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ABSTRACT

FREQUENCY DOMAIN IMAGE AUGMENTATION FOR DOMAIN
GENERALIZED IMAGE CLASSIFICATION

SINA SALEH
COMPUTER SCIENCE AND ENGINEERING M.Sc. THESIS, JULY 2025

Thesis Supervisor: Assoc. Prof. OZNUR TASTAN
Thesis Co-Supervisor: Prof. ERCHAN APTOULA

Keywords: Domain Generalization, Frequency Domain Augmentation, Domain

Shift, Fast Fourier Transform

Domain Shift remains a major challenge in Domain Generalization (DG), where
models trained on source domain(s) tend to perform poorly on unseen target do-
mains. One effective approach to address this problem is the use of data aug-
mentation techniques that synthetically enhance domain diversity. In this thesis, I
introduce a frequency-domain augmentation method called Amplitude-Phase Aug-
mentation (APA). APA operates by multiplying the amplitude components of source
images with those from other domains in the frequency domain, while preserving
the original phase information. This controlled mixing leads to the creation of
cross-domain images that retain semantic structure but carry varied textural cues,
increasing the robustness of models to distributional changes. I evaluate APA on
two standard DG benchmarks: PACS and VLCS, using three diverse backbone
architectures—ResNet-50, T2T-ViT-14, and DeiT-Small. APA is implemented on
top of a standard Empirical Risk Minimization (ERM) framework and is also tested
in conjunction with existing DG strategies. Extensive experiments show that APA
improves generalization performance across both datasets and three backbones. No-
tably, APA achieves competitive results compared to strong baselines and recent
augmentation-based methods on PACS dataset and superior results on VLCS across
all three backbones. In addition to performance evaluations, I conduct detailed ab-
lation studies on the amplitude mixing strategy and its effect on model robustness.
These results demonstrate the practical effectiveness and adaptability of APA as a
lightweight and domain-agnostic augmentation method for DG tasks. Code available
at https://github.com/sina-nuel/APA

iv


https://github.com/sina-nuel/APA

OZET

ALAN GENELLESTIRILMIS GORUNTU SINIFLANDIRMASI ICIN FREKANS
ALANI GORUNTU ARTTIRMA

SINA SALEH

BILGISAYAR BILIMi VE MUHENDISLIGI YUKSEK LISANS TEZI, TEMMUZ
2025

Tez Damsmani: Doc. Dr. OZNUR TASTAN
Tez Es Danigmani: Prof. Dr. ERCHAN APTOULA

Anahtar Kelimeler: Alan genellemesi, Frekans alanm artirma, alan kaydirma, hizh

Fourier dontigtimii

Alan genellemesi (DG), modellerin kaynak alan(lar) tizerinde egitildikten sonra hig
gormedikleri hedef alanlarda diigsiik performans sergilemesi nedeniyle bilgisayarla
gormede hala onemli bir sorundur. Bu sorunu agsmanin yollarindan biri, kaynak
alanlardaki veri cegitliligini sentetik olarak artiran gértintii artirma yontemlerini kul-
lanmaktir. Bu tezde, frekans alani temelli Genlik—Faz Artirmmi (Amplitude-Phase
Augmentation, APA) adli yeni bir yontem Onerilmektedir. APA, orijinal faz bil-
gisini korurken, kaynak goriintiilerin genlik bilegenlerini diger alanlardan elde edilen
genliklerle karigtirarak yeni ¢rnekler iiretir. Bu sayede semantik icerik bozulmadan
cesitli dokusal ve frekans ozellikleri tagiyan, alanlar arasi zenginlestirilmis gortintiiler
elde edilir ve modeller dagilim degisimlerine kargi daha dayanikli hale gelir. APA’y1
degerlendirmek igin iki yaygin DG benchmark’t olan PACS ve VLCS f{izerinde;
ResNet-50, T2T-ViT-14 ve DeiT-Small olmak tizere ti¢ farkli mimari kullanilarak
deneyler gerceklestirildi. Kapsaml sonuclar, APA’'nin hem veri setlerinde hem de
mimariler genelinde genelleme bagarisini énemli 6lciide artirdigim gosteriyor. Ozel-
likle, PACS’te giiclii temel yontemlerle rekabetci performans elde edilirken, VLCS’de
ii¢ mimaride de belirgin bir tstiinliik saglanmigtir. Buna ek olarak, genlik karigtirma
stratejisinin model saglamligina katkisini degerlendirmek amaciyla ayrintili ablasyon
caligmalar1 yapildi. Elde edilen bulgular, APA'nin DG gorevlerinde alandan bagim-
siz ve pratik agidan uygulanabilir bir artirma yontemi oldugunu ortaya koymak-
tadir.Kod su adreste mevcuttur: https://github.com/sina-nuel/APA
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1. INTRODUCTION

1.1 Background & Motivation

In the rapidly evolving field of machine learning, the capacity of a model to generalize
beyond the data it has seen during training is critical for real-world deployment. In
traditional machine learning, we usually assume that the train and test data both
come from a same distribution but this assumption is not accurate in many real
practices, where there is a huge difference between the conditions under which train
data is collected and test data during deployment. This discrepancy, commonly
referred to as domain shift (Quionero-Candela et al., 2008), can severely hinder a
model’s performance when it encounters new, unseen data that differs in distribution
from the training data. Addressing this challenge has led to the development of a

research paradigm known as Domain Generalization (DG) (Muandet et al., 2013).

DG refers to the situation where a model is trained on one or more source domains
and is expected to perform well on an entirely unseen target domain that is not
accessible during training. In contrast to traditional training setups where training,
validation, and test datasets are all drawn from a single domain, DG tasks demand
that the model effectively transfer its learned knowledge to new domains with dif-
ferent statistical properties. During regular training, the goal is often to ensure
consistent performance across subsets (e.g., training, validation, and testing) of the
same domain. However, DG poses a more complex and realistic challenge: achieving
high generalization performance across domains that may vary significantly due to
factors such as imaging devices, acquisition conditions, sensor types, environmental

conditions, or demographic differences.

To clarify this concept, consider the application of machine learning to image clas-

sification using the PACS dataset (Li et al., 2017), which contains images of houses



in different styles—such as a cartoon drawing and a photograph of a house. Both
images are easily recognizable to the human eye because they share common, seman-
tically meaningful features like doors, windows, and yards, which define the concept

of a house regardless of style or texture.

However, for a machine learning model, the differences in texture, background, color
schemes, and artistic style between the cartoon and photo images present a chal-
lenge. A model trained only on photographs might rely on domain-specific features
such as realistic textures or lighting patterns and thus struggle to correctly identify
cartoon houses. Therefore, it is necessary for the model to learn to focus on domain-
invariant features—Ilike the shapes and spatial arrangements of doors, windows, and

roofs—rather than superficial cues such as texture or style.

This ability to learn robust, shape-based features enables the model to generalize
well across different domains and image styles. Figure 1.1 illustrates an example of
two house images from the PACS dataset—one cartoon and one photo—highlighting
how their common semantic features allow humans to recognize them as the same

class despite their visual differences.

Solving this problem is not just of academic interest but is essential for building
robust and dependable machine learning systems that can operate in diverse, real-
world environments. For instance, in medical diagnosis, autonomous driving, remote
sensing, and surveillance systems, it is often impractical or even impossible to an-
ticipate all variations in future deployment scenarios. Therefore, models must be
designed to generalize to new domains without explicit retraining or access to tar-
get domain data. This sets DG apart from Domain Adaptation (DA) (Ben-David
et al., 2007), which typically assumes that a small sample of target domain data is

available during training to fine-tune the model.

Over the years, a variety of approaches have been proposed to tackle the domain
shift (Quionero-Candela et al., 2008) challenge. Some of the most prominent strate-
gies include adversarial learning (Goodfellow et al., 2015), which aims to minimize
the discrepancy between domains by fooling a domain discriminator; meta-learning
(Thrun, 1998), which simulates domain shifts during training to prepare the model
for unseen domains; and contrastive learning (Ganin et al., 2016), which encourages
the model to learn representations that are invariant under certain transformations.
However, the majority of these methods focus on feature extraction in the spatial
domain and often struggle to fully overcome the limitations imposed by domain-

specific noise or biases present in the visual appearance of input data.

In response to these limitations, a growing body of research has turned attention to



(a) (b)

Figure 1.1 Comparison of two house images, (a) is an image from cartoon domain
and (b) is an image from photo domain from the PACS dataset. Despite differences
in style, texture, and background, both images share common semantic features
such as doors, windows, and triangle-shaped patterns as roofs, which enable human
recognition.

the frequency domain as a complementary or alternative approach. One promising
technique involves using the Fast Fourier Transform (FFT) (Cooley & Tukey, 1965)
to decompose input images into their frequency components. This transformation
enables a more nuanced understanding of the underlying structures within data
by introducing amplitude and phase. By filtering or manipulating these frequency
components, it is possible to suppress domain-specific variations and emphasize

features that are more likely to generalize across domains.

Recent studies suggest that incorporating frequency-domain representations can sig-
nificantly enhance the robustness and transferability of learned features. For in-
stance, removing or down-weighting high-frequency noise that varies across domains
can help prevent overfitting to domain-specific textures or artifacts. Additionally,
frequency-based augmentation techniques can introduce novel training variations
that simulate domain shift (Quionero-Candela et al., 2008), further preparing the
model for deployment in diverse environments. Thus, frequency-domain methods

offer a powerful and underexplored avenue for improving DG (Muandet et al., 2013).



In this thesis, I explored the potential of frequency-domain representations, specif-
ically leveraging the FFT (Cooley & Tukey, 1965), to improve DG performance. I
proposed an FFT-based framework that integrates frequency information into the
feature learning pipeline, enabling the model to focus on domain-invariant char-
acteristics and suppress irrelevant domain-specific cues. My approach is designed
to operate solely on source domain data, making it well-suited for scenarios where
target domain data is unavailable during training. Through comprehensive exper-
iments on benchmark DG datasets, I evaluate the effectiveness of my method and
compare it against existing techniques. My findings demonstrate that frequency-
domain enhancements can lead to more robust and generalizable models, offering

new insights into the role of frequency decomposition in mitigating domain shift.

1.2 Contributions

This thesis presents APA, a novel image augmentation technique rooted in the fre-
quency domain, designed specifically to address the challenges of the domain shift
(Quionero-Candela et al., 2008). The core motivation behind this method is to ex-
ploit the distinct and complementary roles of amplitude and phase components in
the frequency domain to generate diverse and semantically meaningful variations
of training data. My approach leverages the amplitude spectrum as a controllable
factor to synthesize new data representations that are both realistic and domain-
diverse, thereby enhancing the model’s ability to generalize to previously unseen

domains.
The primary contributions of this work can be summarized as follows:

I proposed a data augmentation framework that operates in the frequency domain
by modifying the amplitude spectra of images while preserving the critical seman-
tic content encoded in the phase. Unlike conventional augmentation techniques
(Krizhevsky et al., 2012) that work in the spatial domain, APA enables the creation
of spectrally altered yet structurally consistent samples by blending the amplitude
components across different source domains. This strategy emphasizes learning
domain-invariant features and suppresses domain-specific noise or artifacts, ulti-

mately leading to better generalization across domains.

To better control the influence of augmentation during training, I introduce two

new hyper-parameters that regulate when and how frequently the APA technique
4



is applied. The Augmentation Step Interval (S5) defines how often augmentation
is injected into the training process and the Augmentation Application Ratio (R)
specifies the proportion of augmentation steps within each interval. This flexible
control mechanism allowed me to balance learning from original and augmented
data, and I observed that applying augmentation in later parts of each interval
yields improved performance by allowing the model to first focus on stable learning

before encountering more diverse representations.

In an extended version of APA, I introduced a refined augmentation strategy that
incorporates attention mechanisms from Transformer-based models (Vaswani et al.,
2017), such as ViTs (Dosovitskiy et al., 2021), into the frequency domain. The key
insight motivating this enhancement is that not all spatial regions contribute equally
to semantic understanding. By leveraging learned attention maps, I selectively em-
phasize or preserve the frequency components corresponding to regions that are
most relevant for recognition. This attention-guided frequency modulation ampli-
fies class-discriminative features while minimizing interference from background or
uninformative regions, leading to more targeted and effective augmentations. The
integration of attention into APA not only enhances model robustness but also aligns
the augmentation process with the model’s internal representation of salient visual

cues.

I validated the effectiveness of the proposed APA method through extensive exper-
iments on two widely-used domain generalization benchmarks: VLCS (Zhou et al.,
2017) and PACS (Li et al., 2017). These datasets encompass a variety of domains
such as photographs, art paintings, cartoons, and sketches. My experimental results
demonstrate that APA improves performance across multiple target domains and
achieves competitive results when compared to state-of-the-art DG techniques. The
analysis further highlights APA’s capacity to generate meaningful augmentations

that contribute to improved robustness and generalization.

In summary, this thesis contributes a perspective to DG by incorporating frequency-
domain into the training pipeline. Through the introduction of APA, I demonstrated
that leveraging the frequency characteristics of image data provides a powerful mech-
anism for enhancing domain robustness. This work lays the foundation for future
research at the intersection of spectral analysis and robust machine learning, and
underscores the untapped potential of frequency-aware augmentations in improving

model generalization across diverse and unseen domains.



2. RELATED WORK

As T explained before in chapter 1, domain shift (Quionero-Candela et al., 2008) is a
critical challenge in computer vision, in which models trained on source domain(s)
struggle to generalize to target domains due to distribution discrepancies (Zhou
et al., 2022). Existing approaches typically address this issue through DA (Ben-
David et al., 2007), which requires access to target data during training, or through
DG (Muandet et al., 2013), which aims to learn transferable features from the source
domain(s) with no access to the target domain(s). DG is generally more challenging
due to the absence of target domain data and is a fast-growing area of research
with various approaches proposed in the state-of-the-art studied by (Demirel et al.,
2023).

Adversarial learning (Goodfellow et al., 2015; Ganin & Lempitsky, 2015; Li et al.,
2019) is a widely adopted technique in DG, typically involving two competing com-
ponents: a domain discriminator and a feature extractor. The core idea is to learn
domain-invariant representations by having the feature extractor generate features
that the domain discriminator cannot reliably distinguish across different domains.
The discriminator, on the other hand, is trained to correctly classify the domain
of each input, thereby setting up an adversarial objective. Through this mini-max
game, the feature extractor is encouraged to produce features that are indistin-
guishable between source and target domains, effectively removing domain-specific
information and preserving task-relevant patterns (Goodfellow et al., 2015). This
process results in a shared feature space where samples from different domains are
closely aligned, thus improving the model’s ability to generalize to unseen target
domains (Ganin et al., 2016).

A seminal contribution to this line of work was made by Ganin & Lempitsky (2015),
who proposed a framework that combines unsupervised representation learning with
adversarial training. They demonstrated how adversarial objectives could be lever-
aged to reduce discrepancies between feature distributions across domains, thereby
enhancing the discriminative power of learned features for downstream prediction

tasks. Omne of the key innovations in their approach was the introduction of the
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gradient reversal layer (GRL), a mechanism that allows gradients from the domain
discriminator to be reversed during backpropagation. This facilitates simultaneous
optimization of the feature extractor to minimize task-specific loss while maximizing
domain confusion, thereby ensuring that the learned features are both discriminative

and domain-invariant.

More recently, Li et al. (2019) proposed FCN, an adversarial learning-based approach
tailored for heterogeneous DG. Their method introduces a meta-learning framework
that jointly trains a feature extractor and a critic network, where the critic serves as
an adversary aiming to discriminate among domains based on extracted features. By
using a meta-optimization strategy, the feature extractor learns to produce represen-
tations that not only minimize task loss but also confuse the critic across multiple
source domains, encouraging stronger domain invariance. This approach extends
traditional adversarial learning by incorporating meta-learning to better handle di-
verse domain shifts and has demonstrated improved generalization performance on
several challenging benchmarks. The incorporation of a critic network in a meta-
learning loop enables the model to dynamically adapt its feature representation to

unseen target domains, making it a significant advancement over prior adversarial
DG methods.

Overall, adversarial learning has emerged as a cornerstone technique in modern DA
and DG frameworks, offering a principled and effective way to decouple task-relevant

knowledge from domain-specific noise.

Meta-learning (Thrun, 1998; Li et al., 2018; Wang et al., 2025), often referred to
as "learning to learn," (Thrun, 1998) is a powerful paradigm in DG that focuses on
training models capable of quickly adapting to new, unseen domains using only prior
experience from source domains. Unlike traditional machine learning approaches
that train a model on a fixed distribution of data, meta-learning aims to expose
the model to a variety of learning episodes during training, each mimicking a dif-
ferent domain shift. This enables the model to develop transferable knowledge and
robust representations that can generalize effectively to novel domain distributions

encountered at test time.

In the context of DG, meta-learning approaches typically simulate domain shifts by
partitioning the available source domains into artificial training and testing tasks.
During each iteration, a subset of source domains is treated as meta-train domains,
while the remaining ones are considered as meta-test domains. The model is trained
on the meta-train set and then evaluated and updated based on its performance on
the meta-test set. This process encourages the learning algorithm to minimize the

generalization error across tasks, ultimately leading to a model that is less sensitive

7



to domain-specific artifacts and better prepared for unseen domain distributions.
This training paradigm not only enforces diversity in learning but also provides a

mechanism for explicitly evaluating generalization ability during training.

A notable implementation of this idea is the model-agnostic meta-learning (MAML)
algorithm, introduced by Li et al. (2018) for the purpose of DG. MAML optimizes
for a set of model parameters that can be quickly fine-tuned to new tasks (or do-
mains) with minimal data and updates. In the DG setting, this method was adapted
to simulate domain shifts by creating meta-learning episodes, each involving ran-
domly sampled meta-train and meta-test domain splits. Through this meta-training
procedure, the model learns domain-invariant patterns and representations that gen-
eralize well across a spectrum of distributions, without requiring access to the target

domain during training.

Building on this foundational work, subsequent meta-learning approaches for DG
have explored more sophisticated task construction strategies, regularization tech-
niques, and hierarchical learning structures. Some methods integrate adversarial
or contrastive losses into the meta-learning loop, while others focus on explicitly
modeling the inter-domain relationships to improve generalization. Finally, meta-
learning has proven to be a highly effective and flexible strategy for enabling models
to internalize generalizable knowledge, making it a central component in the develop-
ment of robust DG algorithms. Recently Wang et al. (2025) proposed an innovative
arithmetic meta-learning approach specifically aimed at DG Termed B-DMC. This
method refines first-order meta-learning by not only matching gradients across dif-
ferent source domains, but by also driving model updates toward the centroid of
domain-specific optimal parameters. The key insight is that aligning only the gradi-
ents is insufficient, as there are multiple possible descent directions; instead, B-DMC
formulates an arithmetic combination of gradients, approximating the average opti-
mum across domains. Extensive experiments on standard DG benchmarks show that
this arithmetic-weighted strategy yields more balanced generalization, outperform-
ing first-order meta-learning baselines. This contribution highlights the importance
of parameter-space centering in addition to gradient alignment for achieving robust

domain-invariant learning.

Augmentation methods (Krizhevsky et al., 2012; Guo et al., 2023; Demirel et al.,
2023; Yang & Soatto, 2020; Zhou et al., 2021) are a widely adopted strategy in DG
that aim to address the domain shift problem by artificially increasing data diversity
during the training process. These methods operate under the premise that training
a model on a broader and more varied distribution of inputs can help it learn more

robust and domain-invariant features, which in turn improves its ability to generalize



to novel target domains. Traditional augmentation techniques (Krizhevsky et al.,
2012) typically involve applying a series of input-space transformations, such as
geometric operations (e.g., rotations, scaling, flipping), photometric adjustments
(e.g., brightness, contrast, hue shifts), and spatial perturbations. These alterations
serve to introduce synthetic variability into the training data, thereby mitigating

the risk of overfitting to the specific visual characteristics of the source domains.

In recent years, augmentation strategies (Guo et al., 2023; Demirel et al., 2023; Yang
& Soatto, 2020; Zhang et al., 2018), have grown significantly more sophisticated,
incorporating not only input-level changes but also transformations in feature space
and semantic representations. Some approaches, employ token-level or patch-level
augmentation strategies, where parts of inputs (e.g., tokens, patches, or regions) are
altered, replaced, or recombined to simulate cross-domain variability (Yun et al.,
2019), while feature-space mixing methods combine features from different samples
or domains to generate new, hybrid representations in the feature space (Zhang
et al., 2018). These techniques are particularly effective in promoting invariance
to superficial domain-specific cues and fostering a more generalized representation

learning process.

Another influential approach that addresses the challenge of DG through a different
lens is MixStyle by Zhou et al. (2021). In this work Rather than explicitly construct-
ing pairs for contrastive training, MixStyle focuses on augmenting style statistics at
the feature level to simulate domain shifts during training. The authors observe that
style captured by channel-wise feature statistics such as mean and variance varies
significantly across domains and is often a key factor in domain shift. MixStyle
operates by randomly mixing the style statistics of feature maps between different
images, effectively generating new feature-level domain variations within the same

mini-batch.

This simple yet effective augmentation is integrated into existing architectures by
inserting MixStyle layers after selected convolutional blocks. During training, the
model is thus exposed to a continuously evolving spectrum of domain styles, forcing
it to learn features that are more robust to such variations. Importantly, MixStyle
does not require domain labels or access to target domain data, aligning well with
the assumptions of DG. By training the model to be invariant to artificial style
perturbations, MixStyle encourages the learning of semantic representations that

generalize better across domains.

A compelling line of research has recently focused on frequency-based augmentation,
where transformations are applied in the frequency domain rather than in the pixel
or feature domain. For instance, Guo et al. (2023) proposed ALOFT, a method

9



that explicitly models the distribution of low-frequency components which tend
to encode shape and structure and then uses these statistics to synthesize novel
training samples. By preserving structural integrity while introducing frequency-
based variability, their approach generates realistic yet diverse data that enhances
the model’s robustness to domain shifts. Similarly, the work of Yang & Soatto
(2020) introduced the Fourier Domain Adaptation (FDA) method, which leverages
the FFT (Cooley & Tukey, 1965) to manipulate amplitude components of images.
Specifically, they proposed replacing a portion of the amplitude spectrum of a source
image with that of another image belonging to the same class but from a different
domain. This controlled frequency-based manipulation allows the model to focus on

class-relevant features while discarding irrelevant domain-specific signals.

Augmentation-based approaches offer a flexible and powerful mechanism for improv-
ing generalization in DG settings. By simulating diverse forms of domain variability
during training, these techniques help models learn to extract invariant patterns
that are less sensitive to superficial shifts in appearance, structure, or distribu-
tion. As augmentation strategies continue to evolve, particularly through advances
in frequency analysis and generative modeling, they are likely to remain a critical

component of robust domain generalization pipelines.

Contrastive learning (Hadsell et al., 2006; Motiian et al., 2017) is a self-supervised
representation learning paradigm that aims to learn meaningful embeddings by dis-
tinguishing between similar and dissimilar pairs of data points. The core principle
involves pulling together embeddings of semantically similar samples while pushing
apart those of dissimilar ones within the feature space (Hadsell et al., 2006). In
the context of DG, contrastive learning is particularly effective because it encour-
ages the model to focus on intrinsic semantic content rather than domain-specific
artifacts. By enforcing consistency across semantically similar samples irrespective
of their domain of origin, contrastive learning facilitates the development of more

robust and transferable representations that generalize well to unseen domains.

The learning process typically involves constructing positive and negative pairs or
triplets of samples. Positive pairs are composed of instances that share the same
class label or represent different views (e.g., augmentations) of the same instance,
while negative pairs come from different classes. The model is trained using a
contrastive loss such as InfoNCE (van den Oord et al., 2018) or triplet loss (Schroff
et al., 2015) which guides the embedding space to maintain this semantic structure

while disregarding superficial domain-level variations.

An approach that leverages this principle is proposed in Motiian et al. (2017), where

the authors introduced a Siamese network architecture (Bromley et al., 1993) cou-
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pled with a contrastive semantic alignment loss for DG. Their method explicitly
constructs pairs of samples from different domains but with the same class label as
positive pairs, and pairs from different domains and different classes as negative ones.
The contrastive loss then regulates the feature space such that intra-class samples,
regardless of their domain origin, are pulled closer together, while inter-class sam-
ples are pushed further apart. This architecture ensures that class identity, rather
than domain identity, drives the geometry of the learned representation space. As
a result, the model becomes less sensitive to domain-specific cues and more attuned

to task-relevant semantics.

The key advantage of contrastive learning in DG lies in its ability to impose a form of
self-supervision that aligns the model’s feature space according to semantic similarity
while being agnostic to domain membership. This alignment plays a critical role
in enabling generalization to novel, unseen domains, particularly in settings where

domain-induced variations can otherwise overwhelm the learning signal.

Feature alignment (Muandet et al., 2013; Sun & Saenko, 2016; Gulrajani & Lopez-
Paz, 2020; Wei et al., 2021) is another fundamental technique in DG that aims
to explicitly reduce domain discrepancies by aligning the feature distributions of
different domains, either through statistical measures or geometric transformations
(Muandet et al., 2013). The underlying motivation is to encourage models to learn
domain-invariant representations, such that features extracted from inputs across
varying domains share similar distributions in the latent space. This approach helps
mitigate the domain shift problem by ensuring that the model’s decision boundaries

remain stable when presented with data from unseen target domains.

Feature alignment can be carried out at different levels of statistical abstraction.
Early methods primarily focused on aligning first-order statistics (e.g., means), but
more recent and effective strategies go further by aligning second-order statistics such
as covariances. A notable contribution in this space is the work by Sun & Saenko
(2016), who proposed Deep CORAL (Correlation Alignment)—a method that aligns
the second-order statistics of features extracted from multiple source domains. Their
approach uses nonlinear transformations within deep neural networks to minimize
the discrepancy in covariance matrices across domains. This encourages the model to

learn a shared feature space that is agnostic to domain-specific structural differences.

Building on these ideas, Gulrajani & Lopez-Paz (2020) introduced a more gener-
alized framework for feature alignment in DG. Their method penalizes both the
mean and covariance differences across domain distributions using a well-defined
loss term, thereby promoting tighter alignment across the entire statistical profile of

domain-specific features. Importantly, their work also underscored the importance
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of architectural and algorithmic choices in DG, demonstrating through an exten-
sive empirical study that model selection plays a critical role in the effectiveness of

feature alignment methods.

While many feature alignment techniques assume that all extracted features are
equally relevant to the downstream task, more recent research has challenged this
assumption. For instance, Wei et al. (2021) proposed a novel approach that sepa-
rates features into two categories: task-relevant and task-irrelevant. Their insight
was that aligning all features indiscriminately might dilute the effectiveness of the
alignment process by giving equal importance to noisy or domain-specific features
that do not contribute meaningfully to the classification task. To remedy this, they
introduced a dual-objective framework consisting of both alignment and feature
weighting. The alignment process was applied only to task-relevant features, which
were identified using a Gradient-weighted Class Activation Mapping (Grad-CAM)
technique introduced by (Selvaraju et al., 2017). Grad-CAM allows the model to
generate spatial attention maps that highlight the most discriminative regions within
Convolutional Neural Network (CNN) (LeCun et al., 1998) feature maps, effectively

guiding the model to focus on the most informative aspects of the input data.

This enhanced alignment strategy ensures that the model prioritizes features that
are not only invariant across domains but also critical for classification. Such se-
lective alignment has proven to be more robust than uniform alignment methods,
especially in scenarios with complex or high-dimensional domain variations. More
generally, recent advancements in this area have explored class-conditional align-
ment, adversarial alignment, and alignment in latent or semantic spaces to further

improve the precision and effectiveness of feature-based generalization strategies.

Finally, feature alignment remains an important part of DG research, offering a
principled means of addressing distribution shifts. As techniques become more re-
fined and incorporate attention, weighting, or domain decomposition mechanisms,
they continue to improve the reliability of models operating in open and dynamic

environments.

Transfer learning (Pan & Yang, 2010; Hu et al., 2022; Lee et al., 2024; Li et al.,
2023) represents a crucial strategy within the DG landscape, focusing on the reappli-
cation of knowledge gained from a source task or domain to improve performance on
a related but distinct target task or domain. Unlike traditional learning paradigms
that assume identical distributions between training and test data, transfer learn-
ing acknowledges the existence of domain shifts and seeks to bridge this gap by
transferring useful representations, parameters, or inductive biases from previously

learned models (Pan & Yang, 2010). This approach is particularly valuable in DG,
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where labeled data from the target domain are unavailable during training. By lever-
aging pretrained models often trained on large, diverse datasets, transfer learning
provides a computationally efficient and empirically effective alternative to training
from scratch, significantly reducing the need for extensive domain-specific labeled
data.

At the core of transfer learning is the idea that many tasks share underlying struc-
tures and features, especially in high-dimensional domains such as computer vision
or natural language processing. As a result, a model trained to extract informative
features in one setting can offer strong priors for downstream tasks (e.g., object de-
tection or scene understanding) even in domains with different visual characteristics.
In the context of DG, this reuse of pretrained knowledge can help mitigate overfit-
ting to source domains and improve robustness to unseen distributions by anchoring

learning in broadly applicable feature representations.

Recent advancements in this area have explored parameter-efficient fine-tuning
(PEFT) methods like LoRA (Hu et al., 2022) to adapt large pretrained models with-
out the need for full retraining. A compelling example of this is found in the work
of Lee et al. Lee et al. (2024), who proposed a PEFT framework that enables adap-
tation of large-scale foundation models to new tasks within domain-generalized set-
tings. Specifically, they introduced a novel architecture called Mixture of Adapters
(MoA), where instead of fine-tuning the entire model, a series of lightweight adapters
are trained and inserted into the network. These adapters vary in capacity quanti-
fied by their internal rank and are governed by a learnable routing mechanism that
dynamically selects the most appropriate adapter based on the characteristics of the
input and the task. This modular design allows the model to generalize across di-
verse domains while maintaining high parameter efficiency, making it both scalable

and adaptive to new challenges without significant computational cost.

A parallel line of work by Li et al. (2023) also embraced the idea of specialization
through modularity, introducing a sparse expert routing approach for DG. Their
method can be viewed as a rule-based transfer learning framework, where each expert
module functions like a logical reasoning unit that fires based on specific feature
conditions. For instance, in visual recognition tasks, one expert might activate upon
detecting large ears and curved tusks interpreted as rules for recognizing elephants.
This interpretable, symbolic-inspired logic mimics the "if/then" reasoning process
and provides a different flavor of transfer learning, where task-specific knowledge is
encoded into discrete expert functions that the model selectively activates based on
the input. Such expert-based models allow for flexible task transfer and can be fine-

tuned or expanded with minimal interference between experts, thus helping to avoid
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negative transfer and preserve generalization performance across diverse domains.

Together, these methods highlight the versatility of transfer learning within DG,
where the challenge is not just transferring information, but doing so selectively and
efficiently across varying tasks and domains. As models continue to grow in scale and
complexity, approaches like adapter-based fine-tuning (Houlsby et al., 2019), expert
routing (Shazeer et al., 2017), and sparsely activated sub-networks (Lepikhin et al.,
2021) are likely to play a central role in scalable and interpretable DG systems.
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3. PROPOSED METHOD

This chapter outlines the methodology developed and employed throughout the
course of this thesis. It presents a chronological overview of the conceptual and
technical evolution of the method, beginning with the initial inspiration and culmi-

nating in the final proposed approach.

3.1 Frequency-Based Domain-Specific Features Separation

3.1.1 Motivation

Deep learning models, particularly CNNs (LeCun et al., 1998), have achieved re-
markable success across a variety of computer vision tasks, including classification,
segmentation, and detection. However, when it comes to DG (Muandet et al., 2013)
these models often struggle due to their inherent biases and limitations in architec-

tural design.

One key architectural limitation arises from CNNs’ strong texture bias. Prior studies
have demonstrated that CNNs tend to rely excessively on local texture cues rather
than capturing holistic object representations, which can result in fragile general-
ization when textures change across domains (Choi et al., 2023). This is largely
because CNNs process images through localized convolutional filters, which inher-
ently focus on small, spatially constrained regions of the input. While hierarchical
layers in CNNs aim to progressively aggregate local information into more global rep-
resentations, the inductive bias of locality limits their capacity to effectively model

long-range dependencies and global structures in images (Baker et al., 2018). As a
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result, CNNs are often sensitive to superficial appearance changes and can fail when

faced with novel domain-specific distortions or shifts.

Meanwhile, the emergence of Vision Transformers (ViTs) (Vaswani et al., 2017)
has introduced a new paradigm for visual representation learning. Unlike CNNs;,
ViTs employ self-attention mechanisms to model global dependencies across an im-
age, treating it as a sequence of patches. This architecture grants ViTs a natural
advantage in capturing long-range contextual relationships, which are often cru-
cial for recognizing global object configurations. However, despite their strength
in modeling global patterns, ViTs may still struggle to preserve or exploit fine-
grained local details when global attention is over-prioritized. Hence, even ViTs
can benefit from integrating complementary modalities such as frequency domain
representations that explicitly encode local and global information in a structured,

disentangled manner.

To overcome these limitations, researchers have explored alternative representations
of image data most notably, the frequency domain. The frequency domain offers a
powerful perspective by transforming spatial pixel information into frequency com-
ponents via the FFT (Cooley & Tukey, 1965). This transformation decomposes
an image into sinusoidal basis functions, allowing the representation of both low-
frequency components, which capture coarse, global image structure (e.g., shape,
layout), and high-frequency components, which encode fine-grained, local details
(e.g., edges, textures) (Cai et al., 2021). This dual representation enables models to
capture a more comprehensive understanding of image content, which is crucial for

DG, where robustness to both global and local domain shifts is needed.

Frequency-based approaches have shown promise in recent DG and DA studies.
For instance, researchers have proposed modifying or replacing only certain parts
of the amplitude spectrum (typically the low-frequency components) in the FFT
representation to synthesize new training data that mimic domain shifts (Zheng
et al., 2022). While this selective amplitude manipulation can introduce valuable
cross-domain variability, it also poses risks: focusing exclusively on low-frequency or
high-frequency cues may result in the loss of important complementary information

and lead to suboptimal learning of domain-invariant features.

In this work, I proposed an image augmentation technique called APA for DG, which
operates in the frequency domain. My approach is motivated by the insight that
different domains often share similar global and local patterns, even if they vary in
visual appearance. By manipulating images in the frequency domain, APA allows
us to construct synthetic images that blend spectral characteristics from multiple

source domains, thus simulating domain shifts in a controlled and meaningful way.
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The APA method is designed as a DG technique that leverages the frequency domain
properties of images to produce more robust and diverse training samples. Specifi-
cally, APA works by taking two images that belong to the same semantic class but
originate from different source domains. These domains might vary in lighting, tex-
ture, resolution, or imaging conditions, which are common sources of distribution
shift in real-world datasets. By transforming both images into the frequency domain
using the FFT, APA extracts their respective amplitude and phase spectra. It then
performs a controlled element-wise multiplication of their amplitude components,

while preserving the phase spectrum of one of the original images.

The motivation for this specific choice of manipulation stems from the distinct roles
that amplitude and phase play in the visual composition of an image. The am-
plitude spectrum encodes the strength and intensity of different spatial frequency
components essentially capturing texture, fine details, and structural patterns such
as edges or repetitive textures. In contrast, the phase spectrum retains informa-
tion about the spatial arrangement and semantic content of the image such as the
shape and positioning of objects within a scene (Yang & Soatto, 2020). These two
components together determine how an image is perceived. However, phase has
been shown to be significantly more important than amplitude in preserving the
recognizable structure of objects. For instance, if you reconstruct an image using
only the phase spectrum and a uniform or neutral amplitude spectrum, the result-
ing image still retains the general layout and identifiable features, although it may
appear washed out or less sharp. On the other hand, reconstructing an image using
only the amplitude and zero phase yields a ghost-like or abstract pattern, lacking

semantic meaning but still containing some texture clues from the original image.

To illustrate this point, Figure 3.1 demonstrates the visual effects of isolating and
recombining phase and amplitude spectra. The figure includes the original image
alongside its amplitude and phase representations. One reconstructed version shows
the effect of combining the original phase with a uniform amplitude emphasizing
that even without the original strength of frequency components, the semantic and
structural integrity of the image remains largely intact. Another reconstruction
shows the image built from amplitude only, with the phase set to zero. This version
appears abstract or ambiguous, with localized textures and edges but no coherent
structure. This experiment highlights the critical importance of phase in defining
image semantics, while amplitude plays a complementary role in encoding style and

appearance.

APA leverages this understanding by mixing amplitude components across domains

while retaining the original phase. By doing so, it introduces controlled stylistic vari-
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Original Image Phase + Uniform Magnitude

Amplitude + Zero Phase

Figure 3.1 Showing each frequency component effect solely to better understand
them

ation such as textures, lighting variations, and structural cues from other domains
without altering the fundamental semantic content of the image. This controlled
augmentation produces synthetic images that lie between domains and exhibit a
blend of styles from multiple sources. These intermediate samples effectively act
as bridges across domains, helping the model generalize better by learning features
that are not tightly coupled to domain-specific textures or lighting conditions. In
practice, such augmentation contributes to the learning of domain-invariant rep-
resentations, which are crucial for models that must perform well across unseen
target domains where distributional characteristics differ from training data and in-
troduces a frequency-domain perspective to data augmentation that is grounded in
the fundamental properties of image composition. By separating and recombining
amplitude and phase and understanding their respective roles, APA offers a princi-
pled approach to creating semantically consistent but stylistically diverse training
data.

APA does not restrict the augmentation to a particular frequency range. Instead, it
applies a comprehensive transformation that better maintains the multi-scale struc-
ture of the image. Furthermore, this augmentation can be seamlessly integrated into
the training pipeline of both CNNs and ViTs, enabling the models to learn from a

richer spectrum of variations without any architectural changes.

I hypothesized that training on images augmented via APA exposes the model to a
broader and more diverse distribution of domain-induced variations, thereby improv-
ing its generalization capability. Specifically, APA simulates domain shifts within
the training phase, helping the model learn to ignore domain-specific noise and fo-
cus instead on semantically meaningful, task-relevant features. The augmented data
serve as a proxy for unseen domains, improving the model’s ability to operate in

open-world settings.

To validate my approach, I evaluated APA on two widely used DG benchmarks:
VLCS (Zhou et al., 2017) and PACS (Li et al., 2017). These datasets encompass
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diverse domains with varying styles and content, providing a strong testbed for
DG methods. Empirical results demonstrate that APA leads to competitive per-
formance compared to baseline and state-of-the-art methods. My findings confirm
that frequency-domain augmentation especially through principled combinations of
amplitude and phase components can enhanced a model’s robustness to domain

variability.

Initially, the idea was to combine images in the frequency domain by multiplying
both their phase and amplitude components. According to the convolution theo-
rem (Bracewell, 1999), multiplication in the frequency domain corresponds to con-
volution in the spatial domain. In other words, if two images are multiplied in the
frequency domain, the resulting image in the spatial domain is equivalent to the

convolution of the original images by using the second image as the kernel.

Convolution in the spatial domain is a fundamental operation in image processing,
used to apply filters such as edge detectors, blurring, or sharpening. It includes
moving a matrix as a filter over another image or matrix and calculating the weighted
sum of the overlapping values at each cell. Mathematically, for an image I(z,y) and

a kernel K (u,v), the convolution is defined as:

(3.1) ([ K)(z,y)=>_> I(x—uy—v) K(u,v).

where:
e I(z,y): The input image intensity at spatial coordinates (z,y).
e K(u,v): The convolution kernel (or filter) value at position (u,v).

o (IxK)(x,y): The result of convolving the image I with the kernel K at position
(z,y).

e > .3, Double summation over the kernel’s spatial dimensions (i.e., iterating

over all values of u and v that define the size of the kernel).

o I(x—wu,y—wv): The image value at position (z —u,y —v), corresponding to the

shifted position under the kernel.

- Multiplication of the image value with the corresponding kernel value.

This operation effectively combines local neighborhood information, and its behavior
depends on the choice of the kernel. So I was curious what happens if I use an image

with same content but different style as the kernel and what happens to the resulted
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augmented image.

However, as discussed earlier, modifying the phase component was found to be un-
necessary. Moreover, directly multiplying the amplitude spectra does not result in
visually meaningful augmented images and therefore requires additional modifica-

tions, which will be detailed in the following sections.

3.1.2 Technical Approach

The first step of the method involves applying the FFT on the input images I and I,
converting them to the frequency domain components. FFT allows for transforming
spatial domain information (pixel-based representations) into that of the frequency
domain, which breaks down the image into its frequency components,phase and

amplitude.

For each channel ¢ (Red, Green, Blue) of a color image, I compute its frequency

domain representation using the discrete 2D Fourier transform:

-1

M
(3.2) Fo(u,v)= >

=0

N-1 - fuxr | VY
S Iu(w,y) e 2R,
=0

<

where:
o I (x,y) is the intensity value of channel ¢ at spatial location (x,y),

o F.(u,v) is the complex-valued frequency domain representation at frequency

coordinates (u,v),
e M x N is the spatial resolution of the image,

e ue{0,1,...., M —1} and v € {0,1,...,N — 1} are discrete frequency indices

along the horizontal and vertical directions, respectively,

i is the imaginary unit (2 = —1).

The frequency representation Fi(u,v) can be expressed in polar form as:

Fo(u,v) = Ac(u,v) e ®®Y)  where Ac(u,v) = |Fo(u,v)|, @c(u,v) = arg(Fu(u,v)).
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where:
o |F¢| denotes the modulus (magnitude) of the complex number,
» arg(F.) denotes the phase angle (argument) of the complex number.

Similarly, for the second image I, T obtain its amplitude A/, and phase ®.. Once
the images are transformed into the frequency domain, their amplitudes are mul-
tiplied. Convolution in the spatial domain is equivalent to multiplying both phase
and amplitude in the frequency space. However, in the APA method, only ampli-
tudes are used. This operation allows me to alter specific frequency components like
amplitude here, thereby changing the image’s characteristics. By multiplying the
amplitudes and taking the square root, new augmented images are generated that
share key semantic properties with the original images and introduce variations that

help the model generalize better to unseen domains.

To construct a new image, a transformed amplitude flc(u,v) is defined by the

element-wise geometric mean of the amplitudes of two images:

(3.4) Aclu,0) = \JAc(u,v) - Al (u,0) +e,

where:

o Ac(u,v) and AL(u,v) are the amplitude spectra of the two images for channel

C7
e ¢ is a small positive constant added to prevent division by zero or instability,
. flc(u,v) is the mixed amplitude to be used in the synthesis process.

Since the amplitude represents the texture or style of an image, and the phase carries
the structural content, we retain the original phase components during recombina-

tion. The synthetic frequency components are then computed as:

(35) FC(U,U) = A(;(u,’U) ’ €Z'<I>C(um)7 FC/(U,U) = AC(U7U) ' eiCIDf:(u,U),

where:

o ®.(u,v) and P.(u,v) are the phase components of the two images,
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o F.(u,v) and F!(u,v) are the resulting frequency-domain representations com-

bining shared amplitude with distinct phases.

To obtain the corresponding spatial-domain synthetic images, the Inverse Discrete

Fourier Transform (IDFT) is applied:

~ 1 M—_1N-1 ~ 2 (um+vy)
(3.6) I(z,y) = —— Fe(u,v)- e ™\ MTN)
MN u=0 v=0
-, 1 M—-1N-1 .y 9 (um+vy)
(37) I (x7y):7 (U,U) € TMTN 3
¢ MN u=0 v=0 ‘
where:

o I.(x,y) and I’(z,y) are the resulting synthetic images in the spatial domain

for channel c,
e M and N are the height and width of the image,
e ¢ is the imaginary unit.

The aim of this process is to create two synthetic images that retain the structural
properties of their respective input classes while combining their domains’ texture
and style. After the generation of the augmented images, the model is trained using

both the original and the augmented images.

By exposing the model to a broader range of image variations, the proposed approach
aims to learn transferable features across domains. The augmented images not only
increase the diversity of the training set but also encourage the model to focus on
the underlying structure of the data, rather than relying on domain-specific features
that could hinder generalization. This improves performance when the model is
applied to unseen target domains. The architecture of my model is depicted in
Fig.3.2.

In addition to the standard hyper-parameters for model training, there are two

additional hyper-parameters in the augmentation phase:

» Augmentation Step Interval (S): The number of training steps after which
augmentation is periodically applied within. For example, if S is set to 200,

augmentation is applied every 200 steps of the training.
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Figure 3.2 Detailed augmentation procedure in the APA module. For simplicity,
detailed operations are shown only on channel R, the two big dots showing two
levels of the operations as same as shown for channel R on other two channels. Both
I and I’ images were used to create two augmented images. Agr, Al ,¢r and ¢ are
the amplitudes and phases of the I and I’ images in R channel respectively. Ag aug,
A’R’aug ,OR,aug and (b’R,aug are the amplitudes and phases of the augmented images
in R channel respectively. For each augmented image, the phase of one image was
used to preserve its main structure, while the style of the domains was mixed using
the amplitudes. The dot product of the amplitudes is element-wise. FFTgr, FFTq
and F'F'Tg refer to FF'T operations on the three channels, and F'F'Ty 1, FFT; Land
FFTy L are their respective inverse FFT operations.
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o Augmentation Application Ratio (R): The proportion of steps within each
interval to which augmentation is applied. For example, if R is 0.1 and S is
200, in 20 steps out of every 200 steps, I apply the augmentation and in the
remaining 180 steps I train the model with input images without augmentation.
I found that training first with the original input images and then synthesized

images led to better performance, as discussed in the results section.

My APA method offers several advantages. First, it allows me to generate diverse
samples from existing data without requiring additional labeled examples from the
target domain. Second, modifying the frequency components ensures that the in-
troduced variability remains general, reducing the likelihood of capturing domain-
specific artifacts such as color and texture. Additionally, working in the frequency
domain provides greater flexibility for mathematical operations. For example, in-
stead of multiplying amplitudes directly, we take the square root of their product
to smooth the combination process. Fig. 3.3 exemplifies the difference between
augmented images using APA with and without taking the square root and con-
volution itself. In natural images, low-frequency components which usually cor-
respond to smooth intensity variations, typically have large amplitudes. In con-
trast, high-frequency components, which capture edges, textures, and fine details,
generally have much smaller amplitudes. Experimental observations on all images
from the PACS dataset (Li et al., 2017) show that, on average, 46% of the high-
frequency components have amplitudes less than one, compared to only around 1%
for low-frequency components. When the square root operation is applied across
the frequency spectrum, it amplifies values less than one. This selective ampli-
fication causes a noticeable portion of the high-frequency components to become
more pronounced, while leaving the low-frequency components largely unaffected.
As a result, the blurring caused by high-frequency attenuation which acts as a low-
pass filter is counteracted (Kostkova et al., 2020). Since blurring suppresses high-
frequency details that are crucial for sharpness and clarity (Gonzalez & Woods,
2007), enhancing these components can effectively restore image sharpness and re-
duce blurriness. Thus, applying the square root to frequency amplitudes serves as
a controlled method for enhancing image details and mitigating high-frequency loss

due to blurring.

3.2 Boosted Frequency-Based Domain-Specific Features Separation
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(d)

Figure 3.3 Comparing APA and other convolution-based augmentations: (a) and
(b) are input images; (c) augmented image using APA and taking (a) as the base
image by applying square root on amplitude multiplication; (d) augmented image
using APA and taking (a) as the base image without applying square root on am-
plitude multiplication; and (e) augmented image by multiplying both phases and

amplitudes.
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In this enhanced approach, I proposed a refined augmentation technique that builds
upon the previously introduced frequency-based method by integrating the repre-
sentational advantages of attention mechanisms from transformer models. By se-
lectively emphasizing regions that are deemed important by a ViT (Vaswani et al.,
2017) model we can potentially amplify class-discriminative features in the frequency
domain. This section details my attempt to leverage attention maps (Vaswani et al.,
2017) as spatial importance indicators and use them as a dynamic weighting factor

during frequency-based image augmentation.

3.2.1 Motivation

The principal motivation for this hybrid method is that attention maps inherently
contain spatial information about where the model focuses its semantic understand-
ing. These maps are not random, they result from contextual interactions cap-
tured by the transformer layers and can serve as a soft prior for enhancing the
frequency characteristics of informative regions. By interpreting the attention map
as a grayscale intensity function, I treat high-attention regions as spatial zones of

interest that often exhibit sharper spatial variations or localized features.

Computing the frequency-domain representation of these attention maps enabled
me to capture underlying structural patterns associated with important semantic
regions. High-attention areas, which tend to vary more sharply, contribute sig-
nificant energy to the high-frequency components of the Fourier spectrum, while
low-attention regions, often smoother and less informative, primarily influence the

low-frequency components.

For instance, consider an image depicting a dog, where the model strongly focuses
on the ear due to its distinctive geometry and textural cues. The resulting atten-
tion map will exhibit a bright region corresponding to the ear. When transformed
into the frequency domain, this attention map emphasizes frequency components
associated with that region’s spatial structure. By fusing this with the image’s orig-
inal amplitude spectrum, I create an augmented image that retains the dominant
textures and contours of semantically relevant regions, effectively boosting their

representation in the frequency domain.

This method acts as a frequency-sensitive filtering process, where regions with higher
semantic relevance identified by the transformer receive greater weight during spec-

tral fusion. Consequently, the resulting images are not only more representative of
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inter-domain variability but also maintain structural fidelity to the original features
deemed most useful for classification. Moreover, this approach reduces the salience of
less informative or distracting background elements, effectively guiding the model’s

attention during training toward features with higher discriminative value.

This boosted frequency-based feature separation technique introduces a new mecha-
nism to integrate the strengths of attention-based interpretability with the efficiency
and robustness of frequency-domain augmentation. By modulating the amplitude
spectrum using transformer derived attention maps whose spatial variation encodes
semantic importance the model is better equipped to learn spatial-frequency repre-
sentations aligned with its internal attention mechanisms, fostering improved gen-

eralization and domain adaptability.

3.2.2 Technical Approach

The attention mechanism alone, while semantically meaningful, lacked the structural
fidelity required to maintain low-level visual details in augmented images. Therefore,
I investigated a more nuanced integration one that combines the frequency-domain
representations of both the original images and their corresponding attention maps.
Specifically, my goal was to incorporate attention as a weighting component during

the amplitude modulation phase of the FFT-based image fusion process.

As introduced earlier, I decompose images I and I’ into their frequency components
by using the FFT. This decomposition separates the images into amplitude and
phase components denoted as A.(u,v), AL (u,v), Patt(u,v) and ¢;tt( ) respectively as
defined by Equations 3.2 and 3.3. In the original method, I combined the amplitudes
of two input images to generate a synthesized image in the frequency domain. In this
improved method, I introduce a third component: the attention-weighted amplitude

derived from the image’s Transformer-based attention map.

To implement this, I begin by inputting two images denoted as I and I’ into a pre-
trained Transformer model to extract their respective attention maps att(l) and
att(I'). T used the last attention map layer in both DeiT-Small (Touvron et al.,
2021) and T2T-ViT-14 (Yuan et al., 2021) backbones. These attention maps, often
represented as multi-head outputs or averaged attention heatmaps, are then con-
verted into normalized grayscale images, referred to as It and I,. These grayscale
attention maps serve as proxies for region-level importance, where brighter pixels

indicate stronger attention. I subsequently apply the FFT to these maps to extract
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their frequency components, obtaining both amplitudes and phases:

The discrete Fourier transforms of the attention maps are denoted as:

M-1N— S(ux VY
(3.8) Fagt(u,v) Z Z att (2, ) e zm(WJrW),

M-1N-— ux | VY
(3.9) Foii( Z Z at (T, ) e _QM(WJFW),
where:

att(7,y) and I, (z,y) are the intensity value the attention maps of the I and

I’ images at spatial location (x,y),

Fatt(u,v) and Fli(u,v) are the complex-valued frequency domain representa-

tions of the attention maps of the I and I’ images at frequency coordinates

(u,v),
M x N is the spatial resolution of the attention maps,

we{0,1,....M —1} and v € {0,1,...,N — 1} are discrete frequency indices

along the horizontal and vertical directions, respectively,

i is the imaginary unit (i = —1).

Each complex Fourier coefficient can be decomposed into amplitude and phase com-

ponents as:

(3.10)

Fatt(u,v) = Aatt(u,v) 6i¢att(u’u)7 where Aatt(u,v) = |Fatt(u,v)|a ¢att(u,v) = arg(Fatt(u,v))

(3.11)

! Y i¢! ww / o !
Fatt(u,v) = Aatt(u,u) e "attwy) - where Aatt = |F, att(u,v) ’a ¢att(u,v) = arg(Fatt(u,v))

where:
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‘Fatt(u,v)‘ and ‘

Feitt(u v)

| denote the modulus (magnitude) of the Fj(, ) and

att uv

* arg(Fatt(u v)) and arg(F

att
Fatt(u,v) and Fatt(u v)*

(u, U)) denotes the phase angle (argument) of the

I compute augmented amplitudes by combining the original and attention-derived
amplitudes. This reinforces frequency components associated with regions of high

attention:

(3.12)

Ap(u,v) = \3’/Ac(u,v) - AL(u,0) - Aggt(uyw) T Al (u,v) \/A u,v) - Al (u,v)- A’att(u nTE

where:
o A., AL are the amplitude spectra of I. and I. respectively,
o Aatt, ALy are the amplitudes from the attention maps,
e ¢ is a small constant added to prevent division by zero or numerical instability.

Using the original phase components ¢.(u,v) and ¢.(u,v), the augmented frequency

representations are reconstructed as:

(3.13) Fo(u,0) = Ac(u,v) @) (4 v) = A (u,v) REACRY

The corresponding spatial-domain images are then obtained using the inverse Fourier

transform:
~ 1 M-1N-1 ~ 2 (um+vy)
(314) ]C(xvy) = T FC(U,U) € M )
MN u=0 v=0
= 1 M—-1N-1 ~ 2 (1Lm+vy)
(3.15) I(z,y) = —= (u,v)-e T MTN)
¢ MN u=0 v=0 ‘
where:
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o I.(z,y) and I’(z,y) are the resulting synthetic images in the spatial domain

for channel c,
e M and N are the height and width of the image,

e ¢ is the imaginary unit.
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4. EXPERIMENTS

4.1 Experiments

In this section, I describe the experimental setup used to evaluate the effectiveness
of the proposed APA method for DG (Muandet et al., 2013). My evaluation is
conducted on two widely adopted benchmark datasets: VLCS (Zhou et al., 2017)
and PACS (Li et al., 2017). These datasets have been extensively used in the
literature for assessing DG techniques due to their inherent domain diversity and
challenging nature. My goal is to rigorously assess how well APA generalizes to

unseen domains when trained on a subset of available source domains.

4.1.1 VLCS Dataset

The VLCS dataset (Zhou et al., 2017) is a standard benchmark for domain gener-
alization and is composed of images drawn from four heterogeneous domains: PAS-
CAL VOC 2007 (V) (Everingham & et al., 2010), LabelMe (L) (Russell & et al.,
2008), Caltech 101 (C) (Fei-Fei & et al., 2003), and SUN09 (S) (Xiao & et al., 2010).
Each domain has distinct characteristics in terms of background clutter, lighting
conditions, scene complexity, and image resolution. For example, the VOC images
are mostly object-centric with cluttered backgrounds, while the Caltech images are
relatively clean and captured in controlled environments. The SUN(09 images, in
contrast, contain natural scenes with diverse environmental settings, and LabelMe

includes user-labeled web images with varying quality and context.

The dataset consists of five object categories that are shared across all domains:
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bird, car, chair, dog, and person. Despite having the same set of semantic labels,
these classes are visually quite different across domains due to the domain-specific
imaging conditions and annotation sources. Such variability makes VLCS a suitable

testbed for assessing the generalization capabilities of models.

For my experiments, I followed the widely used leave-one-domain-out evaluation
protocol. Under this setting, for each experiment, I selected one domain as the
target domain and used the remaining three as source domains for training. This
ensures that the model is evaluated on a domain that it has not seen during training,
simulating a real-world generalization scenario. I repeated this process for each of
the four domains in the dataset, resulting in four distinct train-test splits. The
classification performance was measured using average accuracy on the held-out

domains.

4.1.2 PACS Dataset

In addition to VLCS, I evaluated my approach on the PACS dataset (Li et al., 2017),
another benchmark specifically designed to challenge DG methods. PACS comprises
four visually distinct domains: Photo (P), Art Painting (A), Cartoon (C), and Sketch
(S). These domains represent a wide spectrum of visual styles, ranging from realistic

photographs to highly abstract and artistic depictions.

PACS contains images belonging to seven object categories: dog, elephant, giraffe,
guitar, horse, house, and person. Unlike VLCS, which focuses more on natural
scenes and varied backgrounds, PACS emphasizes domain shifts related to drawing
styles, line thickness, texture absence or exaggeration, and semantic abstraction.
For instance, while a horse in the Photo domain appears with realistic texture and
shading, its representation in the Sketch domain might be reduced to a few lines

capturing only the silhouette.

Similar to my experiments on VLCS, I applied the leave-one-domain-out evaluation
protocol for PACS. In each experiment, one domain was designated as the target
(test) domain, and the model was trained on the remaining three source domains.
This protocol was repeated across all four domains, and the classification perfor-
mance on the unseen domain was recorded. Average classification accuracy was
used as the evaluation metric, enabling fair comparison with prior DG methods in

the literature.
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4.1.3 Implementation Details

In all experiments, images were resized to a fixed resolution of 224 x 224 to maintain
consistency with standard deep learning backbones. The APA augmentation was ap-
plied during training by manipulating the amplitude spectra of image pairs sampled
from the same class but different domains, while preserving the original phase spec-
trum to maintain semantic content. To ensure robustness and reproducibility, each
experiment was repeated three times with different random seeds. For baselines, I
compared APA against both standard training without augmentation baseline and

state-of-the-art domain generalization methods.

APA was implemented in PyTorch utilizing CNN (LeCun et al., 1998) based archi-
tecture such as ResNet-50 (He et al., 2016) and ViT (Vaswani et al., 2017) backbones
such as DeiT-Small (Touvron et al., 2021) and T2T-ViT-14 (Yuan et al., 2021) as
the classifiers. The proposed augmentation was applied during training to generate
additional domain-variant samples. The model was trained with a total of 6000
epochs fo each backbone. The experiments were conducted on a server equipped
with two NVIDIA RTX 3090 GPUs, each with 24GB of VRAM. You can find the
hyper-parameters for each backbone in the provided table 4.1.

Table 4.1 Hyper-parameters used for APA training across different backbones and
datasets.

Hyperparameter ResNet-50 (PACS/VLCS) T2T-ViT (PACS/VLCS) DeiT-Small (VLCS)

batch size 8 8 16
class_balanced True True True
Ir 3e-5 le-5 le-5
weight_ decay 0.0001 0.001 0.0
S 200 200 200
R 0.1 0.4 0.4

Figure 4.1 provides a visual overview of sample images from both VLCS and PACS
datasets. These examples highlight the diversity and complexity of the domain shifts

present in each dataset.

4.1.4 Results and Discussion

To validate the effectiveness of the proposed APA method, I conducted extensive

experimental evaluations comparing APA against a diverse set of competitive DG

methods. These baseline methods were carefully selected based on their strong
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Photo Art Cartoon Sketch

Figure 4.1 Examples from the VLCS and PACS datasets from the four available
domains for the two classes, bird (top row-VLCS) and dog (bottom row-PACS).

Table 4.2 Classification accuracy (%) on PACS and VLCS using ResNet-50 back-
bone.

Method PACS VLCS
Baseline 84.5 77.5
Mixup (Yan et al., 2019) 84.6 77.4
MLDG (Li et al., 2018) 84.9 7.2
DANN (Ganin et al., 2016) 83.6  78.6
SagNet (Nam et al., 2020) 86.3 77.8
ARM (Zhang et al., 2020) 85.1 77.6
SWAD (Cha et al., 2021) 88.1  79.1
GMDG (Tan et al., 2024) 85.6 79.2
ADRMX (Demirel et al., 2023) 85.3  78.5
APA (mine) 85.7  80.3

reported performance in the literature, wide adoption, and compatibility with stan-
dard deep learning backbones. By choosing both classical and recent approaches, I
ensured a comprehensive and fair evaluation. Furthermore, to eliminate confounding
factors, all models including baselines and APA were implemented using the same

training configurations and backbone architectures.
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Table 4.3 Classification accuracy (%) on PACS and VLCS using T2T-ViT-14 and
DeiT-Small backbones.

Backbone Method PACS VLCS

Baseline 86.8 78.9
TFS-ViT (Noori et al., 2024)  89.0  80.0
T2T-ViT-14 SDVIiT (Sultana et al., 2022) 88.0  79.5

APA (mine) 88.5 817
Boosted APA (mine) 89.8 81.8
Baseline 84.9 78.8
TES-ViT 87.3 80.2
DeiT-Small  SDViT 88.3 79.2
APA (mine) 87.1 814
Boosted APA (mine) 879  81.7

To assess the robustness of APA across architecture types, I experimented with both
CNN and ViT based backbones. This dual setup allowed us to evaluate APA not only
on traditional CNN structures but also on modern attention-based architectures,

which are gaining traction in vision tasks.

The baseline methods include well-established DG algorithms such as Mixup (Yan
et al., 2019), which performs linear interpolation in the input or feature space;
MLDG (Li et al., 2018), a meta-learning-based approach designed to simulate do-
main shift during training; and DANN (Ganin et al., 2016), a domain-adversarial
training method that learns domain-invariant features via gradient reversal. Ad-
ditionally, I included more recent and competitive methods such as GMDG (Tan
et al., 2024), which leverages group-wise feature alignment. SagNet (Nam et al.,
2020) separates style and content representations to improve generalization, while
ARM (Zhang et al., 2020) enhances robustness through adaptive risk minimization.
SWAD (Cha et al., 2021) builds on stochastic weight averaging to stabilize training
and improve out-of-domain performance. For ViT comparisons, TFS-ViT was stud-
ied (Noori et al., 2024), a transformer-specific strategy that employs task-specific
feature sampling. I also included SDViIT (Sultana et al., 2022), which integrates
structural domain-specific priors into ViT training for better generalization. For a

better understanding, a comparison of these methods is provided in Table 4.4.
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Table 4.4 Summary of Compared Domain Generalization Methods

Method

Description

Mixup (Yan et al., 2019)

Performs linear interpolation of images and/or their fea-
tures to generate synthetic training samples that help reg-
ularize the model.

MLDG (Li et al., 2018)

Meta-learning strategy that simulates domain shift during
training to improve generalization to unseen domains.

DANN (Ganin et al., 2016)

Domain-Adversarial Neural Network that promotes
domain-invariant feature learning via gradient reversal.

SagNet (Nam et al., 2020)

Separates style and content representations in the feature
space to prevent overfitting to superficial statistics.

ARM (Zhang et al., 2020)

Adaptive Risk Minimization framework that learns robust
predictors by minimizing risk under varying domain condi-
tions.

SWAD (Cha et al., 2021)

Stochastic Weight Averaging in Domain Generalization
that stabilizes training and improves out-of-domain per-
formance.

GMDG (Tan et al., 2024)

Group-wise Meta Domain Generalization using feature
alignment at the group level to improve robustness across
domains.

TFS-ViT (Noori et al., 2024)

Task-specific Feature Sampling method tailored for ViT
architectures to enhance discriminative learning across do-
mains.

SDVIT (Sultana et al., 2022)

Introduces structural domain-specific priors into ViT train-
ing to promote better generalization in structured data sce-
narios.
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4.1.4.1 Results on CNN-based Backbones

Table 4.2 summarizes the average classification accuracy across all target domains
for each method. Using ResNet-50 (He et al., 2016) as the CNN backbone, APA
outperformed all of the classical and recent baselines on the VLCS dataset. Specif-
ically, APA attained a significant improvement over MLDG and DANN and com-
pared to Mixup, APA demonstrated a clear advantage, underscoring the benefits of
selectively manipulating the amplitude spectrum while preserving semantic content

through the phase.

On the PACS dataset, APA achieved competitive performance, closely matching
or surpassing other methods in several domain splits. The results confirmed APA’s
ability to generalize across diverse styles without requiring style-specific feature tun-
ing or domain labels during inference. The gains observed on PACS are particularly
meaningful given the substantial variation in visual appearance between domains
(e.g., the abstract nature of sketches compared to the realism in photos), which
tends to degrade the effectiveness of shallow data augmentations or generic domain-

invariant learning methods.

4.1.4.2 Results on Transformer-based Backbones

To further explore the adaptability of APA, I extended my experiments to
transformer-based vision models, including T2T-ViT-14 and DeiT-Small, both of
which represent compact yet powerful transformer architectures optimized for vi-
sual tasks. These experiments evaluated APA’s capacity to function effectively in
a non-convolutional feature extraction setting, which has a fundamentally different

mechanism for spatial and contextual reasoning.

APA was benchmarked against DG methods designed specifically for transformer
architectures. On the VLCS dataset, APA outperformed both TFS-ViT and SDViT
on all target domains, establishing itself as a strong frequency-based augmentation
strategy even in transformer settings. This is particularly noteworthy, as transformer
models often require specialized training schemes or architectural modifications to
achieve strong generalization. APA, in contrast, required no changes to the backbone
and integrated seamlessly with the existing training pipeline, providing a lightweight

and generalizable solution.

For the PACS dataset, although APA was not the best but it had competitive results
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on this dataset too. One reason behind this is that the domain shift in this dataset

is very bold and make it harder for the model to generalize well.

The empirical findings across both CNN and ViT backbones highlight several key
insights. First, APA’s success on VLCS suggests that frequency-domain manipula-
tion is particularly effective in datasets where structural and background variations

dominate the domain shift.

APA’s effectiveness in transformer models underscores the generality of the method.
Despite the differences in how CNNs and ViTs process images, both benefit from
frequency-based augmentation, suggesting that APA operates on a level orthogonal
to the architectural design. Unlike methods that rely on architectural bias, APA
provides a plug-and-play solution that enhances model robustness through carefully

crafted spectral transformations.

For the Boosted version you can see that I got a nice increase in accuracy for PACS
dataset under both backbones, but for the VLCS it was not that much, it shows
that this boosting method worked on a dataset with more difficult domain shift.
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Figure 4.2 Examples from the PACS dataset showing two classes—human and houses
(top row)—and their corresponding attention maps (bottom row). The attention
maps highlight the generic and structurally important parts of each object (e.g., face
contours, house outlines).

As shown in the attention maps in Figure 4.2, key object structures such as face con-

tours or building shapes are consistently emphasized as highlighted areas in the mid-

dle of these images. These attention maps implicitly capture the semantic essence
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Backbone | Dataset | Source Domains | Target Domain | Accuracy (%)
ResNet-50 PACS P, C,S A 87.6
ResNet-50 PACS P, A, S C 82.4
ResNet-50 PACS A, C, S P 97.1
ResNet-50 PACS P, A C S 75.6
ResNet-50 VLCS V, L, S C 97.3
ResNet-50 VLCS V,C, S L 68.1
ResNet-50 VLCS V, L, C S 76.0
ResNet-50 VLCS L,C,S \Y 79.8

Table 4.5 Domain generalization results on PACS and VLCS datasets using ResNet-
50 as the backbone.

Backbone | Dataset | Source Domains | Target Domain | Accuracy (%)
T2T-ViT-14 | PACS P, C, S A 91.5
T2T-ViT-14 | PACS P, A'S C 81.3
T2T-ViT-14 | PACS A C,S P 97.7
T2T-ViT-14 | PACS P, A, C S 83.6
T2T-ViT-14 | VLCS V, L, S C 98.1
T2T-ViT-14 | VLCS V,C, S L 67.1
T2T-ViT-14 | VLCS V,L,C S 79.6
T2T-ViT-14 | VLCS L,C,S \Y 82.1

Table 4.6 APA Accuracy on T2T-Vi
datasets separately on each domain

—

-14 as the backbone, PACS and VLCS as the

of the object. When transferred to the frequency domain using FFT, both the orig-
inal image and the attention map exhibit shared frequency components related to
these dominant structures. By using the attention map as a weighting mechanism
in the frequency domain, specifically by multiplying its amplitude with that of the
original image, we can selectively amplify these semantically important and com-
monly shared frequency components. This enhances domain-relevant information
while suppressing irrelevant variations, ultimately improving generalization across

domains.

In tables 4.7, 4.6, 4.9, and 4.8 the results can be seen separately for each domain on
both T2T-ViT-14 and DeiT-Small backbones and PACS and VLCS datasets.

The results in Table 4.10 present the class-wise accuracy of APA and Boosted APA
on the PACS dataset using different backbones. Overall, Boosted APA consistently
improves upon the baseline APA method across most object classes. For instance,
with the T2T-ViT-14 backbone, Boosted APA increases the accuracy for the Fle-
phant class from 85.8% to 90.0%, and for the Person class from 86.1% to 91.2%. Sim-
ilarly, with DeiT-Small, improvements are observed in classes such as Giraffe (from
87.4% to 89.2%) and Horse (from 78.4% to 83.9%). In ResNet50 the performance
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Table 4.7 APA Accuracy on DeiT-Small as the backbone, PACS and VLCS as the
datasets separately on each domain

Backbone | Dataset | Source Domains | Target Domain | Accuracy (%)
DeiT-Small | PACS P, C,S A 89.6
DeiT-Small | PACS P, A, S C 78.1
DeiT-Small | PACS A C, S P 96.9
DeiT-Small | PACS | P, A, C S 77.1
DeiT-Small | VLCS V,L,S C 97.6
DeiT-Small | VLCS V,C,S L 67.9
DeiT-Small | VLCS V, L, C S 79.1
DeiT-Small | VLCS L,C,S Vv 81.0

Table 4.8 Boosted APA Accuracy on DeiT-Small as the backbone, PACS and VLCS

as the datasets separately on each domain

Backbone | Dataset | Source Domains | Target Domain | Accuracy (%)
DeiT-Small | PACS P, C,S A 90.3
DeiT-Small | PACS P, A, S C 83.4
DeiT-Small | PACS A, C,S p 99.0
DeiT-Small | PACS P, A, C S 78.8
DeiT-Small | VLCS V,L,S C 97.7
DeiT-Small | VLCS V,C, S L 68.2
DeiT-Small | VLCS V, L, C S 79.3
DeiT-Small | VLCS L,C,S \% 81.4

Table 4.9 Boosted APA Accuracy on T2T-ViT-14 as the backbone, PACS and VLCS
as the datasets separately on each domain

Backbone | Dataset | Source Domains | Target Domain | Accuracy (%)
ToT-ViT-14 | PACS P, C. S A 92.2
T2T-ViT-14 | PACS P, A, S C 83.6
T2T-ViT-14 | PACS AC,S P 98.9
T2T-ViT-14 | PACS P, A C S 84.4
T2T-ViT-14 | VLCS V, L, S C 98.2
T2T-ViT-14 | VLCS V,C, S L 68.9
T2T-ViT-14 | VLCS V. L, C S 78.4
T2T-ViT-14 | VLCS L,C,S \Y 81.6

is generally lower, emphasizing the advantage of transformer-based architectures for
this task.

Table 4.11 shows the class-wise accuracy on the VLCS dataset, where a similar
pattern can be observed. Boosted APA consistently outperforms APA across several
categories, although the performance gain is more moderate compared to PACS. For
example, using DeiT-Small, the accuracy for the Person class increases from 74.9%
to 76.2%, and with T2T-ViT-14, the Dog class improves from 62.8% to 66.2%. While
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Backbone Method Dog | Elephant | Giraffe | Guitar | Horse | House | Person
T2t-ViT-14 APA 84.6 85.8 86.7 96.6 86.3 97.4 86.1
T2t-ViT-14 | Boosted APA | 78.5 90.0 86.4 97.1 84.4 97.0 91.2
DeiT-Small APA 83.5 84.8 87.4 92.6 78.4 91.1 87.9
DeiT-Small | Boosted APA | 84.2 84.4 89.2 92.9 83.9 92.9 86.9
ResNet50 APA 76.7 84.5 87.1 93.5 79.8 88.9 79.1

Table 4.10 Class-wise accuracy of the APA on PACS dataset with different backbones

Backbone Method Bird | Car | Chair | Dog | Person
T2t-ViT-14 APA 80.8 | 88.7 | 69.5 | 62.8 74.3
T2t-ViT-14 | Boosted APA | 79.4 | 87.6 | 71.5 | 66.2 75.3
DeiT-Small APA 80.6 | 89.7 | 69.6 | 61.3 74.9
DeiT-Small | Boosted APA | 79.9 | 874 | 69.7 | 62.3 76.2
ResNet50 APA 68.0 | 8.1 | 71.6 | 57.6 74.1

Table 4.11 Class-wise accuracy of the APA on VLCS dataset with different back-
bones

ResNet50 occasionally performs competitively on specific classes such as Chair and

Person, its overall accuracy remains less consistent.

4.1.5 Visual Results

In this section I want to provide some visual results to give a better insight about
this work. First I want to provide a visual comparison between the FDA (Yang &

Soatto, 2020) and my approach.

In figure 4.3 you can see the comparison between two frequency-based augmen-
tation methods, FDA(Yang & Soatto, 2020) and APA. As the FDA method was
implemented on the GTA V (Richter et al., 2016) dataset, for the comparison I
tried my method on this dataset too and you can see as I consider all range of the
amplitudes including both high-frequency and low-frequency components it gives
better augmented images with better details in the edges. In this comparison I used
the second images from the VLCS (Zhou et al., 2017) dataset having two different
conditions, in the first one the weather is cloudy and in the second one the image
was captured at night, you can see the effect of the weather on the new augmented
images. In the first row corresponding to the night one, you can see the augmented
images has a darker effect and because the first image has sunny weather, the re-
sulted image is like a sunset weather. In the second row again the base image has

a sunny weather but the second image has a cloudy weather, you can see in the
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VLCS Car 1 Augmented 1 (FDA) Augmented 1 (APA)

GTA Car 2 VLCS Car 2 Augmented 2 (FDA) Augmented 2 (APA)

Figure 4.3 Augmenting images from GTA V dataset with images from VLCS with
two different conditions using FDA and APA method.

resulted image we have the effect of the cloudy weather comparing to the first sunny

image.

The next visualization is about some samples of augmented images from the PACS
and VLCS datasets in all four domains using a class, the dog class is used for the
PACS and the chair class is used for the VLCS examples.

4.1.6 Ablation Study

To better understand the contribution and sensitivity of the proposed APA method,
I conducted a detailed ablation study focusing on two critical hyper-parameters: the
augmentation step interval and the augmentation application ratio. These hyper-
parameters govern when and how frequently the APA augmentation is applied during
training. While the augmentation step interval determines how often augmentation
phases occur (i.e., the temporal frequency of augmentation), the augmentation ap-
plication ratio controls how many of the steps within each interval are augmented.

Together, these parameters form the basis of APA’s temporal scheduling mechanism.

4.1.6.1 Motivation for Ablation
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Figure 4.4 Augmenting images from the the PACS dataset during the training for
the dog class.

In the context of APA, where augmented images are synthetically generated via
frequency-space manipulation, improper scheduling may lead to adverse outcomes
either by overwhelming the network with overly synthetic examples or by not expos-
ing it to enough domain variability. Therefore, identifying the right balance between
original and augmented data over time becomes essential for achieving optimal gen-

eralization performance.

The ablation study was carried out using the ResNet-50 architecture on the PACS
dataset, employing the leave-one-domain-out evaluation protocol described earlier. I

systematically varied both the step interval and the augmentation application ratio.
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SUNO09 SUN09-VOV2007 SUNO09-LabelMe SUNO09-Caltech101

Figure 4.5 Augmenting images from the VLCS dataset during the training for the
chair class.

The combinations I tested included step intervals of {50, 200, 500} and ratios of
{0.1, 0.3, 0.5, 0.9}. Each combination was evaluated independently, and the results
were plotted in Fig. 4.6, which visualizes the average classification accuracy across

all target domains.

The results showed that APA’s effectiveness was highly sensitive to the scheduling
of augmentations. Specifically, when the step interval was set to 50 and the ap-
plication ratio was as low as 0.1, the model exhibited significantly lower accuracy.
This can be attributed to the infrequent occurrence and short duration of the aug-

mentation phases, which caused the model to learn almost entirely from unaltered
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Figure 4.6 Accuracy for different values of S and R. S denotes the augmentation
step interval, and R represents the augmentation application ratio on APA method
using ResNet-50 as the backbone and PACS as the dataset.

source domain data. Consequently, the network failed to develop domain-invariant

representations, leading to poor generalization.

On the other extreme, when the step interval was extended to 500 steps, the model
experienced a lower frequency of augmentation phases but with longer durations
during each phase. While this allowed deeper exposure to augmented samples during
the active augmentation window, the long intervals between augmented batches
caused the model to alternate sharply between overfitting and overgeneralization.

The inconsistent learning pattern resulted in suboptimal convergence behavior.

The best performance was observed with a step interval of 200 and an applica-
tion ratio of 0.1, which created a stable training rhythm where augmented and
non-augmented samples complemented each other. These findings suggest that aug-
mentation should be applied neither too rarely nor too frequently, and the transition
between original and augmented data must be smooth and rhythmic to maintain

learning stability.

in Fig. 4.7 you can see the same study on the DeiT-Small backbone and PACS
dataset. Here I tried different range of values and got almost the same results, here
I observed that I get the best performance using 200 as my interval steps but despite
the previous ResNet-50 backbone, I got better results as I increased the R, it means
that comparing to the ResNet-50, in a transformer backbone like DeiT-Small I need
to feed the network with more portion of augmented images and it has more capacity

to be fed with these synthetic images.
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Figure 4.7 Accuracy for different values of S and R. S denotes the augmentation
step interval, and R represents the augmentation application ratio on APA method
using DeiT-Small as the backbone and PACS as the dataset.

4.1.6.2 Effect of Temporal Placement of Augmentation Steps

In a complementary set of experiments, I further investigated the impact of the
temporal positioning of augmentation within each periodic training interval using
ResNet-50 as the backbone and PACS and VLCS datasets. By default, APA ap-
plies augmentation during the final 20 steps of every 200-step interval. To explore
whether this placement matters, I tested three scenarios where the same number of
augmented steps (i.e., 20 steps) were positioned either at the beginning (steps 0 to
20), middle (steps 90 to 110), or end (steps 180 to 200) of each interval.

The results, reported in Table 4.12, showed a clear trend. The best performance
was achieved when the augmentation was applied during the last segment of each
training interval. When augmentation was applied at the beginning, the model was
exposed to synthetic examples too early before learning meaningful representations
from the source data. This caused the network to anchor its learning around less
structured, potentially misleading inputs, thereby reducing its capacity to generalize.
Augmenting in the middle of the interval led to marginally better performance, but
still fell short of the default setting. These findings align with the curriculum learning
principle, where the model benefits from a gradual increase in task difficulty: starting
with real, clean data and then progressing toward more diverse and challenging

examples.

I followed this temporal setting for the other experiments on the different backbones

and datasets as well. From these ablation studies, several practical guidelines emerge
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Table 4.12 Classification accuracy (%) on PACS and VLCS using ResNet-50 in
different augmentation scenarios during total 200 steps in each training period.

Augmentation step PACS VLCS

step 0 83.3 79.4
step 90 83.8 79.7
step 180 (default)  85.7  80.3

for effectively deploying APA in training pipelines:

e Moderate and rhythmic augmentation improves generalization: Fre-
quent but short bursts of augmentation are ineffective, and overly long aug-
mentation windows can lead to overgeneralization. A periodic scheduling

mechanism with balanced duration and frequency yields optimal results.

e Delayed exposure to augmentation aids learning: Augmentation ap-
plied at later training stages within each interval allows the model to first build
structural priors from clean images, making subsequent exposure to frequency-

altered data more beneficial.

o APA is sensitive to timing: Unlike random data augmentation strategies
that apply uniformly throughout training, APA performs best when augmen-

tation is introduced in a structured and temporally-aware manner.
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5. CONCLUSION

In this thesis, I tackled the persistent and challenging problem of domain shift in
the DG (Muandet et al., 2013). Unlike traditional DA techniques, DG assumes no
access to target domain data during training, which necessitates the development
of models that are inherently robust to distributional discrepancies across domains.
To address this problem, I proposed a novel data augmentation strategy grounded
in frequency-domain transformations using the FFT (Cooley & Tukey, 1965). This
technique, APA, was designed to improve the generalization ability of deep learning
models by synthesizing augmented views that reflect realistic inter-domain variations

while preserving semantic fidelity.

The foundation of APA lies in transforming images from the spatial domain where
conventional augmentations such as flipping, cropping, and color jittering operate
into the frequency domain. Through the FFT, images are decomposed into two
principal components: amplitude, which encodes structural and textural informa-
tion, and phase, which captures spatial layout and semantic content. By perturbing
the amplitude spectrum while preserving the phase, I ensured that the augmented
images maintained the core identity of the original samples but presented them with
modified global textures and structures. These modifications simulate the type of

variations often encountered when models are deployed across unseen domains.

My method offers a lightweight, architecture-agnostic solution. The APA augmen-
tation process injects diversity into the training data distribution without requiring
any changes to the model or training pipeline. Moreover, by operating in the fre-
quency domain, APA can explore a broader augmentation space that is difficult to
capture using pixel-level operations. For instance, global texture shifts or periodic
pattern alterations common in artistic styles, sensor artifacts, or environmental noise

are better represented and manipulated in the frequency spectrum.

The motivation behind the proposed method is twofold. First, I sought to introduce
a form of augmentation that better captures domain shifts encountered in real-world

applications, where differences between domains are often subtle and embedded
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in the texture, background statistics, or scene-level context. Second, I aimed to
steer the learning process towards capturing domain-invariant representations, such
as object shapes, contours, and relative spatial arrangements, by minimizing the

influence of domain-specific cues.

To validate the effectiveness of APA, I performed extensive experiments on two
widely adopted DG benchmarks: VLCS (Zhou et al., 2017) and PACS (Li et al.,
2017). These datasets pose significant challenges due to their inter-domain vari-
ability, VLCS focuses on natural scene differences while PACS includes substan-
tial stylistic transformations. Across both CNN-based (LeCun et al., 1998) and
transformer-based backbones (Vaswani et al., 2017), my method demonstrated com-
petitive results over baseline models, including state-of-the-art approaches such as
MLDG (Li et al., 2018), DANN (Ganin et al., 2016), GMDG (Tan et al., 2024),
and transformer-specific strategies like TFS-ViT (Noori et al., 2024) and SDViT
(Sultana et al., 2022).

Moreover, through a detailed ablation study, I demonstrated the sensitivity of APA
to its hyper-parameters and the importance of carefully scheduling augmentation
during training. I showed that both the frequency and temporal placement of aug-
mented steps play a critical role in maximizing generalization. These findings em-
phasize that, beyond the augmentation itself, its integration into the learning process

must be strategically managed to yield the best outcomes.

Implications and Broader Impact

The implications of this work extend beyond the immediate results on benchmark
datasets. Frequency-based augmentation techniques like APA offer a new perspec-
tive on how data can be manipulated to improve generalization. By shifting the
focus from pixel-level variation to spectral-level diversity, my work encourages the
broader machine learning community to consider frequency-aware training strate-
gies, especially in domains where annotated data is limited or where domain shifts

are substantial and difficult to model explicitly.

In practical terms, APA’s architecture-independence makes it applicable to a wide
range of models, including resource-constrained setups and industrial pipelines. Fur-
thermore, because APA requires no target domain data or labels, it can be used in
privacy-sensitive or deployment-critical applications where access to deployment do-

main data is not feasible.
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Future Work

This thesis can be expanded in other ways. One natural extension is to apply APA to
more complex and diverse datasets, such as those found in medical imaging, remote
sensing, or low-light vision, where frequency-domain artifacts are more pronounced
and domain shift is more severe. In such contexts, APA’s ability to simulate domain

variability without semantic distortion could prove especially valuable.

Another promising direction involves the development of adaptive frequency aug-
mentation techniques. Rather than using fixed augmentation parameters, future
work could explore dynamic adjustment of frequency transformations based on train-
ing progress, model confidence, or domain statistics. Such adaptive mechanisms

could further enhance robustness while maintaining training efficiency.

Additionally, integrating APA with contrastive learning frameworks presents an
exciting opportunity. By combining frequency-based augmentation with self-
supervised or supervised contrastive objectives, models could be encouraged to learn
disentangled and domain-invariant embeddings. This fusion has the potential to fur-

ther improve cross-domain recognition and representation learning.

Finally, an intriguing research direction involves investigating the theoretical under-
pinnings of frequency-domain data augmentation. A deeper understanding of how
spectral perturbations affect feature learning and representation geometry could
help formalize best practices and inspire the creation of even more effective domain

generalization techniques.
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APPENDIX A

Publications
The following is my publication based on this thesis:

e Sina Salehnia, Oznur Tastan, Erchan Aptoula. Frequency Domain Image
Augmentation for Domain Generalized Image Classification. Accepted at STU
2025.

e Sina Salehnia, Oznur Tastan, Erchan Aptoula. APA: Domain Generalization
Using Frequency Based Augmentation. Accepted at MLSP 2025.
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