
MITIGATING VULNERABILITY LEAKAGE FROM LLMS FOR
SECURE CODE ANALYSIS

by
BENGÜ GÜLAY

Submitted to the Graduate School of Engineering and Natural Sciences
in partial fulfilment of

the requirements for the degree of Master of Science

Sabancı University
July 2025

MITIGATING VULNERABILITY LEAKAGE FROM LLMS FOR
SECURE CODE ANALYSIS

Approved by:

Prof. CEMAL YILMAZ .
(Thesis Advisor)

Asst. Prof. DİLARA KEKÜLLÜOĞLU .

Assoc. Prof. ALİ FURKAN KAMANLI .

Date of Approval: July 18, 2025

Bengü Gülay 2025 ©

All Rights Reserved

ABSTRACT

MITIGATING VULNERABILITY LEAKAGE FROM LLMS FOR SECURE
CODE ANALYSIS

BENGÜ GÜLAY

Computer Science and Engineering, M.Sc. Thesis, July 2025

Thesis Supervisor: Prof. Cemal Yılmaz

Keywords: vulnerability detection, information leakage, obfuscation, honeypots,
code privacy

Large Language Models (LLMs) are increasingly integrated into software develop-
ment workflows, offering powerful capabilities for code analysis, debugging, and
vulnerability detection. However, their ability to infer and expose vulnerabilities
in source code raises security concerns, particularly regarding unintended informa-
tion leakage when sensitive code is shared with these models. This thesis investi-
gates defense strategies to mitigate such leakage: traditional obfuscation techniques
and a novel deception-based approach involving honeypot vulnerabilities. We con-
structed a dataset of 400 C and Python code snippets spanning 51 CWE categories
and evaluated their vulnerability detection performance across three state-of-the-
art LLMs: GPT-4o, GPT-4o-mini, and LLaMA-4. Firstly, we applied obfuscation
methods—including comment removal, identifier renaming, control/data flow trans-
formations, dead code insertion, full encoding, and LLM-based rewriting—and mea-
sured their impact on LLM detection accuracy and functionality retention. Dead
code insertion and control flow obfuscation proved most effective in suppressing
vulnerability leakage, though aggressive techniques like encoding impaired function-
ality comprehension. Secondly, we introduced honeypot vulnerabilities combined
with misleading strategies that were proven effective earlier—such as control flow
obfuscation, data flow obfuscation, and identifier renaming—and additional tech-
niques like cyclomatic complexity increases and misleading comments. Honeypots
significantly reduced vulnerability detection accuracy by over 60 percentage points
in some cases, while maintaining high functional clarity, with LLM-generated simi-

iv

larity scores consistently above 4.1 on a 5-point scale. Misleading comments emerged
as a lightweight yet robust defense across all models. These findings underscore the
need to balance security and usability in AI-assisted development and highlight eth-
ical considerations, as similar techniques could potentially be misused to conceal
malicious flaws from automated audits.

v

ÖZET

GÜVENLI KOD ANALIZI İÇIN BÜYÜK DIL MODELLERINDEN
KAYNAKLANAN ZAFIYET SIZINTISININ AZALTILMASI

BENGÜ GÜLAY

Bilgisayar Bilimi ve Mühendisliği, Yüksek Lisans Tezi, Temmuz 2025

Tez Danışmanı: Prof. Dr. Cemal Yılmaz

Anahtar Kelimeler: güvenlik açığı tespiti, bilgi sızıntısı, karartma, bal küpü, kod
gizliliği

Büyük Dil Modelleri (LLM’ler), yazılım geliştirme süreçlerinde giderek daha fa-
zla kullanılarak kod analizi, hata ayıklama ve güvenlik açığı tespiti gibi alanlarda
oldukça fazla destek sağlamaktadır. Ancak özellikle hassas kodların bu sistem-
lerle paylaşılması durumunda, bu modellerin kaynak kodlardaki güvenlik açıklarını
ifşa etme ihtimali ve istenmeyen bilgi sızıntılarına yol açabileceği endişeleri göz
ardı edilmemelidir. Bu tez, söz konusu bilgi sızıntısını azaltmaya yönelik savunma
stratejilerini sunmaktadır: geleneksel obfüskasyon (karmaşıklaştırma) teknikleri ve
bal küpü (honeypot) güvenlik açıklarını içeren yenilikçi, aldatmaya dayalı bir yak-
laşım. Çalışma kapsamında, 51 farklı CWE kategorisini kapsayan 400 C ve Python
kod parçasından oluşan bir veri kümesi oluşturulmuş ve üç güncel LLM (GPT-4o,
GPT-4o-mini ve LLaMA-4)’in güvenlik açığı tespit performansları bu kodların üz-
erinde değerlendirilmiştir. İlk olarak sekiz farklı obfüskasyon yöntemi uygulanarak,
bunların LLM’lerin tespit doğruluğu ve işlevselliğin korunması üzerindeki etkileri
ölçülmüştür. Sonuçlar, ölü kod ekleme ve kontrol akışı obfüskasyonunun güvenlik
açığı sızıntısını engellemede en etkili yöntemler olduğunu; ancak tam şifreleme gibi
agresif tekniklerin, kodun işlevselliğinin anlaşılmasını olumsuz etkilediğini göster-
miştir. İlk aşamada elde edilen sonuçlar doğrultusunda, başarılı olan obfüskasyonlar
diğer yanıltıcı stratejilerle birleştirilerek, bal küpü güvenlik açıkları kodlara eklen-
miştir. Bu aşamada birinci fazda etkili olduğu kanıtlanan kontrol akışı obfüskasy-
onu, veri akışı obfüskasyonu ve tanımlayıcı yeniden adlandırma tekniklerinin yanı
sıra, siklomatik karmaşıklığın artırılması ve yanıltıcı yorumlar gibi yeni yöntemler

vi

de uygulanmıştır. Elde edilen bulgular, bal küplerinin bazı durumlarda güvenlik
açığı tespit doğruluğunu yüzde 60’tan fazla azalttığını; buna karşın kodun işlevsel-
liğinin büyük ölçüde korunduğunu ortaya koymuştur. Ayrıca, yanıltıcı yorumlar tüm
modellerde hafif fakat etkili bir savunma yöntemi olarak öne çıkmıştır. Bu bulgu-
lar, yapay zekâ destekli yazılım geliştirme süreçlerinde güvenlik ve kullanılabilirlik
arasında bir denge kurulması gerekliliğini vurgulamakta; ayrıca benzer tekniklerin
otomatik denetimlerden kötü niyetli açıkları gizlemek amacıyla kötüye kullanılabile-
ceğine dair etik kaygılara dikkat çekmektedir.

vii

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my advisor, Prof. Dr. Cemal Yıl-
maz, for his exceptional guidance and support throughout my thesis. Despite his
demanding schedule, he always found the time to provide insightful feedback and
valuable advice, which greatly contributed to the development and completion of
this work.

I am also thankful to my thesis committee members, Assist. Prof. Dr. Dilara
Keküllüoğlu and Assoc. Prof. Dr. Ali Furkan Kamanlı, for their time, thoughtful
comments, and constructive suggestions that have improved the quality of this thesis.

I am deeply grateful to my family for their unwavering support, patience, and encour-
agement during my studies. Their love and trust have been my greatest strength.
I would also like to thank someone whose quiet yet constant support and steadfast
belief in me have been invaluable during the most challenging moments. Finally,
I would like to thank my close friends, whose understanding and motivation have
helped me navigate this journey with resilience.

I am grateful to all who have contributed to this important chapter of my academic
journey.

viii

To those I hold dear

ix

TABLE OF CONTENTS

LIST OF TABLES . xii

LIST OF FIGURES . xiii

1. INTRODUCTION . 1

2. RELATED WORK . 6
2.1. LLMs for Vulnerability Detection. 7
2.2. Obfuscation Techniques and Their Impact on LLMs 8
2.3. Honeypot Strategies for Misleading LLMs . 9
2.4. Summary of Contributions. 10

3. PRELIMINARIES . 12
3.1. Model Overview . 12
3.2. Honeypot Vulnerabilities. 13
3.3. Attention Mechanism in LLMs . 13
3.4. Mean Reciprocal Rank (MRR) . 14
3.5. Cyclomatic Complexity . 15

4. METHODOLOGY . 17
4.1. Datasets . 17
4.2. Phase 1: Mitigating with Obfuscation . 19

4.2.1. Obfuscations . 19
4.2.1.1. Comment Obfuscation. 20
4.2.1.2. String Obfuscation . 20
4.2.1.3. Identifier Obfuscation . 20
4.2.1.4. Encoding the Entire Code . 20
4.2.1.5. LLM-Based Obfuscation. 20
4.2.1.6. Control Flow Obfuscation . 21
4.2.1.7. Data Flow Obfuscation . 21
4.2.1.8. Dead Code Insertion . 22

x

4.2.2. Leakage Detection Setup . 22
4.3. Phase 2: Mitigating with Honeypots . 24

4.3.1. Techniques Applied with the Honeypots . 25
4.3.2. Cyclomatic Complexity . 27
4.3.3. Evaluating Technique Combinations with Honeypots 27

4.4. Functionality Understanding Evaluation. 28

5. RESULTS . 30
5.1. Phase 1: Mitigating with Obfuscation . 30

5.1.1. Vulnerability Leakage . 30
5.1.1.1. Accuracy without Output Limitation 30
5.1.1.2. Accuracy with Output Limitations 32
5.1.1.3. Mean Reciprocal Rank (MRR) . 32

5.1.2. Functionality Retention . 33
5.2. Phase 2: Mitigating with Honeypots . 34

5.2.1. Effectiveness of LLM-Generated Honeypots. 34
5.2.2. Functionality Retention of LLM-Generated Honeypots 35
5.2.3. Cyclomatic Complexity and Effectiveness of Honeypot Obfus-

cation . 36
5.2.4. Evaluation Of Technique Combinations with Honeypots 38
5.2.5. Functionality Retention of Technique Combinations with Hon-

eypots . 40

6. DISCUSSION . 42
6.1. Limitations and Ethical Implications . 44

7. CONCLUSION . 45

BIBLIOGRAPHY. 47

xi

LIST OF TABLES

Table 5.1. Accuracy of vulnerability detection for each obfuscation technique 31
Table 5.2. F-score for vulnerability detection across different obfuscation

techniques. 31
Table 5.3. Accuracy of vulnerability detection with different prompt lim-

itations . 32
Table 5.4. Mean Reciprocal Rank (MRR) for vulnerability detection with

different prompt limitations . 33
Table 5.5. Functionality retention scores for each obfuscation technique . . . 33
Table 5.6. Accuracy comparison of vulnerability leakage 35
Table 5.7. Functionality retention scores for honeypotted codes 35
Table 5.8. Cyclomatic Complexity means according to accuracy. 36
Table 5.9. Accuracy of vulnerability leakage for technical combinations

with honeypot . 39
Table 5.10. Functionality retention scores for honeypotted codes with each

technical combination . 40

xii

LIST OF FIGURES

Figure 5.1. Boxplot for ChatGPT-4o-mini . 37
Figure 5.2. Boxplot for ChatGPT-4o . 37
Figure 5.3. Boxplot for LLaMa-4 . 38

xiii

1. INTRODUCTION

Large Language Models (LLMs) have become an important tool in modern soft-
ware development, helping developers write, debug, refactor, and optimize code
across various programming languages. These models provide simplified workflows
and reduced development time, often rivaling traditional static analyzers in speed
and breadth. Their role in static analysis, vulnerability detection, and code un-
derstanding is growing rapidly (Nam, Macvean, Hellendoorn, Vasilescu & Myers,
2024). However, the very power of these models also raises significant security and
privacy concerns: once code is shared with LLMs, whether for assistance, review, or
integration, they may reveal sensitive logic or vulnerabilities that developers never
intended to disclose (Sallou, Durieux & Panichella, 2024). This introduces a new
and underexplored form of leakage risk, especially in proprietary or security-critical
code.

Although LLMs are highly capable of identifying security flaws in source code, they
are not designed with security in mind. This means they can unintentionally expose
critical information during analysis (Zhao, Li & Wang, 2022). A major concern is
whether LLMs can infer and reveal security vulnerabilities that the user may not
have been aware of or did not intend to disclose (Carlini, Tramèr, Wallace, Jagielski,
Herbert-Voss, Lee, Roberts, Brown, Song, Erlingsson, Oprea & Raffel, 2021). This
raises important questions about information leakage and the effectiveness of dif-
ferent mitigation strategies. In this thesis, we use the term information leakage to
describe situations where an LLM reveals security vulnerabilities in code, which we
consider sensitive, particularly when the code is proprietary or shared with external
tools. While this differs from traditional privacy-related leakage, it still represents
a form of unintended information exposure during code analysis.

Recent incidents have highlighted the real-world risks of sharing sensitive code or
data with public LLMs. In one high-profile case, Samsung engineers inadvertently
leaked confidential source code and meeting notes by submitting them to Chat-
GPT for assistance with chip testing and documentation (Paganini, 2023). The
data, now stored on OpenAI’s servers, creates long-term exposure risks. As a re-

1

sult, Samsung banned employees from using external LLMs and began develop-
ing internal alternatives. Similarly, Apple, Amazon, JPMorgan, and other cor-
porations have prohibited or restricted the internal use of ChatGPT and GitHub
Copilot to prevent leakage of proprietary logic and intellectual property (Wodecki,
2023). India’s Finance Ministry and several European institutions have issued sim-
ilar advisories, reflecting a growing concern over LLM-driven data exposure (Singh
& Ohri, 2025). Moreover, technical vulnerabilities—such as Microsoft’s EchoLeak
zero-click exploit (Lakshmanan, 2025) and Google Vertex AI’s model exfiltration
flaw (Montalbano, 2024)—demonstrate how attackers may extract sensitive data
even without user intent. These events underscore a common theme: code shared
with LLMs, whether intentionally or indirectly, can become a liability—visible to
external providers, exploitable through prompt injection, or stored without clear
retention policies.

These real-world events reinforce a key distinction at the heart of this thesis: in-
formation leakage from LLMs does not only arise from training-time memorization
of datasets (i.e., data leakage), but also during inference—when proprietary code
is submitted and analyzed. In this thesis, we use the term information leakage to
describe situations where an LLM reveals security vulnerabilities present in the sub-
mitted code to the LLM’s servers, which means sensitive details about proprietary
systems may be stored or inferred by external service providers. If such informa-
tion is later exposed—intentionally or through a breach—it could provide attackers
with a roadmap to exploit specific organizations. This concern is amplified in high-
stakes domains like finance, defense, or infrastructure, where even the inference of
a vulnerability represents a risk.

We distinguish between data leakage, where models reveal memorized training data,
and information leakage, where models infer latent security weaknesses from previ-
ously unseen code during analysis (OWASP, 2024). Our focus is on mitigating this
second type, which requires not just the submission of data, but also the model’s
ability to reason about that data and extract implicit meaning. While all code
shared with an LLM constitutes data, not all such data leads to information leakage.
Information leakage arises when the model interprets the code, identifies underly-
ing security flaws, and surfaces knowledge that was not explicitly disclosed by the
user. This interpretive capability transforms seemingly neutral input into a potential
source of sensitive insights. In the context of proprietary or security-critical systems,
this distinction becomes crucial, as the unintended inference of vulnerabilities poses
serious risks—even when no private training data is involved.

Existing defenses against information leakage often trade interpretability or main-

2

tainability for limited gains in confidentiality. Furthermore, they do not fully address
the unique capabilities of LLMs, which can reason through many syntactic disguises
and extract high-level patterns. This highlights a fundamental tension: how can de-
velopers retain the benefits of LLM-powered tools while reducing the risk of leaking
critical vulnerabilities? Addressing this question is essential for the safe adoption of
AI-assisted development workflows.

This thesis investigates approaches for mitigating vulnerability leakage from LLMs:
traditional obfuscation techniques and a novel deception-based strategy involving
honeypot vulnerabilities.

In the first phase of our study, we aim to quantify how much sensitive information can
be leaked when using LLMs to analyze source code and how obfuscation techniques
affect this leakage. Specifically, we investigate how many security vulnerabilities an
LLM can detect in a given code and how different obfuscation techniques impact
this detection rate. To address this, we built a dataset of 400 C and Python code
snippets, each containing security vulnerabilities classified into 51 distinct Common
Weakness Enumeration (CWE) categories. Using an automated process, we ran
these snippets through the ChatGPT-4o-mini API (OpenAI, 2022) and measured
how accurately it could detect vulnerabilities. We then applied several obfuscation
techniques—including comment, string, identifier, control flow, data flow obfusca-
tions, dead code insertion, full encoding, and LLM-based obfuscation—to assess
their effectiveness in reducing information leakage. At the same time, we evalu-
ated whether the obfuscated code still functioned correctly to maintain the utility
of LLMs for legitimate tasks.

Our results from Phase 1 reveal a nuanced trade-off between security and func-
tionality. While techniques such as dead code insertion and advanced control flow
transformations were particularly effective in reducing vulnerability detection ac-
curacy, they also caused moderate disruption to the LLM’s ability to understand
functionality. Simpler obfuscations like comment and identifier obfuscation had a
smaller impact, suggesting that LLMs rely on structural patterns of code rather than
mere textual cues. Encoding the entire codebase, although highly disruptive, was
found to severely impair both vulnerability detection and functionality comprehen-
sion, rendering it impractical for real-world applications. These findings emphasize
the importance of selecting obfuscation strategies that balance protection against
information leakage with the need to preserve the code’s semantic clarity.

Building on these insights, we decided to incorporate honeypots into the obfusca-
tion techniques that had yielded successful results. The second phase of our study
explores a novel and practical approach to misleading LLMs by introducing honey-

3

pot vulnerabilities—synthetic, intentionally misleading code segments designed to
distract and confuse automated analyses. Our core hypothesis is that by embedding
believable but irrelevant weaknesses into a program, one can reduce an LLM’s abil-
ity to identify real, exploitable flaws, without compromising the functional clarity of
the code. To investigate this, we evaluated the effectiveness of honeypots in combi-
nation with code transformations such as misleading comments, identifier renaming,
and control or data flow obfuscation.

In Phase 2, we tested these deception strategies against three state-of-the-art LLMs:
GPT-4o, GPT-4o-mini, and LLaMA-4. Our evaluation focused on two critical di-
mensions: vulnerability leakage (i.e., how accurately the LLM could detect real
CWEs) and functionality retention (i.e., whether the LLM could still correctly in-
terpret what the code does). We show that LLM-generated honeypots, combined
with additional misleading strategies, significantly reduced vulnerability detection
accuracy—by over 60 percentage points in some cases—while maintaining a strong
understanding of code functionality, with models scoring above 4.1 on a 5-point
scale.

Among these strategies, misleading comments emerged as a particularly robust and
model-agnostic method. This approach exploits the language-sensitive reasoning of
LLMs and requires minimal code modification, making it a lightweight yet powerful
defense. Similarly, increasing control flow complexity in tandem with honeypots
proved effective against models like GPT-4o-mini and LLaMA. However, GPT-4o
exhibited greater resistance to honeypots, suggesting that larger and more advanced
models may require more sophisticated or tailored deception techniques.

Finally, we systematically explored eight hybrid strategies combining honeypots
with various obfuscation methods. This analysis revealed that certain combina-
tions—such as honeypots with misleading comments or moderate cyclomatic com-
plexity increases—achieve near-parity with LLM-generated honeypots, enabling
more controllable and interpretable defenses.

This thesis makes several key contributions: (1) it introduces a high-diversity dataset
spanning 51 CWE types for evaluating LLM behavior; (2) it empirically demon-
strates the susceptibility of state-of-the-art LLMs to both obfuscation and deception-
based defenses; (3) it proposes and validates a novel defense mechanism based on
LLM-generated honeypot vulnerabilities; and (4) it provides a structured evaluation
framework for functionality retention using LLM-generated explanations.

In summary, this work highlights a critical but underexplored risk in AI-assisted
software development: the automatic inference and exposure of latent vulnerabilities

4

from seemingly benign code shared with LLMs. Our findings reveal that while LLMs
are powerful tools for detecting vulnerabilities, they can be systematically misled
through lightweight code transformations that preserve functional semantics. These
insights offer actionable guidance for developers and security practitioners seeking
to balance usability, security, and resilience in AI-supported workflows, while also
underscoring the need for future research into deception-resilient LLM architectures
and standardized evaluation benchmarks.

5

2. RELATED WORK

LLMs have emerged as a transformative technology in software engineering, provid-
ing developers with unprecedented capabilities in code generation, debugging, opti-
mization, and vulnerability detection (Nam et al., 2024). Models such as OpenAI’s
GPT series, Meta’s LLaMA family, and open-source efforts have demonstrated that
LLMs can analyze and produce source code across diverse programming languages,
rivaling or surpassing traditional static analyzers in some security tasks (Mohamed,
Assi & Guizani, 2025). Their integration into development pipelines promises faster
delivery cycles and improved code quality.

However, this power comes with significant security and privacy concerns, partic-
ularly regarding information leakage when sensitive or proprietary code is shared
with these models. Zhou et al. (Zhou, Weyssow, Widyasari, Zhang, He, Lyu, Chang,
Zhang, Huang & Lo, 2025) highlighted that LLMs trained on large-scale public
datasets are prone to unintentional memorization of sensitive training data, result-
ing in leakage when these models are queried. It is important to note that this
leakage arises from pre-training exposure rather than prompt-based interactions, as
LLMs do not retrain on prompt inputs unless fine-tuned explicitly. Their empirical
analysis across 83 software engineering benchmarks revealed leakage rates of 4.8%
(Python), 2.8% (Java), and 0.7% (C/C++), with certain datasets showing extreme
leakage ratios of 100% and 55.7%, respectively. Similarly, Sallou et al. (Sallou et al.,
2024) demonstrated that implicit data leakage from LLMs can inflate benchmark
performance and compromise security when previously seen code is regurgitated
during inference. These findings suggest that while LLMs offer powerful tools for
vulnerability detection and code assistance, they also introduce risks of exposing
latent vulnerabilities in proprietary codebases, even without explicit prompting.

This dual nature of LLMs being both effective detectors and potential leakers has
motivated research into defensive techniques aimed at safeguarding code privacy.
Two prominent directions have emerged: code obfuscation to hinder LLM com-
prehension and deception strategies, such as honeypot vulnerabilities, to mislead
automated analyses. Our work builds on these foundations by systematically evalu-

6

ating both approaches in mitigating vulnerability leakage while preserving functional
clarity.

2.1 LLMs for Vulnerability Detection

Several studies have demonstrated that LLMs can rival or surpass traditional static
analysis tools in vulnerability detection tasks. A study conducted in 2023 inves-
tigates ChatGPT for vulnerability detection in Python source code and compares
its results with static application security testing tools (Bakhshandeh, Keramat-
far, Norouzi & Chekidehkhoun, 2023). The study has four different types of ex-
periments, and its results showed that ChatGPT reduces the false positive and
false negative rates. A more recent and comprehensive study on vulnerability de-
tection with LLM compared the vulnerability detection capabilities of four LLMs
(ChatGPT-3.5, ChatGPT-4, LLaMA-2, and Bard-Gemini) against ten traditional
static analysis tools (Yıldırım, Aydın & Çetin, 2024). Their results showed that
LLMs, particularly ChatGPT-4, outperformed traditional static analyzers with a
much higher accuracy rate.

In addition to these studies, another related work compared the performances of
six general-purpose LLMs and six open-source LLMs which are specifically trained
for vulnerability detection for further investigation (Guo, Patsakis, Hu, Tang &
Casino, 2024). Their findings showed that, even though both models were successful,
fine-tuned models performed better in their specific areas. However, the general-
purpose models had more stable accuracy across different datasets. As the LLMs’
success in detecting vulnerabilities is proven in many studies, several tools have
emerged leveraging LLMs for automated vulnerability detection, including prompt
engineering frameworks and hybrid static-dynamic analysis systems (Boi, Esposito
& Lee, 2024; Ding, Liu, Piao, Song & Ji, 2025; Lu, Ju, Chen, Pei & Cai, 2024).
As one of the tools, Zhang et al. (Yan & Li, 2021) proposed combining LLMs with
static analyzers for Java code vulnerability detection (Bench-Java dataset). Their
evaluation across CWE categories such as CWE-22, CWE-78, CWE-79, and CWE-
94 showed improved detection coverage but highlighted persistent false positives.
These results align with observations in our study, where even state-of-the-art models
occasionally misclassify obfuscated or deceptive inputs.

Despite their strengths, LLMs exhibit limitations in vulnerability detection. Their

7

reliance on surface-level patterns makes them vulnerable to misdirection through lex-
ical changes, semantic-preserving transformations, or adversarial inputs Li, Dutta &
Naik (2025). False positives remain a significant challenge, especially in complex or
obfuscated codebases. Moreover, recent studies have shown that many evaluations of
LLMs are context-deprived, often assessing models on isolated code snippets rather
than full execution or data-flow contexts. This leads to inaccurate conclusions and
flawed rationales, as LLMs either misidentify vulnerabilities or justify correct pre-
dictions for the wrong reasons (Li, Li, Wu, Xu, Zhang, Cheng, Xu & Zhong, 2025).
Even state-of-the-art models like GPT-4 and DeepSeek struggle to generalize to
real-world scenarios, frequently exhibiting reasoning errors and overthinking biases.
Moreover, Steenhoek et al. (Steenhoek, Rahman, Roy, Alam, Tong, Das, Barr &
Le, 2025) demonstrate that LLMs consistently fail at multi-step semantic reasoning
tasks critical for detecting vulnerabilities, with performance rarely exceeding ran-
dom guessing across diverse prompts and architectures. These errors stem not only
from a lack of training on execution-specific data but also from limitations in un-
derstanding semantic subtleties such as bounds and NULL checks. Scaling models
or fine-tuning on more code has shown limited benefits, indicating that improv-
ing vulnerability detection may require fundamentally new architectures or training
paradigms.

2.2 Obfuscation Techniques and Their Impact on LLMs

Alongside vulnerability detection, code obfuscation to prevent leaking sensitive in-
formation has also been a key focus of research on LLMs. It has long been used
in software protection to obscure code logic from reverse engineering or automated
analysis. Previous works have demonstrated the effectiveness of prompt obfuscation
in preventing information leakage (Li, Wen & Jin, 2024; Pape, Mavali, Eisenhofer &
Schönherr, 2025). In the code obfuscation area, Lin et al. introduced CodeCipher, a
technique that obfuscates code at the token level by perturbing embeddings within
an LLM’s matrix (Lin, Wan, Fang & Gu, 2024). Their work demonstrated that
altering token embeddings could hinder LLM-based code completion, translation,
and summarization tasks while preserving functionality. Metrics such as Pass@K
(code completion success rate), BLEU-4, ROUGE-L, and METEOR (code sum-
marization accuracy) were used to measure obfuscation performance. While their
study focused on obfuscation’s impact on LLM-assisted programming tasks, our

8

work evaluates obfuscation in the context of vulnerability detection, investigating
how different techniques affect information leakage.

Mai et al. proposed ConfusionPrompt, a method for private inference that obfus-
cates user queries to LLMs (Mai, Yang, Yan, Ye & Pang, 2024). Their technique
generates pseudo-prompts alongside genuine queries, making it difficult for adver-
saries to extract sensitive information. Although their research was primarily fo-
cused on protecting prompt privacy, the underlying principles of query obfuscation
are relevant to our study, particularly in understanding how obfuscation disrupts an
LLM’s ability to extract meaningful security insights.

Another study by Fan and Li investigated the challenges LLMs face when sum-
marizing "lexically confusing code" (Li et al., 2025). They introduced Variational
Eroded Code Summarization (VECOS), which replaces meaningful identifiers with
generic symbols before reconstructing functionally accurate summaries. Their ap-
proach forced models to rely on deeper code structures rather than superficial lexical
cues. This research aligns with our investigation into identifier obfuscation and its
impact on vulnerability detection.

2.3 Honeypot Strategies for Misleading LLMs

While prior work has explored honeypot strategies involving LLMs, these efforts
primarily focus on using the models to simulate realistic interactive environments for
trapping human attackers. For example, Otal et al. proposed an SSH-based system
in which LLMs act as conversational agents to deceive adversaries by mimicking
legitimate shell behavior in real time (Otal & Canbaz, 2024). Similarly, Sladić
et al. introduced shelLM, a generative honeypot system that leverages LLMs to
dynamically engage users during intrusion attempts (Sladić, Valeros, Catania &
Garcia, 2024). Another approach is using LLMs to simulate interactive honeypots
or analyze attack logs, but none have treated the LLM itself as the target of deception
through embedded code-level honeypots (Lanka, Gupta & Varol, 2024). While these
studies apply LLMs to support or automate honeypot defense systems, our work
takes the inverse approach: we treat the LLM itself as the target of deception by
embedding honeypot vulnerabilities within code, aiming to mislead the model and
reduce vulnerability leakage.

There are also several recent efforts that specifically aim to mislead or subvert large
9

language models through targeted adversarial inputs. Geiping et al. (Geiping, Stein,
Shu, Saifullah, Wen & Goldstein, 2024) systematically categorize and execute a
wide range of adversarial attacks such as misdirection, role hacking, and glitch to-
ken exploitation that coerce LLMs into producing unintended outputs, including
misinformation, system prompt leaks, or even contradicting hard-coded safety poli-
cies. While their focus is on prompt-level manipulation to violate alignment, our
work shares the broader goal of misleading LLMs but does so through embedded
code-level deceptions rather than linguistic attacks. Similarly, Rajeev et al (Ra-
jeev, Ramamurthy, Trivedi, Yadav, Bamgbose, Madhusudan, Zou & Rajani, 2025)
introduce CatAttack, a method for generating query-agnostic adversarial triggers
that significantly increase the likelihood of incorrect answers from reasoning-focused
LLMs. These triggers—short, irrelevant phrases like trivia or vague numerical sug-
gestions—can be appended to any math problem and still degrade model accuracy.
Like our approach, CatAttack emphasizes minimal perturbations that preserve hu-
man interpretability while misleading the model, further reinforcing the feasibility
of subtle adversarial manipulations across diverse domains.

2.4 Summary of Contributions

This thesis advances the understanding of LLM vulnerability analysis by system-
atically exploring both obfuscation and deception-based defenses. In Phase 1, we
differentiate our work from prior studies by directly bridging two previously sepa-
rate areas: LLM-based vulnerability detection and code obfuscation. While earlier
research focused on LLM performance or obfuscation for general privacy, our study
uniquely evaluates how various obfuscation techniques—including comment removal,
identifier renaming, control and data flow transformations, dead code insertion, full
encoding, and LLM-based rewriting—impact the ability of LLMs to detect vulner-
abilities in source code. By applying these transformations to a diverse dataset of
vulnerable C and Python code snippets, we provide a comprehensive analysis of in-
formation leakage in obfuscated code and highlight the trade-offs between reducing
detectability and preserving functionality.

In Phase 2, we introduce a novel, deception-based strategy that goes beyond tradi-
tional obfuscation or prompt-level manipulations. Our approach embeds honeypot
vulnerabilities—realistic yet irrelevant flaws—directly into source code to mislead
LLM-based vulnerability detectors. We systematically assess the effectiveness of

10

these honeypots when combined with lightweight misleading techniques such as mis-
leading comments, identifier renaming, and cyclomatic complexity increases. Unlike
prior work that treats LLMs as tools for building honeypots or focuses on adversar-
ial prompt engineering, our study treats the LLM itself as the target of deception.
This allows us to identify which combinations of techniques are most effective at
suppressing vulnerability leakage across multiple state-of-the-art models, all while
ensuring functional clarity through LLM-based functionality assessments.

Together, these contributions position our work as the first to deliver a fine-grained,
model-aware defense framework that integrates both obfuscation and deception
strategies. By providing empirical evidence on the effectiveness of these techniques,
we offer practical guidance for developers seeking to mitigate unintended vulnera-
bility exposure in AI-assisted software workflows.

11

3. PRELIMINARIES

In this section, we introduce the foundational concepts that underpin our study,
including LLMs that are used in the study, the use of honeypot vulnerabilities in
code, the attention mechanism of LLMs, Mean Reciprocal Rank, and the cyclomatic
complexity metric. These concepts provide the theoretical basis for our methodology
and help interpret the impact of misleading patterns on LLM-based vulnerability
detection.

3.1 Model Overview

This study compares the vulnerability detection behaviors of three LLMs: GPT-4o,
GPT-4o-mini, and LLaMA-4 Scout 17B 16E Instruct.

GPT-4o and GPT-4o-mini are proprietary models developed by OpenAI (OpenAI,
2022). GPT-4o is their latest flagship multi-modal model with advanced reasoning
capabilities and an extended context window, while GPT-4o-mini is a lighter-weight
variant optimized for lower latency and cost. Although parameter counts are not
publicly disclosed, GPT-4o is significantly larger and more capable, whereas GPT-
4o-mini represents a trade-off between performance and efficiency with an estimate
of around 10–20B parameters.

LLaMA-4 Scout 17B 16E Instruct, released by Meta AI, is a fine-tuned, instruction-
following model from the LLaMA-4 family (MetaAI, 2025). It utilizes a Mixture-
of-Experts (MoE) architecture with 17 billion parameters and 16 experts, of which
only a subset is activated per forward pass. This structure allows for computa-
tional efficiency without sacrificing representational power. The model has been
instruction-tuned for general-purpose use and supports extremely long contexts, up
to 10 million tokens, making it well-suited for code analysis tasks.

12

Together, these models offer a diverse range of capabilities and serve as a robust
basis for evaluating the effectiveness of honeypots and other misleading techniques
across different LLM architectures and sizes.

3.2 Honeypot Vulnerabilities

Honeypots are intentionally crafted artifacts designed to attract or mislead auto-
mated systems or adversaries. Originally developed in cybersecurity to detect or
trap malicious actors by simulating vulnerable systems or data, honeypots function
as decoys, drawing attention away from critical assets while collecting behavioral
data from attackers (Spitzner, 2002).

In the context of source code, honeypot vulnerabilities are artificial or irrelevant
weaknesses inserted into software with the goal of distracting automated analysis
tools or models. These vulnerabilities often resemble real-world patterns (such as
buffer overflows or improper input validation), but are either unreachable, harmless,
or logically benign. When indistinguishable from genuine vulnerabilities, honeypots
can serve as effective false positives, thereby reducing the likelihood that actual flaws
are identified.

In this work, we adapt the concept of honeypots to the domain of LLM-based
vulnerability leakage. Instead of targeting human attackers, our honeypots are
designed to mislead language models into focusing on these synthetic vulnerabilities
rather than the true security flaws present in the code. This technique allows us
to systematically evaluate the susceptibility of LLMs to deception and test whether
the model’s attention can be redirected through targeted code manipulations.

3.3 Attention Mechanism in LLMs

The attention mechanism is a core component of modern LLMs, such as those based
on the Transformer architecture. It enables the model to weigh the importance of
different parts of the input when generating outputs. Instead of processing tokens in
isolation or fixed order, attention allows the model to dynamically focus on the most

13

relevant segments of the input context during each step of inference (Niu, Zhong &
Yu, 2021).

In practice, this mechanism assigns scalar attention weights to tokens or token
groups, indicating how much influence they should have on the model’s under-
standing or prediction. These weights are computed based on the relationships
between tokens, enabling the model to capture long-range dependencies, semantic
structure, and contextual cues. The self-attention layers within the model aggregate
these weighted inputs to build a comprehensive representation of the data (Vaswani,
Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser & Polosukhin, 2017).

In the context of code analysis, this means that LLMs will allocate more cognitive
"focus" to code regions that appear syntactically complex, semantically meaningful,
or potentially vulnerable. However, this same mechanism can be exploited. By
inserting misleading or artificial code fragments that mimic the appearance of real
vulnerabilities, it is possible to divert the model’s attention away from genuine
security flaws.

In our work, we leverage this property of LLMs by obfuscations and strategically
embedding honeypot vulnerabilities designed to appear important to the model. By
placing these decoy patterns in structurally and semantically plausible locations, we
aim to attract a disproportionate share of the model’s attention, thereby reducing
its ability to detect real vulnerabilities elsewhere in the code.

3.4 Mean Reciprocal Rank (MRR)

Mean Reciprocal Rank (MRR) is an evaluation metric commonly used in information
retrieval and recommendation systems to measure the effectiveness of models that
return a ranked list of results (Radev, Qi, Wu & Fan, 2002; Voorhees, 1999). It
provides a quantitative assessment of how high the correct answer appears in the
ranking.

Formally, MRR is defined as the average of the reciprocal ranks of the first relevant
result for a set of queries. The reciprocal rank for a query is calculated as 1/rank,
where rank is the position of the first correct result in the model’s output. For
instance, if the correct vulnerability is ranked first, the reciprocal rank is 1; if it
appears third, the reciprocal rank is 1/3. The MRR is computed as follows:

14

(3.1) MRR = 1
|Q|

|Q|∑
i=1

1
ranki

where |Q| is the total number of queries and ranki is the position of the first correct
result for the ith query.

In this study, MRR is particularly useful because the LLMs often return multiple
possible vulnerabilities as ranked lists. Using MRR allows us to assess how effectively
the models prioritize real vulnerabilities by placing them earlier in their outputs. A
higher MRR reflects better ranking quality, which is especially important in scenarios
where only the top results are reviewed during vulnerability assessment.

3.5 Cyclomatic Complexity

Cyclomatic complexity is a software metric used to quantify the complexity of a pro-
gram’s control flow. It measures the number of linearly independent paths through
a program, which is determined by the presence of decision points such as condi-
tionals (if, switch), loops (for, while), and function calls that introduce branching
logic (McCabe, 1976). A higher cyclomatic complexity generally indicates a more
intricate and potentially harder-to-understand control structure (Esposito, Janes,
Kilamo & Lenarduzzi, 2024).

McCabe (McCabe Jr., 2008) proposed interpreting CC values in relation to soft-
ware security risk: 1–10 (simple, low risk), 11–20 (moderate complexity, moderate
risk), 21–50 (high complexity, high risk), and >50 (very high risk, often untestable).
He argued that increased complexity inherently reduces security because complex
systems are harder to design, implement, test, and use securely, leading to more
security vulnerabilities.

This metric is widely used in software engineering to assess code maintainabil-
ity, test coverage requirements, and potential fault-proneness. In the context of
automated analysis and LLM-based tools, more complex code structures may in-
troduce additional cognitive load, possibly affecting the accuracy of vulnerability
detection (Sheng, Chen, Gu, Huang, Gu & Huang, 2025).

15

In our work, we use cyclomatic complexity as an analytical dimension to examine
whether structural complexity correlates with LLM performance. After inserting
honeypots into our code samples, we calculate the cyclomatic complexity of the
original, pre-honeypotted code using a static analysis tool. This ensures that the
complexity scores reflect only the inherent logic of the real program, not the mislead-
ing elements added later. We then compare complexity scores between correctly and
incorrectly classified samples to explore whether more complex control flows hinder
the model’s ability to detect genuine vulnerabilities.

16

4. METHODOLOGY

This chapter outlines the experimental methodology employed to evaluate how ef-
fectively obfuscation and honeypot techniques mitigate information leakage from
LLMs. Our methodology is structured around three key components: the dataset,
the two-phase defense strategy, and functionality evaluation. First, we describe the
dataset of 400 C and Python code snippets covering 51 different vulnerabilities.
Then, we detail two sequential phases: Phase 1 focuses on traditional obfuscation
techniques applied individually to the dataset, while Phase 2 introduces honeypot
vulnerabilities and their combinations with obfuscation methods. Finally, we present
our approach for assessing functionality retention, ensuring that applied transfor-
mations do not compromise the semantic integrity of the code.

4.1 Datasets

To evaluate how much information could be leaked through LLMs and the effec-
tiveness of various obfuscation techniques and honeypots, we created a dataset of
400 code snippets, each containing at least one known vulnerability. The dataset
includes 300 C code snippets and 100 Python snippets with a total of 51 distinct
Common Weakness Enumeration (CWE) categories. While there are existing public
datasets for vulnerability detection, most are either limited in size, containing only
small numbers of vulnerable examples, or focus on a very narrow set of CWE types,
which significantly restricts their coverage. Our dataset addresses this gap by offer-
ing both variety and quantity, enabling a more comprehensive evaluation of LLM
behavior across diverse vulnerability types. We achieve this by combining multiple
datasets and supplementing them with additional code samples from GitHub repos-
itories and other relevant sources, thereby expanding both the breadth and diversity
of vulnerabilities included. Specifically, the dataset includes code snippets from the

17

following four sources:

• CWE Top 25 Most Dangerous Software Weaknesses (2024 Edition): CWE
Top 25 is an annual list published by the MITRE Corporation, identifying the
most critical and prevalent software security weaknesses based on real-world
exploit data (MITRE, 2024). In our study, we specifically targeted C and
Python implementations corresponding to the 2024 CWE Top 25 entries. Due
to limitations in available public examples and the need for clarity in vulnera-
bility expression within these two languages, we ultimately incorporated code
samples representing 12 of the top 25 CWEs. These samples were carefully
selected to ensure they exhibit clear, self-contained vulnerabilities suitable for
automated analysis and LLM-based detection.

• Open Source Security Foundation’s Secure Coding Guide for Python: This
guide, developed by the Open Source Security Foundation (OpenSSF) (Open
Source Security Foundation (OpenSSF), 2025), provides well-documented
Python code snippets annotated with specific CWE identifiers. These exam-
ples are primarily educational, designed to help developers—particularly those
new to secure coding—recognize and avoid common software vulnerabilities.
Each code sample is accompanied by a brief explanation of the underlying
weakness, making it a useful resource for both learning and structured analy-
sis. In our study, we selected a subset of these Python examples to supplement
the real-world vulnerabilities gathered from other sources. These samples con-
tributed to the balance between educational clarity and real-world complexity
in our dataset.

• CVEfixes Dataset: The CVEfixes dataset originates from the study “CVE-
fixes: Automated Collection of Vulnerabilities and Their Fixes from Open-
Source Software” (Bhandari, Naseer & Moonen, 2021), which provides a cu-
rated set of real-world code vulnerabilities and their corresponding fixes. The
dataset focuses primarily on C and C++ programs, offering concrete exam-
ples of software weaknesses as they appeared in actual projects. For this study,
we extracted and used only the samples that belonged to four clearly defined
CWE types. We excluded the generic "CWE-Other" category to maintain con-
sistency and interpretability in our evaluation. The selected samples provide
concrete, traceable instances of vulnerable code that complement the more
educational and illustrative examples in the rest of our dataset.

• GitHub Repositories with CWE-Labeled Code: To enhance the diversity of
our dataset, we manually collected additional code samples from open-source
GitHub repositories where vulnerabilities were explicitly labeled with CWE

18

identifiers. In selecting these samples, we considered several factors, including
the size of the vulnerable code fragment, the programming language used, and
the presence of supporting feedback such as issue discussions or commit mes-
sages that reinforced the assigned CWE classification. These examples reflect
a broad spectrum of coding styles, development contexts, and vulnerability
representations found in real-world software projects.

By collecting code samples from these reputable sources, we ensured a diverse and
representative dataset for our analysis. Each snippet in the dataset is labeled with
its corresponding CWE identifiers, enabling structured analysis and reproducibility.
The dataset provides a solid foundation for both vulnerability detection experiments
and the subsequent evaluation of honeypot and obfuscation strategies introduced in
this work.

4.2 Phase 1: Mitigating with Obfuscation

In the first phase of our study, we systematically applied a suite of traditional ob-
fuscation techniques to the dataset to examine their ability to hinder LLM-based
vulnerability detection. This phase serves as a baseline, exploring how techniques
such as comment removal, string encoding, identifier renaming, control and data flow
alterations, dead code insertion, and LLM-based transformations affect information
leakage. Each obfuscation method was tested independently to isolate its impact
on the detection performance of the LLM and its ability to preserve code function-
ality. The results from this phase provided critical insights into the strengths and
limitations of obfuscation as a standalone defense mechanism, informing the design
of more advanced strategies in Phase 2.

4.2.1 Obfuscations

To assess the impact of code obfuscation on information leakage and vulnerability
detection by LLMs, we applied several obfuscation techniques to the dataset one by
one. These techniques were designed to obscure various aspects of the code while
preserving the comprehensibility of the functionality.

19

4.2.1.1 Comment Obfuscation

Comments often provide insights into the code’s purpose and logic. To hinder un-
derstanding and analysis, all comments were identified and removed from the code
snippets.

4.2.1.2 String Obfuscation

Strings can reveal key information, such as function parameters, error messages,
or credentials. Obfuscating strings can make the code harder to interpret. Each
string in the code was XOR-encoded using the hexadecimal value 0x42, rendering it
unreadable until decoded at runtime.

4.2.1.3 Identifier Obfuscation

Function and variable names often provide clues about a program’s behavior. All
function and variable names were replaced with randomly generated names. Each
identifier was consistently replaced with its corresponding random name to ensure
accuracy.

4.2.1.4 Encoding the Entire Code

The entire code snippet was transformed using Base64 encoding, making it more
difficult to analyze directly.

4.2.1.5 LLM-Based Obfuscation

The original code was processed through a different LLM which is local and privacy-
preserving. For LLM-based obfuscation, we used a locally hosted CodeLlama-7B

20

model, chosen for its proven effectiveness in prior code obfuscation studies and its
ability to run efficiently on resource-limited hardware (Lin et al., 2024; Mohseni,
Mohammadi, Tilwani, Saxena, Ndawula, Vema, Raff & Gaur, 2025). The obfus-
cation prompt was standardized across all samples: “Obfuscate the following code
so that it is functionally equivalent but harder for a human to read or understand.
Avoid changing core logic.” This prompt was applied uniformly to each code snippet
using an automated script to ensure consistency. However, it’s important to note
that different LLMs can produce varying obfuscation styles and results, depending
on their architecture and training data.

4.2.1.6 Control Flow Obfuscation

This obfuscation manipulates the logical structure of a program. We applied two
sub-techniques: Loop and Conditional Alteration and Opaque Predicates. For
loop and conditional alteration, loops and conditional statements were restructured,
sometimes by adding dummy conditions or extra loops that do not affect the loop
semantically. For opaque predicates, statements that always evaluate to a fixed
value (e.g., if (2 + 2 == 4)) were inserted to create the appearance of complex
logic. Both techniques were applied in varying forms and combinations across the
dataset, but without a strict pattern, resulting in natural variation that reflects
realistic obfuscation use cases.

4.2.1.7 Data Flow Obfuscation

It alters how variables interact, making it harder to track dependencies and under-
stand the program’s behavior. For split variables, some variables were divided into
multiple parts that were combined only when needed. For redundant computations,
extra calculations were introduced that did not impact the semantics but increased
complexity. Also, some dummy variables were added to clutter the code.

21

4.2.1.8 Dead Code Insertion

Inserting non-functional code increases overall complexity and misleads analysis. We
inserted useless instructions that have no effect on the program’s execution (e.g., x
= 0; if(x) doSomething();), and dummy variables/functions in order to increase
ambiguity. We inserted both useless instructions and dummy variables/functions
randomized across samples, that help reduce the chance that the LLM could recog-
nize a single repeated pattern across all obfuscated samples.

Each of these obfuscation techniques was applied individually to the dataset, ensur-
ing that only one obfuscation method was tested at a time. This approach allowed us
to evaluate the effectiveness of each technique in isolation, measuring its impact on
information leakage and functionality retention without the influence of combined
obfuscations.

4.2.2 Leakage Detection Setup

To systematically assess how much information can be extracted from code snip-
pets, we implemented an automated leakage detection process using a structured
approach. We utilized the gpt-4o-mini-2024-07-18 version of ChatGPT-4o mini API
for vulnerability detection, ensuring consistency across all experiments. A Python-
based script was developed to send obfuscated code snippets to the LLM, capture the
model’s responses, and store the detected vulnerabilities in a structured database
for further analysis. All results were stored in a database, allowing direct com-
parison between the original vulnerabilities and vulnerabilities detected in the code
snippets by the LLM. The API was accessed through predefined requests, ensuring
standardized interactions with the model.

Each code snippet was sent to LLM using new clients with erased history and cache
to ensure unbiased evaluation. Two different prompts were used: one directly asked
for security issues, while the other limited the number of outputs.

Prompt without output limitation:

"You are a software security expert. Check the following code for security
issues. Only list issues that are actually in the code. If you list extra
CWE codes, you will be punished. If there are no issues, say ’no’. If

22

there are issues, list the relevant CWE numbers."

Prompt with output limitation: This prompt was tested with different limits
of 1, 3, 5, 7, and 10 CWE codes. Below is an example with a maximum of 10 CWE
codes:

"You are a software security expert. Check the following code for security
issues. Only list issues that are actually in the code. If you list extra
CWE codes, you will be punished. If there are no issues, say ’no’. If
there are issues, list the relevant CWE numbers in order of likelihood,
from most to least probable with a maximum of 10."

The LLM’s response was directly stored in the database without modification, and
CWE codes were extracted from the response for analysis. The same procedure
was also applied to obfuscated versions of the code snippets. Each obfuscation
technique was tested independently, ensuring that the impact of individual obfus-
cation methods could be assessed in isolation. The detected vulnerabilities were
compared against the known CWE classifications assigned to each code snippet in
the database.

To evaluate the effectiveness of the LLM in detecting vulnerabilities from both orig-
inal and obfuscated code, we used accuracy, F-score, and Mean Reciprocal Rank
(MRR) as our primary metrics, which are commonly used evaluation metrics in vul-
nerability detections (Adam, Bulut, Sow, Ocepek, Bedell & Ngweta, 2022; Brama,
Dery & Grinshpoun, 2022). Accuracy provided a straightforward measure of how
well the model detected vulnerabilities, while F-score indicated the overall detec-
tion performance. For code snippets with more than one vulnerability, we assigned
an accuracy of 1 if the model detected at least one of them. For the F-score, we
compared the results against all the vulnerabilities present in the code. MRR is an
evaluation metric used in information retrieval and recommendation systems, and is
particularly valuable in situations where the model provides multiple possible vul-
nerabilities, as it rewards models that rank the correct issues higher (Radev et al.,
2002). It checks the ranking of the correct result that the user is looking for. For
each query, the reverse order of the correct result, reciprocal rank, is taken and the
average is calculated for all queries. In other words, the earlier the correct answer is
reached, the higher the MRR. In our project, MRR was used to capture the ranking
quality of the vulnerabilities listed by the model. These evaluation metrics allowed
us to quantify the extent of information leakage and determine the effectiveness of

23

different obfuscation techniques in reducing detectability while preserving the LLM’s
ability to extract functionality.

4.3 Phase 2: Mitigating with Honeypots

Honeypots are deliberately inserted elements meant to mislead or divert the at-
tention of automated systems, traditionally used in cybersecurity to detect or trap
malicious actors (Spitzner, 2002). In the context of this work, we adapt the concept
of honeypots to the domain of code analysis with LLMs. Instead of deceiving human
attackers, our goal is to distract the LLM from real vulnerabilities by embedding
artificial or misleading vulnerabilities into the source code, along with additional
techniques, to divert attention away from actual security risks.

This approach leverages the attention-based architecture of LLMs, which assigns
higher weights to tokens or code regions it deems important during inference (Niu
et al., 2021). By injecting carefully designed, realistic-looking but ultimately irrel-
evant vulnerable patterns (honeypots), we aim to draw the model’s attention away
from the actual weaknesses present in the code.

Concretely, we implement honeypots by inserting real, functioning vulnerabilities,
additional CWE instances not originally present, into vulnerable code snippets as
decoys. These honeypots are designed to appear exploitable to LLMs but are se-
mantically irrelevant or isolated from critical code paths, ensuring they act as dis-
tractions rather than introducing actual risk. For example, an original snippet with
a buffer overflow vulnerability (CWE-120) may be augmented with a format string
vulnerability (CWE-134) or integer overflow (CWE-190), embedded in separate code
regions. These additional vulnerabilities are syntactically valid and semantically
exploitable, ensuring they represent genuine weaknesses rather than superficial ar-
tifacts.

The honeypotted code samples were generated by prompting an LLM to preserve
the original vulnerabilities while automatically injecting additional CWE-labeled
vulnerabilities. To further mislead the attention mechanism of the model, we incor-
porated several complementary obfuscation strategies, including misleading com-
ments, control-flow and data-flow obfuscation, identifier renaming, dead code in-
sertion, which showed successful results for decreasing the vulnerability leakage in
Phase 1 section 4.2, and increased complexity. These transformations were gener-

24

ated by the LLM and manually verified for correctness and functionality.

To evaluate the effectiveness of this honeypot approach, we tested three different
LLMs (GPT-4o, GPT-4o-mini, and LLaMA-4) by prompting them with both the
original and honeypotted code snippets. Each model was asked to identify actual
vulnerabilities with a new, separate client with cleared history and cache with the
same prompt used in Phase 1:

"You are a software security expert. Check the following code for security
issues. Only list issues that are actually in the code. If you list extra
CWE codes, you will be punished. If there are no issues, say ’no’. If
there are issues, list the relevant CWE numbers."

We measured accuracy by checking if the models correctly identified the original
vulnerability, comparing results across all 400 samples to quantify the impact of
honeypots in distracting the models and reducing vulnerability leakage.

Details of each obfuscation technique used in conjunction with honeypots are de-
scribed in the following section 4.3.1.

4.3.1 Techniques Applied with the Honeypots

To enhance the effectiveness of our honeypot strategy and further reduce vulnera-
bility leakage, we applied a set of other techniques like obfuscation alongside the
injection of extra CWE vulnerabilities. These techniques were designed to guide the
LLM’s attention away from the original vulnerability by altering the code’s surface
structure, semantic clarity, and token importance, without breaking functionality.
The selection of these specific obfuscation methods was informed by findings from
Phase 1 section 4.2.1, where several of them were shown to meaningfully reduce LLM
detection rates. All transformations were performed by LLMs in a semi-automated
fashion and manually verified to ensure the code remained executable and contained
both the original and the injected vulnerabilities.

• Misleading Comments: For each injected honeypot vulnerability, we added
explicitly misleading comments intended to draw attention to the artificial
flaws. These comments directly describe the extra vulnerabilities (e.g., “//
possible format string issue here”) to make them more salient to the LLM.

25

Our goal was to prime the model to focus on the added CWE rather than
the original vulnerability. Since prior work shows LLMs are heavily influenced
by code comments, this proved to be a lightweight but powerful method for
shifting their focus.

• Identifier Obfuscation: We applied identifier renaming to selectively obfus-
cate function and variable names associated with the original vulnerability,
while keeping the identifiers related to the honeypotted code clear and human-
readable. Unlike the previous phase, which used randomly generated names,
this study employed strategically neutral but ambiguous names to preserve
readability while masking semantic cues. As shown in earlier experiments,
identifier obfuscation effectively reduces vulnerability detection performance
in LLMs, likely due to interference with learned token associations.

• Control Flow Obfuscation: To obscure the logical execution path, we employed
classic control-flow obfuscation strategies, including loop restructuring, nested
conditionals, and opaque predicates. For example, we added dummy loops,
swapped conditional branches, and inserted always-true or always-false state-
ments such as if (2 + 2 == 4) to give the illusion of deeper logic. These
changes increase the syntactic distance between the original vulnerability and
the rest of the code, potentially diffusing model attention.

• Data Flow Obfuscation: We disrupted variable interactions through data-flow
obfuscation. This included the use of split variables, redundant calculations,
dummy intermediate variables, and unnecessary assignments. These modifica-
tions altered how data propagated through the code, obfuscating the semantic
context around the vulnerable operations and reducing the LLM’s ability to
infer the original flaw from variable behavior or value dependencies.

• Cyclomatic Complexity Increase: As part of the broader obfuscation strategy,
we also increased the cyclomatic complexity of the honeypotted versions. This
was achieved by introducing additional branching, nesting, and redundant
control structures. The goal was to make the code structurally more complex,
increasing the cognitive load on the model and introducing noise that could
reduce its ability to accurately detect the original vulnerabilities.

26

4.3.2 Cyclomatic Complexity

To investigate whether the structural complexity of source code affects the ability
of LLMs to detect real vulnerabilities in the presence of honeypots, we conducted a
dedicated analysis using cyclomatic complexity as a quantitative measure.

Cyclomatic complexity represents the number of independent execution paths in a
program and is influenced by control flow constructs such as conditionals, loops, and
function calls. Rather than measuring the complexity of the honeypotted versions,
which may be artificially inflated due to inserted misleading structures, we computed
the cyclomatic complexity of the original, pre-honeypotted code. This ensured that
the metric reflected the inherent logical complexity of the functional code.

The complexity scores were calculated using a static analysis tool prior to any LLM-
generated manipulation. Once the honeypots were added and detection results were
obtained, we divided the honeypotted samples into two groups: those where the
LLM successfully identified the original vulnerability and those where it failed to
do so. We then compared the cyclomatic complexity distributions between these
groups.

This analysis aimed to reveal whether higher structural complexity correlates with
increased detection failure in LLMs, suggesting that models may be more susceptible
to distraction when processing code with intricate control flow.

4.3.3 Evaluating Technique Combinations with Honeypots

To better understand which techniques are most effective at diverting LLM attention
when combined with honeypot vulnerabilities, we conducted a targeted evaluation
of selected strategies. While LLM-generated honeypots applied many transforma-
tions simultaneously—often producing effective but overly complex and unrealistic
samples—our goal here was to disentangle this process and analyze the contribution
of each technique, both in isolation and in combination.

All variants in this analysis were based on code snippets with a single inserted
honeypot vulnerability. These honeypots were added manually to maintain consis-
tency across samples and to avoid LLM prompt artifacts. To simulate realistic and
controlled scenarios, we then selectively applied a subset of techniques previously
described (e.g., misleading comments, identifier renaming, control and data flow

27

obfuscation, and structural complexity increases).

The following configurations were tested, where honeypot represents the additional
vulnerabilities:

• Honeypot and Misleading Comment

• Honeypot and Identifier Renaming

• Honeypot and Control Flow Obfuscation

• Honeypot and Data Flow Obfuscation

• Honeypot and Cyclomatic Complexity Increase

• Honeypot, Cyclomatic Complexity Increase and Misleading Comment

• Honeypot, Misleading Comment and Control Flow Obfuscation

• Honeypot, Cyclomatic Complexity Increase, Misleading Comment and Control
Flow Obfuscation

For each configuration, we measured LLM vulnerability detection accuracy across
400 code samples, using the same prompt, considerations, and scoring method as in
earlier stages. The same three LLM models GPT-4o, GPT-4o-mini, and LLaMA-4
were used for evaluation. This allowed us to compare the performance impact of
each technique or combination when used alongside honeypots.

Through this analysis, we aimed to identify the most efficient and minimally inva-
sive ways to mislead LLM-based vulnerability detectors—without relying on heavy,
automated rewriting.

4.4 Functionality Understanding Evaluation

To assess whether our interventions interfered with the LLM’s ability to understand
code behavior, we conducted a functionality understanding evaluation using the
following three-step method after each phase.

This evaluation measures how well the LLM preserves functional comprehension
after transformations such as obfuscation, honeypot insertion, and structural mod-
ification. Although our techniques aim to obscure vulnerabilities, it is important

28

that they do not disrupt the functional semantics of the code as understood by the
model.

The evaluation was carried out as follows:

1.1 Original Explanation Generation: Each original (unmodified) code snippet
was submitted to the LLM with a prompt requesting a functional explanation.
This explanation was saved as the reference for comparison.

1.2 Obfuscated/Honeypotted Explanation Generation: The transformed version
of the same code was sent to a fresh LLM session—ensuring no shared context
with the first step—and the same prompt was used to generate an explanation
of the modified code’s functionality.

1.3 Similarity Scoring: In a new, independent session, the LLM was presented
with both explanations (original and modified) and asked to rate how well the
original code’s functionality is preserved in the modified code’s explanation
on a scale from 0 to 5. A score of 5 indicated that the functional description
of the modified code closely matched that of the original, while a score of 0
indicated no meaningful similarity.

This scoring reflects how much the applied transformations disrupted the LLM’s
understanding of the code’s intended functionality. High similarity scores suggest
strong functionality retention, whereas lower scores point to potential semantic dis-
tortion introduced by the transformations.

By applying this process consistently across our dataset, we were able to evaluate
the trade-off between vulnerability obfuscation and semantic clarity—an essential
aspect for scenarios where the LLM is expected to reason about program behavior
post-transformation.

29

5. RESULTS

5.1 Phase 1: Mitigating with Obfuscation

5.1.1 Vulnerability Leakage

The vulnerability leakage of the LLM in detecting vulnerabilities was measured
across different obfuscation techniques using various metrics with ChatGPT-4o mini.
The results indicate that obfuscation techniques generally reduce the model’s ability
to detect vulnerabilities, though the degree of reduction varies depending on the type
of obfuscation and the limitations placed on the model’s output.

5.1.1.1 Accuracy without Output Limitation

The accuracy of the LLM in detecting vulnerabilities without any output limitations
was calculated for each obfuscation technique. As expected, no obfuscation resulted
in the highest accuracy of 0.6363 which is consistent with previous work Yıldırım
et al. (2024). Obfuscation techniques such as comment, string, and identifier obfus-
cation showed a minor reduction in detection capability, indicating moderate effec-
tiveness in reducing detectability. More complex obfuscation methods like encoding,
control flow, and data flow obfuscation led to a significant reduction in accuracy.
Among all the techniques, dead code obfuscation was the most effective in reducing
vulnerability detection, resulting in the lowest accuracy of 0.5189.

30

Table 5.1 Accuracy of vulnerability detection for each obfuscation technique

Obfuscations Accuracy
No Obfuscation 0.6363
Comment Obfuscation 0.6032
String Obfuscation 0.6030
Identifier Obfuscation 0.5992
Encoded 0.5449
Obfuscated by LLM 0.6032
Control Flow Obfuscation 0.5598
Data Flow Obfuscation 0.5516
Dead Code Insertion 0.5189

After evaluating accuracy, we further analyzed the F-score to gain a deeper under-
standing of the LLM’s performance in detecting vulnerabilities. Unlike accuracy,
which only considers correct predictions, the F-score accounts for both precision
and recall, making it particularly relevant given that the LLM often identified more
CWEs than necessary, sometimes detecting multiple potential vulnerabilities in a
single instance. As shown in Table 5.2, the F-scores were relatively low across all
obfuscation techniques, reinforcing our observation that the model produced a sig-
nificant number of false positives. While no obfuscation yielded the highest F-score
(0.2065), obfuscation techniques like encoding (0.1640) and control flow obfuscation
(0.1786) significantly lowered the model’s effectiveness. Dead code insertion, which
had the most substantial impact on accuracy, also resulted in one of the lower F-
scores (0.1799), further emphasizing its effectiveness in concealing vulnerabilities.
These results highlighted a critical limitation in the LLM’s detection capability:
while it could identify vulnerabilities, it often did so imprecisely, leading us to ex-
plore methods to refine its outputs. Given the prevalence of false positives, we
decided to impose output limitations, restricting the number of reported vulnera-
bilities to improve precision and overall detection quality.

Table 5.2 F-score for vulnerability detection across different obfuscation techniques

Obfuscation F-score
No Obfuscation 0.2065
Comment Obfuscation 0.2058
String Obfuscation 0.2017
Identifier Obfuscation 0.1883
Encoded 0.1640
Obfuscated by LLM 0.1973
Control Flow Obfuscation 0.1786
Data Flow Obfuscation 0.1823
Dead Code Insertion 0.1799

31

5.1.1.2 Accuracy with Output Limitations

The accuracy of vulnerability detection was also evaluated with different output
limitations, specifically limiting the number of detected vulnerabilities to 1, 3, 5, 7,
and 10. The results show that as the output limit increased, the accuracy gener-
ally improved. For example, in the case of no obfuscation, the accuracy increased
from 0.4867 for a 1-list limit to 0.7199 for a 10-list limit. Obfuscation techniques,
such as comment and string obfuscation, resulted in similar trends, with increased
accuracy when the output limitation was higher. However, dead code obfuscation
still showed the lowest accuracy across all limits, emphasizing its effectiveness in
reducing vulnerability detection.

Table 5.3 Accuracy of vulnerability detection with different prompt limitations

Obfuscation Max 1 Max 3 Max 5 Max 7 Max 10
No Obfuscation 0.4867 0.6329 0.6443 0.6978 0.7199
Comment Obf 0.4732 0.5988 0.6201 0.6452 0.6783
String Obf 0.4511 0.6025 0.6092 0.6782 0.6782
Identifier Obf 0.4322 0.6191 0.6223 0.6554 0.6691
Encoded 0.4016 0.5133 0.5559 0.5957 0.6543
Obf by LLM 0.4415 0.6250 0.6064 0.6489 0.6941
Control Flow Obf 0.3830 0.5479 0.5957 0.6064 0.6729
Data Flow Obf 0.4016 0.5399 0.5532 0.6090 0.6543
Dead Code Ins 0.3245 0.5186 0.5452 0.5824 0.6197

5.1.1.3 Mean Reciprocal Rank (MRR)

To further evaluate the LLM’s ability to rank vulnerabilities accurately, we calcu-
lated the MRR for each obfuscation technique with different output limitations.
The MRR values were lower across the board compared to accuracy, reflecting the
reduced performance of the LLM in ranking the vulnerabilities. However, as with ac-
curacy, the MRR generally improved as the output limit increased. For instance, no
obfuscation resulted in an MRR of 0.4867 for the 1-list limit, improving to 0.5017 for
the 10-list limit. Again, dead code obfuscation showed the lowest MRR, indicating
its effectiveness in obfuscating vulnerabilities.

The results for both accuracy and MRR highlight that obfuscation techniques gen-
erally reduce the LLM’s ability to detect and rank vulnerabilities, with dead code

32

Table 5.4 Mean Reciprocal Rank (MRR) for vulnerability detection with different
prompt limitations

Obfuscation Max 1 Max 3 Max 5 Max 7 Max 10
No Obfuscation 0.4867 0.5532 0.5199 0.5296 0.5017
Comment Obf 0.4732 0.5271 0.4991 0.4912 0.4880
String Obf 0.4511 0.5405 0.4961 0.5083 0.4817
Identifier Obf 0.4322 0.4867 0.4950 0.4806 0.4983
Encoded 0.4016 0.4581 0.4435 0.4433 0.4710
Obf by LLM 0.4415 0.5335 0.4945 0.4987 0.4806
Control Flow Obf 0.3830 0.4741 0.4970 0.4673 0.4604
Data Flow Obf 0.4016 0.4756 0.4336 0.4636 0.4378
Dead Code Ins 0.3245 0.4446 0.4426 0.4267 0.4358

insertion being the most effective technique in reducing detectability. However,
limiting the number of vulnerabilities detected by the LLM generally leads to an
improvement in performance, particularly for techniques that would otherwise be
harder to detect.

5.1.2 Functionality Retention

To assess how well obfuscation techniques preserve the LLM’s ability to extract
functionality, we evaluated the functional similarity between original and obfuscated
code. The results indicate that while some techniques maintain high comprehensi-
bility of the functionality, others significantly alter the code’s behavior.

Table 5.5 Functionality retention scores for each obfuscation technique

Obfuscations Score
No Obfuscation -
Comment Obfuscation 4.8840
String Obfuscation 4.5634
Identifier Obfuscation 4.7609
Encoded 1.2553
Obfuscated by LLM 3.3165
Control Flow Obfuscation 4.0984
Data Flow Obfuscation 3.8431
Dead Code Insertion 3.5957

Comment obfuscation and identifier obfuscation showed minimal impact and pre-
served comprehensibility of functionality well. String obfuscation resulted in a

33

slightly lower but still high score. Control Flow and Data Flow Obfuscation had
moderate effects. Dead Code Insertion further reduced functionality retention. Ob-
fuscated by LLM impacted comprehensibility of functionality more significantly.
Encoding had the most severe effect, resulting in the lowest comprehensibility of
functionality retention.

5.2 Phase 2: Mitigating with Honeypots

5.2.1 Effectiveness of LLM-Generated Honeypots

To evaluate the impact of LLM-generated honeypots on vulnerability leakage, we
compared the accuracy of LLMs in identifying known CWEs before and after honey-
pot injection. To establish a baseline, we first evaluated the ability of GPT-4o-mini
to correctly identify vulnerabilities in the original code samples in Phase 1. In Phase
2, we extended this evaluation to include GPT-4o and LLaMA-4, using the same
methodology. The detection accuracy was measured as the proportion of true CWE
matches.

The results for the baseline are presented in Table 1 under the “Accuracy (Original)”
column. LLaMA achieved the highest baseline accuracy of 0.678, closely followed
by GPT-4o, while GPT-4o-mini showed a lower detection capability at 0.636. These
scores indicate that in the absence of obfuscation or honeypots, LLMs can effectively
detect known vulnerabilities with moderate to high accuracy.

The results also show that inserting LLM-generated honeypots led to a substantial
drop in detection performance across all models. For instance, accuracy for GPT-4o-
mini dropped from 0.636 to 0.027, and for GPT-4o from 0.668 to 0.149. Similarly,
LLaMA’s accuracy decreased from baseline levels, 0.678 to 0.205 after honeypot
insertion.

These results confirm that LLM-generated honeypots are highly effective at mis-
leading models, often causing them to misidentify artificial vulnerabilities while
overlooking real ones. Notably, GPT-4o-mini was the most impacted, with detec-
tion accuracy dropping by over 60 % points, while GPT-4o and LLaMA retained

34

Table 5.6 Accuracy comparison of vulnerability leakage

Model Original Code Honeypot Injected Code
GPT-4o-mini 0.636 0.027
GPT-4o 0.668 0.149
LLaMa 0.678 0.205

slightly higher performance under honeypot conditions.

5.2.2 Functionality Retention of LLM-Generated Honeypots

To evaluate how well LLMs understand the functional behavior of honeypotted code,
we conducted a functionality understanding assessment. Each model was given both
the original and honeypotted versions of a code snippet and asked whether the
two versions perform the same task. The responses were rated on a scale from 0
(completely incorrect) to 5 (fully accurate functional equivalence).

The results, presented in Table 5.7, show that all three models generally maintained a
strong understanding of code functionality despite the presence of honeypots. GPT-
4o-mini and GPT-4o achieved average scores of 4.13 and 4.10, respectively. LLaMA
performed the best, with an average score of 4.61. These scores indicate that the
added honeypots did not significantly impair the LLMs’ ability to comprehend what
the code is doing.

This suggests that while honeypots reduced vulnerability leakage, they did not cause
confusion about the overall functionality for most LLMs.

Table 5.7 Functionality retention scores for honeypotted codes

Model Mean Functionality Score
GPT-4o-mini 4.13
GPT-4o 4.10
LLaMa 4.61

These scores indicate that the LLM-generated honeypotted versions largely retained
the intended behavior of the original code.

35

5.2.3 Cyclomatic Complexity and Effectiveness of Honeypot Obfuscation

To examine whether the structural complexity of code influences the effectiveness
of honeypot-based defenses, we conducted a cyclomatic complexity analysis across
all tested models. Cyclomatic complexity serves as a proxy for logical branching
and control flow intricacy, both of which can affect an LLM’s ability to parse and
reason about code behavior. For this analysis, we calculated the average cyclomatic
complexity of code samples that were successfully obfuscated by honeypots (i.e., the
model failed to detect real vulnerabilities, Accuracy = 0) and those where the model
remained accurate (Accuracy = 1).

Table 5.8 Cyclomatic Complexity means according to accuracy

Accuracy GPT-4o-mini GPT-4o LLaMa-4

accuracy 0 6.19 6.14 6.32
accuracy 1 4.71 6.35 5.72

The analysis reveals a compelling model-dependent relationship between code com-
plexity and LLM vulnerability detection performance. For GPT-4o-mini and
LLaMA, there is a clear pattern: the average cyclomatic complexity of samples
where honeypots succeeded is notably higher than that of correctly identified cases.
Specifically, GPT-4o-mini exhibits a mean complexity of 6.19 for failed detections
and 4.71 for successful ones, while LLaMA follows a similar trend (6.32 vs. 5.72).
These results suggest that higher structural complexity may play a role in amplify-
ing the distracting effects of honeypots, potentially overwhelming the LLM’s internal
reasoning pathways or reducing its confidence in identifying genuine vulnerabilities.

In contrast, GPT-4o shows no such sensitivity. The difference in average complexity
between misclassified and correctly classified samples is minimal (6.14 vs. 6.35),
implying that this model maintains a stable detection performance regardless of the
underlying control flow intricacy. This robustness may be attributed to stronger
internal representations, enhanced attention mechanisms, or improved pretraining
on complex code. The implication is important: while complexity-boosting obfusca-
tion strategies may work against smaller or less robust models, they are less effective
when facing top-tier LLMs like GPT-4o.

To better visualize these dynamics, we present boxplots (Figure 5.1, Figure 5.2, and
Figure 5.3) illustrating the spread and distribution of cyclomatic complexity num-
bers (CCN) across both detection categories (still leaked: accuracy=1; not leaked:

36

accuracy=0) for each model. These visualizations reinforce the trends observed in
the numerical averages. For both GPT-4o-mini and LLaMA, the boxplots show a
skew toward higher complexity values in the failed detection group, with wider in-
terquartile ranges and more upper outliers. GPT-4o’s boxplot, in contrast, shows a
relatively balanced distribution across both groups, supporting the hypothesis that
its vulnerability detection is less sensitive to structural obfuscation.

Figure 5.1 Boxplot for ChatGPT-4o-mini

Figure 5.2 Boxplot for ChatGPT-4o

37

Figure 5.3 Boxplot for LLaMa-4

Collectively, this analysis indicates that cyclomatic complexity can be an effective
factor in misleading certain LLMs, particularly when combined with honeypot injec-
tion. However, the results also caution against one-size-fits-all defenses: LLMs vary
in their sensitivity to control-flow intricacy, and defenses effective against one model
may be less effective on another. These findings motivate further work into model-
specific obfuscation tuning and suggest that complexity-aware defenses should be
strategically deployed depending on the target LLM’s architecture and capabilities.

5.2.4 Evaluation Of Technique Combinations with Honeypots

To determine which technique combinations most effectively reduce vulnerability
leakage, we evaluated the performance of three LLMs on eight manually crafted
honeypot variants. Each variant applies our core honeypots with a specific set
of complementary techniques, such as misleading comments, identifier changes, or
control flow alterations (see Section 4.3.1).

Table5.9 reports the mean vulnerability leakage accuracy across 400 samples for
each combination. The results are interpreted relative to the baseline established
by LLM-generated honeypots (Table5.6).

For GPT-4o-mini, the combinations Hp + Misleading Comment and Hp + Complex-

38

Table 5.9 Accuracy of vulnerability leakage for technical combinations with honeypot

Model GPT-4o-mini GPT-4o LLaMa
Hp + Misleading Comment 0.029 0.143 0.112
Hp + Identifier Renaming 0.035 0.212 0.162
Hp + Control Flow Obf 0.032 0.21 0.194
Hp + Data Flow Obf 0.043 0.170 0.212
Hp + Cyclomatic Complexity Increase 0.029 0.154 0.146
Hp + Cyclomatic Complexity Increase + Mis-
leading Comment

0.027 0.176 0.096

Hp + Misleading Comment + Control Flow
Obf

0.032 0.152 0.162

Hp + Cyclomatic Complexity Increase + Mis-
leading Comment + Control Flow Obf

0.045 0.172 0.148

ity + Comment reduced leakage to 0.028 and 0.030 respectively, nearly matching
the LLM-generated benchmark of 0.0266. In contrast, other combinations—such
as Hp + Data Flow Obf or Hp + Control Flow—were less effective for this model,
yielding higher leakage.

For ChatGPT-4o, the addition of honeypots significantly reduced vulnerability leak-
age across all combinations. Among these, the most effective techniques were rela-
tively simple: pairing the honeypot with misleading comments (0.143), cyclomatic
complexity increase (0.154), and misleading comments combined with control flow
obfuscation (0.152). These combinations achieved leakage rates comparable to the
LLM-generated honeypots (0.1489), indicating that well-targeted distractions—like
misleading narrative cues or slight complexity boosts—can effectively impair the
model’s ability to extract vulnerabilities.

In the case of LLaMA, we observed a similar trend. The LLM-generated honeypot
resulted in a leakage score of 0.2048, but multiple combinations achieved even better
results. Notably, honeypot with misleading comments (0.112) and honeypot with
cyclomatic complexity increase plus misleading comments (0.096) led to the greatest
reduction in leakage. These findings suggest that LLaMA is particularly susceptible
to semantically disruptive elements like contradictory or misleading annotations,
especially when combined with moderate structural changes.

These findings highlight that selective combinations of techniques, particularly those
involving misleading comments or added structural complexity, can approximate the
effectiveness of LLM-generated honeypots for some models. This enables a more
controlled and interpretable design of defensive code transformations.

39

5.2.5 Functionality Retention of Technique Combinations with Honey-

pots

To determine whether combining honeypots with additional obfuscation techniques
affects LLMs’ understanding of program behavior, we conducted the functionality
assessment that was described earlier in Section 4.4. Each LLM was asked whether
an obfuscated and honeypotted version of a code snippet performed the same task
as its original version, and responses were scored on a 0–5 scale for the accuracy of
functional understanding.

Table 5.10 Functionality retention scores for honeypotted codes with each technical
combination

Model GPT-4o-mini GPT-4o LLaMa-4

Hp + Misleading Comment 4.75 4.56 4.96
Hp + Identifier Renaming 4.44 4.36 4.81
Hp + Control Flow Obf 4.22 4.29 4.60
Hp + Data Flow Obf 4.27 4.31 4.62
Hp + Cyclomatic Complexity Increase 4.28 4.24 4.73
Hp + Cyclomatic Complexity Increase +
Mis-leading Comment

4.56 4.53 4.75

Hp + Misleading Comment + Control Flow
Obf

4.42 4.34 4.64

Hp + Cyclomatic Complexity Increase +
Mis-leading Comment + Control Flow Obf

4.32 4.31 4.79

As shown in Table 5.10, functionality retention remained consistently high across all
combinations and models. For GPT-4o-mini, the highest-scoring combination was
Hp + Misleading Comment (4.75), followed closely by Hp + Cyclomatic Complexity
Increase + Misleading Comment (4.56). GPT-4o exhibited similarly strong perfor-
mance, with top scores for the same combinations (4.56 and 4.53, respectively).
LLaMA once again outperformed the other models, achieving near-perfect func-
tionality scores; Hp + Misleading Comment reached 4.96, and most combinations
exceeded 4.6.

These results indicate that even when honeypots are combined with more complex
transformations such as control flow or data flow obfuscation, LLMs largely retain
the ability to correctly interpret the code’s functionality. In particular, combinations
that include misleading comments or increased cyclomatic complexity appear to

40

be especially effective at preserving functional clarity while still offering privacy
protection through reduced vulnerability leakage.

41

6. DISCUSSION

Our findings reveal both the potential risks and limitations of LLM-based vulner-
ability detection and the effectiveness of mitigation strategies across two phases of
experimentation. While LLMs like GPT-4o-mini, GPT-4o, and LLaMA demon-
strate considerable capacity to identify security vulnerabilities in source code, their
accuracy is significantly impacted by both traditional obfuscation techniques and the
introduction of honeypot vulnerabilities combined with misleading transformations.

In Phase 1, basic obfuscation methods such as comment, string, and identifier ob-
fuscation showed only a moderate effect on reducing information leakage. These
techniques slightly lowered detection accuracy, suggesting that LLMs still rely on
the structural patterns of code rather than just textual cues. More sophisticated
obfuscation techniques, such as control flow and data flow obfuscation, were more
effective in hindering vulnerability detection. By altering how code executes while
keeping its functionality intact, these methods disrupted the model’s ability to recog-
nize known vulnerability patterns. However, the most effective technique in reducing
vulnerability detection was dead code insertion, which significantly decreased accu-
racy. This likely resulted from the introduction of misleading logic that confused
the model’s pattern recognition.

Encoding the entire code in Base64 proved to be highly disruptive to vulnerability
detection, as expected. This aligns with the known limitations of LLMs (Wei, Hagh-
talab & Steinhardt, 2023) when processing non-natural or encoded input formats,
which inhibit their ability to parse and semantically interpret code. However, Base64
encoding also severely impacted functionality retention, making it impractical for
real-world use. Similarly, LLM-based obfuscation showed mixed results—sometimes
improving security but occasionally making vulnerabilities more recognizable. This
suggests that LLMs may have an inherent understanding of certain obfuscation pat-
terns, especially those generated by other models.

Beyond detection accuracy, functionality retention was a critical factor in Phase 1.
While simple transformations like comment and identifier obfuscation preserved the

42

LLM’s ability to extract functionality almost entirely, techniques such as encoding
and deep structural obfuscations degraded semantic understanding. These results
emphasize the delicate trade-off between obfuscation for security and maintaining
the code’s original behavior.

Building on these insights, Phase 2 introduced honeypot vulnerabilities combined
with multiple misleading strategies including misleading comments, identifier re-
naming, control flow obfuscation, data flow obfuscation which showed successful
results in phase 1, and intentional increases in cyclomatic complexity to system-
atically mislead LLMs. Honeypots were highly effective across all tested models.
By embedding decoy vulnerabilities that mimic real-world patterns, we succeeded
in diverting the models’ attention away from actual weaknesses. The effectiveness
of these strategies was particularly notable for GPT-4o-mini and LLaMA, where
accuracy dropped by over 60 percentage points. However, GPT-4o demonstrated
greater resistance to honeypots, suggesting that larger and more advanced models
may require more sophisticated or tailored deception strategies.

Among all Phase 2 techniques, misleading comments placed around honeypots
emerged as the most consistently successful approach. This technique leverages
LLMs’ sensitivity to natural language context, subtly steering attention without
altering code behavior. Similarly, pairing honeypots with increased cyclomatic
complexity proved highly effective against models like GPT-4o-mini and LLaMA.
These findings suggest that combining semantic (comment-based) and structural
(complexity-based) distractions creates more convincing decoys.

The success of these approaches likely stems from how LLMs parse and prioritize
code context. Misleading comments exploit the models’ weighting of natural lan-
guage cues, guiding them toward irrelevant sections of code. Honeypots introduce
familiar patterns of vulnerability, making it harder for models to distinguish be-
tween noise and signal. Increasing cyclomatic complexity further disrupts reasoning,
potentially overwhelming internal representations or reducing model confidence in
identifying genuine flaws.

Functionality retention remained strong throughout Phase 2. Even for structurally
disruptive methods like control flow modification, most honeypotted samples pre-
served semantic fidelity as assessed through LLM-generated functional explanations.
This indicates that our deceptive techniques mislead models without compromising
intended program behavior. Nonetheless, since functionality evaluation relied on
LLM-based summaries rather than dynamic testing, subtle behavioral changes may
have gone undetected.

43

6.1 Limitations and Ethical Implications

Despite promising results, several limitations should be acknowledged. Our exper-
iments relied exclusively on static LLM analysis without ground-truth execution
results. Functionality assessments based on model-generated explanations, while
scalable, may miss edge cases or runtime-specific behaviors. Future work incorpo-
rating dynamic or hybrid analysis would strengthen the validity of these findings.

Moreover, the models evaluated in this study—GPT-4o, GPT-4o-mini, and
LLaMA—are rapidly evolving. Newer architectures or fine-tuned systems may ex-
hibit different responses to obfuscation and honeypot techniques. We also did not
explore jailbreak prompts, adversarial training, or interactive use cases, which could
further influence LLM behavior in real-world environments.

There are also important ethical considerations. While developers may adopt honey-
pots and obfuscations to guard sensitive code against unintended disclosure through
LLMs, there is a dual-use risk. Malicious actors could use similar techniques to
hide vulnerabilities from AI-assisted auditing tools. As LLMs become increasingly
integrated into software development workflows, it is critical for tool developers and
security researchers to address these potential blind spots through transparency,
robust auditing practices, and the development of deception-resilient models.

44

7. CONCLUSION

As LLMs become increasingly integrated into secure software development and vul-
nerability auditing workflows, understanding both their capabilities and their blind
spots is critical. This thesis provides a comprehensive examination of how LLMs
can inadvertently expose vulnerabilities in source code and how such leakage can
be mitigated through two complementary defense strategies: traditional obfuscation
and deception-based honeypot techniques.

In Phase 1, we demonstrated that LLMs are capable of identifying security flaws
in source code without explicit prompting, highlighting a novel form of information
leakage. By systematically applying a range of obfuscation techniques—including
comment removal, string encoding, identifier renaming, control and data flow trans-
formations, and dead code insertion—to a diverse dataset of 400 vulnerable code
snippets spanning 51 CWE types, we evaluated which methods most effectively hin-
der the LLM’s ability to infer security weaknesses. Our results showed that dead
code insertion and advanced control flow obfuscation were among the most effective
defenses. However, extreme techniques such as full encoding, while highly disruptive
to vulnerability detection, severely impaired the LLM’s ability to extract and under-
stand functionality, rendering them impractical for real-world use. This highlights
a crucial trade-off: obfuscation can help reduce unintended vulnerability exposure,
but overly aggressive transformations risk compromising the legitimate utility of
LLMs for development tasks such as refactoring and explanation.

Building on these insights, Phase 2 introduced a novel defense paradigm by embed-
ding honeypot vulnerabilities—carefully crafted decoy weaknesses—into source code
to mislead LLMs and distract their attention from genuine flaws. When combined
with additional misleading strategies which demonstrated their success in Phase 1,
such as misleading comments, control flow obfuscation, and deliberate increases in
cyclomatic complexity, honeypots significantly reduced vulnerability detection ac-
curacy across all tested models (GPT-4o, GPT-4o-mini, and LLaMA). Among these
strategies, misleading comments emerged as particularly robust and model-agnostic,
exploiting the language-sensitive reasoning of LLMs with minimal code modification.

45

Our findings also underscore the role of code complexity as a modulating factor: very
simple code may resist deception, while more complex structures can amplify the
effectiveness of misleading signals.

Importantly, both phases of this study emphasized functionality preservation. While
obfuscation and honeypot techniques altered code structure and semantics to vary-
ing degrees, functionality retention evaluations suggest that the transformed code
maintained its intended behavior in most cases. Nonetheless, we acknowledge that
our functionality assessments were based on LLM-generated summaries, and further
validation through dynamic testing remains an important area for future work.

These findings offer valuable insights for developers seeking to protect sensitive code
from unintended disclosure when using AI-assisted tools. Lightweight obfuscation
and strategically placed honeypots could be incorporated into integrated develop-
ment environments (IDEs) or continuous integration (CI) pipelines as pre-processing
steps, safeguarding software against over-disclosure of security weaknesses to third-
party LLM systems.

In terms of scientific contribution, this thesis introduces a high-diversity dataset
spanning 51 CWE types, evaluates LLM behavior across multiple obfuscation and
deception techniques, and provides empirical evidence on the effectiveness of these
methods in reducing vulnerability leakage. By highlighting both the strengths and
weaknesses of current LLMs, this work offers actionable insights for developers, secu-
rity practitioners, and future model designers seeking to balance usability, security,
and resilience in AI-supported software development.

46

BIBLIOGRAPHY

Adam, C., Bulut, M. F., Sow, D., Ocepek, S., Bedell, C., & Ngweta, L. (2022).
Attack techniques and threat identification for vulnerabilities.

Bakhshandeh, A., Keramatfar, A., Norouzi, A., & Chekidehkhoun, M. (2023). Using
chatgpt as a static application security testing tool.

Bhandari, G., Naseer, A., & Moonen, L. (2021). Cvefixes: automated collection of
vulnerabilities and their fixes from open-source software. (pp. 30–39).

Boi, B., Esposito, C., & Lee, S. (2024). Smart contract vulnerability detection: The
role of large language model (llm). 24 (2), 19–29.

Brama, H., Dery, L., & Grinshpoun, T. (2022). Evaluation of neural networks
defenses and attacks using ndcg and reciprocal rank metrics. Int. J. Inf.
Secur., 22 (2), 525–540.

Carlini, N., Tramèr, F., Wallace, E., Jagielski, M., Herbert-Voss, A., Lee, K.,
Roberts, A., Brown, T., Song, D., Erlingsson, Ú., Oprea, A., & Raffel, C.
(2021). Extracting training data from large language models. In 30th USENIX
Security Symposium (USENIX Security 21), (pp. 2633–2650). USENIX Asso-
ciation.

Ding, H., Liu, Y., Piao, X., Song, H., & Ji, Z. (2025). Smartguard: An llm-enhanced
framework for smart contract vulnerability detection. Expert Systems with
Applications, 269, 126479.

Esposito, M., Janes, A., Kilamo, T., & Lenarduzzi, V. (2024). Early career devel-
opers’ perceptions of code understandability. a study of complexity metrics.

Geiping, J., Stein, A., Shu, M., Saifullah, K., Wen, Y., & Goldstein, T. (2024).
Coercing llms to do and reveal (almost) anything.

Guo, Y., Patsakis, C., Hu, Q., Tang, Q., & Casino, F. (2024). Outside the comfort
zone: Analysing llm capabilities in software vulnerability detection. In Garcia-
Alfaro, J., Kozik, R., Choraś, M., & Katsikas, S. (Eds.), Computer Security –
ESORICS 2024, (pp. 271–289)., Cham. Springer Nature Switzerland.

Lakshmanan, R. (2025). Zero-click ai vulnerability exposes microsoft 365 copilot
data without user interaction. The Hacker News.

Lanka, P., Gupta, K., & Varol, C. (2024). Intelligent threat detection—ai-driven
analysis of honeypot data to counter cyber threats. Electronics, 13 (13).

Li, Q., Wen, J., & Jin, H. (2024). Governing open vocabulary data leaks using
an edge llm through programming by example. Proc. ACM Interact. Mob.
Wearable Ubiquitous Technol., 8 (4).

Li, Y., Li, X., Wu, H., Xu, M., Zhang, Y., Cheng, X., Xu, F., & Zhong, S. (2025).
Everything you wanted to know about llm-based vulnerability detection but
were afraid to ask.

Li, Z., Dutta, S., & Naik, M. (2025). IRIS: LLM-assisted static analysis for detect-
ing security vulnerabilities. In The Thirteenth International Conference on
Learning Representations.

Lin, Y., Wan, C., Fang, Y., & Gu, X. (2024). Codecipher: Learning to obfuscate
source code against llms.

Lu, G., Ju, X., Chen, X., Pei, W., & Cai, Z. (2024). Grace: Empowering llm-based
software vulnerability detection with graph structure and in-context learning.

47

Journal of Systems and Software, 212, 112031.
Mai, P., Yang, Y., Yan, R., Ye, R., & Pang, Y. (2024). Confusionprompt: Practical

private inference for online large language models.
McCabe, T. (1976). A complexity measure. IEEE Transactions on Software Engi-

neering, SE-2 (4), 308–320.
McCabe Jr., T. (2008). Software quality metrics to identify risk. Department of

Homeland Security Software Assurance Working Group. Presented on January
31, 2008; Last edited for content in Nov. 2008.

MetaAI (2025). Meta-llama LLaMA-4-Scout-17B-16E-Instruct. https://
huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct. Hugging
Face. Accessed: June 17, 2025.

MITRE (2024). 2024 cwe top 25 most dangerous software weaknesses. https://cwe
.mitre.org/top25/archive/2024/2024_cwe_top25.html. Common Weak-
ness Enumeration (CWE). [Online]. Accessed: July 12, 2025.

Mohamed, A., Assi, M., & Guizani, M. (2025). The impact of llm-assistants on
software developer productivity: A systematic literature review.

Mohseni, S., Mohammadi, S., Tilwani, D., Saxena, Y., Ndawula, G., Vema, S.,
Raff, E., & Gaur, M. (2025). Can llms obfuscate code? a systematic analysis
of large language models into assembly code obfuscation. Proceedings of the
AAAI Conference on Artificial Intelligence, 39, 24893–24901.

Montalbano, E. (2024). Google ai platform bugs leak proprietary enterprise llms.
Dark Reading.

Nam, D., Macvean, A., Hellendoorn, V., Vasilescu, B., & Myers, B. (2024). Using
an llm to help with code understanding. In Proceedings of the IEEE/ACM
46th International Conference on Software Engineering, ICSE ’24, New York,
NY, USA. Association for Computing Machinery.

Niu, Z., Zhong, G., & Yu, H. (2021). A review on the attention mechanism of deep
learning. Neurocomputing, 452, 48–62.

Open Source Security Foundation (OpenSSF) (2025). The best practices for oss de-
velopers. https://github.com/ossf/wg-best-practices-os-developers.
[Online]. Accessed: July 12, 2025.

OpenAI (2022). Chatgpt. https://platform.openai.com/docs/api-reference/
streaming. OpenAI API Reference. [Online].

Otal, H. T. & Canbaz, M. A. (2024). Llm honeypot: Leveraging large language
models as advanced interactive honeypot systems. In 2024 IEEE Conference
on Communications and Network Security (CNS), (pp. 1–6). IEEE.

OWASP (2024). Data leakage - owasp top 10 for large language model ap-
plications. https://owasp.org/www-project-top-10-for-large-language
-model-applications/Archive/0_1_vulns/Data_Leakage.html.

Paganini, P. (2023). Samsung data leak via chatgpt — employees shared confidential
info.

Pape, D., Mavali, S., Eisenhofer, T., & Schönherr, L. (2025). Prompt obfuscation
for large language models.

Radev, D. R., Qi, H., Wu, H., & Fan, W. (2002). Evaluating web-based question
answering systems. In González Rodríguez, M. & Suarez Araujo, C. P. (Eds.),
Proceedings of the Third International Conference on Language Resources and
Evaluation (LREC’02), Las Palmas, Canary Islands - Spain. European Lan-
guage Resources Association (ELRA).

48

https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct
https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct
https://cwe.mitre.org/top25/archive/2024/2024_cwe_top25.html
https://cwe.mitre.org/top25/archive/2024/2024_cwe_top25.html
https://github.com/ossf/wg-best-practices-os-developers
https://platform.openai.com/docs/api-reference/streaming
https://platform.openai.com/docs/api-reference/streaming
https://owasp.org/www-project-top-10-for-large-language-model-applications/Archive/0_1_vulns/Data_Leakage.html
https://owasp.org/www-project-top-10-for-large-language-model-applications/Archive/0_1_vulns/Data_Leakage.html

Rajeev, M., Ramamurthy, R., Trivedi, P., Yadav, V., Bamgbose, O., Madhusudan,
S. T., Zou, J., & Rajani, N. (2025). Cats confuse reasoning llm: Query agnostic
adversarial triggers for reasoning models.

Sallou, J., Durieux, T., & Panichella, A. (2024). Breaking the silence: the threats of
using llms in software engineering. In Proceedings of the 2024 ACM/IEEE 44th
International Conference on Software Engineering: New Ideas and Emerging
Results, ICSE-NIER’24, (pp. 102–106)., New York, NY, USA. Association for
Computing Machinery.

Sheng, Z., Chen, Z., Gu, S., Huang, H., Gu, G., & Huang, J. (2025). Llms in
software security: A survey of vulnerability detection techniques and insights.

Singh, S. C. & Ohri, N. (2025). India’s finance ministry asks employees to avoid ai
tools like chatgpt, deepseek. Reuters.

Sladić, M., Valeros, V., Catania, C., & Garcia, S. (2024). Llm in the shell: Genera-
tive honeypots. In 2024 IEEE European Symposium on Security and Privacy
Workshops (EuroSamp;amp;PW), (pp. 430–435). IEEE.

Spitzner, L. (2002). Honeypots: Tracking Hackers. USA: Addison-Wesley Longman
Publishing Co., Inc.

Steenhoek, B., Rahman, M. M., Roy, M. K., Alam, M. S., Tong, H., Das, S., Barr,
E. T., & Le, W. (2025). To err is machine: Vulnerability detection challenges
llm reasoning.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser,
Ł., & Polosukhin, I. (2017). Attention is all you need. In Guyon, I., Luxburg,
U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., & Garnett, R.
(Eds.), Advances in Neural Information Processing Systems, volume 30, Long
Beach, CA, USA. Curran Associates, Inc.

Voorhees, E. M. (1999). The trec-8 question answering track report. Technical
Report NIST Special Publication 500-246, National Institute of Standards
and Technology, Gaithersburg, MD, USA.

Wei, A., Haghtalab, N., & Steinhardt, J. (2023). Jailbroken: How does llm safety
training fail?

Wodecki, B. (2023). Jpmorgan joins other companies in banning chatgpt. AI Busi-
ness.

Yan, F. & Li, M. (2021). Towards generating summaries for lexically confusing
code through code erosion. In Zhou, Z.-H. (Ed.), Proceedings of the Thirtieth
International Joint Conference on Artificial Intelligence, IJCAI-21, (pp. 3721–
3727). International Joint Conferences on Artificial Intelligence Organization.
Main Track.

Yıldırım, R., Aydın, K., & Çetin, O. (2024). Evaluating the impact of conventional
code analysis against large language models in api vulnerability detection. In
Proceedings of the 2024 European Interdisciplinary Cybersecurity Conference,
EICC ’24, (pp. 57–64)., New York, NY, USA. Association for Computing
Machinery.

Zhao, X., Li, L., & Wang, Y.-X. (2022). Provably confidential language modelling.
In Carpuat, M., de Marneffe, M.-C., & Meza Ruiz, I. V. (Eds.), Proceedings
of the 2022 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, (pp. 943–955).,
Seattle, United States. Association for Computational Linguistics.

Zhou, X., Weyssow, M., Widyasari, R., Zhang, T., He, J., Lyu, Y., Chang, J.,

49

Zhang, B., Huang, D., & Lo, D. (2025). Lessleak-bench: A first investigation
of data leakage in llms across 83 software engineering benchmarks.

50

	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	RELATED WORK
	LLMs for Vulnerability Detection
	Obfuscation Techniques and Their Impact on LLMs
	Honeypot Strategies for Misleading LLMs
	Summary of Contributions

	PRELIMINARIES
	Model Overview
	Honeypot Vulnerabilities
	Attention Mechanism in LLMs
	Mean Reciprocal Rank (MRR)
	Cyclomatic Complexity

	METHODOLOGY
	Datasets
	Phase 1: Mitigating with Obfuscation
	Obfuscations
	Comment Obfuscation
	String Obfuscation
	Identifier Obfuscation
	Encoding the Entire Code
	LLM-Based Obfuscation
	Control Flow Obfuscation
	Data Flow Obfuscation
	Dead Code Insertion

	Leakage Detection Setup

	Phase 2: Mitigating with Honeypots
	Techniques Applied with the Honeypots
	Cyclomatic Complexity
	Evaluating Technique Combinations with Honeypots

	Functionality Understanding Evaluation

	RESULTS
	Phase 1: Mitigating with Obfuscation
	Vulnerability Leakage
	Accuracy without Output Limitation
	Accuracy with Output Limitations
	Mean Reciprocal Rank (MRR)

	Functionality Retention

	Phase 2: Mitigating with Honeypots
	Effectiveness of LLM-Generated Honeypots
	Functionality Retention of LLM-Generated Honeypots
	Cyclomatic Complexity and Effectiveness of Honeypot Obfuscation
	Evaluation Of Technique Combinations with Honeypots
	Functionality Retention of Technique Combinations with Honeypots

	DISCUSSION
	Limitations and Ethical Implications

	CONCLUSION
	BIBLIOGRAPHY

