∣∣aqi · Q̂
−1
i

∣∣∣
qi
· Q̂i

∣∣∣∣∣∣
ql

−aql

∣∣∣∣∣∣∣
ql

since we know α < ql, this also becomes |α|ql
= α.

Algorithm 2 Shenoy and Kumaresan (1989) Algorithm
Input: AQ∪ql

= aqi(∀i),A < Q; Q= {q0, . . . , ql−1}, P = {p0, . . . ,pk−1}
Precompute:

∣∣∣Q̂−1
i

∣∣∣
qi
,
∣∣∣Q̂i

∣∣∣
pj
,
∣∣∣Q̂i

∣∣∣
ql
,
∣∣∣Q−1

∣∣∣
ql
, |Q|pj

(∀i, j)
Output: AP = apj (∀j)

1: µqi ← aqi ·
∣∣∣Q̂−1

i

∣∣∣
qi

(mod qi)(∀i)

2: µpj,i ← µqi ·
∣∣∣Q̂i

∣∣∣
pj

(mod pj)(∀i, j)

µql,i
← µqi ·

∣∣∣Q̂i

∣∣∣
ql

(mod ql)(∀i)
3: a′

pj
←∑l−1

i=0µpj,i (mod pj)(∀j)
a′

ql
←∑l−1

i=0µql,i
(mod ql)

4: msql
← a′

ql
−aql

(mod ql)
5: µ′

ql
←msql

·
∣∣∣Q−1

∣∣∣
ql

(mod ql) ▷ µ′
ql

is α
6: µ′

pj
← µ′

ql
· |Q|pj

(mod pj)(∀j)
7: apj ← a′

pj
−µ′

pj
(mod pj)(∀j)

Here we notice that Algorithm 2 lends itself well to parallelism. We will base our
FPGA hardware accelerator implementation on this algorithm. The algorithm con-

14

sists of integer arithmetic. The values that cannot be computed on the device but
are necessary for the algorithm computation can be loaded to the device after being
precomputed.

2.5.1.3 Kawamura et al. Algorithm

Another approach to compute the α without keeping redundant residues is using
Kawamura et al. (2000). Algorithm 3 works by recursively computing the individual
bits of α given that the input range is within the error bounds.

We will derive the Kawamura et al. (2000) base extension from Equation 2.5. First,
we will define ξqi as follows.

(2.10) ξqi =
∣∣∣aqi · Q̂

−1
i

∣∣∣
qi

Our Equation 2.5 becomes as follows.

(2.11) A=
l−1∑

i=0
ξqi · Q̂i

−α ·Q

To get the α term, we divide the equation by Q.

(2.12) A

Q
=

l−1∑
i=0

ξqi

qi

−α

If we group together the unknowns α and A (which is a large integer) the equation
becomes.

(2.13) α+ A

Q
=

l−1∑
i=0

ξqi

qi

Then we know 0≤ A
Q < 1 and α≤∑l−1

i=0
ξqi
qi
<α+1. So we can conclude the following.

15

(2.14) α =

l−1∑
i=0

ξqi

qi



Still, this computation cannot be easily done on hardware. To compute this division
using integer fixed-point arithmetic, it is best to avoid division by an arbitrary
integer. Hence, the division by qi is approximated by 2r, which is the bit-width of
modulus . This division is a trivial shift operation on hardware and is essentially
performed at no cost. To simplify the hardware for the division, the numerator ξqi

is also represented by its most significant ϱ bits, which are smaller than the full
precision r bits. The hardware optimized equation for Equation 2.14 becomes as
follows.

(2.15) α′ =

l−1∑
i=0

trunc(ξqi)
2r

+ δ

 .

The δ term is the initial offset to compute the flooring operation correctly. The
δ value will affect the input range and will be determined by errors introduced by
approximating ξqi and qi. Then, the approach is to compute α in a recursive manner.
Computing each bit in each iteration as follows

σ−1 = δ,

σi = σi−1 + trunc(ξqi)
2r

α{i} = ⌊σi⌋

σi = σi−α{i} (∀i ∈ [0, l−1]).

(2.16)

The errors introduced by these two approximations are calculated to determine the
error-free operation range. First, the error by approximating the division by qi with
2r is calculated as follows.

ϵqi = 2r− qi

2r
(∀i)

ϵQ = max(ϵqi)
(2.17)

Second, the error by truncating the value of ξqi becomes the following.

16

λqi = ξqi− trunc(ξqi)
qi

(∀i)

λQ = max(λqi)
(2.18)

The base extension operation will compute the new residues without error given that
0≤ l ·(ϵQ +λQ)< 1 and 0≤A< (1−δ) ·M . So, the approximations reduce the range
of the inputs. Thus, this algorithm benefits from a careful choice of parameters to
function correctly. In implementing this algorithm, the value of r is usually fixed for
the hardware design. So, the choice of predetermined primes close to 2r is necessary
for this algorithm to take a large range of inputs. The approximation by the use of
trunc() in practice is not costly as it only affects the adder precision, which can be
increased to accommodate range requirements.

However, this algorithm is not disadvantageous for use in FHE applications due to
the choice of primes. Specifically, the NTT algorithm commonly utilized in FHE
requires primes to be in the form of q ≡ 1 (mod 2N), which limits the available
primes significantly. Satisfying the FHE security requirements in terms of the size
of modulus requires the availability of sufficient primes, as shown by the work of
Bossuat et al. (2025) .

Algorithm 3 Recursive Base Extension Algorithm (Kawamura et al. (2000))
Input: AQ = aqi(∀i); Q= {q0, . . . , ql−1}, P = {p0, . . . ,pk−1}
Precompute: δ,

∣∣∣Q̂i

∣∣∣−1
qi
,
∣∣∣Q̂i

∣∣∣
pj

(∀i, j), |−Q|pj
(∀j)

Output: AP = apj (∀j)
1: procedure trunc(ξ,r,ϱ)
2: ξ← ξ∧ ((1 . . .1)[ϱ−1:0]≪ (r−ϱ)) ▷ Truncate (r−ϱ) least-significant bits
3: end procedure
4: ξqi ← aqi ·

∣∣∣Q̂−1
i

∣∣∣
qi

(mod qi) (∀i)
5: σ−1← δ, yj,0← 0 (∀j)
6: for s= 0, · · · , l−1 do
7: σs← σ(s−1)+ trunc(ξqs)/2r

8: α{s}← ⌊σs⌋ ▷ α{s} ∈ {0,1}
9: σs← σs−α{s}

10: yj,s← yj,(s−1) + ξqs ·
∣∣∣Q̂s

∣∣∣
pj

+α{s} · |−Q|pj
(∀j)

11: end for
12: apj ← yj,n (mod pj)(∀j)

17

2.5.1.4 Halevi-Polyakov-Shoup Optimization

An optimization presented in Halevi et al. (2018) utilizes the floating-point units
available in CPU. This approach computes the α through the Equation 2.14 but
does not approximate the ξqi ’s or the division by qi. Instead, it uses floating-point
operations to calculate the divisions and sums the result. The barrier to adopting
this method directly on hardware such as the FPGA is the lack of widely available
native floating-point units, and even if they are available, the non-trivial implemen-
tation of the floating-point division algorithm on the device. There are two ways to
overcome this limitation: either using fixed-point approximations with precomputed
values or keeping the computation for α in the RNS representation and calculating
each residue separately, as shown in Sinha Roy et al. (2019). Implementing the
floating-point version or the calculation by each residue in the hardware is expected
to cost more programmable logic area than their integer counterparts. Lastly, the
precision provided by the IEEE 754 floats and double floats to compute the rounding
operation for α produces a small error term. This would increase further by the use
of a fixed-point approximation.

2.5.2 Mixed-Radix-Based Algorithm

The algorithms based on CRT required a limited input range, a redundant residue,
or floating-point computation to produce new residues. However, there is an alter-
native method to compute residues: to keep the RNS residues but convert them
to a positional number system. The mixed-radix algorithm (see Algorithm 4) ac-
tually converts RNS residues, which are in a non-positional representation, to a
positional representation. Then, the new residue is computed by a relation between
its representations. If the computation and parameters are chosen suitably, all the
operations are within the machine word size.

Given an integer B in [0,Q) we can represent this integer as follows

(2.19) B = bl−1
l−2∏
i=0

Ri + · · ·+ b2R1R0 + b1R0 + b0,

where Ri are corresponding radices in the mixed-radix representation. bi are the

18

digits such that they are less than their radices, Ri > bi. The integer B in the mixed-
radix representation will be presented as ⟨bl−1, bl−2, . . . , b0⟩ in an ordered fashion,
where the most significant digit is bl−1.

To convert the RNS representation of a number into the mixed-radix system, we
can simply copy the first residue from the RNS as follows.

(2.20) b0 = |B|q0

Then we can produce the rest of the mixed-radix digits as follows

(2.21) bi+1 =
∣∣∣∣∣B− biqi

∣∣∣∣∣
qi+1

=

∣∣∣∣∣∣ B∏i
j=0 qj

∣∣∣∣∣∣
qi+1

.

The key idea is to compute the residue of the new prime through the conversion
process. Given the target modulus ql, which is pairwise co-prime with the previous
primes, we know that the representation of B in the new mixed-radix digit is 0.

(2.22) bl = 0

We have the residue representation, as follows

(2.23) {|B|q0
, |B|q1

, · · · , |B|ql−1
}.

And, we want to find |B|ql
. We adapt the first version of Equation 2.21 to compute

the mixed-radix digits, as we do not have the option to divide the natural represen-
tation of B by the product of the moduli. We will include the |B|ql

symbolically
in the computation, such that we will find the relation where we get the following
equation

(2.24) bl = ζ×|B|ql
+ θ = 0, bl, ζ,θ ∈ Zql

.

Furthermore, we know the following

(2.25) ζ =

∣∣∣∣∣∣
l∏

i=1
qi

∣∣∣∣∣∣
ql

= |Q|ql
.

To compute θ, we will compute the mixed-radix conversion, starting with the initial
value θ−1 = 0.

19

Then, we can compute subsequent θ0 utilizing the first equation.

(2.26) θ0 =
∣∣∣∣∣θ−1− b0

q0

∣∣∣∣∣
ql

More generally,

(2.27) θi =
∣∣∣∣∣θi−1− bi

qi

∣∣∣∣∣
ql

We will compute mixed-radix digits bi’s using Equation 2.21 using the first equality.
So, to rewrite Equation 2.21 for our use case, we obtain the following

(2.28) bi+1 =
∣∣∣∣∣ |B|qi

− bi
qi

∣∣∣∣∣
qi+1

.

Finally, we get the last θ and we are able to plug this value back to Equation 2.24
to compute |B|ql

(2.29) θ = θl−1.

Notice that for the hardware implementation, it is important that qi’s are computed
in an ordered manner, such as the following

(2.30) q0 < q1 < · · ·< ql−1 < ql.

Due to the fact that we do not know the full precision B, but the RNS representation
of B, we will have to subtract bi’s per radix computation iteration. For example, to
compute b2 on hardware, we have the following

(2.31) b2 =
∣∣∣∣((

(|B|q2
− b0) ·

∣∣∣q−1
0

∣∣∣
q2

)
− b1

)
·
∣∣∣q−1

1
∣∣∣
q2

∣∣∣∣
q2
.

If we did not assume that the previous radices are smaller than our current modulus,
we would have to compute the modular reduction for the previous radices before
subtracting. This is not trivial and limits our flexibility in terms of parameter
choices.

The mixed-radix conversion method is useful, where we do not make any assump-
tions on the input bounds or keep any extra residues; however, they are difficult
to parallelize and pipeline on FPGA. Furthermore, their hardware implementations
introduce additional limitations in terms of base selection. The bases need to be

20

Algorithm 4 Garner (1959) Mixed-Radix Conversion Algorithm
Input: AQ = aqi(∀i); Q= {q0, . . . , ql−1}, P = {p0, . . . ,pk−1}
Precompute:

∣∣∣q−1
i

∣∣∣
qh

(∀i,h|i < h),
∣∣∣q−1

i

∣∣∣
pj

(∀i, j), |Q|pj
(∀j)

Output: AP = apj (∀j)
1: bi← aqi , θpj ← 0(∀i, j)
2: for s= 0, · · · , l−1 do
3: for u= s+1, · · · , l−1 do
4: bu← (bu− bs) ·

∣∣∣q−1
s

∣∣∣
qu

(mod qu)
5: end for
6: θpj ← (θpj − bs) ·

∣∣∣q−1
s

∣∣∣
pj

(mod pj)(∀j) ▷ bs is our mixed-radix digit
7: end for
8: apj ← |Q|pj

· (−θpj) (mod pj)(∀j)

extended in an ordered fashion. This limitation reduces its generalizability for FHE
use cases. It assumes access to all residues corresponding to a coefficient in a single
iteration, which requires careful organization of the inputs. Finally, for a pipelined
implementation, we must compute with (l+1)·l

2 words simultaneously, which strains
the arithmetic and memory resources of our FPGA.

2.6 Homomorphic encryption libraries

The state-of-the-art software libraries for working with HE are shown in Table 2.1.
The list contains the most commonly used libraries, to the best of our knowledge.

Table 2.1 Homomorphic encryption libraries

Note; ✓: supports, ✗: does not support.

HE Library BFV Support CKKS Support Development Language
OpenFHE ✓ ✓ Active C++
SEAL ✓ ✓ Not Active C++
HELib ✗ ✓ Not Active C++
HEAAN ✗ ✓ Active C++
Lattigo ✓ ✓ Active Go
Swift HE ✓ ✗ Active Swift
TFHE-rs ✗ ✗ Active Rust

Shown in Table 2.1 are the actively developed libraries that have releases within a
year. HEAAN library has an older open-source version, but the current version is

21

closed-source. HEAAN also features GPU acceleration with CUDA.

2.6.1 OpenFHE

OpenFHE (Al Badawi et al. (2022)) is the state-of-the art library with support for
BFV, BGV, CKKS, DM, CGGI and LMKCDEY schemes. It has a layered design
approach, allowing designers to work on higher or lower abstraction layers.

2.6.2 Microsoft SEAL

Microsoft SEAL (Microsoft (2023)) HE library has support for BFV, BGV, and
CKKS schemes. It is a mature library that has been the basis of research works.
However, its development has significantly slowed down after 2023. It is being
maintained but does not receive significant updates.

2.6.3 Lattigo

Lattigo (Tuneinsight (2024)) library supports BFV, BGV and CKKS schemes. It is
particularly targeting distributed and multi-party workloads.

2.6.4 Swift Homomorphic Encryption

Swift Homomorphic Encryption library (Apple Inc. and Swift Homomorphic En-
cryption project authors (2025)) supports BFV scheme only. This library is the basis
of the private information retrieval and private nearest neighbor search applications
in Apple devices.

22

2.6.5 Comparing Against Libraries

Our goal is not to compare the performances of HE libraries but to present our
work in the context of software implementations. Comparing and benchmarking
HE libraries is not trivial due to their support of different parameters and lower-
level implementations. We have chosen OpenFHE as a representative due to its
wide range of support for schemes and implementations.

23

3. AREA-TIME PRODUCT EFFICIENT RNS POLYNOMIAL

BASE EXTENSION

This chapter focuses on our work implementing and optimizing base extension ar-
chitecture on FPGA. We set the context of accelerating arithmetic on FPGAs by
providing insight into our design process. We present hardware-friendly algorithms
we have utilized and explain why they are advantageous over those found in the
literature. Furthermore, we then explain our hardware architecture design for base
extension. We introduce a scalable, throughput-oriented, pipelined, and folded ar-
chitecture for the Shenoy-Kumaresan algorithm. Finally, we compare our architec-
ture with those found in the literature for the FHE use case.

3.1 Loosely Coupled FPGA Accelerator

The end goal of our hardware design is to be integrated in a FPGA loosely coupled
accelerator as shown in Figure 3.1. The choice of a loosely coupled accelerator results
in a significant communication cost between the host and the device. For our use
case, there is a PCIe Gen 3×16 interface between the host and the device, resulting
in a simple memory-mapped copy operation between the host device and the FPGA
accelerator device taking on the order of milliseconds. The communication overhead
of transfers between the host and the device diminishes the practical speedup of the
accelerator.

Hence, our goal is to minimize the number of transactions between the host and the
device. To achieve this, we implement the necessary algorithms on the device itself.
Thus, our base extension algorithm shares the programmable logic area with other
computationally expensive operations due to other homomorphic computations such
as NTT and relinearization . Our goal is to use as much of the area for actually
useful computation. For this reason, we choose ATP as our figure of merit.

24

Figure 3.1 High-level overview of the accelerator.

As the number of polynomials required to compute homomorphic multiplication
increases with the number of RNS residues, the capacity of memory needed exceeds
the total available on-chip memory capacity of 43 MB, including BRAM and URAM
(AMD Xilinx (2023)). So, our design also makes use of the off-chip HBM available
on the Alveo U280 FPGA, which has a total capacity of 8 GB (AMD Xilinx (2023)).

The Alveo U280 FPGA has 32 AXI-3 channels that are connected to the HBM
subsystem as shown in Figure 3.2. There are two memory stacks of 4 GB capacity.
The physical connection between the FPGA die and the HBM is facilitated through
a silicon interposer. HBM subsystem consists of 8 Mini Switch (MS)s that connect 16
Memory Controller (MC)s. Finally, each MC is connected to two Pseudo Channel
(PC)s that each have a theoretical maximum bandwidth of 14.375 GB/s. Each
PC is directly connected to a 256 MB section of the HBM. The HBM memory
subsystem can run at native 450 MHz or 225 MHz through the usage of BRAMs
and First In First Out (FIFO) registers (AMD Xilinx (2024)). Attaining 450 MHz
native frequency is difficult for the FPGA programmable logic, so we will assume
that we are communicating with the HBM memory subsystem at 225 MHz. At
225 MHz, we are given 16384-bit total bandwidth to and from the HBM. As this is
the theoretical maximum, meaning it does not take into account the backpressure
mechanism, switching delays, and refresh cycles, we may not be guaranteed this
bandwidth at all times. In our design, we have assumed a 2048-bit guaranteed
throughput. The reads and writes will be handled through an intermediary control
logic, which will buffer the inputs and outputs of our design.

25

Figure 3.2 HBM interface on AMD Alveo U280 FPGA (AMD Xilinx (2022))

26

3.2 Efficient Arithmetic on FPGA

Implementing arithmetic on FPGA efficiently requires some understanding of the
resources available on the device. FPGAs have distributed Look-Up Table (LUT) for
configurable logic and Digital Signal Processing (DSP) slices for faster arithmetic.
These DSP blocks implement integer multiply-accumulate functions. However, un-
like CPU or GPU, they generally do not have floating-point arithmetic units. There
are implementations for floating-point arithmetic, but the device itself does not have
native support. Similarly, performing modular arithmetic requires consideration of
the capabilities of the FPGA. An example of a fundamental limitation is the lack of
division operation by integers apart from powers of two.

3.2.1 Modular Arithmetic

Performing modular arithmetic in a pipelined manner on FPGA requires that we
have deterministic runtime algorithms. Modular additions and subtractions are
trivial. For example, for additions shown in Algorithm 5, we guarantee the input
range to be between [0, q− 1] . Then, we check if the sum is larger than q and
subtract q if so. Similarly, as seen in Algorithm 6, we can check if our subtraction
yields a negative number and add q to the result for the hardware implementation
of modular subtraction.

Algorithm 5 Modular Addition Algorithm
Input: a,b ∈ [0, q),2r−1 ≤ q < 2r, assuming arithmetic in binary
Output: c= a+ b (mod q)

1: e← a+ b
2: f ← a+ b− q
3: if f{r−1} = 1 then ▷ Result is negative
4: c← e
5: else
6: c← f
7: end if

For modular multiplications, the lack of division means there are a few algorithms
available. These algorithms have trade-offs in terms of precomputed values, run-time
complexity, and logic usage. We are using the Word-Level Montgomery reduction
algorithm (Algorithm 7) from Mert et al. (2020) with optimizations from Tosun et al.

27

Algorithm 6 Modular Subtraction Algorithm
Input: a,b ∈ [0, q),2r−1 ≤ q < 2r, assuming arithmetic in binary
Output: c= a− b (mod q)

1: e← a− b
2: if e{r−1} = 1 then ▷ Result is negative
3: c← e+ q
4: else
5: c← e
6: end if

(2024). The implementation of the modular multiplier, adder, and subtraction units
includes pipeline stages. Hence, they are pipelined sequential circuits. This choice
enables us to enhance our throughput while meeting the frequency requirements of
our application.

Algorithm 7 Word-Level Montgomery Reduction Mert et al. (2020)
Input: a ∈ [0, q),2r−1 ≤ q < 2r, ω|q = 1 (mod 2ω);qH = q[r−1:ω], ν = ⌈ r

ω⌉
Output: d= a2−ων (mod q)

1: T ← a
2: for s= 0, . . . ,ν−1 do
3: TL← T[ω−1:0], TH ← T[r−1:ω]
4: T̃ ←−TL (mod 2ω)
5: carry← T̃ [ω−1]∨

T [ω−1]
6: T ← TH + qHTL +carry
7: end for
8: if T ≥ q then
9: d← T − q

10: else
11: d← T
12: end if

The 2−ων factor introduced by Montgomery reduction is handled through the pre-
processing of the data. For example, multiplying the constants by 2ων by the number
of multiplications that will be performed.

3.3 Architecture Overview

Accelerating base conversion in this work aims to exploit parallelism. Exploiting
parallelism requires that we eliminate potential branching conditions. Conditional

28

execution and branch prediction are non-trivial tasks and impact algorithm perfor-
mance. Even occasional bubbles in the execution have to be handled accordingly.

To exploit this parallelism and perform operations in a throughput-oriented manner,
we implement pipelined data paths for consuming inputs and producing outputs.
Due to the nature of the base extension algorithm (see Algorithm 2), we cannot pro-
ceed any further before we compute the summation of all the results. We therefore
have to split the computation into two separate stages. These stages themselves are
pipelined, but their execution happens serially. We refer to the first stage as “Sum
Process” and the second stage as “Post-Sum Process.” Steps 1-3 in Algorithm 2
implement the Sum Process, and steps 4-7 correspond to the Post-Sum Process.
Notice that the Sum Process is almost identical in nature to Algorithm 1 . The only
difference is the data path corresponding to ql. The Sum Process stage starts as
soon as we receive polynomial coefficients and ends after we have accumulated all
the summation results.

Although serializing computation by splitting the execution is not generally de-
sired, it opens up potential optimizations for hardware implementation. Our use
case requires base extension hardware to be integrated onto the same FPGA as a
general-purpose FHE accelerator. Therefore, any additional LUT or DSP usage can
cause the entire design to not fit on the device’s programmable logic. We address
this problem in two ways. First, we present a design-time configurable hardware gen-
erator that allocates FPGA resources proportional to the throughput performance
requirements. Second, we reuse multipliers for the Sum and Post-Sum Processes.
Most of the multipliers on the FPGA are consumed by the NTT accelerator unit,
and saving from valuable DSP resources is crucial for fitting the accelerator to the
FPGA.

3.3.1 Data Flow of Algorithm 1

In this section, we provide insights into the data flow of Algorithm 2, a crucial step
in designing the hardware for the algorithm. Our aim is to show the approach we
took in designing the architecture.

Here, we notice that the result of step 1 in Algorithm 2 is the modular multiplication
with respect to qi, which can be used in both α and αpj computation, as observed
in Figure 3.3. Hence, this computation is broadcast, and a single set of modular
multiplier hardware for computing µqi is enough. Additionally, we would like to note

29

Figure 3.3 Data flow of Shenoy-Kumaresan algorithm, where j = 0, . . . ,k−1

that we must first compute α before proceeding with the subsequent computations.
Hence, we implement our architecture in accordance with these dependencies. We
would also like to distinguish the clock cycle (CC) and iteration count measures.
Due to the pipelining stages and internal read/write logic, there may be changes
in the CC count. Hence, we will use an iteration count that abstracts away the
underlying complexity. Our conclusions will still hold because filling the pipeline
stage can take up to ≈ 50 CCs, whereas our computations scale with N , which is
orders of magnitude larger.

3.3.2 Fully Pipelined Architecture

In this section, we present our architecture, which implements Algorithm 2 in a fully
pipelined manner. Here, the term fully pipelined signifies that it can accept a new
set of residues corresponding to a different polynomial when the previous one has
been computed for the given stage. Hence, no bubbles would be needed to compute
subsequent base extension operations for a different polynomial. The architecture is
shown in Figure 3.4. We omit the pipeline registers used to synchronize the compu-
tations in the figure for clarity, but divide the computation into the pipeline stages,
indicating the synchronization points. Also, note that, as shown in subsection 3.2.1,
modular arithmetic modules are also sequential circuits, each with its own pipeline
stages. The stage and clock cycle counts of modular arithmetic blocks vary accord-
ing to the specified parameters. Hence, this complexity is abstracted away in the
figures. The figures are drawn given that TP = 4.

30

Figure 3.4 Architecture overview for a fully pipelined version where TP = 4

31

Notice that we are broadcasting the same second operand for all of the multipli-
cations. This allows us to simplify the read control logic and only access one pre-
computed term per multiplier group. For larger designs, access to memory can be
further pipelined to avoid critical paths caused by broadcasting. In our designs with
TP ≤ 64, the critical paths contributed by these broadcast accesses were not large
enough to justify the extra design complexity.

Our approach implements the data flow shown in Figure 3.3 with pipeline stages
synchronizing the consumption and production of intermediate results. Computing
α requires us to instantiate an execution pipeline where the operations are performed
modulo ql. While computing α, we have to delay the a′

pj
intermediate results with

pipeline registers to ensure that ModSubpj takes the correct order of inputs.

The control logic of our design consists of simple counters that keep track of the
progress of the Sum and Post-Sum Processes. We loop through the Sum Process
N ·(l+1)

T P times. Please note that the first iteration over N
T P is spent on ingesting the

redundant residue to the Aql
BRAM group. Subsequent N ·l

T P iterations are used to
compute the a′

ql
and a′

pj
partial sums. We can’t progress before we compute these

partial sums.

Computing these sums separately for ql and pj is a design requirement. We can’t
work with the full precision Q̂i’s. From subsection 2.5.1 we can see that the bit
width of Q̂i is ⌈log2 (Q− qi +1)⌉. For a word size of 64 bits and l = 17, a single Q̂i

would become 1024 bits. We would have to compute with thousand-bit operands,
which would diminish the utility of RNS and pose significant resource usage issues
on our FPGA.

A fully pipelined architecture is useful when we frequently need to extend inde-
pendent polynomials, meaning RNS residues corresponding to distinct polynomials.
However, as we will introduce in the next section, we can improve our resource con-
sumption significantly by relaxing the constraint of accepting distinct polynomial
residues immediately after the previous one is computed for the Sum Process.

3.3.3 Folded Architecture

In the abstract overview of the architecture shown in Figure 3.5, the modular multi-
pliers for ql and pj are used again for the Post-Sum Process. When coupled with an
n-step NTT architecture and given that the throughput is not bottlenecked by base
extension, we can reuse the same modular multipliers, specifically 2 ·TP modular

32

multipliers for both processes. Essentially, this is possible since base extension will
not accept a new set of polynomial inputs when it starts computing residues. Note
that we are assuming that N > l, which is the case in practice.

33

Figure 3.5 Folded architecture overview where TP = 4

34

Figure 3.6 Architecture comparison in terms of number of iterations

Note; SP: Sum Process, PSP: Post-Sum Process.

By computing the Sum and Post-Sum Processes serially, we increase the iteration
count by N ·(l−1)

T P iterations, almost by one length of the Sum Process. We can
observe an example execution shown in Figure 3.6. Due to the interface between
the FPGA and HBM, shown in Figure 3.2, our bandwidth is bottlenecked by the
amount of simultaneous transfers. Hence, a read and write operation consumes from
the same total bandwidth available on the device. Thus, in practice, avoiding si-
multaneous read and write operations is preferable. We observe that, by performing
Sum and Post-Sum Processes mutually exclusively in the Folded architecture, we
only consume and produce TP -many coefficients as opposed to 2 ·TP coefficients in
the Fully Pipelined architecture. Which is advantageous for our application, where
we are guaranteed a limited bandwidth for the HBM interface.

An example case would be with N = 216, TP = 64, l = 30, where the Folded
architecture would take 983040 iterations and the Fully Pipeline architecture would
take 953344 iterations. The difference is 29696 iterations or ≈ 3.2% of the Fully
Pipeline architecture iteration count. The design choice of time-multiplexing the
computation can be revisited if the base-extension unit becomes the bottleneck
during computation. These stages can be separated again, given that we satisfy the
bandwidth limitations, to accept a new input set after completing the sum process.

3.3.3.1 Memory Requirements

Computing Algorithm 2 requires that we store the following precomputed terms
shown in Table 3.1. They are all residues with the size ⌈log2 (qi +1)⌉.

To store the summation results for subsequent computations, we instantiate two
BRAMs with depth N . Another BRAM is required to store the redundant residues
separately to compute the Post-Sum Process. In total, we instantiate three BRAMs

35

Table 3.1 Number of precomputed terms required by Shenoy-Kumaresan

Precomputed Term # of terms to store∣∣∣Q̂−1
i

∣∣∣
qi

l∣∣∣Q̂i

∣∣∣
pj

l ·k∣∣∣Q̂i

∣∣∣
ql

l∣∣∣Q−1
∣∣∣
ql

1
|Q|pj

k

with depth N . Each BRAM stores coefficients with the method shown in Figure 3.7.

Figure 3.7 Example BRAM coefficient placement for TP = 4, N = 25

The BRAM coefficient placement can be altered easily, as the computation only
requires that we are consistent across other BRAM groups as well. For example,
it is not necessary that we receive coefficients in an ordered fashion. As long as
we receive the subsequent coefficients in the same order, the computation will be
correct.

3.3.3.2 Arithmetic Requirements

Arithmetic units are considered the area usage required to implement the architec-
ture. Here, we count the modular subtraction units as the same as the modular
addition units to simplify analysis, as they are identical in resource consumption.
The total arithmetic unit count can be seen in Table 3.2.

36

Table 3.2 Number of arithmetic units required by Shenoy-Kumaresan to produce
one residue

Architecture Arithmetic Unit Count
Fully Pipelined Modular Adder 4 ·TP

Modular Multiplier 5 ·TP
Folded Modular Adder 4 ·TP

Modular Multiplier 3 ·TP

3.4 Optimizations for Polynomial Residues

Our accelerator is optimized for coupling with a FHE accelerator. The target NTT
accelerator in the final implementation processes polynomials for one residue at a
time. Hence, NTT takes inputs and outputs of size N polynomial for one residue at
a time. Our approach is optimized for this type of computation. We aim to overlap
this process with our own computation. Thus, when the NTT accelerator finishes
the last residue polynomial, we will be able to output the first residue polynomial
in the target base within N/TP iterations.

This method of computation also avoids the costly and complicated reordering of
the coefficients by the preceding and subsequent units. By being flexible and not
enforcing a coefficient storage strategy, we enable optimizations on algorithms other
than base extension. Hence, as an example, NTT units can reorder and store their
results in the most optimal way and not have to be burdened by the processing of
the base extension unit.

3.4.1 Avoiding Communication Overhead by Integration

For one homomorphic multiplication 3 ·N · l, coefficients are consumed by relin-
earization. An example case is for the parameter set log2 qi = 60,N = 216, l= 18, the
data to be copied becomes 26.5 MiB. Ignoring all other overheads, sending this data
would take 1.65 ms over a PCIe Gen 3×16 connection to the host. We will then copy
this data back to the device for the remaining operations, which effectively results in
at least 3.3 ms of communication overhead, even excluding any computation costs
on the host side.

We avoid this overhead by staying on the device and avoiding transfers with the

37

host. This also frees up the host to perform other useful tasks, such as preparing
for the next offloading of the computation. Furthermore, we also save on the energy
of these expensive data movements to and from the host.

38

4. RESULTS AND COMPARISON

Here, we present our results and comparison with the available architectures for base
extension. We then provide our utilization results on FPGA and finally present our
work in the context of the software implementation.

4.1 Architecture Comparison

In this section, we will compare our approach to the ones available in the literature.
Our goal is to show the justifications for the design choices being made in this work.
We will not include Algorithm 1 in this comparison as it is already part of the
Algorithm 2 as the "Sum Process".

4.1.1 Cox-Rower Architecture

Cox-Rower architecture is specialized for use in the RSA public key cryptography
algorithm. It implements Algorithm 3 with units specifically tailored for the pa-
rameters given. It exploits the symmetry of the base extension operation in RNS
Montgomery multiplication. The source base and the target base both are comprised
of l-many residues. There are subsequent works (Nozaki et al. (2001)) introducing
methods to time-multiplex this architecture, but they require handling edge cases
where the number of processing elements has to be a factor of the number of residues
to avoid overheads. We will primarily focus on the original work by Kawamura et al.
(2000), which simplifies our analysis. We assume that our concerns regarding the
compatibility with NTT and limited input range are solved for this part of the
analysis.

39

4.1.1.1 Memory Requirements

We have to store the terms shown in Table 4.1 in the read-only memory to compute
Algorithm 3 in the Cox-Rower architecture.

Table 4.1 Number of precomputed terms to store by Cox-Rower architecture

Precomputed Term # of terms to store∣∣∣Q̂−1
i

∣∣∣
qi

l∣∣∣Q̂i

∣∣∣
pj

l2

|−Q|pj
l

Another requirement of the Cox-Rower architecture is the availability of the residues
that represent an integer in the source base simultaneously. When computing Line 4
of Algorithm 3 we assume that we are able to access all of the source residues in a
single clock cycle. This may introduce complexity in terms of design considerations.
We will refer to this point in our comparison with our work to further discuss it.

4.1.1.2 Arithmetic Requirements

The architecture consists of two arithmetic units, Cox and Rower, that are shown
in Figure 4.1. The higher-level architecture can be seen in Figure 4.2. Cox unit
computes Lines 1-3,7,8, and 9 in Algorithm 3. It has a ϱ-bit adder and a register
that produces the bits of α.

Figure 4.1 Cox and Rower units

1...1000

&

The Rower units have a multiplier, an accumulator, and a modular reduction unit
that computes Line 10. The multiplication with ξqs has a bit width of r. Multiplica-

40

Figure 4.2 Cox-Rower architecture overview

tion with the |−Q|pj
term is with a single bit α{s}, which can be implemented with a

multiplexer instead. The authors designed this datapath to be implemented within
a Very-large-scale Integration (VLSI) ASIC chip. Thus, the combinational critical
path timing issues with FPGA implementations were not considered. If we were to
adapt this design to an FPGA, we would have to use pipelined adders and modular
multipliers instead. We will take this modification into account when comparing
the circuit complexity between the architectures. Thus, a single rower unit, for our
analysis, consists of two modular adders and one modular multiplier, as shown in
Table 4.2.

Table 4.2 Number of arithmetic units required by Cox-Rower architecture to produce
l residues

Arithmetic Unit Count
Adder 1

Modular Adder 2 · l
Modular Multiplier l

4.1.1.3 Comparison to Our Work

Given that we are able to find suitable primes and tolerate the reduction in the
representation range, Cox-Rower architecture computes N · l target base residues in

41

N · (l+1) iterations. This approach directly couples the circuit complexity with the
number of residues in the source and target bases. It is less flexible and configurable
compared to our decoupled throughput compile-time design parameter. Adapting
this approach to be flexible requires handling non-trivial design decisions, such as
incorporating an address generation unit or a more complex finite-state machine.

4.1.2 Mixed-Radix Architecture

Algorithm 4 is utilized in converting our RNS non-positional representation to a
positional representation. It provides a unique ability to determine the order be-
tween two integers that were in the RNS representation. This ability is necessary
to compute algorithms, where comparisons are required to determine the execu-
tion path. We will assume a fully parallel implementation due to the nature of the
Mixed-Radix algorithm. It has been utilized in massively parallel systems, such as
GPUs, as shown in Al Badawi et al. (2021). Algorithm 4 can be implemented in a
variety of configurations. In Figure 4.3 we present one such architecture.

4.1.2.1 Architecture Design

In this section, we explain the reason we have taken the iterative design, as shown
in Figure 4.3, into account.

In Figure 4.3, we present one design that computes Algorithm 4 iteratively. It is
unrolling the inner for loop with respect to u, computing steps 3-6. It is an abstract
view of a design that computes a single new residue in l+1 iterations with l modular
multipliers.

Conversely, we could have implemented Algorithm 4 with unrolling the outer loop
as well. We will assume that we are producing a single new residue. Utilizing
(l+1)·l

2 + 1 modular multipliers, we could compute a new residue in every single
iteration. However, this would quickly exhaust the DSP blocks on our FPGA. For
l = 30 this would mean that we would instantiate 466 modular multipliers. If we
assume a 32-bit word size and 6 DSPs for each modular multiplier, we would use 2796
DSP blocks, which is almost a third of the 9024 total available DSP blocks on our
Alveo U280 FPGA (AMD Xilinx (2023)). With an increasing number of residues,

42

Figure 4.3 Mixed-Radix iterative architecture overview

the multiplier usage will increase quadratically, which exacerbates the problem of
high resource usage.

Figure 4.4 Mixed-Radix fully pipelined architecture overview

Hence, we have chosen the iterative design for our comparisons. The higher-level
view of the architecture is shown in Figure 4.3. This implementation instantiates as
few parallel multipliers as possible to compute Algorithm 4.

43

4.1.2.2 Memory Requirements

Precomputed terms for the mixed-radix algorithm are shown in Table 4.3.

Table 4.3 Number of precomputed terms required by Mixed-Radix architecture

Precomputed Term # of terms to store∣∣∣q−1
i

∣∣∣
qh

l · (l−1)/2∣∣∣q−1
i

∣∣∣
pj

l ·k
|Q|pj

k

Along with these precomputed values, we have to broadcast bs for the subtraction
operation in all residues. This data movement may complicate critical path require-
ments for FPGA in applications with a large number of residues. Like with Algo-
rithm 3 this algorithm also assumes that we can access all residues that represent an
integer simultaneously. Thus, the memory access and bandwidth requirements are
again directly coupled to its performance. Lastly, the next bs has to be determined
by a multiplexer that selects the current radix that will be used for the subtraction
in the next iteration. This multiplexer will have l− 1 inputs and one output, with
a high number of residues and bit-width, which can increase the complexity of the
circuit.

4.1.2.3 Arithmetic Requirements

Computation of subsequent radices cannot continue until we process all updates
on the individual residues. The sequential nature of the mixed-radix algorithm
requires that we have l+1 multipliers and l subtraction units in parallel to compute
the updates as shown in Table 4.4. At each iteration, we can retire one residue
multiplier as it won’t be required for the computation of subsequent residues.

Table 4.4 Number of arithmetic units required by Mixed-Radix architecture to pro-
duce one residue

Arithmetic Unit Count
Modular Adder l

Modular Multiplier l

44

4.1.2.4 Comparison to Our Work

Mixed-radix conversion requires that we compute a mixed-radix digit bs before con-
tinuing the computation. Hence, it is less parallelizable. Algorithm 4 can compute
new residues in N · (l+ 1) clock cycles. We have to store all residues corresponding
to each polynomial coefficient such that they can be accessed simultaneously. In-
troducing a throughput design parameter is thus not possible. Implementing fewer
than l multipliers would also complicate the design datapath, requiring us to time-
multiplex the computation.

Utilizing the proposed folded architecture, we can complete the Sum Process in
N ·(l+1)

T P and the Post-Sum Process in N
T P clock cycles. Our approach is specialized

for extending polynomial residues.

4.1.3 Overview of the Comparison of Algorithms and Architectures

In this section, we present the algorithms and their architectures in a comparable
parameter set. Since the most constrained parameter set belongs to the Cox-Rower
architecture implementing Algorithm 3 we will use its k = l assumption for a fair
comparison. In Table 4.5, we list the algorithms and architectures discussed in this
work.

Table 4.5 Comparison of algorithms and architectures where k = l

Note; Alg.: Algorithm, Arch.: Architecture, Flex.: Flexible, SK: Shenoy-
Kumaresan, RBE: Recursive Base Extension, MXR: Mixed-Radix, Pipe.: Pipelined,
Fold.: Folded, CR: Cox-Rower, Iter.:Iterative, MM: Modular Multiplier, MA: Mod-
ular Adder, A: Adder, ✓: is flexible, ✗: not flexible,

Alg. Arch. Memory Arithmetic Iterations Flex.

SK Pipe. l2 +3 · l+1 5 ·TP ·MM +4 ·TP ·MA N ·(l+1)·l
T P + N

T P ✓

Fold. l2 +3 · l+1 3 ·TP ·MM +4 ·TP ·MA l · (N ·(l+1)
T P + N

T P) ✓

RBE CR l2 +2 · l l ·MM +2 ·MA+A N · (l+1) ✗

MXR Pipe. l2 + l·(l−1)
2 + l ((l+1)·l

2 +1) ·MM + (l+1)·l
2 ·MA N ✗

Iter. l2 + l·(l−1)
2 + l l ·MM + l ·MA N · (l+1) ✗

We notice a relationship emerging from the number of iterations and arithmetic
requirements. As expected, the iteration count decreases as we instantiate more
arithmetic units. One such example is the N iteration count, the smallest iteration

45

count, of the pipelined architecture corresponding to the mixed-radix algorithm,
which instantiates (l+ 1) · l modular multipliers. The Recursive Base Extension al-
gorithm is represented by the Cox-Rower architecture, which instantiates l modular
multipliers and performs the base extension in N · (l+ 1) iterations. Finally, our
folded architecture instantiates 3 ·TP modular multipliers and performs the base
extension in N ·(l+2)·l

T P iterations.

If we were to define a parameter as the product of modular multipliers and number
of iterations, we notice that they are in the form a ·N · l · (l+ b). Where a and b are
tunable according to the choice of algorithm and architecture.

Our architecture is also the only approach where the number of modular multipliers
is a design parameter. Both Cox-Rower and mixed-radix architectures require us to
instantiate modular multipliers according to the number of residues in the source
(l) and target (k = l, for this comparison) bases. This flexibility can also enable the
use of a single hardware for multiple parameter sets. By specifying a maximum l,
the counter logic could be modified to accommodate multiple parameter sets in the
future. Other architectures are not flexible in this regard. Accommodating variable
parameter sets would require significant design effort for the control logic, if even
possible.

Table 4.6 Comparison of iteration counts for given parameters

Algorithm Architecture Iterations

N = 216 N = 214 N = 212

TP = 32 TP = 32 TP = 64

l = 17 l = 7 l = 4

Shenoy-Kumaresan Pipelined 628736 29184 1344

Folded 661504 32256 1536

Recursive Base Extension Cox-Rower 1179648 131072 20480

Mixed-Radix Pipelined 65536 16384 4096

Iterative 1179648 131072 20480

Although our architecture is more complex in theory, it performs better in practical
parameter sets as shown in Table 4.6. The advantage of our architecture increases
when TP is larger than l. This behavior is expected as if we plug TP = l, our Folded
architecture iteration count becomes N · (l+2).

46

4.2 Utilization Results

In this section, we present our utilization results for the given parameters. We
have implemented the designs on AMD Alveo U280 using Vivado 2022.2 with Sys-
temVerilog HDL. Here, the given parameters are chosen from modifying examples
in OpenFHE for homomorphic multiplication with the BEHZ method. We compute
the ATP metric as follows: Time · (LUT+ FF

2 +100 ·DSP+300 ·BRAM).

Table 4.7 Device utilization results for logN = 16, l = 17

logqi TP LUT FF BRAM DSP tmin fmax CC Time ATP
(×103) (×103) (ns) (MHz) (µs) (×106)

32 1 2.4 5 192 18 2.1 476.19 1245184 2614.89 168.18
16 22.5 37.1 192 288 2.1 476.19 77824 163.43 20.82
64 75.8 139.9 192 1152 2.7 370.37 19456 52.53 16.73

64 1 5.9 12.9 384 60 2.55 392.16 1245184 3175.22 424.03
8 31.5 53.9 384 480 2.7 370.37 155648 420.25 93.16
32 121.1 198.5 384 1920 3.2 312.50 38912 124.52 65.70

Table 4.8 Device utilization results for logN = 14, l = 7

logqi TP LUT FF BRAM DSP tmin fmax CC Time ATP
(×103) (×103) (ns) (MHz) (µs) (×106)

32 1 1.8 3.6 48 15 2 500.00 147456 294.91 5.75
16 20.7 35.5 48 240 2.1 476.19 9216 19.35 1.49
64 70 136.9 96 960 2.7 370.37 2304 6.22 1.64

64 1 5.4 10.8 96 66 2.45 408.16 147456 361.27 16.68
8 32.6 54.9 96 528 2.55 392.16 18432 47.00 6.66
32 124.8 206 96 2112 3.3 303.03 4608 15.21 7.11

Table 4.9 Device utilization results for logN = 12, l = 30

logqi TP LUT FF BRAM DSP tmin fmax CC Time ATP
(×103) (×103) (ns) (MHz) (µs) (×106)

32 1 3.0 6.7 12 21 1.95 512.82 131072 255.59 3.09
16 24.2 41.7 24 336 2.1 476.19 8192 17.20 1.48
64 80.7 153.8 96 1344 2.77 361.01 2048 5.67 1.82

64 1 7.4 16.6 22.5 66 2.4 416.67 131072 314.57 9.13
8 34.9 61.3 24 528 2.55 392.16 16384 41.78 5.25
32 128.1 215.5 96 2112 3.4 294.12 4096 13.93 6.63

We provide results for up to 2048-bit throughput, consistent with our assumption in
Chapter 3. We can notice that our DSP usage is different for each polynomial size.
This is due to the optimization provided by Tosun et al. (2024). Where the modulus
has fewer free significant bits for reduction in higher ring dimensions. We also note
that our ATP metric improves as we increase parallelism, which substantiates our

47

scalability claim. Table 4.7 has the most significant BRAM usage as it has the
largest polynomial degree.

Our goal in providing the fmax figure is not to implement the designs in the given
frequencies but to demonstrate that the critical path will not be from this module
when integrated with a complete HE accelerator design. Synthesizing all our designs,
for example, in 200 MHz would also strengthen our scalability argument due to the
ATP metric.

We also note that the time shown is for computing a single new residue in the
target base and should be multiplied by the number of new residues for a complete
operation.

Our designs are also synthesizing within the expected frequencies. Increasing the
polynomial size or the number of residues does not significantly impact the critical
path.

4.3 Comparison with OpenFHE

Here we present the timing results, shown in Table 4.10, Table 4.11, of the Shenoy-
Kumaresan base extension implementation in the OpenFHE library. We also include
our expected timing results, assuming a clock period of 5 ns. The parameter sets
were generated using OpenFHE. Our design supports the given parameters as long
as suitable primes are available for the given parameter set. Specifically, our modular
reduction method has been tested up to N = 216 with logqi = 32 and 64.

Table 4.10 Timings for logN = 16, logqi = 60

Platform Implementation / l 17 18
AMD R9 7950X OpenFHE w/ OMP 15328 16067

OpenFHE w/o OMP 93856 109454
M1 Pro 10C OpenFHE w/ OMP 13384 14553

OpenFHE w/o OMP 48135 54718
AMD TR Pro 3955WX OpenFHE w/ OMP 19446 21629

OpenFHE w/o OMP 53087 58512
Intel i7-9750H OpenFHE w/ OMP 21887 22754

OpenFHE w/o OMP 55968 65741
Alveo U280 Our work (TP=32) 826.88 921.6

As shown in Table 4.10 Our implementation with Folded architecture achieves ×16

48

speedup over the best result for l = 17. Similarly, we achieve a ×15.7 speedup over
the best result for l = 18.

Table 4.11 Timings for logN = 14, logqi = 60

Platform Implementation / l 4 5 6 7
AMD R9 7950X OpenFHE w/ OMP 744 848 967 1141

OpenFHE w/o OMP 1541 2102 2561 3540
M1 Pro 10C OpenFHE w/ OMP 835 968 1093 1234

OpenFHE w/o OMP 1748 2130 2649 3415
AMD TR Pro 3955WX OpenFHE w/ OMP 832 942 1086 1282

OpenFHE w/o OMP 1678 2176 2624 3328
Intel i7-9750H OpenFHE w/ OMP 1153 1368 1532 1743

OpenFHE w/o OMP 1678 2176 2624 3328
Alveo U280 Our work (TP=32) 61.44 89.6 122.88 161.28

For N = 214, shown in Table 4.11, our Folded architecture achieves ×14 speedup over
the software implementation for l= 4. Our speedup becomes ×7 for l= 7 compared
to the best result.

We have measured the timings with (w/ OMP) and without (w/o OMP) the par-
allelization provided by OpenMP. Hence, we can observe that although parallelism
does speed up the computation, the increase in the number of cores does not directly
translate to increased performance. Our understanding is that the communication
bandwidth between the CPU dies and the memory is limiting the speedup from in-
creased parallelism. Another performance consideration is the overhead of synchro-
nization primitives required by OpenMP to implement the parallelism. Increasing
the number of threads increases the scheduling workload on the CPU.

We notice that as the number of residues and polynomial size increase, our speedup
also increases. A possible explanation for why some devices with a high number of
cores do not perform better than those with fewer cores is the bandwidth between
the CPU and memory. Hence, our architecture with dedicated memory accesses
is expected to perform better than even larger, more powerful CPUs due to the
memory bottleneck experienced by CPUs.

Timings were measured on four computers. Here are their specifications:

• AMD Ryzen 9 7950X, 16 cores, 4.5 GHz base, 5.7 GHz turbo clock speed, 128
GB of RAM.

• M1 Pro 10 cores, 3.2 GHz × 8, 2.06 GHz × 2, 16 GB of RAM.

• AMD Threadripper Pro 3955WX, 16 cores, 3.9 GHz base, 4.3 GHz turbo clock
speed, 512 GB of RAM.

49

• Intel i7-9750H, 6 cores, 2.6 GHz base, 4.5 GHz turbo clock speed, 32 GB of
RAM.

50

5. CONCLUSION AND FUTURE WORK

In this section, we will provide insights resulting from our work and recommend
future research avenues for exploration.

5.1 Conclusion

In this work, we have presented a ATP efficient, compile-time configurable, and
scalable base extension implementation for accelerating homomorphic multiplication
and relinearization operations. Our work explores various base extension methods
and compares them against our method. We have demonstrated that our design de-
couples performance parameters from the underlying arithmetic, and its performance
is minimally affected by changes in polynomial size and the number of residues. As
our design is parametric, if a better FPGA with higher memory bandwidth becomes
available in the future, we would be able to increase our performance simply by in-
creasing the TP parameter. We have shown that we can theoretically achieve up to
an order of magnitude speedup compared to the state-of-the-art OpenFHE software
library and that our approach is flexible and scalable in its FPGA implementation.

5.2 Future Work

Exploring efficient hardware implementations of algorithms shown in Figure 2.2 is a
possible research direction. Unifying the resource consumption of all of the different
hardware modules will be necessary for practical implementations on FPGA. One
such solution would be to utilize the butterfly units available in the NTT units to

51

compute the base extensions as well, saving on programmable logic consumption.
We also note that our approach is not unique to FPGA applications but can be
explored for ASIC designs.

52

BIBLIOGRAPHY

Agrawal, R., de Castro, L., Yang, G., Juvekar, C., Yazicigil, R., Chandrakasan, A.,
Vaikuntanathan, V., and Joshi, A. (2023). FAB: An FPGA-based Accelerator
for Bootstrappable Fully Homomorphic Encryption. In 2023 IEEE International
Symposium on High-Performance Computer Architecture (HPCA), pages 882–
895.

Al Badawi, A., Bates, J., Bergamaschi, F., Cousins, D. B., Erabelli, S., Genise, N.,
Halevi, S., Hunt, H., Kim, A., Lee, Y., Liu, Z., Micciancio, D., Quah, I., Polyakov,
Y., R.V., S., Rohloff, K., Saylor, J., Suponitsky, D., Triplett, M., Vaikuntanathan,
V., and Zucca, V. (2022). OpenFHE: Open-Source Fully Homomorphic Encryp-
tion Library. In Proceedings of the 10th Workshop on Encrypted Computing &
Applied Homomorphic Cryptography, pages 53–63, Los Angeles CA USA. ACM.

Al Badawi, A., Polyakov, Y., Aung, K. M. M., Veeravalli, B., and Rohloff, K.
(2021). Implementation and Performance Evaluation of RNS Variants of the
BFV Homomorphic Encryption Scheme. IEEE Transactions on Emerging Topics
in Computing, 9(2):941–956.

AMD Xilinx (2022). HBM Configuration and Use • Vitis Unified Software
Platform Documentation: Application Acceleration Development (UG1393) •
Reader • AMD Technical Information Portal. https://docs.amd.com/r/2022.2-
English/ug1393-vitis-application-acceleration/HBM-Configuration-and-Use.

AMD Xilinx (2023). Summary • Alveo U280 Data Center Accelerator
Card Data Sheet (DS963) • Reader • AMD Technical Information Portal.
https://docs.amd.com/r/en-US/ds963-u280/Summary.

AMD Xilinx (2024). Introduction • AXI High Bandwidth Memory Controller Logi-
CORE IP Product Guide (PG276) • Reader • AMD Technical Information Portal.
https://docs.amd.com/r/en-US/pg276-axi-hbm/Introduction.

Apple Inc. and Swift Homomorphic Encryption project authors (2025). Swift Homo-
morphic Encryption. https://github.com/apple/swift-homomorphic-encryption.

Badawi, A. A., Veeravalli, B., Mun, C. F., and Aung, K. M. M. (2018). High-
Performance FV Somewhat Homomorphic Encryption on GPUs: An Implementa-
tion using CUDA. IACR Transactions on Cryptographic Hardware and Embedded
Systems, pages 70–95.

Bajard, J.-C., Eynard, J., Hasan, M. A., and Zucca, V. (2017). A Full RNS Variant
of FV Like Somewhat Homomorphic Encryption Schemes. In Avanzi, R. and
Heys, H., editors, Selected Areas in Cryptography – SAC 2016, volume 10532,
pages 423–442. Springer International Publishing, Cham.

Bajard, J. C., Eynard, J., Martins, P., Sousa, L., and Zucca, V. (2019).
Note on the noise growth of the RNS variants of the BFV scheme.
https://eprint.iacr.org/2019/1266.

53

Bossuat, J.-P., Cammarota, R., Chillotti, I., Curtis, B., Dai, W., Gong, H., Hales,
E., Kim, D., Kumara, B., Lee, C., Lu, X., Maple, C., Pedrouzo-Ulloa, A., Player,
R., Polyakov, Y., Lopez, L., Song, Y., and Yhee, D. (2025). Security Guidelines for
Implementing Homomorphic Encryption. IACR Communications in Cryptology,
1(4):cc1–4–51.

Brakerski, Z. (2012). Fully Homomorphic Encryption without Modulus Switching
from Classical GapSVP. https://eprint.iacr.org/2012/078.

Cheon, J. H., Kim, A., Kim, M., and Song, Y. (2017). Homomorphic Encryption for
Arithmetic of Approximate Numbers. In Takagi, T. and Peyrin, T., editors, Ad-
vances in Cryptology – ASIACRYPT 2017, volume 10624, pages 409–437. Springer
International Publishing, Cham.

Defense Advanced Research Projects Agency (2021). DPRIVE:
Data Protection in Virtual Environments | DARPA.
https://www.darpa.mil/research/programs/data-protection-in-virtual-
environments.

Fan, J. and Vercauteren, F. (2012). Somewhat Practical Fully Homomorphic En-
cryption. https://eprint.iacr.org/2012/144.

Garner, H. L. (1959). The residue number system. In Papers Presented at the the
March 3-5, 1959, Western Joint Computer Conference on XX - IRE-AIEE-ACM
’59 (Western), pages 146–153, San Francisco, California. ACM Press.

Gentry, C. (2009). Fully homomorphic encryption using ideal lattices. In Proceedings
of the Forty-First Annual ACM Symposium on Theory of Computing, STOC ’09,
pages 169–178, New York, NY, USA. Association for Computing Machinery.

Halevi, S., Polyakov, Y., and Shoup, V. (2018). An Improved RNS Variant of the
BFV Homomorphic Encryption Scheme. https://eprint.iacr.org/2018/117.

Kawamura, S., Koike, M., Sano, F., and Shimbo, A. (2000). Cox-Rower Architec-
ture for Fast Parallel Montgomery Multiplication. In Goos, G., Hartmanis, J.,
Van Leeuwen, J., and Preneel, B., editors, Advances in Cryptology — EURO-
CRYPT 2000, volume 1807, pages 523–538. Springer Berlin Heidelberg, Berlin,
Heidelberg.

Kim, A., Polyakov, Y., and Zucca, V. (2021). Revisiting Homomorphic Encryption
Schemes for Finite Fields. https://eprint.iacr.org/2021/204.

Mert, A. C. (2021). EFFICIENT HARDWARE IMPLEMENTATIONS FOR
LATTICE-BASED CRYPTOGRAPHY PRIMITIVES. PhD thesis, Sabancı Uni-
versity.

Mert, A. C., Aikata, Kwon, S., Shin, Y., Yoo, D., Lee, Y., and Roy, S. S. (2022).
Medha: Microcoded Hardware Accelerator for computing on Encrypted Data.

Mert, A. C., Öztürk, E., and Savaş, E. (2020). Design and Implementation of
Encryption/Decryption Architectures for BFV Homomorphic Encryption Scheme.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 28(2):353–
362.

54

Microsoft (2023). Microsoft SEAL (release 4.1). https://github.com/Microsoft/
SEAL. Microsoft Research, Redmond, WA.

Nozaki, H., Motoyama, M., Shimbo, A., and Kawamura, S. (2001). Implementa-
tion of RSA Algorithm Based on RNS Montgomery Multiplication. In Goos, G.,
Hartmanis, J., Van Leeuwen, J., Koç, Ç. K., Naccache, D., and Paar, C., editors,
Cryptographic Hardware and Embedded Systems — CHES 2001, volume 2162,
pages 364–376. Springer Berlin Heidelberg, Berlin, Heidelberg.

Özcan, A. Ş., Ayduman, C., Türkoğlu, E. R., and Savaş, E. (2023). Homomorphic
Encryption on GPU. IEEE Access, 11:84168–84186.

Rivest, R. L., Adleman, L., and Dertouzos, M. L. (1978). ON DATA BANKS AND
PRIVACY HOMOMORPHISMS. Foundations of secure computation, 4(11):169–
180.

Samardzic, N., Feldmann, A., Krastev, A., Devadas, S., Dreslinski, R., Peikert,
C., and Sanchez, D. (2021). F1: A Fast and Programmable Accelerator for Fully
Homomorphic Encryption. In MICRO-54: 54th Annual IEEE/ACM International
Symposium on Microarchitecture, pages 238–252, Virtual Event Greece. ACM.

Shenoy, A. and Kumaresan, R. (1989). Fast base extension using a redundant
modulus in RNS. IEEE Transactions on Computers, 38(2):292–297.

Sinha Roy, S., Turan, F., Jarvinen, K., Vercauteren, F., and Verbauwhede, I. (2019).
FPGA-Based High-Performance Parallel Architecture for Homomorphic Comput-
ing on Encrypted Data. In 2019 IEEE International Symposium on High Perfor-
mance Computer Architecture (HPCA), pages 387–398.

Su, Y., Yang, B.-L., Yang, C., and Zhao, S.-Y. (2022). ReMCA: A Reconfigurable
Multi-Core Architecture for Full RNS Variant of BFV Homomorphic Evaluation.
IEEE Transactions on Circuits and Systems I: Regular Papers, 69(7):2857–2870.

Tosun, T., Kırbıyık, S., Koçer, E., and Alaybeyoğlu, E. (2024). Optimized FPGA
Architecture for Modular Reduction in NTT. https://eprint.iacr.org/2024/1890.

Tuneinsight (2024). Lattigo v6. Online: https://github.com/tuneinsight/lattigo.
EPFL-LDS, Tune Insight SA.

Turan, F., Roy, S. S., and Verbauwhede, I. (2020). HEAWS: An Accelerator for
Homomorphic Encryption on the Amazon AWS FPGA. IEEE Transactions on
Computers, 69(8):1185–1196.

Van Beirendonck, M., D’Anvers, J.-P., Turan, F., and Verbauwhede, I. (2023). FPT:
A Fixed-Point Accelerator for Torus Fully Homomorphic Encryption. In Proceed-
ings of the 2023 ACM SIGSAC Conference on Computer and Communications
Security, pages 741–755, Copenhagen Denmark. ACM.

55

https://github.com/Microsoft/SEAL
https://github.com/Microsoft/SEAL
https://github.com/tuneinsight/lattigo

	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATONS
	INTRODUCTION
	Contributions
	Relevant Works
	Thesis Outline

	BACKGROUND
	Notation
	Homomorphic Encryption
	BFV Scheme
	BEHZ Method
	HPS Method

	Residue Number System
	Number Theoretic Transform
	Base Extension
	CRT-Based Algorithms
	Fast Base Conversion Algorithm
	Shenoy-Kumaresan Algorithm
	Kawamura et al. Algorithm
	Halevi-Polyakov-Shoup Optimization

	Mixed-Radix-Based Algorithm

	Homomorphic encryption libraries
	OpenFHE
	Microsoft SEAL
	Lattigo
	Swift Homomorphic Encryption
	Comparing Against Libraries

	AREA-TIME PRODUCT EFFICIENT RNS POLYNOMIAL BASE EXTENSION
	Loosely Coupled FPGA Accelerator
	Efficient Arithmetic on FPGA
	Modular Arithmetic

	Architecture Overview
	Data Flow of Algorithm 1
	Fully Pipelined Architecture
	Folded Architecture
	Memory Requirements
	Arithmetic Requirements

	Optimizations for Polynomial Residues
	Avoiding Communication Overhead by Integration

	RESULTS AND COMPARISON
	Architecture Comparison
	Cox-Rower Architecture
	Memory Requirements
	Arithmetic Requirements
	Comparison to Our Work

	Mixed-Radix Architecture
	Architecture Design
	Memory Requirements
	Arithmetic Requirements
	Comparison to Our Work

	Overview of the Comparison of Algorithms and Architectures

	Utilization Results
	Comparison with OpenFHE

	CONCLUSION AND FUTURE WORK
	Conclusion
	Future Work

	BIBLIOGRAPHY

