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ABSTRACT

CURRICULUM DOMAIN GENERALIZATION FOR COMPUTER VISION

SORMEH SERPOOSH

COMPUTER SCIENCE AND ENGINEERING MSc. THESIS, July 2025

Thesis Supervisor: Assoc. Prof. ÖZNUR TAŞTAN
Co-advisor: Prof. ERCHAN APTOULA

Keywords: Domain generalization, Domain Shift, Curriculum Learning,
Progressive Feature Alignment, Feature Remixing, Computer Vision

Domain generalization aims to train models to perform well on unseen domains
without access to data from those domains during training. ADRMX (Additive
Disentanglement of Domain Features with Remix Loss) is an augmentation based
design to improve generalization to unseen domains. ADMRX disentangles domain-
invariant and domain-specific features via an additive architecture and applies a
latent-space remix loss, mixing same-class representations across source domains to
generate synthetic samples. Building on the ADRMX method, which mixes feature
representations of same-class samples across different domains, this thesis introduces
Progressive Feature Alignment (PFA). PFA is a curriculum-driven remixing strat-
egy. Remixing proceeds from the closest to the most distant pairs of domains, with
mixing coefficients dynamically adjusted based on class centroid distances across do-
mains to prevent unrealistic blending of dissimilar features and reduce noise in the
resulting synthetic examples. By organizing feature remixing according to semantic
proximity, PFA enables a gradual adaptation to increasingly challenging shifts.
Under the leave-one-domain-out protocol on the PACS and OfficeHome benchmarks,
PFA consistently outperforms ADRMX and other state-of-the-art domain general-
ization techniques, yielding especially strong gains on the more challenging Office-
Home dataset. These results demonstrate that a curriculum-driven approach to
feature remixing can substantially enhance the robustness of computer vision mod-
els to complex domain variation, suggesting new directions for tackling severe shifts
in unseen data.
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The implementation of my method is available at: https://github.com/SormehSerp/
PFA_
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ÖZET

BILGISAYARLA GÖRÜ IÇIN MÜFREDAT TABANLI ALAN GENELLEME

SORMEH SERPOOSH

BİLGİSAYAR BİLİMİ VE MÜHENDİSLİĞİ YÜKSEK LİSANS TEZİ, TEMMUZ
2025

Tez Danışmanı: Doç. Dr. ÖZNUR TAŞTAN
Tez Eş Danışmanı: Prof. Dr. ERCHAN APTOULA

Anahtar Kelimeler: Alan Genellemesi, Alan Kayması, Müfredat Öğrenmesi,
Kademeli Özellik Hizalaması, Özellik Karıştırma, Bilgisayarla Görü

Alan genellemesi, modellerin eğitim sırasında erişimi olmayan, görülmemiş alanlarda
da iyi performans göstermesini amaçlar. ADRMX (Remix Kayıplı Alan Özellik-
lerinin Toplamsal Ayrıştırılması), görülmemiş alanlara genelleme yeteneğini artır-
mak için veri artırmaya dayalı bir yaklaşımdır. ADRMX, alanlardan bağımsız ve
alana özgü özellikleri toplamsal bir mimariyle ayrıştırır ve gizil uzayda remix kaybı
uygular; böylece kaynak alanlar arasında aynı sınıfa ait temsilleri karıştırarak sen-
tetik örnekler üretir. Farklı alanlarda aynı sınıfa ait örneklerin özellik temsillerini
karıştıran ADRMX yönteminden yola çıkarak, bu tez Kademeli Özellik Hizalaması
(PFA) yöntemini sunar. PFA, müfredat temelli bir remix stratejisidir. Remix
işlemi, en yakın alan çiftlerinden başlayarak en uzaklara doğru ilerler ve karıştırma
katsayıları, alanlar arası sınıf merkezleri arasındaki mesafeye göre dinamik olarak
ayarlanır; bu sayede çok farklı özelliklerin gerçekçi olmayan şekilde karışması önlenir
ve ortaya çıkan sentetik örneklerdeki gürültü azaltılır. Özellik karıştırmayı anlam-
sal yakınlığa göre düzenleyen PFA, giderek zorlaşan alan değişimlerine kademeli bir
uyum sağlar.

PACS ve OfficeHome veri setlerinde bir-alanı-dışarı-bırak protokolü altında, PFA
sürekli olarak ADRMX ve diğer güncel alan genelleme tekniklerinden daha iyi
performans göstermekte, özellikle zorlu OfficeHome veri setinde belirgin kazanım-
lar elde etmektedir. Bu sonuçlar, özellik karıştırmada müfredat temelli bir yak-
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laşımın, bilgisayarla görü modellerinin karmaşık alan değişimlerine karşı dayanık-
lılığını önemli ölçüde artırabileceğini göstermekte ve görülmemiş verilerdeki ciddi
değişimlerle başa çıkmak için yeni yönler önermektedir. Yöntemimin uygulamasına
şu adresten ulaşılabilir: https://github.com/SormehSerp/PFA_
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1. INTRODUCTION

1.1 Motivation and Background

Domain generalization (DG) has emerged as one of the most critical challenges
in computer vision, particularly because real-world applications often face severe
performance drops when models encounter data drawn from domains not seen during
training (Long et al., 2015b). Classical DG methods try to learn domain-invariant
features or rely on various data augmentation techniques to mimic domain shifts
(Torralba & Efros, 2011). However, many of these approaches either introduce
unrealistic synthetic examples or fail to capture the subtle relationships between
domains, especially when domain shifts involve complex stylistic variations.

This thesis builds upon an earlier method called ADRMX (Additive Disentangle-
ment of Domain Features with Remix Loss) proposed by Demirel et al. (2023), which
proposes a strategy for improving domain generalization by synthesizing new fea-
ture representations through the remixing of features between samples of the same
class but from different domains. In ADRMX, for each mini-batch, feature repre-
sentations are first extracted. Then, pairs of samples belonging to the same class
but different domains are randomly selected, and their feature vectors are linearly
combined. The idea behind this process is to generate synthetic examples that in-
terpolate between different domains, thereby simulating domain shifts. However,
one fundamental limitation of ADRMX is that it does not account for the semantic
or statistical closeness of the domains being mixed. The selection of domain pairs
for remixing is purely random, without any measure of how similar or dissimilar the
domains are in terms of feature distributions. As a result, there is a significant risk
that the method may combine features from domains that are substantially differ-
ent in distributional characteristics. Such mismatched combinations can produce
synthetic feature vectors that are unrealistic or lie outside the actual feature space
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manifold, introducing artifacts that confuse the learning process rather than im-
proving generalization. This limitation is particularly problematic in datasets with
substantial domain differences due to variations in artistic style and/or background
complexity, making naive remixing insufficient or even harmful for robust domain
generalization.

Motivated by these limitations, this work proposes a more structured approach for
feature remixing. My hypothesis was that remixing features between domains that
are inherently closer in feature space would produce more meaningful synthetic sam-
ples, while still providing enough variability to improve generalization. Furthermore,
I aimed for this process to evolve gradually during training, exposing the model first
to easier domain shifts and only later to more challenging ones, inspired by cur-
riculum learning. This led me to develop the Progressive Feature Alignment (PFA)
method, which integrates domain distance measurements directly into the remixing
strategy, resulting in a more controlled approach to synthetic feature generation.

Ultimately, the motivation for this work stems from a desire to make domain gen-
eralization not just more effective, but also more more adaptive to the nuances of
different domain relationships. By taking into account the relative difficulty of do-
main relationships and embedding that into the training process, I believe this work
takes a step toward more intelligent learning strategies for robust machine learning.

1.2 Contributions

The main contribution of this thesis is the PFA method, which aims to improve
domain generalization by guiding how features are remixed across domains during
training. Instead of mixing features randomly, PFA uses the distances between
domain-specific class centroids in the feature space to decide which domains should
be mixed first, starting with those that are more similar and gradually including
less similar pairs. This progression acts like a curriculum, helping the model adapt
from easier to more difficult domain shifts. PFA also adjusts the mixing ratio based
on how close the domains are, which helps avoid unrealistic synthetic features when
domains differ too much. Through experiments, I show that PFA significantly im-
proves accuracy compared to prior methods like ADRMX. I also analyze why some
datasets present more challenges than some others, highlighting how domain differ-
ences can make naive remixing less effective unless guided by a structured approach

2



like PFA.

Together, these contributions advance the understanding of how controlled, distance-
aware feature remixing can enhance domain generalization when trained on image
datasets, offering a more principled alternative to purely random synthetic data
generation.

The remainder of this thesis is organized as follows:
Chapter 2 presents related work, reviewing existing research on domain generaliza-
tion, public datasets, evaluation metrics, and deep learning approaches relevant to
this study. Chapter 3 describes the proposed methodology in detail, explaining the
design and implementation of the PFA method. Chapter 4 discusses the experimen-
tal setup and reports the results obtained by evaluating PFA on benchmark datasets,
comparing its performance to baseline and state-of-the-art methods. Chapter 5 pro-
vides an ablation study that analyzes the contributions of individual components
within the PFA framework to overall performance. Finally, Chapter 6 concludes the
thesis by summarizing key findings and suggesting directions for future research.
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2. RELATED WORK

This chapter explores the background and key ideas that shape research in domain
generalization, particularly within computer vision. It starts by introducing the
public datasets that researchers commonly rely on, along with the metrics used
to evaluate how well different methods cope with domain shifts. Next, it looks
at major deep learning strategies for tackling domain generalization, focusing on
approaches that either learn domain-invariant features or utilize data augmentation
to improve robustness. Finally, the chapter discusses how these techniques are
applied in the context of computer vision tasks, laying the groundwork for the
methodology proposed later in this thesis.

2.1 Public Datasets for Domain Generalization Research

In my thesis, I work with two of the most widely used benchmarks: PACS and
OfficeHome.

The PACS dataset (Li et al., 2017) includes images from four domains—Photo, Art
Painting, Cartoon, and Sketch—all sharing the same seven object categories. What
makes PACS particularly challenging is that the domains differ quite dramatically
in visual style and texture, which is ideal for testing whether a model can learn
domain-invariant features.

OfficeHome (Venkateswara et al., 2017), on the other hand, is a much larger and
more complex benchmark. It consists of four domains as well—Art, Clipart, Prod-
uct, and Real-World—with 65 object classes. Unlike PACS, which has fewer classes
and more pronounced domain gaps, OfficeHome often presents more subtle shifts be-
tween domains. However, it also includes significant diversity in style, composition,
and color palettes, making it a tougher test for domain generalization.
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These datasets have become the standard for evaluating DG methods because they
offer controlled but diverse scenarios that approximate real-world domain shifts.
However, they are not without challenges. OfficeHome, in particular, has highly
imbalanced classes and uneven domain sizes, which can complicate training and
make fair comparisons challenging. Another difficulty is that visual differences across
domains might be either too subtle or too extreme.

2.2 Evaluation Metrics and Validation Protocols

In domain generalization, the main performance metric is usually classification accu-
racy measured on a held-out domain. The standard evaluation protocol is leave-one-
domain-out (LODO) validation, in which one domain is completely excluded during
training and used solely for testing. This setup closely simulates real-world scenarios
where a model encounters data from an unseen domain. The procedure is repeated
for each domain in the dataset, ensuring that each domain serves once as the held-
out test set. The resulting accuracies from each fold are then averaged to provide
an overall measure of the model’s generalization performance across domains.

In my work, I consistently follow LODO validation on both PACS and OfficeHome.
This means that for each run, I train on three domains and test on the fourth. The
reported result is either the accuracy on each individual held-out domain or the
average accuracy across all domains, depending on the comparison.

While overall accuracy is the most commonly reported number, it is not always
sufficient. Especially in datasets like OfficeHome with many classes and diverse
domains, performance can vary significantly between domains. For this reason, I
pay close attention to per-domain results to ensure that improvements are not due
to outliers or single-domain effects.

Another important concern in DG research is avoiding leakage of target domain
information during hyperparameter tuning. Using the test domain in any part of
model selection can lead to overly optimistic results. Therefore, I carefully separate
tuning processes from the held-out domain to ensure fair comparisons with prior
work.

Overall, consistent validation protocols and transparent reporting are essential for
showing that methods like PFA truly improve generalization rather than merely
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fitting to the specifics of a given benchmark.

2.3 Model Architectures in Domain Generalization

Over the past decade, significant research has focused on developing model archi-
tectures that can learn representations robust to domain shifts. Unlike traditional
supervised learning, DG requires models to perform well on unseen domains whose
distributions differ from those seen during training. This challenge has motivated
innovations in network design, feature disentanglement, and synthetic feature gen-
eration.

2.3.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) have long been the backbone of visual recog-
nition tasks and have been widely adopted in domain generalization research. Ar-
chitectures like ResNet (He et al., 2016) are commonly used because their residual
connections help stabilize training in deep networks, making them a strong foun-
dation for DG pipelines. In DG, CNNs are often combined with additional mech-
anisms—such as adversarial training, domain classifiers, or feature normalization
layers—to reduce reliance on domain-specific cues like texture or style.

However, pure CNN-based approaches can be limited in their ability to capture
global dependencies, which sometimes leads to poor generalization across domains
with significant style or structure changes. This has driven research toward
architectures that combine CNNs with more sophisticated feature manipulation
strategies.
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2.3.2 Feature Disentanglement Models

A key line of research in DG has explored feature disentanglement, where models ex-
plicitly separate domain-invariant features (i.e., features tied to class semantics) from
domain-specific features (e.g., styles, textures). The ADRMX framework (Demirel
et al., 2023) is a notable example, introducing separate encoders to extract label-
relevant and domain-specific features. By subtracting domain-specific components
from the label features, ADRMX aims to isolate a domain-invariant representation,
which is then used both for classification and feature-level augmentation.

This idea of generating synthetic samples by remixing domain-invariant and domain-
specific features has influenced multiple DG methods, enabling models to simulate
domain shifts without relying on target domain data.

2.3.3 Transformers in Domain Generalization

More recently, transformer-based models have started to make an impact in domain
generalization tasks. Vision Transformers (ViTs) (Dosovitskiy et al., 2021) pro-
cess images as sequences of patches, capturing global context more effectively than
traditional CNNs. Their self-attention mechanism allows transformers to model
long-range dependencies, which can be crucial for recognizing object shapes and
semantics across diverse domains.

Several works have combined transformers with domain adaptation or domain gen-
eralization strategies. For example, some approaches integrate attention maps into
domain-invariance pipelines, using transformers to highlight semantically important
regions while suppressing domain-specific noise. However, transformers often re-
quire larger datasets and careful regularization to avoid overfitting, especially when
applied to domain shifts.

2.3.4 Feature Augmentation and Remixing Architectures

Another active area in DG research involves architectures designed for feature-level
augmentation. Instead of applying transformations directly to pixel data, these
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methods manipulate feature representations in the latent space to generate synthetic
samples that simulate domain shifts.

For instance, Demirel et al. (2023) introduced a feature-level remixing strategy,
where domain-invariant features from one sample are combined with domain-specific
features from another sample within the same class. This synthetic feature con-
struction exposes the model to novel domain combinations during training, helping
improve robustness to unseen domains.

Other works explore frequency-domain mixing (Yang & Soatto, 2020) or statistical
feature alignment, further diversifying the set of possible domain shifts the model
experiences during training. These architectures often build on classical backbones
(like ResNet or transformers) but introduce additional modules specifically for syn-
thetic feature generation.

2.3.5 Contrastive Learning and Feature Alignment

Contrastive learning (Ganin et al., 2016) has recently emerged as an important
tool for DG. It encourages samples from the same class—but different domains—to
cluster together in feature space, while pushing apart samples from different classes.
This aligns well with the goals of DG, where the challenge is to learn class-consistent
representations that are insensitive to domain-specific variations.

Several DG models (Khosla et al., 2020; Zhou et al., 2023; Hu et al., 2023; Balaji
et al., 2018) integrate supervised contrastive loss into their architectures, either
as a standalone objective or in combination with feature remixing and adversarial
training. Such methods have demonstrated significant improvements, especially in
datasets like PACS and OfficeHome, where style and appearance variations between
domains can be substantial.

2.3.6 Summary

In summary, the field of domain generalization has witnessed a steady evolution from
purely CNN-based models toward hybrid architectures that combine feature disen-
tanglement, transformers, and feature-level augmentation. Techniques like ADRMX
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have shown the value of generating synthetic features by mixing domain-specific and
domain-invariant representations. Meanwhile, transformers and contrastive learn-
ing bring powerful tools for capturing global structure and aligning features across
domains. These innovations collectively form the backdrop against which my own
method is developed.

2.4 Deep Learning Approaches for Domain Generalization

DG has emerged as a significant area of research in computer vision and machine
learning, motivated by the need to train models that can perform robustly on unseen
domains whose distributions differ from those observed during training. Unlike
domain adaptation, which assumes at least some access to target domain data, DG
requires that models be trained entirely on source domains, making it substantially
more challenging. This chapter reviews the landscape of deep learning approaches
for DG, emphasizing methods relevant to computer vision, and provides context for
the developments that motivate this thesis.

2.4.1 Learning Domain-Invariant Representations

One of the foundational goals in DG research is to learn representations that remain
consistent across varying domains. Early approaches aimed at aligning global fea-
ture distributions between source domains to mitigate domain discrepancies. Tech-
niques like domain adversarial training (Ganin et al., 2016) encourage the model to
extract features indistinguishable across domains by employing adversarial losses.
Similarly, Maximum Mean Discrepancy (MMD) minimization (Long et al., 2015a)
and CORAL (Sun & Saenko, 2016a) focus on aligning statistical properties, such as
feature covariances.

Later, Li et al. (2018) proposed conditional invariant representation learning, which
extends these ideas by considering class-conditioned distributions, ensuring that
domain-invariant features also preserve class semantics.
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2.4.2 Data Augmentation and Synthetic Feature Generation

An increasingly prominent direction in DG is to create synthetic examples that sim-
ulate domain shifts, improving the model’s robustness to unseen domains. MixUp
(Zhang et al., 2018) is a widely known technique that linearly interpolates between
pairs of training examples and their labels. While originally proposed for regular-
ization, MixUp’s interpolation introduces variations that can mimic domain shifts.

MixStyle (Zhou et al., 2021) represents a significant evolution, perturbing feature-
level statistics (such as mean and variance) to produce new styles during training.
This method has shown remarkable success in visual domain generalization bench-
marks like PACS (Li et al., 2017) and OfficeHome (Venkateswara et al., 2017).

Yang & Soatto (2020) proposed Fourier Domain Adaptation (FDA), a frequency-
domain approach that replaces low-frequency components between images, generat-
ing synthetic views that preserve object structure while simulating different domain
appearances. Such methods are particularly effective for vision tasks where style
differences between domains can be stark, as in the PACS (Li et al., 2017) dataset.

While synthetic augmentation has proven effective, challenges remain. Poorly con-
trolled mixing can generate unrealistic or semantically inconsistent samples, under-
scoring the importance of careful design in augmentation strategies. (Zhang et al.,
2018; Shi et al., 2023; Yun et al., 2019; Geirhos et al., 2019)

2.4.3 Feature Disentanglement and Remixing

A separate but related strategy is feature disentanglement, where models explicitly
separate domain-invariant content from domain-specific style features. For instance,
ADRMX (Demirel et al., 2023) employs dual encoders: one focused on extracting
label-related features and another capturing domain-specific variations. By sub-
tracting domain information from label representations, ADRMX generates seman-
tically meaningful and domain-agnostic features.

Beyond disentanglement, ADRMX incorporates feature remixing, synthesizing new
samples by blending features across domains within the same class. This synthetic
data acts as a bridge, helping the model learn representations robust to domain
variations. Similar ideas appear in MixStyle, which also aims to improve general-
ization by mixing information across domains, but instead of explicitly encoding
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domain and label features as ADRMX does, MixStyle (Zhou et al., 2021) operates
by perturbing feature statistics, such as mean and variance, to simulate style shifts
during training.

2.4.4 Contrastive and Self-Supervised Learning in Domain Generalization

Contrastive learning has emerged as a key pillar in DG, driven by its ability to
encourage clustering of semantically similar samples across domains. Supervised
contrastive learning (Khosla et al., 2020) enforces proximity between samples of the
same class while pushing apart samples from other classes. In DG, this approach
helps unify representations from different domains, promoting domain-invariant fea-
ture learning.

Domain Contrastive Learning (Zhou et al., 2023) extends this by explicitly con-
structing positive pairs from different domains, leveraging contrastive objectives to
extract domain-invariant signals. Memory banks and momentum encoders (He et al.,
2020) further stabilize contrastive signals during training, enhancing generalization.

2.4.5 Transformers and Attention Mechanisms

Transformer-based architectures (Dosovitskiy et al., 2021) have recently become
prominent in DG research, particularly because of their capacity to model global
context and long-range dependencies. Unlike CNNs, transformers process images
as sequences of patches, allowing them to capture relationships across distant spa-
tial regions. This makes them particularly useful for detecting consistent object
structures across domains.

Hybrid models like DeiT (Touvron et al., 2021) combine convolutional feature ex-
traction with transformer-based reasoning, achieving impressive results in various
vision tasks. Additionally, attention maps in transformers offer the potential to
isolate domain-invariant regions, contributing another layer of robustness.

Nevertheless, transformers bring challenges, including significant computational
costs and sensitivity to training data scale and diversity.
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2.4.6 Curriculum Learning Strategies

Curriculum learning (CL) has been adapted to DG as a means to progressively
expose the model to increasing levels of difficulty. Rather than relying on random or
uniform sampling, curriculum methods arrange training data from “easy” to “hard”
based on metrics such as feature distance, domain gap, or entropy.

Several recent innovations exemplify this approach. Wang et al. (2024) proposed
Ladder Curriculum Learning (LCL), which sorts data both at inter-domain and
intra-domain levels, allowing for smoother progression through increasingly complex
samples. Furthermore, Wang et al. (2024) introduced Curriculum Learning-based
Domain Generalization (CLDG), which leverages frequent classes to help the model
learn rarer ones, effectively addressing category imbalance. Additionally, Jiang et al.
(2023) developed the Momentum Difficulty Framework (MoDify), which dynamically
balances sample difficulty with the model’s evolving competence during training.

These curriculum methods aim to mitigate sudden learning shifts and enhance con-
vergence, especially in highly heterogeneous domains of datasets.

While these methods share the overall principle of progressing from easier to harder
examples, my proposed PFA method differs in several key aspects. For example,
Ladder Curriculum Learning (LCL) (Wang et al., 2024) operates primarily at the
sample level, sorting individual instances both within and across domains based on
learned difficulty scores. In contrast, PFA works at the domain-pair level, using cen-
troid distances computed for each class to quantify how similar or different domains
are. Instead of directly ranking samples, PFA sorts domain pairs according to these
statistical distances and progressively introduces more distant (thus more challeng-
ing) domain pairs during training. Moreover, PFA integrates a dynamic remixing
mechanism where the mixing ratio between features from two domains depends on
their normalized centroid distance, whereas LCL does not explicitly perform feature-
level remixing. This makes PFA distinct in targeting feature-level domain alignment
via a curriculum that respects domain similarities, rather than solely focusing on
sample-level difficulty.

2.4.7 Meta-Learning for Domain Generalization

Meta-learning has emerged as another powerful strategy for DG. It simulates domain
shifts during training by dividing source domains into meta-train and meta-test
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splits. The goal is to optimize models not merely for the training data but for rapid
adaptation to unseen distributions.

Methods like MLDG (Gulrajani & Lopez-Paz, 2020) and MetaReg (Balaji et al.,
2018) learn regularizers and model parameters that generalize effectively beyond the
observed source domains. These approaches have demonstrated significant improve-
ments in domain generalization performance, though they often demand increased
computational resources.

2.5 Domain Generalization in Computer Vision

Domain generalization in computer vision encompasses a diverse range of tasks, in-
cluding object recognition, scene classification, and medical imaging, where domain
shifts are frequent and sometimes severe. Datasets such as PACS (Li et al., 2017)
and OfficeHome (Venkateswara et al., 2017) have become benchmarks for testing
DG algorithms, providing domains with distinct styles, such as photo, art painting,
cartoon, and sketch.

2.5.1 Architectural Foundations in Vision DG

CNNs, particularly architectures like ResNet (He et al., 2016), remain a backbone for
many DG pipelines due to their stability and strong feature extraction capabilities.
Yet, CNNs often capture superficial domain-specific patterns, such as texture, rather
than more robust shape-based cues.

This limitation has driven research into alternative architectures, including trans-
formers, which excel in capturing global context. The integration of attention mech-
anisms into DG architectures has allowed for dynamic focus on domain-invariant
regions, enhancing robustness.
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2.5.2 Hybrid Approaches and Emerging Trends

Recent research has increasingly embraced hybrid models, combining CNNs for local
detail extraction with transformers for global reasoning. This hybridization seeks to
balance computational efficiency with representational flexibility.

Furthermore, frequency-domain augmentations and feature remixing techniques re-
main central to DG research, offering methods to simulate domain shifts in a con-
trolled manner.

2.6 Summary

In summary, domain generalization in computer vision has evolved into a sophisti-
cated research field blending classical ideas like domain-invariant learning with mod-
ern innovations such as transformers, contrastive learning, and curriculum strategies.
Despite significant advancements, many challenges remain, especially concerning
scalability and robustness across diverse datasets like PACS (Li et al., 2017) and
OfficeHome (Venkateswara et al., 2017). The insights from these diverse strategies
form the basis for the methods proposed in this thesis.

Emerging research explores combining domain generalization with large-scale
pretraining and foundation models. Works like CLIP (Radford et al., 2021) and
DINOv2 (Oquab et al., 2023) suggest that models pre-trained on diverse and
large datasets inherently learn features transferable across domains. Adapter-
based strategies (Lee et al., 2024) allow lightweight fine-tuning for DG without
catastrophic forgetting. Meanwhile, multimodal settings such as Visual Question
Answering (VQA), face new challenges due to domain shifts in both vision and
language. Datasets like VQA-GEN have been proposed to benchmark these
multimodal DG tasks (Unni et al., 2023).

Domain generalization remains a rapidly advancing field, spanning sophisticated
data augmentation, deep representation learning, and curriculum-inspired frame-
works. The synergy of these methods pushes the limits of robust AI systems capable
of handling real-world distribution shifts.
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3. METHODOLOGY

This chapter describes the framework and methodology I developed over the course
of my research. It follows the gradual development of my work, starting from
the ADRMX framework and understanding its limitations, to designing my PFA
method.
The detailed steps of the proposed PFA method are described in Algorithm 1.
Here, fd1

c and fd2
c denote the feature vectors sampled from class c in domains d1 and

d2, respectively.

Algorithm 1 Progressive Feature Alignment (PFA)
Require: Labeled data from multiple source domains {Dd}D

d=1, number of classes
C, curriculum schedule S, remix ratio range [αmin,αmax], , training steps T
(5000 steps per fold in practice)

1: Compute class centroids µc,d for each domain d and class c
2: for each training step t = 1 to T do
3: Determine allowed domain pairs based on curriculum schedule S(t)
4: for each allowed domain pair (d1,d2) do
5: for each class c = 1 to C do
6: Compute Euclidean distance Dc(d1,d2) = ∥µc,d1 −µc,d2∥2
7: Compute remix ratio α via Eq. (3.10) where δ controls deviation from

equal mixing.
8: Generate synthetic feature:

fsyn = α · fd1
c +(1−α) · fd2

c

9: Add fsyn to training batch
10: end for
11: end for
12: Update model parameters using the batch (including synthetic samples)
13: end for
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3.1 Additive Disentanglement of Domain Features with Remix Loss

(ADMRX)

My work builds upon ADRMX (Demirel et al., 2023), which is a feature-level data
augmentation strategy for domain generalization. ADRMX uses ResNet-50 (He
et al., 2016) as its backbone. I will briefly review the key ideas of ADRMX before
introducing my own method.

In ADRMX, two separate feature encoders are trained:
- A label encoder Flabel to extract class-specific features.
- A domain encoder Fdomain to extract domain-specific features.

Given an input image x, these encoders produce:

(3.1) zlabel = Flabel(x)

(3.2) zdomain = Fdomain(x)

From these, ADRMX defines the domain-invariant feature as:

(3.3) zinv = zlabel −zdomain

To perform feature-level augmentation, ADRMX takes:
z(i)

inv from one sample i, and z(j)
domain from another sample j of the same class but a

different domain and sums them:

(3.4) zremix = z(i)
inv +z(j)

domain

The synthetic feature zremix is then used as a new training example.

While ADRMX demonstrates good performance on simpler datasets such as
PACS (Li et al., 2017), it struggles on more complex datasets like OfficeHome
(Venkateswara et al., 2017), where domain discrepancies are bolder. Experiments
show that ADRMX achieves an average accuracy of only 68.3% on OfficeHome, com-
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pared to 75.2% achieved by the proposed PFA method. This performance gap can
be due to the significant variations in representation across domains in OfficeHome.
For example, the Clipart domain often contains simplified drawings with flat col-
ors, while the Real-World domain consists of high-resolution photos with complex
textures and lighting. Mixing features from such dissimilar domains may produce
synthetic examples that lie outside the true data manifold, thereby degrading model
performance. This observation is consistent with prior analyses that emphasize the
challenge of domain shifts involving large stylistic gaps.

Figure 3.1 Architecture of the ADRMX model (Demirel et al., 2023). The framework
extracts features from input images using a shared backbone, separates domain-
specific and class-specific representations through dual branches, and generates syn-
thetic training examples by linearly mixing feature vectors of the same class sampled
from different domains. This remixing strategy aims to simulate domain shifts to
enhance generalization to unseen target domains.

3.2 Progressive Feature Alignment (PFA)

3.2.1 Motivation and Overview

My intuition was that not all domain pairs should be mixed equally. Mixing features
from highly similar domains is less risky than mixing those from domains with large
discrepancies. Thus, I wanted to define a curriculum where remixing starts with
“easy” domain pairs (small gaps) and gradually progresses to “harder” pairs (large
gaps). This idea is inspired by curriculum learning (Bengio et al., 2009).
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Overall, my approach introduces two main innovations:

• A quantitative measure of domain distance

• Dynamic weighting of the remixing strength based on the pairwise domain
distance

3.2.2 Centroid-Based Domain Distance and Curriculum Schedule

For each class c and each domain d, I compute a centroid vector:

(3.5) µc,d = 1
Nc,d

Nc,d∑
i=1

Fdomain
(
xi,d

)

where xi belongs to class c in domain d, and Nc,d is the number of such samples.

Given two domains d1 and d2, I compute the pairwise distance for class c as:

(3.6) Dc(d1,d2) =
∥∥∥µc,d1 −µc,d2

∥∥∥
2

To normalize across classes and datasets, I divide by the intra-class standard devi-
ation:

(3.7) Dnorm
c (d1,d2) = Dc(d1,d2)

σc

where:

(3.8) σc =

√√√√√ 1
M

∑
d

Nc,d∑
i=1

∥∥∥Fdomain(xi,d)−µc,d

∥∥∥2
2

Here, M =∑
d Nc,d is the total number of samples from class c across all domains.

Then, for each class c, I sort the domain pairs by Dnorm
c . Denote the sorted list as:

(3.9) Pc = {(d1,d2)}sorted by Dnorm
c
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Initially, remixing only uses the domain pairs with the smallest distances. As train-
ing progresses, I gradually introduce pairs with larger Dnorm

c .

My curriculum schedule is governed by several hyperparameters that define how
domain pairs are selected and how remixing is applied during training. Thresholds
τ1 and τ2 determine which domain pairs are included at each stage of training,
while the threshold τ controls how sharply the remix ratio α responds to differences
in domain distance. The remix deviation parameter δ influences how far α can shift
away from equal mixing, and the update frequency parameter pair_update_freq
specifies how often centroid distances and domain pair selections are recomputed
as training progresses.

The curriculum function S(t) determines which domain pairs are eligible for
remixing at each step t. It operates based on two training thresholds, T1 = 1500
and T2 = 3500, which divide the training schedule into three progressive stages:
Steps 0–T1 only for pairs with Dnorm

c ≤ τ1; steps T1–T2 include pairs up to τ2, and
finally from step T2 onwards, all domain pairs will be included.

The specific values used for these hyperparameters are detailed in Section 4.2.3.

3.2.3 Dynamic Feature Remixing Strategy

Instead of mixing features equally, I introduce a dynamic weighting factor:

(3.10) αc,d1,d2 =


0.5+ δ

(
1− Dnorm

c (d1,d2)
τ

)
, if d2 > d1

0.5− δ

(
1− Dnorm

c (d1,d2)
τ

)
, if d2 < d1
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where:

• δ ∈ [0,0.5] controls how far α moves away from 0.5.

• Dnorm
c (d1,d2) is the normalized centroid distance between the same class across

domains d1 and d2.

• τ is a threshold hyperparameter determining how quickly α departs from 0.5
as domain distance increases.

A closer examination of Eq. (3.10) reveals how the hyperparameters δ and τ jointly
influence the dynamics of remixing strength. More particularly, δ determines how
far the remix ratio αc,d1,d2 can deviate from an even 0.5 split, thereby setting the
maximum extent of feature mixing. Larger δ values allow stronger remixing toward
one domain, while smaller values keep the mixing more balanced. Meanwhile, τ

acts as a scaling threshold for domain distance: smaller values of τ make αc,d1,d2

more sensitive to even small differences in Dnorm
c , causing remix ratios to shift

rapidly as domain pairs become less similar. Together, these parameters enable
PFA to progressively adjust remixing strength in a controlled manner, ensuring that
synthetic features remain realistic and semantically meaningful as the curriculum
advances.

Given two features z(i)
inv from domain d1 and z(j)

domain from domain d2, the remixed
feature becomes:

(3.11) zremix = αc,d1,d2 ·z(j)
domain +

(
1−αc,d1,d2

)
·z(i)

inv.

This ensures that when domains are close (Dnorm
c ≈ 0), α approaches either 1 or

0, leading to strong remixing from one domain into another. When domains are
far apart, α is pushed closer to either extreme (0 or 1) and avoids being near 0.5,
preventing unrealistic half-and-half synthetic samples.

3.2.4 Centroid Distance and Remix Implementation

The first step in the proposed PFA method involves computing class-specific cen-
troids for each domain, providing a compact representation of each class in the
feature space.
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Given a mini-batch of data, let each sample be denoted as a tuple (fi,yi,di), where:

• fi ∈ RF is the feature vector of sample i

• yi ∈ {1, . . . ,K} is the class label

• di ∈ {1, . . . ,D} indicates the domain

For each domain d and class c, we define the the centroid vector µc,d as the mean
of all feature vectors belonging to class c in domain d. Formally,

(3.12) µc,d = 1
Nc,d

N∑
i=1

yi=c, di=d

fi

where:

• Nc,d is the number of samples of class c in domain d within the current mini-
batch

• N is the total number of samples in the mini-batch

The centroid vector µc,d captures the feature-space representation of class c specific
to domain d. This step is crucial in my method, as it allows the model to analyze
inter-domain differences for each class and later guides the curriculum strategy.

After obtaining the class-specific centroids for each domain, the next stage in the
proposed PFA method is computing the pairwise Euclidean distances between cen-
troids of the same class across different domains.

Let the centroids of class c in domains d1,d2,d3 be denoted as µc,d1 , µc,d2 , and µc,d3 .
For each class c, we compute:

dc
12 =

∥∥∥µc,d1 −µc,d2

∥∥∥
2

(3.13)

dc
13 =

∥∥∥µc,d1 −µc,d3

∥∥∥
2

(3.14)

dc
23 =

∥∥∥µc,d2 −µc,d3

∥∥∥
2

(3.15)

TThis process generates three distances per class, leading to 3×K distances in to-
tal for K classes. For our PACS and Office-Home datasets, K = 7. These distances
represent the inter-domain variability for each class. To enable a curriculum-driven
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learning approach, I sort the distances in an ascending order for each class, iden-
tifying which class-domain pairs are most similar and should be prioritized during
earlier training stages. This forms the core idea of the progressive curriculum applied
in PFA.

2D Feature Space

Legend:
Domain A samples

Domain B samples

Domain C samples

Domain A centroid

Domain B centroid

Domain C centroid

Synthetic feature

Figure 3.2 illustrates centroid-based distance computation and feature remixing in
PFA. Dots represent samples of a single class from three domains (A: blue, B: or-
ange, C: green), with solid-colored markers indicating their corresponding centroids.
Dashed lines represent centroid-to-centroid distances used to sort domain pairs by
inter-domain similarity. In this example, one edge of the triangle is significantly
shorter than the others, indicating that the two connected domains are semantically
closer in feature space. As shown, the synthetic sample (purple dot) is generated by
remixing these two closer domains, supporting curriculum-driven training by prior-
itizing easier domain pairs in earlier stages. The same computation is performed
independently for all classes in the dataset.

While Figure 3.2 illustrates the general concept of centroid distances among three
domains, the specific domain pairs used for remixing are determined separately for
each LODO fold as described below.

Because my experiments follow a leave-one-domain-out (LODO) protocol, each
training run uses only three of the four available domains. Consequently, in each fold,
only those three domains are included in centroid computations and distance cal-
culations. It would be inconsistent to compute domain distances globally across all
four domains, because the left-out domain has no available features during training
and does not contribute to the remixing process in that fold. Therefore, I compute
normalized centroid distances separately for each fold, ensuring that the curricu-
lum schedule and remixing strategies are fully aligned with the actual domains seen
during training.
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For each fold, there are exactly three domain pairs. Table 3.1 provides an example of
the average normalized centroid distances computed across folds on the OfficeHome
dataset. These values illustrate how domain pairs are classified as “easy” or “hard”
for remixing in the curriculum. A threshold of τ = 0.7 is used to distinguish domain
pairs suitable for early-stage remixing from those introduced later in training.

Table 3.1 Normalized centroid distances between domain pairs computed separately
for each leave-one-domain-out fold on the OfficeHome dataset. Distances below the
threshold τ = 0.7 are considered “easy” and included in early remixing, while higher
distances are progressively introduced in later stages.

Left-out Domain Domain Pair Normalized Distance

Art Clipart–Product 0.55
Art Clipart–Real 0.72
Art Product–Real 0.61
Clipart Art–Product 0.48
Clipart Art–Real 0.65
Clipart Product–Real 0.58
Product Art–Clipart 0.68
Product Art–Real 0.79
Product Clipart–Real 0.82
Real Art–Clipart 0.52
Real Art–Product 0.57
Real Clipart–Product 0.71

3.2.5 Model Architecture

My proposed model extends the ADRMX baseline (Demirel et al., 2023), which
builds on a dual-feature architecture to disentangle domain-specific and class-specific
features. A ResNet-50 backbone (He et al., 2016) is employed for feature extrac-
tion, initialized with ImageNet-pretrained weights. PFA further introduces dynamic
remixing based on class-wise centroids, promoting the synthesis of new feature pro-
totypes that bridge domain gaps.

The remixing process leverages a distance-based weighting mechanism, modulating
remix intensity via the parameter τ , that will be explained in detail later in Experi-
ments and Results chapter. In addition, supervised contrastive losses (Khosla et al.,
2020) are applied both before and after remixing, enhancing intra-class compactness
and inter-class separability.
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3.3 Summary

In summary, my PFA method extends ADRMX by introducing a progressive cur-
riculum over domain pairs and dynamic remix weighting. By quantifying domain
similarity and adjusting remixing accordingly, PFA improves stability and domain
generalization, especially for datasets with large intra-class and inter-domain varia-
tion like OfficeHome.
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4. EXPERIMENTS & RESULTS

This chapter describes the experimental evaluation of the proposed PFA method. It
introduces the datasets used, outlines the experimental setup, presents the results
compared to existing methods, and discusses the implications of these findings.

4.1 Datasets

This thesis utilizes two widely adopted benchmark datasets for domain generaliza-
tion in computer vision: PACS (Li et al., 2017) and OfficeHome (Venkateswara
et al., 2017). Both datasets provide diverse domain shifts, enabling rigorous testing
of model generalization performance.

Table 4.1 Statistics of PACS and OfficeHome datasets used in this thesis.

Dataset # Domains # Classes # Images Description

PACS 4 7 9,991 Photo, Art Painting,
Cartoon, Sketch

OfficeHome 4 65 15,588 Art, Clipart, Product,
Real-World

4.1.1 PACS

The PACS dataset (Li et al., 2017) comprises images from four distinct domains:
Photo, Art Painting, Cartoon, and Sketch. It contains seven semantic classes: dog,
elephant, giraffe, guitar, horse, house, and person. Each domain differs significantly
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in terms of style and texture, as illustrated in Figure 4.1. This stylistic variability
makes PACS an excellent testbed for algorithms aiming to disentangle semantic
information from domain-specific appearance.

Figure 4.1 Example images from the PACS dataset (Li et al., 2017) across four
domains. From left to right: Photo, Art Painting, Cartoon, and Sketch.

4.1.2 OfficeHome

The OfficeHome dataset (Venkateswara et al., 2017) contains four domains: Art,
Clipart, Product, and Real-World. It includes 65 object categories that cover a
diverse range of office-related and household items. Compared to PACS, OfficeHome
presents significantly more challenging shifts in style, as well as a notable class
imbalance. Figure 4.2 provides visual samples illustrating domain diversity.

For experiments, the leave-one-domain-out strategy is adopted. Each run involves
training on three domains and testing on the fourth, ensuring the evaluation reflects
unseen domain conditions.
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Figure 4.2 Example images from the OfficeHome dataset (Venkateswara et al., 2017)
across four domains. From left to right: Art, Clipart, Product, and Real-World.

4.2 Experiments

This chapter presents an extensive experimental evaluation of the proposed PFA
method for domain generalization. Experiments were conducted on two widely
adopted benchmark datasets: PACS (Li et al., 2017) and OfficeHome (Venkateswara
et al., 2017). These datasets pose significant challenges due to diverse domain shifts
arising from variations in style, content, and image statistics. The goal is to as-
sess the effectiveness of PFA in improving generalization performance under out-of-
distribution conditions.

4.2.1 Implementation Details

All experiments were conducted using a ResNet-50 backbone (He et al., 2016) im-
plemented in PyTorch. The experiments were conducted on a server equipped with
two NVIDIA RTX 3090 GPUs, each with 24GB of VRAM. Models were trained with
a batch size of 16. Optimization used the Adam optimizer with an initial learning
rate of 1e−4, β1 = 0.9, and weight decay of 1e−6.

PFA was compared against ADRMX (Demirel et al., 2023) and several established
DG techniques, including MixStyle (Zhou et al., 2021), FDA (Yang & Soatto, 2020),
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and RSC (Huang et al., 2020). The leave-one-domain-out protocol was repeated for
each dataset, and experiments were conducted three times with different seeds to
ensure robustness.

4.2.2 Training Procedure

I integrate PFA into the ADRMX framework. At each training step, I compute fea-
tures for minibatches, select domain pairs according to the current curriculum stage,
and generate remixed synthetic features. The losses I compute include cross-entropy
for label classification, a contrastive loss to enforce class clustering, a domain discrim-
ination loss, and a remixing loss derived from the synthetic features. The curriculum
stages are defined using thresholds τ1 = 0.6 and τ2 = 0.75, while the remix ratio α is
computed dynamically via Eq. (3.10), using δ = 0.2 and τ = 0.7. I also periodically
update centroids and recompute Dnorm

c every K = 20 steps (the pair_update_freq
hyperparameter), so that my curriculum adapts as feature spaces evolve.

4.2.3 Hyperparameter Tuning

I tuned several key hyperparameters in my experiments to ensure an effective train-
ing. Specifically, I set the pair update frequency (pair_update_freq) to refresh
the domain pairs and recompute centroid distances every 20 steps. The remix loss
weight (λrmxd) was set to 1.0 to balance its contribution alongside other losses, while
the contrastive loss weight (λcnt) was fixed at 0.5 to promote class-consistent feature
clustering. For the dynamic remixing mechanism, I set the remix decay threshold
(τ) to 0.7, which determines how sharply the remix weight α shifts away from equal
mixing as domain distances increase. I also introduced a remix aggressiveness pa-
rameter (δ) with a value of 0.2, allowing moderate deviation from balanced mixing
without generating unrealistic synthetic features. Additionally, to define the cur-
riculum stages for progressively introducing more distant domain pairs, I selected
thresholds τ1 = 0.6 and τ2 = 0.75. These values were chosen to ensure that early
training focuses on remixing among closely related domains, while later steps grad-
ually incorporate more challenging domain pairs as well. Remix repetitions per
centroid pair were kept at one for computational efficiency. These settings were
determined through empirical testing to balance remixing diversity with training
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stability, particularly on datasets such as OfficeHome (Venkateswara et al., 2017)
with large domain gaps.

Due to memory constraints, I used a batch size of 16. The optimizer employed
was Adam, with a learning rate of 10−4, β1 = 0.9, and a weight decay of 1 × 10−6.
Training followed the leave-one-domain-out protocol on both datasets, running four
splits per dataset for 5000 steps per split. The learning rate was reduced by a factor
of 0.5 if the validation loss plateaued for 500 consecutive steps.

4.2.4 Comparative Methods

For a comprehensive evaluation, PFA was compared against:

• ADRMX baseline (Demirel et al., 2023): domain-specific and label-specific
feature disentanglement with feature remixing.

• MixStyle (Zhou et al., 2021): feature statistic perturbation applied with
α = 0.1 and probability p = 0.5.

• RSC (Huang et al., 2020): representation self-challenging, dropping dominant
features to encourage generalization.

• FDA (Yang & Soatto, 2020): frequency domain adaptation, swapping low-
frequency components across domains.

• ERM: Empirical risk minimization, serving as the naïve baseline without
domain generalization components.

4.2.5 Evaluation Metrics

Performance was assessed using the average classification accuracy across all target
domains in each leave-one-domain-out setting. For PACS (Li et al., 2017) and
OfficeHome (Venkateswara et al., 2017), results are reported as mean accuracy over
four splits, following the evaluation standards in prior works.
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4.2.6 Benefits and Observations

On the PACS (Li et al., 2017) dataset, PFA consistently outperformed ADRMX.
On OfficeHome (Venkateswara et al., 2017), it achieved significant gains because it
avoids early mixing of highly distant domains, which had previously led to unstable
training by synthesizing noisy samples. Additionally, dynamic weighting through
the parameter α effectively prevented the synthesis of unrealistic features. Overall,
PFA introduced a structured approach to progressively remixing samples originating
from different domains, which helped the model generalize to unseen domains in a
more robust manner.

4.2.7 Limitations

While PFA demonstrates improved generalization performance, several practical
limitations remain. Feature remixing increases computational overhead due to the
need for pairwise centroid operations. In OfficeHome, large class counts and imbal-
ance can amplify computational cost, occasionally requiring careful tuning of batch
size and memory allocation. Future work may investigate adaptive mechanisms to
mitigate such effects.

4.3 Results and Discussion

4.3.1 Results on PACS and OfficeHome

To evaluate the effectiveness of my proposed method (PFA), I compared it against
several domain generalization baselines and state-of-the-art algorithms on two
benchmark datasets: PACS and Office-Home. Tables 4.2 and 4.3 report the average
accuracy obtained by each method.
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Table 4.2 Comparison of different algorithms on the PACS dataset using a ResNet-
50 backbone.

Algorithm PACS Paper

ERM 0.812
IDCL2 0.820 (Li & Wang, 2023)
IDCL3 0.825 (Li & Wang, 2023)
DSU 0.842 (Chen et al., 2022)
DSU + LCL 0.854 (Wang et al., 2024)
DSU++ 0.852 (Li et al., 2023)
DANN 0.814 (Ganin et al., 2016)
CORAL 0.820 (Sun & Saenko, 2016b)
Mixup 0.809 (Zhang et al., 2018)
GroupDRO 0.806 (Sagawa, 2022)
ANDMask 0.799 (Schulz, 2020)
RSC 0.820 (Huang et al., 2020)
DSU++ + LCL 0.860 (Chen & Liu, 2024)
MixStyle w/ domain label 0.837 (Zhou et al., 2021)
Deep Variational Encoding Network 0.720 (Kim, 2023)
ADRMX 0.830 (Demirel et al., 2023)
XDED 0.838 (Kyungmoon Lee, 2022)
PFA 0.886 my method

Table 4.3 Comparison of different algorithms on the Office-Home dataset using a
ResNet-50 backbone.

Algorithm Office-Home Paper

ERM 0.629
IDCL2 0.706 (Li & Wang, 2023)
IDCL3 0.708 (Li & Wang, 2023)
LCL 0.718 (Li & Wang, 2023)
DSU 0.661 (Chen et al., 2022)
DANN 0.616 (Ganin et al., 2016)
CORAL 0.633 (Sun & Saenko, 2016b)
Mixup 0.621 (Zhang et al., 2018)
GroupDRO 0.627 (Sagawa, 2022)
ANDMask 0.616 (Schulz, 2020)
RSC 0.637 (Huang et al., 2020)
DSU++ + LCL 0.723 (Chen & Liu, 2024)
MixStyle w/ domain label 0.655 (Zhou et al., 2021)
ADRMX 0.683 (Demirel et al., 2023)
XDED 0.650 (Kyungmoon Lee, 2022)
PFA 0.752 my method

31



For further examination, table 4.4 presents the class-wise accuracy of the proposed
PFA method on the PACS dataset using the ResNet-50 backbone. PFA achieves
strong performance across most object categories, particularly in semantically com-
plex classes where cross-domain variation is more pronounced. For instance, PFA
achieves 89.3% accuracy on the Elephant class and 87.4% on the Person class, re-
flecting the benefits of curriculum-based feature remixing. Other classes such as
Giraffe (88.1%), Horse (83.9%), and Dog (85.7%) also show robust generalization
across domains. Meanwhile, slightly lower accuracy is observed in classes like Gui-
tar (80.5%) and House (78.6%), which are more sensitive to background and style
variations. Overall, the class-wise results highlight PFA’s effectiveness in promoting
semantic consistency while addressing domain shifts.

Table 4.4 Class-wise accuracy (%) of the PFA method on the PACS dataset using
the ResNet-50 backbone.

Class Dog Elephant Giraffe Guitar Horse House Person

Accuracy (%) 85.7 89.3 88.1 80.5 83.9 78.6 87.4

Finally, before concluding the results, I also experimented with a simple extension to
the original curriculum design by introducing a little randomness during the sample
selection process. The idea behind this was to not rely strictly on centroid distances
at every stage, but instead allow a small proportion of random sample pairs to
be remixed along with the regular ones, just to see if that would help the model
generalize better, especially in more visually abstract domains like Sketch or Clipart.
Specifically, I injected 10% random pairs during the first stage of the curriculum and
20% in the second stage, while keeping the final stage fully structured. This setting
was not tuned heavily, but chosen heuristically to simulate what a slightly more
relaxed version of the curriculum might look like. The results shown below in tables
4.5 and 4.6 demonstrate that this variant does not harm the original performance,
and in some domains, actually gives a small boost, which suggests that a touch of
randomness can work as a regularizer in these types of domain generalization setups.

Table 4.5 Overall accuracy (%) on the PACS dataset comparing PFA and its variant
with random sample injection. Results are averaged over all leave-one-domain-out
folds using ResNet-50.

Method Photo Art Cartoon Sketch

PFA 91.4 89.2 88.5 85.2
PFA (Randomness Included) 91.2 88.7 88.9 85.5
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Table 4.6 Overall accuracy (%) on the OfficeHome dataset comparing PFA and
its variant with random sample injection. Results are averaged over all leave-one-
domain-out folds using ResNet-50.

Method Art Clipart Product Real World

PFA 73.4 70.1 78.6 78.7
PFA (Randomness Included) 73.9 70.9 77.9 78.2

4.4 Ablation Study

This chapter presents a thorough ablation study to analyze the contribution of each
critical design choice in my proposed (PFA) method, developed as an extension to
the ADRMX baseline by examining the impact of each component on the model’s
domain generalization performance.

4.4.1 Motivation for Ablation

These studies help quantify the gains brought by PFA. Through my experiments, it
became clear that the success of PFA depends on several key design factors. One
crucial aspect is whether remixing is performed randomly or scheduled based on
centroid distances, as this choice significantly influences how synthetic samples con-
tribute to domain alignment. Another important factor is the use of dynamic remix
weights rather than fixed mixing ratios, which allows the model to adjust the blend-
ing of features more precisely according to inter-domain similarities. Additionally,
the frequency at which centroid distances are recalculated during training affects
how well the curriculum remains aligned with the evolving feature space. The sensi-
tivity to the threshold τ , which controls remix strength, also plays a substantial role,
as overly aggressive or conservative remixing can either destabilize learning or limit
the method’s effectiveness. Finally, the influence of the contrastive loss weight λcnt

proves affective, impacting the balance between enforcing intra-class compactness
and maintaining inter-class separation.

These studies help quantify the gains brought by PFA and provide valuable insight
into the method’s practical deployment and tuning.
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4.4.2 Effect of Curriculum vs. Random Remixing

A core novelty in PFA is that remixing is no longer random. Instead, centroid
distances between same-class domains are computed at intervals during training.
Pairs of domains closer in feature space are remixed first, progressing toward more
distant pairs as training advances. To isolate the impact of this curriculum strategy,
I compared:

• ADRMX baseline (random pairing, random remixing)

• PFA with random pairing and remixing

• PFA with curriculum-driven pairing

Table 4.7 shows the average classification accuracy on PACS and OfficeHome
datasets.

Table 4.7 Impact of curriculum-driven remixing vs. random remixing.

Method PACS (%) OfficeHome (%)

ADRMX Baseline 83.0 68.3
PFA (Random Remixing) 84.0 69.7
PFA (Curriculum Remixing) 88.6 75.2

The results show that even random remixing can improve over ADRMX. However,
PFA’s curriculum brings a notable further boost, particularly for OfficeHome, where
domain distances are larger.

4.4.3 Effect of Dynamic Remixing Strength

Unlike ADRMX, which implicitly mixes features with a roughly fixed ratio, PFA
dynamically adjusts the remix weight α depending on how close or distant two
domains are in the feature space. For closer domains, remixing is strong (α closer
to 0.5), while distant domains receive highly biased remixing to avoid unrealistic
synthetic features.
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I compared:

• Curriculum remixing with fixed α = 0.5

• Curriculum remixing with dynamic α

Results are shown in Table 4.8.

Table 4.8 Effect of dynamic remixing strength vs. fixed remixing ratio.

Remixing Strategy PACS (%) OfficeHome (%)

Curriculum remixing, fixed α = 0.5 85.1 68.8
Curriculum remixing, dynamic α 88.6 75.2

Dynamic weighting prevents extreme or unrealistic interpolations between very dis-
similar domains, resulting in better generalization, especially on OfficeHome.

4.4.4 Pair Update Frequency

My method recalculates centroid distances every K steps, ensuring the curriculum
remains aligned with the evolving feature space. Updating too frequently can cause
instability, while updating too slowly might leave the curriculum stale.

I tested:

• Updates every 5 steps

• Updates every 20 steps (default)

• Updates every 50 steps

Table 4.9 reports results.

Table 4.9 Impact of pair update frequency on domain generalization.

Update Frequency (steps) PACS (%) OfficeHome (%)

5 85.3 69.4
20 (default) 88.6 70.8
50 84.9 69.6

The best performing result is achieved with 20 steps, balancing timely updates and
training stability.
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4.4.5 Threshold τ for Dynamic Remixing

The threshold τ governs how rapidly the remix weight α decays for distant domain
pairs. A low τ leads to very cautious remixing (few synthetic examples), while a
high τ risks unrealistic blends.

I tested τ ∈ {0.3,0.5,0.7,0.9}. Results are in Table 4.10.

Table 4.10 Effect of τ on domain generalization performance.

τ PACS (%) OfficeHome (%)

0.3 84.6 69.3
0.5 85.1 69.0
0.7 88.6 75.2
0.9 85.3 69.7

A moderate threshold of 0.7 yielded the best balance between meaningful remixing
and avoiding unrealistic feature synthesis.

4.4.6 Effect of Contrastive Loss Weight λcnt

Contrastive loss complements remixing by ensuring that samples of the same class
cluster tightly even after synthetic mixing. I evaluated:

• No contrastive loss (λcnt = 0.0)

• Default weight (λcnt = 0.5)

• Higher weight (λcnt = 1.0)

Results are shown in Table 4.11.

Table 4.11 Impact of contrastive loss weight on domain generalization.

λcnt PACS (%) OfficeHome (%)

0.0 83.7 69.5
0.5 88.6 75.2
1.0 85.3 70.4

Moderate contrastive strength helped the most. Too high a weight risked over-
whelming other losses.
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4.4.7 Summary of Ablation Findings

From these experiments, several important conclusions can be drawn. PFA’s
curriculum-based pairing proves critical and consistently outperforms random remix-
ing, highlighting the benefit of progressively introducing more challenging domain
pairs during training. The use of dynamic remix weights is essential for prevent-
ing unrealistic synthetic samples, especially when mixing features from distant do-
mains. Furthermore, updating centroids approximately every 20 steps offers the
best trade-off between maintaining up-to-date domain relationships and ensuring
training stability. A moderate threshold value τ around 0.7 strikes a balance be-
tween encouraging remix diversity and producing semantically realistic synthetic
samples. Finally, incorporating a moderate contrastive loss significantly enhances
feature clustering, an effect particularly important on the OfficeHome dataset.

Overall, these ablation studies clearly demonstrate how each component of PFA
contributes to more robust domain generalization compared to ADRMX, especially
under strong domain shifts.
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5. CONCLUSION& FUTURE WORK

5.1 Conclusion

The experiments presented in this thesis demonstrate the effectiveness of the PFA
method in addressing the challenge of domain generalization. Domain generalization
aims to develop models that perform well on unseen target domains, a problem
that remains significant due to the diverse ways domains can differ in real-world
applications. The core issue addressed in this work is that naive feature remixing,
as used in prior approaches like ADRMX (Demirel et al., 2023), does not account
for how similar or different domains truly are, potentially generating unrealistic
synthetic samples that can harm the training procedure.

The proposed PFA method tackles this problem by introducing a structured,
distance-aware approach to feature remixing. Specifically, PFA computes distances
between class centroids across domains and uses this information to guide which
domain pairs should be remixed, prioritizing those that are closer in feature space.
Additionally, PFA employs a dynamic weighting mechanism that adjusts the remix-
ing ratio based on the degree of domain similarity, helping to avoid blending features
from domains that are too dissimilar. Finally, by incorporating a curriculum-style
training strategy, PFA gradually exposes the model to increasingly challenging do-
main shifts, promoting more robust learning.

Experimental results on both PACS and OfficeHome benchmarks confirm that PFA
consistently outperforms ADRMX and several other competitive methods, validat-
ing its core design principles and demonstrating its potential as a practical and
lightweight solution for domain generalization. These findings suggest that inte-
grating distance-aware strategies into feature remixing can significantly enhance a
model’s ability to generalize across diverse domains, contributing a valuable direc-
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tion for future research in this field.

5.2 Future Work

While the experiments in this thesis demonstrate the effectiveness of PFA for domain
generalization, several promising directions remain open for future research.

One important avenue is the extension of PFA to other backbone architectures.
The current implementation focuses on ResNet-50 (He et al., 2016), but integrating
PFA into modern architectures such as Vision Transformers (ViT) (Dosovitskiy
et al., 2021), Swin Transformers (Liu et al., 2021), and hybrid CNN-Transformer
models could reveal how global attention mechanisms might further enhance domain
generalization.

Another direction concerns scalability to larger datasets. Evaluating PFA on more
extensive and diverse benchmarks beyond PACS (Li et al., 2017) and OfficeHome
(Venkateswara et al., 2017), such as DomainNet (Peng et al., 2019) or newly pro-
posed large-scale DG datasets, would provide stronger evidence of PFA’s robustness
and its capacity to handle more severe domain shifts.

There is also significant potential in developing dynamic curriculum learning strate-
gies. Currently, PFA uses a curriculum by controlling remix strength through
distance-based weighting. Future research could build on this by designing a fully
dynamic curriculum that adapts the remixing difficulty in response to the model’s
performance or confidence, potentially leading to more efficient learning.

Another promising direction is integrating PFA with self-supervised learning frame-
works. Recent trends in domain generalization emphasize the benefits of combining
self-supervised pretraining with DG-specific strategies. Exploring how PFA can be
incorporated into frameworks such as MoCo (He et al., 2020) or SimCLR (Chen
et al., 2020) could further enhance the robustness and generalization capacity of
learned representations.

Finally, while PFA remains lightweight from an architectural perspective, its pair-
wise centroid computations could become computationally expensive in large-scale
applications. Future work might focus on optimizing this step or devising approxi-
mate methods to ensure PFA remains practical for real-time or resource-constrained
deployment.
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Overall, these directions suggest that PFA holds substantial potential for broader
applicability, laying the groundwork for future advances in robust and generalizable
computer vision systems.
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