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ABSTRACT

TOWARDS RELIABLE ALZHEIMER’S DIAGNOSIS FROM 3D MRI SCANS:
A GENERALIZED APPROACH

ZOBIA BATOOL

COMPUTER SCIENCE AND ENGINEERING M.Sc. THESIS, June 2025

Thesis Supervisor: Prof. Erchan Aptoula
Thesis Co-Supervisor: Assoc. Prof. Hüseyin Özkan

Keywords: Domain Generalization, Alzheimer’s Disease, Contrastive Learning,
Morphological Networks, Deep Learning

This thesis aims to address Alzheimer’s disease detection from 3D MRI scans un-
der a single-domain generalization setting, where a model is expected to generalize
to unseen domains with potentially diverse imaging protocols, patient demograph-
ics, and class imbalance levels. Three distinct approaches are investigated. First,
a pseudo-morphological augmentation strategy uses learnable modules to produce
anatomically coherent, class-specific augmentations, integrated with supervised con-
trastive learning to extract robust and discriminative features. Second, the MixStyle
framework is extended to incorporate higher-order statistical moments including
skewness and kurtosis alongside traditional mean and variance, enabling enhanced
feature perturbation and focus on disease-specific artifacts. Third, a Mixup-based
augmentation method leverages distance transforms to spatially decompose MRI
scans into layered components and recompose them from multiple samples, pre-
serving structural integrity while promoting diversity. Extensive experiments across
three benchmark datasets, namely NACC, ADNI and AIBL demonstrate that the
proposed techniques substantially enhance the generalization capabilities of under-
lying models, thus providing a strong basis for creating reliable, domain-agnostic
tools for early Alzheimer’s disease diagnosis.
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ÖZET

3B MRG TARAMALARINDAN GÜVENİLİR ALZHEİMER TEŞHİSİNE
DOĞRU: GENELLEŞTİRİLMİŞ BİR YAKLAŞIM

ZOBIA BATOOL

BİLGİSAYAR BİLİMİ VE MÜHENDİSLİĞİ YÜKSEK LİSANS TEZİ, MAYIS
2025

Tez Danışmanı: Prof. Dr. Erchan Aptoula
Tez Eş-Danışmanı: Doç. Dr. Hüseyin Özkan

Anahtar Kelimeler: Alan Genellemesi, Alzheimer Hastalığı, Karşıtsal Öğrenme,
Biçimbilimsel Ağlar, Derin Öğrenme

Bu tez, 3B MRG görüntülerinden Alzheimer hastalığının tespiti üzerine odaklan-
makta ve modelin, görüntüleme protokolleri, hasta demografileri ve sınıf dengesiz-
likleri açısından farklılık gösteren, daha önce görülmemiş alanlara genelleme yap-
masının beklendiği tek alanlı genelleme (single-domain generalization) ortamında
çalışmaktadır. Üç farklı yaklaşım incelenmiştir. İlk olarak, anatomik olarak tutarlı
ve sınıfa özgü veriler üreten, öğrenilebilir modüller kullanan sahte-biçimbilimsel bir
veri artırma stratejisi önerilmiştir. Bu strateji, gürbüz ve ayırt edici öznitelikler
çıkarmak amacıyla gözetimli karşıtsal öğrenme ile tümleştirilmiştir. İkinci olarak,
MixStyle çerçevesi, geleneksel ortalama ve değişintinin yanı sıra çarpıklık ve basıklık
gibi daha yüksek dereceli istatistiksel momentleri de içerecek şekilde genişletilmiştir.
Bu sayede özellik pertürbasyonu geliştirilmiş ve hastalığa özgü kalıntılara odak-
lanılmıştır. Üçüncü olarak, Mixup tabanlı bir veri artırma yöntemi, MRG görün-
tülerini mesafe dönüşümleri ile katmanlara ayırıp, birden fazla örnekten yeniden
birleştirerek yapısal bütünlüğü korurken çeşitliliği artırmayı hedeflemiştir. NACC,
ADNI ve AIBL olmak üzere üç farklı veri kümesinde yapılan kapsamlı deneyler,
önerilen tekniklerin temel modellerin genelleme yeteneğini önemli ölçüde artırdığını
ve böylece erken aşamada Alzheimer hastalığı tanısı için güvenilir ve alan bağımsız
araçlar geliştirilmesine güçlü bir zemin sağladığını göstermiştir.
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1. INTRODUCTION

Alzheimer’s disease (AD) is a progressive and irreversible neurodegenerative disor-
der that primarily affects older adults. It is the most common cause of dementia,
with an estimated 55 million people living with dementia globally in 2019. Among
the dementia cases, AD accounts for 60-70% of all cases, a number projected to rise
significantly due to increasing life expectancy (Selvester & others, 2022). Clinically,
AD is characterized by memory loss, cognitive decline, disorientation, and behav-
ioral disturbances that worsen over time. At the pathological level, Alzheimer’s is
marked by the buildup of harmful substances in the brain. One is called amyloid-β,
which forms sticky clumps (plaques) between brain cells and blocks communication.
Another is a protein called tau, which becomes abnormal and forms twisted strands
(tangles) inside brain cells, stopping them from working properly. These changes
cause brain cells to die and lead to shrinkage of the brain, especially in areas like the
hippocampus which is important for memory and the outer brain regions involved
in thinking and decision-making (Selkoe & Hardy, 2021).

For diagnosis, the clinical assessment of brain structure is commonly supported
by neuroimaging techniques such as Magnetic Resonance Imaging (MRI), which
provides high-resolution, non-invasive insight into brain morphology. MRI scans can
reveal structural abnormalities, including cortical thinning, ventricular enlargement,
and hippocampal atrophy, that correspond to disease progression (Teipel & others,
2011; van Oostveen & de Lange, 2024; Weiner & others, 2017). Visually, AD looks
like a loss of brain volume and structure when compared to a healthy brain. (Fig. 1.1)
illustrates the structural differences observable in MRI scans between a Normal
Control (NC) subject and an AD case. The AD brain exhibits clear cortical atrophy,
seen as widened grooves on the brain’s surface and contracted or enlarged fluid-filled
regions such as the ventricles. These changes reflect tissue loss and are especially
noticeable around the hippocampus and outer cortical areas. The AD image also
contains more dark regions, indicating areas where brain tissue has deteriorated or
thinned, which corresponds to loss of neuronal density.

Based on the assessments, early detection of AD is crucial, as it enables timely inter-
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(a) NC case (b) AD case

Figure 1.1 MRI samples: (a) NC subject with intact brain structure, and (b) AD
case showing pronounced cortical atrophy.

vention, improved quality of life, and better care planning. However, diagnosing AD
at an early stage remains challenging. Symptoms often overlap with normal aging or
other neurodegenerative conditions, and structural brain changes may be subtle and
variable across individuals (Jack, Knopman, Jagust, Shaw, Aisen, Weiner, Petersen
& Trojanowski, 2010). In addition, access to advanced diagnostic tools such as PET
imaging or cerebrospinal fluid analysis may be limited due to cost, invasiveness, or
availability. Furthermore, variability in clinical expertise and subjective interpreta-
tion of neuropsychological assessments can lead to inconsistent or delayed diagnosis
(Jack, Bennett, Blennow & others, 2018).

On the contrary, machine learning, and in particular deep learning, has become
a powerful tool for automated AD diagnosis using MRI. Among various architec-
tures, Convolutional Neural Network (CNN) based models have shown promise in
capturing spatial features and structural abnormalities (El-Assy, Amer, Ibrahim &
Mohamed, 2024; Folego, Weiler, Casseb, Pires & Rocha, 2020; Han, Li, Fang &
Yang, 2023; Li, Zhang, Wu, Zhang, Han & Cui, 2024; Zhang, Chen, Ren, Yang,
Yu, Zhang & Zhou, 2022). More recently, attention-based models such as Vision
Transformers (ViTs) (Alp, Akan, Bhuiyan, Disbrow, Conrad, Vanchiere, Kevil &
Bhuiyan, 2024; Duong, Tran & Gahm, 2025; Joy, Nasrin, Siddiqua & Farid, 2025;
Lu, Zhang & Yao, 2025; Shaffi, Viswan & Mahmud, 2024) and Graph Neural Net-
works (GNNs) (Gamgam, Kabakcioglu, Yüksel Dal & Acar, 2024; Hu, Wang, Zhu,
Li & Shi, 2024; Majee, Gupta, Raha & Das, 2024) have been leveraged to cap-
ture more complex spatial dependencies and inter-regional connectivity. Despite
these advancements, existing approaches often assume that training and test data
come from the same distribution. This assumption is rarely satisfied in practice due
to domain shifts caused by differences in scanner type, acquisition protocols, pre-
processing pipelines, and population demographics. Additionally, class imbalance,
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particularly the under-representation of AD cases, presents a serious challenge for
model learning and generalization.

While many methods have focused on improving model accuracy or incorporating
multimodal data, relatively few have considered disease-specific anatomical proper-
ties such as brain atrophy. As discussed in Chapter 2, atrophy is a central patho-
logical feature of AD, with different degrees of severity observable across NC, Mild
Cognitive Impairment (MCI), and AD classes. Yet, most domain generalization
(DG) techniques (Cai, Zhang & Long, 2023; Fiasam, Rao, Sey, Aggrey, Kodjiku,
Browne, Danso, Ukwuoma & Gyarteng, 2023; Lteif, Sreerama, Bargal, Plummer, Au
& Kolachalama, 2024; Nguyen, Clément, Mansencal & Coupé, 2023; Wang, Chaud-
hari & Davatzikos, 2022; Zhou, Li, Zhou, Liu & Tu, 2023a) rely on handcrafted
priors or statistical perturbations that do not explicitly account for these structural
changes. Furthermore, the single-domain generalization (SDG) setting — where
only one labeled dataset is available for training and no access to target domain
data is assumed — remains relatively underexplored despite being more realistic for
clinical deployment.

To address these limitations, this thesis proposes three novel SDG methods de-
signed to improve AD classification under domain shift while taking into account
the anatomical properties of neurodegeneration:

• Learnable pseudo-morphological augmentations with supervised
contrastive learning: As discussed before, atrophy is the main biomarker
for AD. Based on that, this method introduces class-specific 3D morphological
augmentations using learnable erosion and dilation modules, designed to re-
flect the variable presence of atrophy across classes. These augmentations are
coupled with supervised contrastive loss to enforce representation consistency
across domains.

• Distance transform guided MixUp: A structure-aware data augmentation
strategy is introduced that uses distance transforms to decompose 3D brain
volumes into spatial layers. Patch mixing is performed in a way that pre-
serves anatomical boundaries, mitigating the distortions introduced by vanilla
MixUp.

• Extended MixStyle with higher-order statistics: A generalization of the
MixStyle framework is proposed to include higher-order feature statistics (e.g.,
skewness and kurtosis), providing more expressive feature perturbations that
better simulate domain shifts.

All models are trained on the NACC dataset and evaluated on two independent
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benchmarks, ADNI and AIBL. Extensive experiments conducted on all three affore-
mentioned methods demonstrate improved performance under domain shift. These
contributions aim to advance domain-generalizable AD diagnosis by incorporating
disease-specific anatomical priors, addressing class imbalance, and improving the
robustness of feature learning under SDG constraints.
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2. RELATED WORK

2.1 Background and Challenges in AD Detection

2.1.1 Overview of Alzheimer’s Disease

Alzheimer’s disease is a progressive neurodegenerative disorder that arises from
a complex factors, including genetic susceptibility, environmental exposures, and
lifestyle influences, leading to gradual cognitive decline, behavioral impairments,
and irreversible structural brain damage (Chen, Pan, Xia & Yuan, 2023; Zhang,
Zhang, Wang, Xia, Zhang & Chen, 2024). One of the most significant challenges in
managing AD is the difficulty of early diagnosis. This is largely due to the slow and
subtle nature of disease progression, which varies considerably across individuals in
terms of symptoms, affected brain regions, and rate of cognitive decline. Identifying
AD early, especially during prodromal i.e. MCI stages, is crucial for effective clinical
intervention and long-term care planning.

Clinically, AD progression is often categorized into three stages: mild (early), mod-
erate (middle), and severe (late). In the mild stage, individuals may function in-
dependently but show early signs such as word-finding difficulty, disorganization,
or short-term memory loss (McKhann, Knopman, Chertkow, Hyman, Jack, Kawas,
Klunk, Koroshetz, Manly, Mayeux & others, 2011). This stage frequently overlaps
with MCI, a heterogeneous condition subtyped into early and late MCI depend-
ing on severity and likelihood of conversion to AD. As AD advances, memory and
behavioral symptoms intensify, eventually requiring full-time care.

At the neuropathological level, AD is defined by the accumulation of two hallmark

5



proteins: amyloid-beta plaques and tau tangles. These protein aggregates disrupt
synaptic communication and trigger inflammatory and apoptotic processes, ulti-
mately leading to widespread neuronal death. The hippocampus, critical for mem-
ory encoding and consolidation, is among the earliest and most severely affected re-
gions. As the disease progresses, brain atrophy spreads to the temporal and parietal
lobes, and cortical thinning becomes more generalized. These anatomical changes
are mirrored by worsening memory loss, disorientation, language impairment, emo-
tional dysregulation, and, in later stages, the complete loss of independence (Braak
& Braak, 1991; Jack et al., 2018). (Fig. 2.1) shows brain scans from AD, MCI,
and NC subjects in the ADNI dataset. The AD scan (a) displays significant cor-
tical atrophy near the hippocampal and parietal regions, while the NC scan (b)
shows preserved brain volume. The MCI scan (c) exhibits intermediate features,
underscoring the need to detect these subtle structural differences.

(a) AD case (b) NC case (c) MCI case

Figure 2.1 Alzheimer’s 2D MRI slices (a) AD case showing pronounced cortical
atrophy, (b) NC subject with intact brain structure, and (c) MCI case exhibiting
intermediate anatomical features between AD and NC.

2.1.2 Clinical Importance and Imaging-Based Diagnosis

There have been numerous efforts to enable early diagnosis of AD due to its clin-
ical, social, and economic importance. Clinically, early detection allows for timely
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intervention to slow progression and manage symptoms. It also supports informed
care planning. Socially, it reduces uncertainty and engages support networks ear-
lier. Economically, it can lower costs by delaying institutional care and improving
treatment efficiency.

Diagnosis typically involves a combination of clinical evaluation, cognitive testing,
and biomarker analysis. Although a definitive diagnosis is usually confirmed after
death (Jack et al., 2018) tools like brain imaging and spinal fluid tests are important
for detecting changes while the person is still alive. Cognitive tests look for problems
with memory, language, and thinking skills, while imaging shows structural changes
in the brain that are consistent with disease progression.

Among various imaging techniques, magnetic resonance imaging (MRI) is widely
used in the diagnosis of AD due to its accessibility, safety, and ability to detect
structural brain changes. Unlike Positron Emission Tomography (PET), which re-
quires radioactive tracers, MRI is non-invasive and does not involve radiation. It
provides high-resolution images that reveal early signs of brain atrophy, particularly
in the hippocampus and medial temporal lobe—areas affected early in the disease.
These changes often appear before noticeable symptoms and help distinguish AD
from other types of dementia. MRI also supports disease staging by monitoring
cortical thinning over time, making it valuable for both diagnosis and ongoing as-
sessment (Frisoni, Fox, Jack Jr, Scheltens & Thompson, 2010).

2.1.3 Limitations of Current Diagnostic Methods

Despite recent advances, current methods for detecting AD, both clinical and AI-
driven, still face significant limitations. Clinically, early symptoms often overlap
with those of normal aging or other neurodegenerative and psychiatric conditions,
such as depression or vascular dementia. This overlap contributes to frequent mis-
diagnoses or delayed detection (Fotuhi, Hachinski & Whitehouse, 2009). Cognitive
screening tools are commonly used but have limited sensitivity for early-stage or
preclinical AD and can be influenced by factors such as education level, language,
and cultural background (Manly, Bell-McGinty, Tang, Schupf, Stern & Mayeux,
2005). Biomarker-based methods, such as specialized brain imaging and fluid tests,
can improve diagnostic accuracy but tend to be expensive, invasive, and not widely
accessible in standard healthcare settings.

AI-based approaches offer promise in overcoming some of these clinical limitations,
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yet they introduce new challenges. Many models are trained on datasets that lack de-
mographic diversity, reducing their effectiveness across broader populations. Imag-
ing data often originate from specific research cohorts, which may not reflect the
variability encountered in typical clinical environments. Furthermore, differences
in MRI scanners, acquisition protocols, and data preprocessing can introduce in-
consistencies that degrade model performance. These models also tend to rely on
high-quality or multi-modal inputs that are not routinely available in many clinics.
Another major concern is the limited interpretability of AI systems, which makes it
difficult for clinicians to understand or trust the decisions being made. Additionally,
technical barriers such as high computational costs and the absence of standardized
evaluation practices hinder the deployment of these tools at scale (Lundervold &
Lundervold, 2019).

2.1.4 Importance of Generalization in AD Detection

Generalization is a cornerstone of any reliable AI system intended for clinical deploy-
ment, particularly in the context of AD detection using 3D MRI data. In real-world
settings, patients vary widely in terms of age, ethnicity, and cognitive baselines,
and MRI data can differ significantly depending on scanner manufacturer, magnetic
field strength, and acquisition parameters. A model that performs well on a single
dataset or site may struggle when applied to new, unseen populations or imaging
conditions. Such variability can lead to poor clinical performance and unreliable di-
agnostic outcomes, undermining the potential benefits of AI in early AD detection.

To address this, recent research has focused on methods that explicitly enhance gen-
eralization. These include multi-site training, domain adaptation, harmonization of
imaging data, and validation across diverse cohorts. Federated learning is also gain-
ing attention as a privacy-preserving strategy to train models on decentralized data
from multiple sources (Li, Sahu, Talwalkar & Smith, 2020). Importantly, models
must not only generalize across imaging sites but also maintain robustness across
varying cognitive trajectories and disease presentations. Ensuring generalization is
essential to move beyond controlled experimental conditions and toward building
clinically trustworthy systems. As such, improving generalization is not merely a
technical refinement but it is fundamental to safe, and effective application of AI in
AD diagnostics.
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2.2 Data and Evaluation Landscape

2.2.1 Public Datasets for AD Research

Public datasets have been fundamental to the advancement of AD research, par-
ticularly for training and evaluating machine learning models on neuroimaging and
clinical data. Among the most widely used is the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) (Petersen, Aisen, Beckett, Donohue, Gamst, Harvey, Jr, Jagust,
Shaw, Toga & Trojanowski, 2010), which provides a rich repository of longitudinal
MRI, PET, genetic, and cognitive assessments collected from multiple clinical sites.
The National Alzheimer’s Coordinating Center (NACC) (Ellis, Bush, Darby, Fazio,
Foster, Hudson, Lautenschlager, Lenzo, Martins, Maruff, Masters & the AIBL Re-
search Group, 2009) dataset complements this with standardized clinical data from
a large, diverse patient population across Alzheimer’s Disease Centers in the United
States. Similarly, the Australian Imaging, Biomarker & Lifestyle Flagship Study
of Ageing (AIBL) (Ellis et al., 2009) offers multi-modal data with an emphasis on
lifestyle and biomarker interactions, while the Framingham Heart Study (FHS) (Se-
shadri, Beiser, Kelly-Hayes, Kase, Au, Au, Hoffmann, Benjamin, Vasan & Wolf,
2006) provides valuable insights through its long-term, community-based cohort
tracking both cardiovascular and cognitive health. Additionally, the Open Access
Series of Imaging Studies (OASIS) (Marcus, Wang, Parker, Csernansky, Morris &
Buckner, 2007) offers freely available cross-sectional and longitudinal MRI datasets,
spanning cognitively normal individuals to those with early-stage dementia, making
it a critical resource for studying brain aging and Alzheimer’s progression.

These datasets enable robust model development and validation by offering var-
ied demographic, clinical, and imaging characteristics. Their availability supports
reproducibility and cross-study comparisons, which are essential for scientific rigor.
Additionally, the diversity across datasets allows for the development of models that
are more generalizable to real-world clinical settings. However, challenges such as
label inconsistencies, missing modalities, and variations in imaging protocols remain
under-investigated and need attention.
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2.2.2 Evaluation Metrics and Validation Protocols in AD Research

Robust evaluation metrics and validation protocols are essential for assessing the re-
liability and clinical applicability of AD detection models. Commonly used metrics
in classification tasks include accuracy, precision, recall, F1-score, and the area un-
der the receiver operating characteristic curve (AUC-ROC) (Bravo-Ortiz, Holguin-
Garcia, Quiñones-Arredondo, Mora-Rubio, Guevara-Navarro, Arteaga-Arteaga, Ruz
& Tabares-Soto, 2024). These metrics help quantify a model’s ability to distinguish
between diagnostic categories such as cognitively normal, mild cognitive impair-
ment, and AD. However, over-reliance on accuracy can be misleading, especially
in datasets with class imbalances which is a common issue in medical datasets. In
such cases, metrics like AUC, balanced accuracy, and sensitivity-specificity trade-offs
offer more informative insights into model performance. Moreover, in imbalanced
datasets, macro metrics are needed because they equally weight each class, ensuring
that minority classes are not overshadowed by majority class performance.

Beyond metrics, the choice of validation strategy plays a critical role in determin-
ing how well a model generalizes. Cross-validation, particularly k-fold or stratified
variants, is widely used to assess performance within a dataset. However, to truly
evaluate generalization, external validation which means testing on an independent
dataset from a different cohort or imaging site is increasingly recognized as the
preferred standard. Additionally, consistent preprocessing pipelines and train-test
splits are crucial for reproducibility and fair comparisons across studies. In practice,
validation results can be unreliable due to inconsistencies in preprocessing steps,
varying dataset sizes, and the lack of standardized sampling strategies. These fac-
tors may lead to biased evaluations and inflated performance estimates, thereby
limiting the reliability and comparability of reported results (Zech, Badgeley, Liu,
Costa, Titano & Oermann, 2018).

2.3 Model Architectures

Recent advances in deep learning have led to the development of specialized ar-
chitectures tailored for medical imaging tasks, including AD detection from MRI
scans. Among these, encoder-decoder-based architectures, attention mechanisms,
and 3D CNNs have shown strong performance in capturing both spatial patterns
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and anatomical features relevant to neurodegeneration. This section outlines repre-
sentative architectures commonly used for AD-related tasks, with a focus on their
design principles and suitability for structural brain imaging.

2.3.1 Convolutional Neural Networks

CNNs form the backbone of many deep learning approaches in medical imaging,
including AD diagnosis from MRI scans. Their ability to learn hierarchical spa-
tial features makes them well-suited for identifying structural brain abnormalities
associated with neurodegeneration. Traditional CNNs operate on 2D slices, often
processing sagittal, coronal, or axial planes independently and later aggregating re-
sults across views (Sarraf & Tofighi, 2016). While effective in many contexts, such
2D approaches may miss inter-slice dependencies that are crucial in volumetric data.

To address the limitations of 2D approaches, 3D CNNs apply convolutions across
all three spatial dimensions, enabling direct modeling of volumetric context. Many
CNN variants have been explored for AD classification and feature extraction, but
this thesis focuses on UNet and ResNet architectures due to their relevance and
widespread use. Despite higher computational costs, 3D CNNs remain well-suited
for structural neuroimaging tasks because of their ability to capture subtle anatom-
ical patterns.

2.3.1.1 ResNet Architecture

The ResNet (Residual Network) architecture is a deep CNN model designed to ad-
dress the vanishing gradient problem in very deep networks through the use of resid-
ual connections. These connections allow the network to learn identity mappings
by directly passing input features across layers, facilitating more effective gradient
flow during backpropagation. As shown in (Fig. 2.2), a ResNet is composed of
multiple stacked residual blocks, each containing convolutional layers and shortcut
connections that bypass one or more layers.

In context of AD detection using 3D MRI, ResNet is commonly adapted into 3D
variants by replacing 2D operations with 3D convolutions and pooling. This allows
the model to learn volumetric features and detect subtle anatomical changes across
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the brain. Its residual blocks and modular design support deep architectures while
preserving efficient training and representational depth.

Figure 2.2 3D ResNet Architecture (adapted from (Guan et al., 2021)).

2.3.1.2 U-Net Architecture

The UNet architecture is a widely adopted CNN architecture originally developed
for biomedical image segmentation, and it has been effectively adapted for tasks
such as brain tissue segmentation, lesion detection, classification, and regional vol-
umetric analysis from MRI scans. As shown in (Fig. 2.3), the symmetric encoder-
decoder structure is designed to capture both high-level semantic information and
fine-grained spatial details. The encoder path consists of repeated convolutional
and downsampling layers that learn hierarchical features from input images. These
features are then passed through a decoder path, which performs upsampling and
integrates information from earlier encoder layers through skip connections. This
design helps retain spatial context and sharp boundaries, which is particularly useful
when identifying subtle anatomical changes associated with early-stage AD.

For 3D MRI data, 3D UNet variants are often used to improve model volumet-
ric context across the sagittal, coronal, and axial planes. These models replace
traditional 2D operations with 3D convolutions and pooling layers, enabling more
comprehensive analysis of structural brain changes.
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Figure 2.3 U-Net3D Architecture (adapted from (Roth et al., 2018)).

2.3.2 Morphology-Inspired Neural Architectures

2.3.2.1 Mathematical Morphology

Mathematical morphology is a nonlinear image processing framework focused on the
analysis and transformation of geometrical structures within images. Unlike linear
techniques that manipulate intensity values through operations like convolution and
frequency filtering, morphological methods emphasize the shape preservation and
modification. Central to these methods is the structuring element, a predefined
shape such as a disk, square, or line which slides across the image to interact with
local pixel neighborhoods. Fundamental morphological operations such as dilation
and erosion apply the structuring element to expand or shrink image regions based on
their spatial configuration (Soille, 2003). These operations are particularly effective
in highlighting structural boundaries, suppressing noise, and extracting shape-based
features critical for medical and biomedical image analysis.

2.3.2.2 Morphological Networks

Morphological networks implement the operations of mathematical morphology such
as dilation and erosion within neural architectures by reformulating them in a dif-
ferentiable, learnable manner (Davidson & Hummer, 1993). Based on the util-
ity of morphological operations in this thesis, only dilation and erosion operations
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will be discussed. Traditional morphological operations are non-linear and non-
differentiable due to the use of max and min functions. To integrate these into
gradient-based training pipelines, dilation and erosion can be defined as follows:

(2.1) y(i) = max
j∈W

(x(i+ j)+w(j)) ,

(2.2) yero(i) = min
j∈W

(x(i+ j)−w(j)) ,

where x is the input feature map, w is a learnable structuring element, and W is
the neighborhood window. Similarly, erosion replaces the max operation with a
min. Since max and min are non-differentiable, smooth approximations such as the
log-sum-exp function are often used to enable gradient flow during training. The
maximum can be approximated as:

(2.3) max(a1,a2, . . . ,an)≈ 1
β

log
(

n∑
i=1

eβai

)
,

where β > 0 controls the sharpness of the approximation. A higher β yields a result
closer to the true max, while a lower β produces a smoother output. Similarly, the
minimum can be approximated using the identity min(a) =−max(−a), which gives:

(2.4) min(a1,a2, . . . ,an)≈− 1
β

log
(

n∑
i=1

e−βai

)
.

These smooth functions allow morphological layers to remain differentiable and
trainable within standard backpropagation-based optimization frameworks.

An alternative implementation strategy, introduced by (Hu, Belkhir, Angulo, Yao &
Franchi, 2022), avoids explicit approximations by simulating morphological behav-
ior through pseudo morphological modules. These approximate dilation and erosion
using a combination of convolution and pooling. A convolutional layer first expands
the input channels, and a pixel shuffle operation reshapes the output to form local
receptive fields analogous to a morphological window. To simulate dilation, a max
pooling layer is applied over this rearranged feature map, extracting the local max-
imum equivalent to traditional dilation. Erosion is approximated by first negating
the feature map, applying max pooling, and then re-negating the result—equivalent
to computing a minimum via the identity. this approach is further expanded on
in Section 4.2. Since all operations are differentiable, the module enables efficient,
end-to-end learning of morphological transformations within deep networks.

14



2.4 Deep Learning Approaches for AD Detection and Generalization

2.4.1 AD Detection Approaches

Numerous studies have investigated AD detection using MRI data. A Multi-
Attention-based Global 3D ResNet architecture is introduced in (Li et al., 2024),
enhancing feature representations using channel and spatial attention mechanisms,
along with a non-local block to capture long-range dependencies. Similarly, the 3D
Global Fourier Network (Zhang et al., 2022) uses global frequency filtering instead
of spatial convolutions for long-range dependency modeling, achieving strong per-
formance on ADNI and AIBL datasets. AMSNet (Wu, Zhou, Zeng, Qian & Song,
2022) employs a multi-scale integration block and soft attention to extract hierarchi-
cal spatial features. Lightweight CNN models such as LHAttNet (Jabason, Ahmad
& Swamy, 2025) apply dual attention modules to extract contextual features from
2D MRI slices.

Other studies propose architectures like MMRN (Han et al., 2023), which treat mul-
tiple brain template registrations as self-supervised augmentations and introduce
meta-information regularization. The Dense Attention Network proposed in (Gan,
Lan, Huang, Su & Huang, 2025) leverages linear attention within dense connections
to reduce parameters while maintaining accuracy. A dual-branch CNN in (El-Assy
et al., 2024) combines different receptive fields and pooling strategies for diverse
feature capture. Similarly, a 3D densely connected CNN with connection-wise at-
tention (Zhang, Zheng, Gao, Feng, Liang & Long, 2021) and the ADNet model
(Folego et al., 2020) further demonstrate full-volume 3D CNN pipelines for efficient
biomarker learning. Ensemble methods, such as in (Rahim, Ahmad, Ullah, Bedi &
Jung, 2025), integrate Bayesian-optimized classifiers and CNN attention modules
for early-stage AD detection. The Biceph-Net architecture (Rashid, Gupta, Gupta
& Tanveer, 2022) also offers a compact dual-branch solution for extracting both
structural and similarity-based features from 2D MRIs.

Transformer-based models have also garnered increasing attention due to their abil-
ity to capture global context and long-range dependencies. For instance, a modified
ViT pipeline for MRI enhancement is proposed in (Joy et al., 2025), aiming to bet-
ter preserve structural details during image reconstruction. Similarly, RanCom-ViT
(Lu et al., 2025) introduces token compression techniques to reduce computational
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overhead while maintaining classification performance. In a related approach, Joint
Transformer models (Alp et al., 2024) are designed to simultaneously model spatial
features across brain regions and the temporal progression of AD. Moreover, multi-
modal fusion strategies, such as the one in (Duong et al., 2025), leverage complemen-
tary information from MRI and PET using both self-attention and cross-attention
mechanisms to improve diagnostic accuracy. In addition, cross-modal ViTs (Jaba-
son et al., 2025) integrate features across imaging modalities to enhance robustness
against variations in the input data. Ensemble ViTs (Shaffi et al., 2024) further
improve performance in imbalanced and limited data settings by aggregating pre-
dictions from multiple transformer branches.

Graph-based methods also offer promising alternatives. DAGNN (Gamgam et al.,
2024) uses disentangled attention on brain connectivity graphs. While, AD-GNN
(Wu et al., 2022) and CSWCL-GCN (Hu et al., 2024) capture spatial and demo-
graphic relationships with graph pooling and contrastive loss. Disentanglement-
based architectures (Chen et al., 2023) fuse modality-specific and shared represen-
tations for imputation and classification. Hybrid frameworks like 3D HCCT (Majee
et al., 2024) combine convolution and transformer elements with minimal prepro-
cessing pipelines. Similarly, semi-supervised models like (Aviles-Rivero, Runkel,
Papadakis, Kourtzi & Schönlieb, 2022) apply hypergraph learning to capture high-
order intermodal relationships. While these models achieve strong performance
when trained and evaluated on data from the same distribution, their ability to gen-
eralize across domains remains a challenge, motivating recent research in domain
generalization for AD detection.

2.4.2 Domain Generalization in AD Detection

Domain Generalization in AD detection aims to build models that perform robustly
across domains with different distributions. This is especially challenging in the SDG
setting, where models are trained on a single source domain. A disease-informed
framework using a two-stage 3D U-Net with saliency-guided attention was proposed
in (Lteif et al., 2024) to enhance generalization. Another method (Zhou et al., 2023a)
employed a patch-free ResNet with domain-specific encoding to disentangle invariant
and variant features. Prototype-guided multi-scale domain adaptation (Cai et al.,
2023) addressed both marginal and conditional distribution shifts using a combi-
nation of adversarial and metric-based alignment. In contrast, (Wang et al., 2022)
embraced domain-specific variations by incorporating auxiliary demographic tasks
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and intra-study fine-tuning. Similarly, attention-guided deep domain adaptation
(Guan, Liu, Yang, Yap, Shen & Liu, 2021) aligned features at both the representa-
tion and region levels without requiring labels from the target domain. Collective
AI strategies (Nguyen et al., 2023) used ensembles of region-specific 3D U-Nets and
GNNs to manage domain variability. Domain contrastive learning (Zhou, Li, Zhou,
Liu & Tu, 2023b) applied a self-supervised contrastive loss in the latent space to
extract domain-invariant features. A related method (Fiasam et al., 2023) combined
a ResNet-based 3D CNN with a domain-aware module and multiple classifiers to
learn both shared and domain-specific representations. Despite these advances, most
DG approaches remain generic and do not incorporate the disease-specific anatom-
ical patterns associated with AD. This thesis aims to address this gap by explicitly
integrating disease-aware information into the generalization process.

2.4.3 General DG Approaches for Medical Image Analysis

Several DG techniques from general computer vision have been adapted for AD de-
tection. MixUp (Zhang, Cissé, Dauphin & Lopez-Paz, 2018) and MixStyle (Zhou,
Yang, Qiao & Xiang, 2021) offer simple yet effective augmentation strategies by
interpolating samples or by erturbing feature statistics, respectively. However, their
inherent randomness may unintentionally distort subtle pathological patterns crit-
ical for AD diagnosis. More targeted techniques include adversarial Bayesian aug-
mentation (Cheng, Gokhale & Yang, 2023), which generates domain-shifted variants
through Bayesian inference, and frequency-mixed methods (Li, Li, Zhao, Fu, Su, Hu
& Liu, 2023), which operate in the spectral domain to simulate realistic distribution
shifts. Style-transfer-based perturbations (Li, Zimmer, Ding, Wu, Huang, Schn-
abel & Zhuang, 2021) aim to replicate domain-specific appearance changes while
preserving semantic content.

Beyond augmentation, Representation Self-Challenging (RSC) approach (Huang,
Wang, Xing & Huang, 2020) improves generalization by identifying and suppressing
overly dominant features via gradient analysis, prompting the model to learn more
diverse and informative representations without architectural changes. Contrastive
DG strategies like CCSDG (Hu, Liao & Xia, 2023) introduce style-augmented image
pairs to disentangle style and structure at the channel level, allowing segmentation or
classification to rely primarily on structure-relevant cues. Exact Feature Distribution
Matching (EFDM) (Zhang, Li, Li, Jia & Zhang, 2022) enhances feature alignment
by directly matching empirical cumulative distributions in latent space through a

17



fast Sort-Matching algorithm, offering a more precise alternative to conventional
Gaussian-based methods.

While these approaches have advanced DG in medical imaging, they remain largely
generic and are not specifically designed for the structural complexity and progres-
sive nature of Alzheimer’s disease. This highlights the need for DG methods that
explicitly incorporate anatomical and morphological cues associated with neurode-
generation.

2.4.4 Morphological Modules for AD Detection

Mathematical morphology has been extensively explored in the context of medical
imaging (Gurcan, Boucheron, Can, Madabhushi, Rajpoot & Yener, 2009; James &
Dasarathy, 2014; Sotiras, Davatzikos & Paragios, 2013) before the advent of deep
learning due to its inherent capacity for shape analysis (Aptoula & Lefèvre, 2009).
Consequently, multiple attempts have been made in order to implement its data-
driven counterpart, even though its non-linearity complicates differentiability and
the back-propagation of errors via gradient descent. For instance, one approach
(Hu et al., 2022) introduced differentiable dilation and erosion using neural archi-
tecture search to integrate them into end-to-end models. Another method (Ghosh &
Das, 2024) proposed multi-scale modules with learnable structuring elements, and
a separate effort (Guzzi, Zuluaga, Lareyre, Di Lorenzo, Goffart, Chierici, Raffort
& Delingette, 2024) developed soft morphological filters to optimize operations like
dilation. A hybrid strategy (Canales-Fiscal & Tamez-Peña, 2023) combined fixed
morphological layers with shallow convnets, though it lacked flexibility and full end-
to-end training.

More specifically in the context of morphology-oriented AD detection, graph-
theoretical metrics have been applied to morphological networks for early detec-
tion (Ding, Wang, Tang, Wang, Qi, Dou, Qian, Gao, Zhong, Yang & others, 2023),
while mesh-based graph convolutional networks have been used in (Azcona, Besson,
Wu, Punjabi, Martersteck, Dravid, Parrish, Bandt & Katsaggelos, 2020) to model
cortical structure. Finally, a transformer-based model (Wang, Chen & Wang, 2024)
incorporated morphology-aware augmentations but relied on external, non-learnable
priors. In contrast, one of the proposed approaches in this thesis utilizes fully dif-
ferentiable, class-aware pseudo-morphological modules for AD diagnosis. It learns
transformations specific to each class and generates meaningful augmentations to
improve neurodegeneration modeling.
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2.4.5 Contrastive Learning based Approaches for AD Detection

Contrastive learning has recently gained popularity in AD detection as a power-
ful self-supervised and semi-supervised representation learning technique, particu-
larly valuable in medical imaging domains. By training models to distinguish be-
tween similar and dissimilar data pairs, contrastive frameworks help uncover subtle
neurodegenerative patterns characteristic of AD. One approach, called SMoCo, in-
troduced a self-supervised model utilizing 3D amyloid-PET to predict MCI-to-AD
conversion (Kwak, Park, Lee & others, 2023). Another method, known as Brain-
Aware Replacements, leveraged region-specific mixup and supervised contrastive
loss to boost classification performance (Seyfioğlu, Liu, Kamath, Gangolli, Wang,
Grabowski & Shapiro, 2022). In a separate study, a 3D CNN-based multichan-
nel contrastive learning framework was developed to diagnose AD and MCI using
T1-weighted MRI. This method combines supervised classification loss with unsu-
pervised contrastive loss by applying multiple data transformations (e.g., noise in-
jection), enhancing both accuracy and generalization on the ADNI dataset (Wang,
Hu & others, 2023). Furthermore, a technique called Domain Contrastive Learn-
ing was introduced to address variability in multi-site MRI datasets by extracting
domain-invariant features within an autoencoder’s latent space. Evaluated across
three sites, the approach significantly improved classification robustness and trans-
ferability, outperforming baselines in AD vs. NC tasks (Li, Zhang & others, 2023).
These diverse approaches collectively underscore the growing utility of contrastive
learning in achieving more reliable, generalizable, and interpretable AD detection
across modalities and data environments.
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3. DATASET AND IMPLEMENTAITON DETAILS

3.1 Dataset

This thesis utilizes three publicly accessible datasets: NACC (Beekly, Ramos, van
Belle, Deitrich, Clark, Jacka & Kukull, 2004), ADNI (Petersen et al., 2010), and
AIBL (Ellis et al., 2009). Each dataset contains 3D MRI scans grouped into three
diagnostic categories: NC, MCI, and AD. Only subjects aged 55 and older were
considered to ensure age consistency. The 3D MRI is presented as 2D slices for
visualization in (Fig. 3.1) prior to any preprocessing steps.

Figure 3.1 MRI samples without preprocessing.

To maintain uniformity across datasets, all MRI volumes underwent preprocessing
using a standardized pipeline adapted from (Qiu, Miller, Joshi, Lee, Xue, Ni, Wang,
De Anda-Duran, Hwang, Cramer & others, 2022), which includes registration to
the MNI152 template, skull stripping to eliminate extra brain tissues, and bias field
correction to minimize intensity inhomogeneity. Due to the differing acquisition pro-
tocols and scanner configurations across datasets, domain shift is inherently present.
Labels were used as provided, and no subtypes were distinguished within the MCI
class. For model development, 80% of the NACC data was used for training and
20% for validation. Generalization performance was evaluated using 80% subsets of
ADNI and AIBL.
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Figures 3.2, 3.3 and 3.4 present representative MRI slices from the NACC, ADNI
and AIBL datasets, respectively. These 2D slices are extracted from 3D MRI vol-
umes only for the purpose of visualization. For each dataset, subfigure (a) shows
a subject with AD, (b) shows a subject with NC, while (c) shows a subject with
MCI. The slices highlight both anatomical variability across diagnostic groups and
structural differences between datasets. The NACC volumes have a resolution of
182×218×182 pixels with isotropic voxel spacing of 1 mm. ADNI scans exhibit a
larger volume size of 166× 256× 256 pixels, also with 1 mm isotropic spacing. In
contrast, AIBL volumes are sized 160×240×256 pixels with anisotropic spacing of
approximately [1.20,1.00,1.00] mm/pixel, yielding physical dimensions of roughly
192×240×256 mm. Moreover, while intra-dataset variations such as cortical thick-
ness, ventricle size, and localized atrophy pose inherent classification challenges,
inter-dataset differences also complicate model generalization. Together, these ex-
amples underscore the need for robust, domain-aware learning strategies capable of
adapting to both clinical and technical variability.

(a) AD case (b) NC case (c) MCI case

Figure 3.2 NACC dataset samples: (a) AD case showing pronounced cortical at-
rophy, (b) NC subject with intact brain structure, and (c) MCI case exhibiting
intermediate anatomical features between AD and NC.

Moreover, demographic and class distribution details of the datasets are presented in
Table 3.1. Class imbalance remains a key challenge, particularly due to the relatively
low number of AD samples, as evidenced in Table 3.1. This imbalance not only
affects model learning but also significantly hinders generalization, especially when
distinguishing early-stage AD from MCI or NC. Cross-validation was not conducted,
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(a) AD case (b) NC case (c) MCI case

Figure 3.3 ADNI dataset samples: (a) AD case showing pronounced cortical atrophy,
(b) NC subject with intact brain structure, and (c) MCI case exhibiting intermediate
anatomical features between AD and NC.

primarily due to computational and time constraints since, 3D nature of the input
volumes significantly increases training time per epoch.

Table 3.1 Demographic Characteristics of Participants in NACC, ADNI, and AIBL
Datasets.

Dataset Group Age, years Gender
mean ± std (male count)

NACC (Beekly et al., 2004)
NC (n=2524) 69.8± 9.9 871 (34.5%)
MCI (n=1175) 74.0 ± 8.7 555 (47.2%)
AD (n=948) 75.0 ± 9.1 431 (45.5%)

ADNI (Petersen et al., 2010)
NC (n=684) 72.3 ± 6.9 294 (43.0%)
MCI (n=572) 73.8 ± 7.5 337 (58.9%)
AD (n=317) 75.1 ± 7.7 168 (53.0%)

AIBL (Ellis et al., 2009)
NC (n=465) 72.3 ± 6.2 197 (42.4%)
MCI (n=101) 74.5 ± 7.2 53 (52.5%)
AD (n=68) 73.0 ± 8.2 27 (39.7%)

Another critical limitation lies in the skull stripping step of the preprocessing
pipeline. Despite using widely accepted tools, errors in skull stripping occasion-
ally result in unintended removal of brain tissue, particularly at the boundaries of
the frontal and temporal lobes. (Fig. 3.5) illustrates an example of such a failure.
These artifacts not only distort the anatomical structure but can also mislead the
model during training, causing it to focus on erroneous regions unrelated to disease
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(a) AD case (b) NC case (c) MCI case

Figure 3.4 AIBL dataset samples: (a) AD case showing pronounced cortical atrophy,
(b) NC subject with preserved brain volume, and (c) MCI case with intermediate
structural features.

pathology. This can ultimately degrade the model’s ability to generalize and cor-
rectly detect disease patterns. Although such artifacts can affect learning, removing
all problematic samples is impractical due to the already limited size of the datasets
and the class imbalance.

3.1.1 Limitations in Dataset Expansion and Preprocessing Considerations

Although incorporating additional datasets could improve model generalizability, we
chose to limit our work to three, well-curated dataset due to several practical and
methodological constraints. As shown in (Fig. 3.1), raw images often include non-
brain structures such as the skull and neck, necessitating skull stripping. However,
this step is error-prone and can lead to loss of critical brain tissue, as illustrated
in (Fig. 3.5). These distortions not only compromise anatomical accuracy but also
introduce noise into model training, reducing reliability.

In addition, the preprocessing pipeline is highly time-intensive, requiring multi-
ple stages such as reorientation, intensity normalization, and quality control—each
demanding both computational resources and manual oversight. Every single sam-
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(a) Skull-stripping error in
ADNI sample

(b) Skull-stripping error in
AIBL sample

Figure 3.5 Skull-stripping quality visualization for (a) ADNI and (b) AIBL datasets.

ple must be manually inspected to ensure preprocessing integrity. Expanding to
more datasets would further amplify these demands. Furthermore, inconsistencies
in imaging protocols, label definitions, and data access across sources pose significant
integration challenges. To maintain consistency, reduce complexity, and ensure data
quality, we limited our analysis to a single dataset with controlled preprocessing.

3.2 Implementation Details

All experiments were carried out using an A6000 GPU (48 GB). Due to GPU mem-
ory constraints, training began with a batch size of 2, which was effectively scaled to
16 via gradient accumulation. The reason for lower batch size is due to high memory
demands of processing full-resolution 3D MRI volumes. The model was optimized
using stochastic gradient descent with a learning rate of 0.01, momentum set to
0.9, and a weight decay of 0.0005. An exponential learning rate scheduler was ap-
plied, decaying the learning rate by 5% after each training epoch. To mimic domain
shift scenarios encountered in real-world applications, the standard SDG protocol
described in (Qiao, Zhao & Peng, 2020) was followed. Specifically, the model was
trained and validated exclusively on the NACC dataset, then tested on
two distinct target domains: ADNI and AIBL which differ in scanner
hardware, imaging protocols, and demographic characteristics. This setup
allows us to evaluate the model’s ability to generalize under out-of-distribution con-
ditions.
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3.2.1 Baselines

The proposed methods were evaluated against a baseline encoder without any SDG
components, along with several established SDG techniques. MixUp (Zhang et al.,
2018) was applied with an interpolation factor of α = 0.3 to encourage smoother
decision boundaries through sample interpolation. RSC (Huang et al., 2020) was
configured with 20% feature dropout, 5% background dropout, and a 0.3 mixing
probability to suppress dominant features and promote learning from alternative
cues. EFDM (Zhang et al., 2022) used a patch replacement probability of p= 0.5 and
α= 0.1, aiming to maintain consistent feature distributions across domains. Finally,
MixStyle (Zhou et al., 2021) was applied with α = 0.1 and p = 0.5, facilitating AD
detection by mixing instance-level feature statistics.

All baselines used a 3D pretrained U-Net architecture (Zhou, Sodha, Siddiquee,
Feng, Tajbakhsh, Gotway & Liang, 2019) with four convolutional blocks and filter
sizes increasing from 32 to 512. Performance was assessed using accuracy, F1 score,
sensitivity, and specificity to provide a comprehensive evaluation of model behavior
across key clinical metrics.

3.2.2 Pretraining with Chest CT Data: Rationale and Limitations

The pretrained checkpoint used for the 3D U-Net architecture in this work was
derived from (Zhou et al., 2019), which was trained on unlabeled chest CT scans.
Model Genesis is a self-supervised learning approach that trains models to learn
transferable 3D representations by solving tasks like image restoration, inpainting,
and geometric transformations, enabling structural understanding without labels.

Although chest CT and brain MRI belong to different imaging domains, both share
essential 3D structural characteristics, making such pretraining beneficial. To the
best of our knowledge, there are no publicly available 3D U-Net checkpoints pre-
trained specifically on brain MRI using self-supervised or large-scale annotated
datasets. Given this gap, the Model Genesis checkpoint trained on chest CT offers
a strong initialization, improving convergence and generalization for AD detection
with limited or imbalanced brain imaging data.
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3.2.3 Weighted Cross-Entropy Loss for Class Imbalance

Class imbalance is a common challenge in medical imaging datasets, particularly in
disease classification tasks where certain diagnostic categories may be significantly
underrepresented. This imbalance can bias the model toward majority classes, re-
sulting in degraded performance on minority categories such as AD.

To mitigate this issue, a weighted cross-entropy (WCE) loss function is employed.
The standard cross-entropy (CE) loss is defined as:

(3.1) LCE =−
C∑
i=1

yi log(pi)

where C denotes the number of classes, yi is the one-hot encoded ground truth label,
and pi is the predicted probability for class i.

In the weighted variant, each class is assigned a weight wi, resulting in:

(3.2) LWCE =−
C∑
i=1

wiyi log(pi)

The weights wi are typically computed as the inverse of the class frequency. By
increasing the penalty for misclassifying underrepresented classes, this approach
encourages the model to treat all classes more equally and reduces bias toward
dominant categories such as NC.
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4. SINGLE DOMAIN GENERALIZATION FOR ALZHEIMER’S

DETECTION FROM 3D MRI SCANS WITH
PSEUDO-MORPHOLOGICAL AUGMENTATIONS AND

CONTRASTIVE LEARNING

4.1 Overview

While numerous deep learning approaches have been proposed for AD diagnosis
from 3D MRI data, most fail to incorporate disease-specific anatomical priors, par-
ticularly the progressive nature of brain atrophy that characterizes AD. As discussed
in Section 2, existing methods primarily focus on architectural modifications or DG
techniques, with limited attention to the underlying structural changes that differ-
entiate stages such as AD, MCI, and NC. This oversight limits the model’s ability to
capture biologically meaningful variations that are crucial for fine-grained classifica-
tion. This is a critical gap, as atrophy is not only a defining hallmark of AD but also
varies in severity across classes: it is more pronounced in AD, minimal in NC, and
intermediate in MCI. Furthermore, the challenge is compounded by domain shifts
across sites, and severe class imbalance. These factors call for a method that can
both generalize across domains and meaningfully encode the anatomical progression
of the disease.

To address this gap in literature, the proposed method combines a 3D U-Net en-
coder with class-specific 3D learnable morphological augmentations and supervised
contrastive learning in order to improve AD detection under a realistic SDG set-
ting. In this setting, it is assumed that only a single labeled training dataset is
available, without access to any target domain data or labels. This combination
of components encourages the model to generate more diverse, anatomically rel-
evant variations while simultaneously enforcing representation consistency across
domains. During training, batches with only MCI samples undergo CutMix (Yun,
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Han, Oh, Chun, Choe & Yoo, 2019), a technique that swaps patches between im-
ages to increase intra-class diversity in addition to standard augmentations. For
the remaining two classes, AD and NC, 3D learnable morphological augmentations
are computed via erosion and dilation respectively, motivated by the fact that these
operators can visually intensify or alleviate the effect of brain atrophy. Erosion is
applied to simulate more pronounced atrophy for AD, while dilation reduces the
atrophy effect for NC. Both original and augmented samples are processed through
the encoder and a projection head, to compute contrastive embeddings. The total
loss combines weighted cross-entropy loss with inverse class frequency weights and
supervised contrastive loss as illustrated in (Fig. 4.1) (Algorithm 1).

Uniform
labels?

Label =
MCI? Unet3DCutMix3D

Unet3D +
Projector head 

No

LCE

LCE

LSCL

LTotalUnet3D

2 x 1 x D x W x H

Dilation Module    

Erosion Module 

Augmentations Module 

No

Yes Yes

Class 
sample

AD

NC

MCI

Figure 4.1 Overview of the proposed training pipeline. Class-specific augmenta-
tions (erosion, dilation, or diverse augmentations) and CutMix3D (for uniform MCI
batches) enhance feature diversity. A shared 3D U-Net encoder processes original
and augmented views, optimized using a combined cross-entropy and supervised
contrastive loss.

4.2 Model Architecture

The classification framework is built upon a pretrained 3D U-Net architecture (Zhou
et al., 2019), modified for feature extraction by removing the decoder and using
only the encoder (Fig. 4.2). The encoder processes input 3D MRI volumes through
four convolutional blocks, each consisting of two 3D convolutional layers, batch
normalization, and a non-linear activation function. As the input passes through
these blocks, the spatial resolution decreases while feature dimensionality increases:
the number of channels progresses from 32 to 64, 128, 256, and finally 512 across the
four blocks. This hierarchical structure enables the network to capture increasingly
abstract anatomical and structural patterns associated with Alzheimer’s disease.
The deepest layer produces a 512-channel volumetric feature map embedded with

28



contextual and pathological information, which is then global average-pooled into a
compact feature vector for final classification.

Max pool

Conv3D + BN + RELU

...

Extracted Features

1×D×H×W

128×(D/2×H/2×W/2)

256×(D/4×H/4×W/4)

512×(D/8×H/8×W/8)

Figure 4.2 Encoder architecture of 3D U-Net.

4.3 Class-Specific Augmentations

To address distributional shifts between training and testing domains, class-specific
learnable morphological 3D augmentation is incorporated. While standard aug-
mentation techniques that apply identical transforms may improve robustness, they
often miss disease-specific changes, potentially blurring class differences. To prevent
this, the proposed method uses two learnable morphological modules (Hu et al.,
2022) that approximate erosion and dilation with differentiable operations. Ero-
sion and dilation are the two fundamental operations of mathematical morphol-
ogy, known for expanding image regions that are respectively darker and brighter
w.r.t. their surroundings (Serra, 2023). As such, when applied to a brain’s MRI sam-
ple, erosion’s effect becomes visually similar to intensifying brain atrophy (i.e. less
brain matter). These modules learn transformations based on local image struc-
ture, which is an essential property in 3D brain MRI, whereas fixed kernels may
fail across different patients or regions. Since these modules mimic morphological
behavior without an underlying complete lattice foundation, they are referred to as
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“pseudo-morphological”. Both modules are trained jointly with the main model and
optimized to generate augmentations that enhance intra-class variability.

4.3.1 Pseudo-Dilation Module (Dψ)

This module’s task is to generate synthetic NC samples, corresponding to healthy
non-AD brain images. It achieves this by expanding regions of greater pixel intensity
w.r.t. their surrounding via a learnable 3D dilation. More formally, given a 3D
grayscale input I : Z3→ [0,255]∩Z and a cubic structuring element Sk ⊆ Z3 of size
k×k×k pixels, 3D grayscale (flat) dilation is defined as:

(4.1) (I⊕Sk)(x,y,z) = max
(s,t,u)∈Sk

I
(
x− s, y− t, z−u

)

In the context of the present task, this operation simulates the increase of brain
matter and thus helps diversify NC samples to reduce the risk of overfitting to the
NC class and strengthens inter-class separability.

We adopt the learnable pseudo-dilation module design presented in (Hu et al., 2022),
where the process is parameterized and learned via Dψ, and ψ denotes the learnable
parameters. Let x(l−1) ∈ RB×Cin×D×H×W be the input to layer l, where B is the
batch size, Cin the number of input channels, andD,H,W are the spatial dimensions.
At each layer l, the input sample is passed through a 3D convolution with a randomly
selected kernel size k ∈ {3,5} to simulate anatomical variation at different scales.
The convolutional output has shape B× (Cout ·k3)×D×H×W , where Cout is the
number of output channels. The learnable dilation is then performed by taking the
maximum over the kernel positions. The following operation mimics the effect of
dilation on the input:

(4.2) x(l) = max
kernel channels

(Conv3Dk(x(l−1)))

where Conv3Dk denotes a 3D convolution with kernel size k, and x(l) is the resulting
feature map. To preserve anatomical boundaries, and restrict the transformation
to foreground regions, a binary foreground mask M = 1x ̸=0 ∈ {0,1}B×1×D×H×W is
applied at each layer. As shown in (Fig. 4.3), the dilation-based transformation
produces outputs that mimic the expanded appearance typical of healthy brain
anatomy in NC cases.
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(a) Input NC image (b) Output after dilation

Figure 4.3 Visualization of a pseudo-dilation result. (a) Original NC image from the
dataset. (b) Resulting image after applying the pseudo-dilation module.

4.3.2 Pseudo-Erosion Module (Eψ)

This module is designed to simulate brain tissue loss, similar to that observed in
AD (Hu et al., 2022). It works by expanding image regions darker than their sur-
roundings, producing more severe-looking AD samples from existing ones. More
formally, given a 3D grayscale input I : Z3 → [0,255]∩Z and a cubic structuring
element Sk ⊆ Z3 of size k×k×k pixels, 3D grayscale (flat) erosion is defined as:

(4.3) (I⊖Sk)(x,y,z) = min
(s,t,u)∈Sk

I
(
x− s, y− t, z−u

)

Eψ approximates erosion using learnable 3D convolutional layers. At each layer,
the input is passed through a 3D convolution with a randomly selected kernel size
k ∈ {3,5}. Contrary to the pseudo-dilation module, a binary mask M is applied
before the convolution so that background zeros do not influence the minimum.

To simulate erosion, the convolutional output is reshaped and the local minimum is
taken over the kernel dimension. The erosion operation is then computed as:

(4.4) x(l) =− min
kernel channels

(−Conv3Dk(x(l−1)))

Here, the negation of the output followed by a minimum operation is mathematically
equivalent to erosion (Hu et al., 2022). Finally, the foreground mask M is reapplied
to restrict updates to valid tissue regions only. This method enables the network to
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learn how to apply erosion-like transformations in a differentiable way. The resulting
output is expected to resemble more advanced cases of AD (Fig. 4.4).

(a) Input AD image (b) Output after erosion

Figure 4.4 Visualization of a pseudo-erosion result. (a) Original AD image from the
dataset. (b) Resulting image after applying the pseudo-erosion module, showing
features akin to more severe AD.

4.3.3 Augmentations module for MCI (Tmci)

As a transitional state between NC and AD, MCI shows anatomical changes that
may overlap with features of either class. This makes it particularly challenging for
models to differentiate MCI from neighboring classes. Given an MCI sample, random
affine transformations are applied in order to introduce slight translation, scaling
and contrast adjustments so as to produce an augmented sample. These augmenta-
tions do not involve morphological changes, as such operations could risk rendering
MCI samples more similar to either of its neighboring classes. Instead, they intro-
duce moderate variations that increase diversity while keeping the anatomy realistic
and helping the model generalize better to borderline cases. To further diversify
MCI representations, if a batch consists of only MCI samples, sub-volume mixing
is applied, where a random 3D volume is extracted from one sample and inserted
at the same position in the other sample. This encourages the model to capture
variations within each class while still keeping the classes separated (Fig. 4.5).

32



(a) xa (b) xb

xa

xa

xa

(c) x̃a

Figure 4.5 CutMix pipeline: (a) Source image xa, (b) Source image xb, (c) Region-
wise patches are extracted and swapped to generate mixed image x̃a in 3D space.

4.3.4 Weighted Supervised Contrastive Learning

To encourage domain-invariant and class-discriminative representations, the features
are provided as input to a projection head.

(4.5) qi = hγ(fθ(xi))
∥hγ(fθ(xi))∥2

where xi denotes the i-th input sample, which may be an original or augmented
image; fθ(·) is the encoder network parameterized by θ, used to extract feature
representations; and hγ(·) is the projection head parameterized by γ, consisting of
3D convolutions, that maps the features to a lower-dimensional embedding space.
Lastly, the output qi ∈ R1024 is L2-normalized using the Euclidean norm ∥ · ∥2.

These projected features are then used to compute supervised contrastive loss
(Khosla, Teterwak, Wang, Sarna, Tian, Isola, Maschinot, Liu & Krishnan, 2020).
In more detail, given 2N samples (i.e. originals and their augmentations), the loss
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is defined as:

(4.6) LSCL =
2N∑
i=1

−1
|P (i)|

∑
j∈P (i)

wyi · log exp(q⊤
i qj/τ)∑2N

k=11[k ̸=i] exp(q⊤
i qk/τ)

where LSCL is the supervised contrastive loss, qj ∈R1024 denotes the L2-normalized
embedding of a positive sample from the same class as i, computed in the same way
as qi. The set P (i) contains the indices of all positive samples that share the same
class label as i. The temperature parameter τ controls the sharpness of the distribu-
tion, where τ > 0. Additionally, wyi ∈ R represents the weight assigned to class yi,
allowing for class-aware reweighting to address class imbalance. Hence, supervised
contrastive learning pulls together representations of samples from the same class
while pushing apart those from different classes, leading to more structured and
discriminative feature embeddings.

The overall training algorithm is shown at (Algorithm 1).

4.4 Results and Discussion

The proposed method consistently achieved superior generalization performance
compared to baseline approaches on both the ADNI and AIBL datasets. Tables
4.1 and 4.2 summarize the results across multiple evaluation metrics.

Table 4.1 shows that compared to the strongest baseline (RSC), the proposed ap-
proach improved accuracy by 4.77 percentage points, F1 score by 1.7 percentage
points, sensitivity by 2.7 percentage points, and specificity by 1.6 percentage points.
These improvements indicate enhanced domain-invariant feature learning and bet-
ter separation between classes. It also validates the effectiveness of morphological
priors in handling domain shifts in AD detection.

Table 4.2 presents the generalization results on the AIBL dataset. While the EFDM
method attained the highest accuracy of 69.94%, its F1 score and sensitivity were
notably lower, suggesting that higher accuracy is due to bias towards the majority
class in the imbalanced dataset. In contrast, the proposed method demonstrated a
strong trade-off between these metrics, with improvements of 15.5 percentage points
in F1 score and 12.3 percentage points in sensitivity over EFDM.

Across methods, gains on AIBL exceed those on ADNI, highlighting the challenge
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Algorithm 1: Training with Class-Specific Augmentation and Supervised
Contrastive Learning

Input: Model with projection head hγ ; augmenters Dψ, Eψ, Tmci;
CutMix3D module C; training set X ; temperature τ ; contrastive
weight λ

foreach minibatch {(xi,yi)}Ni=1 do
if all labels in minibatch have the same label then

if labels are MCI then
Apply CutMix3D: xmix

i ←C(xi)
Compute classification loss LCE
return LCE

else
Compute classification loss LCE
return LCE

Compute classification loss LCE
Initialize augmented set A← ∅
foreach (xi,yi) do

if yi = 0 (NC) then
xaug
i ←Dψ(xi)

else if yi = 1 (MCI) then
xaug
i ←Tmci(xi)

else
xaug
i ←Eψ(xi)

Add (xaug
i ,yi) to A

foreach (xi,yi) ∈ A do
Compute normalized projection qi

Compute supervised contrastive loss LSCL
Ltotal = LCE +λ ·LSCL
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Table 4.1 Results with the ADNI dataset.

Method ADNI
ACC(%) F1 SEN SPE

Baseline (Zhou et al., 2019) 38.04 0.359 0.359 0.679
Mixup (Zhang et al., 2018) 48.29 0.339 0.392 0.703
RSC (Huang et al., 2020) 46.14 0.407 0.410 0.713
CCSDG (Hu et al., 2023) 39.55 0.396 0.419 0.700

EFDM (Zhang et al., 2022) 45.35 0.249 0.353 0.679
Proposed 50.91 0.424 0.437 0.729

Table 4.2 Results with the AIBL dataset.

Method AIBL
ACC(%) F1 SEN SPE

Baseline (Zhou et al., 2019) 38.50 0.338 0.392 0.699
Mixup (Zhang et al., 2018) 65.42 0.382 0.382 0.721
RSC (Huang et al., 2020) 51.27 0.414 0.449 0.737
CCSDG (Hu et al., 2023) 40.82 0.396 0.401 0.699

EFDM (Zhang et al., 2022) 69.94 0.301 0.329 0.678
Proposed 62.27 0.456 0.452 0.742

of domain shift in medical imaging. In contrast, the proposed method consistently
achieves the highest macro F1 on both datasets, with a 4.2 percentage points gain
over the next best method (RSC) on AIBL and a 1.7 percentage points gain on
ADNI. Notably, since the training is conducted on NACC and validated on ADNI
and AIBL, the result in Tables 4.1 and 4.2 suggest that the NACC distribution is
more closely aligned with ADNI, enabling better adaptation and performance, while
the greater divergence from AIBL poses a more significant generalization challenge.
Despite the distribution shifts, the improvement in results through the proposed ap-
proach validate that integrating class-specific augmentations and contrastive learn-
ing improve domain generalization and preserve class boundaries.

4.5 Ablation study

Table 4.3 presents the results of an ablation study conducted to assess the individual
contributions of key components in the proposed approach. Removing the morpho-
logical modules results in a drop in macro F1 score by 6.5 percentage points on ADNI
and 11.8 percentage points on AIBL. This shows the importance of structural in-
formation in tackling domain shift. Without the supervised contrastive loss, the F1
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score drops by 10.2 percentage points and sensitivity by 6.6 percentage points on
ADNI. This means the loss helps the model separate the classes better. Removing
CutMix has the biggest impact on AIBL, with accuracy dropping by 23.2 percent-
age points, indicating that AIBL has more borderline MCI cases that look similar
to other classes. ADNI is less affected, so its class boundaries may be clearer. These
findings collectively demonstrate that each component contributes meaningfully to
the model’s overall effectiveness, and their integration is essential for achieving bal-
anced performance across datasets.

Table 4.3 Ablation study results on ADNI and AIBL datasets.

ACC(%) F1 SEN SPE
ADNI

With morphology 35.58 0.345 0.385 0.679
No pseudo-morphology 38.04 0.359 0.359 0.679

No CutMix 45.51 0.436 0.434 0.717
No supervised contrastive loss 42.09 0.322 0.371 0.686

Proposed 50.91 0.424 0.437 0.729
AIBL

With morphology 29.67 0.294 0.438 0.712
No pseudo-morphology 38.50 0.338 0.392 0.699

No CutMix 39.09 0.355 0.449 0.720
No supervised contrastive loss 73.28 0.305 0.343 0.671

Proposed 62.27 0.456 0.452 0.742

From a qualitative standpoint, Fig. 4.6 further presents Grad-CAM visualizations
comparing the baseline 3D U-Net model and the proposed pseudo-morphological
modules for AD detection. The leftmost column shows original MRI slices from
both ADNI and AIBL datasets across three classes: NC, MCI, AD. The middle
column illustrates attention maps generated by the baseline U-Net3D model, which
are less focused, suggesting limited class-specific feature localization. In contrast, the
rightmost column shows Grad-CAM results from the model enhanced with pseudo-
morphological modules. These attention maps are more focused on areas in the brain
which are known to be affected by AD, such as the hippocampus and surrounding
medial temporal lobe. This indicates that incorporating class-specific morphological
augmentations helps the model learn more discriminative and generalizable features
for AD detection.

As far as computational costs are concerned, Table 4.4 shows that the proposed
method uses 21.2 M parameters, requires 2065.34 GFLOPs per forward pass,
and consumes 494.56 MB of memory—1.6 M more parameters, 398.23 additional
GFLOPs, and over 6 times more memory than the strongest baseline (RSC: 19.6 M
parameters, 1667.11 GFLOPs, 78.40 MB memory). This relatively modest overhead
is justified by the significant accuracy and macro-F1 improvements shown in Tables
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Figure 4.6 Grad-CAM visualizations on MRI scans from ADNI and AIBL datasets.
(a) Input images for NC, MCI, and AD groups. (b) Attention maps from the model
without morphological modules. (c) Attention maps with morphological modules,
showing improved focus on disease-relevant regions.

Table 4.4 Computational comparison of the proposed approach w.r.t. its counter-
parts.

Method Params (M) GFLOPs Model size (MB)
Baseline (Zhou et al., 2019) 19.6 1667.11 78.40
Mixup (Zhang et al., 2018) 19.6 1667.11 78.40
RSC (Huang et al., 2020) 19.6 1667.11 78.40
CCSDG (Hu et al., 2023) 20.5 1689.59 81.94

EFDM (Zhang et al., 2022) 19.6 1667.11 78.40
Proposed 21.2 2065.34 494.56

4.1 and 4.2: on ADNI, we achieve a 4.77 percentage points accuracy boost and a 1.7
percentage points F1 gain over RSC; on AIBL, we record a 4.2 percentage points
macro-F1 increase compared to the next best method. These results demonstrate a
favorable trade-off between computational cost and generalization performance.
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5. DISTANCE TRANSFORM GUIDED MIXUP FOR

ALZHEIMER’S DETECTION

5.1 Overview

This chapter introduces an SDG approach for AD detection, leveraging a 3D U-Net
feature extractor with distance transform-based mixup augmentation. The objective
is to improve model robustness and generalization while mitigating class imbalance
in AD detection from 3D MRI scans.

The training process begins with T1-weighted 3D MRI scans, which are preprocessed
for quality enhancement and standardization. The proposed Distance Transform
Guided Mixup augmentation technique is then applied, where selected regions from
different MRI scans are mixed using distance transform to generate diverse training
samples. The augmented images are processed through a U-Net 3D architecture
(Zhou et al., 2019), which extracts hierarchical features. The U-Net 3D model
architecture is described in Section 4.2. These features are fed into a classifier,
predicting one of three classes: NC, AD, or MCI. The model is trained using weighted
soft cross-entropy loss to improve diagnostic accuracy and generalization (Fig. 5.1).

5.2 Distance Transform-Based Mixup Augmentation

To further improve the model’s generalization, for each input MRI scan x, the
corresponding distance transform D(x) is computed offline and stored. Each voxel’s
value represents its distance to the nearest anatomical boundary. The transform is
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Figure 5.1 Overview of the proposed training pipeline.

mathematically defined as:

(5.1) D(p) = min
q∈B
∥p− q∥

where D(p) is the distance transform value at pixel p, B is the set of all background
pixels and ∥ · ∥ is the Euclidean distance. After computing the distance transform,

xa xb

R1 R3 R2 R4

Mixed_xa Mixed_xb

R1

R3
R2

R4

Figure 5.2 Overview of the mixing strategy. Given two input MRI scans (xa and
xb), region-wise masks (R1,R2,R3,R4) are extracted to generate mixed samples
(Mixed_xa and Mixed_x

b
).

two thresholds t1 and t2 are set as the minimum and maximum values of the dis-
tance transform for each input, ensuring that at least 10% of the brain structure is
preserved in each region. This is done to avoid creating excessively small regions.
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Given a pair of 3D MRIs (xa,xb), the regions are defined as:

(5.2) R1 = 1(Da ≤ t1)

(5.3) R2 = 1(t1 <Db ≤ t2) · (1−R1)

(5.4) R3 = 1(t1 <Da ≤ t2) · (1−R1) · (1−R2)

(5.5) R4 = 1(Db > t2) · (1−R1) · (1−R2) · (1−R3)

where 1(·) represents an indicator function that returns 1 if the condition inside is
true and 0 otherwise. The variables R1,R2,R3, and R4 are mutually exclusive binary
masks, each defining different spatial regions within the image. The terms Da and
Db correspond to the distance transforms of the images xa and xb, respectively.
These thresholds divide the MRI into four non-overlapping regions (Fig. 5.2). The
mixed image is constructed as:

(5.6) x̃= (R1 ·xa)+(R2 ·xb)+(R3 ·xa)+(R4 ·xb)

where R1,R2,R3,R4 represent binary masks corresponding to the different thresh-
olded regions.

5.3 Label Mixing

To balance label contributions from the spatially mixed images, the probabilities are
calculated based on the pixel count from each region. Given the masks defining the
segmented regions, regions R1 and R3 correspond to the first image xa while regions
R2 and R4 correspond to the second image xb. The number of pixels assigned from
each image is computed as:

(5.7) Pa =
∑

R1 +
∑

R3

(5.8) Pb =
∑

R2 +
∑

R4
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where Pa and Pb represent the number of pixels originating from xa and xb, respec-
tively.

The relative contribution of each image to the final mixed sample is determined as:

(5.9) αa = Pa
Pa+Pb

, αb = Pb
Pa+Pb

where αa and αb represent the proportion of pixels coming from each source image.
Using these proportions, the final mixed label ỹ is computed as a weighted sum of
the labels from both images:

(5.10) ỹ = αa ·ya+αb ·yb

where ya and yb are the original class labels of the input images xa and xb, respec-
tively.

A soft cross-entropy loss function is used to handle the soft labels. Additionally,
to address the class imbalance in AD detection, class weights wi are introduced,
ensuring that underrepresented classes contribute more significantly to the loss com-
putation. The weighted soft cross-entropy loss is defined as:

(5.11) L=− 1∑
wi

C∑
i=1

wi ·yi · log(ŷi)

where C represents the number of classes, yi represents the true class label, ŷi
denotes the predicted probability for class i, wi is the class weight, computed based
on the inverse frequency of each class to mitigate the effects of data imbalance.

5.4 Results and Discussion

This section presents the results of the proposed Distance Transform method and
baseline approaches on the ADNI and AIBL datasets. Generalization Results for
ADNI and AIBL are summarized in Tables 5.1 and 5.2.

As shown in Table 5.1, on the ADNI dataset, the proposed Distance Transform
method outperformed all baselines, achieving the highest accuracy (48.37%) and
F1 score (0.460), along with superior sensitivity (0.461) and, specificity (0.733).
This demonstrates its effectiveness in distinguishing between classes, outperforming
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Table 5.1 Results with the ADNI dataset

Method ACC (%) SEN SPE F1
Baseline (Zhou et al., 2019) 38.04 0.359 0.679 0.359
Mixup (Zhang et al., 2018) 48.29 0.392 0.703 0.339
RSC (Huang et al., 2020) 46.14 0.410 0.713 0.407
CCSDG (Hu et al., 2023) 39.55 0.419 0.700 0.396

Proposed 48.37 0.461 0.733 0.460

techniques such as Mixup (Zhang et al., 2018), RSC (Huang et al., 2020), and
CCSDG (Hu et al., 2023).

Table 5.2 Results with the AIBL dataset

Method ACC (%) SEN SPE F1
Baseline (Zhou et al., 2019) 38.50 0.392 0.699 0.338
Mixup (Zhang et al., 2018) 65.42 0.382 0.721 0.382
RSC (Huang et al., 2020) 51.27 0.449 0.737 0.414
CCSDG (Hu et al., 2023) 40.82 0.401 0.699 0.396

Proposed 52.25 0.454 0.726 0.430

As shown in Table 5.2, on the AIBL dataset, the distance transform-based approach
yielded promising results, achieving an accuracy of 52.25%, an F1 score of 0.430,
and a sensitivity of 0.454. This demonstrates its robustness in handling domain
shifts across datasets. Comparatively, the baseline method achieved only 38.50%
accuracy, while Mixup and RSC provided modest improvements.

The proposed distance transform method showed superior performance across the
ADNI and AIBL datasets compared to existing baseline methods. On the ADNI
dataset, it outperformed all baselines in terms of accuracy, F1 score, and sensitivity,
demonstrating its ability to classify AD, MCI, and NC groups effectively. Similarly,
the method achieved competitive results on the AIBL dataset. This reflects the
importance of leveraging domain adaptation techniques like Distance Transform to
enhance model performance in AD detection.
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6. TOWARDS SINGLE-DOMAIN GENERALIZATION IN

ALZHEIMER’S DETECTION VIA EXTENDED MIXSTYLE

6.1 Overview

While domain generalization methods like MixStyle improve robustness by simu-
lating inter-domain variability, they are primarily designed for scenarios involving
multiple training domains. Therefore, standard MixStyle may be less effective when
only a single domain is available (Zhang et al., 2022; Zhou et al., 2021). To address
these challenges, this thesis proposes a mixstyle variant, named Extended MixStyle.
This extension enhances the original method by incorporating higher-order moment
statistics into feature perturbations. It allows for more subtle variations within
the same domain, improving model generalization to unseen data. During training,
each MRI volume is passed through a 3D U-Net backbone integrated with Extended
MixStyle, enabling the model to learn robust representations under diverse internal
variations. The network is optimized using a weighted cross-entropy loss, where class
imbalance is addressed by assigning inverse class frequency weights. Integrated into
this framework, Extended MixStyle supports improved AD detection performance
without relying on multi-domain training data.

6.2 Model Architecture

The classification framework is based on a 3D U-Net architecture described in sec-
tion 4.2 which serves as the backbone for feature extraction. In more detail, the
architecture comprises four stacked convolutional blocks, with MixStyle regulariza-
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tion applied to the second intermediate layer. This specific placement introduces
style variation at a mid-level semantic representation, which is empirically found to
have an effective balance between low-level noise and high-level abstraction.

6.3 Extended MixStyle with Higher-Order Moments

Given a 3D MRI volume x ∈ RB×C×D×H×W , where B is the batch size, C is the
number of channels, and (D,H,W ) represent the spatial dimensions, the objective
is to improve SDG by perturbing feature distributions during training.

MixStyle, originally proposed in (Zhou et al., 2021), performs feature-level domain
mixing by interpolating the statistical moments of feature maps, specifically the
mean and standard deviation, across spatial dimensions. Given a feature map x ∈
RB×C×H×W , MixStyle first computes the per-channel spatial mean and standard
deviation as defined in (6.1) and (6.2):

(6.1) µ= 1
N

N∑
i=1

xi

(6.2) σ =

√√√√ 1
N

N∑
i=1

(xi−µ)2 + ϵ

where x1,x2, . . . ,xN represent the spatial values within a given feature map, and
N = D×H ×W . The mean and standard deviation are computed independently
for each feature map, and ϵ is a small constant added for numerical stability.

During training, MixStyle is applied with a probability p. For each sample, a mix-
ing coefficient α ∼ Beta(α,α) is drawn, and a feature-level permutation is applied
within the batch to obtain shuffled statistics (µ′,σ′). The mixed statistics are then
computed as:

(6.3) µmix = αµ+(1−α)µ′

(6.4) σmix = ασ+(1−α)σ′
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The normalized feature is then reparameterized using the mixed statistics:

(6.5) x′ =
(
x−µ
σ

)
·σmix +µmix

This process as defined in (Zhou et al., 2021) perturbs the feature distributions
dynamically during training, simulating domain shifts and encouraging the model
to learn domain-invariant representations.

While perturbing first- and second-order statistics (mean and variance) can improve
generalization, this may be insufficient in context of 3D MRI-based AD detection,
especially in SDG settings. MRIs contain complex anatomical structures and non-
Gaussian intensity patterns that cannot be fully captured by just mean and variance.
Subtle changes related to AD, such as hippocampal atrophy or enlarged ventricles,
may alter the shape of feature distributions in ways that affect higher-order moments
like skewness and kurtosis. Moreover, in single-domain scenarios where no external
datasets are available, the model must rely solely on intra-domain variability, which
includes scanner noise, demographic differences, and disease heterogeneity. These
subtle variations often go beyond simple shifts in average intensity or spread, making
it essential to account for the asymmetry and tail behavior of feature distributions.
Therefore, incorporating higher-order statistics enables better feature perturbations,
helping the model learn domain-invariant representations.

To address this limitation, an extension to the original MixStyle is proposed that
incorporates higher-order moments: skewness (third-order) and kurtosis (fourth-
order). These moments capture the asymmetry and tail behavior of feature distri-
butions, which are particularly relevant in medical imaging where subtle structural
variations can affect diagnostic accuracy.

Specifically, given the same input feature map x ∈RB×C×D×H×W , we compute the
skewness S and excess kurtosis K for each feature channel as:

(6.6) S = E[(x−µ)3]
σ3 + ϵ

(6.7) K = E[(x−µ)4]
σ4 + ϵ

−3

Here, E[·] denotes the spatial average over the D×H ×W dimensions, µ and σ

are the spatial mean and standard deviation as previously defined, and ϵ is a small
constant for numerical stability.

During training, as in MixStyle, a sample-wise mixing coefficient α ∼ Beta(α,α) is
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drawn, and feature statistics are shuffled across samples within the batch. Let S′

and K ′ denote the skewness and kurtosis of a shuffled sample in the batch. Then
the mixed higher-order moments are computed by interpolating between the original
and shuffled statistics:

(6.8) Smix = αS+(1−α)S′

(6.9) Kmix = αK+(1−α)K ′

Finally, the perturbed feature map x′ is reconstructed by extending the standard
MixStyle reparameterization:

(6.10) x′ = x−µ
σ
·σmix +µmix +Smix · (x−µmix)2 +0.1 ·Kmix · (x−µmix)3

where the skewness term introduces asymmetry correction, and the kurtosis term
adjusts the tail behavior of the feature distribution.

The enhanced MixStyle is applied to intermediate layers of the 3D U-Net, specifically
the second layer, with mixing probability of 0.7 and interpolation parameter α of
0.7. To promote domain generalization, MixStyle is applied only during training. By
introducing richer statistical perturbations, Extended MixStyle enables the model to
focus on disease-relevant features while ignoring dataset-specific biases. This leads
to improved generalization and detection performance on unseen MRI data.

6.4 Results and Discussion

The proposed approach consistently outperforms baseline approaches. Generaliza-
tion results for ADNI and AIBL are summarized in Tables 6.1 and 6.2.

Table 6.1 shows that the proposed method achieved the highest performance across
all evaluation metrics on the ADNI dataset. Specifically, it reached an accuracy
of 50.25%, surpassing the next best method, MixStyle (Zhou et al., 2021), by 4.95
percentage points. In terms of sensitivity and specificity, the proposed approach
improved upon MixStyle by 2.1 and 2.0 percentage points, respectively. Additionally,
the F1 score increased by 3.3 percentage points (0.486 vs. 0.453), indicating better
overall class balance. Compared to MixUp (Zhang et al., 2018), a widely used
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Table 6.1 Results with the ADNI dataset

Method ACC (%) SEN SPE F1
Baseline (Zhou et al., 2019) 38.04 0.359 0.679 0.359
Mixup (Zhang et al., 2018) 48.29 0.359 0.703 0.339
RSC (Huang et al., 2020) 46.14 0.410 0.713 0.407
CCSDG (Hu et al., 2023) 39.55 0.419 0.700 0.396

MixStyle (Zhou et al., 2021) 45.30 0.461 0.729 0.453
EFDM (Zhang et al., 2022) 45.35 0.353 0.679 0.249

Proposed 50.25 0.482 0.749 0.486

baseline, the accuracy gain was nearly 2 percentage points. Other methods, such
as RSC (Huang et al., 2020), EFDM (Zhang et al., 2022), and CCSDG (Hu et al.,
2023), also fell short across all metrics, highlighting the advantage of our proposed
framework in generalizing to unseen domain variations in AD detection.

Table 6.2 Results with the AIBL dataset

Method ACC (%) SEN SPE F1
Baseline (Zhou et al., 2019) 38.50 0.392 0.699 0.338
Mixup (Zhang et al., 2018) 65.42 0.382 0.721 0.382
RSC (Huang et al., 2020) 51.27 0.449 0.737 0.414
CCSDG (Hu et al., 2023) 40.82 0.401 0.699 0.396

MixStyle (Zhou et al., 2021) 69.94 0.480 0.742 0.412
EFDM (Zhang et al., 2022) 61.49 0.329 0.678 0.301

Proposed 73.28 0.483 0.759 0.455

As shown in Table 6.2, proposed method also achieved the best generalization per-
formance on the AIBL dataset. It led with an accuracy of 73.28%, which is 3.34
percentage points higher than the closest alternative, Mixstyle (Zhou et al., 2021)
(69.94%). Improvements were also consistent across other metrics: a 0.3 percentage
points gain in sensitivity (0.483 vs. 0.480) and 1.7 points in specificity (0.759 vs.
0.742). When compared to earlier approaches like RSC (Huang et al., 2020) and
EFDM (Zhang et al., 2022), our model achieved notably stronger results, outper-
forming EFDM by 11.79 percentage points margin in accuracy and over 15 points
in specificity, highlighting the limitations of those methods under AIBL domain
conditions.

Across both ADNI and AIBL datasets, the proposed method consistently demon-
strated superior generalization performance in the presence of domain shift. Al-
though accuracy was substantially higher on AIBL (73.28%) than on ADNI
(50.25%), both reflect meaningful improvements over state-of-the-art alternatives.
This performance gap is likely due to inherent differences in domain characteris-
tics. AIBL’s imaging protocol and cohort demographics may align more closely
with NACC, resulting in reduced domain discrepancy. Nonetheless, our approach
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outperformed all baselines on both datasets, indicating its robustness to variations
in scanner hardware, imaging settings, and subject populations. These results sup-
port the effectiveness of our design choices in handling domain generalization and
highlight the model’s capacity to generalize well to unseen clinical environments.

6.5 Ablation Study

To investigate how different levels of style mixing influence model attention, Grad-
CAM visualizations for both the ADNI and AIBL datasets are examined in
(Fig. 6.1). Each dataset presents MRI scans across three diagnostic categories:
NC, MCI, and AD. In the ADNI row, the model without MixStyle (column b) ex-
hibits broad and somewhat noisy attention, with limited focus on disease-relevant
brain regions. Introducing MixStyle (mean + variance, column c) results in a clearer
and more localized attention pattern, particularly in the medial temporal regions,
which are commonly affected in AD. The extended MixStyle (mean, variance, skew-
ness, and kurtosis, column d) further sharpens this focus, showing tighter and more
anatomically aligned activation. This progression suggests that the inclusion of
higher-order moments helps the model attend more precisely to relevant features in
the ADNI cohort.

In contrast, for the AIBL dataset (bottom row) in (Fig. 6.1), the distinction between
variants is more subtle. The without MixStyle model already identifies some infor-
mative regions, though the attention remains relatively scattered. The standard
MixStyle improves spatial consistency, yet in some instances (e.g., the MCI row),
the attention still focuses on some non-informative areas. With extended MixStyle,
the activations appear slightly more confined and centered compared to the previous
variants, but the visual improvement is less pronounced than in ADNI. This sug-
gests that while extended MixStyle contributes to refined attention in both datasets,
the degree of improvement may vary with dataset characteristics, such as sample
distribution or imaging protocol differences. Overall, the qualitative results support
the notion that extended MixStyle helps regularize attention maps and potentially
improves domain robustness, though its impact is more visually evident in ADNI
than in AIBL.

The computational comparison in Table 6.3 shows that the proposed Extended
MixStyle method introduces no additional overhead compared to the baseline. It
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Figure 6.1 Grad-CAM visualizations on 3D MRI scans from the ADNI (top row) and
AIBL (bottom row) datasets. Each row shows: (a) original input, (b) attention maps
without MixStyle, (c) with standard MixStyle using mean and variance, and (d)
with extended MixStyle incorporating all four moments (mean, variance, skewness,
kurtosis).

retains the same number of parameters (19.6M), GFLOPs (1667.12), and model
size (78.40 MB) as methods like Mixup, RSC, EFDM and MixStyle. On the con-
trary, CCSDG increases complexity slightly with 20.5M parameters and 1689.59
GFLOPs. These results confirm that our approach achieves improved generalization
performance without increasing computational burden, making it highly suitable for
practical and resource-constrained deployment.

To assess the impact of applying the Extended MixStyle module at different network
layers, an ablation study was conducted across individual and combined insertion
points. In Table 6.4, among the single-layer configurations, inserting Extended
MixStyle at Layer 2 consistently yields the best generalization performance on the
ADNI dataset, achieving 55.00% accuracy, outperforming all other variants. This is
an improvement of 4.75 percentage points over the baseline MixStyle (45.30%) and
6.63 points over RSC (46.14%). The F1 score (0.486) and sensitivity (0.482) also
show notable gains compared to earlier methods. On the AIBL dataset, however,
Layer 3 performs slightly better in some metrics. It achieves an F1 score of 0.482
and the highest sensitivity (0.495), compared to 0.455 F1 and 0.483 sensitivity in
Layer 2. However, the accuracy in Layer 3 (57.95%) is 15.13 points lower than the
peak AIBL performance (73.08%) observed in multi-layer configurations.
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Table 6.3 Computational comparison of the proposed approach w.r.t. its counter-
parts.

Method Params (M) GFLOPs Model size (MB)
Baseline (Zhou et al., 2019) 19.6 1667.11 78.40
Mixup (Zhang et al., 2018) 19.6 1667.11 78.40
RSC (Huang et al., 2020) 19.6 1667.11 78.40
CCSDG (Hu et al., 2023) 20.5 1689.59 81.94

EFDM (Zhang et al., 2022) 19.6 1667.11 78.40
MixStyle (Zhou et al., 2021) 19.6 1667.12 78.40

Proposed 19.6 1667.12 78.40

Table 6.4 Performance comparison of Extended MixStyle applied at different U-Net
layers on the ADNI and AIBL datasets.

ACC(%) F1 SEN SPE
ADNI

Layer 46.30 0.419 0.417 0.710
Layer 2 55.00 0.486 0.482 0.749
Layer 3 48.45 0.425 0.427 0.715

Layer (1 + 2) 48.13 0.455 0.451 0.727
Layer (2 + 3) 47.25 0.314 0.377 0.696
Layer (1 + 3) 48.53 0.433 0.434 0.724

AIBL
Layer 1 64.04 0.481 0.471 0.758
Layer 2 55.00 0.455 0.483 0.759
Layer 3 57.95 0.482 0.495 0.766

Layer (1 + 2) 51.66 0.400 0.429 0.743
Layer (2 + 3) 73.08 0.347 0.367 0.702
Layer (1 + 3) 20.82 0.200 0.415 0.686

While Layer 3 slightly outperforms Layer 2 on AIBL in terms of F1 and sensitivity,
it results in a noticeable drop on ADNI — 6.55 percentage points lower in accuracy
(from 55.00% to 48.45%) and 0.061 lower in F1 (from 0.486 to 0.425). This trade-off
indicates that although Layer 3 is more effective on AIBL, it generalizes less robustly
on ADNI. Considering that the ADNI dataset often serves as a foundational source,
this degradation is significant.

In more detail, combinations of Extended MixStyle across two layers were also an-
alyzed. Interestingly, combining layers does not always lead to better performance.
For instance, Layer 1+2 achieves 48.13% accuracy on ADNI, which is 6.87 points
lower than using Layer 2 alone. Similarly, the (1+3) and (2+3) layer combinations
yield either comparable or degraded results on AIBL, despite achieving a higher raw
accuracy of 73.08%. These combinations underperform in terms of F1 score and
sensitivity, suggesting that increased complexity may lead to less consistent feature
representations.
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In terms of balancing ADNI and AIBL Performance, although Layer 3 performs
marginally better on AIBL, adopting it as the primary layer would lead to a sub-
stantial performance drop on ADNI, with a 6.55 point decrease in accuracy and
lower F1 and sensitivity. In contrast, Layer 2 maintains strong generalization across
both datasets and demonstrates the most balanced trade-off. This consistency is
valuable for real-world deployment scenarios, where models are expected to perform
reasonably well across varying domains.

Table 6.5 ADNI — MixStyle with skewness

α p ACC(%) F1 SEN SPE
0.1 0.5 45.35 0.339 0.373 0.690
0.1 0.7 48.13 0.433 0.431 0.718
0.1 0.9 44.71 0.421 0.423 0.714
0.3 0.5 47.41 0.420 0.422 0.717
0.3 0.7 45.19 0.413 0.412 0.705
0.3 0.9 46.22 0.455 0.463 0.727
0.5 0.5 46.94 0.433 0.431 0.722
0.5 0.7 37.72 0.369 0.385 0.686
0.5 0.9 40.42 0.399 0.464 0.719
0.7 0.5 48.21 0.430 0.430 0.717
0.7 0.7 33.99 0.337 0.381 0.684
0.7 0.9 43.52 0.427 0.434 0.713

Table 6.6 ADNI — Extended MixStyle

α p ACC(%) F1 SEN SPE
0.1 0.5 47.89 0.373 0.400 0.717
0.1 0.7 48.13 0.451 0.452 0.728
0.1 0.9 35.55 0.367 0.430 0.702
0.3 0.5 45.59 0.456 0.471 0.727
0.3 0.7 50.91 0.449 0.450 0.732
0.3 0.9 49.24 0.426 0.432 0.724
0.5 0.5 51.15 0.406 0.429 0.726
0.5 0.7 53.13 0.424 0.423 0.717
0.5 0.9 45.11 0.436 0.436 0.718
0.7 0.5 32.32 0.304 0.414 0.689
0.7 0.7 55.00 0.486 0.482 0.749
0.7 0.9 41.54 0.409 0.422 0.707

Tables 6.5, 6.6, 6.7 and 6.8 explore the relationship between mixing strength (α)
and application probability (p) for both MixStyle with skewness and the proposed
Extended MixStyle approach, evaluated on ADNI and AIBL datasets. The trends
reveal that the optimal configuration differs across datasets, reflecting distinct gen-
eralization dynamics.

On the ADNI dataset, Extended MixStyle with α = 0.7 and p = 0.7 achieves the
best overall performance, reaching 55% accuracy, 0.486 F1, and high sensitivity
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Table 6.7 AIBL — MixStyle with skewness

α p ACC(%) F1 SEN SPE
0.1 0.5 66.79 0.366 0.382 0.718
0.1 0.7 53.24 0.414 0.427 0.742
0.1 0.9 37.72 0.340 0.439 0.712
0.3 0.5 46.95 0.383 0.410 0.722
0.3 0.7 59.33 0.410 0.411 0.741
0.3 0.9 43.22 0.398 0.514 0.752
0.5 0.5 48.72 0.420 0.396 0.716
0.5 0.7 29.86 0.314 0.462 0.711
0.5 0.9 32.61 0.300 0.469 0.723
0.7 0.5 63.26 0.439 0.456 0.775
0.7 0.7 28.29 0.287 0.469 0.717
0.7 0.9 33.33 0.306 0.406 0.706

Table 6.8 AIBL — Extended MixStyle

α p ACC(%) F1 SEN SPE
0.1 0.5 61.49 0.377 0.405 0.739
0.1 0.7 57.95 0.482 0.495 0.766
0.1 0.9 31.82 0.300 0.482 0.721
0.3 0.5 35.55 0.351 0.488 0.723
0.3 0.7 50.88 0.376 0.398 0.740
0.3 0.9 54.42 0.399 0.428 0.753
0.5 0.5 72.69 0.428 0.443 0.776
0.5 0.7 40.27 0.334 0.370 0.698
0.5 0.9 41.65 0.373 0.435 0.732
0.7 0.5 20.82 0.200 0.415 0.686
0.7 0.7 55.00 0.455 0.483 0.759
0.7 0.9 26.91 0.266 0.415 0.693

and specificity (0.482 and 0.749, respectively). This configuration outperforms all
MixStyle variants, whose best accuracy peaks at 48.13% under α= 0.1,p= 0.7. No-
tably, for both methods, moderate values of α and p tend to be more effective than
extremes. As α or p increase beyond optimal points, performance drops substan-
tially, likely due to excessive feature distortion. This pattern is especially visible
when α = 0.7,p = 0.9, where ADNI accuracy falls below 42% for both methods.
Therefore, Extended MixStyle demonstrates stronger stability across configurations,
maintaining high performance across a broader range of values. This suggests that
higher-order moment mixing improves generalization without compromising feature
integrity when the perturbation is appropriately used.

Unlike ADNI, AIBL exhibits a different optimal pattern. The best accuracy, 72.69%,
is achieved by Extended MixStyle at α= 0.5,p= 0.5, which also yields strong speci-
ficity (0.776) and F1 score (0.428). While α = 0.7,p= 0.7, which was chosen as the
best setting for ADNI still performs reasonably on AIBL (55.00% accuracy, 0.455
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F1), although it does not reach the same effectiveness. Interestingly, MixStyle per-
forms relatively better on AIBL than on ADNI. For instance, with α= 0.1,p= 0.5, it
achieves 66.79% accuracy, outperforming several Extended MixStyle configurations.
However, this comes with much lower sensitivity (0.382) and F1 (0.366), highlighting
a possible imbalance between true positive and negative predictions.

These observations indicate that AIBL responds better to slightly lower mixing in-
tensities (α) and more conservative application probabilities. The results emphasize
the importance of dataset-specific calibration of mixing hyperparameters, especially
when the source and target domain characteristics differ significantly.
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7. CONCLUSION AND FUTURE WORK

7.1 Conclusion

This thesis explored methods to enhance the generalization capacity of models for
AD detection from 3D MRI data under the SDG setting. Recognizing the perfor-
mance limitations of conventional models when faced with domain shifts, the study
proposed three approaches that aim to improve robustness across unseen imaging
domains while maintaining sensitivity to disease-specific patterns. The first pro-
posed method employed class-specific, learnable pseudo-morphological augmenta-
tions with supervised contrastive learning to simulate disease specific anatomical
variations linked to neurodegeneration. The second approach introduced distance
transform-guided Mixup to generate structurally coherent recompositions of MRI
scans, addressing limitations of conventional Mixup. The third method enhanced
MixStyle by incorporating higher-order statistical moments, enabling richer feature
perturbations to better simulate domain shifts.

All methods were evaluated using the NACC dataset for training and the ADNI
and AIBL datasets for out-of-distribution validation. Across these benchmarks, the
proposed models consistently outperformed established baselines, with noticeable
improvements in accuracy, sensitivity, and F1 scores. These gains show the im-
portance of task-aware augmentation strategies and distribution-aware feature ma-
nipulation in mitigating the effects of domain shift. Moreover, qualitative analysis
revealed that the proposed models were better aligned with disease-relevant regions,
providing further evidence of their enhanced interpretability.
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7.2 Future Work

Despite the performance gains achieved in this study, certain limitations highlight
directions for future work. The primary concern lies in the higher model complexity
and memory consumption introduced by the learnable augmentation modules. Fu-
ture research could explore more efficient implementations through model compres-
sion, knowledge distillation, or lightweight architectures that maintain performance
with reduced overhead. Furthermore, the proposed methods were validated primar-
ily on benchmark datasets such as ADNI and AIBL, which, though well-curated, may
not reflect the full heterogeneity of real-world clinical settings. Expanding valida-
tion to larger, multi-institutional datasets with varied imaging protocols and patient
demographics will be essential for assessing generalizability in practical deployment
scenarios.

Another promising direction involves developing adaptive augmentation strategies
that respond to data-specific characteristics such as localized atrophy patterns. In-
corporating patient demographic information such as age and gender into pretext
tasks may further enhance the model’s ability to improve generalization. More-
over, integration of multimodal data, including PET imaging, genetic profiles, and
cognitive assessments, could offer a more comprehensive diagnostic framework, par-
ticularly for borderline cases like early-stage MCI. Finally, future research may also
benefit from embedding causal reasoning frameworks to move beyond purely correl-
ative learning and foster more robust, interpretable decision-making.
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the course of this thesis:
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Alzheimer’s Detection,” Accepted at Signal Processing and Communications
Applications Conference (SIU), 2025.

1.2 Z. Batool, H. Özkan, and E. Aptoula, “Single Domain Generalization for
Alzheimer’s Detection from 3D MRIs with Pseudo-Morphological Augmen-
tations and Contrastive Learning,” Submitted to Computer Vision and Image
Understanding (CVIU). Available at: https://arxiv.org/abs/2505.22465

1.3 Z. Batool, H. Özkan, and E. Aptoula, “Towards Single Domain Generalization
in Alzheimer’s Detection via Extended MixStyle,” In preparation for IEEE
Transactions on Medical Imaging (TMI).

64

https://arxiv.org/abs/2505.22465

	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	RELATED WORK
	Background and Challenges in AD Detection
	Overview of Alzheimer's Disease
	Clinical Importance and Imaging-Based Diagnosis
	Limitations of Current Diagnostic Methods
	Importance of Generalization in AD Detection

	Data and Evaluation Landscape
	Public Datasets for AD Research
	Evaluation Metrics and Validation Protocols in AD Research

	Model Architectures
	Convolutional Neural Networks
	ResNet Architecture
	U-Net Architecture

	Morphology-Inspired Neural Architectures
	Mathematical Morphology
	Morphological Networks


	Deep Learning Approaches for AD Detection and Generalization
	AD Detection Approaches
	Domain Generalization in AD Detection
	General DG Approaches for Medical Image Analysis
	Morphological Modules for AD Detection
	Contrastive Learning based Approaches for AD Detection


	DATASET AND IMPLEMNTATION DETAILS
	Dataset
	Limitations in Dataset Expansion and Preprocessing Considerations

	Implementation Details
	Baselines
	Pretraining with Chest CT Data: Rationale and Limitations
	Weighted Cross-Entropy Loss for Class Imbalance


	SINGLE DOMAIN GENERALIZATION FOR ALZHEIMER’S DETECTION FROM 3D MRI SCANS WITH PSEUDO-MORPHOLOGICAL AUGMENTATIONS AND CONTRASTIVE LEARNING
	Overview
	Model Architecture
	Class-Specific Augmentations
	Pseudo-Dilation Module ())
	Pseudo-Erosion Module (E psi)
	Augmentations module for MCI (T mci)
	Weighted Supervised Contrastive Learning

	Results and Discussion
	Ablation study

	DISTANCE TRANSFORM GUIDED MIXUP FOR ALZHEIMER’S DETECTION
	Overview
	Distance Transform-Based Mixup Augmentation
	Label Mixing
	Results and Discussion

	TOWARDS SINGLE-DOMAIN GENERALIZATION IN ALZHEIMER’S DETECTION VIA EXTENDED MIXSTYLE
	Overview
	Model Architecture
	Extended MixStyle with Higher-Order Moments
	Results and Discussion
	Ablation Study

	CONCLUSION and FUTURE WORK
	Conclusion
	Future Work

	BIBLIOGRAPHY
	APPENDIX A -4em

