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ABSTRACT

A NOVEL TOTAL LAGRANGIAN SMOOTHED PARTICLE
HYDRODYNAMICS APPROACH FOR MODELING DAMAGE IN ELASTIC
SOLIDS AND DEFORMATION OF COMPOSITE STRUCTURES

GOKTUG KILIC

MATERIALS SCIENCE AND NANOENGINEERING Ph.D DISSERTATION,
JULY 2025

Dissertation Supervisor: Prof. MEHMET YILDIZ

Keywords: meshless methods, crack propagation, smoothed particle

hydrodynamics, composite

This thesis comprehensively investigates Total Lagrangian Smoothed Particle Hy-
drodynamics (TLSPH) for modeling complex failure and deformation in solid me-
chanics by focusing on dynamic brittle fracture and quasi-static deformation of
laminated composite structures. In the first part, a novel TLSPH framework for
crack initiation and propagation is developed. Overcoming mesh-based method
limitations such as FEM’s mesh dependence and remeshing, this mesh-free model
solves the strong form of linear momentum equations using a fully Lagrangian par-
ticle formulation. Damage is modeled via a stretch-based criterion, with particle
interactions deactivated at critical stretch. Numerical instabilities are mitigated
by enhanced diffusion and velocity filtering in damaged zones. Validated against
2D and 3D benchmarks (e.g., Kalthoff-Winkler experiment, dynamic crack branch-
ing), the framework demonstrates accuracy, robustness, and captures complex crack
paths without remeshing. The second part extends TLSPH to model quasi-static
deformation of laminated composite beams and plates. This is the first comprehen-
sive 3D TLSPH application to orthotropic composite laminates, discretizing each
ply through thickness using corrected kernel gradients. Laminae are modeled as
orthotropic continua, with global stiffness via exact tensor transformations. Hour-
glass control and artificial viscosity ensure stabilization. Benchmark studies (bi-layer
carbon/epoxy cantilever beams, clamped square plate) confirm accuracy against
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high-fidelity FEM by capturing linear through-thickness in-plane displacements and
bending-stretching coupling. A parametric study of hourglass coefficients further
explores damping-accuracy trade-offs. Overall, this thesis establishes TLSPH as a
versatile, robust, mesh-independent tool for simulating deformation and fracture in
isotropic and anisotropic media, bridging a key gap by unifying fracture mechanics
and composite structural analysis within a single framework.



OZET

ELASTIK KATILARDA HASAR VE KOMPOZIT YAPILARIN
DEFORMASYONUNU MODELLEMEK ICIN YENI BIR TOPLAM
LAGRANGE INTERPOLASYONLU PARCACIK HIDRODINAMIGI

YAKLASIMI

GOKTUG KILIC

MALZEME BILIMI VE NANOMUHENDISLIK DOKTORA TEZI, TEMMUZ
2025

Tez Danismani: Prof. Dr. MEHMET YILDIZ

Anahtar Kelimeler: agsiz yontemler, catlak ilerlemesi, interpolasyonlu parcacik

hidrodinamigi, kompozit

Bu tez, kati mekaniginde Toplam Interpolasyonlu Diizgiinlestirilmis Pargacik Hidro-
dinamigi (TLSPH) kullanimina odaklanir; dinamik gevrek kirilma ve lamine kom-
pozitlerin yari-statik deformasyonunu inceler. Ilk boliimde, catlak baslatma ve il-
erlemesi i¢in agsiz bir TLSPH cercevesi gelistirilmistir. Sonlu Elemanlar Yontemi
(FEM)’in ag bagimliligi ve yeniden ag olusturma sorununu asarak, lineer momen-
tum denklemlerini Lagrangian formiilasyonuyla ¢ozer. Hasar, kritik gerilime dayali
bir kriterle modellenir; sayisal kararsizliklar difiizyon ve hiz filtrelemesiyle azaltilir.
Bu method, iki ve ti¢ boyutlu kiyaslamalarla (Kalthoff-Winkler ve dinamik ¢atlak
catallanmasi deneyleri) dogrulanmistir ve bu methodun yeniden ag olusturma gerek-
tirmeden karmasik catlak ilerlemesini yakalama yetenegi, dogrulugu ve saglamligi
gosterilmistir. Tkinci bolimde, TLSPH lamine kompozit kiris ve plakalarin yari-
statik deformasyonunu modellemek tizere genisletilmistir. Bu, ortotropik laminat-
larda 3D TLSPH’nin ilk kapsamli uygulamasidir. Yontem, her katmani kalinlik
boyunca ayriklastirir; denklemleri diizeltilmis kernel gradyanlari kullanarak cozer.
Stabilizasyon, kum saati kontrolii ve yapay viskozite ile saglanmistir. Kiyaslama
calismalari (karbon/epoksi konsol kirisler, kare plaka) FEM ¢oziimlerine karsi do-
grulugu teyit eder; diizlem igi yer degistirmelerin kalinlik boyunca dogrusal degisi-
mini ve asimetrik laminatlardaki biikiilme-uzama birlesimini yakalar. Kum saati
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katsayisi ¢alismasi, soniimleme ve dogruluk arasindaki o6diinlesimleri inceler. Genel
olarak, tez TLSPH’yi izotropik ve anizotropik ortamda kirilma mekanigi ile kom-
pozit yapisal analizini birlestiren, saglam, agsiz, cok yonlii bir ara¢ olarak sunarak
literatiirdeki boslugu doldurur.
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1. INTRODUCTION

Computational modeling and simulation have become essential tools in engineering
because it enables the prediction of complex physical phenomena where analytical
solutions are intractable or experiments are costly. In solid mechanics, given the crit-
ical importance of understanding material failure mechanisms, optimizing structural
designs, and ensuring structural integrity, computational modeling and simulation
are highly favored methodologies. Finite Element Method (FEM) has been an ex-
cellent mathematical approach due to its versatility, standardized frameworks and
widespread integration within commercial software platforms. While FEM excels for
problems with moderate deformations and smooth material behavior, its inherent
mesh-dependent formulation presents limitations in accurately simulating complex
phenomena such as large deformations, dynamic fracture, crack propagation, and
heterogeneous media (Belytschko & Black, 1999; de Borst, Crisfield, Remmers &
Verhoosel, 2012; Rabczuk, 2013). The necessity of iterative remeshing in FEM -
which is essential for modeling dynamic crack propagation and prevent mesh dis-
tortion during large deformation - results in high computational costs that limit its
practical implementation. The eXtended Finite Element Method (XFEM) (Moés
& Belytschko, 2002; Sukumar, Moés, Moran & Belytschko, 2000) eliminates some
issues but the mesh-dependency of the crack path has not been fully eliminated.
Furthermore, both FEM and XFEM face inherent challenges in problems involving
large deformations (e.g., ballistic impacts, composite crushing), where mesh dis-
tortion introduces numerical instabilities. These persistent limitations have driven

significant interest in meshless methods.

1.1 Meshless Methods



Recent advances in computational mechanics have increasingly favored meshless
methods due to their inherent ability to overcome the mesh-related constraints of
FEM and XFEM (Liew, Zhao & Ferreira, 2011) by eliminating predefined element
connectivity. By approximating field variables using only nodal points without mesh
constraints, these approaches inherently avoid remeshing requirements and mesh
distortion issues. This fundamental characteristic provides greater flexibility for
modeling discontinuities and large deformations while simplifying the simulation
of complex phenomena where traditional mesh-based methods struggle. This sec-
tion provides a brief literature review on some of the meshless methods and their

applications in crack propagation and composite modeling.

The Element-Free Galerkin Method (EFGM) (Belytschko, Lu & Gu, 1994) which
is based on Moving Least Squares (MLS) interpolation (Shepard, 1968), approxi-
mates field variables using scattered nodes with polynomial functions and variable
coefficients. While EFGM eliminates element connectivity, it retains dependence
on background meshes for numerical integration. Belytschko et al. (Belytschko,
Lu & Gu, 1995; Belytschko & Tabbara, 1996) used EFGM for crack propagation
problem their work in which the crack surface is explicitly modeled. Rabczuk and
Belytschko (Rabczuk & Belytschko, 2004,0) later proposed the cracking particle
method. This method simulates a crack in the body with discrete cracks on t2he
particles, eliminating explicit crack surface representation. The accuracy is main-
tained by additional functions for the displacement field around the crack. The
need for utilizing extra functions is removed in particle splitting method (Rabczuk,
Zi, Bordas & Nguyen-Xuan, 2010) in which a particle is split and forms two new
particles upon crack initiation. On the other hand, EFGM is also implemented for
composite structures. The buckling behavior of both the isotropic and laminated
composite plates is investigated by Liu et al. (Liu, Chen & Reddy, 2002) by employ-
ing the weak form of the governing equations. They reported that the dimension
of the EFGM eigenvalue problem is smaller compared to FEM. In Zhou and Song’s
study (Zhou & Song, 2019), Strain-Rotation decomposition theorem is used with
EFGM to analyze the bending behavior of carbon nanotube reinforced composite
plates by stressing the limitations of finite deformation theory in nonlinear scenar-
ios. In (Ghorashi, Mohammadi & Sabbagh-Yazdi, 2011; Pan, Li, Luo & Zhu, 2022),

fracture in composite material is simulated via EFGM with the weak formulations.

The Radial Point Interpolation Method (RPIM) (Wang & Liu, 2002) is an another
meshless technique. In this method, the shape functions are constructed based on
radial basis functions and a combination of radial and polynomial functions for
the interpolation of physical variables are utilized. This dual function approach

can result in a higher computational cost. Gu et al. (Gu, Wang, Zhang & Feng,
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2011) developed enriched RPIM method where they enhance the standard RPIM
interpolation with trigonometric basis functions for determining the crack tip stress.
Compared to conventional RBF, e-RPIM offers improved accuracy. In Zhuang et
al’s study(Zhuang, Cai & Augarde, 2014), meshless sub-region RPIM is developed.
Their methodology employs Williams series expansions as trial functions within
crack tip region, while utilizing conventional RPIM for the regions far away the
crack tip. Thus, they enabled accurate determination of crack tip stress fields with
a sparse nodal discretization around the crack tip. Ramalho et al. (Ramalho,
Belinha & Campilho, 2019) combined RPIM and Natural Neighbor RPIM for the
different integration schemes of each. NNRPIM distinguishes itself by construct-
ing background integration points solely from the spatial coordinates of the nodes.
While RPIM is utilized for numerical solution of partial differential equations, NNR-
PIM background mesh structure is formed for the crack tip regions. This allows for
efficient crack tip stress analysis with a reduced nodal density in the vicinity of the
crack. RPIM has also been applied to composite structures. Saitta et al. (Saitta,
Luciano, Vescovini, Fantuzzi & Fabbrocino, 2022) integrated RPIM into nonlocal
strain gradient theory for the dynamic analysis of cross-ply composite nanoplates by
incorporating a nonlocal parameter to account for nano effects. Similarly, Rodrigues
et al. (Rodrigues, Belinha, Dinis & Jorge, 2021; Rodrigues, Belinha & Natal Jorge,
2021) employed RPIM to conduct static bending analysis of symmetric and anti-
symmetric laminates using various higher-order shear deformation theories. Both
RPIM and EFGM utilize a background mesh structure for the integration of the

field variables.

Peridynamics stands as a prominent meshless method for the simulation of dis-
continuities, attributed to its formulation based on integro-differential governing
equations (Silling, 2000) and material discontinuities are inherently incorporated
within the constitutive formulation (Madenci & Oterkus, 2013). Peridynamics es-
tablishes inter-particle interactions through the concept of bonds, the characteristics
of which are linked to the material’s energy release rate. Exceedance of a critical
strain threshold of a bond represents fracture initiation an/or propagation. While
peridynamics theory provides a robust framework for simulating discontinuities, the
development of novel material models necessitates rigorous mathematical derivation
or reformulation. Ghajari et al. (Ghajari, lannucci & Curtis, 2014) and Guo et al.
(Guo, Tian & Tang, 2024) introduced composite peridynamics models wherein the
elastic modulus of a bond connecting two particles is defined as a function of their
relative fiber orientations, with the specific functional form differing between the
two studies. Mehrmashhadi et al. (Mehrmashhadi, Chen, Zhao & Bobaru, 2019)

developed fully-homogenized and intermediately-homogenized peridynamics models



to analyze and compare intraply quasi-static fracture in fiber-reinforced composite
structures. For the intermediately-homogenized model, they employed a stochas-
tic methodology to differentiate the properties of fiber-fiber, matrix-matrix, and

fiber-matrix bonds.

The meshless methods discussed above have demonstrated significant potential for
modeling both crack propagation and composite behavior, each offering distinct ad-
vantages: EFGMs accuracy in crack-tip modeling, RPIMs flexibility in stress field
approximation, and Peridynamics inherent treatment of discontinuities. However,
these approaches share common limitations, including reliance on background in-
tegration meshes, high computational costs, and/or complex constitutive formula-
tions. These constraints motivate the exploration of Smoothed Particle Hydrody-
namics (SPH) as an alternative. In the following section, SPH is introduced with an
extensive literature review on its applications in crack propagation and composite

structures.

1.2 Smoothed Particle Hydrodynamics

SPH was first introduced in 1977 by Gingold and Monaghan (Gingold & Monaghan,
1977) and Lucy (Lucy, 1977) for astrophysical problems and is considered as one
of the earliest meshless methods. In SPH, the computational domain is discretized
into particles, each possessing a neighborhood defined by a characteristic smoothing
length. Field variables are interpolated non-locally through a smoothing kernel
function based on neighboring particles. SPH’s theoretical simplicity and inherent
ability to handle complex interfaces and moving boundaries have made it a valuable
tool for particularly in fluid dynamics (He, Tofighi, Yildiz, Lei & Suleman, 2017;
Rahimi, Koluksa, Yildiz, Ozbulut & Kefal, 2022; Rahmat & Yildiz, 2018). SPH has
increasingly been adopted in solid mechanics for its inherent ability to adress mesh-
related challenges, including remeshing requirements and stress singularities near
discontinuities. This capability has made it particularly valuable for simulating large
deformations (Jun Lin, Naceur, Daniel & Laksimi, 2015; Lin, Naceur, Coutellier
& Laksimi, 2014; Zhang, Ming & Cao, 2014), hypervelocity impacts (Cherniaev
& Telichev, 2015; Giannaros, Kotzakolios, Kostopoulos & Campoli, 2019; Libersky,
Petschek, Carney, Hipp & Allahdadi, 1993), and fracture propagationscenarios where

traditional mesh-based methods struggle.



Despite its advantages, SPH remains susceptible to two major numerical instabili-
ties: tensile instability and rank deficiency. The tensile instability phenomenon, first
identified by Swegle (Swegle, Hicks & Attaway, 1995), manifests when tensile stresses
cause normally repulsive inter-particle forces to become attractive, leading to artifi-
cial particle clustering. Belytschko et al. (Belytschko, Guo, Kam Liu & Ping Xiao,
2000) attributed this instability to the fundamental conflict between the Eulerian
nature of kernel approximation and the Lagrangian motion of particles. This insta-
bility was addressed by Belytschko et al. (Belytschko, Guo, Kam Liu & Ping Xiao,
2000) by developing the Total Lagrangian SPH (TL-SPH) method, which performs
kernel approximation in the undeformed reference configuration. However, this ap-
proach can become problematic under extreme deformations due to significant sup-
port domain distortion. This limitation has motivated alternative approaches such
as the updated Lagrangian scheme proposed by Rabczuk and Belytschko (Rabczuk
& Belytschko, 2007), where the kernel function is periodically updated during the
simulation. Rank deficiency presents another significant challenge in SPH simula-
tions, as extensively discussed by Dyka et al. (Dyka, Randles & Ingel, 1997). This
issue primarily stems from SPH’s inherent nodal integration approach, which can
violate the zeroth and first-order consistency conditions of the kernel function. As
a result of this violation, spurious energy modes and incomplete displacement field
representations are generated. Several mitigation strategies have been developed,
including the use of additional integration points (Dyka, Randles & Ingel, 1997;
Randles & Libersky, 1996), stabilized conforming nodal integration methods (Chen,
Wu, Yoon & You, 2001), and hourglass stabilization techniques. Ganzenmiiller
(Ganzenmiiller, 2015) specifically addressed the computational expense of increased
integration points in Lagrangian SPH by developing an alternative stabilization ap-
proach that introduces an hourglass force term into the momentum equation to
suppress resulting hourglass modes. Furthermore, kernel gradient correction tech-
niques have proven effective in satisfying first-order completeness conditions and

improving solution accuracy.

Several studies in the literature have employed SPH for crack modeling applications.
Benz and Asphaug (Benz & Asphaug, 1995) established an SPH framework for brit-
tle fracture and fragmentation using explicit equations to predict crack evolution.
Their method requires a probabilistic definition of initial material flaws coupled with
a complex failure criterion that presents implementation challenges. A pseudo-spring
based SPH was proposed by Chakraborty and Shaw (Chakraborty & Shaw, 2013)
for modeling an impact scenario. In their study, damage accumulation progressively
reduces spring forces between adjacent particles and complete spring failure repre-

sents crack initiation. Their updated Lagrangian formulation artificially restricts



particle interactions to immediate neighbors without reducing the smoothing length
- a simplification that contradicts SPH’s fundamental non-local nature and violates
the zeroth-order consistency condition of the kernel function. Islam and Peng (Islam
& Peng, 2019) was inspired and they implemented a similar spring-based damage
model within the TLSPH framework but aforementioned neighborhood restriction
remained. Wiragunarsa et al. (Wiragunarsa, Zuhal, Dirgantara & Putra, 2021)
developed a TLSPH based fatigue-crack model in which the crack propagation di-
rection is driven by the maximum principal stress between neighboring particles.
Moreover, Rahimi and Moutsanidis (Rahimi & Moutsanidis, 2022) coupled TLSPH
with the phase-field method - a well-established approach for damage modeling.
Their hybrid approach provides greater accuracy for brittle fracture simulation, it
comes with significantly higher computational demands compared to other SPH frac-
ture models (Chakraborty & Shaw, 2013; Islam & Peng, 2019; Raymond, Lemiale,
Ibrahim & Lau, 2014; Wiragunarsa, Zuhal, Dirgantara & Putra, 2021).

SPH demonstrates robust capabilities in discretizing partial differential operators
across both governing equations and constitutive relations. This computational
flexibility has led to recognized theoretical parallels with peridynamics and several
studies has investigated their connections. Bessa et al. (Bessa, Foster, Belytschko &
Liu, 2014) established an important theoretical link by demonstrating that the dis-
cretized formulations of peridynamics can be derived through the Reproducing Ker-
nel Particle Method (RKPM) (Liu, Jun & Zhang, 1995), another meshless method
developed to improve SPH’s accuracy in boundary regions and to restore consistency
conditions. Their work revealed how RKPM’s kernel correction techniques naturally
extend to peridynamic formulations. The relationship between these methods was
further clarified by Ganzenmiiller et al. (Ganzenmiiller, Hiermaier & May, 2015),
who performed a rigorous mathematical analysis showing that TLSPH and peridy-
namics become formally equivalent when expressed in their discretized forms. This
equivalence stems from their shared use of non-local interaction models, though they
differ in their treatment of deformation states and failure criteria. The theoretical
unification of these approaches has important implications for computational me-
chanics, as it allows for cross-pollination of numerical techniques between the two
methods. Building on these fundamental insights, Zhou et al. (Zhou, Yao & Berto,
2021) developed an innovative hybrid framework called Smoothed Peridynamics
(SPD) that strategically combines the strengths of both methods. Their approach
recognizes that updated Lagrangian SPH is particularly well-suited for modeling
large deformations due to its adaptive kernel support, while peridynamics - as an
inherently total Lagrangian method with constant neighbor interactions - provides

superior capabilities for crack propagation simulations. The SPD formulation main-



tains an updated Lagrangian framework, enabling it to handle finite deformations
while incorporating peridynamics-inspired mechanisms for discontinuity modeling.
This synthesis creates a powerful computational tool that addresses two of the most
challenging aspects of solid mechanics simulations within a unified particle-based

framework.

While SPH shows considerable promise for crack propagation applications, its imple-
mentation for composite laminates remains relatively underdeveloped. Giannaros et
al. (Giannaros, Kotzakolios, Kostopoulos & Campoli, 2019) employed a fully SPH-
based approach for an impact problem in which both the projectile and the composite
target is modeled via SPH. However, they utilized an updated Lagrangian formu-
lation with variable smoothing length, albeit at significant computational expense.
For a similar impact simulation, Cherniaev and Telichev (Cherniaev & Telichev,
2015) adopted a hybrid SPH-FEM methodology, applying SPH solely to the pro-
jectile while relying on FEM for the composite plate. Vignjevic et al. (Vignjevic,
Vuyst & orevi, 2024) investigated crack propagation in composite structures where
they present an interparticle area-reduction criteria for crack propagation into ex-
isting models. Karamanli’s investigations (Karamanli, 2016; Karamanlh, 2017) of
functionally graded materials (including composites) through symmetric SPH for-
mulations demonstrate promising results for elastic deflections under various beam
theories, yet these static approaches cannot capture time-dependent behavior under
dynamic loading conditions. SPH has found more extensive application in model-
ing composite manufacturing processes, as demonstrated by He et al. and Huntley
et al. (He, Lu, Chen, Li & Lu, 2017; Huntley, Rendall, Longana, Pozegic, Potter
& Hamerton, 2020) in their simulations of short fiber-reinforced polymer produc-
tion. These studies treat polymer melts as weakly compressible SPH fluids while
modeling fibers as rigid bodies influenced by flow characteristics. While valuable
for process simulation, such applications differ fundamentally from the mechanical

behavior analysis of cured composite structures.

1.3 Motivation

The literature review in previous section identifies critical shortcomings in exist-
ing SPH formulations for crack propagation modeling. In addition, there is no
comprehensive TLSPH study that investigates quasi-static and/or dynamic flexural

responses in laminated composite systems. This dissertation addresses these re-
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search gaps through two complementary investigations: (i) development of a novel
TLSPH damage formulation for isotropic elastic solids, and (ii) implementation of
an innovative TLSPH framework for dynamic flexural analysis of composite beam

and plate structures.

The first study introduces a novel TLSPH damage formulation designed for isotropic
elastic solids to overcome key numerical challenges in fracture modeling. The frame-
work employs a total Lagrangian approach to inherently mitigate tensile instability
while incorporating a peridynamics-inspired failure criterion: particle interactions
are terminated upon exceeding a critical stretch threshold. To address crack-tip sin-
gularities and kernel consistency violations, the formulation implements two stabi-
lization techniques: (1) localized enhancement of numerical diffusion and (2) velocity
filtering in damaged regions. Fundamental capability of the proposed approach is
first demonstrated via large deformation analyses of undamaged 2D and 3D can-
tilever beams. Subsequently, the damage model’s efficacy is investigated against
established benchmark problems, including 2D/3D Kalthoff-Winkler experiments
and 2D dynamic crack branching scenarios. These test cases systematically verify
the method’s accuracy in capturing both crack initiation and complex propagation

patterns.

The second study introduces a novel application of TLSPH formulation for the three-
dimensional macro-modeling of composite laminates, thereby addressing a signifi-
cant void in the current literature. The proposed methodology utilizes a strong-form
governing equation to accurately capture the temporal evolution of the material’s
mechanical response. By representing each layer as a homogeneous orthotropic ma-
terial, the approach circumvents the computational demands associated with micro-
scale modeling while maintaining efficiency. In contrast to computationally intensive
updated Lagrangian SPH formulations, the straightforward TLSPH framework offers
an efficient approach. Furthermore, this method diverges from traditional mid-plane
theories, such as the First Shear Deformation Theory (FSDT), which treat the entire
laminate as a single equivalent layer. Instead, each individual layer is discretized into
multiple particles through its thickness, enabling a high-fidelity observation of the
mechanical behavior across the thickness. This advancement provides more profound
insights into the time-dependent response of laminated composite structures. To en-
sure comparability with quasi-static conditions, the applied load follows a smooth
temporal ramp function, which minimizes numerical instabilities and enhances sim-
ulation accuracy. The numerical framework also incorporates hourglass control and
artificial viscosity techniques to improve robustness under complex loading scenar-
ios. Validation through numerical examples confirms the accuracy, efficiency, and

practical applicability of the proposed method to real-world engineering problems.
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2. METHODOLOGY

This chapter presents the theoretical foundations and numerical implementation
of the TLSPH framework developed for damage propagation and composite struc-
tures. The computational methodology begins by defining the fundamental SPH
discretization for vector-valued function and its gradient, establishing the mathe-
matical foundation for subsequent formulations. Building upon this discretization
approach, the governing equations of motion are discretized in their total Lagrangian
formulation. For the damage modeling part of this research, a constitutive model
describing isotropic elastic material behavior and proposed novel damage model are
presented. Subsequently, general constitutive model of laminated composite struc-
tures is given for analyzing the dynamic flexural behavior of composite beams and
plate. This progressive formulation ensures consistent treatment of both isotropic
damage propagation and anisotropic composite behavior within the unified TLSPH

framework.

To enhance the clarity, a brief overview of the notational conventions is necessary.
Particle indices are represented by bold subscripts, i and j. Vectors and tensors are
denoted by boldface symbols, either directly (e.g., v) or using index notation where
superscripts indicate the components (e.g., vk). As an exception, the components
of base vectors are indicated by subscripts (e.g., ex). The magnitude (norm) of a
vector is represented by its non-bold counterpart, such that zj; = |x;;|. To differen-
tiate variables in the initial configuration from those in the deformed configuration,

uppercase letters are used for the former.

2.1 SPH Discretization

As stated in Appendix A in which a brief mathematical background of SPH is given,

value of a field function f in the spatial coordinate of particle i can be calculated in
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SPH framework as:

(2.1) f(x3) /fo (|x; — xj],h)d?’xj,

and the gradient of a field function via SPH kernel approximation is:

(2.2) "(x4) /fo UG Xj|’h)d3xj.

Ox;

Here, x; and x; are coordinate vectors of particle i and j, respectively. In SPH,
each particle i possesses a compact support domain which is typically defined as a
circle (in 2D) or a sphere (in 3D) centered at the particle’s location. The radius of
this support domain is given by xh, where h represents a parameter that governs
the spatial extent of particle interactions and is called "smoothing length', and
is a dimensionless constant scaling factor. Any other particle j that lies within the
support domain of particle i is considered a "neighbor" of particle i. Consequently,
the support domain of particle i is also referred to as the "neighborhood" of particle
i, encompassing all particles that directly interact with particle i in the SPH formu-
lation. To improve the readability in this dissertation, x; —x; (the distance vector
between particle i and particle j), W(|x; —x;j|,h) (the kernel function) and f(x;)
will be denoted as xj5, Wjj and f;, respectively. In the context of SPH, Equation 2.1

is discretized as:
(2.3) =2 Vifi Wy,

where V; is the volume of particle j and N is the total number of the neighbors
of particle i. It is important to note that directly derivating Equation 2.3 for dis-
cretizing the gradient of a function may results in low accuracy. This is primarily
attributed to numerical errors arising from non-uniform particle distributions and/or
incomplete support domains for particles that are near to the domain boundaries.
Thus, corrective SPH formulations are used to prevent this problem (Lin, Naceur,
Coutellier & Laksimi, 2014; Shadloo, Zainali, Sadek & Yildiz, 2011). Accordingly,

one can express the discretized gradient of a vector-valued function in two different

ways as:
2.4 afis kl Y Vi S S an.]
(2.4) i —j_zl $(5 =)
0ff w_<no (5, B oWy
2.5 Lol =N v (2 4 2 .
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In above equations, afl is the correction tensor:

(2.6) gl = g:xfi% a;vxzj .
j=1 i
To compute the gradients of function that are at the right hand side of Equation
2.4 an Equation 2.5, the correction tensor must be inversed and added to the left
hand side of the equations. Multiplying the inverse of the correction tensor with the
gradient of the kernel function gives "corrected kernel gradient" and it is denoted as

2 —1
VWi = (Ai)_1 VWi;, where A; and VWjj are (oz?l) and 8Wij/(9x§, respectively.

1

The choice of kernel function plays a critical role in SPH formulations since it in-
fluences accuracy, stability, and computational efficiency of the simulation. While
various kernel formulations exist in the literatureincluding Gaussian, quartic, and
quintic spline functionsthis study adopts the cubic spline kernel (Liu & Liu, 2010;
Shadloo, Zainali & Yildiz, 2013) for its optimal balance between numerical stability

and computational practicality. The cubic kernel is defined as:

2’4343, 0<g<1
(2.7) Wi(g,h)=aq{ ¢(2-q)?, 1<qg<2
0, q>2

where ag is the kernel normalization factor and it is equal to 15/(77h?) or 3/(27h?)
for 2D and 3D simulations, respectively. ¢ is set to zj;/h and h equals to some

coefficient such as 1.33 or 2 times the initial particle distance Ax.

2.2 Governing Equations

The theoretical foundation of the TLSPH formulation starts with two fundamen-
tal conservation equations and their discretization according to the Lagrangian de-
scription of motion. For solid mechanics applications, the governing equations are
expressed in terms of the material derivative to track the motion in the reference
configuration. Accordingly, the conservation of mass and linear momentum are:

dp

2. = _ V-
(2.8) 7t pV v,
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(2.9) Z‘;—;anLb,

where p, v, b and o denote the density, the velocity vector and external force per
unit mass and Cauchy stress tensor, respectively. According to the total Lagrangian
description, the conservation of mass (Equation 2.8) can be achieved by updating the
density simply with a linear algebraic equation. According to the total Lagrangian
description, the deformed material coordinates x and undeformed coordinates X are
related by the displacement vector u = x — X. In addition, conservation of linear
momentum (Equation 2.9) can be re-written by replacing Cauchy stress tensor o
with the first Piola-Kirchhoff stress tensor P. Thus, Equation 2.8 and Equation 2.9

becomes:
P0
2.10 = —
(2.10) P=7
dv 1
2.11 =V, P+b
(2.11) 7 povo +b,

Here, P is the first Piola-Kirchoff tensor and it is computed either by mapping
Cauchy stress tensor to the undeformed (reference) configuration or with second
Piola-Kirchoff tensor S using deformation gradient F = 0x/0X, depending on the
simulation scenario. J is the Jacobian and it is equal to determinant of the defor-
mation gradient tensor and the subscript 0 is used to indicate the reference config-
uration. Regardless of how P is calculated, one needs to compute Green-Lagrange

strain tensor as:
1
(2.12) Ezi(L+LT+LTL),

where L is the displacement gradient tensor and it is equal to du/0X. In TLSPH

context, F and L can be discretized using Equation 2.4 as below:

ox N =

(2.13) F = <> =Y (x5 —x;) VoW,
X Pt J J
Ju N =

(2.14) L= () =Y (5 —u;)VoWi;Vo.
X At J J

For discretization of conservation of linear momentum equation, Equation 2.5 is

utilized since it performs better for stress derivatives. To this extent, Equation 2.11
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is discretized as:

dv N Pi P\ =~
i j=1 i J

2.2.1 Stabilization Techniques

Several stabilization techniques that form the backbone the novelty of the studies
are utilized. Firstly, to eliminate the numerical instabilities driven by the non-
physical shock-wave oscillations, the artificial viscosity stress term P45 is included

as a stabilization technique. Therefore, Equation 2.15 becomes:
dv NPy P =
(2.16) (dt) => po <£+pé]—Pyij> VoWi;Vo + b;.
i j=1 i J

The artificial viscosity stress term is fist computed in deformed configuration as:

—aipijco+Bs;
- V; —Vs) - X._X.
0, Vi) (X3~ X 20,

A
o

where pi55 is;

_ h(vi—vy) - (X = X)
_ . _
‘Xi - XJ-\ +0.01h2

(2.18) i

co =/ (/{—1— %“) /p is the speed of the sound in solids in which kK = A+ (2/3)u is the
bulk modulus. I is then mapped to the undeformed configuration according to

the below relation:
(2.19) Pyij = det(F)HijF_T.

Another stabilization technique used in this research is based on the study of
Ganzenmiiller et al. (Ganzenmiiller, 2015). According to his elaboration, the cor-
rection tensor that is used to correct the kernel gradient is not symmetric particle
wise, A; # A;. This is mainly due to incomplete support domains of particles near
the domain boundaries. Thus, the property of antisymmetry is no longer held i.e,
AV/Wij =+ —AV/VVji, which results in the violation of the conservation of the linear mo-

mentum. To prevent this inconsistency, a modification in Equation 2.16 is made as
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below:

dv N Pi~ P -
(2.20) (dt) = Zpo‘/o <2V0VVij — pfé]V()VVji — P,,ijV()Wij> + b;.
i J

i j=1

For small to moderate deformations, the aforementioned stabilization techniques ap-
plied within the discretized acceleration equation (Equation 2.20) typically provide
sufficient accuracy. However, when evaluating the in-house TLSPH code under large
deformation scenarios, the occurrence of unphysical particle clustering is observed.
This instability is found to be a phenomenon analogous to hourglass problem in
FEM. In FEM, hourglassing arises from the use of an insufficient number of integra-
tion points within an element, leading to spurious zero-energy modes of deformation
where elements deform without a corresponding strain energy. From SPH point of
view, center of the SPH particle can be considered as an integration point and the
kernel function filters the value of any field variable through neighboring particles
with a linear deformation gradient tensor F. This interpolation can struggle to ac-
curately represent complex deformation states under non-linear behaviors. To this
end, Ganzenmiiller et al. (Ganzenmiiller, 2015) proposed a virtual "hourglass force'
to mitigate the incorrect deformation representation. Since both crack propagation
and composite modeling studies involve many non-linearities, hourglass force term
is included in both. The hourglass force formulation begins by definining an error
vector £€;; between the actual and mapped distance vector in deformed configuration

as below:
(2.21) Sij = Xjj _FiXij-

Error vector £;; can be minimized by correcting the distance vector x;;. The hour-

glass correction force frq is:

yE X [6+0] x4
(2.22) fHGZ_Oj_Zle[ it 1 X%;ijwij,
where v is a coefficient for adjusting the magnitude of fyq. Its value is chosen
to minimize the ratio of hourglass energy to the total system energy. This selec-
tion ensures that non-physical deformation modes are effectively mitigated without
compromising the physical accuracy of the results. This minimization process is
conducted using a systematic trial-and-error approach. In this method, a range of
parameter values are manually tested to identify the configuration that yielded sta-
ble and physically consistent results (Ganzenmiiller, 2015). The simulation results

are made to demonstrate close agreement with those obtained from established com-
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mercial finite element package keeping the hourglass energy as a small fraction of
the total internal energy as possible. dj; is defined for minimizing the error vector
£;j by correcting the distance between particle 7 and particle j as:
e o X
(2.23) bij = ——1.
Tij
Incorporating fr;¢ in Equation 2.20 results in final form of discretized version of the

conservation of the linear momentum:

dv N Pi~ Pj~ =
(2.24) )= > poVo ?VOWij — ?V()Wji —Pi;VoWsy | +fuai +bi,
i j=1 i J

which the code solves at the end of the each time step. The formulation scheme
detailed thus far is common to both research endeavors within this dissertation.
However, the calculation of the first Piola-Kirchhoff stress tensor, P, varies depend-

ing on the scenarios investigated within this dissertation.

2.3 A Novel TLSPH Approach for Modeling Damage in Elastic Solids

In this section, the constitutive relations for a linearly elastic isotropic body are
explained and the novel damage model is presented. For the modeling of the crack
propagation case, the second Piola-Kirchhoff stress tensor is employed due to its

demonstrated capacity to provide enhanced accuracy in the results:
(2.25) S = \tr(E)I+2uE,

where p=F/2(v+1) and A= Ev/((1+v)(1—2v)) are Lamé constants in which F
and v are the elasticity modulus and Poisson’s ratio and I is the identity tensor.

The first Piola-Kirchhoff stress tensor is then computed as:

(2.26) P=FS

2.3.1 Novel Damage Model
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Despite the methodological differences between peridynamics and the classical con-
tinuum mechanics approach of TLSPH, their final discretized forms exhibit notable
correspondence as explained by Ganzenmiiller et al. (Ganzenmiiller, Hiermaier &
May, 2015). The damage criterion in bond-based peridynamics is solely based on
the material properties and particle influence radius (which is equivalent to smooth-
ing length in SPH). Based on these information, adopting this damage model into
TLSPH context can be rational. Therefore, the proposed damage model’s criterion
is directly inspired by peridynamics theory, which is elaborated in Madenci’s book
(Madenci & Oterkus, 2013). It’s important to note that the bond-based formulation
that we are inspired, which employs a constant support domain, is specifically for
linear elastic isotropic solids. For heterogeneous materials or more complex mate-
rial behaviors, the Dual-Horizon peridynamics formulation, as presented in (Ren,

Zhuang & Rabczuk, 2017), may be a more suitable approach.

The novel damage model begins by defining a strain variable s;; between two particles
as:

|Xij —CL’ij|
2.27 Sjij = ————
( ) 1 |Xij|

In peridynamics literature, sjj is called stretch and the distance vector between two
particles is called bond. Stretch characterizes the change in the length of the bond
through undeformed to deformed state between particle i and particle j. Similarly,
critical stretch se that denotes the maximum allowable strain for a particle pair is

expressed as:

3 fe TNV for 3 dimensions,
(2.28) s ()" (%)
. o=
G 16GC ,  for 2 dimensions,
()

where G, is the critical energy release rate and § is peridynamics’ horizon that is
conceptually equivalent to SPH’s smoothing length h. Once the stretch between two
particles exceeds the critical stretch, their interaction is terminated, i.e. the bond
is broken, by embedding a binary-valued variable Aj; into the equations:

L, Sij < Se,

(2.29) Aij =
0, Sij Z Sc.
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Thus, Equation 2.13, Equation 2.14 and Equation 2.24 are modified as follows;

(230) F; = < ) Z)\u‘/‘] —Xj V()I/Vly
ou N =
(2.31) L; = (ax) = N;Vi(uj —ui) VoW,
i j=1

P. .
pQJ VoWji — PyijVOWij> +fugi+bi.
J

dv P~
(2.32) ( ) ZAUpJ (p VoWij —

To be able to characterize the quantity of the damage that ranges between 0 (no
damage) and 1 (completely damaged), the ratio of the number of the broken bonds
to the total number of the bonds ¢; can be defined as:

SARP

(2.33) di=1-"1

To obtain a smoother and more diffusive damage representation, ¢'; is used instead

as:

S (6 — o)W
SN Wy

(2.34) ¢ =i —

2.3.1.1 Suppressing of damage related instabilities

Once the stretch of a bond exceeds its critical stretch threshold, the bond is con-
sidered broken. This means that particle j is eliminated from the neighborhood of
particle i and particle j no longer contributes to the kernel interpolation of any field
variable on particle i. As explained in Appendix A, the kernel function must satisfy

below relations:

« The normalization condition (ZJ]\L

computation of displacement and velocity field

1AijV5Wi; = 1) which is necessary for precise

o The derivation of normalization condition (Zj]il AijV3 VW45 = 0) which ensures

accurate stress field approximation
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After the neighbor eliminations, both of the above expressions are violated which
results in rank deficiency problem, explained in introduction. Furthermore, singu-
larities due to the existence of crack arise. To mitigate these singularities, we come
up with the idea of increasing the local numerical diffusion by altering the artificial

viscosity coefficient «; according to the below condition:

ag, ¢'i>0,
(2.35) =% ¥

ap, ¢Ii = 0.

Besides, the velocity field is smoothed to prevent the unphysical jumps (Ozbulut,
Tofighi, Goren & Yildiz, 2017) when a critical damage value is reached, i.e., ¢; >

Pe:

¥ (v — v5) W
St Wy

(2.36) vi=vi—e

I

in which € is a velocity smoothing parameter.

Up to this point, there are various equations are given. To enhance the reader’s
experience, Algorithm 1 can be followed step by step for every procedure for the

crack propagation problem.

2.4 Constitutive Model for Composite Modeling

For the composite modeling, the computation of the first Piola-Kirchhoff tensor
is achieved by directly mapping of the Cauchy stress tensor o into undeformed

configuration, using deformation gradient tensor F as P = det(F)oF 7.

In composite laminates, individual plies exhibit anisotropic mechanical properties,
initially characterized within a local coordinate system that aligns with the spe-
cific fiber orientation of each layer. For a precise analysis of the laminate’s global
response, these properties must be transformed into a common global coordinate
system. Customarily, this involves two frames of reference: a fixed global system
(x, v, z) applicable to the entire structure, and a local system (x7, x2, x3) unique to
each layer, which is oriented with the fiber direction to account for the material’s
inherent anisotropy (Figure 2.1). To establish the relationship between the stress

and strain within each layer and the overall global structural behavior, the global
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Algorithm 1 Code algorithm for the crack propagation problem

1: Initialize the geometry

2: Impose the boundary conditions

3: Perform neighbor search

4: Set A;j to O for the initial cracks (if present)

5: Compute Wj; and ,VvoVVij

6: while t =0 < Total Time do

7 Compute F; and L; via Equation 2.30 and Equation 2.31
8: Compute E; via Equation 2.12

9: Compute S; via Equation 2.25

10: Compute P; via Equation 2.26

11: Compute &5 and 635 via Equation 2.21 Equation 2.23
12: Compute frg; via Equation 2.22

13: if gb/in > ( then

14: Compute P;; with a4 via Equation 2.19

15: else

16: Compute P;; with o via Equation 2.19

17: end if

18: Compute % via Equation 2.32

19: Update the velocity v;" T = v;" + dg? At
20: if ¢;" > ¢. then
21: Apply velocity smoothing via Equation 2.36
22: end if
23: Update the displacement u;" ! = u;™ + vi" 1At
24: Update the position x;" T = X; 4+ u;" !
25: Compute stretch s;; via Equation 2.27
26: if sjj > sc then
27: Set )\ij to 0
28: else
29: Set \;j to 1
30: end if
31: Compute damage gzﬁ?“ via Equation 2.33
32: Compute smoothed damage ¢’ inH via Equation 2.34
33: Update the time "1 =" + At

34: n<n-+1
35: end while

constitutive matrix D®) for the k" layer is employed. This matrix facilitates the
connection between the global Cauchy stress tensor of k layer, o(®), and the global

strain tensor of k' layer, e, as defined:
(2.37) o) Z DB®)
and the Cauchy strain tensor € is:

(2.38) e=F TEFT
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Figure 2.1 Illustration of the coordinate system of the layer of a composite structure
(Reddy, 2004)

The explicit form of Equation 2.37 is written as:

Oxx _Qll Q12 Ql?) 0 0 QlG_ €xx
Tyy Q2 Q2 Q23 0 0 Q| |y
(2.39) Oz | _ Q13 Q23 (33 _0 _0 Q36| | €22
Tz 0 0 0 Q44 Q45 0 Yz
Tyz 0 0 0 Q5 Q5 0|

Tay Qs Q26 Q36 0 0 Qos| |Vay

Here, D) is also expressed as reduced transformed stiffness matriz and it is com-
puted by the transformation of local coordinates in global coordinates by using the

transformation matrix T(*) as:

(2.40) p® — THHETEHT
T®*) is defined as:
(2 2 00 0 —2sc¢]
2 2 00 2sc
(2.41) w0 0 L0 :
0 0 0 ¢ -s
0 0 0 s ¢ 0
|sc —sc 00 0 02—82_

in which ¢ and s denote cosf and sin#, respectively where 6 being the angle between

the x; and x coordinate axes. Furthermore, D) is the local constitutive matrix
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and it is defined as:

Q1 Q12 Qi3 0
Q12 Q22 Q23 0
(2.42) k) _ |@138 Q23 @3 0

0 0 Giz O
0 0 0 Goz O
0 0 0 0 Gy

o O O
o O O O

(k)

Elements of D) are function of elastic moduli E;", shear moduli G(l?) and Poisson

ij
ratio VZ(Jk ). Note that the subscripts here denote longitudinal (1) or transverse (2,3)

directions. These relations are:

k) (k
o) — g0 1= v vy

Ak)
k k k
o) _ prar + vy
12 1 Ak
k k) (k
oW — gk vy +V§2)V§3)
13 3 A(k)
(2.43) ) (k)
o) — 1= vz vsi
22 2 AR
k k) (k
o) _ b Ve v )
23 3 A k)
k) (k
o) _ b =112y
33 3 Ak) ’
in which A®) is:
(2.44) AW =15 — BV — v — 2Dl ).

Algorithm 2 is provided to facilitate a clearer understanding of the subsequent equa-

tions.
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Algorithm 2 Code algorithm for composite modeling

N N = = e e e e e e e
oS e B O AN B R e

22:
23:

Initialize the geometry with material properties
Compute D®) and T®) via Equation 2.42 and Equation 2.41
Compute D®) via Equation 2.40
Impose the boundary conditions
Perform the neighbor search
Compute Wj; and AVJOVVij
while t =0 < Total Time do
Compute F; and L; via Equation 2.13 and Equation 2.14
Compute E; via Equation 2.12
Compute €; via Equation 2.38
(k)
i

Compute P; = det(Fi)aiF-_T

1

Compute o; "’ via Equation 2.37

Compute &5 then d3; via Equation 2.21 and Equation 2.23
Compute frg; via Equation 2.22

Compute pj; and II;; via Equation 2.18 and 2.17
Compute Pj; via Equation 2.19

Compute (%)_ via Equation 2.24

1
Update the velocity vi™ = v} + (%’)iAt
Update the displacement u?“ =u +v?+1At
Update the position X?_H =X+ u?“
Update the time "1 ="+ At
n<n+1

end while
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3. RESULTS AND DISCUSSION

This section provides results and their corresponding discussion for various simula-
tions. All simulations are modeled within in-house C++ code which is parallelized
via CUDA.

Firstly, a brand new C++ code based on TLSPH formulation is developed and its
capability is verified through simulation of a cantilever beam undergoing large defor-
mation in 2D and 3D. Then, the results of the first study, A Novel TLSPH Approach
for Modeling Damage in Elastic Solids, is given for two different benchmark cases:

Simulation of Kalthoff-Winkler and dynamic crack branching experiments.

This dissertation makes a significant contribution by applying the TLSPH method
to the deformation analysis of composite beams and plates, thereby addressing a

notable gap in the existing literature.

3.1 Large Deformation of a Cantilever Beam

To validate the in-house TLSPH code’s performance in large deformation problems,
we simulated the deflection of a cantilever beam under transverse loading in both
2D and 3D. We then compared our results against existing studies by He et al. (He,
Tofighi, Yildiz, Lei & Suleman, 2017) and (He & Lei, 2019), respectively.

The initial discretization involved uniformly separated particles with a spatial res-
olution Ax of 0.001 m. A transverse force of 17.5 kN is applied at the beam’s tip,
imposed as an external force per unit particle mass into Equation 2.32, ensuring
the total external force per unit mass remained consistent for both 2D and 3D sim-
ulations. The time step At is determined by the Courant-Friedrichs-Lewy (CFL)
condition, At < Ceopr, (h/cy) with Copr, set to 0.16. For stabilization, the hourglass

correction force coefficient is set to 1.0, while the artificial viscosity coefficients «
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Figure 3.1 2D cantilever beam.

and (3 are 0.002 and 0, respectively. Table 3.1 outlines the material properties used

in these simulations.

Table 3.1 Material properties for cantilever beam.

Parameter Young’s Modulus Density Poisson Ratio
Value 210 GPa 7800kg/m?> 0.3

3.1.1 2D Cantilever Beam Simulation

The geometry of the 2D cantilever beam is depicted in Figure 3.1. This beam has a
thickness (d) of 0.001 m and is discretized into a total of 1000 particles. To enforce
the clamped boundary condition at the beam’s left end, the accelerations of the
first three columns of particles are constrained to zero throughout the simulation.
A transverse force is applied at the central particle of the beam tip in the negative
y-direction. This force increases linearly from t = 0 s to t = 1 s, then remains
constant until t = 2 s. The mass of each particle is assumed to be p(Az)2d, with

the corresponding external acceleration term, b;, presented in Equation 3.1.

7175002& t<0.5s

(3.) ity —{ B |

| Z 00 0
pBopa VOIS0

Figure 3.2 presents the simulation outcomes. Specifically, Figure 3.2a displays the
time history of the vertical displacement at the beam’s tip. A comparison with the
TLSPH and FEM results from He et al. (He, Tofighi, Yildiz, Lei & Suleman, 2017)
clearly demonstrates the close alignment of the present study’s findings. Further-
more, Figure 3.2b illustrates the deformed configuration of the 2D cantilever beam
at t = 2 s. These results exhibit a smooth displacement field, notably free from

unphysical particle separations or clusters, which underscores the effectiveness of

24



Vertical Displacement(m)
0.

-0.02 —
-0.04 —

-0.06 —

-0.08 l

Present Study

----- TLSPH Result He et al. (2017)

= = = FEA Result He et al. (2017)

Vertical Displacement (1)

-0.1

Time (s)

(a) Change of vertical displacement over (b) 2D deformed beam at t = 2 s.
time.

Figure 3.2 Simulation results of 2D cantilever beam.

the implemented stabilization techniques.

3.1.2 3D Cantilever Beam Simulation

The geometry of the 3D beam is presented in Figure 3.3. Analogous to the 2D case,
a clamped boundary condition is imposed by fixing the first three layers of particles.
The applied load is distributed across the surface of the beam tip, affecting 100
particles, which are visually indicated in black. This force increases linearly from t
= 0 s tot = 0.5 s and subsequently remains constant until t = 1 s. Each particle’s
mass is defined as p(Az)3 and the corresponding external acceleration term, b;(t),
is specified in Equation 3.3, where NV, denotes the number of particles subjected to

the external force.

17500t <1.0s

pBnEN, S
(3.2) bilt) =

_AT00 < <90y

pBnN, VSIS0
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0.01 m

Figure 3.3 3D cantilever beam.

Figure 3.4a compares the vertical displacement of the beam tip over time with the
results presented by He et al. (He & Lei, 2019). The corresponding displacement
field of the beam at t = 1 s is shown in Figure 3.4b. Notably, the displacement
reaches a plateau at t=0.5 s and remains constant until the simulation concludes at
t = 1s. While He et al. (He & Lei, 2019) provide results up to the steady-state (i.e.,
t = 0.5 s), our study extends the displacement time history beyond this point to
demonstrate the sustained stability of the simulation. As Figure 3.4a clearly illus-
trates, our results exhibit strong agreement with the existing literature, confirming
that our TLSPH solver effectively captures the large deformation behavior of elastic

materials in both 2D and 3D with high accuracy.

3.2 A Novel TLSPH Approach for Modeling Damage in Elastic Solids

Having successfully validated the in-house TLSPH code for undamaged structures in
both 2D and 3D, we then integrated the proposed novel damage model. Initially, the
well-known Kalthoff-Winkler crack propagation experiment is modeled in both 2D
and 3D as a benchmark. Subsequently, the dynamic crack branching experiment,
a recognized Mode-I opening scenario, is simulated and results of both cases are

compared with existing literature.
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Figure 3.4 Simulation results of 3D cantilever beam.

3.2.1 Kalthoff - Winkler Experiment

The novel TLSPH damage model presented in Section 2.3.1 is validated using 2D and
3D simulations of the dynamic Kalthoff-Winkler experiment, a common benchmark
problem for crack propagation. This experiment investigates crack propagation
behavior initiated by the in-plane impact of an object, traveling at a velocity of
vp onto the top edge of a plate. The impact occurs between two pre-existing cracks
as shown 2D and 3D illustrations in Figure 3.5 and Figure 3.6, respectively. The
particles on the impact surface are given velocity boundary condition which develops
from 0 to vp in 1 ps then remains constant. The material properties are given in
Table 3.2. As common coefficients for both 2D and 3D models:

« Ax and hourglass correction coefficient 7 are set to 0.001 m and 0, respectively.

e The velocity smoothing is performed by setting ¢. and € as 0.65 and 0.1 after

numerical trials.
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Table 3.2 Material properties for the Kalthoff-Winkler experiment.

Parameter Young’s Modulus Density Poisson Ratio G,

Value 190 GPa 8000 kg/m? 0.3 22.13 kJ /m?

111

0.05 m A

0.05 m

0.1m

A\ 4
X

0.2m

A
\ 4

Figure 3.5 Set-up for 2D Kalthoff-Winkler experiment.
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y
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A
\ 4

Figure 3.6 Set-up for 3D Kalthoff-Winkler experiment.
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3.2.1.1 2D Kalthoff - Winkler experiment

Figure 3.5 depicts the 2D plate for Kalthoff - Winkler experiment. After several
runs of simulations, the artificial viscosity coefficients «q, ag and 5 are determined
as 0.09, 3.1 and 0, respectively. On the other hand, the critical stretch s is 0.01 m
and the model consists total number of 20300 particle with time step of 1079 s. To
be able to compare the results with the literature, the most common impact velocity

16.5 m/s is set as vy.

Before obtaining the final simulation results, a convergence study is performed for
the optimum particle spacing. To this end, different simulations are run with dif-
ferent particle spacings of 1.67 mm, 1.33 mm, 1.11 mm and 1.0 mm and their
corresponding crack propagation angle and total simulation time for cracks reaching
the side edges are considered as criteria. Table 3.3 provides crack propagation angles

from various studies, obtained with different methods. Convergence study results

Table 3.3 Reported crack propagation angles for Kalthoff-Winkler experiment.

Study Method Reported Angle

Kalthoft
(Kalthoft & Winkler, 1988)
Belytschko et al.

Original Experiment | ~ 70°

(BelytSChkO, (jhen7 Xu & Zl, 2003) XFEM ~ 58
Braun et al. _ ) )
(Braun & Fernandez-Saez, 2014) 2D Discrete Model | &~ 65° —70
Zhou et al. . ' ) )
(Zhou, Wang & Qian, 2016) Peridynamics ~ 65° — 70
Islam and Peng TLSPH e

(Islam & Peng, 2019)

for each resolution is as below:

Ax = 1.67 mm 52°

Ax = 1.33 mm 69°

Ax = 1.11 mm 66°

Ax = 1.0 mm 68&°

For the case of Ax = 1.67 mm, the crack propagation starts at t = 30 us and the
crack reaches the lower edge of the plate at t = 110 ps. In the original experiment,
the crack propagates diagonally and reaches the side lefts and not the lower edge.

Thus, this resolution gives the worst result. In the case with Ax = 1.33 mm, crack
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(a) Az = 1.67 mm (b) Az = 1.33 mm (c) Az = 1.11 mm

Figure 3.7 The crack propagation paths for different resolutions.

starts to propagate at t = 26 us and reaches the side edge of the plate at t = 114
us. Furthermore, for Ax = 1.11 mm and Ax = 1.0 mm, initiation of the crack
propagation occurs at t = 26 us and t = 24 us while the simulation is completed at
t =102 ps and t = 98 us, respectively. When considering the simulation time varies
between 80 us and 90 us and the crack propagation angle ~ 70° in the literature, the
best result is considered as Ax = 1.0 mm. Figure 3.7 illustrates the crack propagation
paths for Ax = 1.67 mm, Ax = 1.33 mm and Ax = 1.11 mm while Figure 3.8
shows for Ax = 1.0 mm. Figure 3.9 presents the crack propagation velocity for each
resolution, alongside the Rayleigh wave speed, which represents the theoretical upper

limit for crack propagation within a homogeneous, isotropic elastic body. Figure

0 0.05 0.1

Figure 3.8 Crack propagation angle for Az = 1.0 mm

3.10 shows the progression of crack propagation across several time of the simulation.
As previously noted, crack initiation occurs at t = 24, us. Following this, a diagonal
crack path extending towards the plate’s edges is observed, which is consistent with
Kalthoff’s original experimental findings (Kalthoff & Winkler, 1988). By t = 98, us,
both cracks have reached the boundaries of the plate, and the overall symmetry of the

simulation is maintained. The crack propagation velocity is computed and compared
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Crack Propagation Velocity for Different Particle Spacings
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Figure 3.9 Crack propagation velocity for different particle spacings.
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Figure 3.10 Crack propagation in Kalthoff-Winkler experiment.
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Figure 3.11 Crack propagation velocity in Kalthoff-Winkler simulation.

against results from other studies employing various numerical methods (Belytschko,
Chen, Xu & Zi, 2003; Braun & Ferndndez-Saez, 2014; Rahimi & Moutsanidis, 2022;
Zhou, Wang & Qian, 2016). As depicted in Figure 3.11, the simulation results of the
current study exhibit good agreement with the literature in terms of average crack
propagation behavior. Specifically, the crack propagation velocity reached a peak
of 1581 m/s, which corresponds to 56.46% of the Rayleigh wave speed (2800 m/s).
This velocity is significant as the Rayleigh wave speed represents the theoretical
maximum velocity a crack can achieve in a homogeneous, isotropic elastic material
before typically experiencing crack branching (Ravi-Chandar, 1998). Based on these
comparisons, it is evident that the findings of this study align well with both the

original experimental observations and subsequent research in the field.

3.2.1.2 3D Kalthoff - Winkler experiment

For the 3D simulation, an impact velocity vy of -30 m/s is applied. The damage
model coefficients, ag and g, are set to 0.2 and 4.5, respectively, with a critical
stretch (s.) of 0.085 m. The time step size is fixed at 1078 s. Figure 3.6 illustrates
the plate geometry, which is discretized into a total of 203000 particles. Crack
initiation starts at t = 14us, and the simulation concluded at t = 76us when both

cracks reached the left and right boundaries of the plate.

Initially, the crack propagates diagonally at an angle of 65°, which increased to 70°
as the simulation progressed. Figure 3.12 displays the crack path on the plate at t =

76us, shown from both isometric and x-y plane views. Additionally, the maximum
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crack propagation velocity is computed to be 2236 m/s, remaining below the theo-

retical Rayleigh wave speed of 2799 m/s, as depicted in Figure 3.13. The numerical

Damage
0.0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 09 1.0

Figure 3.12 Crack path at t = 76 ps. Isometric view (left) and x-y plane (right).

findings of the current study are compared against three existing investigations, as
summarized in Table 3.4. Raymond et al. (Raymond, Lemiale, Ibrahim & Lau,
2014) employed an updated Lagrangian SPH method, utilizing 330000 particles and
a slightly different material density of 7830 kg/m?3. While they reported a crack
propagation angle of 69.8°, specific details regarding the onset time of crack prop-
agation and the total simulation duration are not provided. Their study presented
the crack propagation velocity as a singular average value of 1200m/s, rather than
illustrating its evolution over time. Ren et al. (Ren, Zhuang, Anitescu & Rabczuk,
2019) utilized the phase field method for their simulations on a plate with a thick-
ness of 0.002 m. They explored various impact velocities, including 16.5m/s, 25m /s,
and 40m/s, using a mesh comprising 406020 nodes and 1863670 elements. For the
25 m/s impact velocity case, which most closely resembles the conditions of the cur-
rent study, crack propagation is observed to initiate at t=12.7 us. However, their
study did not provide corresponding crack propagation angle or velocity values for
this specific impact scenario. Partmann et al. (Partmann, Wieners & Weinberg,
2023) conducted their analysis using the peridynamics method, reporting a crack
propagation angle of 64°. Similar to some other studies, they did not provide infor-
mation regarding crack propagation velocity. By comparing these established results
from the literature, the current study’s ability to accurately capture the complex 3D
crack behavior in the Kalthoff-Winkler experiment is affirmed, demonstrating good

alignment with existing research.
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Figure 3.13 Crack propagation velocity for 3D Kalthoff-Winkler simulation.

Table 3.4 Results from the literature for 3D simulation of Kalthoff-Winkler.

Impact | Onset of | Crack Crack Resolution

Veloc- | Crack Propa- Propa-

ity Propa- gation gation

gation Angle Velocity

Raymond et | 30 m/s | - 69.8° gggran;é ; p?;i(z?cqgs
al. (2014)
Ren et al |25 m/s | 12.7 us - - 4£f§§£
(2019)
Partmann et | 33 m/s | - 64° - 124608
al. (2023)
Current 30 m/s | 14 us 65° - 70° 2236 m/s 203900
study (maximum) | particles
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Figure 3.14 Geometry for dynamic crack branching simulation.

3.2.2 Dynamic Crack Branching

To further extend the investigation into crack propagation, a dynamic crack branch-
ing problem under Mode-I loading is simulated. The problem involves a plate with a
pre-existing crack which is subjected to traction at both upper and lower edges. The
initial geometry of this plate is presented in Figure 3.14. The material properties
utilized in this simulation are detailed in Table 3.5. For the numerical discretiza-
tion, a particle spacing Ax of 3.33210™% m is adopted which results in a total of
36,000 particles. The coefficients for artificial viscosity,aq, ag and 3 are set to 0.03,
0.4, and 0, respectively. For velocity smoothing, both ¢. and € are determined to
be 0.5 and the critical stretch, s. is calculated as 5.3 x 1074 m. A uniform stress
boundary condition (og) of 1 MPa is applied to the top and bottom edges of the
plate. It is important to note that applying stress boundary condition in SPH is
not straightforward so the technique proposed by Douillet-Grellier et al. (Douillet-
Grellier, Pramanik, Pan, Albaiz, Jones & Williams, 2017) is adopted. The initial

Table 3.5 Material properties for the crack branching simulation.

Parameter Young’s Modulus Density Poisson Ratio G,
Value 32 GPa 2450 kg/m?3 0.2 3 J/m?

crack began to propagate at approximately t = 8 us. subsequently splitting into
two primary branches around t = 33 us. Figure 3.15 illustrates the evolution of
this crack, demonstrating that the characteristic crack paths were successfully cap-
tured when compared to findings from various literature sources (Belytschko, Chen,
Xu & Zi, 2003; Borden, Verhoosel, Scott, Hughes & Landis, 2012; Li, Ning & Liu,
2022; Song, Areias & Belytschko, 2006; Xu, Liu, Liu, Zeng & Zhuang, 2014). Fig-
ure 3.16 presents the crack propagation velocity alongside results from other studies

(Belytschko, Chen, Xu & Zi, 2003; Borden, Verhoosel, Scott, Hughes & Landis,
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2012; Li, Ning & Liu, 2022; Song, Areias & Belytschko, 2006; Xu, Liu, Liu, Zeng &
Zhuang, 2014). Our study’s onset times for both crack propagation and branching
are notably similar to those reported by the phase field method (Borden, Verhoosel,
Scott, Hughes & Landis, 2012). However, it is observed that the phase field method
tends to underestimate crack propagation velocity compared to other numerical ap-
proaches.The simulation concluded at t = 56 pus when both crack branches reached
the right edge of the plate. Throughout the simulation, no inconsistent additional
branches were observed, aligning closely with reported results. Furthermore, the

crack propagation velocity remained below the Rayleigh wave speed (2163m/s), as

anticipated.
Damage
0 0.2 0.4 0.6 0.8 1
| | | —
Time: 20 ps

0

Figure 3.15 Evolution of dynamic crack branching.

3.3 A TLSPH Scheme for Deformation of the Composite Structures

To evaluate the deformation behavior of composite structures, we conducted dy-
namic simulations over a 0.5 second interval. This involved two different 3D two-
layered composite beams, each with a unique ply orientation, and a two-layered
composite plate. As no analytical solutions or existing literature results are avail-
able for these specific scenarios, we validated our TLSPH models by comparing their

outcomes against results derived from our FEM models.
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Figure 3.16 Crack propagation velocity in dynamic crack branching experiment.

3.3.1 Deformation of Composite Beams

This study examines the flexural response of a bi-layered composite beam, as illus-
trated in Figure 3.17, considering various fiber orientations in its individual layers.
Fiber angles are defined with respect to the x-axis, which aligns with the beam’s
length. The y-axis represents the depth, and the z-axis denotes the thickness di-
rection. The edge dimensions of the beam are h =b = 0.01 m and its length is
L =0.1 m with each layer is 0.005 m thick. Both layers are composed of carbon
fiber-reinforced epoxy, with their material properties detailed in Table 3.6. Two dif-
ferent lay-up configurations are investigated: (1) a cross-ply laminate ([0°/90°]) and
(2) an angle-ply laminate ([0°/45°]) in which the bottom layer’s fibers are oriented at
0°, while the top layer’s fibers are oriented at either 90°or 45°, depending on the case.
For numerical discretization, the inter-particle distance, Ax, is set to 0.001 m and
the smoothing length (h) is taken as 1.33Az. The time step size, At is determined
by calculating Courant-Friedrichs-Lewy condition 0.2min (0.8 (h/co),0.25y/h/ 9.81)
and the artificial viscosity coefficients, o; and (3; are taken as 0.3 and 0, respectively.
The hourglass force coefficients, 7, is -85 and -90 for cross-ply and angle-ply beams,
respectively. The material properties,carbon fiber reinforced epoxy, are given in Ta-
ble 3.6. A temporal body force b7 () of -1000 N per unit mass (kg), is applied to the
central particle of the beam’s cross-section according to the below time-dependent

condition:

(33) V(D) =~
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Figure 3.17 (a) Undeformed and (b) deformed beam.

Figure 3.18 and Figure 3.19 present a comparative displacement analysis between the
TLSPH and FEM results for both the cross-ply and angle-ply beams. Figures 3.18a
and 3.19a show the change of u; displacement with time for the cross section of the
beam tip (z = L,y = 0.5b, 2) for each beam. The slope of u; does not change with
time which is due to same material properties for each layer and bending-dominated
response. Moreover, there are no slope discontinuities observed since the shear
effects are negligible. This consistent with the classical thin-beam theory where the
bending behavior is much more compared to transverse shear behavior. The larger
bending rotations occur for the cross-section as the simulation time increases with
increasing load, which can be seen in figure as the slope of the lines are decreasing
with time. The out of plane displacements ug of the beam-tip particle (z = L,y =
0.5b, z = 0.5h) of both approaches show a very close agreement, as Figures 3.18b
and 3.19b demonstrate. This compatibility proves the capability of the proposed
approach in flexural behavior for composite beams. The linearly increasing tip-load

is responsible for the linear change of u3 within time. Moreover, staying in the elastic
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Table 3.6 Material properties for the composite beam.

=== TLSPH
— FEM

Parameter Value Unit
Fi 121 GPa
FEo 8.6 GPa
Es 8.6 GPa
G12 4.7 GPa
Gi3 4.7 GPa
Gas 3.1 GPa
V192 0.27 -
V13 0.27 -
93 0.4 -
p 1490 kg/m?
0.000
t=0.1s-TLSPH 00024
t=0.1s-FEM
t=0.2s-TLSPH
t=025s-FEM ~0.004
t=0.3s- TLSPH ’E‘
t=03s-FEM =
t=0.4s-TLSPH = -0.006
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Figure 3.18 Comparison of results for the 0°/90° fiber configuration.
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Figure 3.19 Comparison of results for the 0°/45° fiber configuration.

regime, the small deformation and the absence of any geometric nonlinearities are
also creates a linear temporal change of us. Thus, utilizing reduced transformed
stiffness matrices are accurate and computationally efficient for layered composite

beams.

3.3.2 Deformation of Composite Plate

To further validate the proposed method’s capability, a two-layered composite plate
with a cross-ply configuration ([0°/90°]) is modeled using both commercial FEM
software and our in-house TLSPH code, following Algorithm 2. The dimensions of
the square plate are a = b = 0.1m while its thickness is h = 0.004m. The material
used in previous case is also used for the plate. The undeformed and deformed
states of the plate is given in Figure 3.20. A linearly increasing temporal body force
of -10 N per kilogram is applied to each particle on the top surface of the plate in
the TLSPH model, while an equivalent load per square meter (1 MPa) is applied to
the top surface in the FEM model. The artificial viscosity coefficient « is 0.2 and
the hourglass force coefficient is taken as -10 with the particle spacing of 0.001 m.
To investigate the accuracy of proposed method, the displacement components uy,
uo and ug are compared at t = 0.1, 0.2, 0.3, 0.4 and 0.5 seconds. The outputs are

recorded for upper surface (i.e., the surface that has 90°oriented fibers) and they are
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Figure 3.20 (a) Undeformed and (b) deformed plate.

compared with the FEM model, as depicted in Figure 3.23 and Table 3.7.

In Figure 3.23, the contour of the uj,u9 and ug displacement component is given
for t = 0.5s. As it can be seen in Figure 3.23a and Figure 3.23b, the in-plane
displacement components u; and ug in both methods are in a strong agreement and
they show a symmetry which characterizes the bending response. This symmetry can
be attributed to the equal distribution of the loading and fully-clamped boundary
constraints of the edges. For TLSPH, u; and uy displacements are +3.252 x 10™%
m and +3.838 x 10~ respectively while these values are predicted slightly higher
in FEM as +3.521 x 10~% and 4+4.02 x 10~*. In both approaches, the maximum
deformation values are seen at the center of the plate where the bending curvature
is the highest. As expected, the out of plane displacement u3 is much higher than

the in-plane components since the nature of the loading is out of plane.
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Table 3.7 Comparison of TLSPH and FEM Model Results for Displacement Com-
ponents

up (z107%* m)  wp (2107* m)  wug (2107 m)

Max Min Max Min Max Min

Time (s) Model

01 TLSPH 1.084 —-1.084 1.259 —-1.259 0 —14.15
’ FEM  1.447 -1.447 1.501 -1.501 0 —17.24
0.9 TLSPH 1.848 —1.848 2.181 —2.181 0 —24.45
' FEM 2248 -2.248 2.401 -2.401 0 —26.85
0.3 TLSPH 2.420 —-2.420 2.867 —2.867 0 —32.43
) FEM  2.784 -2.784 3.040 -3.040 0 —33.34
04 TLSPH 2.842 —-2.842 3.456 —-3.456 0 —38.43
' FEM  3.195 -3.195 3.563 -3.563 0 —38.34
0.5 TLSPH 3.252 —-3.252 3.838 —3.838 0 —44.14
' FEM  3.521 -3.521 4.027 —-4.014 O —42.45

Table 3.8 Effect of various hourglass coefficients on the accuracy of displacement
components

Hourglass up (x107% m) uz (x107% m) uz (x107% m)
Coefficient Max Min Error  Max Min Error Min Error
—10 3.252 —3.252 7.64% 3.838 —3.838 4.69% —44.14 3.98%
—15 3.122 —3.122 11.33% 3.750 —3.750 6.88% —42.96 1.20%
—20 3.076 —3.076 12.63% 3.697 —3.697 8.19% —42.58 0.30%
—25 3.035 —3.035 13.80% 3.647 —3.647 9.43% —42.34 0.26%
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To analyze the effect of the hourglass coefficient v on the predicted displacement
components in TLSPH method, several simulations are run with different v values
and the results are reported in Table 3.8. The results shows that the change of
~ value has different effects on different displacement components. For instance,
increasing v lowers the error percentage of ug from 3.98% to 0.26%. On the other
hand, it grows the error percentage of u; from 7.64% to 13.80% and ug from 4.69%
t0 9.43%. This contrast in the trend of the error percentages with changing ~ values
shows that an optimization is necessary since a single ~ for one of the displacement
component does not mean an improvement for the whole solution field. To the
best of the author’s knowledge, this behavior may be due to the dependency of the
total system energy to the all displacement components. Therefore, to ensure a
robust global minimum of the hourglass energy’s contribution to the total system
energy, it’s essential to balance hourglass stabilization across the entire displacement
field, rather than optimizing for a single component. In this study, the hourglass
coefficients are determined through a trial-and-error monitoring procedure. In future
studies, systematic optimization methods may be developed to obtain more robust

~ calculation schemes for various material models.

Figure 3.21a and Figure 3.21b illustrate the temporal variation of the in-plane dis-
placements u; and us and the out-of-plane deflection ug, respectively. These dis-
placements are measured at a point on the top surface with coordinates x =y =
0.075m. Since the fiber orientations of the two layers are different from each other,
an anisotropic stiffness is formed and this is what the observed displacement behav-
ior is governed by. The bottom layer’s O°oriented fibers creates a resistance agains
the deformation along the x-axis and the top layer’s 90°oriented fibers provides a
stiffness along the y-axis. A bending-dominated behavior is expected due to the
clamped edges under a uniform out-of-plane pressure to the upper surface. Thus,
ug is much higher than u; and us, whose value is mainly depends on the effective
bending stiffness of the orthotropic laminate, the loading and the boundary condi-
tions. As the graphs show, the proposed TLSPH approach and FEM results are in
a good agreement especially their u3 predictions. As in the cases of u; and ug, these
two approaches generates modestly different values through time for both beam and
plate simulation scenarios as illustrated in Figure 3.18a, Figure 3.19a, Figure 3.23a,
Figure 3.23b and Figure 3.21a. This discrepancy stems from artificial viscosity
and hourglass control forces that are the additional stabilization approaches used
in the TLSPH. By incorporating these mechanisms, the numerical instabilities are
suppressed while a numerical damping is introduced to the system. As far as the
authors are aware, as a result of this damping, sharp local changes are inherently

inhibited and the displacement amplitudes are altered. Furthermore, the type of
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the main equations that are solved by FEM and TLSPH are different from each
other. In FEM, an integration that consists of shape functions and Gauss points is
performed to solve the the weak form of the conservation of the linear momentum.
On the other hand, in TLSPH, a kernel interpolation in a meshless context is used
to solve the strong form of the conservation equation. These differences reveals a
significant trade-off: FEM offers precise kinematic fidelity, whereas TLSPH provides

mesh-free computational flexibility and adaptability. Figure 3.22 presents a com-
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parative analysis of in-plane displacement variations across the plate’s thickness at
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point A. The displacements show an approximately linear distribution through the
thickness, suggesting that the material transition between plies has a negligible im-
pact on the laminate’s deformation at this specific location. This behavior is likely
due to the similar material properties of the two layers, which dominate the local
response and outweigh the effect of differing fiber orientations under the applied

flexural loading, similar to observations in the beam case.

As seen in the graph, at the reference neutral plane (z/h = 0) the in-plane displace-
ments are found to be different than 0 which indicates a membrane response as a
result of anti-symmetric fiber configuration. As the graph clearly illustrates, the
magnitude of bending-induced displacement increases with distance from the neu-
tral plane, toward the outer surfaces. This observation is consistent with classical
bending theory. The close agreement between the TLSPH method and the reference
3D continuum FEM solution confirms that our proposed approach reliably captures
the mechanical response of composite laminates reinforced by different fiber orien-

tations.
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4. CONCLUSION

This dissertation introduced a novel computational framework based on the TLSPH
method to address key limitations in simulating fracture in elastic solids and the
deformation of laminated composite structures. Two primary contributions were
presented: (i) a TLSPH damage model for isotropic elastic media and (i7) a TLSPH

macro-modeling approach for dynamic analysis of laminated composites.

In the first part, a TLSPH formulation was developed that incorporates a stretch-
based failure criterion inspired by bond-based peridynamics. Inter-particle interac-
tions were governed by a critical stretch value s., and particle bonds were eliminated
once this threshold was exceeded. To counteract the numerical instabilities caused
by such bond eliminationsuch as tensile instability, rank deficiency, and artificial
clusteringseveral stabilization techniques were embedded into the numerical frame-

work. These included:

o artificial viscosity formulation with a locally adaptive coefficient a; based on
the smoothed damage field ¢/,

« hourglass control forces 7 inspired by FEM’s zero-energy mode correction,
 velocity smoothing for damaged regions.

The in-house TLSPH code was initially validated by simulating the deformation of
2D and 3D isotropic elastic beams. Comparisons of the beam-tip displacement with
existing literature studies revealed that the results were nearly identical. Then the
in-house code was developed for a novel damage model. Accuracy and robustness
of the proposed method were validated through benchmark fracture simulations,
including the 2D/3D Kalthoff-Winkler experiment and dynamic crack branching.
The model successfully captured critical fracture features such as propagation paths,
crack branching, and tip velocities, demonstrating its capability to simulate complex

fracture dynamics without remeshing.

The second part of the research extended the TLSPH formulation to 3D laminated

composite structures (beams and plate) subjected to quasi-static loading. Unlike
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mid-plane or layer-equivalent theories FSDT, the developed model discretized each
ply through its thickness using multiple TLSPH particles, thereby enabling layer-
specific displacement evaluation. The governing equations were solved in strong
form with orthotropic constitutive relations transformed from local fiber-aligned
axes to the global frame via the transformation matrix. To maintain numerical, the
same stabilization mechanisms used in the damage model were applied. Moreover,
simulations employed smooth ramp functions for load application to approximate
quasi-static responses while preserving the time-dependent characteristics of the
TLSPH scheme. Simulation results for 3D composite beams and plate confirmed

the model’s ability to:

e capture the temporal evolution of the beam-tip deformation for composite

beams,
o capture the overall deformation pattern for the composite plate,

o account for fiber orientation and anisotropy effects without resorting to micro-

scale modeling,
« remain stable under quasi-static loading conditions.

In conclusion, this dissertation contributes a consistent, unified, and efficient
particle-based framework for solid mechanics simulations involving both fracture and
laminated composites. The proposed TLSPH-based formulations overcome several

longstanding limitations of traditional mesh-based and meshless methods, offering:
e a robust, easy-to-implement formulation framework
« mesh-independence and remeshing-free handling of crack propagation,

« physically-motivated stabilization techniques for improved numerical robust-

ness,
o extensibility to anisotropic materials with minimal additional complexity.

The work presented herein provides a solid foundation for advancing TLSPH-based
techniques in both academic research and practical engineering applications involv-

ing fracture and composite structures.
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Conclusion

This dissertation presents a unified and robust particle-based computational frame-
work for modeling two distinct yet practically critical classes of problems in solid
mechanics: dynamic brittle fracture in isotropic media and quasi-static deformation
in laminated composite structures. Using the Total Lagrangian Smoothed Particle
Hydrodynamics (TLSPH) formulation, the proposed methodology eliminates the de-
pendency on mesh connectivity, which often hinders the accuracy and efficiency of
conventional finite element methods in high-gradient, discontinuous, or anisotropic

scenarios.

In the first part of the thesis, a novel TLSPH damage model was developed for
isotropic solids. This formulation adopts a stretch-based bond-breaking criterion
inspired by peridynamic concepts, allowing for a physically motivated and mesh-
free simulation of crack initiation and propagation. To address numerical instabil-
ities arising from damage evolutionsuch as tensile instability and particle cluster-
ingstabilization strategies including adaptive artificial viscosity, hourglass control
forces, and velocity filtering were incorporated. Benchmark simulations, including
dynamic crack branching and the Kalthoff Winkler experiment in both two and three
dimensions, verified the accuracy and robustness of the model in capturing complex

fracture phenomena without requiring remeshing or enrichment.

In the second part of the thesis, the TLSPH framework was extended to simu-
late the large-deformation behavior of laminated composite beams and plates under
quasi-static flexural loading. Each ply was discretized through the thickness using
SPH particles, and orthotropic constitutive behavior was accurately modeled via
tensor transformation techniques. The model’s ability to capture essential lami-
nate mechanicssuch as bendingstretching coupling, fiber-direction-dependent stiff-
ness, and through-thickness displacement gradientswas validated through compar-
isons with high-fidelity three-dimensional FEM simulations. In particular, the for-
mulation reproduced the characteristic linear distribution of in-plane displacements
and parabolic deflection patterns in unsymmetric cross-ply laminates, confirming
its physical fidelity. The influence of stabilization parameters, such as the hourglass

coefficient, was also explored to balance numerical damping and accuracy.

This research is, to the best of the author’s knowledge, the first comprehensive
application of TLSPH to both crack modeling and the macro-scale deformation of
layered composite structures in a single, consistent framework. The results demon-
strate the flexibility and extensibility of the method for simulating a wide range of
solid mechanics problems. Future directions include the integration of interlaminar

damage and delamination models, rate-dependent material behavior, and real-world
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validation through experimental comparisons.

Overall, the proposed TLSPH-based formulations offer a promising alternative to
mesh-based methods by removing remeshing bottlenecks, handling complex material
behavior with ease, and delivering high-fidelity results across multiple application

domains in computational solid mechanics.
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5. FUTURE STUDIES

Although this thesis presents a robust TLSPH framework capable of modeling brittle
fracture and dynamic deformation in laminated composites, the potential of particle-
based methods extends far beyond the current scope. Future developments may
focus on enhancing material modeling capabilities, expanding the range of physical
phenomena that can be captured, and improving computational efficiency. Such
advancements would increase the versatility of the TLSPH approach and enable its

application to more complex engineering systems and material behaviors.

Firstly, the current TLSPH damage model is limited to brittle failure, where mate-
rial separation occurs without significant plastic deformation. However, many struc-
tural and engineering materials undergo extensive plastic yielding before fracture.
Extending the current TLSPH framework to incorporate elasto-plastic constitutive
laws and ductile damage mechanisms would significantly broaden its application
domain. To implement ductile fracture behavior, the TLSPH model would need to
include plastic deformation mechanisms before failure occurs. This involves allow-
ing particles to accumulate permanent strain when the stress exceeds a yield limit.
Therefore, the total stretch between bonded particles can be decomposed into elas-
tic and plastic components, allowing a modeling approach analogous to the damage
framework introduced in the first part of this thesis. In addition, the relationship
between plastic flow and material weakening should be defined so that failure hap-
pens more realistically under different loading conditions. This extended model can
then be tested on standard problems like notched bars or specimens under impact
to evaluate its ability to simulate necking, void growth, and ductile crack devel-
opmentfeatures that are essential for accurately modeling metals and other ductile

materials.

Secondly, the proposed TLSPH framework focuses on modeling linear elastic solids
and layered composite structures with orthotropic behavior. While this is sufficient
for many engineering applications, it limits the ability to simulate materials with
inherently nonlinear mechanical responses. A natural direction for future research is

the integration of more advanced material models and crack propagation scenarios
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into the existing particle-based scheme. In particular, hyperelastic materialssuch
as rubbers, soft biological tissues, and elastomersexhibit large, recoverable deforma-
tions governed by nonlinear constitutive laws. Implementing hyperelasticity into the
TLSPH context would involve updating the stress calculation procedure to derive
the first Piola-Kirchhoff stress tensor from strain energy density functions, such as
neo-Hookean or Mooney-Rivlin models. These models can better represent the me-
chanical response of materials subjected to extreme stretches, bending, or torsion.
Furthermore, rate-dependent materials such as viscoelastic or viscoplastic solids
could be introduced to simulate time-dependent deformation. This would allow the
framework to address a wider range of problems, including polymer forming, soft
tissue mechanics, and impact damping systems. In such cases, stress computation
would rely not only on the instantaneous deformation state but also on the strain
rate and time history. By integrating these more complex constitutive behaviors into
the TLSPH framework, the model could be extended to simulate a much broader
class of engineering and biological materials. This would significantly enhance its
utility in applications involving soft structures, energy-absorbing components, and

highly deformable media.

Another remaining challenge regarding to this research area is crack initiation and
propagation in laminated composite structures. Due to the heterogeneous nature of
compositesincluding fiber-matrix interfaces, ply orientations, and anisotropic stiff-
nessthe mechanisms of fracture are highly complex and depend on both local ma-
terial behavior and global structural response. In composite laminates, cracks may
initiate within plies (intra-laminar) or at ply interfaces (inter-laminar). The current
TLSPH framework, which models each ply using discrete particles and orthotropic
constitutive behavior, could be extended to incorporate bond-based damage and
failure criteria across both intra- and inter-ply directions. This would require the
definition of different critical stretch thresholds and damage evolution laws for par-
ticles within a ply versus those across adjacent plies. Another key consideration is
the directional nature of failure. Fiber-dominated fracture mechanisms (e.g., fiber
breakage or pullout) differ significantly from matrix-dominated ones (e.g., matrix
cracking or delamination). Therefore, the failure behavior between bonded particles
should account for fiber orientation, local stiffness contrast, and possibly mixed-
mode loading effects. Embedding anisotropic damage criteria into the TLSPH for-
mulation could help simulate these effects more realistically. Moreover, in many
engineering environments, composite materials are exposed to fluctuating tempera-
tures and moisture levels, which can significantly alter their mechanical performance
and failure behavior.Thermal effects influence the stress distribution and deforma-

tion patterns in composites by inducing thermal strains, altering material stiffness,
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and potentially causing interfacial delamination due to mismatched thermal ex-
pansion between plies. To model such behavior, the TLSPH formulation could be
extended to include temperature as a field variable, solved using the transient heat
conduction equation. The mechanical response of each particle would then depend
not only on its deformation but also on its local temperature, accounting for ther-
mal strain and temperature-dependent material properties. Similarly, the presence
of moisture can lead to swelling, degradation of the matrix, reduction in interfa-
cial bonding strength, and even stress corrosion cracking. Moisture ingress could
be modeled as a diffusion process coupled with mechanical deformation, where the
strain field would include hygroexpansion terms. Moisture content at each parti-
cle would evolve over time based on environmental exposure, material diffusivity,
and boundary conditions. By incorporating these multiphysical phenomena into the
TLSPH framework, it would be possible to simulate coupled responses such as ther-
mally induced delamination, hygrothermal swelling, and degradation of mechanical

performance over time.

In summary, the proposed TLSPH framework lays a solid foundation for the particle-
based simulation of fracture and composite deformation; however, its full potential
can be realized through systematic extensions in both physical modeling and com-
putational strategy. Incorporating ductile and time-dependent material behavior,
enabling fracture in complex composite systems, and accounting for environmental
effects such as temperature and moisture would significantly broaden its range of
applicability. These future developments would not only strengthen the frameworks
predictive capabilities but also position it as a versatile tool for simulating real-world
engineering systems with high fidelity. As computational power and parallelization
techniques continue to evolve, the TLSPH approach stands to benefit from scalable
implementations, enabling the simulation of increasingly large and complex struc-

tures with enhanced realism and reliability.

23



BIBLIOGRAPHY

Belytschko, T. & Black, T. (1999). Elastic crack growth in finite elements with min-
imal remeshing. International Journal for Numerical Methods in Engineering,
45(5), 601-620.

Belytschko, T., Chen, H., Xu, J., & Zi, G. (2003). Dynamic crack propagation based
on loss of hyperbolicity and a new discontinuous enrichment. International
Journal for Numerical Methods in Engineering, 58(12), 1873-1905.

Belytschko, T., Guo, Y., Kam Liu, W., & Ping Xiao, S. (2000). A unified stability
analysis of meshless particle methods. International Journal for Numerical
Methods in Engineering, 48(9), 1359-1400.

Belytschko, T., Lu, Y., & Gu, L. (1995). Crack propagation by element-free galerkin
methods. Engineering Fracture Mechanics, 51(2), 295-315.

Belytschko, T., Lu, Y. Y., & Gu, L. (1994). Element-free galerkin methods. Inter-
national Journal for Numerical Methods in Engineering, 37(2), 229-256.
Belytschko, T. & Tabbara, M. (1996). Dynamic fracture using element-free galerkin
methods. International Journal for Numerical Methods in Engineering, 39(6),

923-938.

Benz, W. & Asphaug, E. (1995). Simulations of brittle solids using smooth particle
hydrodynamics. Computer Physics Communications, 87(1), 253-265. Particle
Simulation Methods.

Bessa, M., Foster, J., Belytschko, T., & Liu, W. K. (2014). A meshfree unification:
reproducing kernel peridynamics. Computational Mechanics, 53, 1251-1264.

Borden, M. J., Verhoosel, C. V., Scott, M. A., Hughes, T. J., & Landis, C. M. (2012).
A phase-field description of dynamic brittle fracture. Computer Methods in
Applied Mechanics and Engineering, 217-220, 77-95.

Braun, M. & Fernandez-Séez, J. (2014). A new 2d discrete model applied to dynamic
crack propagation in brittle materials. International Journal of Solids and
Structures, 51(21), 3787-3797.

Chakraborty, S. & Shaw, A. (2013). A pseudo-spring based fracture model for sph
simulation of impact dynamics. International Journal of Impact Engineering,
58, 84-95.

Chen, J.-S., Wu, C.-T., Yoon, S., & You, Y. (2001). A stabilized conforming nodal
integration for galerkin mesh-free methods. International Journal for Numer-
ical Methods in Engineering, 50(2), 435-466.

Cherniaev, A. & Telichev, I. (2015). Meso-scale modeling of hypervelocity impact
damage in composite laminates. Composites Part B: Engineering, 74, 95—103.

de Borst, R., Crisfield, M. A., Remmers, J. J. C., & Verhoosel, C. V. (2012). Non-
linear Finite Element Analysis, chapter 2, (pp. 31-111). John Wiley & Sons,
Ltd.

Douillet-Grellier, T., Pramanik, R., Pan, K., Albaiz, A., Jones, B. D., & Williams,
J. R. (2017). Development of stress boundary conditions in smoothed particle
hydrodynamics (sph) for the modeling of solids deformation. Computational
Particle Mechanics, 4, 451-471.

Dyka, C. T., Randles, P. W., & Ingel, R. P. (1997). Stress points for tension in-
stability in sph. International Journal for Numerical Methods in Engineering,

54



40(13), 2325-2341.

Ganzenmiiller, G., Hiermaier, S., & May, M. (2015). On the similarity of meshless
discretizations of peridynamics and smooth-particle hydrodynamics. Comput-
ers € Structures, 150, T1-78.

Ganzenmdtiller, G. C. (2015). An hourglass control algorithm for lagrangian smooth
particle hydrodynamics. Computer Methods in Applied Mechanics and Engi-
neering, 286, 87-106.

Ghajari, M., Iannucci, L., & Curtis, P. (2014). A peridynamic material model for
the analysis of dynamic crack propagation in orthotropic media. Computer
Methods in Applied Mechanics and Engineering, 276, 431-452.

Ghorashi, S. S., Mohammadi, S., & Sabbagh-Yazdi, S.-R. (2011). Orthotropic en-
riched element free galerkin method for fracture analysis of composites. Engi-
neering Fracture Mechanics, 78(9), 1906-1927.

Giannaros, E., Kotzakolios, A., Kostopoulos, V., & Campoli, G. (2019). Hyperveloc-
ity impact response of cfrp laminates using smoothed particle hydrodynamics
method: Implementation and validation. International Journal of Impact En-
gineering, 123, 56-69.

Gingold, R. A. & Monaghan, J. J. (1977). Smoothed particle hydrodynamics: theory
and application to non-spherical stars. Monthly Notices of the Royal Astro-
nomical Society, 181(3), 375-389.

Gu, Y., Wang, W., Zhang, L., & Feng, X.-Q. (2011). An enriched radial point
interpolation method (e-rpim) for analysis of crack tip fields. Engineering
Fracture Mechanics, 78(1), 175-190.

Guo, S., Tian, X., & Tang, Y. (2024). Peridynamics-based model of composite
lamina with progressive variations in mechanical properties. Materials Today
Communications, 40, 110158.

He, J. & Lei, J. (2019). A gpu-accelerated tlsph algorithm for 3d geometrical non-
linear structural analysis. International Journal of Computational Methods,
16(07), 1850114.

He, J., Tofighi, N., Yildiz, M., Lei, J., & Suleman, A. (2017). A coupled we-tl
sph method for simulation of hydroelastic problems. International Journal of
Computational Fluid Dynamics, 31(3), 174-187.

He, L., Lu, G., Chen, D., Li, W., & Lu, C. (2017). Three-dimensional smoothed
particle hydrodynamics simulation for injection molding flow of short fiber-
reinforced polymer composites. Modelling and Simulation in Materials Science
and Engineering, 25(5), 055007.

Huntley, S., Rendall, T., Longana, M., Pozegic, T., Potter, K., & Hamerton, I.
(2020). Validation of a smoothed particle hydrodynamics model for a highly
aligned discontinuous fibre composites manufacturing process. Composites
Science and Technology, 196, 108152.

Islam, M. R. I. & Peng, C. (2019). A total lagrangian sph method for modelling
damage and failure in solids. International Journal of Mechanical Sciences,
157, 498-511.

Jun Lin, J., Naceur, H., Daniel, C., & Laksimi, A. (2015). Geometrically nonlinear
analysis of two-dimensional structures using an improved smoothed particle
hydrodynamics method. Engineering Computations, 32, 779-805.

Kalthoff, J. & Winkler, S. (1988). Failure mode transition at high rates of shear
loading. DGM Informationsgesellschaft mbH, Impact Loading and Dynamic

95



Behavior of Materials, 1, 185-195.

Karamanli, A. (2016). Analysis of bending deflections of functionally graded beams
by using different beam theories and symmetric smoothed particle hydrody-
namics. International Journal of Engineering Technologies IJET, 2(3), 105—
117.

Karamanli, A. (2017). Elastostatic analysis of two-directional functionally graded
beams using various beam theories and symmetric smoothed particle hydro-
dynamics method. Composite Structures, 160, 653—669.

Li, C., Ning, Y., & Liu, X. (2022). Discontinuous deformation analysis (dda) sim-
ulations of crack propagation, branching and coalescence in brittle materials
under dynamic loading. Theoretical and Applied Fracture Mechanics, 122,
103648.

Libersky, L. D., Petschek, A. G., Carney, T. C., Hipp, J. R., & Allahdadi, F. A.
(1993). High strain lagrangian hydrodynamics: A three-dimensional sph code
for dynamic material response. Journal of Computational Physics, 109(1),
67-75.

Liew, K. M., Zhao, X., & Ferreira, A. J. (2011). A review of meshless methods for
laminated and functionally graded plates and shells. Composite Structures,
93(8).

Lin, J., Naceur, H., Coutellier, D., & Laksimi, A. (2014). Geometrically nonlinear
analysis of thin-walled structures using efficient shell-based sph method. Com-
putational Materials Science, 85, 127-133.

Liu, G., Chen, X., & Reddy, J. (2002). Buckling of symmetrically laminated com-
posite plates using the element-free galerkin method. International Journal of
Structural Stability and Dynamics, 2(03), 281-294.

Liu, M. & Liu, G. (2010). Smoothed particle hydrodynamics (sph): an overview
and recent developments. Archives of computational methods in engineering,
17, 25-76.

Liu, W. K., Jun, S., & Zhang, Y. F. (1995). Reproducing kernel particle methods.
International Journal for Numerical Methods in Fluids, 20(8-9), 1081-1106.

Lucy, L. B. (1977). A numerical approach to the testing of the fission hypothesis.
Astronomical Journal, 82, 1013-1024.

Madenci, E. & Oterkus, E. (2013). Peridynamic theory. In Peridynamic theory and
its applications. Springer.

Mehrmashhadi, J., Chen, Z., Zhao, J., & Bobaru, F. (2019). A stochastically homog-
enized peridynamic model for intraply fracture in fiber-reinforced composites.
Composites Science and Technology, 182, 107770.

Moés, N. & Belytschko, T. (2002). Extended finite element method for cohesive
crack growth. Engineering Fracture Mechanics, 69(7), 813-833.

Ozbulut, M., Tofighi, N., Goren, O., & Yildiz, M. (2017). Investigation of Wave
Characteristics in Oscillatory Motion of Partially Filled Rectangular Tanks.
Journal of Fluids Engineering, 140(4), 041204.

Pan, J-H., Li, D., Luo, X.-B., & Zhu, W. (2022). An enriched improved com-
plex variable element-free galerkin method for efficient fracture analysis of or-
thotropic materials. Theoretical and Applied Fracture Mechanics, 121, 103488.

Partmann, K., Wieners, C., & Weinberg, K. (2023). Continuum-kinematics-based
peridynamics and phase-field approximation of non-local dynamic fracture.
International Journal of Fracture, 244, 1-14.

26



Rabczuk, T. (2013). Computational methods for fracture in brittle and quasi-brittle
solids: State-of-the-art review and future perspectives. International Scholarly
Research Notices, 2013(1), 849231.

Rabczuk, T. & Belytschko, T. (2004). Cracking particles: a simplified meshfree
method for arbitrary evolving cracks. International Journal for Numerical
Methods in Engineering, 61(13), 2316-2343.

Rabczuk, T. & Belytschko, T. (2007). A three-dimensional large deformation mesh-
free method for arbitrary evolving cracks. Computer Methods in Applied Me-
chanics and Engineering, 196(29), 2777-2799.

Rabczuk, T., Zi, G., Bordas, S., & Nguyen-Xuan, H. (2010). A simple and robust
three-dimensional cracking-particle method without enrichment. Computer
Methods in Applied Mechanics and Engineering, 199(37), 2437-2455.

Rahimi, M. N., Koluksa, D., Yildiz, M., Ozbulut, M., & Kefal, A. (2022). A gener-
alized hybrid smoothed particle hydrodynamics-peridynamics algorithm with
a novel Lagrangian mapping for solution and failure analysis of fluid-structure
interaction problems. Computer Methods in Applied Mechanics and Engineer-
ing, 389, 114370.

Rahimi, M. N. & Moutsanidis, G. (2022). A smoothed particle hydrodynamics
approach for phase field modeling of brittle fracture. Computer Methods in
Applied Mechanics and Engineering, 398, 115191.

Rahmat, A. & Yildiz, M. (2018). A multiphase isph method for simulation of droplet
coalescence and electro-coalescence. International Journal of Multiphase Flow,
105, 32-44.

Ramalho, L., Belinha, J., & Campilho, R. (2019). The numerical simulation of crack
propagation using radial point interpolation meshless methods. Engineering
Analysis with Boundary Elements, 109, 187-198.

Randles, P. & Libersky, L. (1996). Smoothed particle hydrodynamics: Some recent
improvements and applications. Computer Methods in Applied Mechanics and
Engineering, 139(1), 375-408.

Ravi-Chandar, K. (1998). Dynamic fracture of nominally brittle materials. Inter-
national Journal of fracture, 90, 83-102.

Raymond, S., Lemiale, V., Ibrahim, R., & Lau, R. (2014). A meshfree study of the
kalthoffwinkler experiment in 3d at room and low temperatures under dynamic
loading using viscoplastic modelling. Engineering Analysis with Boundary El-
ements, 42, 20-25. Advances on Meshfree and other Mesh reduction methods.

Reddy, J. N. (2004). Mechanics of Laminated Composite Plates and Shells: Theory
and Analysis (Second ed.). Boca Raton, FL: CRC Press.

Ren, H., Zhuang, X., Anitescu, C., & Rabczuk, T. (2019). An explicit phase field
method for brittle dynamic fracture. Computers € Structures, 217, 45-56.

Ren, H., Zhuang, X., & Rabczuk, T. (2017). Dual-horizon peridynamics: A stable
solution to varying horizons. Computer Methods in Applied Mechanics and
Engineering, 318, 762-782.

Rodrigues, D., Belinha, J., Dinis, L., & Jorge, R. N. (2021). The bending behaviour
of antisymmetric cross-ply laminates using high-order shear deformation the-
ories and a radial point interpolation method. In Structures, volume 32, (pp.
1589-1603). Elsevier.

Rodrigues, D., Belinha, J., & Natal Jorge, R. (2021). The radial point interpolation
method in the bending analysis of symmetric laminates using hsdts. Journal

o7



of Computational Applied Mechanics, 52(4), 682-716.

Saitta, S., Luciano, R., Vescovini, R., Fantuzzi, N., & Fabbrocino, F. (2022). Free
vibrations and buckling analysis of cross-ply composite nanoplates by means
of a mesh free radial point interpolation method. Composite Structures, 298,
115989.

Shadloo, M., Zainali, A., & Yildiz, M. (2013). Simulation of single mode rayleigh—
taylor instability by sph method. Computational Mechanics, 51, 699-715.

Shadloo, M. S., Zainali, A., Sadek, S. H., & Yildiz, M. (2011). Improved incompress-
ible smoothed particle hydrodynamics method for simulating flow around bluff
bodies. Computer Methods in Applied Mechanics and Engineering, 200(9),
1008-1020.

Shepard, D. (1968). A two-dimensional interpolation function for irregularly-spaced
data. In Proceedings of the 1968 23rd ACM National Conference, ACM ’68,
(pp. 517524)., New York, NY, USA. Association for Computing Machinery.

Silling, S. A. (2000). Reformulation of elasticity theory for discontinuities and long-
range forces. Journal of the Mechanics and Physics of Solids, 48, 175-209.

Song, J.-H., Areias, P. M. A., & Belytschko, T. (2006). A method for dynamic crack
and shear band propagation with phantom nodes. International Journal for
Numerical Methods in Engineering, 67(6), 868-893.

Sukumar, N., Moés, N., Moran, B., & Belytschko, T. (2000). Extended finite el-
ement method for three-dimensional crack modelling. International Journal
for Numerical Methods in Engineering, 48(11), 1549-1570.

Swegle, J., Hicks, D., & Attaway, S. (1995). Smoothed particle hydrodynamics
stability analysis. Journal of Computational Physics, 116(1), 123-134.
Vignjevic, R., Vuyst, T., & orevi, N. (2024). Modelling of damage in composites
using smooth particle hydrodynamics method. Journal of the Serbian Society

for Computational Mechanics, 18, 45—66.

Wang, J. & Liu, G. (2002). A point interpolation meshless method based on radial
basis functions. International Journal for Numerical Methods in Engineering,
54(11), 1623-1648.

Wiragunarsa, [. M., Zuhal, L. R., Dirgantara, T., & Putra, I. S. (2021). A particle
interaction-based crack model using an improved smoothed particle hydrody-
namics for fatigue crack growth simulations. International Journal of Fracture,
229(2), 229-244.

Xu, D., Liu, Z., Liu, X., Zeng, Q., & Zhuang, Z. (2014). Modeling of dynamic
crack branching by enhanced extended finite element method. Computational
Mechanics, 54, 489-502.

Zhang, A.-M., Ming, F., & Cao, X. (2014). Total lagrangian particle method for the
large deformation analyses of solids and curved shells. Acta Mechanica, 225,
253275.

Zhou, T. & Song, Y. (2019). Three-dimensional nonlinear bending analysis of fg-cnts
reinforced composite plates using the element-free galerkin method based on
the sr decomposition theorem. Composite Structures, 207, 519-530.

Zhou, X., Wang, Y., & Qian, Q. (2016). Numerical simulation of crack curving
and branching in brittle materials under dynamic loads using the extended
non-ordinary state-based peridynamics. Furopean Journal of Mechanics -
A /Solids, 60, 277-299.

Zhou, X., Yao, W.-W., & Berto, F. (2021). Smoothed peridynamics for the ex-

o8



tremely large deformation and cracking problems: Unification of peridynam-

ics and smoothed particle hydrodynamics. Fatigue € Fracture of Engineering
Materials € Structures, 44(9), 2444-2461.

Zhuang, X., Cai, Y., & Augarde, C. (2014). A meshless sub-region radial point
interpolation method for accurate calculation of crack tip fields. Theoretical
and Applied Fracture Mechanics, 69, 118-125.

29



APPENDIX A
This section details the derivation of the SPH interpolation scheme. To begin with,
k

the position vector of particle i is rj = Xf’ék where xi' is the component of the
position vector with k = 1,2,3 and &;. is the base vector. Thus, the distance vector

ri; between particle i and particle j is denoted as:

rij =Tri— I‘j = (X{f —ch)ék = I'fiék,
(A.1) P .

rjj =rj—Ij= (xJ —x; )8 = T

Please note that the magnitude of rj; is rj5. To derive the main SPH interpolation
functions, one can start with the Dirac delta function 6(z —xg). To be able to
analyze this function, the unit step (Heaviside) function H(x) which has a jump at
x = 0 can be introduced. This function takes the value of 0 for x < 0 and value of
1 for x > 0. If this function is shifted to the right by a positive number "a', it is
written as H(x-a). Therefore, the integral of a continious function f(x) between the

boundaries a and b, a < x < b, can be written as:

(A.2) / ! ) = / " ) [ H (e —a)— H(z — b)de.

o0

If the integral boundaries are changed as a = xg— % and b = xg +% and mean-value
H((z—wg)+e/2)—H((x—z0)—¢/2)
g

theorem is applied, a window function W (x — xg,¢) =
appears. If the € is small enough, the function becomes an impulse function, in which

X is the center position of the impulse. The integral in Equation A.2 becomes:

/+OO W (x—xg,¢)

(A.3) ()

—00 €

dx = f(&),

where { is a number such that zo — § <& <z +§. Taking the limit of Equation A.3
as € — 0, results in two functions: Dirac delta function 6(z — o), i.e., limit of the
window function W, and lim._,q f(£) = f(xg). After the limit operation, Equation

A .3 becomes:

(A1) T F @) — o) = f(xo)

Since the integral of the Dirac delta function between —oo and 400 equals to 1 and
d(x—x0) = d(xg—x), Dirac delta function is an even function, meaning that 3D Dirac
delta function in Cartesian coordinates, §3(|r —rg|) = §(z' — 2{)d(2? — )0 (23 — ),
is also an even function. Thus, the integral of 63 through the space Q (differential

volume) is equal to 1. Finally, the formulation Equation A.4 can be denoted as:

(A.5) [ £@)8* (e =rol)dr = f(xo)
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If the function 63 is replaced by a normalized distribution function, the SPH interpo-
lation is obtained. This so-called distribution function is referred as Kernel function

in SPH. For 62 to be replaced by a Kernel function, several conditions must be met;
o Normalization condition
(A.6) /QW(]r—rO\,h)dg’r —1.

o Dirac delta function property

(A.7) lim W (|r —ro|,h) = 63(|r — x|, ).
h—0

o Compact support property

(A.8) W(r—ro|,h) =0 when |r—ro|> rh.

rh is a radius that defines the domain after which the kernel function is zero and h is
the smoothing length. If above criteria are satisfied Dirac delta function in Equation
A.5 can be replaced with a kernel function. Thus, the SPH kernel approximation

(()) of a function can be expressed as:

(A9) flos) = (F) = [ )W g h) s,

and the gradient of a function can be written as:

A10 Off(xy) _Joff(x)\ 3fk(rj)w 3

( ’ ) o1t - O n /Q ozt (rij’ ) £l
i 1 J

Applying the product rule to the right hand side of Equation A.10:

OfF (ry OW (r35,h
(A.11) J;SS)%/ka(rj)gxf)dgrj-

i

In above equation, d3rj is volume of the particle j and equals to m;/p; in which m

is the mass of a particle. Thus, Equation A.9 and Equation A.11 can be discretized
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as:

(A.12) Fen) =3 f ()W (3, h),
j=1 i
Of ()  Smy . OW(ry,h)
(A.13) oak _;;);f(rl)axgi

To incorporate the density of particle i, one can start with below equation via

product rule of differentiation:

(A14) Ante)) _ ) 0781 | ey

1

Ipi
8${“ .

Thus the first term on the right hand side of the equation is:

of (r;)  9(pif(ri)) Ipi
A15 . — ~ )AL
( ) P Gscf 8:6{‘7 J( )&cf"
Using the Equation A.12 and Equation A.13:
Of (ry) N om, OW (ri5,h)
A.16 =3 (f(ry) - fry)) —2 2
(A.16) k= 2 )= 1) =50

Equation A.16 is one way to obtain the gradient of a scalar-valued function. For the

divergence of a vector-valued function, we can rewrite it as below:

aW(Tij,h)

83:%‘

(’9:1:%‘

k rs N s
(A.17) e N (IR
j=1

To obtain another way for differentiation of functions, one can start with product

rule of differentiation of below equation as:

O (fxi)\ _ 10f(ri) f(ri) Ipi
(A 19) 31’?‘( pi >_ﬂi oz p} Ox
10f(r)) 9 (f(r)) , f(ri) 9pi
1) o= g (T I
Using the Equation A.12 and Equation A.13:
. N oo Flrs N
(A.20) i (f(rl>> _ 3 S ()OW i ).
Or™ \ pi S o
Fr)dpn _ f(rs) &K my OW (i, h)
2y G0 R B o
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Combining above equations lead to second way of obtaining the gradient of a scalar-

valued function as:

I - T I Tij,
(A.22) R 1>:ij<f( ) S )) OW (ri;, h)

pi Oz i o

1

j=1

Finally, the second way of gradient and divergence of a vector-valued function can

be expressed as:

10f%r) &K (o) fk(I‘J) OW (rs3,h)
(A.23) pi Oz} z ( P} p; ) O}

10f%r) &K [ fE(rm) fk(l“j) OW (rs5,h)
(A.24) pi  Oxk z ( i Pj2 ) Ouf
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