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Cavitation, the local evaporation and re-condensation of liquids due to pressure drops, 

significantly impacts engineering systems, necessitating a deep understanding for reliable 

design. This thesis presents a comprehensive investigation into the complex interaction 

of compressible cavitating flows with turbulent shear layers in microscale BFS 

configurations. Our methodology integrates advanced computational fluid dynamics with 

experimental analysis. We employed a custom three-dimensional fully compressible 

cavitation solver within a Large Eddy Simulation (LES) framework. This solver, 

leveraging an all-Mach Riemann approximation-based scheme to accurately capture 

complex density, pressure wave dynamics, and phase change across varying Mach 

number regimes. We utilized both functional (WALES) and advanced mixed Subgrid-

Scale (SGS) models to robustly simulate turbulence across scales. Key findings reveal 

that cavitation profoundly alters turbulent flow, reducing shear layer growth, delaying 

reattachment, and modifying Reynolds stresses and pressure fluctuations through vapor 

collapse. We identified dominant low-frequency modes associated with reattachment 

displacement and distinct vapor transport mechanisms. Furthermore, riblet-equipped 

surfaces control incoming turbulence: they shift Turbulence Kinetic Energy (TKE) 

transport, modify Reynolds stress anisotropy, and promote larger, slower coherent 

structures. These riblet-induced turbulent changes directly affect cavitation dynamics and 

characteristics. Experimentally, the study provides the first insights into shear cavitation 

in a microscale BFS. We observed unique microscale shedding modes influenced by 

vortex strength and pressure waves. This thesis advances the understanding of turbulent 

cavitating flows, demonstrating that comprehensive numerical and experimental 

approaches are essential for designing and optimizing microfluidic and energy systems. 
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ÖZET 

MİKROAKIŞKAN ÇİPLERDEKİ TÜRBÜLANSÇI AKIŞLARDA KESME 

TABAKASI DİNAMİĞİ İLE KAVİTASYON ARASINDAKİ ETKİLEŞİM: 

SAYISAL VE DENEYSEL BİR ÇALIŞMA 

MOHAMMADAMIN MALEKI 

Mekatronik Mühendisliği, Doktora Tezi, Haziran 2025 

Danışmanı: Dr. Öğr. Üyesi. MORTEZA GHORBANI 

Yardımcı Danışman: Prof. Dr. ALİ KOŞAR 

Anahtar Kelimeler: Kavitasyon, Mikro Ölçekli Akışlar, Hesaplamalı Akışkanlar 

Dinamiği (HAD), Geriye Dönük Basamak (GDB), Büyük Girdap Benzetimi (BGB), 

Sıkıştırılabilir Çok Fazlı Akış, Deneysel Akışkanlar Dinamiği 

Kavitasyon, sıvıların basınç düşüşleri nedeniyle yerel buharlaşması ve yeniden 

yoğunlaşması olarak tanımlanır, mühendislik sistemlerini önemli ölçüde etkiler ve 

güvenilir tasarım için derinlemesine bir anlayış gerektirir. Bu tez, mikro ölçekli geri 

basamak (BFS) konfigürasyonlarında sıkıştırılabilir kavitasyonlu akışların türbülanslı 

kesme tabakalarıyla karmaşık etkileşimine dair kapsamlı bir araştırma sunmaktadır. 

Metodolojimiz, gelişmiş hesaplamalı akışkanlar dinamiğini deneysel analizle 

birleştirmektedir. Büyük Girdap Benzetimi (BGB) çerçevesinde özel olarak geliştirilmiş 

üç boyutlu tam sıkıştırılabilir bir kavitasyon çözücü kullandık. Bu çözücü, farklı Mach 

sayısı rejimlerinde karmaşık yoğunluk, basınç dalgası dinamikleri ve faz değişimini 

doğru bir şekilde yakalamak için tüm-Mach Riemann yaklaşımına dayalı bir şemadan 

faydalanmaktadır. Türbülansı farklı ölçeklerde sağlam bir şekilde simüle etmek için hem 

fonksiyonel (WALES) hem de gelişmiş karmaşık Alt-Izgara Ölçeği (AİÖ) modellerini 

kullandık. Temel bulgularımız, kavitasyonun türbülanslı akışı derinden değiştirdiğini, 

kesme tabakası büyümesini azalttığını, yeniden tutunmayı geciktirdiğini ve buhar 

çökmesi yoluyla Reynolds gerilmelerini ve basınç dalgalanmalarını değiştirdiğini ortaya 

koymaktadır. Yeniden tutunma yer değiştirmesiyle ilişkili baskın düşük frekanslı modlar 

ve belirgin buhar taşınım mekanizmaları tespit ettik. Ayrıca, riblet donanımlı yüzeyler 

gelen türbülansı kontrol etmektedir: Türbülans Kinetik Enerjisi (TKE) taşınımını 

değiştirir, Reynolds gerilimi anizotropisini modifiye eder ve daha büyük, daha yavaş 

uyumlu yapılar oluşumunu teşvik ederler. Bu riblet kaynaklı türbülanslı değişimler, 

kavitasyon dinamiğini ve özelliklerini doğrudan etkilemektedir. Deneysel olarak, bu 

çalışma mikro ölçekli bir BFS'deki kesme kavitasyonuna dair ilk içgörüleri sunmaktadır. 

Girdap gücü ve basınç dalgalarından etkilenen benzersiz mikro ölçekli kopma (shedding) 

modları gözlemledik. Bu tez, türbülanslı kavitasyonlu akışlar hakkındaki anlayışı 

ilerletmekte, mikroakışkan ve enerji sistemlerinin tasarımı ve optimizasyonu için 

kapsamlı sayısal ve deneysel yaklaşımların vazgeçilmez olduğunu göstermektedir. 
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1 INTRODUCTION 

The dynamics of separated flows play a crucial role in various industrial/engineering 

applications encompassing a wide range of systems such as bluff bodies, diffusors, 

streamlined bodies, combustion chambers, turbines, and pipelines(Stella, 2017). A 

separation bubble is typically generated when there is a geometric discontinuity in an 

immersed body, which is referred as a geometry-induced separation bubble 

(GISB)(DIWAN and RAMESH, 2009). In many applications, turbulent separation bubble 

(TSB) (Kiya and Sasaki, 1983; Simpson, 1989) is of prime interest where the fluid 

flowing over a solid surface contains a turbulent boundary layer (TBL).  Separation and 

reattachment in TSB give rise to unsteadiness across a broad range of frequencies which 

have significant implications for systems involving flow. Unsteadiness can appear as 

statistically stationary fluctuations in velocity, pressure, and other flow variables arising 

from hydrodynamic instabilities like Kelvin-Helmholtz, triggered by specific flow 

conditions and channel geometry. These instabilities are inherent to turbulent shear flows 

and contribute to the observed unsteadiness. Pressure fluctuations arising from the 

turbulent shear layer can potentially induce phase change and cavitation, even at high 

average pressures. Phase transition can significantly alter the dynamics of coherent 

structures and events such as vortex shedding and breathing mechanism within the TSB, 

which results in intricate interactions between the shear layer and cavitation (Arndt, 

2002). Understanding and analyzing the behavior of the shear layer in separating flows 

in the presence of phase transition and cavitation is of great importance to have an 

accurate prediction of the relevant fluidic systems to harness its advantages for flow 

control and other applications. 

Comprehensive investigations on the dynamics of TSB in single-phase flows were made 

to elucidate the fundamental principles related to spatial and temporal fluctuations in the 

pressure, void fraction, and velocity fields within separating flows (Abe, 2017; CHOU et 
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al., 2005; Eaton and Johnston, 1981; Kiya and Sasaki, 1983; Le Floc’h et al., 2020a; 

Mohammed-Taifour and Weiss, 2016; NA and MOIN, 1998; Nadge and Govardhan, 

2014; Stella, 2017). Previous studies have extensively investigated separated flows using 

backward-facing steps (BFS) due to their ability to capture complex flow features despite 

their simplicity (Berk et al., 2017; Hickel et al., 2021; Hu et al., 2019; LE et al., 1997; 

Nadge and Govardhan, 2014; Pires Araujo and Tenório Rezende, 2017; Shehadi, 2018). 

BFS flows exhibit a fixed separation point followed by shear layer roll-up, leading to 

large-scale vortices similar to mixing layers (Browand and Troutt, 1985). This separated 

shear layer grows, reattaches downstream, and slowly recovers the boundary layer due to 

the persistence of turbulent structures from the separated shear layer (Simpson, 1989; 

Song and Eaton, 2004). 

While some studies explored the fundamental mechanisms governing various dynamics 

in separating flows TSBs, studies on related dynamics in the presence of phase transition 

and cavitation are still scarce. Consequently, further investigations are needed to attain a 

more profound comprehension of the intricate bidirectional coupling between phase 

transition and separating flow dynamics. Studies on cavitation in turbulent shear layer 

were conducted to accomplish two objectives. First group of studies focused on exploring 

the inception mechanism within the shear flows (Agarwal et al., 2023; Arndt and George, 

1979; Katz and Liu, 2013; Katz and O’Hern, 1986), while the second group, investigated 

unsteady behavior of the turbulent shear flow in the presence of cavitation as well as 

cavitation dynamics in TSBs (Arndt, 2002; Barbaca et al., 2019; Bhatt et al., 2021a; Iyer 

and Ceccio, 2002). 

Studies on cavitation inception in shear flows focus on the interplay between pressure 

fluctuations, turbulent structures, and the inception mechanism. Pioneering works by 

(Arndt and George, 1979) established that larger nuclei are more responsive to high-

frequency pressure fluctuations, thus increasing the likelihood of cavitation inception. 

(Katz and O’Hern, 1986) investigated the relationship between the structure of the 

turbulent shear layer and cavitation inception using a sharp-edged plate geometry. Their 

study concluded that streamwise vortices act as preferential sites for cavitation due to 

lower average pressure, while spanwise vortices play a lesser role. Recent investigations 

using BFS configurations consistently link cavitation inception to pressure minima within 

quasi-streamwise vortices (QSVs) (Agarwal et al., 2018; Allan et al., 2023; Brandao and 

Mahesh, 2022). Allan et al. (Arndt and George, 1979) experimentally observed 
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microbubbles trapped in the recirculation zone of a BFS shear layer act as preferential 

sites for re-nucleation and subsequent cavitation, highlighting the role of pre-existing 

nuclei in the inception process. Similarly, (Agarwal et al., 2023) investigated the 

development of pressure field fluctuates and placement of initiating bubbles within and 

in the vicinity of QSVs. Their results highlighted a consistent relationship between the 

cavity size and shape in intermittent low-pressure regions preceded by stretching along 

the streamwise direction (aligned with quasi-streamwise vortices) and followed by 

contraction. Their study linked cavity size and shape to the low-pressure regions within 

QSVs, explaining the observed decrease in QSV diameter and pressure minima with 

increasing Reynolds number (Re) due to reduced viscous diffusion in the vortex core. 

This finding aligns with the Re trends reported earlier by (Arndt and George, 1979). 

An increase in vapor generation within the shear layer influences the vorticity structures 

in the shear layer, and vapor can start to fill the separated region of the flow(Bhatt et al., 

2021a). Several studies examined the effect of developed cavitation on the dynamics of 

large scale structures such as vortex morphology, shedding mechanisms and convection 

of spanwise structures. In a related study, Iyer and Ceccio(Iyer and Ceccio, 2002) 

conducted an experimental study on a turbulent shear layer, observing minimal changes 

in the initiation, development, and transport of primary and secondary vortices due to 

cavitation. Notably, their study found a significant increase in turbulent fluctuations 

within the cavitating flow. In another experimental investigation by Aeschlimann et 

al.(Aeschlimann et al., 2011a), behavior of a 2D mixing layer flow with and without 

cavitation was compared to gain insights into the effects of cavitation on 2D free mixing 

layer flow dynamics. The findings of their study revealed that the vaporization and 

collapse of bubbles introduced additional fluctuations, predominantly in the longitudinal 

direction of density (due to the phase change) and velocity. Additionally, they observed 

that vapor generation changed the size of coherent vortices while the thickness of the 

mixing area remained unchanged. 

Some studies dealt with shear layer cavitation dynamics in BFS configurations. One of 

the initial studies on cavitation in BFS was an experimental study by Maurice et 

al.(Maurice et al., 2014), where the effect of cavitation on the mean and fluctuating 

velocity field was investigated. Their results showed that the mean velocity field 

experienced a meaningful change only after the shear layer was fully saturated with vapor. 

According to their results, remarkable vapor generation within the shear layer resulted in 
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a decline in the shear layer (thickness) growth rate while elongating the reattachment 

length. They also observed decreases in the size of the vortical structures, their shedding 

frequency and the coherence of shear layer vortices. In a numerical study by Ohta et 

al.(OHTA et al., 2011), flows in a turbulent cavitating shear layer were studied to examine 

the effect of cavitation on vortex dynamics within shear layer. 

Focusing on BFS configurations, Maurice et al. (Maurice et al., 2014) experimentally 

investigated the impact of cavitation on the velocity field within the shear layer. They 

observed significant changes only after full vapor saturation. Remarkably, vapor 

generation reduced the growth rate of the shear layer thickness and extended the 

reattachment length. Additionally, they found a decrease in vortex size, shedding 

frequency, and vortex coherence. Ohta et al. (OHTA et al., 2011) conducted a numerical 

study on vortex dynamics within cavitating shear layers. Their work, however, requires 

further exploration alongside experimental studies like Maurice et al. (Maurice et al., 

2014) for a more comprehensive understanding. According to their results, cavitation 

inception occurred in spanwise and streamwise vortices. They also observed that the 

frequency of vortex shedding increased in the upstream region, which was attributed this 

tendency to the disturbance induced by the strong instability of the cavitating flow field. 

In a recent study by Bhatt et al.(Bhatt et al., 2021a), dynamics of cavitation in the BFS 

configuration was explored using X-ray densitometry and high-speed cinematography. 

The authors examined the influence of Reynolds number (Re) on various cavity properties 

and behavior of shear layer in the presence of a significant vapor void fraction. They 

reported that mean cavity lengths had a dependence on Re. Their study demonstrated a 

cavity filling mechanism behind the step controlled by vortex-pair interaction. They also 

observed adverse flow front in the form of a shockwave, which moved towards the step 

and eventually diminished the cavity. In another study by Li et al.(Li and Carrica, 2023), 

an incompressible polydisperse cavitation model was implemented to numerically 

evaluate the cavitation dynamics under the same physical conditions and domain 

provided in the experimental study of Bhatt et al.(Bhatt et al., 2021a). In their study, 

dynamics of cavitation behind the backward step and effect of the condensation front 

pressure wave on cavitation shedding were investigated. Although an incompressible 

model was used for each individual phase (liquid and vapor) in their study, the significant 

density changes during phase transition (condensation/evaporation) introduced 

compressibility effects. The authors defined a condensation front as a moving interface 



 

5 
 

associated with substantial condensation.  Importantly, they focused on cases with very 

low-pressure differences across the front (within a few kPa). Under these conditions, the 

influence of weak pressure waves associated with condensation could be captured while 

neglecting the effects of large pressure jumps and high sound speeds. Their results 

showed that vortex formation in the wake of the step was responsible for condensation 

front movement to the upstream location. While the Li and Carrica (Li and Carrica, 2023) 

model offers valuable insights into cavitating flows, it is important to acknowledge that 

its incompressible nature limits its ability to capture shock waves. Shock waves, as 

potentially observed in the study of Bhatt et al (Bhatt et al., 2021a), are a high-speed 

phenomenon associated with unsteady cavitating flows. These shock waves can trigger 

condensation with characteristics distinct from those caused by weak pressure waves, as 

demonstrated in the study by Zhang (Zhang et al., 2022). Therefore, the Li and Carrica 

(Li and Carrica, 2023) model might not fully capture the condensation dynamics observed 

in the study of Bhatt et al (Bhatt et al., 2021a) due to its focus on weak pressure wave 

effects. Recently, Mourice et al.(Maurice et al., 2021) studied cavitation dynamics within 

a BFS test section. The high-speed x-ray attenuation technique, which was synchronized 

with pressure fluctuation measurements, was exploited to characterize the effects of void 

fraction dynamics on wall pressure fluctuations and vortex dynamics in different 

cavitation intensities. It was observed that the pressure waves generated by extreme 

events led to a remarkable change in the flow signature and topology after hitting the step 

wall. 

Despite the existing studies on cavitation and shear layer dynamics, there are still several 

important questions that remain open. There are a limited number of numerical studies in 

this topic, most of which have not considered the compressibility effect of pure phases 

and the effect of shock waves in the presence of cavitation(Brandao and Mahesh, 2022; 

Li and Carrica, 2023; OHTA et al., 2011). Moreover, it is crucial to conduct more studies 

using both numerical and experimental perspectives to explore the impact of vapor 

generation, transport, and condensation on the unsteadiness of turbulent separating flow, 

which includes low/medium/high frequency dynamic, and underlying mechanisms. 

Another critical, yet underexplored, aspect is the influence of the incoming turbulent 

boundary layer and roughness-induced perturbations on cavitating flow characteristics 

and dynamics. This Ph.D. thesis presents a multi-faceted investigation into the complex 

interplay between turbulence, cavitation, and geometric modifications in microscale 
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separated flows, primarily focusing on BFS configurations. The thesis integrates 

advanced computational fluid dynamics (CFD) with novel experimental analyses to 

provide a comprehensive understanding of these phenomena across varying flow 

conditions and surface treatments. 

Methodologically, this thesis employs a sophisticated framework. This includes a 

customized three-dimensional fully compressible cavitation flow solver, built upon 

OpenFOAM's rhoCentralFoam with integrated HZDR's SGS model for Large Eddy 

Simulation (LES). This solver, capable of handling low Mach number compressible flow 

physics and thermodynamic non-equilibrium through a vapor volume fraction transport 

equation, accurately captures effects such as shock waves and baroclinic vortex dynamics. 

Temporal advancement utilizes a second-order, four-stage low-storage Runge-Kutta 

technique with an adaptive Courant-Friedrichs-Lewey (CFL) criterion. Complementing 

the computational work, the thesis also presents the first experimental analysis of shear 

cavitation in a microscale BFS configuration, employing high-speed imaging to analyze 

cavitation patterns and vortex dynamics across various flow regimes. 

 

Key findings reveal significant insights into the influence of cavitation on turbulent flow 

characteristics. Cavitation actively hinders the mean growth of the shear layer and retards 

its reattachment. The generation and condensation of vapor structures critically affect 

how turbulence is dissipated and produced, leading to increased mean pressure and 

pressure fluctuations near the reattachment. Spectral analysis identifies two dominant 

low-frequency modes associated with reattachment point displacement, which exhibit 

smaller frequencies in the presence of cavitation, each linked to specific vapor transport 

mechanisms. Moreover, cavitation enhances the spectral energy of high-frequency 

fluctuations in the reattachment region due to frequent bubble collapses. Spectral Proper 

Orthogonal Decomposition (SPOD) provides valuable insights into coherent structures 

and their dynamics under cavitating conditions. 

This thesis further explores the profound impact of riblet-equipped surfaces (quantified 

by Blockage Ratio, BR) on turbulent flow and cavitation. Riblets fundamentally alter the 

flow field by shifting Turbulence Kinetic Energy (TKE) transport from local 

production/dissipation to enhanced turbulent diffusion and convection, particularly 

within the shear layer. Reynolds stress anisotropy is significantly modified near the wall, 

indicating altered turbulent mixing. Coherent structures become notably larger and 
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slower, and Dynamic Mode Decomposition (DMD) highlights the formation of dominant 

low-frequency vortices near rib crests, directly impacting the downstream flow. These 

riblet-induced turbulent modifications profoundly influence cavitation, leading to the 

formation of larger and more intense cavitation packets that correlate directly with the 

underlying coherent structure strength. The channel's downstream region ultimately 

transitions into a supercavitation regime, with varying void fraction distributions 

dependent on BR. 

Experimentally, the thesis highlights critical differences between microscale and 

macroscale shear cavitation. Surface forces are found to play a dominant role in nuclei 

distribution and vapor formation. Distinct timescales are identified for phenomena like 

shedding and shockwave propagation, with vortex strength in the shear layer 

hypothesized to be crucial for cavity shedding during upstream shockwave propagation. 

Increased pressure significantly elevates the mean thickness, length, and intensity of 

cavitation within the shear layer. Two vortex modes (shedding and wake) at the 

reattachment zone are identified, affecting cavitation shedding frequency and 

downstream penetration, with the stronger, lower-frequency wake mode transporting 

cavities deeper into the channel. 

Collectively, this thesis advances the understanding of turbulent separated flows and 

cavitation in microscale environments, elucidating the complex, multi-scale interactions 

between fluid dynamics, phase change, and geometric factors. The findings provide 

critical insights for the design and optimization of microfluidic devices and energy 

systems operating under cavitating conditions. 

Thesis Objectives 

This thesis undertakes a comprehensive investigation into the intricate interplay of 

cavitation, TSB, and TBL. Specifically, the research aims to: 

• Thoroughly examine the influence of cavitation and associated phase transition 

phenomena (vapor generation and condensation) on the dynamics and 

characteristics of TSBs. This includes a detailed analysis of the impact of vapor 

packets within the shear layer and the role of condensation shockwaves in the 

reattachment region. 

• Systematically study the effect of the incoming TBL—specifically, when 

controlled using riblets—on the overall dynamics and characteristics of the TSB. 
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• Investigate the specific impact of the incoming TBL on cavitating flow conditions. 

• Experimentally characterize the dynamics and characteristics of cavitating flow 

in separating and reattaching flows across various flow regimes. 

Novel Aspects of This Research 

This thesis introduces several novel contributions to the field: 

• Development and integration of a custom, full Mach number cavitating flow 

solver within the OpenFOAM platform, uniquely coupled with mixed Large Eddy 

Simulation (LES) capabilities. 

• Execution of a pioneering experimental study focusing on microscale separating 

and reattaching cavitating flows. 

• Synergistic application of the developed custom solver and the experimental setup 

to provide a comprehensive understanding of the complex interplay between 

phase transition, TSBs, and TBLs in separating and reattaching cavitating flows. 

Research Plan 

To achieve the stated objectives, the research will follow a structured plan encompassing 

both numerical and experimental methodologies, complemented by advanced data 

analysis techniques: 

• Numerical Solver Customization: Developing and refining a numerical solver 

specifically designed to accurately simulate both shockwaves and turbulent 

structures, capturing their effects with high fidelity. 

• Experimental Setup Implementation: Establishing a robust experimental setup 

that serves a dual purpose: validating the numerical results and enabling the 

extension of the study to a wide range of flow conditions. 

• Extensive Post-processing and Data Analysis: Employing advanced post-

processing and data analysis techniques—including, but not limited to, statistical 

analysis, modal analysis, and turbulent analysis—to comprehensively 

characterize the statistics and dynamics of the flow, thereby facilitating an in-

depth understanding of underlying mechanisms and their effects. 

Building upon this foundation, the primary objective of this PhD thesis is to 

comprehensively investigate the complex interplay between turbulent shear layer 
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dynamics and cavitation in microscale BFS configurations. This is achieved through a 

dual numerical and experimental approach, specifically aiming to: 

Customize and validate a fully compressible cavitation solver capable of accurately 

capturing collapse shock waves and turbulent structures and effects. 

Provide a detailed understanding of how cavitation profoundly affects the turbulent 

characteristics and dynamics of separating-reattaching flows, including its influence on 

the TSB characteristics and dynamics, the effect of phase transition on the shear layer, 

the impact of collapse on reattachment, the turbulent energy cascade, and the relation of 

vortex dynamics with vapor generation and condensation, utilizing modal analysis to 

identify coherent structures and their dynamics, as well as dominant motions and 

unsteadiness. 

Explore the control of cavitation within the TSB by strategically modifying the incoming 

TBL using riblets, and to analyze how these modifications impact downstream turbulent 

characteristics of both the TBL and TSB, and their subsequent influence on cavitation 

and condensation phenomena. 

Ultimately, this work seeks to significantly advance fundamental knowledge critical for 

the design and optimization of microfluidic and energy systems operating under 

cavitating conditions. 
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2 METHODS: COMPRESSIBLE CAVITATING FLOW SOLVER-PART 1 

2.1 Introduction 

The computational models are solved using OpenFOAM-2012, an open-source 

C++ library from the OpenFOAM Foundation (“OpenFoam. The Open Source CFD Toolbox 

openfoam foundation,” 2023). The characteristics and dynamics of compressible cavitating 

flows are explored through the application of the existing compressible cavitation solver 

and the newly proposed physical models. Within this cavitation solver, a cell-centered, 

co-located finite-volume approach (FVM) is employed for spatial discretization, coupled 

with a multistep temporal scheme to solve the compressible Navier-Stokes equations 

pertinent to unsteady cavitating flows. The solver employs a homogenous equilibrium 

model to account for phase transition, along with corresponding appropriate equation of 

states. Moreover, the effect of non-condensable gases is considered with adding a third 

phase to the conservative equations. Details of the numeric are provided in the 

work(Jasak, 1996). Detailed information about the solution procedure and discretization 

are presented in the following sections. 

The newly developed numerical model was successfully applied to simulate previously 

obtained experimental results, demonstrating its effectiveness in capturing the complex 

dynamics of compressible cavitating flows. This model offers several key advantages, 

including its ability to incorporate the impact of non-condensable gases on cavitation 

dynamics, consider the effects of pressure fluctuations in the phase transition formula, 

accurately predict shock waves and their influence on bubble collapse through the use of 

a nonlinear model for mixture compressibility, account for thermal effects by 

incorporating an energy equation and corresponding equation of state, and consider 

thermodynamic disequilibrium between phases (finite rates of evaporation and 

condensation) by employing separate transport equations for each phase. 
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2.2 Physical Description and Governing Equations 

2.2.1 Phase Equation 

The cavitating flow was modeled using an Eulerian single-fluid approach, assuming 

mechanical equilibrium between all phases (no slip velocity). This approach treated the 

flow as a mixture of phases, with the volume of fraction (VOF)(Hirt and Nichols, 1981) 

method employed to capture the interface between them. In the VOF framework, the 

phase fractions of each phase were accounted for by incorporating additional phase 

transport equations into the governing equations. 

While typical cavitation models consider only liquid and vapor phases, this study 

introduced a noncondensable gas as an additional phase to investigate its influence on 

cavitating flows. To account for phase transition, the transport equation for each phase 

was expressed as follows: 

𝜕(𝜌𝑙𝛼𝑙)

𝜕𝑡
+ 𝛻 ∙ (𝜌𝑙𝛼𝑙𝐔) = 𝑚̇  (2.1) 

𝜕(𝜌𝑣𝛼𝑣)

𝜕𝑡
+ 𝛻 ∙ (𝜌𝑣𝛼𝑣𝐔) = −𝑚̇  (2.2) 

𝜕(𝜌𝑛𝑔𝛼𝑛𝑔)

𝜕𝑡
+ 𝛻 ∙ (𝜌𝑛𝑔𝛼𝑛𝑔𝐔) = 0̇  (2.3) 

𝛼𝑙 + 𝛼𝑣 + 𝛼𝑛𝑔 = 1  (2.4) 

 

where 𝜌, 𝛼, 𝐔 and 𝑚̇ represent density, phase fraction, velocity, and phase change mass 

transfer rate, respectively. Subscripts 𝑙, 𝑣, and 𝑛𝑔  stand for liquid, vapor, and 

noncondensable gas phases. The source term showing mass transfer is given by: 

𝑚̇ =  𝑚̇+ + 𝑚̇−  (2.5) 

where 𝑚̇+ and 𝑚̇− are the rate of condensation and vaporization on the phase interface. 

Then the compressible and incompressible parts of the equations will be decoupled by 

expanding the convective terms and doing some mathematical manipulations as follow: 
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{
  
 

  
 
𝜕𝛼𝑙
𝜕𝑡
+ ∇ ∙ (𝛼𝑙𝐔) = −

𝛼𝑙
𝜌𝑙
[
𝐷𝜌𝑙
𝐷𝑡
] +

𝑚̇

𝜌𝑙
𝜕𝛼𝑣
𝜕𝑡

+ ∇ ∙ (𝛼𝑣𝐔) = −
𝛼𝑣
𝜌𝑣
[
𝐷𝜌𝑣
𝐷𝑡
] −

𝑚̇

𝜌𝑣
𝜕𝛼𝑛𝑔

𝜕𝑡
+ ∇ ∙ (𝛼𝑛𝑔𝐔) = −

𝛼𝑛𝑔

𝜌𝑛𝑔
[
𝐷𝜌𝑛𝑔

𝐷𝑡
]

  (2.6) 

where 
𝐷

𝐷𝑡
 is the material derivative. With the addition of all the equations in (6) the 

divergence of the velocity field will be as follows: 

∇ ∙ 𝐔 = −(
𝛼𝑙
𝜌𝑙
[
𝐷𝜌𝑙
𝐷𝑡
] +

𝛼𝑣
𝜌𝑣
[
𝐷𝜌𝑣
𝐷𝑡
] +

𝛼𝑛𝑔

𝜌𝑛𝑔
[
𝐷𝜌𝑛𝑔

𝐷𝑡
]) + 𝑚̇ (

1

𝜌𝑙
−
1

𝜌𝑣
)  (2.7) 

An artificial counter-gradient compression term(HG Weller, 2008) ∇ ∙ (𝛼𝑙𝛼𝑣(𝐔𝑙 −

𝐔𝑣) + 𝛼𝑙𝛼𝑛𝑔(𝐔𝑙 − 𝐔𝑛𝑔))  is used in equations to maintain the liquid-gas interface 

sharpness. By replacing the divergence term from the equation (7) and adding the 

artificial compression, the final form of the transport equation compromising the phase 

transition is given by: 

{
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

𝜕𝛼𝑙
𝜕𝑡

+ ∇ ∙ (𝛼𝑙𝐔) + ∇ ∙ (𝛼𝑙𝛼𝑣(𝐔𝑙 − 𝐔𝑣) + 𝛼𝑙𝛼𝑛𝑔(𝐔𝑙 − 𝐔𝑛𝑔))

= −
𝛼𝑙
𝜌𝑙
[
𝐷𝜌𝑙
𝐷𝑡
] (1 − 𝛼𝑙) + 𝛼𝑙(∇ ∙ 𝐔 ) +

𝛼𝑙 [
𝛼𝑣
𝜌𝑣
[
𝐷𝜌𝑣
𝐷𝑡
] +

𝛼𝑛𝑔

𝜌𝑛𝑔
[
𝐷𝜌𝑛𝑔

𝐷𝑡
]] + 𝑚̇ (

1

𝜌𝑙
− 𝛼𝑙 (

1

𝜌𝑙
−
1

𝜌𝑣
)) 

𝜕𝛼𝑣
𝜕𝑡

+ ∇ ∙ (𝛼𝑣𝐔) + ∇ ∙ (𝛼𝑣𝛼𝑙(𝐔𝑣 − 𝐔𝑙) + 𝛼𝑣𝛼𝑛𝑔(𝐔𝑣 − 𝐔𝑛𝑔))

= −
𝛼𝑣
𝜌𝑣
[
𝐷𝜌𝑣
𝐷𝑡
] (1 − 𝛼𝑣) + 𝛼𝑣(∇ ∙ 𝐔 ) +

𝛼𝑣 [
𝛼𝑙
𝜌𝑙
[
𝐷𝜌𝑙
𝐷𝑡
] +

𝛼𝑛𝑔

𝜌𝑛𝑔
[
𝐷𝜌𝑛𝑔

𝐷𝑡
]] − 𝑚̇ (

1

𝜌𝑣
− 𝛼𝑣 (

1

𝜌𝑙
−
1

𝜌𝑣
))

𝜕𝛼𝑛𝑔

𝜕𝑡
+ ∇ ∙ (𝛼𝑛𝑔𝐔) + ∇ ∙ (𝛼𝑛𝑔𝛼𝑙(𝐔𝑛𝑔 − 𝐔𝐥) + 𝛼𝑛𝑔𝛼𝑣(𝐔𝑛𝑔 − 𝐔𝑣))

= −
𝛼𝑛𝑔

𝜌𝑛𝑔
[
𝐷𝜌𝑛𝑔

𝐷𝑡
] (1 − 𝛼𝑛𝑔) + 𝛼𝑛𝑔(∇ ∙ 𝐔 ) +

𝛼𝑛𝑔 [
𝛼𝑙
𝜌𝑙
[
𝐷𝜌𝑙
𝐷𝑡
] +

𝛼𝑣
𝜌𝑣
[
𝐷𝜌𝑣
𝐷𝑡
]] + 𝑚̇𝛼𝑛𝑔 (

1

𝜌𝑙
−
1

𝜌𝑣
)

 (2.8) 

The artificial compression is only active in the interface region where 𝛼𝑙𝛼𝑣 and 𝛼𝑙𝛼𝑛𝑔 

are nonzero. To make sure that the compression is applied normally to the interface the 

relative velocity between any two phases is expressed as: 
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𝐔𝑐 = 𝑐𝑎|𝐔|
∇𝛼

|∇𝛼|
  (2.9) 

The compression rate is regulated by 𝑐𝑎 . Large values of 𝑐𝑎  can lead to numerical 

instabilities, therefore the value in the order of unity is suggested for this parameter(HG 

Weller, 2008). In the system of phase-fraction equations (9), the first terms on the right-

hand side (RHS) show the effect of the compressibility on the mass distribution, and the 

third terms show the effect of the phase transition on the mass exchange and generation.  

The system of phase fraction equations was discretized using the Multidimensional 

Universal Limiter with Explicit Solution (MULES) method which warrant consistency  

and boundedness even in the presence of flow phase transition(Zalesak, 1979). Due to the 

sharp interface between non-miscible phases, the discretization of the convective term in 

the VOF method poses a challenge in preserving solution boundedness and consistency 

near interfaces. First-order schemes can lead to interface smearing due to false diffusion, 

while high-order schemes may be unstable and cause numerical oscillations. Limiters 

address this issue by reducing the flux near sharp interfaces. 

In the MULES method, the convective term is discretized using a combination of high-

order and low-order flux approximations. An anti-diffusion flux is then defined to 

mitigate the numerical diffusion introduced by the low-order flux. A flux-limiting 

technique is employed to decrease the contribution of the anti-diffusion flux in regions 

with sharp interfaces, thereby preventing overshoot and undershoot of the phase fraction. 

2.2.2 Mass and Momentum Equations 

As it was mentioned earlier in this section, the single fluid approach is adopted in 

this study for modeling the multiphase flow. Therefore, one set of equations is used for 

the mass and the momentum conservation of the three-phase mixture flow, which is given 

by (Yu et al., 2017): 

𝜕(𝜌)

𝜕𝑡
+ 𝛻 ∙ (𝜌𝐔) = 0  (2.10) 

𝜕(𝜌𝐔)

𝜕𝑡
+ 𝛻 ∙ (𝜌𝐔⊗𝐔) = −∇𝑝 + ∇ ∙ 𝐒 + 𝐅𝐬  (2.11) 
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In the above equations, 𝜌  represents the mixture density which is estimated by 𝜌 =

𝜌𝑙𝛼𝑙 + 𝜌𝑣𝛼𝑣 + 𝜌𝑛𝑔𝛼𝑛𝑔, 𝐒 is the stress tensor, and 𝐅𝐬 denotes the surface tension stress. 

To account for pressure fluctuations that have a remarkable influence on the cavitation 

dynamics Large Eddy Simulation (LES) is employed(Garnier et al., n.d.). In the LES 

method, large energetic scales associated with large eddies are resolved while small scales 

(Sub-Grid scales (SGS)) are modeled. For this purpose, the filtered form of governing 

equations is used(Bensow and Bark, 2010). Therefore, 𝐒 in equation (11) is formed from 

two terms of viscous stress tensor (𝝉 = 2𝜇𝐒𝜏, 𝐒𝜏 is strain tensor, and 𝜇 is the mixture 

dynamic viscosity given by: 𝜇 = 𝜇𝑙𝛼𝑙 + 𝜇𝑣𝛼𝑣 + 𝜇𝑛𝑔𝛼𝑛𝑔 ), and SGS stress (𝝉𝒔𝒈𝒔).  

The most commonly used LES models are subgrid viscosity models which assume the 

energy transfer mechanism from the resolved to the subgrid scales resembles a molecular 

mechanism represented by the diffusion term, 𝝉𝒔𝒈𝒔 = 2𝜇𝑠𝑔𝑠𝐒𝜏 , where 𝜇𝑠𝑔𝑠  is subgrid 

scale viscosity. In this study Wall Adaptive Large Eddy (WALE) is implemented(Nicoud 

and Ducros, 1999). WALE model is an algebraic subgrid viscosity model that enables 

correct prediction of SGS viscosity close to the wall without resorting to a transport-like 

equation or adding a damping wall function. 

The surface tension is calculated as  𝐅𝐬 = 𝜎𝜅∇𝛼𝑙 , where 𝜎 shows the surface tension 

coefficient and 𝜅 shows the interface curvature which is obtained as 𝜅 = ∇𝛼𝑙/|∇𝛼𝑙|.  

In this study, a pressure-based solver is implemented. To drive the pressure equation the 

momentum equation is partially discretized(Jasak, 1996) (Demirdžić et al., 1993):  

𝐔𝑝 =
𝐻(𝐔)

𝑎𝑝
−
∇𝑝

𝑎𝑝
  (2.12) 

Where 𝐻(𝐔) includes the influence of the transport terms of neighboring cells and the 

source part of transients and the surface tension force effect. Accordingly, the divergence 

of the predicted velocity is given by: 

∇ ∙ 𝐔𝑝 = ∇ ∙ (
𝐻(𝐔)

𝑎𝑝
) − ∇ ∙ (

∇𝑝

𝑎𝑝
)  (2.13) 

Using equations (1), (10), and (13), and considering the pressure-density relation (
𝐷𝜌

𝐷𝑡
=

𝜓
𝐷𝑝

𝐷𝑡
, 𝜓 is the compressibility coefficient) the final form of the mixture pressure equation 

is the compromise of incompressible and compressible parts(Yu et al., 2017): 
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{
  
 

  
 
𝛼𝑙
𝜌𝑙
[𝜓𝑙

𝜕𝑝

𝜕𝑡
+ 𝐔 ∙ ∇(𝜌𝑙)] +

𝛼𝑣
𝜌𝑣
[𝜓𝑣

𝜕𝑝

𝜕𝑡
+ 𝐔 ∙ ∇(𝜌𝑣)] +

𝛼𝑛𝑔

𝜌𝑛𝑔
[𝜓𝑛𝑔

𝜕𝑝

𝜕𝑡
+ 𝐔 ∙ ∇(𝜌𝑛𝑔)]

⏟                                                  
𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑏𝑙𝑒

+

 

∇ ∙ 𝐔 − 𝑚̇ (
1

𝜌𝑙  
−
1

𝜌𝑣
)

⏟            
𝑖𝑛𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑏𝑙𝑒

= 0

 (2.14) 

2.2.3 Energy Equation 

The energy equation of the mixture is given by (Wang et al., 2021): 

𝜕

𝜕𝑡
[𝜌 (

1

2
|𝐔|2 + 𝑒)] + 𝛻 ∙ [𝜌𝐔 (

1

2
|𝐔|2 + 𝑒)] = −∇ ∙ 𝑞 − ∇ ∙ (𝑝𝐔)  (2.15) 

where, 𝑒 shows the specific internal energy, and 𝑞 is the heat flux. To express the energy 

equation based on temperature, the internal energy and the heat flux can be replaced by 

𝑒 = 𝐶𝑣,𝑚𝑇 and 𝑞 = −𝛼𝑡ℎ𝐶𝑣,𝑚∇𝑇, respectively: 

𝜕

𝜕𝑡
(𝜌𝐶𝑣,𝑚𝑇) + 𝛻 ∙ (𝜌𝐶𝑣,𝑚𝑇𝐔) − ∇ ∙ (𝛼

𝑡ℎ𝐶𝑣,𝑚∇𝑇)  

= −∇ ∙ (𝑝𝐔) −
𝜕

𝜕𝑡
(𝜌𝑘) + 𝛻 ∙ (𝜌𝑘𝐔) 

(2.16) 

where 𝐶𝑣,𝑚  represents the mixture-specific heat and 𝛼𝑡ℎ  is the mixture of thermal 

diffusivity, which is given by: 

𝛼𝑡ℎ =
𝛼𝑙𝑘𝑙
𝐶𝑣,𝑙

+
𝛼𝑣𝑘𝑣
𝐶𝑣,𝑣

+
𝛼𝑛𝑔𝑘𝑛𝑔

𝐶𝑣,𝑛𝑔
 (2.17) 

here 𝑘 denotes the thermal conductivity. 

2.2.4 Thermodynamic Equation of State 

The physics model includes the Equation of State (EoS) for water, vapor, and 

noncondensable gas. This allows it to capture compressibility effects within cavitating 

flows, where density variations are essential for understanding cavity behavior. The EOS 

for each pure phase and the mixture is presented in the following. 
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In the pure water region where 𝛼𝑙 = 1,  modified Tait EOS is applied as follow(Aitken 

and Foulc, 2019): 

𝑝𝑙 + 𝐵

𝑝𝑙,𝑠𝑎𝑡 + 𝐵
= (

𝜌𝑙
𝜌𝑙,𝑠𝑎𝑡

)

𝑁

 (2.18) 

Where 𝐵 and 𝑁  are empirical parameters, and subscript sat stands for vapor saturation 

state.  

For the pure vapor and noncondensable gas, ideal gas EOS is utilized to estimate the 

density based on the pressure and the temperature: 

𝑝𝑣 = 𝜌𝑣𝑅𝑣𝑇𝑣, 

𝑝𝑛𝑔 = 𝜌𝑛𝑔𝑅𝑛𝑔𝑇𝑛𝑔  
(2.19) 

where 𝑅 shows the gas constant. 

In addition, the internal energy for each pure phase is given as: 

𝑒 = 𝐶𝑣,𝑖(𝑇 − 𝑇0) + 𝑒𝑖,0 (2.20) 

where 𝑖  can be substituted by 𝑙, 𝑣, and 𝑛𝑔 . Also,  𝑇0 and 𝑒𝑖,0  denote the reference 

temperature and internal energy for the 𝑖𝑡ℎ phase. 

Accordingly, the compressibility of each phase is calculated as follows:  

𝜓𝑙 =
𝑑𝜌𝑙
𝑑𝑝

=
𝜌𝑙

(𝜌𝑙/𝜌𝑙,𝑠𝑎𝑡)𝑁𝑁(𝑝𝑙,𝑠𝑎𝑡 + 𝐵 )
 

𝜓𝑖 =
𝑑𝜌𝑖
𝑑𝑝

=
1

𝑅𝑖𝑇
     𝑖 = 𝑣, 𝑛𝑔 

(2.21) 

In the mixture region, the specific internal energy is given by: 

𝑒 = (𝛼𝑙𝐶𝑣,𝑙 + 𝛼𝑣𝐶𝑣,𝑣 + 𝛼𝑛𝑔𝐶𝑣,𝑛𝑔)(𝑇 − 𝑇0) + 𝑒0 (2.22) 

Saturation pressure can be expressed as a polynomial function of temperature. For water, 

the saturation pressure is estimated based on Wagner’s equation as follows(Saul and 

Wagner, 1987):  

ln (
𝑝𝑠𝑎𝑡
𝑝𝑐
) = (𝑎1𝑡 + 𝑎2𝑡

1.5 + 𝑎3𝑡
3 + 𝑎4𝑡

3.5 + 𝑎5𝑡
4 + 𝑎6𝑡

7.5)
𝑇𝑐
𝑇
  (2.23) 

where 𝑝𝑐  is critical pressure, 𝑇𝑐  is the temperature of the water, and 𝑡 = 1 −
𝑇

𝑇𝑐
. 

𝑎𝑖  for 𝑖=1_7 are constant coefficients. Based on the homogenous mixture assumption, 
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the internal energy (𝑒 ) and density (𝜌) of the mixture can be used to estimate the 

thermodynamical state of the fluid. 

The speed of sound in the mixture is approximated using the frozen sound speed 

assumption. Accordingly, the sound speed in the mixture will be given by(Yu et al., 

2017): 

1

𝜌𝑐2
=

𝛼𝑙

𝜌𝑙𝑐𝑙
2 +

𝛼𝑣
𝜌𝑣𝑐𝑣2

+
𝛼𝑛𝑔

𝜌𝑛𝑔𝑐𝑛𝑔2
 (2.24) 

where c is the speed of sound. According to this nonlinear equation, the acoustic 

characteristics of the fluid are strongly altered in the water-vapor mixture, and the speed 

of sound in the bubbly mixture reduced by around two orders- of magnitude compared to 

the speed of sound in the pure phases. Consequently, due to the small sound speed in the 

mixture, shock waves occur even in low flow velocities which can have a significant 

effect on the cavitation dynamics and collapses(Wang et al., 2021).  

2.2.5 Phase Transition Model 

The phase transition model that is used in the current study is based on the cavitation 

model developed by F.Giussani et al.(Giussani et al., 2020a) which considered the effect 

of the third term in the phase transition term. Consequently, the mass transfer rate 𝑚̇ in 

phase fraction equations (Eqs (8)) is calculated as: 

𝑚̇

=

{
 
 
 
 
 

 
 
 
 
 

−

3𝛼𝑣 (
𝜌
𝑣
𝜌
𝑙

𝜌 + 𝛼𝑛𝑐(𝜌𝑙 − 𝜌𝑛𝑐)
)max(𝑝 − 𝑝

𝑠𝑎𝑡
, 0)√

2

3

1

𝜌
𝑙
|𝑝 − 𝑝

𝑠𝑎𝑡
|

𝑅 + 𝑅4
4

3
𝜋𝑛0 [

𝜌 + 𝛼𝑛𝑐(𝜌𝑣 − 𝜌𝑛𝑐)

𝜌 + 𝛼𝑛𝑐(𝜌𝑙 − 𝜌𝑛𝑐)
] 

                                  𝑖𝑓 𝑝 > 𝑝
𝑠𝑎𝑡
 

−

4𝜋𝛼𝑙𝑛0𝑅
2 (

𝜌
𝑣
𝜌
𝑙

𝜌 + 𝛼𝑛𝑐(𝜌𝑙 − 𝜌𝑛𝑐)
)min(𝑝 − 𝑝

𝑠𝑎𝑡
, 0)√

2

3

1

𝜌
𝑙
|𝑝 − 𝑝

𝑠𝑎𝑡
|

1 + 𝑅3
4

3
𝜋𝑛0 [

𝜌 + 𝛼𝑛𝑐(𝜌𝑣 − 𝜌𝑛𝑐)

𝜌 + 𝛼𝑛𝑐(𝜌𝑙 − 𝜌𝑛𝑐)
] 

                       𝑖𝑓 𝑝 < 𝑝
𝑠𝑎𝑡

  
(2.25) 

𝑅 = √
3

4𝜋𝑛0

1 + 𝛼𝑛𝑢𝑐 − 𝛼𝑙 − 𝛼𝑛𝑐
𝛼𝑙

3

 (2.26) 
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where 𝛼𝑛𝑢𝑐, and 𝑛0 represent the volume fraction of the initial nuclei and initial nuclei 

concentration. This model accounts for homogenous nucleation and is developed based 

on the work of Schnerr et al.(Schnerr et al., 2008). 

2.3  Solution Procedure and Discretization 

The unknown field variables include phase fractions (𝛼𝑙 , 𝛼𝑣, and 𝛼𝑛𝑔), densities 

(𝜌𝑙 , 𝜌𝑣 , and 𝜌𝑛𝑔), velocity field (𝐔), pressure field (𝑝), and temperature field (𝑇). The 

treatment mechanism of field variables is similar to the study of Koch et al.(Koch et al., 

2016). During the solution process, the phase fraction fields were updated using the 

system of phase fraction equations (8). The momentum equation was employed to solve 

for the velocity field, while the pressure equation (14) was used to determine the pressure 

field. The temperature field was calculated from the energy equation (16). Finally, the 

velocity, pressure, temperature, density, and internal energy fields were computed using 

the equations of state (EOS) (equations 18, 19, and 20). The coupling between the velocity 

and pressure fields is solved by using the PIMPLE algorithm. PIMPLE is a combination 

of SIMPLE(Patankar and Spalding, 1972) and PISO algorithms(Issa, 1986) in which the 

inner PISO loop is completed by the outer SIMPLE loop and possibly under the relaxation 

of variables. The transient term was discretized using the first-order implicit Euler 

scheme. The Laplacian term was approximated using the second-order Gauss linear 

scheme. The van Leer TVD scheme was employed for the discretization of the convection 

term. To control the boundedness and consistency of the solution, the MULES scheme, 

previously discussed for phase fractions, was utilized. Artificial compression terms were 

evaluated using a conservative interface compression scheme (CICSAM) to ensure a 

sharp liquid-gas interface(Markatos, 1986). For the vapor-gas mixture, the compression 

factor in the CICSAM scheme is set to 0 to account for diffusion at their interface. 

Considering n + 1, n, and ∗,  as indicators as the current, preceding timestep, and prior 

iteration values, the overall solution procedure in the implemented three-phase 

compressible cavitation model is as follows: 

1) Phase fractions are updated using equation (8), and then the surface curvature 𝜅 

is obtained using the calculated phase fractions, 
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2) The SGS model is solved to update the SGS stresses, 

3) Momentum predicter (12) is solved to obtain 𝐔∗, 

4) Energy equation (16) is solved to calculate the new temperature field 𝑇𝑛+1, and 

fluid properties are updated accordingly (such as 𝑝𝑠𝑎𝑡 in equation (23)) 

5) Calculate the new pressure field 𝑝𝑛+1 using equation (14), and use it to calculate 

the new velocity 𝐔𝒏+𝟏, 

6) New temperature and pressure fields are used in EOS (18, 19, 20) to calculate the 

new density and internal energy of pure phases, 

7) Equation (21) is used to update the compressibility of pure phases, 

8) Mixture properties including density, viscosity, and sound speed, are updated 

using the related mixture models, 

9) Return to step (1) and solve for the next time step. 

 

Implementation 

The flowchart of the pressure-based solver is shown in Figure1.  
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Figure 2.1 Flowchart of the customized three-phase pressure-based solver. 

2.4 Validation 

2.4.1 BFS Microchannel Experiments 

In this section, experimental results are presented for comparison with the numerical 

solutions. Since temporal resolution in our experiment was orders of magnitude lower 

than the required resolution to capture dominant dynamics of TSB, we were not able to 

use the current experimental results for quantitative evaluation of void fraction dynamics. 

Figure 1 presents 4 sequential snapshots of calculated void fraction in our experiments, 

where the snapshots of void fraction were obtained starting from an arbitrary start time 

with the same time intervals as in the numerical simulations. Considering uncertainties in 
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the experiments (including uncertainties in the measurements, as well as those associated 

with the device and surface defects), as well as, stochastic nature of turbulence and 

cavitation, some differences between the instantaneous results of experiments and 

numerical studies are expected. Nonetheless, an acceptable agreement can be seen in the 

evolution of the void fraction for instantaneous results within the given time period. For 

example, the region associated with vapors within the shear layer and also reattachments 

agree well for all time sequences. Furthermore, from displacement of the reattachment it 

can be seen that the expansion and contraction of TSB could be correctly captured which 

proves the capability of the model in accurately capturing TSB dynamics (from top in 1st 

and 4th rows the reattachment is around 𝑥̃ = 5.5, and in 2nd and 3rd rows around 𝑥̃ = 6.5). 

 

Figure 2.2 Comparison between experimental and numerical results of void fraction 

distribution in several sequential time instances. 

In addition to instantaneous results, some statistical evaluations were made to have a more 

concrete conclusion about the deviation of the numerical results from the experimental 

results. Figure 2.3 shows the mean value ( 𝛼̅𝑣) and Root Mean Square (RMS) of the 

fluctuations (𝛼𝑣 𝑟𝑚𝑠
′ ) of void fraction field regarding the experimental results and 
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numerical simulations. Due to the limitations in measurements in the field of view in the 

experiments, the channel area for 𝑥̃ > 6.2  is not included in the results. The results 

indicate that  𝛼̅𝑣 and 𝛼𝑣 𝑟𝑚𝑠
′  are mostly concentrated within the shear layer which aligns 

with recent studies(Agarwal et al., 2023; Bhatt et al., 2021a). These results support that 

cavitation generation and transport mostly occur within the shear layer. Mitigation in the 

mean void fraction value can be observed around 𝑥̃ = 6  for both experimental and 

numerical results indicating a strong mean pressure recovery in this region associated 

with shear layer impingement. Moreover, there is a good agreement in the RMSof 

fluctuations in void fraction between both results. The results of 𝛼𝑣 𝑟𝑚𝑠
′  prove the highly 

fluctuating nature of cavitation within the shear layer where vapor packets are generated, 

transported, and collapse at various locations along the shear layer. The main difference 

between the numerical and experimental results lies in a larger spreading of the vapor 

packets towards the bottom wall at 𝑥̃ ≈ 4. 

 

Figure 2.3 Comparison in mean and RMSvoid fraction fields between experimental and 

numerical results. 

2.4.2 Numerical Replication of Experimental Study of Winklhofer et 

al.(Winklhofer et al., 2001) 

We further validated our numerical model using experimental study of Winklhofer et 

al.(Winklhofer et al., 2001) since that study provides quantitative data related to the 

pressure and velocity distribution and was used as a benchmark example in many 

numerical studies such as Yu et al.(Yu et al., 2017).  The computational domain was 

selected based on the experimental conditions and also previous numerical studies(Yu et 

al., 2017). The numerical domain (Figure 2.4) consists of three main parts: inlet extension, 
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microchannel and outlet extension (the dimensions are provided in Table S.2). The inlet 

is located on the left side in Figure 3 where constant pressure of 10 MPa is applied. On 

the other side of the channel various values of pressures ranging from 2 to 6 MPa are 

applied by imposing a non-reflective boundary condition for this area. In the non-slip and 

adiabatic wall boundary conditions were imposed with zero gradient for hydrodynamic 

parameters. Related information about the fluid properties is provided in Table S.3.  

 

Figure 2.4 Computational domain related to the experimental study by Winklhofer et 

al[56]. 

Table 2.1 Dimensions related to the computational domain represented in Figure 

𝑊𝑖𝑛 

[𝜇𝑚] 

𝑊𝑚𝑖𝑐1 

[𝜇𝑚] 

𝑊𝑚𝑖𝑐2 

[𝜇𝑚] 

𝑊𝑜𝑢𝑡 

[𝜇𝑚] 

𝑅𝑖𝑛 

[𝜇𝑚] 

𝑑 

[𝜇𝑚] 

𝐿𝑖𝑛 

[𝜇𝑚] 

𝐿𝑚𝑖𝑐 

[𝜇𝑚] 

𝐿𝑜𝑢𝑡 

[𝜇𝑚] 

1000 301 284 1000 20 300 1000 1000 1000 

 

Table 2.2 Fluid properties related to the experimental study by Winklhofer et 

al(Winklhofer et al., 2001). 

𝑝𝑖𝑛 

[𝑀𝑃𝑎] 

𝜌𝑓 

[
𝑘𝑔

𝑚3
] 

𝜌𝑓𝑣 

[
𝑘𝑔

𝑚3
] 

𝑝𝑠𝑎𝑡 

[𝑃𝑎] 

𝜇𝑣 

[
𝑁𝑠

𝑚2
] 

𝜇𝑓𝑣 

[
𝑁𝑠

𝑚2
] 

𝜎 

[
𝑁

𝑚
] 

𝑝𝑎𝑚𝑏 

[𝑀𝑃𝑎] 

𝑇𝑎𝑚𝑏 

[𝐾] 
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10 832 0.136 2000 6.5e-3 5.9e-6 0.03 2-7 304 

 

Our computational findings align well with the experimental data of Winklhofer et 

al(Winklhofer et al., 2001)  as well as the numerical results provided by Yu et al(Yu et 

al., 2017). The results for the mean values of the pressure field and void fraction field in 

three different outlet pressures are provided in Figure 2.5. It is observed that the model 

accurately captured the cavitation inception and development, as well as the pressure field 

prior to the inception regime. In addition, the pressure field along the centerline for the 

cavitation regime is provided in Figure 2.6. which shows a good agreement between our 

numerical results and the experimental results of Winklhofer et al(Winklhofer et al., 

2001). 

 

Figure 2.5 Average contour plots of (a) the pressure field for Δ𝑝=5.8 𝑀𝑃𝑎, and (b) the 

void fraction field for Δ𝑝=6.0 𝑀𝑃𝑎, at cavitation inception regime (c) the void fraction 

field for Δ𝑝=7.0 𝑀𝑃𝑎, at cavitation regime. 
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Figure 2.6 Comparison of mean pressure distribution along the channel centerline for 

cavitation regime (Δ𝑝=7.0 𝑀𝑃𝑎) between the results of Winklhofer et al[56] and the 

numerical simulation. 
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3 METHODS: COMPRESSIBLE CAVITATING FLOW SOLVER-PART 2 

3.1 Introduction 

Cavitation is driven by two key phenomena: shockwaves and low-pressure zones 

within turbulent structures, both of which can initiate phase transitions. In cavitating 

flows, the Mach number varies significantly both spatially and temporally. The highest 

compressibility effects are observed in the bubbly mixture zones, while pure phases 

(especially the liquid phase) show the lowest susceptibility to these effects. To obtain 

stable and accurate solutions for these complex compressibility effects, specialized all-

Mach number flux reconstruction schemes have recently been developed. These schemes 

are adept at accurately capturing shockwave effects within cavitating flows. In this study, 

the Schmidt all-Mach scheme (Schmidt, 2015) is integrated with a mixed Subgrid Scale 

(SGS) turbulent model. This approach enables the accurate simulation of both the 

influence of turbulent structures on cavitation initiation and the generation of shockwaves 

due by bubble collapses—two of the most critical aspects of cavitating flows. 

3.2 Physical Model 

3.2.1 Governing Equations 

Three-dimensional fully compressible form of conservative governing equations 

can be written as follows(Trummler, 2021): 

𝜕𝑡𝑼 + 𝛻 ∙ 𝑭(𝑼) = 0         (3.1) 
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Where 𝑈 represents the state vectors and 𝐹(𝑈) stands for nonlinear fluxes. F can be 

further splits to three parts, namely the convective part (𝑭𝒄), the diffusive parts (𝑭𝒅), and 

the part encompassing the contribution of the pressure and surfaces forces (𝑭𝒑): 

𝜕𝑡𝑼 + 𝛻 ∙ [𝑭
𝒄(𝑼) + 𝑭𝒅(𝑼) + 𝑭𝒑(𝑼)] = 0      (3.2) 

Where the state vector and fluxes can be shown as: 

𝑼 = [

𝜌
𝜌𝒖
𝜌𝐸
]      𝑪(𝑼) = 𝒖 [

𝜌
𝜌𝒖

𝜌𝐸 + 𝑝
]     𝑷(𝑼) = [

0
𝑝𝐼 − 𝜎𝜅𝛼𝐼

0
]     𝐷(𝑈) = [

0
−𝜏
𝒒
]  (3.3) 

The above transport equations solve for mass, momentum and total energy. The primitive 

variables (p and T) along with vapor volume are estimated using appropriate equations of 

state and caloric equations along with iterative algorithms. The surface tension force is 

calculated with 𝜎𝜅𝐧𝛿𝑠 , which can be rewritten as 𝜎𝜅∇𝛼  (Abu-Al-Saud et al., 2018). 

Where 𝜎 shows the surface tension coefficient, 𝜅 is the surface curvature, n is the surface 

normal vector and 𝛼 is the vapor volume fractions. The viscos stress tensor, 𝜏 is written 

as: 

𝜏 = ∇ ∙ 𝜇 (∇𝑢 + (∇u)𝑇 −
2

3
(∇ ∙ 𝑢)𝐼)       (3.4) 

The total energy is formed from the kinetic energy (k) and the internal energy (e): 

𝐸 = 𝑒 +
1

2
||𝑢 ||2         (3.5) 

The heat flux is given as:   𝑞 = 𝜆∇𝑇 

Where 𝜆 is thermal diffusivity and is obtained using 𝜆 = 𝜈/𝑃𝑟. 

3.2.2 Single Fluid Model 

As it is discussed in (Mihatsch, 2017), cavitation occurs in a broad range of length 

scales and the cavitation length scale characteristic (𝜓𝑐𝑎𝑣) can varies from nuclei sizes 

(𝑂 < 10−4𝑚 ), to the length scales of the flow. On the other hand, the scales that can be 

resolved within the flow simulation depends on the grid length (𝜓𝑔𝑟𝑖𝑑). In the cases of a 

very large cavity characteristics length to the grid size ratio (
𝜓𝑐𝑎𝑣

𝜓𝑔𝑟𝑖𝑑
≫ 1), the cavitation 
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can be fully resolved allowing for the usage of approaches such as sharp interface 

methods where the phase boundary is calculated explicitly. These models consider one 

set of mass, momentum, and energy for each phase and the interaction between phases is 

modeled with considering exchange rate between phases explicitly. On the other side, 

when this ration is very small, 
𝜓𝑐𝑎𝑣

𝜓𝑔𝑟𝑖𝑑
≪ 1, bubbly flow models are utilized where the liquid 

phase is treated as a continuum phase and cavity bubbles are treated as Lagrangian 

particles. In this case, the dynamics of the cavity bubbles are typically estimated using 

the Rayleight-Plesset model and its extensions. 

In cases where the characteristics length scales of the cavitation are in the same orders of 

the grid size (
𝜓𝑐𝑎𝑣

𝜓𝑔𝑟𝑖𝑑
≈ 1), a special treatment of vapor phase is required. Under these 

conditions cavity structures with sizes larger than the grid size can be resolved (𝜓𝑐𝑎𝑣 >

𝜓𝑔𝑟𝑖𝑑), while resolving all the scales, including all the bubbles in cloud cavities with 

𝜓𝑐𝑎𝑣 ≪ 𝜓𝑔𝑟𝑖𝑑 would be computationally very expensive and for cavities smaller than the 

grid a model needs to be used to approximate their effects.  

A common approach to overcome this issue is so called homogenous mixture or single-

fluid model. In this model the information regarding the variations in length scales smaller 

than 𝜓𝑔𝑟𝑖𝑑 is lost and the properties of each phase that is smaller than the grid is averaged 

over the grid. 

The volume and the mass fraction of phase I is defined as: 

𝛼𝑖 =
𝑉𝑖

𝑉
, 𝛽𝑖 =

𝑚𝑖

𝑚
,    with∑ 𝛼𝑖𝑖 = ∑ 𝛽𝑖𝑖 = 1      (3.6) 

Then the conservative variables over each control volume (the mixture values) are 

approximated as: 

𝜌𝑚𝑖𝑥 =
1

Ω  
∫ 𝜌𝑑Ω
Ω

,    (𝜌𝒖)𝑚𝑖𝑥 =
1

Ω  
∫ 𝜌𝒖𝑑Ω
Ω

,    (𝜌𝑬)𝑚𝑖𝑥 =
1

Ω  
∫ 𝜌𝑬𝑑Ω
Ω

  (3.7) 

In this approach the pressure, temperature and velocity is considered to be identical for 

all the components within each cell, which implies a mechanical, thermal and kinetic 

equilibrium of phases. Additionally, the density of the mixture is calculated from each 

component density and the volume fraction as follows: 

𝜌𝑚𝑖𝑥 = ∑ 𝛼𝑖𝜌𝑖𝑖          (3.8) 
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3.2.3 Thermodynamic Closures and Transport Properties 

To close the governing equations there is a need to calculate the primitive 

parameters from the caloric equations and equations of states. The following section 

covers the details regarding the relevant equations used for the liquid and the vapor 

phases. 

Liquid phase 

For the liquid phase modified Tait equation of state is utilized which is expressed as 

follows(Koop, 2008): 

𝑝𝑙(𝜌𝑙, 𝑇𝑙) = 𝐵 [(
𝜌𝑙

𝜌𝑠𝑎𝑡,𝑙(𝑇𝑙)
)
𝑁

− 1 ] + 𝑝𝑠𝑎𝑡,𝑙(𝑇𝑙)     (3.9) 

Where subscript l shows the liquid phase and the parameters B and N take the constant 

values of 3.3×108 Pa and 7.15, respectively. Also, the relation between the internal energy 

and temperature can be expressed based on the caloric equation as follows: 

𝑒𝑙(𝑇𝑙) = 𝐶𝑣𝑙(𝑇𝑙 − 𝑇0) + 𝑒𝑙0        (3.10) 

Where 𝐶𝑣𝑙  shows the specific heat at a constant volume and 𝑇0  and 𝑒𝑙0  show the 

reference temperature and the reference internal energy of the liquid component 

respectively (for water 𝐶𝑣𝑙 = 4180 𝐽𝑘𝑔
−1𝐾−1, 𝑇0 = 273.15 𝐾, 𝑒𝑙0 = 617.0). 

Vapor phase 

For the gas phase the ideal gas phase equation of state is considered: 

𝑝𝑣(𝜌𝑣, 𝑒𝑣) = (𝛾𝑔 − 1)𝜌𝑣𝑒𝑣        (3.11) 

Where 𝛾𝑔 is the specific heat ration and can be expressed as 𝛾𝑔 =
𝑅𝑇𝑣

𝑒𝑣
 with R being the 

specific gas constant (for vapor 𝛾 = 1.327  and 𝑅 = 461.6 𝐽𝑘𝑔1𝐾−1  ). The caloric 

equation corresponds to the gas phase can be written as: 

𝑒𝑣(𝑇𝑣) = 𝐶𝑣𝑣(𝑇𝑣 − 𝑇0) + 𝐿𝑣(𝑇0) + 𝑒𝑙0      (3.12) 

Where 𝐿𝑣 shows the laten heat of the vaporization with 𝐿𝑣(𝑇0) = 2.3753 × 10
6, 𝐶𝑣𝑣 =

1410.8 𝐽𝑘𝑔−1𝐾−1, 𝑇0 = 273.15 𝐾. 

Mixture 
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With the assumption of thermal and mechanical equilibrium in the mixture, the pressure 

and the temperature in the mixture are given as: 

𝑝𝑙 = 𝑝𝑣 = 𝑝 = 𝑝𝑠𝑎𝑡(𝑇),    𝑇𝑙 = 𝑇𝑣 = 𝑇      (3.13) 

The density and internal energy of the mixture are given: 

𝜌 = 𝛼𝜌𝑣,𝑠𝑎𝑡(𝑇) + (1 − 𝛼)𝜌𝑙,𝑠𝑎𝑡(𝑇)       (3.14) 

𝜌𝑒 = 𝛼𝜌𝑣,𝑠𝑎𝑡(𝑇)𝑒𝑣(𝑇) + (1 − 𝛼)𝜌𝑙,𝑠𝑎𝑡(𝑇)𝑙(𝑇)     (3.15) 

The void fraction value of the vapor 𝛼 is updated as: 

𝛼 =
𝜌−𝜌𝑣,𝑠𝑎𝑡(𝑇)

𝜌𝑙,𝑠𝑎𝑡(𝑇)−𝜌𝑣,𝑠𝑎𝑡(𝑇)
         (3.16) 

The saturation values for densities and pressure are given based on analytical relations 

provided as(Schmidt and Grigull, 1989): 

ln (
𝑝𝑠𝑎𝑡(𝑇)

𝑝𝑐
) =

𝑇𝑐
𝑇
∑𝑎𝑖𝜃

𝑎̂𝑖 

𝑖=1

,
𝜌𝑙,𝑠𝑎𝑡(𝑇)

𝜌𝑐
=∑𝑏𝑖𝜃

𝑏̂𝑖  

𝑖=1

, ln (
𝑝𝑠𝑎𝑡(𝑇)

𝑝𝑐
) =

𝑇𝑐
𝑇
∑𝑐𝑖𝜃

𝑐𝑖̂  

𝑖=1

 

 𝑇𝜖[𝑇𝑟𝑒𝑓 , 𝑇𝑐]          (3.17) 

Where 𝜃 = 1 − 𝑇/𝑇𝑐 and the coefficients 𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖, 𝑎̂𝑖, 𝑏̂𝑖, 𝑎𝑛𝑑 𝑐̂𝑖 can be found in(Schmidt 

and Grigull, 1989).  The critical values for the water are 𝑇𝑐 = 647.16 𝐾, 𝑝𝑐 =

22.12 × 106𝑃𝑎, 𝑎𝑛𝑑 𝜌𝑐 = 332 𝑘𝑔𝑚
−3. 

With considering the thermodynamic equilibrium for the mixture, the speed of sound for 

the mixture is estimated based on the Wallis relationship: 

1

𝜌𝑐2
=

𝛼

𝜌𝑙𝑐𝑙
2 +

(1−𝛼)

𝜌𝑣𝑐𝑣
2          (3.18) 

Numerical Flux Reconstruction for Fully Compressible Flow 

The integral (weak form) of the governing equations can be written as follows: 

𝜕𝑡 ∫ 𝑼(𝑥, 𝑡)𝑑𝑉Ω
+ ∫ 𝑭(𝑼, 𝑥, 𝑡)𝑑𝐴

∂Ω
= 0      (3.19) 

Where the control volume and the boundaries are denoted by Ω and 𝜕Ω. 

The computational domain is discretized into N grid cells i with a control volume and 

volume of Ω𝑖 and 𝑉𝑖 respectively. The volume average of the field over the grid cell is 

calculated as: 
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𝑈̅𝑖(𝑡) =
1

𝑉𝑖
∫ 𝑼𝒊(𝑥, 𝑡)𝑑𝑉𝑖Ω𝑖

        (3.20) 

The flux terms are split over the cell boundaries j with the area of 𝐴𝑗 and normal vector 

of 𝒏𝒋. The numerical approximation of the fluxes over the faces of each cell is then 

calculated as: 

 ∫ 𝑭(𝑼, 𝑥, 𝑡)𝑑𝐴
∂Ωi

= ∑ 𝐹𝑗̆𝑛𝑗𝒋         (3.21) 

Where 𝐹𝑗̆ represents the numerical approximation of the physical flux passing through the 

face j. The consistency and conservativeness of the numerical flux is met with the 

following conditions: 

After applying the discretization, the final form of the governing equations will be: 

𝜕𝑡𝑈̅𝑖(𝑡) + ∑ 𝐹𝑗̆𝑛𝑗𝒋 = 0         (3.22) 

At each time step 𝑡 = 𝑡𝑘 the constant piecewise estimation of the vector state  𝑈̅𝑖(𝑡𝑘) is 

calculated by solving the above equations.  

3.2.4 Riemann Problem  

To reconstruct the convective fluxes across the cell interfaces, in the fully 

compressible cases approximate Riemann solvers can be employed. In approximate 

Riemann solvers, the numerical flux on every cell interface 𝑓𝑖𝑗  is defined based on 

adopting Riemann problem. With exploiting the rotational invariance property of the 

Euler equations, the fluxes can be calculated on cell normal directions. With considering 

a local coordinate on the centroid of the interface (𝒙′𝑓 ), the initial condition for the 

Riemann problem would be as Follows: 

𝑼′(𝒙′, 𝑡𝑛) =  {
𝑼′𝐿
𝑛 = 𝑻𝑼𝐿

𝑛

𝑼𝑅
′𝑛 = 𝑻𝑼𝑅

𝑛        (3.23) 

Where T shows the rotational tensor and the superscript “ ’ ” represents the variable in the 

cells interface coordinates. For small time intervals 𝑡 − 𝑡𝑛, the solution of the Reimann 

problem remains constant along the characteristic plane manifold  
𝑥′

𝑡−𝑡𝑛
= 𝑐𝑜𝑛𝑠𝑡 . A 

potential solution of a Reimann problem on a cell interface is shown below. In Figure 3.1 
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two nonlinear waves are represented by 𝑆𝑅and 𝑆𝐿 across which all the primitive variables 

experience an abrupt change. 𝑆∗  corresponds to the three linear waves, one of which 

corresponds to the contact wave across which the density is changed, and two others are 

shear waves with different tangential velocities across them. The star-regions containing 

two states 𝑼𝑅
′𝑛and 𝑼𝐿

′𝑛 are located between nonlinear and linear waves. The pressure and 

the normal velocity in this region are constant, i.e. 𝑝𝐿
∗ = 𝑝𝑅

∗  and 𝒖𝐿
′∗ = 𝒖′𝑅

∗ . 

 

Figure 3.1 Reiman problem (left) the interface located at sequential cells interface, 

corresponding to x’=0 at t = tk, and (right) Reimann fan including four states and three 

characteristics lines. 

Flux reconstruction methods which are developed based on Reimann solution are called 

Godunov type methods(Toro, 2009). The first version of these methods that was used for 

a nonlinear hyperbolic system was developed by Godunov. The original work of the 

Godunov(Toro, 2009) was based on the exact solution of the Reimann problem which is 

very difficult to implement in most of the cases. To overcome these difficulties the 

approximate Reimann solvers, which are the extended version of the original Godunov 

method were introduced. The most well-known approximate Reimann solvers in the 

literature are HLL-based methods and AUSM family. The idea of HLL method was 

introduced by Harten, Lax and van Leer(Harten et al., 1983), to solve the Godunov flux 

using a Reimann approximate solver. In this approach the solution space of the cell 

interfaces is divided into three constant regions using two characteristics waves. The 

major shortcoming of this approach is its inability to consider shear and contact waves in 

the solution, so it only works for the condition where two sets of hyperbolic equations are 

used, such as shallow waters. To overcome this drawback an extended version of the 

HLL, so called HLLC(Toro, 1992)  technique was developed which was able to consider 
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both shear and contact waves with considering two star regions. HLL mothed are further 

modified with other researchers to reduce the dissipation (Minoshima and Miyoshi, 2021) 

and incorporate turbulence in the solution(Fleischmann et al., 2020). 

AUSM (Advection Upstream Splitting Method) approach was developed by(Liou and 

Steffen, 1993) , which combine features from flux vector splitting approaches and 

Godunov methods. This approach is solved for time dependent Euler equations where the 

flux is split into the convection and pressure terms. This method is upwind depending on 

the sign of Mach number in the cell interface, where the cell interface Mach number is 

estimated from the neighboring cells characteristics speed with considering convection 

and pressure splitting. Different extensions of AUSM scheme are developed such as 

AUSM+ (Liou, 1996) which has some positive features such as damping spurious 

pressure oscillations around slow moving shock and positivity preserving of scalar 

quantities such as the density. 

Most of the Reimann approximate solvers are useful for single phase compressible flows 

and only High Mach number flow conditions. In the case of cavitating flow due to a 

significant compressibility variation across the flow domain which almost no 

compressibility in the liquid regions and very large compressibility (up to O(1) in high 

pressure injection regions) in the mixture regions strong variations in Mach number exist. 

In these cases, most of the classical approximate Reimann solvers fail to replicate the 

physical conditions due to an inconsistent asymptotic behavior of the dissipative part of 

the flux computations(Schmidt, 2015). For this reason, the low-Mach consistent approach 

suggested by Schmidt was used here which employes a uniformly consistent numerical 

flux function in low Mach number leading to a stable time accurate simulation. The details 

of the scheme can be found in (Schmidt, 2015; Sezal, 2009), where the approach was used 

for the Euler system of equations and neglect diffusion terms. Here, the major features of 

this approach will be summarized for a flux reconstruction in one direction utilizing a 4-

point stencil shown in the below Figure. The unit normal vector of the cell face is shown 

as 𝑛𝑖 and the corresponding cell face is shown as 𝑓𝑖. The numerical Flux 𝐹̆  at the cell face 

is calculated by reconstruction of fluxes 𝐹̆𝐶 , 𝐹̆𝑃, 𝑎𝑛𝑑 𝐹̆𝐷 . For the face + the fluxes 

𝐹̆+
𝐶  𝑎𝑛𝑑 𝐹̆+

𝑃can be shown as: 

𝐹̆+
𝐶 = 𝑢∗𝑈+ = 𝑢∗ [

𝜌+

(𝜌𝑢)+

(𝜌𝑒+
1

2
𝜌𝑢2+𝑝∗)

+

]    𝐹̆+
𝑃 = 𝑝∗ [

0
𝑛
0
]        (3.23) 
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Where 𝑢∗+ is the numerical transport velocity and 𝑝∗+  is the interface pressure. The 

upwind biased scheme is used to reconstruct 𝑢∗+  and 𝑝∗+  along with variables 𝜙 =

{𝜌+, 𝑢+, 𝑣+, 𝑤+, (𝜌𝑒)+} as described in the following. 

As illustrated in the stencil schematic, adjacent cells are marked by superscript “--, -, +, 

++” for field 𝜙 . The Favre filtered velocity field (details in LES section) 𝒖̃ =
𝜌𝒖̅̅ ̅̅

𝜌̅
 is 

decomposed into the cell face normal 𝒖̃⊥ = 𝒖̃ ∙ 𝒏  and tangential 𝒖̃∥ = 𝒖̃ − 𝒖̃ ∙ 𝒏 

components. For reconstruction of the velocity at the cell interface the general flux limiter 

form of the reconstruction scheme is give as 𝜙 = {𝒖̃⊥, 𝒖̃∥}: 

𝜙∗− = 𝜙− +
1

2
𝜓(𝑟𝑓

−)(𝜙+ − 𝜙−)       (3.24) 

𝜙∗+ = 𝜙+ −
1

2
𝜓(𝑟𝑓

+)(𝜙+ − 𝜙−)       (3.25) 

Where 𝜓 is the flux limiter function and the 𝑟𝑓 is the gradient ratio of 𝜙 at face f. 𝜙∗− and 

𝜙∗+  show the left and right interpolated values on the cell interface. The 𝑟𝑓  can be 

expressed as follows: 

𝑟𝑓
− =

Δ𝑥∗

Δ𝑥−
𝜙−−𝜙−−

𝜙+−𝜙−
, 𝑟𝑓

+ =
Δ𝑥∗

Δ𝑥+
𝜙++−𝜙+

𝜙+−𝜙−
        (3.26) 

In our case the velocity at the interface is reconstructed based on the recent 

Reconstruction Operators on Unified Normalized-variable Diagram (ROUND)(Deng, 

2023a, 2023b) scheme which provides a high-resolution structure-preserving convection 

solution. More specifically, the flux limiter form of the ROUND A scheme was utilized 

in this work. Also, the second order form of rf  was used which is given follows(Jasak, 

1996): 

𝑟𝑓
− =

2(∇𝜙−)Δ𝑥∗

𝜙+−𝜙−
− 1         (3.27) 

Where the gradient is calculated explicitly based on the neighbors’ cell old values 

(𝜙−−𝑎𝑛𝑑 𝜙++). The 𝜓(𝑟𝑓) for ROUND A scheme is defined as follows: 

𝜓𝑟𝑓 =

{
  
 

  
 𝑚𝑖𝑛 (

𝐴(2 − 5𝑟𝑓) + 6𝑟𝑓𝐵
2

3𝐵2
, 2𝑟𝑓)                                               0 < 𝑟𝑓 ≤ 1

𝑚𝑖𝑛 (
6𝛽2(1 − 𝜆)(−1 + 𝑟𝑓)

4
𝐶 + 256𝐴(2 + 𝑟𝑓)

3𝐵𝐷
, 2 − 2𝜆)       1 < 𝑟𝑓    

0                                                                                                           𝑟𝑓 ≤ 0
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𝜙𝑟 =

{
 
 

 
 𝑚𝑖𝑛 (

𝐴(2 − 5𝑟) + 6𝑟𝐵2

3𝐵2
, 2𝑟)                                               0 < 𝑟 ≤ 1

𝑚𝑖𝑛 (
6𝛽2(1 − 𝜆)(−1 + 𝑟)

4𝐶 + 256𝐴(2 + 𝑟)

3𝐵𝐷
, 2 − 2𝜆)       1 < 𝑟    

0                                                                                                           𝑟 ≤ 0

 

 

𝐴 = (1 + 𝑟𝑓)8, 𝐵 = (𝛽1(0.5 − 0.5𝑟𝑓)
4 + (1 + 𝑟𝑓)4) 

𝐶 = (𝛽2(1 − 𝑟𝑓)
4 + 32(1 + 𝑟𝑓)4) ,  

𝐷 = (𝛽2(1 − 𝑟𝑓)
4 + 16(1 + 𝑟𝑓)4)       (3.28) 

With parameters 𝛽1 = 500, 𝛽2 = 1000, 𝑎𝑛𝑑 𝜆 = 0.25. 

Where Δ𝑥∗ = 𝑥+ − 𝑥−, Δ𝑥− = 𝑥− − 𝑥−−,  and Δ𝑥+ = 𝑥++ − 𝑥+ indicate the distances 

between the cell centers. The advection velocity 𝑢∗ is calculated as follows: 

𝑢̃∗ =
𝐼+𝑢⊥

∗++𝐼−𝑢⊥
∗−

𝐼+̅+𝐼−̅
−
𝑝̅+−𝑝̅−

𝐼+̅+𝐼−̅
        (3.29) 

In the above equation 𝐼∓ denote the left and right acoustic impedance: 

𝐼−̅ =
1

4
(3𝜌̅− + 𝜌̅+)𝑐𝑚𝑎𝑥, 𝐼

+̅ =
1

4
(𝜌̅− + 3𝜌̅+)𝑐𝑚𝑎𝑥      (3.40) 

The 𝑐𝑚𝑎𝑥 is the maximum speed of sound in the adjacent cells. In the current scheme, the 

reconstructed velocity is selected based on the sign of the advection velocity 𝑠𝑔𝑛(𝑢∗) and 

for 𝜙 = {𝒖̃⊥, 𝒖̃∥}: 

𝜙∗ =
1

2
[(1 + 𝑠𝑔𝑛(𝑢̃∗))𝜙∗− + (1 − 𝑠𝑔𝑛(𝑢̃∗))𝜙∗+]     (3.41) 

To ensure the low Mach consistency the following centered approximation of the pressure 

is used: 

𝑝∗ =
1

2
(𝑝̅+ + 𝑝̅−)         (3.42) 

The diffusivity flux 𝐹̆𝐷 term was discretized using a second order linear central scheme. 
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Figure 3.2 Schematic of the 1D stencil. 

Sensor Functional  

Two sensor functions were adopted to detect discontinuity within the domain. The 

vorticity dilation sensor proposed by Ducros et al. which is used to detect the shock and 

expansion waves (Nicoud and Ducros, 1999): 

𝜃𝑑 =
(∇∙𝑢)2

(∇∙𝑢)2+(∇×𝑢)2+𝜖
         (3.43) 

𝜖 is a very small value to avoid division by zero. 

The other senor is used to detect the pseudo phase boundary through the variations of 

vapor volume fraction: 

𝜃𝛼 = max(‖𝛼𝑐 − 𝛼𝑓‖)        (3.44) 

Where subscript c denotes the cell center, and f denotes the cell faces. 

Time Integration 

The advance of the solution from time 𝑡𝑛 to 𝑡𝑛+1 was achieved by using second-order 

four-stage low storage Runge-Kutta time integration technique(Cooper and Verner, 

1972).  

Considering a simplified version of the system of equations: 

𝜕𝑡𝑈̅ = ℜ(𝑈̅)          (3.45) 

With 𝐿(𝑈̅) being the right-hand side of the equations a multi-time step integration is done 

as follows: 

𝑈𝑖
𝑛+1 = 𝑈̅𝑖

𝑛 + 𝐶𝑘Δ𝑡ℜ𝑖(𝑈̅𝑖
𝑛+1,𝑘−1), 𝑘 = 1,… ,𝑁𝑘 

𝑈̅𝑖
𝑛+1,0 = 𝑈̅𝑖

𝑛 𝑎𝑛𝑑  𝑈̅𝑖
𝑛+1 = 𝑈̅𝑖

𝑛+1,𝑁𝑘       (3.46) 
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Where 𝑁𝑘 = 4 and coefficients are 𝐶1 = 0.11, 𝐶2 = 0.2766, 𝐶3 = 0.5, 𝑎𝑛𝑑 𝐶4 = 1. 

Furthermore, adaptive time marching was utilized based on Courant-Friedrichs-Lewey 

(CFL) criterion: 

Δ𝑡 = min(𝐶𝐹𝐿 (
𝛥𝑥𝑖

|𝑢𝑖|+𝑐𝑖
+

𝛥𝑥𝑖
2

2(𝑣𝑖+𝑣𝑡,𝑖)
))       (3.47) 

Where 𝛥𝑥𝑖 shows the characteristic cell length divided by the dimension (𝛥𝑥𝑖 = 𝑙𝑖/𝑁𝑑), 

𝑢𝑖 is the characteristic velocity, 𝑐𝑖 is the speed of sound, 𝜈𝑖 is the kinematic viscosity, and 

𝜈𝑡,𝑖 is the unresolved viscosity, CFL was selected to be =1. 

3.2.5 Large Eddy Simulation Modeling 

Turbulent flows contain motions in a wide range of scales, where large-scale 

motions hold the majority of the energy, are usually anisotropic, and are primarily 

responsible for transport. Conversely, small-scale motions are mainly dissipative. In most 

of the cases (except at low Reynolds numbers), It is impossible to resolve all the scales 

of the flow. In these cases, LES method is very beneficial in replicating the complex 

physical conditions with reasonable resources. LES methods attempt to resolve large 

scale motions and model the effect of small unresolved scale motions (so called subgrid 

scale (SGS)) using appropriate closure model and based on the information provided from 

the resolved scales(BARDINA et al., 1980). 

LES models are mainly classified into two main categories, functional models, and 

structural models(“Structural Modeling,” 2006). Functional models have two main 

assumptions regarding the small-scale motions. One assumption is that these small-scale 

motions are isotropic throughout the flow, and the other assumptions is equilibrium 

between the resolved and subgrid scales. Previous studies(Mestayer, 1982) have shown 

that the first assumption is only valid if the cut-off width of the filter is in the orders of 

Kolmogorov scales, 𝐾𝐿𝜖 >  50 , where K shows the wave number and 𝐿𝜖 shows the 

dissipative integral length scale. Also, the second assumption is invalidated momentarily, 

when the flow is influenced by non-steady external forces in the cases of having impulsive 

accelerations, such as those appears in shear flows(O’NEIL and MENEVEAU, 1997). 



 

38 
 

Among functional LES models, eddy viscosity models are the most famous in which it is 

assumed that the energy transfer mechanism from the resolved to the subgrid scales is 

similar to how molecular diffusion works. eddy viscosity models, the energy cascade is 

represented by a specific mathematical term. This term essentially mimics the dissipative 

nature of molecular viscosity but on a much larger, turbulent scale. where the molecular 

viscosity is substituted by a subgrid viscosity shown by 𝜈𝑠𝑔𝑠 . The Boussinesq 

mathematical form of the subgrid model is represented as: 

−∇ ∙ 𝜏∗ = ∇ ∙ (𝜈𝑠𝑔𝑠(∇𝑢 + ∇
T𝑢))       (3.48) 

Where (*) denotes deviatoric part of the tensor: 

𝜏𝑖𝑗
∗ = 𝜏𝑖𝑗 −

1

3
𝜏𝑘𝑘𝛿𝑖𝑗         (3.49) 

Subgrid-viscosity based LES models produce alignment between the eigenvectors of the 

resolved strain rate tensor and subgrid-scale tensor, while previous studies have shown 

that Tao et al.(TAO et al., 2002) have shown that this alignment is unphysical. 

Structural LES models overcome some of the shortcomings of the Functional LES 

models, including the assumptions of isotropic small scale motions and alignment 

between SGS-stress tensor with strain-rate tensor. Structural models have different 

subcategories such as scale similarity models (SSM), deconvolution approximation 

models, mixed models among others.  

Scale similarity approaches assume statistical structures of the subgrid scale motions are 

similar to their equivalents in the smallest scale motions(BARDINA et al., 1980). First 

proposed SSM model corresponds to the study by Bardina (BSS), where the model 

employed filtering to approximate the SGS velocity ( 𝑢𝑖
′ = 𝑢𝑖 − 𝑢̅𝑖 ) from the 

approximated filtered fluctuating velocity (approximate 𝑢𝑖 − 𝑢̅𝑖̅̅ ̅̅ ̅̅ ̅̅ ̅ as 𝑢̅𝑖 − 𝑢̅̅𝑖). This model 

considers approximation of decomposed SGS stress, including approximate sum of 

Reynolds and cross stresses as 𝑢̅𝑖𝑢̅𝑗 − 𝑢̅̅𝑖 𝑢̅̅𝑗  and Leonard stress which leads to a final form 

of the stress tensor as follows: 

𝜏𝑖𝑗
𝐵𝑆𝑆 = 𝐿𝑖𝑗 −

1

3
𝐿𝑘𝑘𝛿𝑖𝑗 = 𝑢̅𝑖𝑢̅𝑗̅̅ ̅̅ ̅  − 𝑢̅̅𝑖 𝑢̅̅𝑗       (3.50) 

In a priori study of decaying homogenous isotropic turbulence and sheared homogenous 

turbulence BSS show a significant improvement in predication of the SGS fields. 

Moreover, another noted benefit of the similarity model was its ability to predict SGS 
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stress with eigenvectors unaligned with those of the mean strain rate, thus allowing for 

the possibility of reverse energy transfer. By approximating the filter using a Taylor series 

in SSM such as BSS, tensor-diffusivity (gradient based) LES models can be derived. One 

of the famous tensor diffusivity models was derived by Clark and Ferziger(Clark et al., 

1979) which was derived as the term of Taylor expansion of modified Leonard term 

𝑢̅𝑖𝑢̅𝑗̅̅ ̅̅ ̅  − 𝑢̅̅𝑖 𝑢̅̅𝑗 . 

Major drawback of SSM is its deficiency in dissipation. This deficiency is also applied 

tensor-diffusivity model as they also lack the ability to properly account for aspects of 

energy transfer. Anderson and Domaradzki(Anderson and Domaradzki, 2012) showed 

that this deficiency is due to the model failure in predictions of unresolved small scales 

turbulence effects on the reception and dissipation of the kinetic energy. 

Mixed models(BARDINA et al., 1980; Vreman et al., 1995)  were developed to overcome 

deficiencies of SSM models with combining SSM models with an eddy viscosity models. 

Therefore, Mixed models benefit from dissipations of eddy viscosity models while still 

maintaining the correlation with real stresses. The general formulations of stress tensor in 

mixed models are as follows: 

𝜏𝑖𝑗
∗ = 𝜏𝑖𝑗 −

1

3
𝜏𝑘𝑘𝛿𝑖𝑗 = −2𝜈𝑆𝐺𝑆𝑆𝑖̅𝑗 + 𝐿𝑖𝑗 −

1

3
𝐿𝑘𝑘𝛿𝑖𝑗       (3.51) 

Where 𝜈𝑆𝐺𝑆  is calculated from the EV models and 𝐿𝑖𝑗 tensor is calculated from the 

structural models(“Structural Modeling,” 2006). Several innovative approaches were 

developed to combine advantages of functional and structural approaches. In a study by 

Abe(Abe, 2013), Bardina scale similarity model was mixed with an eddy viscosity model 

to provide an anisotropy resolving SGS scheme, where the eddy viscosity term affects 

SGS energy transfer and the Bardina term affects the SGS forces. The stress tensor in the 

Abe study(Abe, 2013) was developed by combining the isotropic part of eddy viscosity 

SGS model with anisotropic effect of the scale similarity model as follows (notice here 

𝜏𝑖𝑗
∗  shows the deviatoric part): 

𝜏𝑖𝑗
∗ = −2𝑣𝑆𝐺𝑆𝑆𝑖𝑗 + 2𝑘𝑆𝐺𝑆𝑏 𝑖𝑗 

𝑆𝐺𝑆       (3.52) 

With anisotropy tensor 𝑏 𝑖𝑗 
𝑆𝐺𝑆 =

𝜏′𝑖𝑗−(−2𝑣
′𝑆𝑖𝑗)

𝜏′𝑘𝑘−(−2𝑣
′𝑆𝑘𝑘)

−
1

3
𝛿𝑖𝑗, and 𝜏𝑖𝑗

′  showing the stress tensor in 

the scale similarity model. The term −2𝑣′𝑆𝑖𝑗  can be considered as the isotropic 

approximation of the original model. Considering this issue, further simplification of the 
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model leads to the anisotropy tensor 𝑏 𝑖𝑗 
𝑆𝐺𝑆 =

𝜏′∗𝑖𝑗−(−2𝑣
′𝑆𝑖𝑗)

𝜏′𝑘𝑘
=

𝑅𝑖𝑗

𝜏′𝑘𝑘
, where 𝜏∗′𝑖𝑗 shows the 

deviatoric part of the Bardina model tensor and 𝑅𝑖𝑗  is the SGS-stress anisotropy term 

calculated by subtracting the eddy viscosity isotropic approximation from the Bardina 

model (Abe, 2013). Following this model, Kobayashi et al (Kobayashi, 2018) proposed a 

new scale similarity approach with Clark term. The model consisted of Clark term with 

only forward energy transfer and Clark term combined with Subgrid kinetic energy, 

where the second term only affects the SGS forces. The SGS tensor in the Kobayashi 

(Kobayashi, 2018) model was given as: 

𝜏𝑖𝑗
∗ =

−𝐿𝑎𝑏𝑆̅𝑎𝑏+|−𝐿𝑎𝑏𝑆̅𝑎𝑏|

−𝐿𝑎𝑏𝑆̅𝑎𝑏
 𝐿𝑖𝑗
∗ +

2𝑘𝑆𝐺𝑆

𝐿𝑘𝑘
(𝐿𝑖𝑗
∗ +

−𝐿𝑎𝑏
∗ 𝑆̅𝑎𝑏

𝑆̅𝑎𝑏𝑆̅𝑎𝑏
𝑆𝑖̅𝑗)    (3.53) 

𝐿𝑖𝑗 =
Δ̅𝑘
2

12

𝜕𝑢𝑖

𝜕𝑥𝑘
 
𝜕𝑢𝑗

𝜕𝑥𝑘
  

Where 𝐿𝑖𝑗 shows the Clark stress term(Clark et al., 1979). And the second term modifies 

the Clark stress term based on the concept in the Abe study(Inagaki, 2011), and only 

contributes to the SGS forces. 

While these models show good predictions of turbulent channel flows even for coarse 

grids, they need solving a separate transport equation to calculate SGS kinetic energy 

based on Inagaki (2011)(Inagaki, 2011) model, which requires using empirical 

parameters. Following these two studies, Klein et al (Klein et al., 2020) proposed a new 

parameter mixed model. Similar to the Abe and Kobayashi model, their model includes 

an anisotropy part, which in the forward scatter equals to the baseline structural model, 

and in the backscatter, is projected into a tensor to only affect SGS forces. The stress 

tensor in this model is given as (here 𝜏𝑖𝑗
𝐾𝐾𝐾2 shows the whole tensor): 

𝜏𝑖𝑗
𝐾𝐾𝐾2 = 𝜏𝑖𝑗

𝑆𝑆𝑀 − 2𝑣′𝑆̅𝑖𝑗                                                                                              (3.54) 

Where 𝜏𝑖𝑗
𝑆𝑆𝑀 could be any arbitrary scale similarity stress tensor  and the viscosity 𝑣′ is 

given as: 

𝑣′ =
1

2
max {

𝜏𝑖𝑗
𝑆𝑆𝑀𝑆̅𝑖𝑗

𝑆̅𝑖𝑗𝑆̅𝑖𝑗
}                                                                                      (3.55) 

In the current study the mixed model proposed by Klein is implemented along with 

Ketterl (Clark) gradient-based model for a more accurate prediction of SGS effects in low 

Reynolds multiphase shear flow. 
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The Favre filtered conservative equations for the density, momentum, and total energy in 

the case of compressible flow is given as: 

𝜕𝜌̅

𝜕𝑡
+
𝜕𝜌̅𝑢

𝜕𝑥𝑗
= 0          (3.56) 

𝜕𝜌̅𝑢̃𝑖
𝜕𝑡

+
𝜕𝜌̅𝑢̃𝑖𝑢̃𝑗

𝜕𝑥𝑗
= 

−
𝜕𝑝

𝜕𝑥𝑖
+

𝜕

𝜕𝑥𝑗
𝜇̅ (

𝜕𝑢𝑖

𝜕𝑥𝑗
+
𝜕𝑢𝑗

𝜕𝑥𝑖
−
2

3

𝜕𝑢𝑘

𝜕𝑥𝑘
𝛿𝑖𝑗) + 𝜎𝑘̅𝑛̅𝑖𝛿𝑠̅ + 𝜏𝑛𝑛,𝑖 −

𝜕

𝜕𝑥𝑗
𝜏𝜌𝑢𝑢,𝑖𝑗   (3.57) 

𝜕𝜌̅𝐸̃

𝜕𝑡
+
𝜕𝜌̅𝐸̃𝑢𝑗

𝜕𝑥𝑗
= −

𝜕𝑝𝑢𝑗

𝜕𝑥𝑖
−

𝜕

𝜕𝑥𝑗
(𝜆̅ + 𝜆̅𝑡) (

𝜕𝑒̂  

𝜕𝑥𝑗
)      (3.58) 

𝐸̃ =
1

2
𝑢̃𝑗𝑢̃𝑗 + 𝑒̂, 𝜆̅ =

𝜌̅𝜈

𝑃𝑟𝑡
, 𝜆̅𝑡 =

𝜌̅𝜈𝑡

𝑃𝑟𝑡
         (3.59) 

𝜆𝑡 is the turbulent thermal diffusion coefficient, 𝜆 = 𝜈/𝑃𝑟. The effect of subgrid scale 

surface tension is typically ignored in multiphase studies. In our cases here we ignore 

SGS surface tensions for two reasons, 1st our weber number is of order of 104, which is 

large enough to ignore these effects. Secondly, the critical scales for bubble growth, and 

collapse are larger than the SGS filter scale in LES simulations of cavitating turbulence, 

placing the dominant surface tension effects within the resolved scales. 

Implementation 

The flowchart of the density-based solver is shown in Figure1. This solver was 

implemented in OpenFOAM 2306. Turbulent mixed SGS model Helmholtz-Zentrum 

Dresden-Rossendorf e.V. (HZDR) software(“https://www.hzdr.de/db/Cms?pNid=0,” 

2024) was used with modifications to be adopted in OpenFOAM 2306. 

Figure 1 shows the flowchart of the solver, while Figure 2 shows the file/folder structure.     
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Figure 3.3 Flowchart of the customized Density-Based Cavitation solver. 

3.3 Validation 

Three different validations, one dimensional two-phase shock tube, turbulent 

channel flow, and Cavitating turbulent mixing layer, were performed to evaluate the 

performance of the cavitation solver in compressibility, cavitation, and turbulence 

prediction.  

3.3.1 Case 1: Two-Phase Shock Tube 

The first validation case corresponding to one dimensional two-phase shock tube 

was performed to evaluate the performance of the solver in capturing the 

shock/expansions waves and phase transition. The below schematic represents the initial 

and boundary conditions of this problem where two symmetric expansion waves move in 

opposite directions toward the boundaries(Egerer et al., 2016).  
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Figure 3.4 Schematic of the 1D shock tube. 

 

Figure 3.5 Distribution of pressure field, void fraction, velocity field, and density after 

dt, comparison with Egerer et al study. 

3.3.2 Case 2: Turbulent Channel Flow 

Second validation was done on the turbulent channel flow, where the results were 

compared with the DNS dataset provided by Moser(Moser and Zandonade, 2004). In this 

case, a Newtonian fluid between two infinite parallel plates is driven by a constant mean 

pressure gradient. The turbulent channel flow problem has been investigated for different 

friction Reynolds number, in current study we validated our results against DNS dataset 

for friction Reynolds number of 395. The friction Reynolds number is defined as  𝑅𝑒𝜏 =

𝑢𝜏𝐻/𝜈, where 𝐻 is the half channel height and 𝑢𝜏 = 𝜏𝑤
1/2

is the friction velocity, and 𝜏𝑤 
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shows the wall shear stress. The computational domain for the channel flow has 

dimensions of (𝐿 × 2𝐻 ×𝑊 = 4𝜋 × 2 × 4/3𝜋 ). After achieving to the statistically 

stationary condition, the simulation was first conducted for 30 flow through time (𝐹𝐹𝑇 =

𝑈𝑏/𝐿, 𝑈𝑏 is the mean bulk streamwise velocity) using the WALE LES model(Nicoud and 

Ducros, 1999), and the rest 70 FFT using both the mixed LES model and WALE LES 

model. The statistical results in the following Figure were calculated based on the 

ensemble averaging of the last 70 FFT time steps and spatial averaging over x and z 

directions. The results of the mixed Kobayashi-Clark model are compared with DNS data 

and results obtained from the WALE model.  

The posteriori-tests results are represented in Figure 5, including the statistical values of 

the normal Reynolds stresses and mean velocity distribution. The results for of the mixed 

SGS model show a good agreement with the DNS results, and also improvement 

compared to the WALE simulation results. Particularly, in the case of streamwise 

Reynolds stress component a remarkable improvement in the mixed SGS results is 

observed compared to the overestimated WALE results. This improvement should be the 

result of the accurate estimation of the backscattering (backward cascade of energy from 

SGS to the GS scale) in the mixed Kobayashi-Clark model, which cannot be achieved by 

typical functional models. 

 

6

 

Figure 3.6 Validation of the mixed SGS model against DNS channel flow benchmark, 

for normalized values of  (a) mean streamwise velocity (b) streamwise Reynolds 
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stresses (b) cross streamwise Reynolds stress, (c)  spanwise Reynolds stress and, (d) 

Reynolds 

3.3.3 Case 3: Evolving Turbulent Cavitating Mixing Layer 

To further validate the presented density-based cavitation solver a three-

dimensional numerical simulation of evolving cavitating mixing layer was conducted. A 

LES of turbulent cavitating mixing layer was done for the three different cavitation 

numbers (𝜎𝑐 =
𝑝∞−𝑝𝑠𝑎𝑡
1

2
𝜌∞(Δ𝑈)2

), the details of which are provided in the table I.  The simulation 

results are validated against the experimental data of Aeschlimann et al(Aeschlimann et 

al., 2011a; Egerer et al., 2016), as well as the numerical results of Egerer eta al 

study(Aeschlimann et al., 2011a) . The schematic of the computational domain and 

corresponding flow condition are represented in Figure 5. In the experimental setup of 

Aeschlimann study(Aeschlimann et al., 2011a), a splitter plate separated the high 𝑈1 and 

𝑈2 low speed flows in the experimental study. According to the results of this study, the 

Reynolds number 𝑅𝑒𝛿𝜔 =
𝜌∞Δ𝑈𝛿𝜔

𝜇∞
 at the beginning of the self-similar region was 1.5×105 

with subscript ∞  showing the reference values and 𝛿𝜔 = Δ𝑈/𝜕〈𝑢〉|𝑚𝑎𝑥 ( 〈 〉 show 

spanwise average). In the simulation, 𝛿𝜔,0  was selected to have the same Reynolds 

number at the beginning of the self-similar region. The mean inlet velocity was 

determined using the function 𝑢̅𝑖𝑛 = 𝑈𝐶 + Δ𝑈tanh (−2𝑦/𝛿𝜔,0), where Δ𝑈 = 𝑈1 − 𝑈2,

𝑈𝐶 = (𝑈1 + 𝑈2)/2 , and 𝛿𝜔,0  shows the initial vorticity thickness. In the inlet, 3D 

velocity fluctuations restricted to the shear layer using a damping function 

𝑒𝑥𝑝(−𝑦2/(2𝛿𝜔,0). Th fluid properties and flow conditions are shown in the table 1 (only 

the 1st case was considered p=50.046e5 pa). in the spanwise and cross-streamwise 

directions a periodic boundary condition was considered. Moreover, a nonreflective 

(wave-transmissive) boundary condition (Poinsot and Lelef, 1992) was considered in the 

outlet of the domain. To reduce the computational costs, a barotropic condition (fixed 

temperature) condition was considered for this problem.  

The whole computational domain is a rectangular box with dimensions of 𝐿𝑥 × 𝐿𝑦 ×

𝐿𝑧 = 450 × 240 × 75 and 𝑁𝑥 ×𝑁𝑦 × 𝑁𝑧 = 576 × 278 × 96 number of grid cells. The 
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constant spacing of the grids in the spanwise and streamwise directions were considered, 

while in the cross-stream the grid size is doubled form centers to the sidewalls. 

 

Figure 3.7 Schematic of the computational domain for cavitating free mixing layer. 

 

Table 3.1 Cavitation number and flow properties of the cavitating mixing layer in the 

Aeschlimann experiments 

𝝈𝒄 𝚫𝑼(𝒎

/𝒔) 

𝑼𝒄(𝒎

/𝒔) 

𝝆∞(𝒌𝒈

/𝒎𝟑) 

𝒑∞(𝑴𝑷𝒂 ) 𝜹𝜽,𝟎(

× 𝟏𝟎−𝟒𝒎) 

𝜹𝝎,𝟎(

× 𝟏𝟎−𝟒𝒎) 

1.0 100 75 1000.44 50.46 0.5 2.0 

0.167 100 75 998.54 8.361 0.5 2.0 

0.1 100 75 998.39 5.015 0.5 2.0 
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Figure 3.8 Cavitating mixing layer, comparison between LES (lines) and experimental 

study(Aeschlimann et al., 2011b) (symbols) of (a) normalized velocity (b) and 

normalized void fraction.
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4 SPATIO-TEMPORAL DYNAMICS OF CAVITATING TURBULENT 

SHEAR FLOW OVER A MICROSCALE BFS: A NUMERICAL STUDY 

4.1 Introduction 

This study thoroughly examined how cavitation affects the average properties and 

fluctuating nature of turbulent separated flows. The investigation was conducted using a 

microscale backward-facing step configuration at a Reynolds number (𝑅𝑒𝐷) of 7440. Our 

computational methodology incorporated both compressibility and finite mass transfer 

(thermodynamic non-equilibrium). This comprehensive approach aimed to precisely 

capture the impacts of shock waves and the influence of baroclinic phenomena on vortex 

dynamics within the turbulent separated flow. Compressibility effects were managed by 

employing suitable equations of state for each phase and for the mixture. We accounted 

for phase-change through a transport equation for the vapor volume fraction, which 

allowed for contributions from finite mass transfer. Additionally, a wall-adaptive Large 

Eddy Simulation (LES) technique was used to model the turbulent structures and their 

effects. The results indicate that vapor formation reduces the average growth rate of the 

shear layer and delays its reattachment, moving it further from the step. Analysis of 

Reynolds normal and shear stresses, along with the Root Mean Square (RMS) of pressure 

fluctuations, further reveals that the creation and collapse of vapor packets significantly 

alter turbulence decay and production in the latter half of the shear layer and at the 

reattachment point. We also observed an increase in both mean pressure and pressure 

fluctuations near the reattachment region when cavitation was present, a phenomenon 

attributed to condensation and collapse events. Spectral analysis identified the presence 

of two prominent low-frequency modes, which are linked to the shifting of the 

reattachment point. Each of these detected low frequencies was linked to a distinct vapor 

transport mechanism within the turbulent separated bubble (TSB). Moreover, the 

presence of cavitation resulted in significantly higher spectral energy for high-frequency 
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fluctuations within the reattachment zone, compared to non-cavitating conditions. This 

phenomenon is likely due to the frequent collapse of bubbles in that area. Finally, we 

utilized Spectral Proper Orthogonal Decomposition (SPOD) for modal analysis. This 

technique provides valuable insights into the coherent structures and their associated 

frequencies in both cavitating and non-cavitating scenarios, thereby deepening our 

understanding of cavitation's impact on these structures and their dynamics. 

4.1.1 Flow Configuration and Grid Study 

The computational domain and grid distribution are shown in Figure 4.1. The 

domain compromises two main parts including the interior port (cylindrical section), 

which was designed in parallel with experiments, and the BFS configuration. In our 

experiments, the device was designed based on the fabrication limitations in microscales 

and the capability of the device to reproduce the desired phenomena (turbulent and intense 

cavitation) within an affordable flow condition, and the computational domain was 

adopted accordingly (Figure 4.1(a)). The interior port acts as a turbulent generator which 

significantly affects the flow topology and turbulence level within the channel. Therefore, 

consideration of the interior port was required for an accurate replication of our 

experimental results. This helped us to avoid using any artificial turbulent generator 

boundary condition in our numerical simulations. Regarding the boundary conditions, a 

uniform total pressure boundary condition was applied to the inlet, and a simplistic non-

reflective boundary condition (wave transmissive) pressure was considered for 

outlet(“OpenFoam. The Open Source CFD Toolbox openfoam foundation,” 2023; 

Poinsot and Lelef, 1992). In addition, all walls were treated as no slip adiabatic walls. For 

timesteps, an automatic adjustable technique based on Courant and acoustic Courant 

numbers was utilized so that these numbers did not exceed 0.5 and 50, respectively, with 

maximum time steps limitation of 1e-7 seconds. The write time of 0.5 𝜇𝑠 for the solution 

was utilized to capture a wide range of frequencies while avoiding storage problems.  

The initial turbulence level at the inlet port is zero, as no perturbations are introduced to 

the flow. Upstream of the backward-facing step (x̃ =  −5), the turbulence intensity is 

estimated to be around 0.0737 based on the study of Teng and Piomelli (Teng and 

Piomelli, 2022). This study does not account for dissolved gas. In Case I (cavitating flow), 
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the number density and diameter of cavitation nuclei are set to 1.5 ×  1015 m⁻³ and 1.5 

μm, respectively, based on the study of Giussani et al. (Giussani et al., 2020b). In this 

study, a single Reynolds and cavitation number were chosen to isolate the fundamental 

impact of phase transition on TSB dynamics. This approach simplifies the analysis and 

isolates the influence of phase transition without introducing additional complexities 

associated with variations in flow conditions. Consequently, Case II (non-cavitating flow) 

differs from Case I only in the number density of cavitation nuclei, which is set to zero. 

The Reynolds number and cavitation number in both cases are ReD  = 7440 and σc=1.58, 

respectively. This approach allows for variations in cavitation inception and dynamics 

without altering the overall flow conditions (velocity and pressure). However, for real-

world applications, it is crucial to investigate how these findings translate across a broader 

Re range.  

Previous studies such as (Bhatt et al., 2021b; Maurice et al., 2021) explored cavitation in 

BFS configurations across different Reynolds and cavitation regimes. Bhatt et al. (Bhatt 

et al., 2021b) studied three distinct cavitation regimes and reported minimal variations in 

the mean characteristics and dominant frequencies of different Reynolds numbers for 

each regime. It is crucial to recognize that Reynolds significantly influences turbulent 

separation bubble characteristics and dynamics in single-phase flow scenarios. Numerous 

studies focusing on the characteristics and dynamics of TSB in single-phase flows 

underscored the significant influence of Reynolds number on various properties such as 

pressure fluctuations, dominant frequencies, and instabilities within the TSB. For 

instance, in the study by Abe et al. (Abe, 2017), the effect of Reynolds number (defined 

based on the momentum thickness) on RMS values of pressure fluctuations, 

frequency/power spectra of prms, and instantaneous pressure fields in the presence of 

adverse pressure gradient (APG)-induced separation bubble was investigated. Their 

findings revealed that an increase in Reynolds’ number resulted in variations in mean 

flow characteristics, including separation bubble size and separation/reattachment 

locations, as well as pressure fluctuations and dominant frequencies (manifested by a 

significant decrease in prms
′  in the separation region due to the Reynolds number 

dependence of an incoming turbulent boundary layer). Furthermore, they reported a 

significant impact of Reynolds number on the development of large-scale streamwise 

structures downstream of reattachment, significantly impacting wall pressure. Such 
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observations highlight the intricate link between Reynolds number variations and 

evolution of coherent structures within the TSB.   

Since cavitation inception, condensation, and overall dynamics are highly sensitive to 

pressure fluctuations, dominant frequencies of pressure fluctuations and characteristics of 

coherent structures within the TSB, it is reasonable to expect remarkable consequences 

regarding cavitation dynamics within separated flows at varying Reynolds numbers. 

Future detailed investigations are necessary to comprehensively explore this interaction 

within a broader Reynolds range. Such efforts would significantly contribute to the 

understanding of the complex interplay between Reynolds number variations and 

cavitation dynamics in separated flows. 

 More details regarding the fluid properties and flow conditions are provided in Table 4.1. 

  

Table 4.1 Fluid properties and flow conditions of the current study. 

𝑝𝑖𝑛𝑙𝑒𝑡[𝑀𝑃𝑎] 𝜌𝑤 [
𝑘𝑔

𝑚3
] 𝜌𝑣 [

𝑘𝑔

𝑚3
] 𝑝𝑠𝑎𝑡[𝑃𝑎] 𝜇𝑤 [

𝑁𝑠

𝑚2
] 𝜇𝑣 [

𝑁𝑠

𝑚2
] 𝜎 [

𝑁

𝑚
] 𝑝𝑜𝑢𝑡𝑙𝑒𝑡[𝑘𝑃𝑎] 𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡[𝐾] 

5.06 998.2 0.55 2340 0.9e-3 0.74e-6 0.07 100 293.16 

Grid generation was accomplished using block-based local refinement, close to the walls 

and TSB regions. Grid resolution was adjusted in such a way that the value of 

dimensionless wall distance (𝑦+ = 𝑦𝑢𝜏/𝜈, where 𝑢𝜏 is the friction velocity) close to the 

walls did not exceed 0.9 for the single-phase case and 1.2 for the cavitating case, which 

enabled appropriate resolving of the wall shear stress.  

The results for grid convergence study are presented in Figure 4.2 which includes the 

mean streamwise velocity profile in the absence of cavitation along the channel. 

Comparisons between coarse, fine, and finer grids, with 2,520,000; 5,051,000; and 

6,146,000 mesh numbers respectively, show minor differences between fine and finer 

grids implying a grid convergence at fine grid which was accordingly considered for this 

study.  

It can be observed there is a local minimum in the velocity profile around the centerline 

of the channel, which was alleviated by moving downstream. A similar flow profile at the 



 

52 
 

throttle entrance was reported in previous studies(Winklhofer et al., 2001). Figure 4.2b 

presents the mean velocity distribution close to the channel bottom (2 micrometers above 

the wall), streamlines entering the channel cross-section, and distribution of the 

streamwise velocity and pressure fields within several cross-sectional planes located at 

various streamwise distances. It is evident that in the entry region of the channel, there 

exists a separation and reattachment phenomenon similar to that observed in previous 

studies of forward-facing step configurations (Barbosa-Saldaña and Anand, 2007). The 

symmetric velocity distribution on the bottom wall exhibits maximum and minimum 

spreading of reversed flow at the centerline of the channel and close to the wall, 

respectively. 

The streamwise velocity and pressure distribution on cross-sectional planes offer 

insightful information about the development of crossflow instabilities downstream of the 

contraction. Downstream of the contraction (I), similar to a forward-facing step channel, 

near the bottom wall adverse pressure gradient derives flow separation. Moreover, as the 

flow converges towards the upper central region of the channel, flow impingment to the 

top wall leads to an increase in the static pressure in this area. Consequently, fluid 

particles deflect towards the low-pressure regions near the side walls. Simultaneously, 

fluid particles near the side walls deflect towards the lower central region, resulting in the 

creation of two pair of symmetrical streamwise vortices near the channel's bottom center 

(II). 

When moving to the downstream location, the pressure field within the yz cross-section 

becomes increasingly uniform, characterized by lower pressure in the central region and 

higher pressures near the side walls. This leads to a deflection of fluid particles towards 

the side walls, triggering the formation of vortices on both the top and side walls (III). As 

a consequence, two pairs of central streamwise vortices become more compact within the 

central region, facilitating the exchange of momentum between the lower and upper 

regions and leading to a more uniform pressure and momentum distribution. Under this 

condition, the flow within the two lateral vortices has the highest streamwise velocity, as 

they are predominantly fed with high-momentum fluid particles originating from the 

upper central region upstream of the channel. The exchange of mass and momentum 

between the lateral and central regions through the streamwise vortices gradually leads to 

a uniform distribution of mean velocity and pressure across yz cross-section, except near 

the walls where the no-slip boundary condition exists (IV). 



 

53 
 

The reattachment point in the flow can be determined by identifying the streamwise 

location where the velocity near the bottom wall shifts from negative (reverse flow) to 

positive values. This transition aligns with the location where the wall shear stress (τw) 

and ∂U/∂y change from a negative to a positive value, following the no-slip boundary 

condition. Utilizing the profile depicted in Figure 4.2a (which considers the velocity 

profile at the channel mid-depth), the reattachment point in this plane can be 

approximated to be x̃ = 5. 

The temporal averages of velocity components at {x, y, z} directions are expressed as 

{U̅, V̅, W̅}, while the fluctuating part are presented as {u, v, w}. The RMS is presented 

using the subscript rms. p’stands for the fluctuating part of the pressure field. 

The variables are nondimensionalized with respect to the step height h , reference 

streamwise velocity U0, and reference density ρ0. In general, the variables with units of 

[Pa] and [m/s] are nondimensionalized using ρ0U0
2 and U0. The reference velocity and 

density are determined as the maximum streamwise velocity (peak velocity) and average 

density over the y and z directions at x̃ = −5.  

The dimensionless numbers are obtained based on the step height and reference 

parameters (Bhatt and Mahesh, 2021). Reynolds number is calculated based on the 

hydraulic diameter (Dh) of the channel as ReD = U0Dh/ν. The Strouhal number, Str, 
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which is used for quantification of unsteady characteristics, is calculated as fh/U0 . 

Finally, the cavitation number is expressed as σ = (p0 − psat)/(
1

2
ρ0U0

2). 

We used the results from our experiments as well as existing literature(Winklhofer et al., 

2001) for evaluation and validation of our numerical model. The results of the validation 

are presented in supplementary material. 

 

Figure 4.1. The computational domain (a) and grid configuration inside the domain (b). 
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Figure 4.2. (a) Mean streamwise velocity profile at the center of spanwise direction and 

along different distances from the step for dashed. The vertical axis shows the local 

normalized width y coordinate where 𝒚𝒘 is the distance from the bottom wall and, W(x) 

is the local width of the channel. Dotted line with circular marker: coarse mesh, solid 

line with triangular marker: fine mesh, and dashed line with star marker: finer mesh. (b) 

streamlines and contours of the mean streamwise velocity along with the cross-sectional 

mean streamwise velocity and pressure fields at different streamwise locations (I) 𝒙̃ =

−𝟗. 𝟕𝟓, (II) 𝒙̃ = −𝟗. 𝟓, (III)  𝒙̃ = −𝟗. 𝟐𝟓 (IV) 𝒙̃ = −𝟒. 𝟕𝟓. 

4.2 Results and Discussions 

4.2.1 Vortex Structure in BFS 

Figure 4.3(a) represents the instantaneous vortex structures within the channel in 

the presence of cavitation. For more clarity and better representation of the structures, 

some parts of the channel are enlarged. The instantaneous vortical structures for Case II 
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(non-cavitating flow) are not presented for several reasons. First, due to the inherent 

turbulence of the flow, the distribution and intensity of these structures exhibit significant 

variations across different time steps. This variation makes direct visual comparison 

between the challenging cases. Furthermore, given that both cases share identical 

boundary conditions, and differ only in the presence of cavitation in Case I, the 

distinctions in coherent structures are not sufficiently pronounced in the instantaneous 

results. Furthermore, while useful for visualization, instantaneous results have limitations 

in capturing the remarkable differences in both the dynamics and characteristics of 

vortical structures between Case I and Case II. These variations, encompassing the time-

dependent behavior and inherent properties of the structures, are crucial for a complete 

understanding of the flow. To address these limitations and gain a more comprehensive 

perspective statistical, dynamical, and modal analysis techniques are employed in later 

sections. The Q-criterion, introduced by Chong et al. (Chong et al., 1990), is a commonly 

employed technique for detecting three-dimensional flow structures. It is mathematically 

defined as the second invariant of the velocity gradient tensor: 

Q = −
∂uj

∂xi

∂ui
∂xj

=
1

2
(ΩijΩij − SijSij) 

where Ωij  and Sij  correspond to the velocity gradient's antisymmetric and symmetric 

portions, respectively. Thresholding the Q-criterion to positive values helps in identifying 

rotation-dominated regions of the flow, which typically correspond to vortices. 

Conversely, negative values of Q indicate straining regions within the flow. These 

interpretations are supported by critical point analysis of the velocity gradient tensor, as 

detailed by (Chong et al., 1990). As mentioned above, we considered the inlet port as the 

physical domain for consistency of our results with our experimental tests (chapter 2 

(Figures 2.2-2.3)). The presence of the inlet port has a remarkable contribution to the 

vortex generation within the channel, upstream of the step. Cascade of events can be 

observed in the enlarged view of the inlet region (Figure 4.1). The extreme contraction in 

the channel inlet leads to a formation of a shear layer in x − z plane within the interior 

part of the channel. Downstream of contraction, spanwise Kelvin Helmholtz (KH) 

structures are formed. Upon moving downstream, the secondary streamwise instabilities 

distort the shape of the KH structures to wavy shape structures, which transform into Λ −

shaped vortices after moving along a distance from the contraction(Hu et al., 2019). Due 

to the momentum difference between head and tails, Λ − shaped vortices keep stretching 
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as they move through the channel (Bottaro et al., 2011). Consequently, stretching of Λ −

shaped vortices lead to the formation of hairpin-like structures. As the flow evolves, Λ −

shaped  and hairpin-like vortical structures break down to smaller fluctuations. The 

unique channel geometry upstream of the step confines the turbulent structures within the 

boundary layers near the top and bottom walls at x̃ = −5 . This localized clustering 

intensifies the turbulence within these layers, which results in significantly higher 

turbulence intensity compared to the bulk flow. Some studies, such as (Smeltzer et al., 

2023), utilized the Ensemble-averaged enstrophy as an indicator of the turbulence 

intensification. The normalized mean value of enstrophy ( ζ̅/ζ̅max , where ζ =

0.5|∇ × 𝐔|2) distribution on the xz plane close to the bottom wall (at y=2μm) is depicted 

in Figure 4.3(b), which illustrates turbulence intensification and distribution downstream 

of the contraction. Additionally, the contour of U=0 on this plane is overlaid on the 

enstrophy distribution, representing points of detachment and reattachment on this plane. 

It can be observed that away from the side walls, the maximum enstrophy coincides with 

the reattachment region. A similar observation was reported by other studies, such as 

Eppink et al. (Eppink, 2020), where it was shown that the a sharp rise in fluctuation 

intensity occurring after reattachment was attributed to the vortex-shedding mechanism 

(region of large wall normal shear stresses associated with shedding). Similarly, the 

turbulence intensification close to the reattachment in this study should be associated with 

vortex breakdown and shedding of the vortices from the separation bubble. Furthermore, 

when moving along the channel, the enstrophy gradually spreads in the spanwise 

direction, while it is mostly concentrated and intensified close to the side walls, which is 

more significant for -7≤ x̃ ≤-3. A similar observation was provided in (Eppink, 2020), 

where a thin band of intense fluctuations was observed along both sides of the separation 

bubble. It seems that the gain in enstrophy caused by the unsteadiness, which is generated 

with the vortex breakdown downstream of the shear layer, spreads to the sidewall regions. 

As demonstrated in Figure 4.2, downstream of reattachment, the flow is mainly focused 

close to the sidewalls, suggesting that the turbulence structures generated at reattachment 

are mainly transported to the side wall by mean flow. 

Moreover, a thin layer of large enstrophy can be seen close to the side wall. This 

observation is consistent with the results of previous studies (Bechlars and Sandberg, 



 

58 
 

2017; Wang and Lu, 2012) where large values of enstrophy were reported within the 

viscous sublayer. 

Our primary focus in this study is the second region of the channel, which encompasses 

the BFS (image of channel with labeled regions and BFS). This region attracts particular 

interest due to the presence of cavitation within its turbulent shear layer. The combined 

influence of the step size and flow conditions here causes the generation of significantly 

larger turbulent structures compared to other regions. Identifying these structures, 

however, necessitates the utilization of a smaller 𝑄 in the analysis. 

Unfortunately, employing overly small 𝑄 presents a challenge. While they successfully 

can capture the larger structures of interest, they also encompass numerous smaller-scale 

fluctuations. This results in cluttered images where individual structures become 

indistinguishable. Therefore, for visual clarity, we primarily presented structures 

identified with 𝑄 ≥ 2𝑒11 𝑠−1. We subsequently employed alternative methods such as 

modal analysis in later sections to identify and characterize larger coherent structures. 

Downstream of the step, turbulent shear layer forms, which is fed by the upcoming TBL. 

The KH instability leads to the formation of KH spanwise structures (𝑥 − 𝑦 plane). While 

these structures may not be directly identifiable by the given 𝑄, their influence manifests 

as undulations in the interface between high and low fluctuating regions. In addition, 

secondary QSVs, which typically appear between sequential spanwise vortices, are 

visualized and shown in the enlarged section (Figure 4.3(a)). Quasi-Streamwise Vortices 

(QSVs) are frequently observed turbulent structures within separated flows. They 

typically appear as counter-rotating vortex pairs inclined between adjacent primary 

spanwise vortices(Katz and O’Hern, 1986). Their aspect ratio (length-to-diameter) is 

around 5, with strengths ranging from 10% to 40% of the primary structures(Katz and 

O’Hern, 1986). Several studies, including (Jimenez, 1983),  extensively documented their 

formation and characteristics. Notably, despite their lower strength, QSVs are particularly 

susceptible to cavitation inception due to the significant pressure drop (Agarwal et al., 
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2023). Impingement of turbulent structures to the bottom wall marks the shear layer 

reattachment, where elongated hairpin-like turbulent structures can be detected. 

 

Figure 4.3. (a) Schematic of the BFS configuration. The figure represents the time 

instance of vortex structures in the presence of cavitation. Vortex structures were 

calculated using 𝑸− 𝒄𝒓𝒊𝒕𝒆𝒓𝒊𝒂 with 𝑸 ≥ 𝟐𝒆𝟏𝟏 (Magnified regions are outlined in gray 

in the Figure). (b) The mean value of enstrophy distribution on the xz plane close to the 

bottom wall (at y=2μm) superimposed by contour of U=0 (light blue color). 
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4.2.2  Three Dimensional Effects 

Considering the small depth of the channel, a significant portion of the channel is 

affected by three dimensional dynamics. Previous studies(Bouriga et al., 2015; Bradshaw, 

1987; Le Floc’h et al., 2020a) reported that the three-dimensional effects could be caused 

due to the formation of large longitudinal secondary vortices close to the side walls. In 

this section, we provide some details on the three-dimensionality of the backward facing 

step flow in the presence of cavitation, similar to the case provided in the study by Floc'h 

et al.(Le Floc’h et al., 2020a) . Figure 4.4(a) represents the streamlines of the velocity 

field close to the side wall of the channel along with the cross-sectional view of mean 

spanwise velocity and mean pressure fields along the channel. The signature of 

longitudinal corner vortices can be observed in the streamlines passing over the step 

(Bouriga et al., 2015; Le Floc’h et al., 2020a). These vortices are associated with the 

lateral pressure gradient (in y direction) caused by the degree of curvature exhibited by 

streamlines in the potential flow region(Le Floc’h et al., 2020a). Downstream of the step, 

the degree of curvature exhibited by streamlines in the potential flow region induces a 

positive lateral pressure gradient (∂p/∂y) (Bouriga et al., 2015; Le Floc’h et al., 2020a). 

This pressure gradient exerts a strong deflection on the near wall streamlines due to their 

lower momentum. Consequently, fluid particles near the side walls are directed towards 

the bottom wall (negative y), as depicted in Figure 4.4(a). This deflection results in an 

inflection point, after which the streamlines bend back towards positive y, which leads to 

the formation of two longitudinal vortices extending from downstream of the step up to 

the reattachment point. 

Figure 4.4(b) displays spanwise variations in the normalized RMS of pressure 

fluctuations, prms
′ , along the dividing streamline (z∗ represents the spanwise coordinate 

normalized by the half depth of the channel). The normalization of prms
′  with the 

maximum Reynolds stresses within the TSB is based on established findings from 

previous studies. For example, the study of Ji and Wang (Ji and Wang, 2012) 

demonstrated that in the backward-facing step, 𝑝'rms scales with the local maximum 

Reynolds shear stress in the adverse pressure gradient (APG) region, while it scales well 

with the local maximum wall-normal Reynolds stress near reattachment. The results 

exhibit a similar collapse of prms
′  with Reynolds stresses, particularly the Reynolds shear 

stress, indicating that the scaling law holds across the spanwise direction of the channel. 
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The variations in these variables are utilized in Figure 4.6(a) and (b) to illustrate that the 

unsteady nature of the TSBs and scaling of pressure fluctuations remain relatively 

unaffected, despite strong distortions caused by corner effects on the average flow. As 

can be seen, the distribution of prms
′  is almost symmetrical with respect to the channel 

centerline for all distances from the step. A notable variation in prms
′  value can be 

observed close to the side wall for x/LR = 0.33 and x/LR = 0.67 (LR is the length of the 

reattachment, which is shown to  

be around 6h for Case I in the next sections), caused by the growth of the longitudinal 

vortices in these regions.  

 

Figure 4.4. (a) Streamlines of the mean velocity field showing the effect of the corner 

flow along with cross-sectional contours mean spanwise velocity and mean pressure 

fields (b) Normalized root mean pressure fluctuations along the spanwise direction and 

at different longitudinal distances on the dividing streamline.  

Dividing streamlines into different spanwise depths of the channel are shown in Figure 

4.5 to provide more details about the three-dimensional nature in the flow. A strong 

variation in dividing streamline topology is observed at z∗ = 2/3. Close to the side walls, 
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the streamlines in the initial region after separation are more inclined downwards 

compared to the central streamlines (Figure 4.5(b)). This inclination is primarily caused 

by the corner vortices, which also contribute to the observed increase in pressure 

fluctuations near the wall (Figure 4.5(a)). However, downstream of the reattachment 

point, the streamlines near the walls become more horizontal and flattened. This can be 

caused by the existence of slender vortices running parallel to the flow, positioned close 

to the side and bottom boundaries in this region, as observed in Figure 4.5(b). 

Variations in prms
′  and Reynolds normal stresses (vv̅̅ ̅ and uv̅̅ ̅) with respect to the spanwise 

direction at x/LR  = 0.5 and y of the middle plane streamline are presented in Figure 

4.6(a), which show a rise in fluctuation level upon a decrease in the distance from the 

wall. A similar trend in pressure and turbulent fluctuations is apparent across the spanwise 

direction. Scaled values of  𝑝𝑟𝑚𝑠
′  with respect to Reynolds stresses are depicted in Figure 

4.6(b). The small variations in scaled 𝑝𝑟𝑚𝑠
′  (particularly 𝑝𝑟𝑚𝑠

′ /𝜌𝑣𝑣̅̅ ̅ ) suggest that the 

unsteady character of the flow changes slightly in spanwise direction(Le Floc’h et al., 

2020a). 

It should be noted that in this study, spanwise averaging was done for |𝑧∗| ≤
1

3
 , where 

the three-dimensional effects of the flow are minor, and fluctuations have negligible 

spanwise variations.  

 

Figure 4.5. Dividing streamline 𝝍 = 𝟎 at different spanwise depths of the channel. 
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Figure 4.6. (a) Variations in normalized 𝒑𝒓𝒎𝒔
′  and Re stresses, and (b) scaled values of  

𝒑𝒓𝒎𝒔
′ , in spanwise direction on the dividing streamline at 𝒙/𝑳𝑹 =  𝟎. 𝟓. 

Separated flow generally shows fluctuations over many different time scales and 

frequencies (Cherry et al., 1984; Eaton and Johnston, 1981; Kiya and Sasaki, 1983; LE et 

al., 1997; NA and MOIN, 1998; W. Wu et al., 2020). These unsteady modes can dominate 

the dynamics of the separation bubble. Generally, three distinguishable modes -low, 

medium and high frequencies- are associated with separated flows. In the following 

sections, first the effect of phase transition (cavitation and condensation) on the mean 

flow characteristics is presented, which is followed by a dynamic analysis of low and 

medium frequency modes. Finally, a modal analysis of coherent structures is covered. 

Information regarding data processing and data analysis techniques used in the Results 

section is provided in Appendix A. The details on the supplementary results can be found 

in the Supplementary materials section. 

4.2.3 Characteristics of the Mean Flow 

The incoming boundary layer separates due to the abrupt expansion of the test 

section (Figure 4.3). Beyond this separation point, the flow displays a significant average 

recirculation zone where the streamwise velocity is negative. This recirculation region 

extends until the reattachment, where the detached shear layer strikes the surface. Two 

crucial parameters of separated flow are the reattachment length (𝐿𝑅) and the thickness 

of the shear layer (𝛿𝜔 ). These parameters are influenced by various mechanisms, 
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including adverse pressure gradient, backstep height, interior TBL, and mass/momentum 

entrainment(Stella, 2017). TSB is typically characterized by the Recirculation Region 

Interface (RRI), which specifies the lower boundary of the shear layer, marking the point 

at which the shear layer separates from the reversed flow region. Moreover, the length of 

TSB is determined as the streamwise length spanning from the separation point (the RRI's 

initial boundary) to the reattachment point (the RRI's final boundary). 

In this study, the mean flow RRI is identified by either the isoline U=0 on the mean 

streamwise velocity field or the set of points where the backflow coefficient 𝛾 is equal to 

0.5 ( 𝛾  being defined as the fraction of time during which the flow moves 

downstream)(Stella, 2017; Stella et al., 2017). Figure 4.7(a) depicts the contour of the 

streamwise mean velocity overlaid with the U = 0 streamline for two cases: with 

cavitation (case I) and without cavitation (case II)(Berk et al., 2017). Figure 4.7(b) also 

displays the forward-flow fraction. The 50% forward-flow fraction isopleth (shown as 

blue dashed lines) follows a specific path: it starts from either the leading or trailing edge 

of the step, goes through the center of the separating bubble, and ends on the wall very 

near the reattachment points. This pattern aligns with observations from Djilali & 

Gartshore(Djilali et al., 1991) and Mohammed-Taifour & Weiss(Mohammed-Taifour and 

Weiss, 2016). 

Two distinct separation bubbles can be observed in Figures 4.7(a) and (b): The small 

bubble in the corner around 𝑥̃ = 𝑥/ℎ ≈  2.8 and the large separation bubble behind the 

step(Fang and Tachie, 2019).  The large separation bubble has two interfaces: one with 

the shear layer and another with the smaller separation bubble and bottom wall. The 

streamwise extent of the reversed flow region for 𝑦 =  0, i.e., the location at which the 

interface between the large separation bubble and shear layer reaches the x-axis (cross 

sign in Figure 4.7(b)), coincides with the average length of TSB (the distance between 

the mean detachment and mean reattachment)(Berk et al., 2017; Mohammed-Taifour and 

Weiss, 2016). According to Figure 4.7, it can be recognized that in the case of cavitating 

flow, the reattachment length increases by around 8% compared to the case without phase 

change. The main reason for larger TSB in case I compared to case II should be the phase 

transition and vapor generation within the shear layer which changes the mean 

characteristics of the flow. More details on this issue are provided in the following 

sections where our results show that the vapor generation within the shear layer results in 

longitudinal stretching of the spanwise vortical structures (longer and thinner) and a 
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decline in the shear layer growth rate compared to the case II. Moreover, we observed 

that the mean convective velocity is almost the same for both cases. Some studies(Berk 

et al., 2017; Stella et al., 2017) reported that the reattachment length has an inverse 

relation with momentum entrainment so that it can be concluded that the increase in 𝐿𝑅 

for case I is attributed to the decrease in the momentum entrainment due to the vapor 

generation within the shear layer. 

 

Figure 4.7 Mean value of RRI characterized by (a) isoline of the streamwise vlocity field 

and (b) 𝜸parameter (cross signs represent the reattachment point). 

To further investigate the impact of the phase change on the mean characteristics of the 

shear layer, the vorticity thickness (𝛿𝜔, Appendix A), which serves as an indicator of shear 

layer growth, is obtained for both cases. The vorticity thickness has been widely used in 

various studies to describe the expansion of the shear layer in separating flows(Stella et 

al., 2017). Related studies revealed that the development of 𝛿𝜔 (vorticity thickness) in the 

first half of the TSB (𝑥/𝐿𝑅<0.5) closely resembles that of the free mixing layer(Fang and 

Tachie, 2019; Stella et al., 2017). Specifically, these studies highlighted a linear increase 

in the vorticity thickness along the streamwise direction with a slope of 𝑑𝛿𝜔/𝑑𝑥 ranging 

from 0.15 to 0.22. This linear trend is valid for both the free mixing layer and the first 

half of the separated shear flow(Cherry et al., 1984; Djilali et al., 1991; Fang and Tachie, 

2019; Kiya and Sasaki, 1983).  

Figure 4.8(a) illustrates the evolution of 𝛿𝜔  in the streamwise direction (𝑥̃). In addition, 

Figure 4.8(b) provides the estimation of the mean shear layer by combining the vorticity 

thickness with the mean RRI(Aeschlimann et al., 2011a; Stella, 2017). It can be seen that 

for both cases (I and II), in the first half of the shear layer (which is shown by s1), the 

vortex thickness grows linearly in streamwise direction with a slope of 0.154. This growth 

rate of the mean shear layer is consistent with those reported in the existing 
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literature(Maurice et al., 2014), which suggests similar dynamics of the shear layer and 

free mixing layer in this region. In the second half of the shear layer (𝑠2, 𝑥/𝐿𝑅 > 0.5), 

the growth trend of the shear layer deviates from that of the free mixing layer, and the 

slope of the growth rate decreases for both cases(Stella, 2017; W. Wu et al., 2020). 

Notably, a remarkable difference in the shear layer development between cases I and II 

can be observed in the second half of the shear layer. Except for the final parts (near the 

reattachment point), the mean shear layer thickness is larger for case II compared to case 

I throughout the second half of the shear layer. This finding is in agreement with previous 

studies(Maurice et al., 2014) that presented similar behavior for both shear layer thickness 

and reattachment length.  

The development of the shear layer is primarily influenced by entrainment and expansion 

ratio across the step. Previous studies (Stella et al., 2017) demonstrated that shear layer 

spreading in the second half exhibits a strong correlation with pressure recovery in the 

reattachment region (a higher pressure recovery results in lower spreading). They 

concluded that in reattachment region, the expansion ratio played a notable role in the 

shear layer growth rate. Moreover, the growth rate (𝑑𝛿/𝑑𝑥) has an inverse relation with 

the reattachment length (𝐿𝑅)(Adams and Johnston, 1988). Case I exhibits a stronger mean 

pressure recovery (Figures 4.9(a) and 4.11(a)) in the reattachment, which is associated 

with a larger reattachment length (Figure 4.7) and a smaller shear layer thickness in the 

second half (Figure 4.8). Therefore, in the presence of phase change, in addition to the 

expansion ratio (ER), there should be another mechanism that control the pressure 

recovery in the reattachment region, and consequently, the reattachment points and shear 

layer thickness in the second half. 

 

Figure 4.8 Shear layer growth. (a) vorticity thickness δω. Mean separated flow 

superimposed on velocity field (b) case I (with cavitation), and (c) case II (without 

cavitation).  
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The contours of the mean pressure  𝑝̅, and RMS value of the pressure fluctuations 𝑝′𝑟𝑚𝑠 

are presented in Figure 4.9. The values were averaged over spanwise direction and were 

nondimensionalized by 𝜌0𝑈0
2, where the subscript 0 indicates the conditions in the free 

flow upstream of the step (around  𝑥̃ ≈  −5 ).  According to Figure 4.9(a), the spanwise 

average value of 𝑝̅ is significantly larger for the case I (with cavitation) than that for the 

case II (without cavitation) in the reattachment region (5.5 < 𝑥̃ < 8.5, also see Figure 

4.10(a)), while the reattachment point is located around 0.5h farther away from the step 

for case I (Figure 4.2). Similar changes are present for the streamwise mean pressure 

distribution along the bottom wall of the channel behind the step (𝑝̅𝑤) in Figure 4.10 (a). 

For both cases, 𝑝̅𝑤 initially decreases smoothly until it reaches a local minimum value at 

𝑥̃ ≈  3  (middle of the shear layer), beyond which the mean pressure increases rapidly and 

reaches its maximum at around 𝑥̃ ≈  7  (slightly downstream of reattachment 

point)(Kourta et al., 2015). In addition, 𝑝̅𝑤 is smaller for case I than that for case II at the 

initial part of the channel (𝑥̃ <  5.5). This difference can be attributed to the convection 

of vapor to the recirculation region which changes the dynamics of the vorticities within 

the recirculation region(Bhatt et al., 2021a; Le et al., 1993). Vapor formation leads to a 

local increase in the volume of the flowing fluid, particularly in the second half or the 

recirculation region. This increase in the volume can locally raise the flow velocity 

(particularly when it is convected to the recirculation region) and decreases the static 

pressure of the flow. As the shear layer is mainly associated with vapor generation, it can 

be concluded that the vapor formation is the main contributor to the difference in 𝑝̅ in this 

section of the channel. Conversely, at 𝑥̃ >  5.5, 𝑝̅𝑤 is higher for case I versus case II. This 

finding suggests a stronger impingement for case I versus case II. While several 

parameters such as the incoming TBL(Stella, 2017), Reynolds number, and geometrical 

features (such as the expansion ratio over the step)(Ji and Wang, 2012), can influence the 

impingement mechanism and pressure recovery in the reattachment region, the 

shockwave induced by bubble collapses appears to play a significant role in the stronger 

pressure recovery after impingement for case I versus case II (discussed in the next 

section). When cavitation occurs near flow separation, bubble collapse during 

impingement can trigger the reattachment shockwave(Bhatt et al., 2021a), which leads to 

a stronger pressure recovery after reattachment(Akhilesh et al., 2022).  
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Figure 4.9 Contours of spanwise average value of (a) 
𝒑̅

𝝆𝟎𝑼𝟎
𝟐 , and (b) 

𝒑𝒓𝒎𝒔
′

𝝆𝟎𝑼𝟎
𝟐 for case I (the 

left column) and case II (the right column). 

 

 

Figure 4.10 Distribution of spanwise average value of (a) 
𝒑̅𝒘

𝝆𝟎𝑼𝟎
𝟐 ,  (b) 

𝒑𝒘 𝒓𝒎𝒔
′

𝝆𝟎𝑼𝟎
𝟐  along the 

bottom wall of the channel, and (c) 
𝒑 𝒓𝒎𝒔
′

𝝆𝟎𝑼𝟎
𝟐 along the streamwise pathway of maximum 

RMS pressure fluctuations for case II. 

Regarding RMS pressure fluctuations (𝑝𝑟𝑚𝑠
′ ) (Figure 4.9(b)), both cases I and II show a 

similar trend besides some significant differences. Consistent with previous studies(Abe, 

2017), 𝑝𝑟𝑚𝑠
′  within the shear layer is primarily influenced by Reynolds shear stress, 𝑢𝑣̅̅̅̅ , 

while it is mainly associated with cross-streamwise (mostly 𝑣𝑣̅̅ ̅) and streamwise (𝑢𝑢̅̅̅̅ ) 

Reynolds normal stresses in the reattachment region. In accordance with prior research(Ji 

and Wang, 2012; MOIN and NA, 1998), the current findings indicate that a significant 

level of 𝑝′𝑟𝑚𝑠 is produced in the initial section of the separated shear layer (𝑥̃ = 1), This 

value then decreases in the middle of the shear layer but spikes again after reattachment 

(Figures 4.9(b) and 4.11(c)) for both cases. The pressure fluctuations within the shear 

layer and upstream of the reattachment points are primarily influenced by vortical 
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structures that are carried along by the flow. Na and Moin (1998b)(MOIN and NA, 1998) 

observed that these vortical structures, particularly those within the detached shear layer 

overlying the separation bubble, act as significant sources of pressure fluctuations. The 

movement of these vortical structures plays a crucial role in generating pressure 

fluctuations within the shear layer. The pattern of pressure fluctuations within the shear 

layer and upstream of the reattachment point is similar to that of turbulence intensities 

and local maximum Reynolds shear stress (Figures 4.10(c) and 4.12(c)). Therefore, it can 

be inferred that local maximum Reynolds shear stresses, which are primarily generated 

by vortical structures, are the main contributors to pressure fluctuations within the shear 

layer. This aligns with the findings of the Na and Moin study(MOIN and NA, 1998). 

Another notable trend observed in this study is the decrease in 𝑝′𝑟𝑚𝑠 within the shear 

layer beyond an initial growth phase (Figures 4.9(b) and 4.10(c)). This decline can be 

attributed to the phenomenon of vortex pairing and the subsequent reduction in the 

intensity of 𝑢𝑣̅̅̅̅  within the shear layer (Figures 4.11(c) and 4.12(c)).  

In the second half of the shear layer, between the two peaks visible in the 𝑝′𝑟𝑚𝑠 and 𝑢𝑣̅̅̅̅  

plots, a more significant drop in 𝑝′𝑟𝑚𝑠 and  𝑢𝑣̅̅̅̅  can be seen for case I (with cavitation) 

compared to case II (without cavitation). In the same region within the shear layer, large 

mean vapor fractions exist for case I (as shown in chapter 2 Figure 2.3.). Previous 

studies(Aeschlimann et al., 2011a; Iyer and Ceccio, 2002; Ji and Wang, 2012)  reported 

that vapor generation and increase in compressibility within the vortical structures 

attenuate 𝑝′𝑟𝑚𝑠fluctuation and  𝑢𝑣̅̅̅̅ , which agrees well with our findings. 

In addition, as reported in the previous studies(Belahadji et al., 1995; Iyer and Ceccio, 

2002), the decline in cross-stream fluctuations and Reynolds stresses can be linked to the 

effect of cavitation on the decoupling between streamwise and cross-stream velocity 

fluctuations within the vortices. Furthermore, it was suggested by Aeschlimann et 

al.(Aeschlimann et al., 2011a) that cavitation development continuously reduces 

turbulence production which is proportional to 𝑢𝑣̅̅̅̅ , and converts it to turbulent kinetic 

energy (TKE). This explanation is in line with our findings (Figures 2.11 and 2.12(a) and 

(c)), where it is illustrated that the vapor generation within the shear layer (particularly its 

2nd half) is associated with the decrease in 𝑢𝑣̅̅̅̅  and increase in TKE level. 

After reaching minimum RMS pressure fluctuations at   𝑥̃ ≈ 4, the pressure fluctuations 

gradually recover and reach the maximum value slightly downstream of the reattachment 
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point (almost the same place as  𝑝̅𝑚𝑎𝑥 (Figure 2.11(c)). Previous studies (Abe, 2017; Ji 

and Wang, 2012) showed that RMS pressure fluctuations in the reattachment region are 

mainly regulated with convection and increase in normal Reynolds stresses. Ji and 

Wang(Ji and Wang, 2012) indicated that for a step height remarkably larger than the 

upstream turbulent boundary layer, the RMS pressure fluctuation scales with the local 

maximum cross-stream Reynolds normal stress 𝑣𝑣̅̅ ̅ . Our results (Figure 2.10(b) and 

2.12(b)) highlight that 𝑣𝑣̅̅ ̅ reaches its highest value in the reattachment region and has a 

remarkable contribution on RMS fluctuation pressure in this region. Nonetheless, we can 

observe that 𝑢𝑢̅̅̅̅  has an equivalent importance.  The TKE (Figure 2.12(a)) and 𝑢𝑢̅̅̅̅  level 

are significantly larger for case I than case II in the reattachment region (5 < 𝑥̃ < 7), which 

is in harmony with the 𝑝′𝑟𝑚𝑠 behavior (Figures 2.10(c) and 2.12(a)) in this region and 

shows the major impact of the pressure shock waves generated by bubble collapses on 

streamwise Reynolds stresses. By moving vapor structures within the shear layer towards 

the high pressure reattachment region and considering their collapses and condensation 

in this region, one can expect the increase in the turbulence and pressure fluctuation 

level(CECCIO and LABERTEAUX, 2001; Iyer and Ceccio, 2002). This is accompanied 

with spike pressure pulses in the shear layer for case I (Figure 2.9(b) and 2.10(b)) which 

are related to the shock waves generated by the bubble collapses in reattachment and at a 

slightly upstream location of the reattachment. More discussion will be provided on shock 

wave generation and propagation for case I in the next section. 

Furthermore, Figure 2.9(b) shows that, for case I, a substantial region near the wall 

surface is subjected to an augmented 𝑝′𝑟𝑚𝑠  (also see Figure 2.10(b)). Additionally, 

circular regions of high fluctuations are randomly distributed throughout the second half 

of the shear layer and reattachment region. These regions are indicative of shockwaves 

arising from bubble collapses in these areas. Distribution of streamwise RMS of 

fluctuating wall pressure (𝑝′𝑤 𝑟𝑚𝑠) is provided in Figure 2.10(b) for cases I and II. In the 

front part of the separation bubble, due to a remarkable distance between the shear layer 

and wall surface, the effect of fluctuations within the shear layer on 𝑝′𝑤 𝑟𝑚𝑠 is minimal. 

Thus, close to the step, 𝑝′𝑤 𝑟𝑚𝑠 is largely influenced by slow and large vortices within the 

recirculation region and near the wall. As we move along the channel and get closer to 

the reattachment region, the shear layer becomes closer to the wall and the influence of 

the shear-layer-generated vortical structures on the 𝑝′𝑤 𝑟𝑚𝑠 becomes more dominant(Ji 

and Wang, 2012). The results of RMS of fluctuating pressure on the bottom wall surface 
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show that 𝑝′𝑤 𝑟𝑚𝑠 of case I is in general larger than that of the case II (except at the end 

of the channel (8.5 < 𝑥̃ < 10), where two results converge), with several spikes at the 

upstream location of the reattachment points, which illustrate the effect of bubble 

collapses and shock waves on wall pressure fluctuations in this region. To offer better 

understanding of pressure fluctuations within the shear layer, 𝑝′𝑟𝑚𝑠 is represented along 

the pathway of maximum fluctuations for case II (the pathway is shown in Figure 2.8(b) 

case II) in Figure 2.11 (c). It can be seen that similar to the 𝑝̅,  in the initial part of the 

shear layer (particularly in the middle of the shear layer), case II has a larger 𝑝′𝑟𝑚𝑠, while 

the pressure fluctuations are dominant for case I at locations closer to the reattachment 

(4 < 𝑥̃). Throughout the bottom wall, 𝑝′𝑤 𝑟𝑚𝑠 is significantly larger for case I than that 

of case II, while the values converge to each other around one step after reattachment 

(𝑥̃ ~ 8), where there is no effect of condensation and vapor generation. As mentioned 

earlier, the spike pulses on 𝑝′𝑟𝑚𝑠 distribution demonstrate the effect of shock waves due 

to bubble collapses which are more pronounced near the wall surface and distributed in a 

remarkable portion of the channel (Also see Figure 2.9(b)) (3 < 𝑥̃ <   6). From these 

results it can be inferred that the suppressed mean pressure and pressure fluctuations 

within the shear layer for case I are linked to the vapor generation and increase in 

compressibility. Meanwhile, frequent bubble collapse and condensation wave 

propagation near the wall around the reattachment point appear to drive the opposite 

trend, i.e., an increase in both mean and fluctuating pressure parameters in the 

reattachment region.  

 

Figure 4.11 Contours of spanwise average value of (a)  
𝑻𝑲𝑬

𝑼𝟎
𝟐  , (b) 

𝒗𝒗̅̅̅̅

𝑼𝟎
𝟐 , and (c) 

𝒖𝒗̅̅ ̅̅

𝑼𝟎
𝟐 for case I 

(left column) and case II right column. 
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Figure 4.12 Streamwise distribution of spanwise average value of (a)  
𝑻𝑲𝑬𝒎𝒂𝒙

𝑼𝟎
𝟐  , (b) 

𝒗𝒗̅̅̅̅ 𝒎𝒂𝒙

𝑼𝟎
𝟐  

, and (c) 
𝒖𝒗̅̅ ̅̅ 𝒎𝒂𝒙

𝑼𝟎
𝟐 . 

One important aspect in the shape, size and distribution of the spanwise vortical structures 

within the shear layer. To examine the effect of cavitation on the mean characteristics of 

KH vorticities, two-point autocorrelation (𝑅𝑥𝑥,  Appendix A) can be employed. The 

autocorrelation contours for streamwise and cross-streamwise components of velocity are 

shown in  

Figure 4.13. It can be observed that spanwise structures are elongated and have an 

elliptical shape within the shear layer (before reattachment) while autocorrelation of both 

velocity components has the same size showing almost spherical shape of vortices after 

the reattachment. From the comparisons between the autocorrelation components for 

cases I and II, it is evident that the vortices within the shear layer are thinner and more 

stretched for case I compared to those for case II. Still, the vortices after the reattachment 

have almost the same size. These results suggest that vapor generation within the vortical 

structures has a dominant impact on their topology, particularly in the second part of TSB. 

This region is characterized by a large fraction of vapor, which appears to significantly 

drive the observed morphological changes.  Previous studies similarly reported the 

significance of compressibility(Arun et al., 2019; Belahadji et al., 1995) and phase 

transition(Belahadji et al., 1995) on the morphology of the vortical structures. From our 

results in Figure 4.13, it is apparent that in the case of cavitation, the spanwise vortical 

structures are elongated within the region with large vapor fraction (second part of TSB) 

in direction of the shear layer (apparent from the streamwise velocity autocorrelation), 

which is accompanied by contraction in the width of the structures (cross-streamwise 

velocity fluctuations). These observations align with the results of the Reynolds stresses, 

where it was observed that vapor generation leads to a remarkable increase in streamwise 
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Reynolds normal stress while significantly reducing the cross-streamwise Reynolds 

normal stress (Figure 4.12). In the case of cavitation, a significant variation in density 

exists across the vortical structures, with the lowest density within the two-phase mixture 

and highest density within the surrounding liquid phase. It seems that, upon a sudden 

decrease in the vortex density, the velocity field within the vortex is more influenced by 

the momentum transfer across its boundaries with the high-density surrounding flow so 

that vortices become more stretched in the direction of streamlines. In addition, phase 

change leads to an increase in the volume of the vortices as evident from Figure 4.13.  

 

Figure 4.13 Contours of two-point correlation for (a) streamwise velocity, and (b) cross 

streamwise velocity. 

4.2.4 Spectral Analysis 

Frequency characteristics of TBS are provided by pre-multiplied power spectral density 

(PSD) at selected streamwise locations along the maximum 𝑝′𝑟𝑚𝑠 streamwise pathway(Ji 

and Wang, 2012) region (probe placements are shown with circular markers in Figure 

4.9(b), right column). The sampling interval was 𝑡̃ =
𝑡𝑈0

ℎ
= 288 with a sampling rate of 

𝑓𝑠ℎ

𝑈0
= 10.67. Details regarding Data treatment and processing for power spectral density 

(PSD) calculations are provided in Appendix A. Pre-multiplied PSD values for two cases, 

with and without cavitation, are presented in Figures 4.14(a) and (b), respectively. 

Notably, due to the significant difference in PSD levels between cases I and II within the 

high frequency ranges, distinct limits for PSD values are employed on x axis for each 

case (4e-6 to 2e-4 for case I and 0.5e-6 to 2e-4 for case II). This differentiation facilitates 

a clearer understanding of the variations across the frequencies. Furthermore, three 

distinct dashed lines (in blue, black, and red) corresponding to the dominant frequencies 



 

74 
 

for each case (𝑆𝑡ℎ ≈ 0.045, 0.11, and 1.4 for case I and 𝑆𝑡ℎ ≈ 0.065, 0.16, and 1.4 for 

case II) across the streamwise pathway are illustrated to aid in the comparison between 

two cases (For brevity, the three frequencies will be referred as First Low Frequency 

(LF1), Second Low Frequency (LF2), and Medium Frequency (MF) throughout the rest 

of the study). Accordingly, downstream of the step, a broad spectrum of frequencies can 

be observed. For both cases, the shear layer behind the step exhibits two initial peaks in 

the energy spectrum: one high frequency peak centered around 𝑆𝑡ℎ~ 1.4, and a low 

frequency peak centered around 𝑆𝑡ℎ~ 0.11 for case I and 𝑆𝑡ℎ~ 0.08 for case II. When 

moving along the maximum 𝑝′𝑟𝑚𝑠 pathway, the high frequency peak continuously shifts 

towards the lower frequencies, indicated by a red flash (𝑆𝑡ℎ =  0.11~1.4  and 0.16~1.4, 

for cases I and II, respectively). Previous studies demonstrated that this continuous 

decrease in the peak frequency is linked to the pairing of spanwise vortices(Barbaca et 

al., 2019; Hudy et al., 2007; W. Wu et al., 2020). This frequency converges to a constant 

value after reattachment, which should correspond to the shedding mechanism at this 

stage. Close to the reattachment point, the spanwise vortical structures grow to their 

maximum size and exhibit a constant frequency highly dependent on the step size and Re 

number(Hudy et al., 2007; Ji and Wang, 2012). For case I, the energy spectrum deviates 

from the characteristic logarithmic decay at high frequencies, which is evident for case 

II. Instead, a notable energy level persists at high frequencies throughout the second half 

of the shear layer and reattachment regions, which further corroborates the effect of 

bubble collapses on intensifying the turbulence level within the flow(Iyer and Ceccio, 

2002).  

The smallest frequency peak is likely linked to the TSB breathing mechanism for both 

cases (Hudy et al., 2007; Ji and Wang, 2012; W. Wu et al., 2020). For case I, the smallest 

frequency peak emerges at 𝑥̃ = 2.5, and is dominated after the reattachment. For case II, 

the smallest frequency peak can be observed in the initial segment of the shear layer and 

contains a smaller energy compared to case I, which implies less frequent occurrence or 

a smaller amplitude. Various mechanisms were proposed in the literature to explain this 

low-frequency dynamic, including Gortler vortices(Hickel et al., 2021; W. Wu et al., 

2020). Additionally, it can be observed that while the high-frequency peak is nearly 

identical for cases I and II, the low frequencies are slightly larger for case II. 

Furthermore, spectral analysis was performed (Figure 4.14(c)) to reveal the effects of 

pressure fluctuations on vapor dynamics within the shear layer and beyond it in the 
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reattachment region. A similar trend is apparent for vapor fluctuations within the shear 

layer where vapor fluctuations exhibit a dominant PSD level at high and low frequencies 

(local maxima in 𝑆𝑡ℎ~1.4 and 𝑆𝑡ℎ~0.11) at 𝑥̃ = 0.25. This peak in PSD shifts towards 

smaller frequencies when moving away from the step (similar to pressure PSD). This 

behavior shows that the fluctuations of void fraction are in harmony with those of the 

pressure within the initial part of the shear layer, which suggests that the growth and 

transport of vapor packets occur within the coherent structures and spanwise vortices of 

the shear layer (Agarwal et al., 2023; Bhatt et al., 2021a; W. Wu et al., 2020). 

Furthermore, except for the initial part of the channel (first half of the shear layer), high 

frequencies exhibit a small PSD level for vapor fluctuations, which indicates that the 

fluctuations induced by the bubble collapses have a minimal impact on vapor transport. 

Beyond  𝑥̃~6, most of vapor are condensed (primarily due to the high pressure after 

impingement) and a few of them survive, for which a broad range of frequencies centered 

around a peak at 𝑆𝑡ℎ~1 can be observed. This implies that the transport of vapor packets 

is controlled with random high frequency turbulent structures in this region. 

According to the results, major differences in pressure spectral content for cases I and II 

are due to the presence of high frequency pressure fluctuations with large PSD levels near 

the reattachment for case I, as well as differences between cases I and II in their dominant 

low frequencies. The differences in PSD distribution between cases I and II within the 

shear layer and reattachment regions can be attributed to several factors. These include 

changes in the dynamics of vortical structures in the shear layer, recirculation due to vapor 

formation and convection, altered dynamics of the reentrant jet, and effects of bubble 

collapse and propagation of condensation shock waves. In the next section, we will 

examine some of the important flow parameters to elucidate the sources of dominant 

frequencies and differences between the cases(Barbaca et al., 2019). 
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Figure 4.14 Pre-multiplied power spectral density of (a) the pressure field for case II, (b) 

the pressure field for case I, and (c) the void fraction for case II at several locations 

passing the maximum TKE [8] regions shown with markers in Figure 8(b). 

The low frequency unsteadiness of TSB is linked to the “breathing” mechanism (the 

large-scale growth and shrinking of the separation bubble). Some studies(Fang and 

Tachie, 2019; Ganapathisubramani et al., 2013; Le Floc’h et al., 2020a; W. Wu et al., 

2020)  demonstrated that the large-scale unsteadiness of TSB can be represented by the 

variations in total area of the reversed flow. This estimation is particularly relevant in 

cases with a large portion of the reversed flow within TSB(Le Floc’h et al., 2020a), as the 

case in our study. The area of the reversed flow is calculated as 𝐴𝑏 = ∬ 𝑑𝑥𝑑𝑦
𝛺𝑏

, where 

𝛺𝑏 is the areas spanwise average of 𝑢 is smaller than zero. The temporal evolution of the 

separation bubble size along with its PSD value are represented in Figure 4.15, where the 

size and time are nondimensionalized based on the step height and reference velocity. 
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Consistent with the results from the spectral analysis of the pressure field, the variation 

in reversed flow area exhibits dominant dynamics associated with two low frequencies. 

For both cases I and II, we observe two dominant frequencies. The smaller of these 

frequencies are centered around 𝑆𝑡ℎ  values of 0.03 and 0.06 for cases I and II, 

respectively. On the other hand, the larger dominant frequencies manifest themselves 

around 𝑆𝑡ℎ  values of 0.11 and 0.2, respectively for cases I and II. These frequencies 

closely match with those observed in pressure PSD, which implies that the low 

frequencies for both cases are related to the changes in the shape/size of the separation 

bubble and displacement of the reattachment point.  

 

Figure 4.15 Temporal evolution and corresponding PSD values of the total reversed flow 

area in x-y plane. 

It can be inferred that two distinct mechanisms are responsible for separation bubble 

contraction/expansion and reattachment displacement: one associated with LF1 and other 

related to the LF2 corresponding to the vortex shedding at reattachment. As reported by 

previous studies(Kuehn, 1980; Ra and Chang, 1990), the streamwise pressure gradient 

and pressure over the step strongly affect the reattachment location, and consequently, 

the low frequencies. The temporal evolution and PSD values for the average pressure in 

a cross-section over the step are presented in Figure 4.16. Still two low frequencies peaks 

close to LF1 and LF2 are visible in the spectral content, which suggests the existence of 

coupling between the pressure over the step and reattachment displacement. The coupling 

between these two parameters can be quantified using the spectral coherence (𝐶𝑥𝑦 , 

Appendix A). The values corresponding to 𝐶𝑥𝑦 =1 show linear coupling between two 

signals while values close to 0 suggest that the signals are unrelated. The values between 

0 and 1 can demonstrate a nonlinear relation between the signals indicating that either the 
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output of signal 𝑦(𝑡) is affected by 𝑥(𝑡) as well as other inputs, or there are noises in the 

dataset. The coherence between the average pressure over the step and reversed flow for 

two cases are represented in Figure 4.17. For case I, two peak values (0.4 and 0.82) in 

𝑆𝑡ℎ = 0.04 and 0.11 indicate a nonlinear coupling between the reversed flow and average 

pressure over the step around these frequencies. For case II, the peak of the spectral 

coherence is visible around 𝑆𝑡ℎ = 0.14 while the coherence value is close to zero for 

𝑆𝑡ℎ < 0.06, which implies that for case II, LF2 has a notable nonlinear coupling with 

upstream pressure, while LF1 is almost unrelated to it.  

 

Figure 4.16 Temporal evolution and corresponding PSD value of the average pressure 

over the step. 

 

Figure 4.17 Spectral coherence between the average pressure in the cross-section area 

over the step and reversed flow. 
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To further investigate the nature of two low frequencies, the instantaneous results are 

provided for cases I and II in Figures 4.18, 4.19, and 4.20. For case I, two time periods 

related to the LF1 and LF2 are represented by T2 and T1, respectively, in Figures 4.15 

and 16. The instantaneous results for one cycle of vortex shedding at reattachment is 

presented for case II in Figure 4.18, which consists of the pressure field shown in the left 

column and velocity field streamlines shown in the right column. It is noteworthy to 

mention that the fixed coordinate is adopted for calculations of the streamlines, and 

therefore transport of the coherent structures (such as those shown Figure 4.13) cannot be 

recognized within the velocity field. Nonetheless, considering that the vortical structures 

are associated with local pressure drop(Agarwal et al., 2023), the local low pressure areas 

can be representative of the coherent structures and their transport mechanism(Dubief † 

and Delcayre ‡, 2000). Local low pressure elliptical regions apparent within the shear 

layer correspond to the spanwise structures. After separation, alternating positive and 

negative pressure fluctuations appear within the shear layer (above the separation bubble) 

corresponding to the turbulent structures resulted from the roll-up mechanism. These 

structures turn around the bubble and finally impinge on the wall, from which large wall-

pressure fluctuations are generated in the reattached region. The primary local low 

pressure areas are connected to each other through quasi-streamwise low pressure zones, 

which is attributed to the QSV. The QSVs emerge between a pair of KH structures after 

development of spanwise waviness and instability in KH structures as they 

grow(Hayakawa and Hussain, 1989; Pierrehumbert and Widnall, 1982). As an example, 

one of these QSV structures is specified in the pressure field displayed in Figure 4.18 

(𝑡̃0 + 4Δ𝑡̃). As observed, QSVs are inclined to the direction upwards from the bottom of 

one spanwise vorticity to the top of the next one, while they are surrounded with high 

pressure region in their periphery. QSVs are three dimensional structures and typically 

appear as counter-rotating pairs, as they are randomly distributed in the spanwise 

direction, some of them can be missed in the given plane (Figure 4.18). The reattachment 

region is characterized by a large pressure recovery, where the shear layer impinges to 

the bottom wall. The growth and transport of the spanwise vortical structure to the 

downstream of the reattachment point is traced by the white flash. We can notice that the 

displacement of the high pressure impingement location is associated with generation of 

a pressure wave along the channel upstream of the step (not shown here), which arrives 

to the step with a phase delay (𝑡̃0 + 4Δ𝑡̃). This phase delay was obtained by applying 

cross-correlation to the normalized values of the reversed flow and average pressure over 
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the step (Appendix A), showing a delay of  dt̃ ≈ 3.28 for both cases. After the vortex is 

separated from the shear layer (𝑡̃0 + 3Δ𝑡̃), a new high pressure region emerges in the rear 

part of the shed vortex so that the shed vorticity is followed and preceded by high pressure 

regions. By moving the shed vorticity along the channel, its front high-pressure region is 

attenuated and becomes closer to the outlet pressure, while the rear high-pressure region 

becomes more intense. The reason for this behavior is the displacement of impingement 

point during the vortex shedding process, beyond which a new cycle of vortex shedding 

starts. 

The velocity field results provide valuable information about the structure and dynamics 

of TSB and reverse flows during the shedding mechanism. TSB primarily forms from a 

group of clockwise recirculation zones, which are located in a region encompassing the 

backward flow and a lower region of the shear layer. The second group of TBS vortices 

are counterclockwise vortices, which are located near the corner behind the step and are 

usually combined to form a single vorticity. Upon the growth and transport of the shed 

vorticity behind the reattachment, the reverse flow is extended behind the adverse 

pressure gradient (APG) which moves downstream (Figure 4.18, black flash). Following 

the vortex shedding event (𝑡̃0 + 4Δ𝑡̃), the reattachment point abruptly re-establishes itself 

at its initial location, which coincides with a rapid reduction in the backward flow area 

(𝐴𝑏). The cycle is associated with 𝑆𝑡ℎ ≈ 0.105, which is close to LF2 for case II. Also, 

the convective velocity of the shed vortex is around 
𝑈𝑐

𝑈0
≈ 0.316. The variation in the 

backward flow (𝐴𝑏 in Figure 4.15) is linked to the vortex shedding at reattachment so that 

the initial stages before the vortex shed off (𝑡̃0 to 𝑡̃0 + 3Δ𝑡̃) is associated with increase in 

𝐴𝑏 , while the last stage (vortex shed off at 𝑡̃0 + 4Δ𝑡̃)  is accompanied with a sudden 

decrease in 𝐴𝑏. The dynamics of TSB is affected by the coherent structures within the 

shear layer and vortex shedding at reattachment. For example, it is visible that upon 

growth of the backward flow the group of the clockwise vortices within the recirculation 

zone is enlarged, and new vortices are added. In addition, it is apparent that the growth 

and pairing of KH vortices within the initial part of the shear layer lead to an increase in 

the size of the clockwise vortex in this region while the size of the anticlockwise vortex 

diminishes in the corner behind the backward step (𝑡̃0 + 3Δ𝑡̃ _ 𝑡̃0 + 4Δ𝑡̃).  
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Figure 4.18 Instantaneous results for case II in the middle depth plane for the pressure 

field (left columns) and streamline of nondimensional velocity field (right column). 

Dashed flash shows the vortex shed off, 𝜟𝒕̃ is expressed based on the 

nondimensionalized time and is equal to 2.375 (considering one cycle of shedding Sth = 

0.105). 

The instantaneous results for case I associated with two different frequencies are 

displayed in Figures 4.19 and 4.20 (related to T1 and T2 time periods). The low frequency 

mechanism in T1 period is similar to that provided for the single-phase flow (governed 

by vortex shedding at reattachment). Figure 4/19 (T1 period) starts with a high pressure 

over the step (Figure 4.16), and a small value of reverse flow area (Figure 4.15). It is 

noteworthy to mention that the reason for matching high pressure over the step with small 

value of the reverse flow area is the phase delay described in the previous section (which 

is also evident from comparison between Figures 4.15 and 4.16). Indeed, the downstream 

motion of reattachment point downstream prompts a high-pressure wave propagation 

along the channel, which arrives to the step (𝑥̃ = 0) with a phase delay of 𝑡̃ ≈ 3.28.  

Pressure drop within coherent structures of the shear layer triggers phase transition in 

these areas. The vapor packets are carried along the shear layer mainly by spanwise 

vortices and developed during pairing and growth of these vortices. Some portions of the 
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vapor packets are transported to the recirculation area, most of which collapse after the 

propagation of the pressure wave downstream of the step.  The high-pressure generation 

near the wall at 𝑡̃0 + Δ𝑡̃   and 𝑥̃ ≈ 2.5 is a footprint of such a collapse within the 

recirculation zone. The low-pressure zone associated with the spanwise vorticity reaches 

its maximum size behind the reattachment region. As the vortex growths and moves along 

the channel, it pushes the reattachment downstream up to 𝑥̃~8 at 𝑡̃0 + 3Δ𝑡̃, where the 

reverse flow reaches its maximum value while still sustaining the vapor phase. After the 

vortex sheds off, the reattachment points return to its initial location (𝑡̃0 + 4Δ𝑡̃), where a 

cycle of shedding related to LF1 (T1) is complete. Following the shedding and relocation 

of the impingement point, the shed vorticity loses its ability to preserve the low-pressure 

core within it. The loss of the low-pressure core within the shed vorticity triggers a 

cascade of events, which includes vapor condensation, shock wave generation, and 

alterations in vorticity size and dynamics. While shedding frequency is almost the same 

as shown for case II (𝑆𝑡ℎ ≈ 0.105), the convective velocity and size of the shedding 

vortex seems to be notably increased (
𝑈𝑐

𝑈0
≈ 0.421). 
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Figure 4.19 Instantaneous results for case I, T1, in the middle depth plane for the 

pressure field (left columns) and streamline of nondimensional velocity field (right 

column). Dashed flash shows the vortex that shed off, 𝜟𝒕̃ is expressed based on the 

nondimensionalized time and is equal to 2.375 (considering one cycle of shedding Sth = 

0.105). 

Figure 4.20 presents instantaneous results for the time interval T2, which corresponds to 

LF1. In order to avoid redundancy, the time snapshot pertaining to T1-T2 interfaces and 

preceding times were omitted. The represented section of the cycle coincides with a 

decline in the reverse flow and reduced upstream pressure, as observed in Figures 4.15 

and 4.16, respectively. In contrast to cycle T1, a significant amount of vapor flows into 

the recirculation area in this cycle, even reaching the vicinity of the bottom wall. The 

presence of vapor in the recirculation area can be attributed to the reduced pressure in this 

region, as well as over the step (as shown in Figure 4.16), which facilitates the 

accumulation of vapor phase without any collapse. However, only a small amount of 

vapor is able to traverse through the reattachment region. It is worth mentioning that the 

recirculation region remains relatively stable, especially during the initial three-time 

steps, and maintains a relatively low average pressure. As a result, the condensation of 

vapor packets within the recirculation region is insignificant during T2. A comparison 
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between Figures 4.19 and 4.20 reveals that, the shed vortices at reattachment are smaller 

during T2 and occur at higher frequencies (𝑆𝑡ℎ ≈ 0.14,
𝑈𝑐

𝑈0
≈ 0.42) compared to T1. 

Additionally, the changes in the reattachment point and reverse flow during shedding in 

the T2 interval are minor. These observations suggest that the dynamics associated with 

LF1 is not influenced by vortex shedding at reattachment, but rather by the upcoming 

pressure wave and displacement of the reattachment point for case 1. It appears that the 

propagation of the upstream pressure wave over and within the separation bubble plays a 

critical role in the breathing mode and vapor transport. In contrast, during T1 (associated 

with LF2), the incoming pressure wave reinforces a favorable pressure gradient (FPG) 

over TSB, which results in the formation of a strong and large vorticity significantly 

displacing the reattachment point while maintaining low pressure within its core. In this 

scenario, vortex shedding has a substantial impact on the size and dynamics of TSB. 

Moreover, the majority of vapor phase remains confined within the shear layer and is 

transported within the core of the shed vorticity to distances well beyond the average 

reattachment point. In contrast, during T2 period (LF1), a notable pressure drop behind 

the step facilitates the accumulation of vapor phase within the recirculation region. Under 

these conditions, the shed vortices lack the strength and size to significantly displace the 

impingement point. Consequently, most of the vapor carried by these vortices 

immediately collapse upon exposure to the high-pressure impingement region, while 

vapor remains largely unaffected in the recirculation zone. These findings highlight the 

significant impact of the coupling and timing among the incoming pressure wave, phase 

transition, and vortex shedding on TSB dynamics. 
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Figure 4.20 Instantaneous results for case I, T2, in the middle depth plane for the 

pressure field (left columns) and streamline of nondimensional velocity field (right 

column). Dashed flash shows the vortex shed off, 𝜟𝒕̃ is expressed based on the 

nondimensionalized time and is equal to 2.375 (considering one cycle of shedding Sth = 

0.105). 

The spatio-temporal evolution of the pressure field is presented in Figure 4.21. The 

pressure field was averaged across the entire spanwise direction and in the depth wise 

direction from the bottom wall up to 0.1h above the step. The regions corresponding to 

T1 and T2 are indicated using white dashed lines and zoom-in counterparts are provided 

in the right-hand column. Several notable features can be identified from these 

spatiotemporal maps. Firstly, pressure waves propagating downstream are visible as red 

inclined stripes (the slope indicates the wave propagation speed), which originate from 

the step at 𝑥̃=0 and extend to the reattachment at 𝑥̃≈6. These pressure waves create 

necessary conditions for significant reattachment point displacement. Large reattachment 

point displacements are associated with strong penetration of the low-pressure zone into 

the channel, which is observed as black stripes that persist until the channel end. These 
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black stripes are generally followed by large pressure waves, which demonstrates the 

impact of significant displacement of reattachment on pressure wave propagation along 

the channel. As noted in the previous section, these structures are associated with the 

TSB's LF2 breathing mode. 

Another intriguing observation is the presence of randomly distributed yellow spikes 

throughout the spatiotemporal map, which are predominantly concentrated within the 

latter part of the shear layer and the reattachment zone. These spikes exhibit shock wave 

propagation with a very steep slope, implying their high speed. Interestingly, shock waves 

generated by bubble collapse within the reattachment point penetrate deeper into the 

channel (longer spike lengths) than those occurring upstream of the reattachment point, 

which suggests that they are more energetic (potentially due to higher pressure recovery 

or a larger fraction of collapsing bubbles). 

Another key observation is the presence of dark regions with large areas within the first 

half of the channel, particularly more pronounced for case I. These regions are associated 

with the LF1 mode of breathing. The spatiotemporal map reveals that they are linked to 

high-frequency, small-width shedding, which is represented by a jagged interface 

between the high and low-pressure regions around the reattachment point. 

A closer examination of the zoom-in sections corresponding to the T1(𝑡̃ = 152~162) and 

T2(𝑡̃ = 162~175.75) periods provides further insights. For case I, it can be observed that 

T1 is associated with a thick dark stripe penetrating to the end of the channel, which is 

followed by a large pressure wave stripe and significant shock wave generation at the end 

portion. For the T2 period, high-frequency shedding with small distance between peaks 

and valleys at the interface is evident at the reattachment region, where the low-pressure 

zone is only able to slightly penetrate within the high-pressure zone. 
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Figure 4.21 Spatio-temporal map of the pressure field for case I (top) and case II 

(bottom). 

The results obtained from the spatio-temporal correlation (𝑅𝑝′, Appendix A) will help in 

determining the frequency which is in harmony with convective velocity within the shear 

layer. Thus, the spatio-temporal correlation of the pressure field with reference point of 

𝑥̃ = 3.5 (point 1 in Figure 4.7(a)) are represented for both cases in Figure 4.22. The slope 

implies that for both cases the convective velocity within the shear layer is close to 0.51 

of 𝑈0. As expected, convection starts with a large slope, which gradually decreases while 

moving towards the reattachment point. Also, the time interval of a coherent structure 

passing from a fixed horizontal point, 𝛿𝑡̃, is estimated based on the maximum gradient of 

the correlation function with respect to the dimensionless time at the reference point. The 

inverse of 𝛿𝑡̃ offers an approximation of 𝑆𝑡ℎ related to the transport of coherent structures 

within the shear layer and at the reference point, which are around 0.36 and 0.4 for cases 

I and II, respectively. It should be notice that these frequencies are in good agreement 

with dominant medium frequencies in Figure 4.14, which supports and conveys that the 

medium frequencies in spectral analysis are related to coherent structure transport within 

the shear layer. Moreover, even though both cases have more or less the same convective 

velocity within the shear layer, the coherent structures for case I should be larger than for 

case II due to larger 𝛿𝑡̃, which is in agreement with two point auto-correlation results in 

Figure 4.13. Also, from the correlation plots it is evident that the structures for case II 

should have more coherence throughout their travel through the channel, while the 
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structures have maximum correlation only in a small vicinity from the reference point for 

case I, which implies that they should experience more variation as they travel through 

the channel. This is in line with the assumption that vapor generation within the shear 

layer reduces the coupling between Reynolds normal stress components(Belahadji et al., 

1995; Iyer and Ceccio, 2002), which leads to variations in the shape of coherent structures 

after phase transition. 

 

Figure 4.22 Spatio-temporal correlation of the pressure field. 

4.2.5  Modal Analysis 

In this section, a SPOD modal analysis proposed by Towne, Schmidt & 

Colonius(Towne et al., 2018) is covered to identify coherent structures associated with 

low and medium frequencies and to investigate spatio-temporal characteristics of 

energetic motions for cases I and II. SPOD is a frequency domain variant of POD 

specifically designed for statistically stationary flows. Details regarding SPOD 

calculations are provided in Appendix A. 

Figure 4.23 represents the first three SPOD modes for cases I and II. The energy content 

of the first mode in the low frequency region (𝑆𝑡ℎ < 0.3) encompasses a significant 

portion of the total energy, which emphasizes on the coherency of turbulent structures in 

these frequencies (low rank behavior)(Brès et al., 2018). In the previous section, two 

dominant low frequencies (LF1 and LF2, related to the breathing mechanism of the shear 

layer) and one medium frequency (MF, related to the instabilities of within the shear 
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layer) are covered using the spectral analysis of pressure fluctuations within the TSB. In 

Figure 4.23, the frequencies close to these dominant frequencies are specified for both 

cases. In the previous section, it is observed that LF1 and LF2 are slightly larger for case 

II than those for case I. In this section, SPODs of identical frequencies are explored for 

both cases. Since the differences between dominant frequencies of two cases are very 

small and a significantly large number of snapshots are required to be able to consider 

those differences in SPOD analysis. These dominant frequencies associated with the 

dynamics of TSB also manifest a high energy magnitude in the first SPOD mode, showing 

their significance for the dynamics of the whole flow in the studied domain. Moreover, 

for large frequencies modes (𝑆𝑡ℎ > 1 )   case I contains on average higher energy 

compared to case II, which can be attributed to the high frequency fluctuations generated 

by bubble collapses for case I, similar to the results provided in the previous section 

(Figures 4.14).  

 

Figure 4.23 Energy spectra of the first three SPOD modes for cases I and II. 

Figure 4.24 displays iso-surfaces related to the first SPOD mode associated with Sth =

0.042 for the streamwise velocity components and cases I and II. From this figure, it is 

apparent that this frequency is associated with large coherent structures encompassing the 

reverse flow and a significant portion of the shear layer close to the reattachment. The 

variations in these structures over one period are provided in the Supplementary Movies 

I and II for cases I and II, respectively. It can be seen that this mode is linked to the 

formation of the reverse flow and appearance and movement of large streamwise 

structures related to the reattachment displacement. This result confirms that LF1 in the 

breathing mechanism of TSB is associated with reverse flow dynamics and shedding of 
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an extremely large structure within the shear layer (displacement of reattachment point), 

which was also reported, in previous studies(Dow et al., 2022; Kiya and Sasaki, 1983). 

Moreover, a comparison between cases I and II suggests that the structures corresponding 

to  𝑆𝑡ℎ = 0.042 are more energetic, larger, and more concentrated within the shear layer 

and reversed flow regions for case I compared to those for case II. This result agrees with 

the results from the previous section where the pressure and velocity fluctuations 

corresponding to LF1 are more dominant and energetic for case I compared to those for 

case II, which implies that cavitation and phase transition reinforce low frequency 

motions with alterations of the dynamics of reverse flow. It is also shown that these 

motions are linked to the upstream perturbations and pressure wave (which is observed 

to be in coherence with reattachment displacement) so that it can be concluded that 

cavitation enhances the coupling between the upstream pressure wave and TSB dynamics 

(also shown in Figure 4.17). 

 

Figure 4.24 Iso-surfaces of real part of SPOD modes of the streamwise velocity 

associated with 𝑺𝒕𝒉 = 𝟎. 𝟎𝟒𝟐 for Cases I and II, shown in an arbitrary phase. Red color: 

transparent (𝟎. 𝟎𝟎𝟎𝟔 ≤ 𝝓𝑼𝒙 ≤ 𝟎. 𝟎𝟎𝟐𝟓), opaque (𝟎. 𝟎𝟎𝟏𝟑 ≤ 𝝓𝑼𝒙 ≤ 𝟎. 𝟎𝟎𝟐𝟓). Blue 

color: transparent (−𝟎.𝟎𝟎𝟐𝟓 ≤ 𝝓𝑼𝒙 ≤ −𝟎. 𝟎𝟎𝟎𝟔), opaque (−𝟎.𝟎𝟎𝟐𝟓 ≤ 𝝓𝑼𝒙 ≤

−𝟎. 𝟎𝟎𝟏𝟑).  

Figure 4.25 provides the cross-sectional view of SPOD mode of 𝑈𝑥 in 𝑥 − 𝑦 and 𝑦 − 𝑧 

planes, where the streamlines starting at (𝑥̃ = 0.0, 𝑦̃ = 1.0, detachment point) and (𝑥̃ =

0.0, 𝑦̃ = 1.15) are superimposed. For both cases, alternating positive-negative value 

SPOD modes appear at 𝑦 − 𝑧 cross-sections in the spanwise direction and in the vicinity 

of the dividing streamline (𝜓 = 0) for 𝑥̃ = 1.8~3.4, which is likely to be representative 

of counter-rotating streamwise vortices in these areas. Also, downstream of the 
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reattachment (𝑥̃ ≈ 6), similar but weaker structures are visible (more evident for case II) 

above the second streamline.  

 

Figure 4.25 Cross-sectional view of real part of SPOD modes of streamwise velocity 

associated with 𝑺𝒕𝒉 = 𝟎. 𝟎𝟒𝟐  for Cases I and II, shown in an arbitrary phase. Blue 

lines represent streamlines starting at (𝒙̃ = 𝟎. 𝟎, 𝒚̃ = 𝟏. 𝟎) and (𝒙̃ = 𝟎. 𝟎, 𝒚̃ = 𝟏. 𝟏𝟓). 

Previous studies reported that the counter-rotating streamwise coherent structures 

developing over concave pathways within the shear layer can be related to the Görtler 

vortices and instability, which is coupled with low frequency dynamics of the separation 

bubble(Hickel et al., 2021). Görtler instability occurs due to the opposite directions in the 

centrifugal force generated by the curvature streamline of separated flow and the wall-

normal velocity gradient(Floryan, 1991). Generally, Görtler number is used as a threshold 

criterion for Görtler instability, which is defined as (Floryan, 1991): 

𝐺𝑡 =
𝑈𝑒𝜃

𝜈
√
𝜃

𝑅𝑐
 ,                                                                                                                                   

where 𝑈𝑒  is the free-stream velocity at the edge of the boundary layer, 𝜃 is the local 

momentum thickness, and 𝑅𝑐  is the radius of the curvature of the related streamline. 

According to the study by Wu et al.(W. Wu et al., 2020) , the total viscosity (𝜈𝑡𝑜𝑡 = 𝜈 +

𝜈𝜏) was used in calculations of the Görtler number to account for turbulent effects. 

Previous studies suggested that Görtler instability appears when Görtler number exceeds 

0.3(Floryan, 1991). We examined the possibility of Görtler instability by calculating the 

Görtler instability along the dividing streamline (𝜓 = 0) for the spanwise averaged mean 

flow for both cases (Figure 4.26). Even though none of the cases meet the required 

threshold for having Görtler instability, the variations in Görtler number along the 
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dividing streamline (Figure 4.26) provide some useful insights. These insights include 

having the highest chance of Görtler instability downstream of the reattachment, and a 

decline in the Görtler number in presence of cavitation, which is mainly caused by the 

decrease in the dividing streamline curvature in this region for the case of cavitation. 

 

Figure 4.26 Variations in Görtler number along the dividing streamline. 

The first cross-sectional view of the first SPOD mode corresponding to frequency of 

𝑆𝑡ℎ = 0.125 is presented for both cases in Figure 4.27. The animation of variations in 

three-dimensional structures over time are provided in Supplementary Movies III and IV 

for cases I and II, respectively, which depicts the evolution and transport of these 

structures within the shear layer. This frequency is close to the LF2 frequency for both 

cases, which is linked to vortex shedding in the reattachment. This frequency is coupled 

with large alternating coherent structures initiating and developing within the shear layer 

and hitting the wall in reattachment region. Most of the structures related to this mode are 

clustered around the reattachment point, with small variations in the spanwise direction. 

The coherent structures are more energetic upstream of the reattachment and less 

energetic downstream compared for case I compared to those for case II (as an example, 

one can consider the difference between coherent structures of two cases around 𝑥̃ = 4 

and 𝑥̃ = 8). Thus, it can be concluded that the mode is more in harmony with coherent 

structures upstream of the reattachment for case I and downstream of the reattachment 

for case II, which suggests that dominant fluctuations (in particular reattachment vortex 

shedding frequency) have smaller frequencies for case I compared to their counterparts 

for case II, which agrees with previous section results as well as with the results of other 

studies(Bhatt et al., 2021a).  
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Another observation is similar but much weaker structures above the shear layer moving 

with a phase angle with respect to the energetic ones, which are evident in 𝑥 − 𝑦 plane. 

In addition, low energy alternating structures above TSB and close to forth/back walls are 

related to the turbulent structures generated due to the interaction of the flow with the 

front and back walls.  

 

Figure 4.27 Cross-sectional view of the real part of SPOD modes of streamwise velocity 

associated with 𝑺𝒕𝒉 = 𝟎. 𝟏𝟐𝟓  for Cases I and II, shown in an arbitrary phase. Blue 

lines represent streamlines starting at (𝒙̃ = 𝟎. 𝟎, 𝒚̃ = 𝟏. 𝟎) and (𝒙̃ = 𝟎. 𝟎, 𝒚̃ = 𝟏. 𝟏𝟓). 

Figure 4.28 shows the first SPOD mode corresponding to 𝑆𝑡ℎ = 0.292, the frequency 

related to the vortex shedding within the shear layer. The alternating positive negative 

value coherent structures are visible within the shear layer with a shorter length compared 

to the previous modes. The structures with opposite signs are spread along the shear layer 

next to each other.  The motion of these three-dimensional structures is presented in 

Supplementary Movies V and VI for cases I and II, respectively. The energetic structures 

within the shear layer are near uniform across the spanwise direction. When getting closer 

to the reattachment region, the structures become less energetic and more distorted. 

Similar to previous modes, weak turbulent structures can be observed above the shear 

layer. 
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Figure 4.28 Cross-sectional view of the real part of SPOD modes of streamwise velocity 

associated with 𝑺𝒕𝒉 = 𝟎. 𝟐𝟗𝟐  for Cases I and II, shown in an arbitrary phase. Blue 

lines represent streamlines starting at (𝒙̃ = 𝟎. 𝟎, 𝒚̃ = 𝟏. 𝟎) and (𝒙̃ = 𝟎. 𝟎, 𝒚̃ = 𝟏. 𝟏𝟓). 

4.3 Conclusion 

The effect of cavitation on mean characteristics and dynamics of TSB within a 

shallow microscale BFS configuration was investigated in this study. For this purpose, a 

numerical approach capable of capturing compressibility as well as thermodynamic non 

equilibrium conditions were implemented. The numerical results were validated against 

our experimental results and the results of the literature(Winklhofer et al., 2001). Two 

cases (with and without phase transition), were considered for the Reynolds number (𝑅𝑒ℎ) 

of 7440, and LES was used to take turbulence effects into account. 

The results showed that cavitation results in a narrower shear layer and postpones the 

reattachment. Accumulation of the vapor phase in the shear layer significantly alters the 

size and shape of the coherent structures in this region. In the presence of cavitation, the 

spanwise vortical structures are stretched along the shear layer and become longer and 

thinner compared to the case in the absence of cavitation.  

The analysis of the mean pressure and RMS of pressure fluctuations reveals that 

cavitation leads to a decline in both parameters within the shear layer (particularly the 

second part of the shear layer which is the most vaporous region). In contrast, both 

parameters increase within the reattachment region. Condensation and bubble collapse in 

the reattachment region provide main contributions to the increase in the mean pressure 
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and pressure fluctuation RMS Moreover, vapor generation triggers the conversion of 

Reynolds shear stress to TKE (decoupling between Reynolds stress components), while 

condensation and collapse lead to an increase in Reynold normal stresses (particularly 

streamwise Reynolds normal stress in our case). 

Regarding TSB dynamics, cavitation results in a decrease in dominant frequencies. The 

variations in the area of reverse flow have two dominant frequencies linked to the 

displacement at the reattachment point for both cases (with and without cavitation). The 

smaller frequency, LF1, is associated with the slow growth of TSB (which is fed by the 

upstream turbulent boundary layer), while small vortices shed off from the end of TSB 

with a higher frequency. The larger frequency, LF2, is related to the cases where shed 

vortices are large enough so that their growth and separation significantly alter the size 

of TSB and relocates the impingement. In the presence of cavitation, the frequency 

associated with the smallest dominant frequency (LF1) is more energetic along the shear 

layer and reattachment, which suggests that cavitation reinforces the TSB breathing 

mechanism associated with LF1. Moreover, in the vicinity of the reattachment, high 

frequencies are more energetic for the case of cavitation, which suggests that bubble 

collapses in those areas lead to high frequency fluctuations.  

Two different cavitation trends coupled with LF1 and LF2 can be recognized. For the 

case of LF1, vapor packets primarily concentrate within the second half of the shear layer 

and behind the impingement, while some of them are transported to the low-pressure 

regions within the recirculation. For this case, the pressure drop within the shed vortices 

is not sufficient to sustain the vapor phase across the reattachment. On the other hand, in 

the case of LF2, shed vortices have enough strength to sustain their low-pressure core for 

long distances downstream of the step. For this case, the pressure within the recirculation 

region is large and vapor pockets collapse upon their entry to recirculation. Therefore, 

they are carried deeper into the channel, and their collapses correspond to stronger 

pressure waves (mostly shockwaves) for LF2 compared to those for LF1. 

Finally, results from the modal analysis show that for both cases large coherent structures 

fluctuating with LF1 frequency encompass a significant portion of the shear layer. 

Furthermore, the coherent structures are larger and more energetic in the presence of 

cavitation, which indicates that LF1 motions are more significant for this case. In 

addition, LF2 and MF frequencies are linked to vortex shedding within the reattachment 

and shear layer, respectively.  
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5 EFFECT OF RIBLET-MOUNTED SURFACES AND BLOCKAGE RATIO 

ON CAVITATING AND NON-CAVITATING SEPARATING FLOW 

5.1 Introduction 

This study presents a comprehensive computational investigation into the coupled 

effects of riblet-equipped surfaces, quantified by Blockage Ratio (BR), on turbulent flow 

characteristics and cavitation phenomena in a channel with a backward-facing step. Our 

methodology employed a customized three-dimensional Low Mach number fully 

compressible cavitation flow solver, as detailed in Chapter 3, which leverages a second-

order, four-stage low-storage Runge-Kutta time integration technique with an adaptive 

Courant-Friedrichs-Lewey (CFL) criterion for temporal advancement. The flow physics 

were modeled using LES, specifically employing the Favre-filtered conservative 

equations and a mixed Subgrid-Scale (SGS) model. Our analysis of the turbulent flow, 

including Turbulence Kinetic Energy (TKE) budgets, Reynolds stress anisotropy, 

autocorrelation, spectral analysis, and Dynamic Mode Decomposition (DMD), reveals 

that riblets fundamentally alter the flow field. Increasing BR leads to a shift in TKE 

transport mechanisms from production/dissipation to enhanced turbulent diffusion and 

convection, particularly in the shear layer. Reynolds stress anisotropy is significantly 

reduced near the wall, and its distribution shifts, reflecting modified turbulent mixing. 

Coherent structures become larger and slower, evidenced by expanded temporal scales in 

spectral analysis and the formation of dominant low-frequency vortices near the ribs and 

crests in DMD modes. These altered flow characteristics have a profound impact on 

cavitation. Even at low BR, intermittent cavitation packets form within vortex cores 

above the ribs. With increasing BR, cavitation packets become notably larger and more 

intense, directly correlating with the increased strength and size of the underlying 

coherent structures. The recirculation zone and corner vorticity are entirely vapor-filled, 

and a large, cylindrically shaped vapor packet sheds from the separation bubble, whose 

size and intensity scale directly with BR. The channel ultimately enters a supercavitation 

regime in Region II, with varying void fraction distributions dependent on BR. This work 
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underscores the critical role of riblet-induced turbulent flow modifications, specifically 

changes in Reynolds stresses and coherent structures, in governing cavitation inception 

and evolution in complex geometries. 

5.2 Test Cases and Numerical Setup 

Figure 5.1 illustrates the computational domain, which comprises two main 

sections: a ribbed square duct (Region I) and a downstream expansion area (Region II). 

Region I has equal side lengths, Ly=Lz=H (where H represents the step height), and 

extends Lx=15H in the streamwise direction. This region includes ten rib periods (P), 

each measuring P=0.8H. The rectangular bars within this section have a height of H and 

a width of W. For our analysis, particularly when comparing with 2D plane-channel flow 

results, it's helpful to define the half-side length (δ=D/2). Our comparative study involved 

numerical modeling conducted using four different blockage ratios (Br=H/Ly): 0, 0.05, 

0.1, and 0.2. A unique approach is necessary for inlet turbulent boundary conditions 

ecause simulating the natural development of turbulence over a very large domain would 

be inefficient in terms of computational resources and time. 

Unlike simulations of time-evolving turbulence, Direct Numerical Simulations (DNS) or 

Large Eddy Simulations (LES) of flows that are spatially inhomogeneous need turbulent 

conditions at their inflow boundaries. We use a synthetic turbulence generation method 

based on a digital filter technique(Klein et al., 2003) generates the correct turbulent 

inflow. This method accurately replicating first- and second-order statistical moments and 

spectra. Crucially, it does so without adding low-frequency content that could alter the 

downstream low-frequency dynamics. The statistical parameters are estimated from a 

separate set of simulation on a separate domain under statistical stationary condition. For 

this purpose, we consider a domain with a periodic channel and dimensions of 

10𝐻 × 𝐻 × 𝐻, and grid resolution of 320 × 32 × 32. The simulation begins with a uniform 

zero-velocity initial state and continues for 50 flow-through periods. To remove any potential 

effects from the initial conditions or the outlet boundary, statistical calculations exclude the first 

flow-through time and the region downstream near the outlet. Then Reynolds stresses, turbulent 

length scale components, and mean velocity field of this simulation was used for synthetic 
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turbulence generation in the main domain inlet. Identical inlets streamwise mean velocity 

of 36 𝑚/𝑠  is utilized as the reference velocity (𝑈𝑟𝑒𝑓)  for all cases, resulting in the 

Reynolds number of 7200. Wave transmissive condition was applied to the outlet and no-

slip to the sidewalls.  For timesteps, an automatic adjustable technique based on Courant 

and acoustic Courant numbers was utilized so that these numbers did not exceed 0.5 and 

50, respectively, with maximum time steps limitation of 1e-7 s. The write time of 0.5  

for the solution was utilized to capture a wide range of frequencies while avoiding storage 

problems. Grid generation was accomplished using block-based local refinement, close 

to the walls and TSB regions (Figure 5.1 (b)). Grid resolution was adjusted in such a way 

that the value of dimensionless wall distance ( 𝑦+ = 𝑦𝑢𝜏/𝜈  where 𝑢𝜏  is the friction 

velocity) close to the walls did not exceed 1 which enabled appropriate resolving of the 

wall shear stress. 

The results for grid convergence study are presented in Figure 5.1 (c) which includes the 

mean streamwise velocity profile in the absence of cavitation along the channel in case 

of BR = 0.05. Comparisons between coarse, fine, and finer grids, with ≈ 5 × 106 ; 

12 × 106 ; and 18 × 106  mesh numbers respectively, show minor differences between 

fine and finer grids implying a grid convergence at fine grid which was accordingly 

considered for this study. 
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Figure 5.1 (a) The diagram illustrates a BFS equipped with transverse ribs and its 

associated coordinate system. The origin of this absolute coordinate system [x,y,z] can be 

found at the midpoint of the inlet's x–y plane. Ten rib periods are simulated. The relative 

streamwise coordinate (x′) is defined to facilitate the analysis of each rib period, with its 

origin positioned at the windward face of each rib. (b) Grid configuration inside the 

domain. (c) Streamlines and contours of the mean streamwise velocity along with the 

cross-sectional mean streamwise velocity and pressure fields at different streamwise 

locations for different numbers of grids. 

5.3 Results and Discussions 

5.3.1 Statistical Characterisation 

In alignment with previous research, particularly the Direct Numerical Simulation (DNS) 

study of turbulent flow through a ribbed square duct(Mahmoodi-Jezeh and Wang, 2020), 

we focused on the region between the 5th and 6th riblets to analyze its statistical 

characteristics. The statistically stationary condition is generally satisfied for separating-

reattaching flows with vortex shedding, provided time-averaged quantities (mean 

velocity, pressure, turbulence statistics) remain constant over sufficiently long-time 
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intervals, despite instantaneous unsteadiness. Vortex shedding introduces periodic 

fluctuations, but the system's long-term statistical properties stabilize with appropriate 

averaging(Li et al., 2024; Shi et al., 2010; B. Wu et al., 2020). Statistical characterization 

was performed using 3000 time steps. Convergence of the results was confirmed through 

a comparison with data obtained from 4000 time steps. Figure 5.2 presents the mean 

streamwise velocity field superimposed with streamlines for this region, specifically from 

the bottom wall up to a region bound to 0.3δ (δ=0.5H) above the rib crest in the mid-plane 

(z/ δ = 1), for Blockage Ratios (BR =0.05, 0.1, 0.2, corresponding to BFS II, III, and IV. 

The observed streamline patterns closely resemble those reported in the aforementioned 

DNS study(Mahmoodi-Jezeh and Wang, 2020), confirming that our implemented LES 

method possesses sufficient resolution and accuracy to replicate DNS results. A 

prominent feature is a large recirculation zone (A) located between the leeward face of 

the upstream rib and the windward face of the downstream rib. This zone forms due to 

initial flow separation caused by the adverse pressure gradient (APG) downstream of the 

expansion. Additionally, two smaller corner vortices are evident: one near the upstream 

rib's leeward side (B) and another close to the downstream rib's windward side (C). 

For BFS II and III, the flow pattern exhibits similarities to k-type roughness elements 

observed on riblet surfaces. In contrast, BFS IV displays a streamline pattern akin to d-

type roughness elements found on flow over planar surfaces. In BFS II and III, the flow 

reattaches to the bottom surface (D), followed by the development of a new boundary 

layer (E). The corner vortices grow in size with increasing APG strength, leading to a 

reduction in the distance between reattachment point D and new boundary layer 

development E as the blockage ratio increases. For BFS IV, this distance is significantly 

reduced, resulting in the merger of recirculation zone A and corner vortex C. This forms 

a single, large circulation region where the flow bypasses sequential ribs without 

reattaching to the surface. These distinct flow patterns significantly influence friction and 

form drag forces, as well as the turbulent structures near the bottom surface, which, in 

turn, remarkably alter the characteristics and dynamics of the shear layer downstream of 

the step. These effects will be further discussed in subsequent sections. 
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Figure 5.2 Mean streamline velocity fields superimposed with streamlines for (a) BFSII, 

(b) BFS III, and (c) BFS IV. 

To investigate potential differences in flow patterns between sequential ribs, streamwise 

velocity profiles along the local distance x′ (where x′ is the distance from the windward 

side of the upstream rib) are presented in Figure 5.3. Beyond the initial two sequential 

ribs, the velocity distribution between consecutive ribs shows remarkable similarity, with 

the largest observed difference being less than 5% across all cases. This consistency 

confirms that a detailed investigation of the statistical characteristics of a single sequential 

rib region provides an acceptable approximation for other riblets 

 

 

Figure 5.3 Normalized streamwise velocity profile over the local distance of x'/δ = 0.4 

(local coordinate is located at beginning of the upstream rib, for each two sequential 

ribs) and z/δ = 0.1, for sequential ribs along the channel. 
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A detailed comparison of streamwise velocity and its gradient at different spatial locations 

along two consecutive ribs is provided in Figure 5.4. For benchmarking purposes, 

reference profiles from a plain channel (BR = 0) are included and depicted in blue. 

Leveraging the previously established negligible variations in velocity profiles across 

different subsequential ribs, our analysis focuses on the segment between x/H=4.0 and 

x/H=8.0 (corresponding to the 5th and 6th ribs). Within this specific riblet region, three 

representative distances from the upstream rib are chosen: x′/H=0.5, 1.0, and 1.5. In the 

context of BFS II and III, these locations respectively represent the large recirculation 

region, the zone between flow reattachment and detachment, and the area downstream of 

detachment. Conversely, for BFS IV, all three selected distances are situated entirely 

within the extensive recirculation zone. 

For x′/δ=0.4, a comparison across different Blockage Ratios (BR = 0.05, 0.1, and 0.2) 

reveals several key trends. An increase in BR leads to a wider region of reverse flow 

below the crest and a more pronounced convection of the flow towards the channel center. 

Furthermore, the velocity gradient exhibits its largest negative value near the wall and its 

largest positive value above the crest for the smallest BR (0.05), indicating a stronger 

shear effect in these regions for lower blockage ratios. As anticipated, for the other two 

distances (x′/δ=1.0 and 1.5), no reverse flow is observed for BR = 0.05 and 0.1. However, 

the reverse flow becomes significantly stronger for BR = 0.2 at these locations. 

Nonetheless, unlike at x′/δ=0.4, no distinct peak in the velocity gradient is observed 

around the crest for any BR at these greater downstream distances. Given that x′/δ=0.4 

exhibits both the highest streamwise velocity and velocity gradient near the crest, 

maximum turbulent production is anticipated in this specific region. Consequently, 

particular attention will be given to the flow characteristics at x′/δ=0.4 in the subsequent 

turbulence analysis section. 



 

104 
 

 

Figure 5.4 Normalized streamwise velocity and its wall normal gradient over the local 

distance of x'/δ = 0.4, 1, and 1.5 from beginning of the 5th rib (red line determine the rib 

crest region). 

Downstream of the step, a substantial adverse pressure gradient (APG) induces flow 

separation and the formation of a separation bubble. This bubble encompasses both the 

recirculation zone and the developing shear layer, extending from the point of detachment 

to reattachment. A critical characteristic of this separation bubble is the thickness and 

growth rate of its associated shear layer. In reattaching shear layers, such as those 

observed in BFS configurations, the growth rate and thickness are influenced by various 

parameters, including the Reynolds number, step height ratio, and the characteristics of 

the incoming turbulent boundary layer. 

Beyond these parameters, the morphology of the shear layer is intrinsically linked to the 

topology of the coherent structures within this region. These structures are the primary 

drivers of mass and momentum transfer from the low-momentum fluid within the 

separation bubble to the high-momentum fluid in the free stream. Previous studies have 

indicated that the growth rate of a BFS shear layer exhibits two distinct behaviors: an 

initial phase and a subsequent phase. In the initial part, extending from detachment up to 

approximately the mid-distance to reattachment, the shear layer behaves similarly to a 

free mixing layer, with an average shear layer thickness growth slope ranging from 0.22 
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to 0.47. Conversely, in the second part, which constitutes a larger portion of the 

reattaching shear layer, the growth slope significantly declines, and the layer grows more 

smoothly until it reaches the bottom surface (Figure 5.5). 

Figure 5.5 illustrates the vorticity thickness, δω, along the shear layer for different 

Blockage Ratios (BR). The methodology for calculating this parameter is detailed in 

Appendix A. The slopes of the first and second parts of the shear layer, denoted as s1 and 

s2 respectively, were determined using linear curve fitting. It is observed that an increase 

in BR leads to an increase in s1 and a decrease in s2. As anticipated and consistent with 

findings presented in the previous section, higher BR values are associated with an 

increased thickness of the incoming boundary layer. (The subsequent section will 

demonstrate that for higher BR, turbulent production and convection extend over a larger 

width within the boundary layer, accompanied by greater turbulence convection to the 

downstream shear layer, ultimately resulting in a thicker shear layer at its initiation.) 

Figure 5.5(b) presents the shear layer's lower and upper bounds, superimposed on the 

mean streamwise velocity field within the shear region. These bounds are colored red and 

blue, respectively. The lower bound is estimated by the Recirculation Region Interface 

(RRI)(W. Wu et al., 2020), while the upper bound is determined as the summation of the 

lower bound and the vorticity thickness. Additionally, reattachment points are clearly 

indicated by yellow circles. 

According to previous studies(Maleki et al., 2024; Nadge and Govardhan, 2014), for a 

fixed step ratio, an increase in vorticity thickness is typically associated with an earlier 

reattachment. However, our observations in Figure 5.5 reveal a contrasting trend: the 

increase in vorticity thickness with increasing BR is accompanied by a sudden decrease 

in the shear layer's second-part slope (s2), which, counter-intuitively, postpones 

reattachment. In our study, unlike in some previous investigations such as Stella (Stella, 

2017), the increased vorticity thickness is not attributable to an elevated Reynolds 

number, which typically enhances mass/momentum entrainment and consequently 

promotes shear layer growth. Instead, in our specific case, the substantial thickness of the 

shear layer in its initial part is a direct consequence of upstream flow perturbations 

generated by the preceding riblets. These perturbations significantly enhance mass and 

momentum exchange within this nascent region. However, as the flow progresses 

downstream, the gradient of the velocity across the shear layer weakens, becoming 

insufficient to sustain further growth of local spanwise vorticities within the shear layer. 
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This reduction in vorticity amplification subsequently decelerates the overall growth 

process. 

 

 

Figure 5.5 Shear layer growth. (a) vorticity thickness δω (the fitted slopes are s1 = 0.22, 

0.26, 0.4, and 0.47, s2 = 1/20, 1/24, 1/35, and 1/40 for BR = 0, 0.05, 0.1, and 0.2, 

respectively.) (b) Mean separated flow superimposed on velocity field for different BR.  

To further elucidate the influence of Blockage Ratio (BR) on the mean flow field 

downstream of the BFS, the distribution of the normalized mean streamwise velocity, 

⟨𝑢⟩/𝑈𝑟𝑒𝑓, and its derivative, (𝜕⟨𝑢⟩/𝜕𝑦) ⋅ (𝛿/𝑈𝑟𝑒𝑓), are presented in Figure 5.2. These 

profiles are shown at the center-plane (z/δ=1) for three specific streamwise distances: 

x/H=0.5, 5.0, and 7.5. These selected distances correspond to the initial part of the first 

half of the shear layer, the second half of the shear layer, and the vicinity of the 

reattachment point, respectively, as determined from observations in Figure 5.5. 

As observed in Figure 5.6, in the initial part of the shear layer (x/H=0.5), increasing the 

Blockage Ratio (BR) significantly enhances the reverse flow below the step height 

(y/δ<0). Concurrently, above the step height, the peak velocity is augmented and shifted 

upwards. This upward shift of the peak velocity leads to a decreased slope and a reduced 

mean velocity gradient (∂⟨u⟩/∂y) in the vicinity of the shear layer (at y/δ≈0) (Figure 5.6, 

x/H=0.5). Consequently, one might anticipate a decline in the mean shear layer strength, 

as ∂⟨u⟩/∂y decreases with increasing BR in the first part of the shear layer. (Based on these 
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results, we expect and will subsequently show a decrease in turbulence production near 

the shear layer with increasing BR.) 

In the latter half of the shear layer and close to reattachment, the differences between 

various BRs become less pronounced. Nonetheless, it is still evident that the reverse flow 

within the separation bubble is stronger for larger BR values (Figure 5.6, x/H=5), which, 

in turn, contributes to the postponement of reattachment (Figure 5.6, x/H=7.5). 

 

Figure 5.6 Normalized streamwise velocity and its wall normal gradient over the line at 

center-plane 𝒛/𝜹 = 𝟏, and different streamwise distances 𝒙/𝜹 from the BFS edge for 

BR = 0, 0.05, 0.1, and 0.2. 

 
 

Figure 5.7(a) presents the instantaneous turbulence kinetic energy (TKE), defined as 

TKE=(u′2+v′2+w′2)/2, in the mid-width (z/δ=1) plane of Region I for various Blockage 

Ratios (BR). The results unequivocally demonstrate a remarkable increase in the TKE 

level within the bottom half of the channel. This intensification is most prominent 

directly(Ismail et al., 2018; Ma and Mahesh, 2023) above the rib crest, a region typically 

associated with maximum turbulence production. Furthermore, Figure 5.7(b) displays the 

streamwise Reynolds stress field, which quantifies the unsteadiness attributed to 
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streamwise velocity fluctuations. Maximum streamwise fluctuations originate within the 

shear layer above the rib crest, a region formed as a consequence of flow separation at 

the leading edge of the ribs. Within this shear layer, the shedding of both spanwise and 

streamwise vortices leads to significant turbulent generation, acting as a primary source 

of unsteadiness. (A more detailed discussion of these turbulent structures will be 

presented in the subsequent section.). Conversely, the recirculation zones between the ribs 

exhibit very small fluctuations, indicating that these regions are nearly stationary. 

However, the shear-induced unsteadiness penetrates into the windward region of the 

downstream riblets, accompanied by characteristic ejection and sweeping mechanisms 

occurring near the crests(Hu et al., 2023). This unsteadiness reaches its maximum 

intensity within the shear layer region directly above the first rib crest. The downstream 

transport of this unsteadiness significantly influences the formation of unsteadiness over 

subsequent ribs. As observed in the second row (of Figure 5.7b, presumably), the velocity 

fluctuations are damped because the developing shear layer above the second rib is 

disturbed by these upstream fluctuations. For other downstream ribs, despite some 

observed deviations in the intensity of this unsteadiness, the fundamental patterns largely 

remain consistent. 

Figure 5.8 illustrates the normalized Turbulence Kinetic Energy (TKE) and the 

streamwise Reynolds stress field within the center plane of Region II. As anticipated, 

Figure 5.8(a) demonstrates that TKE is predominantly concentrated within the 

downstream shear layer, a direct consequence of the high turbulent production occurring 

in this region. A remarkable observation is that with increasing Blockage Ratio (BR), the 

thickness of the high-TKE flow entering the BFS downstream shear layer increases 

significantly. Consequently, a larger portion of Region II (particularly the area between 

flow detachment and reattachment) becomes occupied by this high-TKE flow. In the case 

of BFS I (BR = 0), the shear layer downstream of the BFS is identified as the major 

contributor to TKE level through production in this region(Pont-Vílchez et al., 2019; 

SCHÄFER et al., 2009a).  

With the increasing Blockage Ratio (BR), the TKE convected from the upstream region 

of the BFS plays a remarkable role in shaping the TKE level and its distribution in the 

downstream region. Several important parameters collectively influence this TKE 

distribution downstream of the steps. These include the formation of long statistically 

stationary vortices, a smoother velocity gradient at the BFS edge attributed to a thicker, 
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turbulent boundary layer, the concentration of the flow towards the upper half of the 

channel, and an increase in the convection of high TKE with increasing BR. Each of these 

parameters will be detailed in the following sections. 

Furthermore, it is evident that an increase in Blockage Ratio (BR) leads to the appearance 

and subsequent intensification of localized high-intensity TKE streaks (𝑇𝐾𝐸/𝑈𝑟𝑒𝑓
2 > 0.3) 

within the vicinity of the shear layer. This phenomenon strongly indicates the formation 

or convection of exceptionally strong vortical structures in these regions. 

Figure 5.8(b) displays the streamwise Reynolds stress field, which is the primary 

contributor to unsteadiness in Region II, at the center-plane. It is observed that increasing 

the BR leads to a remarkable increase in both the intensity and span of ⟨𝑢′𝑢′⟩, particularly 

within the first part of the shear layer (0<x/H<5). Conversely, in the second part of the 

shear layer, the unsteadiness patterns across all BR cases are highly similar, with the 

streamwise unsteadiness dissipating gradually as the flow progresses towards the 

reattachment point. 

 

Figure 5.7 (a) Instantaneous contour of normalized turbulent kinetic energy 𝑻𝑲𝑬/𝑼𝒓𝒆𝒇
𝟐 , 

and (b) contour of normalized streamwise Reynolds stress 〈𝒖′𝒖′〉/𝑼𝒓𝒆𝒇
𝟐   for different BR 

at 𝒛/𝜹 = 𝟏 in Region I. 
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Figure 5.8 (a) Instantaneous contour of normalized turbulent kinetic energy 𝑻𝑲𝑬/𝑼𝒓𝒆𝒇
𝟐 , 

and (b) contour of normalized streamwise Reynolds stress 〈𝒖′𝒖′〉/𝑼𝒓𝒆𝒇
𝟐   for different BR 

at 𝒛/𝜹 = 𝟏 in Region II. 

Figure 5.9 presents the cross-sectional contours and streamlines of normalized mean 

streamwise velocity and vorticity for various Blockage Ratios (BR). As anticipated, in 

the case of BR = 0 (Figure 5.9(a)), eight distinct corner vortices are formed, comprising 

two counter-rotating vortices in each corner(Le Floc’h et al., 2020b). These vortices 

facilitate the transfer of momentum between low and high momentum regions. In the 

presence of a rib (e.g., for BR = 0.05, Figure 5.9(b)), a strong adverse pressure gradient 

(APG) drives the flow upwards towards the front face of the rib. Concurrently, a spanwise 

pressure gradient exists on the windward face of the step. In this region, pressure is 

highest in the spanwise central area and lowest in the corners. This pressure variation is 

attributed to the maximal momentum change occurring after stagnation in the central 

region compared to the corner regions. This spanwise pressure gradient effectively pushes 

the flow towards the upward corners. Simultaneously, this momentum transfer is 

compensated by a downward movement of the flow in the central region. As Blockage 

Ratio (BR) values increase (Figure 5.9(c) and (d)), these statistically stationary 

longitudinal vortices grow significantly, to the extent that they entirely suppress and 

eliminate the upper corner vortices. 

To investigate how the flow properties in Region I, including the emergence of the pair 

of stationary vortices, influence the mean flow patterns downstream of the step, the mean 

streamwise velocity superimposed with streamlines at different distances from the step is 

presented in Figure 5.10. At x/H=0.5, it is observed that the streamwise vortices present 

prior to the step largely maintain their shape up to this point. Consequently, two large 
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streamwise vortices are evident in the upper half of the cross-section for BR = 0.1 and 

0.2. Furthermore, the interface between the forward and reverse flow is observed to shift 

upwards as BR increases, which in turn leads to a larger mean velocity in the upper 

portion of the channel's cross-section. 

Additionally, two new streamwise vortices are observed to form near the mid-height of 

the side walls. Detailed insights into the formation mechanisms of these stationary 

vortices can be found in previous studies, such as (Pirozzoli et al., 2018). Briefly, the 

curvature of the separation streamline within the potential flow region above the shear 

layer induces a pressure gradient perpendicular to this curvature (with a positive value). 

This resultant pressure gradient leads to a strong downward deflection of low-momentum 

fluid in the vicinity of the side walls. 

With increasing Blockage Ratio (BR), it is observed that the strength and size of this pair 

of side longitudinal vortices augment, indicative of a stronger influence of centrifugal 

forces on the low-momentum regions. This behavior can be attributed to several 

contributing parameters. Firstly, an increased difference between the peak momentum at 

the channel center and the minimum momentum near the side walls leads to a more 

uneven pressure gradient effect and the generation of a stronger velocity gradient between 

these regions. Secondly, an increase in the mean curvature of streamlines in this region, 

resulting from the upward shift in the forward/reverse flow interface, may also play a 

significant role. 

Moving downstream to x/H=5, the two longitudinal vortices initially located in the upper 

part of the channel deflect towards the top wall, maintaining greater strength for larger 

Blockage Ratios (BR). Concurrently, the side wall vortices bend towards the center of the 

bottom wall. The size and strength of these vortices collectively determine the mean 

reattachment point, which is observed to be smallest for BR = 0. 

In the vicinity of the reattachment point, at x/H=7.5, the mean streamlines reveal very 

similar mean flow patterns across all BRs, characterized by two large streamwise vortices 

persisting along the sidewalls. This similarity indicates that the perturbations introduced 

by the ribs have largely dissipated by the time the flow reaches the reattachment point. 
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Figure 5.9 Contours of non-dimensionalized average streamwise vorticity 

𝝎𝒙𝜹/𝑼𝒓𝒆𝒇(left), and the streamlines of non-dimensionalized mean velocity 𝒖⃗⃗ /𝑼𝒓𝒆𝒇  at 

x/δ =9.4, x'/δ=0.4 for (a) Br = 0, (b) Br = 0.05, (c) Br = 0.1 and (d) Br = 0.2. 
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Figure 5.10 Contours of non-dimensionalized average streamwise vorticity 𝝎𝒙𝜹/𝑼𝒓𝒆𝒇 

superimposed with the streamlines of non-dimensionalized mean velocity 𝒖⃗⃗ /𝑼𝒓𝒆𝒇  at 

x/H =0.5, x/H =5.0, and x/H =7.5 for (a) Br = 0, (b) Br = 0.05, (c) Br = 0.1 and (d) Br = 

0.2. 
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5.3.2 Turbulent Structures 

Instantaneous turbulent flow structures were obtained by applying the Q-criterion to the 

flow field. Figure 5.11 presents instantaneous results of Q-isosurfaces in Region I for 

different Blockage Ratio (BR) values. For the smooth bottom wall (BFS I, BR = 0), 

random streamwise fluctuations are observed throughout the channel, primarily 

concentrated near the walls. 

In the presence of ribs, the first rib effectively acts as a forward-facing step. This 

configuration leads to the formation of two distinct separation bubbles: one upstream (the 

LS vortex, located near the windward corner) and another over the leading edge of the rib 

(the US vortex). Both of these separation bubbles are associated with the generation of 

spanwise vortices in their respective regions. 

Approaching the rib, the density of vortical structures increases abruptly, a phenomenon 

particularly evident from the x−y plane images. Most of these structures are quasi-

streamwise (QS) vortices, aligned predominantly in the streamwise-vertical direction. 

Downstream of the rib's leading edge, these QS vortices coalesce, forming distinct Λ-

shaped or hairpin vortices (as annotated in Figure 4, BFS II case). 

This observation aligns closely with the findings of(Fang et al., 2021), which highlight 

that counter-rotating vortices upstream of a forward-facing step (potentially representing 

the legs of hairpin vortices forming upstream and over the step) significantly influence 

the ejection and sweeping events within both the upstream and downstream separation 

bubbles of the step. 

As detailed in (ZHOU et al., 1999), the upward and backward pumping action of counter-

rotating quasi-streamwise (QS) vortices causes their inclination at the vortex head. 

Furthermore, the velocity gradient between the head of these QS vortices and the 

mainstream flow contributes to the formation of an asymmetric shear layer and the 

generation of a spanwise vortex in close proximity to the QS vortex heads. This process 

can manifest as the merging of QS vortices at their heads, leading to the formation of Λ-

shaped vortices, which may subsequently develop into hairpin and Ω-shaped 

vortices(Santese et al., 2024a). 

From Figure 5.11, it's clear that the intensity and strength (Q) of these turbulent structures 

increase with higher BR. Downstream of the rib's trailing edge, depending on the rib's 



 

115 
 

width-to-height ratio and the Reynolds number, one of two scenarios can occur: either a 

new shear layer and separation bubble form, or the existing separation bubble over the rib 

extends into the expansion region. Our analysis of the mean streamlines in Figure 5.2 

indicates that, on average, the latter scenario is the case in this study. Under these 

conditions, the vortical structures generated upstream and over the leading edge are 

convected and evolve over the cavity region. As reattachment occurs within the cavity, 

these structures can break down into new, smaller structures. Meanwhile, subsequent ribs 

act as new turbulence generators, leading to the formation and evolution of new turbulent 

structures that then interact with the convected ones. The accumulation of these 

fluctuations along the channel intensifies and extends unsteadiness towards the center of 

the channel as the flow approaches the backward step edge (Figure 5.7(b)). 

The formation of hairpin vortices, often evolving from quasi-streamwise vortices (QSVs) 

through a Λ-shaped intermediate stage to a full hairpin and eventually an Ω-shaped 

structure, follows a complex sequence of events. First, the QSV's inherent Q2 nature 

causes them to pump fluid upwards and backwards, away from the boundary region 

between them. This induced backflow then interacts with the mean flow, leading to the 

formation of a distinct shear layer visible just above the vortex structure. As these QSV 

pairs progress, their spanwise separation reaches a minimum near their downstream end, 

which is also where their strength peaks. Consequently, the shear layer exhibits its highest 

intensity in this downstream region of the QSVs. As the QSVs continue to curl, their 

vortical tongues extend further in the downstream direction, and the associated shear layer 

intensifies even more, particularly at the top of the QSVs. In this highly energized region, 

the local spanwise vorticity within the shear layer rapidly rolls up, forming a compact 

spanwise vortex positioned between the downstream ends of the QSVs. This newly 

rolled-up spanwise vortex then intensifies further and lifts the adjacent QSVs. Finally, 

viscous vortex connection occurs, where this newly formed spanwise vortex physically 

connects with the quasi-streamwise vortices, culminating in the formation of a complete 

hairpin-like vortex structure(ZHOU et al., 1999). 
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Figure 5.11 Vortical structure in region I for different BR colored by streamwise 

velocity. Iso surfaces show Q = 3e11, 7e11, 1e12, 2e12 for BR = 0, 0.05, 0.1, and 0.2, 

respectively.  

The characteristic length scales and strengths of low- and high-speed streaks are clearly 

evident in Figure 5.12. As demonstrated by previous studies(Fang et al., 2021), the 

regions both upstream and downstream of a forward-facing step exhibit the formation of 

spanwise quasi-periodic reverse flow, which is directly associated with the presence of 

low-speed streaks in these areas. This quasi-periodic reverse flow can be induced by 

ejection events occurring between counter-rotating quasi-streamwise vortices, which may 

represent the legs of hairpin vortices(Fang et al., 2021). The observed increase in the 

length scales and strengths of both low- and high-speed streaks with increasing Blockage 

Ratio (BR) is consistent with the findings presented in Figure 5.11, where a notable 

increase in turbulence strength and intensity was observed. 
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Figure 5.12 Instantaneous results of normalized streamwise velocity field on 𝒚/𝜹 =

𝟎. 𝟏𝟒, 𝟎. 𝟏𝟒, 𝟎. 𝟐𝟒, 𝟎. 𝟒𝟒 for BR = 0, 0.05, 0.1, and 0.2, respectively. 

Instantaneous representations of turbulent structures, obtained from Q-criterion in Region 

II, are provided in Figure 5.13 to investigate the effect of Blockage Ratio (BR) on the 

turbulent structures downstream of the BFS. Due to variations in turbulence intensity 

across different cases, distinct Q values were employed (with larger Q values used for 

larger BR). 

For BR = 0, the observed flow structures are characteristic of those found in wall-bounded 

BFS flows. A brief description of the cascade of events in this flow configuration is as 

follows(Hickel et al., 2021; Maleki et al., 2024). Incoming turbulent structures from the 

TBL flow interact with the shear layer (located above the separation bubble). Within this 

shear layer, shear instabilities induce the formation of large, arc-shaped vortices from 

these smaller structures(Hickel et al., 2021). Further downstream of the BFS edge, 

spanwise coherent structures, driven by the cross-streamwise velocity gradient across the 

shear layer, transport and deform smaller turbulent structures. Although these structures 

are typically overwhelmed by more energetic phenomena and thus not readily visible in 

Figure 5.13, their footprint is discernible as a wavy interface beneath the shear layer in 

the x−y plane. These structures typically shed from the shear layer at the reattachment 

point. Furthermore, they can serve as an additional source for the generation of new Λ-

shaped and hairpin vortices, particularly when exposed to spanwise perturbations 
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propagating through the shear layer. Increasing BR value, the strength and breadth of the 

incoming TBL that feed the shear layer increases remarkably (Figure 5.13), resulting in 

the formation of larger and stronger arc-type vortices which are more pronounced in the 

case of BR = 0.2. 
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Figure 5.13 Vortical structure in region II for different BR colored by streamwise 

velocity. Iso surfaces show Q = 3e11, 7e11, 1e12, 2e12 for BR = 0, 0.05, 0.1, and 0.2, 

respectively; 
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5.3.3 Turbulence Analysis  

To further quantify the effect of Blockage Ratio (BR) on unsteadiness in Region I, 

the variation of Reynolds stresses along the line at x/δ=−9.4 (corresponding to x′/δ=0.4, 

and z/δ=1) is presented in Figure 5.14. The results demonstrate a clear shift of the peak 

unsteadiness towards the regions above the crest, coupled with a significant augmentation 

of unsteadiness in both shear and normal Reynolds stresses. This strongly implies the 

formation of robust vortices in this region, which consequently disrupt the typical 

symmetric/anti-symmetric stress distribution observed in a plain channel (BR = 0). For 

instance, Figure 5.14(b) clearly shows that the peak streamwise Reynolds stress in the BR 

= 0.2 case is five times greater than that in the BR = 0 case. Moreover, approximately 

35% of the channel's height (within the range 0.4<y/δ<1.1) for BR = 0.2 exhibits a 

streamwise Reynolds stress exceeding the peak value observed in the BR = 0.1 case. 

Regarding the top wall, no significant augmentation in Reynolds stresses, apart from the 

streamwise component, is observed with increasing BR. This observation aligns 

consistently with the findings of (Fang et al., 2017; Wang et al., 2007) . 

Regarding the increase in Blockage Ratio (BR), several key points emerge concerning the 

flow characteristics, particularly near the rib crest. An amplified strength of the shear 

layer at the leading edge of the ribs directly leads to higher turbulent intensity and 

generation, as evidenced by a larger production term. This is further supported by 

observations in spanwise TKE and the distribution of the mean velocity derivative, which 

collectively indicate an increase in normal stresses(Xun and Wang, 2016). This intensified 

turbulence near the crest is closely linked to enhanced fluid exchange mechanisms such 

as 'swap' and 'ejection' events, the influence of which diminishes rapidly with increasing 

distance from the crest(Nagano et al., 2004). Furthermore, analysis of the ratio of peak 

values reveals a reduction in anisotropy with increasing BR (e.g., 14/5 for BR = 0.2, 

compared to 11/3 for BR = 0.1, and 8/1 for BR = 0.05)(Mahmoodi-Jezeh and Wang, 

2020). This suggests a more isotropic state of turbulence at higher BRs. Concurrently, the 

presence of strong secondary flows contributes to the redistribution of unsteadiness, 

effectively moving it into the region between the side walls and the symmetrical plane. 
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Figure 5.14 Cross-streamwise distribution of Reynolds stresses at (x/δ =9.4, x'/δ=0.4, 

and z/δ =0.1  for BR = 0, 0.05, 0.1, and 0.2, respectively). (a) Normalized streamwise 

Reynold stress, (b) Normalized cross-streamwise Reynold stress, (c) Normalized 

spanwise Reynold stress, and (d) Normalized shear Reynold stress. 

Figure 5.15 illustrates the spanwise distribution of Reynolds stresses at a distance of y/δ 

(please specify the exact normalized distance, e.g., y/δ=0.4) above the rib crest for 

different Blockage Ratios (BR). At first glance, a significant increase in Reynolds stresses 

across the spanwise direction is evident, which aligns with the results discussed in the 

previous section. Regarding the distribution of spanwise Reynolds stress, in the smooth 

channel case (BR = 0), the maximum stresses are observed closer to the walls. This is 

likely due to the higher production of turbulent structures in the near-wall region, driven 
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by the substantial shear stress present there. However, as BR increases, this maximum 

stress shifts towards the more central regions of the channel. 

 

 

Figure 5.15 Spanwise distribution of Reynolds stresses at (𝒙/𝜹 = 𝟗. 𝟒, 𝒙′/𝜹 = 𝟎. 𝟒, 

and 𝒚/𝜹 = 𝟎. 𝟑, 𝟎. 𝟒, 𝟎. 𝟓, 𝟎. 𝟕  for BR = 0, 0.05, 0.1, and 0.2, respectively). (a) 

Normalized streamwise Reynold stress, (b) Normalized cross-streamwise Reynold 

stress, (c) Normalized spanwise Reynold stress, and (d) Normalized shear Reynold 

stress. 

Figure 5.16 presents the distribution of normal and shear Reynolds stresses at the center-

plane (z/δ=1) for various Blockage Ratio (BR) values, at streamwise distances of 

x/H=0.5, 5.0, and 7.5 downstream of the step. In all cases, streamwise fluctuations 

constitute the predominant contribution to the overall unsteadiness throughout the 

channel. At x/H=0.5, which corresponds to the initial part of the shear layer, Reynolds 

stresses are observed to be close to zero in the lower bound of the channel for all BR 

cases. Conversely, for the upper bound, two distinct peaks are discernible in the normal 

Reynolds stress profiles: one in the vicinity of the shear layer (approximately at y/δ=0) 

and another located close to the top wall. 
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Increasing the Blockage Ratio (BR) values significantly enhances unsteadiness around 

the shear layer in all directions and causes it to shift upwards. Concurrently, it is observed 

that the thickness of the velocity fluctuation region increases significantly with rising BR. 

As will be detailed in the turbulent budget analysis section, turbulent convection from the 

incoming TBL plays a remarkable role in the observed unsteadiness enhancement of the 

shear layer downstream of the step. Furthermore, a slight enhancement of unsteadiness 

close to the top wall is likely a consequence of the increased mean velocity in the upper 

part of the channel, as explained in the preceding section. 

One notable observation is that for both the cross-streamwise (⟨v′v′⟩) and spanwise 

(⟨w′w′⟩) Reynolds stresses, their magnitudes are significantly enhanced in higher 

Blockage Ratio (BR) cases compared to lower BR cases. For instance, the peak value of 

⟨v′v′⟩ for BR = 0.2 is approximately four times that for BR = 0. Additionally, increasing 

the BR leads to a decrease in the ratio of different normal Reynolds stress components, a 

trend also observed within the rib region. This, in turn, reduces the anisotropic state of 

turbulence in this area (further details will be provided in the turbulence anisotropy 

analysis section). A similar behavior is observable for the shear Reynolds stress ⟨u′v′⟩, 

with its strength showing an improvement in the strength and size of spanwise vortical 

structures and shear layer flapping as BR increases. 

As the flow progresses downstream from the step, the magnitude of unsteadiness 

decreases due to the cascade of energy from large eddies to smaller eddies. For instance, 

the peak Reynolds stresses at x/H=5 are nearly half those observed at x/H=0.5. 

Concurrently, these fluctuations become more evenly redistributed across the vertical 

direction. Furthermore, the ratio of the peak values of the normal Reynolds stress 

components approaches unity. These collective changes indicate that the turbulent flow 

becomes more homogeneous and isotropic with increasing distance from the step. 

Although the peak values of unsteadiness continue to move with the shear layer towards 

the bottom wall of the channel, the influence of Blockage Ratio (BR) on unsteadiness 

enhancement significantly diminishes in these downstream regions. 
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Figure 5.16 Cross-streamwise distribution of Reynolds stresses at (x/H =0.5, 5, and 7.5, 

and z/δ =1  for BR = 0, 0.05, 0.1, and 0.2, respectively). (a) Normalized streamwise 

Reynold stress, (b) Normalized cross-streamwise Reynold stress, (c) Normalized 

spanwise Reynold stress, and (d) Normalized shear Reynold stress. 

The quality of the resolved flow field is evaluated based on the ratio of subgrid scale 

dissipation to the total dissipation (the relevant formulation is given in section 5.3.4), at 

different distances and for different BR values(Bhide and Abdallah, 2022). It is observed 

that this ratio is smaller than 0.1 in all cases, except for the distance of x/H = 7.5, 

corresponding to the reattachment region, where it is slightly larger than 0.1 in peak 

values. Sensitive regions (including regions with sharp mean velocity gradients) show a 

larger peak value, also the reason for a larger ratio at x/H = 7.5 is the mesh size is larger 

in this region (Figure 5.17). 
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Figure 5.17 Cross-streamwise distribution of 𝜺𝑻 = 𝜺𝒌 + 𝜺𝒔𝒈𝒔 at (a) x/H =-4.7, (b) x/H = 

0.5, (c) x/H =5, and (d) x/H =7.5, and z/δ =1  for BR = 0, 0.05, 0.1, and 0.2, 

respectively). 

Figure 5.18(a) presents the Turbulence Kinetic Energy (TKE) production along the cross-

streamwise line at x/δ=−9.4 (corresponding to x′/δ=0.4, and z/δ=1.0) for different 

Blockage Ratios (BR). For the plain channel (BR = 0), TKE production exhibits a 

symmetrical distribution with two distinct peaks located close to the walls, gradually 

diminishing to zero towards the channel center. These peak values coincide with the peak 

Reynolds stresses (particularly the streamwise Reynolds stress, which is a major 

contributor, as shown in Figure 5.14) (Choi et al., 1993). 

The addition of ribs significantly augments the peak TKE production (the peak TKE for 

BR = 0.2 is nearly eight times that for BR = 0) and shifts this peak to the region above 

the rib crest. This location corresponds precisely to where the maximum shear effect was 

observed in Figure 5.4. Concurrently, TKE production close to the bottom surface (the 
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region below the crest) decreases due to the formation of separation bubbles within the 

cavities. 

The peak TKE production (Pk) increases with increasing Blockage Ratio (BR), directly 

implying the formation of stronger shear layers. For BR > 0, the decrease of Pk to near-

zero values occur in two distinct steps. Initially, there is a sharp reduction over a short 

distance (approximately 0.1δ) from the peak. This is followed by a smoother, more 

gradual decrease that continues until Pk approaches zero near the channel center. Notably, 

for BR = 0.2, a second, smaller peak is observed within this slowly diminishing region. 

The presence of non-zero Pk values in these slowly diminishing regions is attributed to 

the substantial unsteadiness generated by the shedding mechanism of vortical structures 

from the shear layer emanating from the rib edges. These dynamics can significantly 

influence a large portion of the channel flow. 

Regarding the top wall, the behavior of TKE production is very similar to that observed 

for Reynolds stresses, with a small increase in the peak Pk attributed to the increased 

velocity gradient in that region. Turbulence dissipation (𝜀𝑇 = 𝜀𝑘 + 𝜀𝑠𝑔𝑠, sum of viscous and 

subgrid scale dissipation) exhibits a similar pattern, displaying a local peak value located 

close to the crest region. It then gradually broadens and decreases towards near-zero 

values closer to the center of the channel. The ratio of TKE production to dissipation 

(Figure 5.18) clearly indicates that ribs significantly enhance turbulence non-equilibrium 

in two distinct regions: one close to the crest, and another at higher distances from the 

crest where dissipation sharply decreases. 

Figure 5.19 presents the spanwise profiles of TKE production (Pk), turbulence dissipation 

(𝜀𝑇 ), and their ratio (𝑃𝑘/𝜀𝑇) at a distance of 0.3δ from the rib crests. The spanwise 

distribution of Pk exhibits a pattern similar to that of the spanwise distribution of 

Reynolds stresses. Specifically, one peak in Pk is observed close to the side walls, 

primarily driven by wall shear stress (which increases due to the enhanced mean velocity 

with increasing BR). Another peak is located between the sidewall and the symmetry 

plane, a feature controlled by the streamwise vortices, as explained in the previous 

section. 

Conversely, spanwise dissipation (𝜀𝑇) shows only a small augmentation with increasing 

BR. Consequently, it is evident that both wall shear stress and secondary streamwise 
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vortices are the primary contributors to the non-equilibrium turbulence observed in the 

spanwise direction (Choi et al., 1993). 

 

Figure 5.18 Cross-streamwise distribution of (a) TKE production 𝑷𝒌, (b) dissipation 

𝜺𝑻 = 𝜺𝒌 + 𝜺𝒔𝒈𝒔, and (c) their ratio (𝑷𝒌/𝜺𝑻) at (x/δ =9.4, x'/δ=0.4, and z/δ = 1.0 for BR = 

0, 0.05, 0.1, and 0.2, respectively). 

 

 

Figure 5.19 Spanwise distribution of (a) TKE production 𝑷𝒌, (b) dissipation 𝜺𝑻 = 𝜺𝒌 +

𝜺𝒔𝒈𝒔, and (c) their ratio (𝑷𝒌/𝜺𝑻) at (x/δ =9.4, x'/δ=0.4, and y/δ =0.3,0.4,0.5,0.7  for BR 

= 0, 0.05, 0.1, and 0.2, respectively).  

Figure 5.20 presents the distributions of TKE production (𝑃𝑘), dissipation (𝜀𝑇), and the 

production-to-dissipation ratio (𝑃𝑘/𝜀𝑇) along lines at x/H=0.5, 5.0, and 7.5, all at the 

center-plane (z/δ=1). These profiles aim to elucidate the influence of Blockage Ratio (BR) 

on turbulence equilibrium at various distances downstream of the step. At x/H=0.5, 

Figure 5.20(a) reveals that the peak TKE production is largest for BR = 0. As discussed 
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in previous sections, the thinner incoming TBL associated with lower BR leads to a 

sharper velocity gradient downstream of the step and a consequently stronger shear layer 

formation. While this sharp gradient for BR = 0 results in substantial production, this 

large production is spatially confined to a narrow region. 

With increasing Blockage Ratio (BR), two primary parameters significantly influence the 

TKE production mechanism. Firstly, an increase in the thickness of the incoming TBL 

negatively affects the cross-streamwise velocity gradient (∂u/∂y). Secondly, the increase 

in streamwise mean velocity (due to the smaller cross-sectional area occupied by forward 

flow, as shown in Figure 5.10) can, conversely, reinforce this gradient. The intricate 

balance between these two competing factors governs the TKE production distribution. 

Therefore, as BR increases, it is observed from Figure 5.20(a) (at x/H=0.5) that TKE 

production decreases near the shear layer's lower bound (−0.02<y/δ<0.02). This reduction 

is attributed to a decrease in ∂u/∂y in this specific region. However, for larger y values, 

TKE production is greater for higher BRs, owing to the spatial extension of significant 

∂u/∂y values into these regions. Turbulent dissipation (ϵ𝜀𝑇) exhibits a similar behavior, 

as depicted in Figure 5.20(b) (at x/H=0.5). Regarding the production-to-dissipation ratio 

(𝑃𝑘/𝜀𝑇) presented in Figure 5.20(c) (at x/H=0.5), three distinct peaks are observed in the 

upper half of the channel. The first peak is located close to the step height (approximately 

y/δ≈0) and is largest for BR = 0. The second peak falls within the range 0.75<y/δ<1, and 

the third is positioned close to the top wall. These latter two peaks reach their maximum 

values for the largest BR, indicating the most significant regions of turbulent non-

equilibrium. 
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Figure 5.20 Cross-streamwise distribution of (a) TKE production 𝑷𝒌, (b) dissipation 𝜺𝑻, 

and (c) their ratio (𝑷𝒌/𝜺𝑻) at x/H = 0.5, 5, and 7.5, and z/δ =1  for BR = 0, 0.05, 0.1, 

and 0.2, respectively).  

5.3.4 TKE Budget  

The transport equation for turbulent kinetic energy is given as(Bhide and Abdallah, 2022; 

Plasseraud et al., 2023): 
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Where 𝐶𝑘, Π𝑘, 𝑇𝑘, 𝐷𝑘 , 𝑃𝑘, and 𝜀𝑘 , respectively, show convection, pressure transport, 

turbulent diffusion, viscous diffusion, production and pseudo dissipation of the TKE. 

𝐷𝑘
𝑠𝑔𝑠

and 𝜀𝑘
𝑠𝑔𝑠

are SGS diffusion and dissipation. Figure 5.21 exhibits the distribution of 

Turbulence Kinetic Energy (TKE) budget terms along the line at x/δ=−9.4 (corresponding 

to x′/δ=0.4, and z/δ=1.0) for different Blockage Ratio (BR) values. The distributions of 

the production and dissipation terms have been previously detailed in Figure 5.19 and 

Figure 5.20, respectively. The production term, which quantifies the energy transfer from 

the mean flow to turbulent fluctuations, is the dominant TKE transport term across all BR 

values and is primarily balanced by the dissipation term(Teng and Piomelli, 2022). 

In the plain channel case (BR = 0), production and dissipation are the sole dominant TKE 

budget terms. However, with increasing BR, turbulent diffusion and convection terms 

begin to contribute remarkably to the TKE budget. For instance, in the BR = 0.05 case 

(Figure 5.21(b)), it is observed that the turbulent diffusion term has a positive effect in 

the vicinity of the wall, reaching its maximum value below the crest at approximately 

y/δ≈0.032. This positive contribution then decreases but remains positive up to a point 

above the crest, at about y/δ≈0.075. Beyond this point, the turbulent diffusion term makes 

a negative contribution in the region between y/δ≈0.075 and y/δ≈0.194, which is then 

followed by another positive contribution. It is noteworthy that the negative peak in the 

turbulent diffusion term is balanced by a peak in production, implying that turbulence 

diffuses from the region of highest TKE production to its surroundings (both below the 

crest and above the shear layer). In this specific scenario (BR = 0.05), turbulent diffusion 

is the primary mechanism for TKE transfer, whereas with further increases in the BR 

value, convection emerges as an additional significant mechanism. 

With further increases in the Blockage Ratio (BR), as shown in Figure 5.21(c) and (d), 

the effect of turbulent diffusion is significantly enhanced. Notably, the positive 

contribution of turbulent diffusion extends considerably over a substantial portion of the 

channel height. Furthermore, for these higher BR ratios, the convection of TKE towards 

the crest vicinity makes a notable contribution to the overall TKE transport 
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Figure 5.21 Cross-streamwise distribution of turbulent budget terms of TKE transport 

equation for (a) BR = 0, (b)BR = 0.05, (c) BR = 0.1, and (d) BR =0.2 at x/δ =-9.4, 

x'/δ=0.4, and z/δ = 1.0. 

Figures 5.22, 5.23, and 5.24 illustrate the distribution of turbulent budget terms 

downstream of the step at x/H=0.5, 5.0, and 7.5, respectively, all at the center-plane 

(z/δ=1). These figures aim to investigate the influence of Blockage Ratio (BR) on TKE 

transport terms downstream of the step. Similar to Region I, in Region II, TKE 

production, dissipation, turbulent diffusion, and turbulent convection are the most 

significant turbulent transport terms. However, it is notable that the overall magnitude of 

these terms is remarkably smaller for BR > 0 in Region II compared to their peak values 

in Region I, while for BR = 0, they are larger in Region II, as observed in Figure 5.21. 

According to Figure 5.22 (at x/H=0.5), TKE diffusion primarily balances its production 

around the shear layer center. This occurs at y/δ≈0,0.05,0.1, and 0.2 for BR = 0, 0.05, 0.1, 

and 0.2, respectively, which are also the locations of maximum production. Additionally, 
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two positive local peaks of TKE diffusion and convection are observed around the 

"knees" of the TKE production distribution. Even though the peak value of production 

decreases for non-zero BR values, the contribution and zone of influence of positive TKE 

convection and diffusion are significantly enhanced. This highlights the crucial role of 

TKE transfer by convection and diffusion in shaping the TKE distribution around the 

shear layer for large BR values. For example, as shown in Figure 5.22(d), the positive 

TKE convection and diffusion cover a region of −0.56 < 𝑦/𝛿 < 0.25 and 0.5 < 𝑦/𝛿 <

1.68, with peaks representing between 16% and 20% of the TKE production peak for BR 

= 0.2. In contrast, for BR = 0, these terms cover a region of −0.37 < 𝑦/𝛿 < 0.31, and 

their peaks range between 4.3% and 8.6% of the TKE production peak. 

Moving downstream to 𝑥/𝐻 ≈ 5.0, this trend reverses, and the peak production becomes 

larger for non-zero BR values, although the overall production still decreases 

significantly. As observed in previous results (Figures 5.4 and 5.6) for 𝑥/𝐻 = 5 and 7.5, 

the mean streamwise velocity and velocity gradient profiles for different BR values 

become very similar. However, Reynolds stresses still demonstrate a notable 

enhancement for larger BR values. Considering these results, along with those from the 

Q-criterion analyses, it can be concluded that at a distance of 𝑥/𝐻 = 5, the strong vortical 

structures convected streamwise from the incoming TBL experience smaller 

dissipation/diffusion rates compared to the vortical structures generated within the 

downstream shear layer. These convected structures, therefore, continue to act as a 

significant source of TKE production in these regions. 

Further downstream (
𝑥

𝐻
= 7.5 ), most of the TKE is transferred from large energetic 

structures to small less energetic structures, which has smaller production rate but 

distribute more uniformly across the channel (Figure 5.24), leading to a smoother 

production distribution across the vertical axis. Under this condition, difference between 

distribution and magnitude of TKE budget terms for different BR become very small. At 

this point, TKE convection is most effective in regions with larger mean velocity, while 

TKE diffusion effect covers a significant portion of the channel. 
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Figure 5.22 Cross-streamwise distribution of turbulent budget terms of TKE transport 

equation for (a) BR = 0, (b)BR = 0.05, (c) BR = 0.1, and (d) BR =0.2 at x/δ =0.5, and 

z/δ = 1.0. 
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Figure 5.23 Cross-streamwise distribution of turbulent budget terms of TKE transport 

equation for (a) BR = 0, (b)BR = 0.05, (c) BR = 0.1, and (d) BR =0.2 at x/δ =5.0, and 

z/δ = 1.0. 
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Figure 5.24 Cross-streamwise distribution of turbulent budget terms of TKE transport 

equation for (a) BR = 0, (b)BR = 0.05, (c) BR = 0.1, and (d) BR =0.2 at x/δ =7.5, and 

z/δ = 1.0. 

5.3.5 Quadrant Analysis and Third Order Moment of Fluctuating Velocity 

Third order moment of fluctuating velocity typically is used for elucidating 

turbulent transport mechanism(Krogstadt and Antonia, 1999) or identification of ejection 

sweeping process in turbulent flows, which are particularly visible around hairpin 

structures.  

In the case of hairpin vortical structures the quasi-streamwise counter rotating legs and 

the hairpin head, are the major contributor to the flow ejection from low momentum 

region (typically close to walls) to the high momentum regions. The compensation of the 

ejection flows occurs through directing the high momentum flows form above the hairpin 
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structures downwards to the outer region of hairpin structures(Adrian and Liu, 2002). As 

observed (from the Figure corresponding to the Q2), hairpin structures are majorly formed 

above and close to the rib crests, where the shear layer develops, convect and evolve 

downstream. Henceforth, these structures can have a remarkable effect of unsteadiness 

and turbulence characteristics of flow in this region and also downstream shear layer. 

ejection accompanies with 𝑢′′ > 0 and 𝑣′′ < 0, and sweep event is associated with 𝑢′′ <

0 and 𝑣′′ < 0 (′′ shows resolved fluctuations). As previous studies have shown, in the 

third moment fluctuations in diagrams, ejection and sweeping happen when 

〈𝑢′′𝑢′′𝑢′′〉 and 〈𝑣′′𝑣′′𝑣′′〉 switch their signs from positive to negative and vice versa.   

Figure 5.25 demonstrates the distributions of the third-moment fluctuating velocities 

along the line at x/δ=−9.4 (corresponding to x′/δ=0.4, and z/δ=1.0). For the analysis of 

velocity fluctuation diffusion terms, only the two vertical diffusion terms, 〈𝑢′′𝑣′′𝑣′′〉 and 

〈𝑢′′𝑢′′𝑣′′〉, are considered, as previous studies have identified them as the most effective 

diffusion terms. From Figures 5.25(a) and (b), it is evident that the vicinity of the rib crest 

is associated with large positive 〈𝑢′′𝑢′′𝑢′′〉 values and large negative 〈𝑣′′𝑣′′𝑣′′〉  values. 

This combination is indicative of the flapping motion of the shear layer, which leads to 

an enhancement of both ejection and sweeping events(Mahmoodi-Jezeh and Wang, 

2020). An increase in Blockage Ratio (BR) positively influences the magnitude of these 

large positive 〈𝑢′′𝑢′′𝑢′′〉  and large negative 〈𝑣′′𝑣′′𝑣′′〉  values in this region, signifying 

reinforced flapping motions (which will be investigated in more detail in the spectral and 

modal analysis sections). 

The negative values of 〈𝑢′′𝑢′′𝑣′′〉  observed below the crest imply the vertical diffusion 

of streamwise fluctuations (〈𝑢′′𝑢′′〉) towards the low-momentum bottom wall, which is 

associated with sweeping events in these areas. This phenomenon coincides with positive 

values of 〈𝑢′′𝑢′′𝑢′′〉, thereby demonstrating a streamwise acceleration of this diffusion 

within the region. Conversely, on top of the crest, 〈𝑢′′𝑢′′𝑣′′〉  exhibits a positive sign, 

indicating the vertical diffusion of streamwise fluctuations towards the high-momentum 

flow away from the crest region (via ejection). Simultaneously, 〈𝑢′′𝑢′′𝑢′′〉  is negative, 

suggesting a streamwise deceleration during the ejection event as the flow moves away 

from the crest. This implies that 〈𝑢′′𝑢′′〉  diffuses outwards from the rib vicinity (in the 
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vertical direction) with contrasting signatures on either side, suggesting that the source 

driving these fluctuations is located around the rib. 

Furthermore, the opposite sign of the vertical diffusion of the shear Reynolds stress 

〈𝑢′′𝑣′′𝑣′′〉  indicates the diffusion of shear stresses towards the rib region. This behavior 

is consistent with the shear layer generation of hairpin structures, as explained 

in(Mahmoodi-Jezeh and Wang, 2020). 

 

Figure 5.25 Third-order moment of fluctuating velocity at (x/δ =-9.4, x'/δ=0.4, and z/δ = 

1.0 for BR = 0, 0.05, 0.1, and 0.2, respectively). 

Moving downstream of the step (x/H=0.5), the trend of the third-order moments of 

fluctuating velocity remains very similar to that observed in the rib region (Figure 5.25). 

A clear inflection point is still evident in both 〈𝑢′′𝑢′′𝑢′′〉  and 〈𝑣′′𝑣′′𝑣′′〉, this time located 

closer to the shear layer. This inflection point shifts upwards from y/δ=0 to y/δ=0.57 as 

the Blockage Ratio (BR) increases from 0 to 0.2 (assuming '2' was a typo for '0.2' based 

on previous context, Figure 5.26(a) and (b)). Consequently, one can infer that the ejection 
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and sweeping events shift towards larger y values and become more intense in this region 

with increasing BR. Similar conclusions regarding the vertical diffusion of 〈𝑢′′𝑢′′〉  and 

〈𝑢′′𝑣′′〉  can also be drawn from Figure 5.26(c) and (d), mirroring the behavior discussed 

for the rib region. 

As the flow progresses even further downstream, this general trend is maintained, 

although the inflection point shifts downwards for all BRs, consistently remaining close 

to the shear layer. Concurrently, the magnitudes of the moments decrease and become 

more similar across all BR values (Figures 5.27 and 5.28). This indicates that the ejection 

and sweeping events become weaker and more uniform across different BRs as the flow 

moves away from the step. 

 

Figure 5.26 Third-order moment of fluctuating velocity at (x/H =0.5, and z/δ = 1.0 for 

BR = 0, 0.05, 0.1, and 0.2, respectively). 
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Figure 5.27 Third-order moment of fluctuating velocity at (x/H = 5.0, and z/δ = 1.0 for 

BR = 0, 0.05, 0.1, and 0.2, respectively). 
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Figure 5.28 Third-order moment of fluctuating velocity at (x/H =7.5, and z/δ = 1.0 for 

BR = 0, 0.05, 0.1, and 0.2, respectively). 

Quadrant analysis is employed to investigate the intensity of ejection and sweeping events 

at different distances from the crest. In this study, we utilize the joint probability 

distribution function (JPDF) of ⟨𝑢′′⟩ and ⟨𝑣′′⟩ at three distinct elevations (Figure 5.29: 

close to the crest and at higher distances) to perform the quadrant analysis. Each 

distribution is thus decomposed into four regions corresponding to: (1) 𝑢′′ > 0 and 𝑣′′ >

0 , (2) 𝑢′′ < 0  and 𝑣′′ > 0 , (3) 𝑢′′ < 0  and 𝑣′′ < 0 , and (4) 𝑢′′ > 0  and 𝑣′′ < 0 . 

According to previous studies(KROGSTAD et al., 2005; Lelouvetel et al., 2009), the 

second (𝑢′′ < 0, 𝑣′′ > 0 ) and fourth (𝑢′′ > 0, 𝑣′′ < 0 ) quadrants are associated with 

ejection and sweeping events, respectively. 

The JPDF results demonstrate that for a smooth surface (Figures 5.29(a), (b), and (c)), in 

the vicinity of the boundary layer, the JPDF predominantly fills the second and fourth 

quadrants, forming an angle of approximately 135∘ with respect to the horizontal axis. 
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These results indicate that at distances closer to the wall, ejection events are dominant 

(Figure 5.29(a)) due to higher JPDF values in this region. As one moves away from the 

wall (Figures 5.29(b) and (c)), sweeping events become dominant. 

With increasing Blockage Ratio (BR), it is observed that at elevations around the crest 

(Figures 5.29(d), (g), and (j)), the distribution across all quadrants becomes nearly 

identical, suggesting the presence of random, uncorrelated ejection and sweeping events 

in these regions. Moving away from the crest, a correlated JPDF distribution with a 135∘ 

angle re-emerges in all cases. Specifically, at the given distances, the JPDF exhibits larger 

values in the ejection quadrant (𝑢′′ < 0, 𝑣′′ > 0) for BR = 0.05 (Figures 5.29(e) and (f)). 

In contrast, for BR = 0.1 and 0.2, sweeping-dominant patterns appear (Figures 5.29(h) 

and (k)), which subsequently transition into ejection-dominant patterns as one moves 

further away from the crest (Figures 5.29(i) and (l)). 

 

 

Figure 5.29 Joint probability distribution function JPDF of ( 𝝈𝒖 = 𝒖
′′/𝑼𝒓𝒆𝒇 and 𝝈𝒗 =

𝒗′′/𝑼𝒓𝒆𝒇) at different distances from the rib crest at x/δ =9.4, x'/δ=0.4, and z/δ = 1.0 and 



 

142 
 

(a) y/δ = 0.05, (b) y/δ = 0.1, (c) y/δ = 0.2 for BFS I; (d) y/δ =0.05, (e) y/δ = 0.14,  and 

(f) y/δ = 0.6 for BFS II; (g) y/δ =0.1, (h) y/δ = 0.24,  and (i) y/δ = 0.6 for BFS III; (j) y/δ 

=0.2, (k) y/δ = 0.44,  and (l) y/δ = 0.6 for BFS IV; 

5.3.6 Turbulence Anisotropy 

The Reynolds stress anisotropy tensor, which quantifies the departure of a turbulent 

flow from an isotropic (spherical) state, is typically given by the following formula(Pope, 

2000; Shahab et al., 2011):   

𝑏𝑖𝑗 =
〈𝑢𝑖
′𝑢𝑗
′〉

〈𝑢𝑘
′ 𝑢𝑘

′ 〉
−
1

3
𝛿𝑖𝑗 

Previous studies have utilized the Reynolds stress anisotropy tensor to investigate the 

influence of wall roughness on the anisotropic state of turbulence near walls in both two-

dimensional planes(KROGSTAD et al., 2005) and three-dimensional channels(Stiperski 

et al., 2021). As the ratio of these stress tensor components approaches unity, the turbulent 

flow becomes more isotropic. 

Figure 5.30 illustrates the distribution of the Reynolds stress anisotropy tensor for its b11

, b22, b33, and b12 components. These results demonstrate a significant reduction in the 

magnitude of the b11, b22, and b33 components close to the wall and near the crest region. 

Furthermore, it's observed that the peaks and valleys of these components shift towards 

the right across the entire channel with increasing BR, indicating a change in the flow's 

anisotropic state as BR values rise. Lumley & Newman (1976) and(KROGSTAD et al., 

2005)  proposed using an invariant function as an estimation for the overall anisotropy of 

the Reynolds stress tensor within the flow. 

This function is expressed as F =1+9II+27III, where 𝐼𝐼 =
1

2
𝑏𝑖𝑗𝑏𝑗𝑖 = 𝑏11

2 − 𝑏22𝑏33 + 𝑏12
2  

and 𝐼𝐼𝐼 =
1

3
𝑏𝑖𝑗  𝑏𝑗𝑘𝑏𝑘𝑖 = 𝑏33(𝑏11𝑏22  − 𝑏12

2 ). Figure 5.30(e) shows the distribution of the 

invariant function along the line at x/δ=−9.4 (corresponding to x′/δ=0.4, and z/δ=1.0). A 

notable observation is a significant reduction in the invariant function below the crest 

region for larger BR values. This reduction is followed by local peaks and valleys that 

shift to the upper region of the channel. This pattern clearly reveals that ribs decrease the 

overall turbulence anisotropy below the crest. However, the anisotropic state above the 
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crest merely shifts horizontally with increasing BR, showing negligible variations in its 

magnitude. This includes the local anisotropic peaks above the crest, which are formed 

from shear stresses. 

 

 

Figure 5.30 Cross-streamwise distribution of anisotropy Reynolds stress tensor 

distribution at (x/δ =-9.4, x'/δ=0.4, and z/δ = 1.0 for BR = 0, 0.05, 0.1, and 0.2, 

respectively) for (a) b11, (b) b22, (c) b33, (d) b12 components, and (e) Invariant function F 

=1+9II+27III (red flash shows the direction of increasing BR for BR>0 ). 

To investigate the effect of Blockage Ratio (BR) on the turbulent anisotropic state 

downstream of the step, the distribution of Reynolds stress anisotropy tensor components 

at the center-plane (z/δ=1) and at different streamwise distances from the step 

(x/H=0.5,5.0, and 7.5) are presented in Figures 5.31, 5.32, and 5.33, respectively. 
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Figures 5.31(a), (b), and (c) demonstrate that at x/H=0.5, the shear layer remarkably 

enhances the magnitude of the b11, b22, and b33 components of the anisotropy Reynolds 

stress tensor for BR = 0 in the vicinity of y/δ≈0. However, this enhancement is 

significantly attenuated with increasing BR. Figure 5.31(e) exhibits the same trend for the 

overall turbulence anisotropic state of the flow, characterized by a local peak close to 

y/δ≈0. The location of this local peak coincides with the significant mean velocity 

gradient present in this region, which is particularly pronounced for small BR values. 

According to previous studies(Stiperski et al., 2021), velocity gradients and shear effects 

can enhance turbulence anisotropy through several mechanisms, including but not limited 

to the injection of energy into preferential velocity components, the exertion of linear 

strain on turbulent eddies resulting in the alignment of these structures in a particular 

direction, and the suppression of cross-gradient motions. 

Moving downstream, as the mean velocity gradient across the shear layer attenuates, its 

effect on the anisotropic state of the flow becomes mitigated (Figures 5.32 and 5.33). 

Despite this, a local peak in the invariant function (F) is still observed, centered around 

y/δ=0.5 and y/δ=0.4 in Figures 5.32 and 5.33, respectively. 
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Figure 5.31 Cross-streamwise distribution of anisotropy Reynolds stress tensor 

distribution at (x/δ =0.5, and z/δ = 1.0 for BR = 0, 0.05, 0.1, and 0.2, respectively) for 

(a) b11, (b) b22, (c) b33, (d) b12 components, and (e) Invariant function F =1+9II+27III 

(red flash shows the direction of increasing BR for BR>0 ) 
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Figure 5.32 Cross-streamwise distribution of anisotropy Reynolds stress tensor 

distribution at (x/δ =5.0, and z/δ = 1.0 for BR = 0, 0.05, 0.1, and 0.2, respectively) for 

(a) b11, (b) b22, (c) b33, (d) b12 components, and (e) Invariant function F =1+9II+27III 

(red flash shows the direction of increasing BR for BR>0 ) 
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Figure 5.33 Cross-streamwise distribution of anisotropy Reynolds stress tensor 

distribution at (x/δ =7.5, and z/δ = 1.0 for BR = 0, 0.05, 0.1, and 0.2, respectively) for 

(a) b11, (b) b22, (c) b33, (d) b12 components, and (e) Invariant function F =1+9II+27III 

(red flash shows the direction of increasing BR for BR>0 ) 

Figure 5.34 presents the autocorrelation of the three components of velocity fluctuations 

at specific distances from the rib crest. These selected heights correspond to regions of 

maximum fluctuations, as depicted in Figure 5.14. Various studies(ADRIAN et al., 2000; 

VOLINO et al., 2009) have employed velocity fluctuation autocorrelation to identify 

hairpin structures and determine their characteristic lengths and inclination angles in 

diverse flow fields, including 2D planes and 3D channel flows. This technique can also 

be valuable for identifying other coherent structures, such as spanwise and quasi-

streamwise vortices. 
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According to(VOLINO et al., 2009), the inclination angle of a hairpin structure is highly 

dependent on its location within the flow. Furthermore,(ADRIAN et al., 2000) suggests 

that three distinct signatures in a 2D plane can reveal hairpin structures. Considering the 

JPDF results in Figure 5.29, where we observed that Q2 and Q4 dominant regions are 

located with a small distance at approximately the same heights used here, coupled with 

the turbulent structures identified by the Q-criterion, the selected regions are indeed 

strong candidates for hairpin structure identification across different Blockage Ratios 

(BR). 

The first observation from the streamwise fluctuation autocorrelation is a monotonic 

increase in the width of the isopleth, accompanied by a decrease in the inclination angle. 

According to (Israel et al., 2024), a stagnation point develops in front of a hairpin structure 

where Q2 and Q4 dominant regions converge, which directly specifies the corresponding 

inclination angle. Therefore, the observed decrease in this angle indicates that sweeping 

is more dominant for larger BR values at the specified distance from the crest. This 

finding is consistent with the results presented in Figure 5.29. On the other hand, the 

isopleths of spanwise fluctuations become shorter with increasing BR, suggesting that the 

hairpin legs are smaller in these cases. 

 

 

Figure 5.34 Isopleth of auto-correlation of velocity fluctuation components (u, v, and w) 

at  x/δ =-9.4, x'/δ=0.4, and z/δ = 1.0, and elevations of y/δ= 0.05, 0.14, 0.24, and 0.44 
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for BR = 0, 0.05, 0.1, and 0.2, respectively). Where 𝑳𝒙 and 𝑳𝒚 represent horizontal and 

vertical lengths of the isopleth normalized by 𝜹. 

Figure 5.35 provides contours of isopleths for the autocorrelation of streamwise velocity 

fluctuation, located close to the mean separation streamline downstream of the step. 

Additionally, the horizontal (Lx) and vertical (Ly) lengths of selected isopleths (denoted 

as b1, b2, and b3, representing isopleths at x/H=0.5, 7.0, and 10.0, respectively) are 

detailed in Table 5.1. 

It can be observed that these isopleths form an elliptical shape, predominantly oriented in 

the streamwise direction. These isopleths are interpreted as representing spanwise 

coherent structures that possess high spatial integrity in the streamwise direction(Israel et 

al., 2024). For all BR values, the isopleths are seen to spatially evolve along the shear 

layer, a phenomenon likely resulting from the pairing process of smaller spanwise 

vortices. 

A comparison between identical isopleths for different BR values reveals that increasing 

BR leads to an increase in the size of b1 and b3, while the size of b2 decreases. This 

observation aligns consistently with the results for vorticity thickness (Figure 5.5), which 

demonstrated that increasing BR causes the shear layer thickness to increase in its initial 

part, decrease in the second part, and then increase again downstream of the reattachment 

point. These findings collectively indicate that the properties of the incoming TBL, which 

vary with BR values, significantly influence the integrity of coherent structures 

downstream of the step. 
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Figure 5.35 Isopleth of auto-correlation of streamwise velocity fluctuation components 

(u) at  x/δ =0.5, 5.0, and 7.5, along the shear layer and reattachment for (a) BR = 0, (b) 

BR = 0.05, (c) BR = 0.1, and (d) BR = 0.2.  

 

Table 5.1 Normalized sizes corresponding to isopleths in Figure 5.34, where 𝑳𝒙 and 𝑳𝒚 

represent horizontal and vertical lengths of the isopleth normalized by H. 

 
b1 b2 b3 

BFS I Lx/H 0.36 1.15 1.55 

Ly/H 0.12 0.42 0.35 

BFS II Lx/H 0.39 1.0 1.65 

Ly/H 0.15 0.4 0.35 

BFS III Lx/H 0.55 1.0 2.1 

Ly/H 0.22 0.4 0.45 

BFS IV Lx/H 0.56 0.9 2.1 

Ly/H 0.2 0.37 0.49 
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5.3.7 Spectral Analysis (Shear Layer and Rib Wake) 

Spectral analysis was conducted to explore the frequency characteristics of 

unsteadiness and turbulent structures in both Region I (corresponding to the incoming 

turbulent boundary layer, TBL) and Region II (downstream of the step). For this purpose, 

the pre-multiplied power spectral density (PSD) of streamwise velocity frequency was 

calculated for points at different streamwise distances. 

Figure 5.36 represents variations of the pre-multiplied PSD versus a dimensionless 

temporal scale (the inverse of which indicates the Strouhal number). The region between 

the two red dotted vertical lines denotes the range of temporal scales where the pre-

multiplied PSD exceeds 70% of its peak value, thereby representing the zone of highly 

energetic motions. As the PSDs were calculated at the same points as the isopleths 

presented in Figure 5.36, it can be inferred that these temporal scales are indicative of 

ejection/sweeping events (or the shedding of hairpin vortices) in this region. 

Two dominant trends are observed with increasing Blockage Ratio (BR). First, the range 

of highly energetic motion temporal scales expands, indicating that a broader spectrum 

of fluctuation frequencies falls within the high-energy zone. Second, the center of this 

high-energetic zone shifts towards larger temporal scales, signifying that the 

characteristic frequency of the dominant motions becomes slower. 

 

Figure 5.36 Comparison of the Premultiplied PSD, 𝒇 ∙ 𝑷𝒖/〈𝒖′𝒖′〉, of streamwise 

velocity fluctuations for different blockage ratios at the elevation above the rib crest (at  

x/δ =-9.4, x'/δ=0.4, and z/δ = 1.0, and elevations of y/δ= 0.05, 0.14, 0.24, and 0.44). (a) 

Br = 0.05, (b) Br = 0.1 and (c) Br = 0.2. 

Figure 5.37 provides the pre-multiplied power spectral density (PSD) of streamwise 

velocity at various points along the shear layer downstream of the step for different 
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Blockage Ratios (BR). Dominant timescales, characterized by local peaks in the pre-

multiplied PSD, are represented by ti, where the subscript i ranges from 1 to 3, denoting 

the smallest to the largest dominant timescale, respectively. 

Previous studies have shown that the smallest dominant timescale, t1 (corresponding to 

the highest frequency), is typically associated with fluctuations of small spanwise 

coherent structures in the initial part of the shear layer(Hudy et al., 2007; W. Wu et al., 

2020). As the flow progresses along the shear layer, vortices grow, and subsequent pairs 

of vortices merge, forming larger spanwise vortices that shed within the shear layer at a 

larger timescale (t2, which is nearly double t1) and a correspondingly lower 

frequency(Hudy et al., 2007). Further downstream along the shear layer, the influence of 

the small timescale shedding is mitigated, as evidenced by a decrease in the PSD level 

corresponding to t1. Simultaneously, new PSD peaks emerge and grow at a larger 

timescale (t3), eventually reaching their maximum near the reattachment region. This 

indicates that t3 is associated with the slow displacement of the reattachment point and 

the shedding of vortices in this region. 

Previous research has linked this low-frequency dynamics to the breathing mechanism of 

separation bubble dynamics. This includes phenomena such as the feedback of 

disturbances from the impingement point to the separation point(Hasan, 1992), the cutting 

of the recirculation zone by large structures moving upstream and heating the wall, and 

the low-frequency forcing of the separation bubble by large streamwise Görtler-like 

vortices expanding from separation to downstream of reattachment, accompanied by the 

low-frequency release (shedding) of groups of vortices from the separation bubble (at the 

reattachment point)(W. Wu et al., 2020). In the next section, modal analysis will be 

implemented to further investigate this effect and the influence of BR values on these 

dynamics. 

The pre-multiplied Power Spectral Density (PSD) of streamwise velocity fluctuations 

(Figure 5.37) at x/H=0.5 reveals that the ratio of the local peak PSD level corresponding 

to the t2 timescale to that of the t1 timescale varies between 1.5 and 2 for cases with BR 

> 0. In contrast, for the smooth case (BR = 0), this ratio is approximately 1. This 
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observation indicates that the addition of riblets significantly increases the contribution 

of motions with the t2 timescale in this initial part of the shear layer. 

As previously observed in earlier sections (including analyses of vorticity growth, two-

point autocorrelation, and Reynolds stresses in relevant figures), an increase in BR leads 

to the thickening of the incoming TBL and the initial part of the shear layer. Consequently, 

one can infer the formation of larger coherent structures in this part of the shear layer as 

BR increases, which subsequently shed at a lower frequency within the shear layer 

compared to the smaller structures in the smooth case. This inference is also consistent 

with the results presented in Figure 5.36, which show a shift of the dominant timescale 

towards slower motions. This further suggests the formation of larger and slower coherent 

structures within the TBL, which, in turn, influences the dynamics of the downstream 

separation bubble. 

Moving downstream to x/H=5.0, low-frequency motions (t3) become dominant in cases 

with BR > 0, whereas for BR = 0, no clear signature of these motions is yet recognized. 

This implies that in BR > 0 cases, low-frequency motions exhibit a broader signature 

across the separation bubble compared to BR = 0. 

At x/H=7.5, close to the reattachment point (and post-reattachment for BR < 0.2), the 

signature of low-frequency motions (t3) becomes completely recognizable across all BR 
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values. Concurrently, the PSD level of high-frequency motions (t1) reaches its minimum 

value. 

 

Figure 5.37 Comparison of the Premultiplied PSD, 𝒇 ∙ 𝑷𝒖/〈𝒖′𝒖′〉, of streamwise 

velocity fluctuations for different blockage ratios along the separation streamline (at  

x/H =0.5, 5, and 7.5, z/δ = 1.0, and elevations of y/H= -0.05, -0.4, and -0.75) for BR = 

0, 0.05, 0.1, and 0.2. 

5.3.8 Modal Analysis 

Dynamic Mode Decomposition (DMD) modal analysis was applied to identify 

three-dimensional, frequency-orthogonal modes. This technique helps to gain a better 

understanding of the effect of riblet obstacles on the evolution and dynamics of coherent 

structures, both upstream of the step (within the incoming turbulent boundary layer) and 

downstream of the step (primarily within the shear layer). 

DMD was first introduced by Schmid(Schmid, 2010) as a method to identify the most 

significant modes and extract dynamic information from a flow system. In this technique, 

each mode is uniquely associated with a single frequency, thereby characterizing the 
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dynamics of that corresponding mode. The combination of these individual modes can 

then be used to reconstruct the complex behavior of the entire flow field. One of the main 

applications of DMD, implemented in various studies(Hickel et al., 2021; Wang et al., 

2020), is the identification of coherent structures. 

For first N mode, the dynamic mode system is represented as follows: 

𝑄𝑁 = [𝜙1, 𝜙2, … , 𝜙𝑁]⏟          
𝜙

[

𝛼1
 
 
 

 
𝛼2
 
 

 
 
⋱
  

 
 
 
𝛼𝑁

]

⏟      
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 1
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 ⋮
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⏟        
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where 𝜙𝑘 represent the ith mode, 𝛼𝑘 shows the amplitude of the ith mode, and 𝜇𝑘 shows 

the corresponding eigenvalue within the Vandermonde matrix, which represents the 

temporal evolution of the system. According to(Hickel et al., 2021) 𝜇𝑘 is converted to the 

complex stability plane through a logarithmic mapping (𝜆𝑘 = ln(𝜇𝑘) /Δ𝑡 ). Two new 

parameters 𝛽𝑖 and 𝜔𝑖 are extracted from the mapped eigenvalues which are respectively 

stand for growth rate and angular frequency(Leroux et al., 2005): 

𝛽𝑖 = ℜ(𝜆𝑘) = ln|𝜇𝑘| /Δ𝑡 

𝜔𝑘 = ℑ(𝜆𝑘) = arctan (𝜇𝑘)/Δ𝑡 

The information regarding each mode and its corresponding frequency and amplitude 

then are used to reconstruct evolution of the associated coherent structures within the flow 

field, which can be superimposed to the mean flow field using the following formulation: 

𝑞(𝑥, 𝑡) = 𝑞𝑎𝑣𝑒 +ℜ(𝛼𝑘𝜙𝑘𝑒
𝑖𝜃𝑘),      𝜃𝑘 = 𝜔𝑘𝑡 

The computational domain was strategically divided into two distinct subdomains for 

Dynamic Mode Decomposition (DMD) analysis. Region I encompassed the step 

upstream area, spanning x/H=−10 to x/H=−0.5. Region II covered the step downstream 

area, extending from x/H=0.5 to x/H=20. 

To optimize computational efficiency while maintaining data integrity, a systematic 

sparse sampling strategy was implemented. Temporally, the dataset was reduced from 

3000 to 1500 snapshots through uniform decimation; we preserved the total time interval 

by removing every alternate snapshot. Spatially, a structured downsampling approach was 



 

156 
 

applied by keeping every second element throughout the domain. This balanced data 

reduction while maintaining sufficient resolution for meaningful analysis.  

Eigenvalues spectrum of one of the cases (BFS Region I) is provided in the Figure 5.38(a). 

Most of the eigen values are on the unit circle (|𝜇𝑘| ≈ 1), and some of them are in the 

decaying region. For the reconstruction the decaying modes (|𝜇𝑘 | < 0.95 ) where not 

considered. Figure 5.39(b) provides the normalized amplitude (𝜓𝑘 = 𝛼𝑘/𝛼𝑚𝑎𝑥) for the 

selected positive frequency versus the Strouhal number. The intensity of each color bar is 

proportional with the growth rate parameter (𝛽𝑘), so the darker the bar the higher the 

growth rate. For each subdomain three different modes (𝜙1, 𝜙2, 𝜙3) were selected based 

on the frequency range (in three regions of 𝑆𝑡ℎ < 0.1, 0.1 < 𝑆𝑡ℎ < 0.5, and 0.5 < 𝑆𝑡ℎ) 

and normalized amplitude (0.2 < 𝜓𝑘 for 𝑆𝑡ℎ < 0.5 and 0.05 < 𝜓𝑘 for 0.5 < 𝑆𝑡ℎ). 

 

Figure 5.38 (a) Eigenvalue spectrum of BFS, (b) Normalized amplitude versus Strouhal 

number and selected modes. 

Dynamic Mode Decomposition (DMD) analysis was performed specifically for the 

streamwise velocity component to identify coherent vortices within the dominant modes 

and across various frequencies. Information regarding the normalized mode amplitude, 

Strouhal number, and growth rate for each flow domain (Region I and Region II) is 

presented in Table 5.2. 

Table 5.2 Information regarding normalized amplitude, Strouhal number and growth 

rate for the selected modes. 
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 BFSI 

RI 

BFSI 

RII 

BFSII 

RI 

BFSII 

RII 

BFSIII 

RI 

BFSIII 

RII 

BFSIV 

RI 

BFSIV 

RII 

𝛟𝟏 |ψ| 0.66 0.451 0.399 0.342 0.218 0.509 0.879 0.879 

Sth 0.067 0.048 0.096 0.082 0.054 0.084 0.054 0.05 

β -0.004 -0.0001 -0.014 -0.0005 -0.024 -0.0003 -0.023 -0.0237 

𝛟𝟐 |ψ| 0.212 0.336 0.349 0.260 0.384 0.284 0.546 0.546 

Sth 0.121 0.125 0.269 0.219 0.1329 0.204 0.236 0.236 

β -0.005 -0.0006 -0.018 -0.012 -0.0226 -0.0004 -0.029 -0.029 

𝛟𝟑 |ψ| 0.145 0.054 0.108 0.108 0.20 0.055 0.271 0.271 

Sth 0.55 0.538 0.540 0.624 0.609 0.626 0.559 0.55 

β -0.012 -0.0075 -0.027 -0.013 -0.039 -0.008 -0.049 -0.049 

 

Figure 5.39 presents the streamwise velocity fluctuations corresponding to the DMD 

mode ϕ1 (low frequency) in Region I for different Blockage Ratio (BR) domains. For 

each computational domain, two cases with a phase difference of π/2 are displayed. In all 

analyzed cases, strong streamwise coherent structures are observable, exhibiting 

remarkable differences between varying BR values. 

In the absence of riblets (BFS I), alternating low-frequency coherent structures are 

uniformly distributed along the channel, maintaining an almost constant size and shape 

throughout Region I. The addition of riblets, however, completely perturbs this pattern. 

In BFS II, upstream of the riblets, the low-frequency coherent structures closely resemble 

those found in BFS I. Upon encountering the riblets, these structures are broken down 

into smaller structures, exhibiting a non-uniform size distribution in the spanwise 

direction, with the largest structures located in the middle of the spanwise extent. Smaller 

structures are primarily situated between the riblets on the bottom surface, while larger 

ones extend up to the rib crests. 

In contrast to BFS II, a remarkable growth in the low-frequency coherent structures is 

observed near the bottom wall after the riblets in BFS III, reaching their maximum size 

at the end of the riblet region. These streamwise vortices form immediately after the first 

rib and persist up to the step. In BFS IV, a pair of strong and large streamwise structures 

emerges near the fourth riblet. Prior to these structures, in the initial part of the riblet 

region, small, alternating coherent structures are formed on the bottom surface between 

sequential ribs. This indicates that vortices between riblets possess shedding frequencies 

close to the low-frequency range (details on sweep and ejection events in d-type and k-

type ribs are provided in the statistical analysis section). These initial structures 

subsequently grow to the crest region and transform into the large pairwise streamwise 
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vortices. These low-frequency structures are presumed to correspond to the streamwise 

vortices represented in the cross-sectional streamlines in Figure 5.10. This evidence 

suggests that d-type riblets in a closed channel can facilitate the formation of strong, 

pairwise, low-frequency vortices near the rib crest, which significantly influence the 

dynamics and structure of the downstream shear layer. 

 

 

 

Figure 5.39 Isosurfaces of the streamwise velocity fluctuations (DMD mode 𝝓𝟏 ) in 

Region I. Blue isosurfaces show 𝒖/𝑼𝒓𝒆𝒇 = −𝟎. 𝟔 and red isosurfaces show 𝒖/𝑼𝒓𝒆𝒇 =

𝟎. 𝟔. (a) BFS I, (b) BFS II, (c) BFS III, and (d) BFS IV. 

Figure 5.40 displays the streamwise velocity fluctuations corresponding to the DMD 

mode ϕ2, which represents the mid-range frequency. In the plain channel (BFS I), 

structures similar to those observed for the ϕ1 mode (low frequency) are present, but with 

smaller characteristic sizes. In cases featuring riblets (BFS II, BFS III, and BFS IV), 

strong, growing vortices are formed over the bottom surfaces and rib crests, reaching their 

maximum sizes upstream of the step. Compared to the lower frequency mode, ϕ1, these 
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mid-range frequency fluctuations exhibit a greater tendency to extend towards the central 

region of the duct. 

Regarding the DMD mode ϕ3 (high-frequency mode, Figure 5.41), the fluctuations 

demonstrate a more uniform size distribution across Region I, maintaining a remarkable 

distance from the bottom surface. From these combined results, it can be concluded that 

riblets facilitate the formation of strong low-frequency vortices predominantly close to 

the bottom surface, while higher-frequency vortices are more prominent above the rib 

crest. Furthermore, for the high-frequency mode (ϕ3), it is observed that increasing the 

riblet size leads to an increase in the characteristic size of the high-frequency coherent 

structures. 

 

 

 

Figure 5.40 Isosurfaces of the streamwise velocity fluctuations (DMD mode 𝝓𝟐 ) in 

Region I. Blue isosurfaces show 𝒖/𝑼𝒓𝒆𝒇 = −𝟎. 𝟓 and red isosurfaces show 𝒖/𝑼𝒓𝒆𝒇 =

𝟎. 𝟓. (a) BFS I, (b) BFS II, (c) BFS III, and (d) BFS IV. 
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Figure 5.41 Isosurfaces of the streamwise velocity fluctuations (DMD mode 𝝓𝟑 ) in 

Region I. Blue isosurfaces show 𝒖/𝑼𝒓𝒆𝒇 = −𝟎. 𝟒 and red isosurfaces show 𝒖/𝑼𝒓𝒆𝒇 =

𝟎. 𝟒. (a) BFS I, (b) BFS II, (c) BFS III, and (d) BFS IV. 

A similar modal analysis was conducted for the shear layer regions, focusing on three 

different dominant modes. Figures 5.42, 5.43, and 5.44 represent the isosurfaces of 

streamwise velocity fluctuations in Region II for DMD mode ϕ1 (low-frequency mode), 

ϕ2, and ϕ3, respectively. In all cases, large structures associated with low frequency 

encompass both the shear layer and the reverse flow region(Santese et al., 2024b). 

Ribs facilitate the formation of pairwise low-frequency structures within the shear region, 

a phenomenon more clearly observable for BFS III and BFS IV. These structures are 

likely the downstream extension of the large pair vortices previously observed in Region 

I, highlighting the significant impact of the ribs on the morphology of coherent structures 

forming within the shear region. 
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Another important observation is that the length of these structures reduces with 

increasing riblet height. As detailed in the characterization of the shear layer section, 

previous studies(Mahmoodi-Jezeh and Wang, 2020; Maleki et al., 2024) have shown that 

increasing the incoming turbulent boundary layer thickness leads to an increased shear 

layer growth rate/thickness and shifts its reattachment point upstream. 

 

Figure 5.42 Isosurfaces of the streamwise velocity fluctuations (DMD mode 𝝓𝟏 ) in 

Region II. Blue isosurfaces show 𝒖/𝑼𝒓𝒆𝒇 = −𝟎. 𝟔 and red isosurfaces show 𝒖/𝑼𝒓𝒆𝒇 =

𝟎. 𝟔. (a) BFS I, (b) BFS II, (c) BFS III, and (d) BFS IV. 
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Figure 5.43 Isosurfaces of the streamwise velocity fluctuations (DMD mode 𝝓𝟐 ) in 

Region II. Blue isosurfaces show 𝒖/𝑼𝒓𝒆𝒇 = −𝟎. 𝟓 and red isosurfaces show 𝒖/𝑼𝒓𝒆𝒇 =

𝟎. 𝟓. (a) BFS I, (b) BFS II, (c) BFS III, and (d) BFS IV. 
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Figure 5.44 Isosurfaces of the streamwise velocity fluctuations (DMD mode 𝝓𝟑 ) in 

Region II. Blue isosurfaces show 𝒖/𝑼𝒓𝒆𝒇 = −𝟎. 𝟒 and red isosurfaces show 𝒖/𝑼𝒓𝒆𝒇 =

𝟎. 𝟒. (a) BFS I, (b) BFS II, (c) BFS III, and (d) BFS IV. 
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5.4 Effect of Riblet Blockage Ratio on Cavitation Patterns 

This section explores how Blockage Ratio (BR) values at the inlet impact cavitation 

patterns in Region I (upstream of the step) and Region II (downstream of the step). We 

used the compressible cavitation flow solver described in Chapter 3 for this analysis. 

To ensure consistency, we kept the boundary conditions the same as those in our single-

phase study, and we adopted the fluid properties from Chapter 4. As a result, the Reynolds 

number, based on the inlet hydraulic diameter, stays constant at 7200 across all scenarios. 

However, the cavitation number changes for each case, as detailed in Table 5.3. This 

happens because we apply atmospheric pressure at the channel outlet, while the upstream 

pressures fluctuate due to the different hydraulic resistances linked to each BR value. 

Table 5.3 Nondimensional numbers for different BR values. 

BR 0 0.05 0.1 0.2 

𝑅𝑒 7200 7200 7200 7200 

𝜎𝑣 0.74 0.887 1.08 1.311 

 

 

Figure 5.45 presents instantaneous results of cavitating flow evolution across three 

sequential time steps for a Blockage Ratio (BR) of 0.05. The visualization includes void 

fraction using two different iso-surfaces (a transparent one at αv=0.1 and an opaque one 

at αv=0.5), pressure contours on a side plane, and velocity field distribution on various 

planes. 

As discussed in the previous section, in the current flow regime, separation occurs above 

the ribs, even at small BR values like 0.05. This separation is accompanied by the 

formation of velocity gradients and shear layers above each rib. Vortices that form within 

the cores of these shear layers above each rib induce a significant pressure drop. If the 

surrounding liquid pressure is sufficiently low, this vortex-induced pressure drop leads to 

the formation and evolution of cavitation packets. 

Figure 5.45(a) reveals the presence of intermittent cavitation packets even over the most 

upstream rib, despite its location in the region of highest surrounding pressure. This 

intermittent cavitation is formed within the core of rolled-up vortices above the rib region, 
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a phenomenon similar to the intermittent vortices observed in restriction 

regions(CECCIO and LABERTEAUX, 2001; Ganesh et al., 2016). 

Moving downstream along the channel, a significant portion of the riblet becomes 

covered with a sheet of vapor (Figure 5.45(b)). This occurs due to a decrease in the 

surrounding pressure, while the strength of vortices over the ribs remains almost constant. 

Downstream of the ribs, the vapor evolves within the streamwise structures, which most 

likely correspond to the legs of hairpin-like structures formed in this region. If a hairpin 

vortex possesses sufficient strength, a considerable portion of it will be filled with vapor, 

allowing its shape to be recognizable through the void fraction (Figure 5.45(c)). 

Structures similar to these have also been observed in previous studies (CECCIO and 

LABERTEAUX, 2001). 

From the velocity field contours, high- and low-speed streaks are discernible on the 

bottom surface, appearing most significantly between the two outermost ribs. These 

streaks are associated with the ejection and sweeping mechanisms discussed in the 

previous section. In the case of cavitating flow, however, reverse flow can also be induced 

and intensified in the presence of an APG generated by cavitation closure(Bhatt and 

Mahesh, 2020).Prior to the last rib, cavitation packets exhibit intermittent shedding 

(Figure 5.46(c)), primarily governed by the advection of vortical structures along the 

channel. The convected bubbles collapse as soon as they are exposed to a high-pressure 

region, resulting in the generation of strong pressure waves and the subsequent breakup 

of surrounding vapor structures (Figure 5.46(b)). 

Downstream of the last rib, the surrounding pressure drop is substantial enough that 

cavitation covers a remarkable portion of the bottom wall. This cavitation then extends 

downstream of the step. In the current flow regime, we observed that most of Region II 

will be occupied by vapor, leading to the occurrence of supercavitation in this region. 

Nonetheless, as will be discussed, the distribution and intensity of the void fraction in the 

extension region differ significantly for various BR values. 



 

166 
 

 



 

167 
 

Figure 5.45 3D representation of the vapor void fraction, pressure field, and velocity 

field distribution in cavitating flow in Region I of the BFS II configuration. Transparent 

iso-contour corresponds to α_v=0.1 and opaque iso-contour corresponds to α_v=0.5, at 

(a) t_ref, (b) t_ref+δt, and (c) t_ref+2δt (δt=5e-6s ). 

Figures 6.46 and 6.47 illustrate the cavitating flow patterns for Blockage Ratios (BR) of 

0.1 and 0.2, respectively. In general, these cavitation patterns bear a resemblance to those 

previously described for BR = 0.05. However, two major differences are consistently 

observable. Firstly, the size of cavitation packets formed within the vortical structures is 

notably larger for higher BR values. For instance, a comparison of the cavitation within 

the hairpin structures clearly demonstrates this increase in size, which further 

corroborates the formation of stronger and larger coherent structures with increasing BR 

values (as also supported by Figure 5.34). Secondly, these cavitation patterns are present 

across a larger portion of the channel height. 
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Figure 5.46 3D representation of the vapor void fraction, pressure field, and velocity 

field distribution in cavitating flow in Region I of the BFS III configuration. 

Transparent iso-contour corresponds to 𝜶𝒗 = 𝟎. 𝟏 and opaque iso-contour corresponds 

to 𝜶𝒗 = 𝟎. 𝟓, at (a) 𝒕𝒓𝒆𝒇, (b) 𝒕𝒓𝒆𝒇 + 𝜹𝒕, and (c) 𝒕𝒓𝒆𝒇 + 𝟐𝜹𝒕 (𝜹𝒕 = 𝟓𝒆 − 𝟔𝒔  ). 
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Figure 5.47 3D representation of the vapor void fraction, pressure field, and velocity 

field distribution in cavitating flow in Region I of the BFS IV configuration. 

Transparent iso-contour corresponds to 𝜶𝒗 = 𝟎. 𝟏 and opaque iso-contour corresponds 

to 𝜶𝒗 = 𝟎. 𝟓, at (a) 𝒕𝒓𝒆𝒇, (b) 𝒕𝒓𝒆𝒇 + 𝜹𝒕, and (c) 𝒕𝒓𝒆𝒇 + 𝟐𝜹𝒕 (𝜹𝒕 = 𝟓𝒆 − 𝟔𝒔  ). 

Figure 5.48 illustrates the isosurfaces of void fraction (αv=0.1 for the transparent surface 

and αv=0.5 for the opaque surface), along with the side and bottom plane pressure fields, 

for different Blockage Ratio (BR) values in the extension region (Region II). To provide 

further insight, the corresponding velocity fields are presented in Figure 5.49. At first 

glance, it's evident that in all cases, the recirculation zone and corner vorticity are 

completely filled with dense vapor. Downstream of the recirculation zone, a large, 

cylindrically shaped vapor packet sheds from the end of the separation bubble (labeled as 

"shed cavity from the separation bubble (SB)"). The size and intensity of this shed cavity 

significantly increase with BR values, indicating a corresponding increase in the size and 

strength of this vortical structure as BR rises. 

Above the step, cavitation packets enter the extension region from Region I. As most of 

these cavitation packets originate within high-frequency (HF) coherent structures in the 

riblet region, they are depicted as "convected" or "HF cavitation" in Figure 5.48. Since 

the majority of the channel is filled with cavitation and a low-pressure region, it can be 

classified as a supercavitation region. The large pressure regions, identifiable by dark blue 

contours, likely correspond to transient local pressure fluctuations and condensation 

within the channel. The velocity field distribution (Figure 5.49) further demonstrates that 

the magnitude of velocity remarkably increases with increasing BR. This suggests more 

intense cavitation at larger BR values, leading to a greater increase in fluid volume and 

velocity across the channel. 
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Figure 5.48 Instantaneous 3D representation of the vapor void fraction, pressure field 

distribution in cavitating flow in Region II of (a) BFS II, (b) BFS III, and (c) BFS IV. 

Transparent iso-contour corresponds to 𝜶𝒗 = 𝟎. 𝟓 and opaque iso-contour corresponds 

to 𝜶𝒗 = 𝟎. 𝟗𝟗 
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Figure 5.49 Instantaneous 3D representation of the velocity field distribution in 

cavitating flow in Region II of (a) BFS II, (b) BFS III, and (c) BFS IV. 
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5.5 Conclusion 

This comprehensive analysis has elucidated the profound and multi-faceted impact 

of riblet-equipped surfaces, quantified by the BR, on the turbulent flow characteristics 

and subsequent cavitation patterns within a channel featuring a step. Our findings 

underscore a strong interrelationship where changes in the fundamental turbulent flow 

structures, driven by the presence and geometry of riblets, directly dictate the inception, 

evolution, and intensity of cavitation phenomena. 

1. Altered TKE Dynamics: The presence of riblets fundamentally shifts the TKE budget. 

While production and dissipation are dominant in smooth channels (BR=0), increasing 

BR introduces and amplifies the roles of turbulent diffusion and convection. For lower 

BR (e.g., BR=0.05), turbulent diffusion becomes a key mechanism for TKE transfer, 

primarily redistributing energy from regions of high production. As BR increases further, 

convection emerges as a significant TKE transport mechanism. Downstream of the step 

(Region II), although overall TKE magnitudes are generally lower for BR>0 cases, the 

positive contributions of TKE convection and diffusion are notably enhanced, especially 

within the shear layer. This highlights their crucial role in TKE distribution and is directly 

linked to the thickening of the incoming TBL due to increasing BR, which promotes the 

formation of larger coherent structures in the initial shear layer. 

2. Modification of Reynolds Stresses and Flow Anisotropy: The introduction of riblets 

significantly impacts the Reynolds stresses, which represent the additional stresses arising 

from turbulent velocity fluctuations and are key indicators of turbulent mixing and 

momentum transfer. Specifically, the magnitude of the normal anisotropy components 

(b11, b22, b33) is substantially reduced near the wall and rib crest. Furthermore, the 

characteristic peaks and valleys of these components, along with the overall anisotropy 

invariant function, undergo horizontal shifts with increasing BR, indicating a fundamental 

alteration in the flow's anisotropic state. Downstream of the step, the enhancement of 

anisotropy within the shear layer—a prominent feature in smooth channels—is attenuated 

with increasing BR. Nevertheless, local peaks in the anisotropy invariant function persist, 

consistently aligning with regions of significant mean velocity gradients, signifying 
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ongoing turbulent activity. These changes in Reynolds stresses reflect the modified 

momentum transport and turbulent mixing across the flow field due to the riblets. 

3. Morphological Transformation of Coherent Structures: Autocorrelation analysis 

provided direct evidence of how riblets alter the morphology of coherent structures. An 

increase in BR leads to a monotonic increase in the width of streamwise velocity 

fluctuation isopleths and a decrease in their inclination angle, which is indicative of a 

more dominant sweeping motion near the wall. Conversely, the spanwise velocity 

fluctuation isopleths shorten with increasing BR, suggesting the formation of smaller 

hairpin legs. These observations are highly consistent with the previously noted TBL 

thickening and the subsequent formation of larger, slower coherent structures. The altered 

Reynolds stress profiles are directly linked to these modified coherent structures, as they 

are the primary carriers of turbulent momentum flux. 

4. Dominance of Low-Frequency Dynamics and Larger Structures: Spectral analysis of 

streamwise velocity fluctuations demonstrated two critical trends with increasing BR: an 

expanded range of energetic motion temporal scales and a distinct shift of the high-energy 

zone towards larger temporal scales (lower characteristic frequencies). This strongly 

indicates the formation of larger and slower coherent structures within the TBL, which, 

in turn, exerts a significant influence on the dynamics of the downstream separation 

bubble. Downstream of the step, low-frequency motions (associated with t3) become 

dominant for BR>0 cases earlier in the channel compared to BR=0, exhibiting a broader 

spatial signature across the separation bubble. Near reattachment, these low-frequency 

motions are universally recognizable across all BR values, while the high-frequency 

motions (associated with t1) reach their minimum PSD levels. 

5. DMD-Identified Coherent Vortices and Riblet-Induced Structures: The Dynamic Mode 

Decomposition (DMD) analysis quantitatively confirmed these structural and dynamic 

changes. In Region I, riblets profoundly disrupt the uniform distribution of low-frequency 

coherent structures observed in smooth channels, leading to their breakdown into non-

uniform, smaller structures. Higher BR values (BFS III, IV) specifically promote the 

growth of strong low-frequency vortices near the bottom wall and the formation of large 

pairwise low-frequency vortices near the rib crest. These are identified as the downstream 

extension of the large pair vortices observed in cross-sectional streamlines, underscoring 

the significant impact of ribs on the morphology of coherent structures. Mid-range 
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frequency modes (ϕ2) show strong, growing vortices extending towards the duct central 

region, while high-frequency modes (ϕ3) exhibit a more uniform size distribution and are 

located farther from the bottom surface. An increase in riblet size directly correlates with 

an increase in the size of high-frequency coherent structures. These coherent structures, 

identified by DMD, are directly responsible for generating the Reynolds stresses 

observed, as they represent the organized, time-averaged contributions of the fluctuating 

velocities to momentum transfer. 

6. Direct Influence on Cavitation Patterns: The altered flow characteristics and the 

modified coherent structures, particularly the low-frequency, larger vortices, directly 

dictate the cavitation patterns. Even at small BR, intermittent cavitation packets nucleate 

within the cores of vortices formed above the ribs due to localized pressure drops. As the 

flow progresses downstream, these cavitation patterns persist, with vapor evolving 

prominently within hairpin-like structures. Crucially, increasing BR leads to the 

formation of larger and more intense cavitation packets, serving as direct evidence of the 

stronger and larger coherent structures facilitated by the riblets. In Region II, the 

recirculation zone and corner vorticity are completely filled with dense vapor. A large, 

cylindrically shaped vapor packet sheds from the end of the separation bubble, and its 

size and intensity significantly increase with BR values, directly reflecting the increased 

size and strength of the underlying shedding vortical structures. The channel ultimately 

transitions into a supercavitation regime in Region II for all BRs, with the specific 

distribution and intensity of the void fraction varying significantly with BR, reflecting the 

distinct flow characteristics induced by each riblet geometry. The pressure fluctuations 

induced by these cavitating structures, in turn, influence the overall flow field, creating 

an intricate feedback loop. 

In conclusion, this study unequivocally demonstrates that riblets are not merely passive 

surface modifications but actively reshape the turbulent flow field. They promote the 

formation of larger, slower, and more organized coherent structures, particularly at low 

frequencies and near the solid boundaries. This fundamental shift in flow characteristics, 

explicitly evident in the TKE budget, Reynolds stress anisotropy, autocorrelation, and 

DMD modes, directly dictates the inception, evolution, and intensity of cavitation. The 

ability of riblets to foster strong, low-frequency vortical structures directly translates into 

more pronounced and extensive cavitation phenomena, particularly in the reattachment 
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and extension regions. This comprehensive understanding of the interplay between riblet 

geometry, turbulent flow characteristics, Reynolds stresses, coherent structures, and 

cavitation dynamics is critical for the design and optimization of flow systems operating 

under cavitating conditions. 
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6 INSIGHTS ON CAVITATING FLOWS OVER A MICROSCALE BFS-

EXPERIMENTAL STUDY 

6.1 Introduction 

This study introduces the first experimental analysis of shear cavitation in a 

microscale BFS configuration. It explores shear layer cavitation under various flow 

conditions in a microfluidic device with a depth of 60 μm and a step height of 400 μm. 

The BFS configuration, with its unique characteristics of upstream turbulence and post-

reattachment pressure recovery, provides a controlled environment for studying shear-

induced cavitation without the complexities of other microfluidic geometries. 

Experiments were conducted across four flow patterns: inception, developing, shedding, 

and intense shedding, by varying upstream pressure and Reynolds number. The study 

highlights key differences between microscale and macroscale shear cavitation, such as 

the dominant role of surface forces on nuclei distribution, vapor formation, and distinct 

timescales for phenomena like shedding and shockwave propagation. It is hypothesized 

that vortex strength in the shear layer plays a significant role in cavity shedding during 

upstream shockwave propagation. Results indicate that increased pressure notably 

elevates the mean thickness, length, and intensity within the shear layer. Instantaneous 

data analysis identified two vortex modes (shedding and wake modes) at the reattachment 

zone, which significantly affect cavitation shedding frequency and downstream 

penetration. The wake mode, characterized by stronger and lower-frequency vortices, 

transports cavities deeper into the channel compared to the shedding mode. Additionally, 

vortex strength, proportional to the Reynolds number, affects condensation caused by 

shockwaves. The study confirms that nuclei concentration peaks in the latter half of the 

shear layer during cavitation inception, aligning with the peak void fraction region. 
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6.1.1 Experimental Overview 

6.1.1.1 Device Fabrication and Configuration 

Experiments were conducted on a microfluidic HC-on-a-chip device (reactor) with 

a BFS configuration, whose dimensions and geometry are shown in Figure 6.1. The 

reactor consisted of two primary sections which were the microchannel and the extension 

channel. The inlet port, with a diameter of 1000 μm, was connected to the microchannel, 

which had dimensions of 400 μm in height, 4000 μm in length, and 60 μm in depth. 

Following the microchannel, there was an extension channel where cavitating flow 

patterns were observed. The dimensions of the extension channel were 800 μm in height, 

4000 μm in length, and 60 μm in depth. The outlet port, with a diameter of 1000 μm, was 

located at the end of the extension channel.  The reactor was fabricated using a process 

flow derived from semiconductor microfabrication techniques. The major fabrication 

steps included a silicon (Si) wafer grinding, silicon dioxide (SiO2) coating, 

photolithography, SiO2 and Si etching, protective layer deposition, wet etching, and 

piranha cleaning as illustrated in Figure 6.2. In the final step, the Si-based substrate was 

cleaned and anodically bonded to a Borofloat 33 glass to form a high-pressure-resistant 

semi-transparent closed channel structure for visualization. The detailed fabrication 

process flow can be found in the previous study(Rokhsar Talabazar et al., 2021). 
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Figure 6.1 Schematic of the experimental setup, microfluidic HC reactor, and holder for 

HC reactor. 

 

Figure 6.2 Microfluidic HC Reactor Fabrication Steps: a) A 4-micrometer layer of 

photoresist is cast onto a silicon (Si) wafer, which is pre-coated with 500nm of silicon 

dioxide (SiO2). b) A maskless lithography process is then used to pattern features 

designed with Layout Editor Software. c) The SiO2 layer is subsequently etched using 

an ICP-based high-density plasma source (SPTS APS). d) Stripping of the photoresist. 

e) Lithography for the fabrication of the ports. f) Deep Reactive Ion Etching (DRIE) for 

the etching of Si. g) Photoresist stripping. h) 10 nm of Titanium (Ti) and 2 µm of 

Aluminum (Al) sputtering on the backside of the Si wafer to increase its durability. Wet 
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etching and second DRIE to form the inlet and outlet. i) Wet etching for the removal of 

Al. i) Wet etching of Ti. k) Wet etching of SiO2 layer. l) Anodic bonding of the glass 

following etching of SiO2 layer. 

6.1.1.2 Experimental Setup and Procedure 

The experimental setup, as depicted in Figure 6.1, comprised a pressurized pure N2 

gas cylinder (BOC, UK), a sample container (Swagelok, Erbusco, Italy), pressure sensors 

(Omega, Manchester, UK, with an accuracy value of ±0.25% and a range of up to 

3000 psi), stainless steel tubing (Swagelok, Erbusco, Italy), and an aluminum holder. The 

aluminum holder featured a grove with a depth similar to that of the reactor. The reactor 

was further equipped with convenient inlet/outlet connections sealed via micro-O-rings. 

To ensure optimal sealing and safety, the reactor was then tightly sandwiched with 

transparent Poly(methacrylic acid methyl ester) (PMMA) lids. The experiments were 

initiated by feeding the sample container with the working fluid (in this study: de-ionized 

water). Pressurized N2 gas was then released in a controlled manner using a pressure 

regulator to compress and convey the fluid into the system. The fluid was filtered by a 

15  μm nominal pore size micro-T-type filter (Swagelok) to remove undesirable particles 

before entering the package. The upstream pressure was monitored by a pressure sensor 

located just before the holder. Different flow patterns were generated by increasing the 

inlet pressure, while the outlet pressure was kept constant as atmospheric pressure. The 

fluid was collected in a reservoir with 20 mL volume after passing through the reactor to 

calculate the volumetric flow rate. The experiments were performed at four different inlet 

pressures corresponding to four different flow patterns which were characterized by four 

cases in this study, namely Case I, Case II, Case III and Case IV. The details of 

experimental parameters regarding flow condition, flow parameters, and nondimensional 

numbers, including Re numbers (𝑅𝑒𝐷 = 𝑈𝐷ℎ/𝜈 ), where 𝑅𝑒𝐷 is the Re number based on 

the  

hydraulic diameter (𝐷ℎ), 𝑈 is the mean velocity within the microchannel calculated based 

on the volumetric flow rate, and 𝜈 is kinematic viscosity) and cavitation numbers (𝜎 =

(𝑝𝑖𝑛 − 𝑝𝑠𝑎𝑡)/(
1

2
𝜌𝑤𝑈

2), where 𝑝𝑖𝑛 is inlet pressure, 𝑝𝑠𝑎𝑡 is vapor saturation pressure of 
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water and  𝜌𝑤  shows water density) are provided in Tables 6.1 and 6.2 (𝜌𝑣  and 𝜇𝑣  

represent vapor density and dynamic viscosity, respectively). 

Multiple runs of the experiments were performed under strict control over experimental 

conditions to evaluate the consistency of our results. Specifically, the experiments were 

performed at least three times to ensure the consistency and reliability. The sensors used 

in this study were calibrated regularly before the experiments to minimize any potential 

measurement deviations. A detailed uncertainty analysis is also included in Table 6.3, 

which implies the potential errors arising from microfabrication and measurements. The 

variability of the results was quantified by calculating the percentage uncertainty. The 

uncertainty propagation method was used for this(Kline, 1953), and error values of 

sensors are received from the manufacturer’s datasheet. 

Table 6.1 Fluid properties and flow conditions of the current study. 

𝜌𝑤 [
𝑘𝑔

𝑚3
] 𝜌𝑣 [

𝑘𝑔

𝑚3
] 𝑝𝑠𝑎𝑡[𝑀𝑃𝑎] 𝜇𝑤 [

𝑁𝑠

𝑚2
] 𝜇𝑣 [

𝑁𝑠

𝑚2
] 𝛾 [

𝑁

𝑚
] 𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡[𝐾] 𝑝𝑜𝑢𝑡𝑙𝑒𝑡[𝑀𝑃𝑎] 

998.2 0.554 2.34e-3 0.9e-3 0.74e-6 0.07 293.16 0.1 

 

Table 6.2 Inlet pressure and flow regimes in the current study. 

 𝐶𝑎𝑠𝑒 𝐼 𝐶𝑎𝑠𝑒 𝐼𝐼 𝐶𝑎𝑠𝑒 𝐼𝐼𝐼 𝐶𝑎𝑠𝑒 𝐼𝑉 

𝑝𝑖𝑛[𝑀𝑃𝑎] 2.38 2.90 3.79 4.83 

𝜎 3.183 3.074 2.896 2.155 

𝑅𝑒𝐷 3,820 4,291 5,054 6,633 

 

Table 6.3 Uncertainties in experimental parameters 

Uncertainty Error 
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Flow rate ±1.3% 

Cavitation number ±6.5% 

Reynolds number ±5.6% 

Hydraulic diameter ±3.4% 

Pressure drop ±0.3% 

 

6.1.1.3 Visualization and Quantification of Void Fraction 

High-speed visualizations were performed in-situ using a high-speed camera 

(Fastcam SA-Z 2100 K (Photron, UK)) equipped with a Navitar 12 × zoom lens (0.5 × 

0.009–0.051NA 1–50012) with resolution as low as 6.66 µm and depth of field ranging 

from 0.19 – 6.17 mm. The cavitation zone inside the reactor was illuminated by a high-

power cold light source (Karl Storz Power LED 175, Germany) from the front. The 

cavitation phenomena were recorded at a rate of up to 105 frame per second (fps). In order 

to maintain desirable spatial resolutions, the images were acquired at a frequency of 

80000 Hz at 0.23 megapixels in this study. The image resolution was 752×312 with an 

optical magnification of 0.27 mm px-1, and the image depth was 8 bit. For all the series 

of images obtained with the high-speed camera, camera settings for brightness and 

contrast were kept constant and equal. The details regarding the data analysis are included 

in Appendix A.  

6.2 Results and Discussions 

6.2.1 Flow Regimes, Inception, and Nuclei Content 

 In this study, four distinct flow regimes were identified by varying the inlet 

pressure and maintaining atmospheric pressure at the outlet. These regimes are shown as 

instantaneous snapshots in Figure 6.3 and are also summarized by casting their 
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corresponding flow conditions. Inlet pressures were systematically selected based on 

preliminary tests to encompass the full range of cavitation regimes, from inception to 

intense shedding. This approach allowed for a comprehensive analysis of shear cavitation 

dynamics within the microscale backward-facing step geometry. In turbulent shear 

cavitation, cavitation inception (case I) is associated with the first appearance of 

cavitation or the first occurrence within quasi-streamwise vortices (QSV) as they are 

stretched between spanwise vortices of the shear layer(Agarwal et al., 2023). As the inlet 

pressure increases, the mean kinetic energy of the flow also rises, which leads to a 

decrease in the cavitation number. Consequently, more intense cavitation becomes visible 

with increasing inlet pressure. The primary factor contributing to this observation is the 

strengthening of vortices and associated increase in the local velocity within the shear 

layer. These strengthened vortices induce a significant drop in local static pressure, 

creating conditions favorable for cavitation inception. In Case II, cavitation preferentially 

develops near the middle of the shear layer and around the reattachment point, aligning 

with the location of spanwise vortices (the vortices developed due to the Kelvin-

Helmholtz instability and velocity gradient within the shear layer). In Case III, a thicker 

and more intense cavitation region forms closer to the step. Finally, Case IV exhibits 

intense shedding cavitation encompassing the entire shear layer, with numerous bubbles 

present within the separation bubble (the volume enclosed by the region of the separated 

flow) that are shed from the main cavitation region. 

 

 

Figure 6.3 High speed camera snapshots of different cavitating flow regimes in BFS 

configuration. Case I: inception, Case II: developing, Case III: shedding, Case IV: 

intense shedding. 
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Figure 6.4 depicts the development of vapor packets (cavitation) behind the BFS at 

various time intervals and positions. These observations were made at the upstream 

pressure of 2.38 MPa, which corresponds to the critical pressure for the first observation 

of cavitation on the reactor. The complex flow patterns within the reactor, featuring 

different types of vortices and high shear stress zones within the shear layer, act as 

nucleation sites for cavitation bubbles. These vortices and high shear stress regions 

accelerate the rapid growth and collapse of cavitation nuclei, triggering cavitation events. 

Several studies (Agarwal et al., 2023, 2018; Bhatt et al., 2021a; Katz and O’Hern, 1986; 

Maurice et al., 2021) reported cavitation inception within QSV structures. The high-speed 

camera visualization shows that cavitation inception occurs after nuclei become trapped 

within the shear layer. These bubbles likely originate from the upstream location of the 

step or are remnants of previous cavitation collapses near the reattachment zone. As can 

be seen in Figure 6.4, cavitation incepts within the shear layer formed behind the BFS. 

The inception process involves the repeated formation and collapse of vapor bubbles, 

likely due to nuclei trapped in the shear layer or fluctuating local pressure. 11,12,20–22 In 

some cases, these bubbles progress to larger spanwise vortices within the shear layer. 

These bubbles have significant shape and size changes before collapsing in high-pressure 

regions. Trapped nuclei first expand in low-pressure areas within the shear layer, then 

rapidly contract and collapse upon entering high-pressure zones. Furthermore, local 

variations in the shear layer, such as changes in the velocity gradients and pressure 
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fluctuations, influence the formation and collapse of these bubbles (Iyer and Ceccio, 

2002). 

 

Figure 6.4 Sequence of images extracted from high-speed videos showing the evolution 

of a discrete incipient cavity. 

The number and distribution of nuclei in the wake of the BFS significantly affects 

cavitation. When these nuclei coincide with local low-pressure zones, cavitation 

intensifies in susceptible regions. As shown in previous studies(Allan et al., 2023), a 

higher concentration of nuclei leads to more intense cavitation within the shear layer. 

Based on the observations, it can be deduced that bubble collapses near the reattachment 

zone significantly contribute to the nuclei population within the separation bubble. These 

shed bubbles are primarily trapped within the separation bubble before re-entering the 

shear layer and intensifying cavitation. Therefore, the focus is on quantifying the spatial 

distribution of these bubbles within the separation zone to identify areas with the highest 

nuclei concentration.  Additionally, it is aimed to investigate the impact of the cavitation 

regime on the distribution and fluctuations of these nuclei. 

Figure 6.5 presents the time-averaged distribution of normalized nuclei concentration 

within the separation bubble for various cavitation regimes. Nondimensional coordinates 

normalized by step height are shown by 𝑥̃ and 𝑦̃. In the inception regime, most nuclei are 

concentrated in the region defined by 𝑥̃~2 − 4 and  𝑦̃~0.5. As the pressure increases 

downstream of this region, vapor bubbles primarily collapse here, generating new nuclei. 

These nuclei become trapped within the recirculation zone and are then transported back 
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to the center of the shear layer, triggering new cavitation events. At a higher pressure of 

2.9 MPa, the nuclei level within the separation bubble increases. Additionally, a high 

concentration of bubbles is observed not only in the second half of the shear layer but 

also in the corner vortex and first half of the shear layer, which contributes to cavitation 

within the first half of the layer at this pressure.  At even higher upstream pressures, the 

nuclei concentration further increases, particularly within the first half of the separation 

bubble. 

Figure 6.6 depicts the RMS bubble concentration, which reflects the temporal variations 

of bubble nuclei across the spatial domain. High RMS values correspond to regions with 

a high average bubble concentration (as shown in Figure 6.5), indicating significant 

fluctuations in bubble presence within these areas. The RMS values are remarkable across 

a large portion of the separation bubble and downstream of the reattachment zone, 

suggesting a scattered distribution of bubbles throughout these regions. 

 

Figure 6.5 Time averaged of spatial distribution of nuclei bubbles in the BFS separation 

bubble at four different upstream pressures. The concentration in each discrete square 

region was obtained by summing the number of discrete bubbles in the corresponding 

region over all time steps and dividing with the number of time steps.  
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Figure 6.6 RMS of spatial distribution of nuclei bubbles in the BFS separation bubble at 

four different upstream pressures. The concentration in each discrete square region was 

obtained by summing the number of discrete bubbles in the corresponding region over 

all time steps and dividing with the number of time steps. 

6.2.2 Mean Characteristics of Void Fraction 

The mean and standard deviation of void fractions are presented in Figure 6.7 for 

all cases. It can be seen that for all cases the maximum mean void fraction lies within the 

shear layer, and its intensity and length increase for smaller cavitation number.  

The RMS values of void fraction fluctuations generally exhibit a similar pattern to the 

mean void fractions, with one notable exception observed for Case III. Here, the peak in 

the mean void fraction (occurring near the step) does not coincide with the peak in void 

fraction fluctuations, which is located within the middle region of the shear layer. This 

discrepancy suggests that for Case III, while the average vapor content is highest near the 

step, the most significant fluctuations (rapid changes in vapor content) occur within the 

shear layer.  Furthermore, Cases III and IV have noticeably higher void fraction 

fluctuations within the recirculation zone. This observation aligns with the expectation 

that the number of shed bubbles from cavitation packets increases as the cavitation 

number decreases (indicating more intense cavitation). These bubbles likely contribute to 

the increased fluctuations observed within the recirculation zone. 
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Figure 6.7 Contours of mean (left column) and standard deviation (right column) of 

void fractions for Cases I to IV. Red squares indicate the probes used for spectral 

analysis, numbered for easy reference. To enhance clarity, separate color bars with 

distinct value ranges are employed for void fraction data. 

Figure 6.8(a) presents the maximum values of the mean void fraction (𝛼̅𝑚𝑎𝑥) along the 

streamwise direction. These values offer valuable insights into the evolution of vapor 

content within the shear layer. As they are independent of transverse coordinate (y), they 

can be used to evaluate mean global behavior in each flow regime. As demonstrated by 

Maurice et al. (Maurice et al., 2021), the cavitation region can be segmented into three 

distinct zones: cavitation generation which is characterized by the increase in void 

fraction, eddy transport region where the void fraction is almost constant and cavities are 

transported with shear layer vortices, and condensation associated with decrease in void 

fraction. Four cases of cavitation regimes are evaluated based on these cavitation zones.  

The region of cavitation generation is typically associated with a rise in the maximum 

mean void fraction along the streamwise direction (indicated by 𝛼̅𝑚𝑎𝑥 in Figure 6.8a). 

The observations for Case IV reveal that this peak corresponds to the cavitation 

generation zone which lies in (0 < 𝑥̃ < 0.8). Interestingly, the width of this generation 

region expands with increasing cavitation number, which implies that as the cavitation 

number increases (indicating less intense cavitation conditions), cavitation occurs further 
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downstream from the step. In Cases I and II, it is observed that the area of peak void 

fraction aligns with the peak nuclei concentration observed in Figure 6.7, indicating that 

the second half of the shear layer is the most susceptible one to cavitation and also the 

location with the highest nuclei concentration during inception. 

The region with relatively flat variations in the maximum mean void fraction (𝛼̅𝑚𝑎𝑥) 

corresponds to the zone with eddy transport for the cavitation bubbles. For Case IV, the 

plateau region (0.8 < 𝑥̃ < 3.5) aligns with this transport zone. The width of this transport 

region exhibits a decrease with increasing cavitation number (with moving of peak in 

generation downstream). This observation can be explained by the fact that cavitation 

inception occurs further downstream within the shear layer as the cavitation number 

increases. Moreover, it can be observed that the condensation starts almost at the same 

location (𝑥̃ = 3.5)  for all cases, while the slope of 𝛼̅𝑚𝑎𝑥 in generation and condensation 

significantly decrease with an increase in the cavitation number. 

To further investigate differences in characteristics of shear cavitation for different 

regimes, the mean shear cavitation thickness within the shear layer was used as the 

characteristic length scale using the following equation (Maurice et al., 2014): 

𝐿𝛼̅(𝛥𝑥, 𝜏) =  ∫ 𝑅𝛼𝛼(𝑥, 𝛥𝑦) 𝑑𝛥𝑦
ℎ/2

−ℎ/2
                                                                                                 (6.1) 

where the spatial correlation (𝑅𝛼𝛼(𝑥, 𝛥𝑦)) is defined as: 

𝑅𝛼𝛼(𝑥, 𝛥𝑦) =
〈𝛼̅(𝑥𝑟𝑒𝑓,𝑦𝑟𝑒𝑓)𝛼̅(𝑥𝑟𝑒𝑓,𝑦𝑟𝑒𝑓+𝛥𝑦)〉

𝛼𝑟𝑚𝑠
′ (𝑥𝑟𝑒𝑓,𝑦𝑟𝑒𝑓)𝛼𝑟𝑚𝑠

′ (𝑥𝑟𝑒𝑓,𝑦𝑟𝑒𝑓)
                                                                                      (6.2) 

In this equation, 〈 〉 represents the ensemble average, 𝛼̅ is the temporal mean of the void 

fraction, and 𝛼𝑟𝑚𝑠
′  is RMS of the void fraction fluctuations. Figure 6.8(b) depicts the 

evolution of the estimated characteristic length scale, which is directly proportional to the 

thickness of the vapor phase within the shear layer. For all cases, it is evident that the 

maximum thickness occurs approximately at the midpoint of the shear layer (𝑥̃ ≈ 3.3),  

which indicates that the maximum cavitation thickness is attained before reaching the 

condensation region, where subsequent condensation leads to a reduction in this 

thickness. Moreover, the thickness decreases notably with an increase in the cavitation 

number (and simultaneously decreasing the Re number), indicating a decrease in both the 

size and strength of spanwise vortices within the shear layer. 
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Figure 6.8 (a) Evolution of the maximum of the mean void fraction field (1, 2, and 3 

show regions of the vapor generation, transport and condensation, respectively), and (b) 

Characteristic void fraction length-scale evolution along the longitudinal direction 

Spatio-temporal correlation for the fluctuating void fraction field was calculated as 

(Weiss et al., 2015): 

𝑅𝛼𝛼(𝛥𝑥, 𝜏) =
〈𝛼′(𝑥𝑟𝑒𝑓,𝑡𝑟𝑒𝑓)𝛼′(𝑥𝑟𝑒𝑓+𝛥𝑥,𝑡𝑟𝑒𝑓+𝜏)〉

𝛼𝑟𝑚𝑠
′ (𝑥𝑟𝑒𝑓)𝛼𝑟𝑚𝑠

′ (𝑥𝑟𝑒𝑓+𝛥𝑥)
                                                                               (6.3) 

Figure 6.9 presents the spatio-temporal correlations for Cases III and IV. Spatio-temporal 

correlations are not considered for Cases I and II due to limitations in the data. Case II 

has a limited number of snapshots, hindering accurate estimation of these correlations.  

Additionally, the sparse and transient presence of void fractions, especially in Case I, 

makes tracking void movement impractical, further complicating the reliable estimation 

of spatio-temporal correlations. Spatio-temporal correlation quantifies the statistical 

relationship between fluctuations in void fraction at different spatial locations and across 

time within the cavitating shear layer, which helps to understand how variations in the 

vapor content are interconnected. The normalized convective velocities were 

approximated by fitting a linear function to the local maxima observed in the correlation 

functions. The results reveal that the mean convective velocities in both cases are 
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approximately half of the mean bulk velocity of the flow (particularly in transport zone). 

This aligns with previous observations of convective velocities for coherent structures 

within free shear layers (Dimotakis, 1986), which decreases along the shear layer. This 

result confirms that the vapor is mainly transported within these spanwise vortical 

structures. 

 

 

Figure 6.9 Spatio-temporal correlation of void fraction for Cases IV and III in three 

different regions which were obtained based on Figure 8 (Generation: 𝟎. 𝟎 < 𝒙̃ < 𝟐, 

Transport: 𝟐 < 𝒙̃ < 𝟒, Condenstaion: 𝟒 < 𝒙̃ < 𝟔). The red line was obtained using 

linear fitting of the correlation maxima. The slope of the line represents the mean 

convective velocity (𝑼𝒄) of the void fraction in each region. The normalized value of 

convective velocity (normalized by reference velocity in the corresponding case) is 

provided in each plot. 

6.2.3 Spatio-temporal Dynamics of Void Fraction 

The images from the high-speed camera are presented in Figure 6.10 for the upstream 

pressure of 4.83 MPa (Case IV) along with the spatio-temporal map of void fraction in 

this regime. Only time series of Cases IV and III are studied here because the sparse and 
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short-lived presence of void fractions, especially in Case I, makes it difficult to follow 

their movement in the given temporal resolution. The time interval between sequential 

images is 12.5 𝜇𝑠. As already discussed in the previous section, pressure drops within 

spanwise vortices of the shear layer provide suitable conditions for cavitation 

development. In the snapshot related to the time instance of 𝑡0, separate vapor packets 

along the shear layer are visible (indicated by 1, 2, 3 markers). In this case, the vapor 

phase fills the spanwise vortical structures, which are connected to each other through 

QSVs. Furthermore, many small bubbles (with sizes between 5𝜇𝑚 to 20 𝜇𝑚) which are 

shed from the large vapor packets within the shear layer are observed within the 

recirculation zone. These small bubbles help in visualization of vorticity distributions and 

their variations within the recirculation region. They also feed and reinforce cavitation at 

different locations within the shear layer. As indicated in time instance 𝑡0 + 𝛿𝑡 , 

recirculation region encompasses multiple clockwise and anti-clockwise vortices, which 

have shape variation, merge and split as the reattachment is displaced along the wall. In 

this time instance, vapor packet 1 develops which corresponds to the development and 

growth of spanwise vortices associated with the packet. Meanwhile, a link of vapor forms 

between the 1st and 2nd packets, demonstrating development of vapor towards streamwise 

structures which connect two sequential spanwise structures. Once the separation bubble 

reaches its maximum size, a vortex associated with vapor packet 3 detaches from the 

downstream end of the separation bubble. Prior studies(Durst and Tropea, 1983; Nadge 

and Govardhan, 2014; SCHÄFER et al., 2009b)  demonstrated that the length of the 

separation bubble, particularly in turbulent flows, is primarily controlled via the balance 

between forces exerted by the pressure field and Reynolds normal and shear stresses along 

the recirculation zone or bubble boundary. The high Reynolds shear stress near the 

reattachment point promotes a longer reattachment length. In contrast, both of the forces 

due to Reynolds normal stress and pressure field act along the upstream direction. At 

lower Re numbers, viscous shear and normal stresses dominate, while Reynolds stresses 

become negligible. Furthermore, Nadge and Govardhan (Nadge and Govardhan, 2014) 

reported that both Reynolds shear and normal stresses depend on the geometry and Re 

number, while the pressure force component remains independent of step size. Any 

imbalance in these forces, such as differences in the entrainment to the shear layer from 

the recirculation zone and re-entrainment (Durst and Tropea, 1983), can trigger a 

shedding mechanism at the reattachment point. This event is coupled with the 

displacement of the reattachment, change in the size and shape of the vortices within the 
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recirculation and merging of spanwise vortices within the shear layer which corresponds 

to the 1st and 2nd vapor packets within the shear layer. In the light of the image sequence, 

the velocity of the shed vapor at the reattachment (packet 3) can be approximated as ≈

32.6 𝑚/𝑠. After reestablishment of the reattachment in the time instance of 𝑡0 + 3𝛿𝑡, 

cavitation is developed within the shear layer so that the shear layer is filled with vapor. 

Then, the reattachment gradually moves downstream. At the same time, vapor packets 

move along the wall at the front of the reattachment. The time slot between 𝑡0 + 4𝛿𝑡 and 

𝑡0 + 7𝛿𝑡 demonstrates that vapors cannot pass through the reattachment within the shed 

vortices, which suggests that the shed vortices are not strong enough to sustain the 

required low pressure in their cores for carrying vapor packets deep into the channel. 

Consequently, the vapor condenses immediately in front of the reattachment zone, 

forming small bubbles that are dispersed and carried to the upstream location by the 

reentrant jet. To elucidate the mechanism by which vapor collapse at the end of the shear 

layer leads to bubble shedding and their subsequent transport and distribution within the 

separation bubble, movies visualizing the bubble tracking process are provided. Movie 1 

(Multimedia view) tracks the generated bubbles within the separation bubble. Most of 

these bubbles rejoin the shear layer at various locations, primarily in the middle region 

(interface between the clockwise and counterclockwise vortices within the recirculation 

zone). Furthermore, the images reveal minimal displacement of the reattachment point 

and variation in the size and shape of the separation bubble during this time period 

(compared 𝑡0 to 𝑡0 + 3𝛿𝑡). This suggests the presence of smaller shed vortices during this 

time, which is further displayed in the spatio-temporal map of void fraction in Figure 

6.10(a). 

 As the time progresses to 𝑡0 + 8𝛿𝑡 , the vortices within the recirculation zone and 

spanwise vortices within the shear layer continue to develop and convect.  Consequently, 

a relatively large vapor packet located within a shear layer vortex begins to break apart 

and detach from the separation bubble. The collapse of the large vapor packet and 

resulting pressure wave significantly reduce the vapor intensity and shear layer thickness 

between time slot 𝑡0 + 9𝛿𝑡 and 𝑡0 + 11𝛿𝑡.  In the instance of 𝑡0 + 12𝛿𝑡, the recirculation 

zone undergoes a dramatic change. A large recirculation vortex, along with vapor trapped 

within the shear layer, begins to detach from the separation bubble (TSB). This 

detachment carries a significant portion of vapor with the vortex, initiating a new cycle. 
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Figure 6.10 Time sequence of cavitation development and dynamics for the upstream 

pressure of 4.83MPa (𝜹𝒕 = 𝟏. 𝟐𝟓𝝁𝒔). The initial stages (frames 1-4) utilize markers (1, 

2, and 3) to track the movement of distinct vapor packets, each associated with a 
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separate shear layer spanwise vorticity. For better clarity, some vorticities within the 

shear layer, recirculation zone, and region after reattachment (shed vorticity) are 

highlighted with dashed red lines. The corresponding time interval within the spatio-

temporal map is highlighted by a red overlay. 

Figure 6. 11 demonstrates that the shedding mechanisms during the time slot between (𝑡0 

to 𝑡0 + 3𝛿𝑡 ) and ( 𝑡0 + 12𝛿𝑡  to 𝑡0 + 15𝛿𝑡 ) differ significantly from the mechanism 

observed during the time slot between 𝑡0 + 4𝛿𝑡  and 𝑡0 + 11𝛿𝑡 . These two distinct 

shedding behaviors closely resemble the two modes of wake and shear shedding 

identified by Hudy et al. (Hudy et al., 2007) and observed by Maurice et al. (Maurice et 

al., 2021). Hudy et al. (Hudy et al., 2007) identified two distinct shedding modes in the 

flow behind a step. In the wake mode, large, and strong vortical structures detach and 

convect downstream, accompanied by more energetic pressure fluctuations along the wall 

(characterized by large peaks and valleys). Conversely, the shear mode is characterized 

by the continuous growth and merging of spanwise vortices within the shear layer. Here, 

vortices shed from the shear layer once their size reaches a size comparable to the step 

size. As shown by Hudy et al. (Hudy et al., 2007), this mode is associated with less 

dramatic pressure fluctuations, characterized by smaller peaks and valleys which suggests 

weaker vortex shedding. The vapor distribution observed in Figure 6.11 aligns perfectly 

with these distinct shedding modes. Figure 6.11 provides two specific time instances, 

each relevant to a particular mode. In the wake mode (Figure 6.11, left), separate packets 

of vapor reside within the large vortical structures. This coincides with the high-pressure 

peaks observed between the vapor packets and low-pressure valleys within them. In 

contrast, in the shear mode (Figure 6.11, right), less intense vapor fills the entire shear 

layer (including the vortices). Additionally, the recirculation region in this mode consists 

of small and randomly oriented vortices. Comparable shedding mechanisms were 

identified in our recent numerical investigation(Maleki et al., 2024) of cavitating flow 

within a BFS microchannel. Two shedding modes (coexisting with slow breathing 

motions) were observed: a high-frequency mode characterized by small vortex shedding 

at the end of the separation bubble, and a low-frequency mode associated with larger 

reattachment region excursions. 

Our findings suggest that the wake mode is most likely initiated by the pressure wave 

generated during the collapse of the large vapor packet at the downstream end of the shear 
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layer (𝑡0 + 8𝛿𝑡). This observation agrees with the results of a previous study by Maurice 

et al. (Maurice et al., 2021). They reported a similar wake mode triggered by vapor 

collapse downstream of the reattachment point, followed by pressure wave generation 

and propagation upstream towards the step. As previously discussed, the pressure wave 

generated by the collapse at 𝑡0 + 8𝛿𝑡 is insufficient to fully condense the vapor within 

the strong spanwise vortices of the shear layer. It can, however, cause a marginal 

condensation effect. Despite this limitation, the pressure wave possesses enough strength 

to disturb the shear layer and recirculation zone, triggering a breakdown of the 

recirculation from its midsection (𝑡0 + 12𝛿𝑡). This stands in contrast to the shear mode, 

where the shed vortices at the reattachment point are the same vortices that develop within 

the shear layer. Consequently, they show the frequency of the same order as the spanwise 

vortices of the shear layer. The spatio-temporal map in Figure 6.10(a) further illustrates 

the distinct vortex shedding behavior observed in the wake and shear modes. In the shear 

mode, vortex shedding at the reattachment point has a relatively high frequency with a 

smaller amount of vapor penetration into the channel. Conversely, the wake mode is 

characterized by significantly lower shedding frequency and a more random shedding 

pattern (frequency of around ~60 kHz versus ~300 kHz in the case shear mode). This 

behavior, combined with the stronger shed vortices associated with the wake mode, leads 

to a larger penetration of vapor within the channel. 

 

Figure 6.11 Instantaneous results showing the (a) wake mode and (b) shear mode of 

vortex shedding in BFS cavitating flow. 
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Figure 6.12(b) presents time instances of cavitation development for an upstream pressure 

of 3.79 MPa (corresponding cavitation and Re number given in Table. 6.2). Similar to the 

case of 4.83 MPa, both wake and shear shedding modes are observed at this pressure. 

However, some notable differences exist between the two upstream pressure conditions. 

As illustrated in previous studies (Ji and Wang, 2012), a reduction in Re number generally 

leads to a decrease in the mean reattachment length compared to the case with a higher 

Re number. This trend is also evident in the spatio-temporal map provided in Figure 

6.12(a). The vapor content within the channel and shear layer is significantly lower at 

3.79 MPa compared to the case with a higher Re number (Figure 6.12). This decrease is 

primarily attributed to the weakened strength of the vortices within the shear layer at a 

lower Re number. Consequently, even during the shear mode, the vapor is unable to fully 

occupy the shear layer (𝑡0). The collapse of the vapor packet within the shear layer near 

the reattachment point (𝑡0 + 𝛿𝑡) is accompanied by a propagating condensation wave and 

a significant reduction in vapor content within the shear layer (𝑡0 + 𝛿𝑡  to 𝑡0 + 4𝛿𝑡). 

Notably, condensation in this case appears to be much more pronounced compared to the 

higher Re number case. This increased sensitivity to pressure waves can be attributed to 

the weaker strength of the spanwise vortices within the shear layer at lower Re number. 

This weakness is caused by a smaller velocity gradient across the width of the shear layer. 

Consequently, the vortices are unable to generate strong local pressure drops within the 

shear layer, making vapor more susceptible to condensation when a pressure wave 

propagates through the medium. As discussed earlier, the presence of shed bubbles within 

the recirculation zone plays a crucial role in facilitating the development of new cavities 

within susceptible regions of the shear layer. Bubbles primarily originate from the shear 

mode regime, where small vapor collapses occur near the reattachment point. In contrast, 

during the wake mode, the vapor is transported further downstream and predominantly 

condenses far away from the recirculation zone (see 𝑡0 + 11𝛿𝑡). This large distance of 

condensation from the recirculation prevents the generated bubbles from rejoining the 

shear layer via the reversed flow, thereby effectively removing them from the region 

where they could contribute to the new cavity formation (the velocity of the represented 

wake vorticity is approximately 17.3 m/s). Movie 2 (Multimedia view) reveals that most 

of the shed bubbles successfully return to the shear layer, facilitating the regeneration of 

cavitation within the layer after condensation (𝑡0 + 5𝛿𝑡). This observation aligns with the 
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behavior observed in the higher Re number case. Similar to the previous case, the shear 

mode is followed by the wake mode. As discussed earlier, the pressure wave generated 

during the final stage of the shear mode triggers the wake mode (𝑡0 + 7𝛿𝑡). However, in 

this case, the vapor within the wake vortices condenses before reaching the end of the 

channel, which suggests that the wake vortices in this case are weaker compared to those 

observed at higher Re number (first case). This difference in the strength is linked to the 

lower mean pressure within the channel at 3.79MPa compared to the first case. 

Furthermore, the spatio-temporal map of void fraction in Figure 6.12(a) does not exhibit 

a clear distinction between the shear and wake modes at 3.79 MPa, which is likely due to 

the weaker wake vortices and their limited impact on vapor transport compared to the 

Case IV. 
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Figure 6.12 Time sequence of cavitation development and dynamics for upstream 

pressure of 3.79 MPa (δt=1.25μs). For better clarity, some vorticities within the shear 

layer, recirculation zone, and region after reattachment (shed vorticity) are highlighted 



 

201 
 

with dashed red lines. The corresponding time interval within the spatio-temporal map 

is highlighted by a red overlay. 

The spatio-temporal map of the void fraction is provided in Figure 6.12(a). As can be 

seen, incidents with deep penetration of vapor packets within the channel are apparent, 

while a long period of almost uniform small penetrations can be observed. These results 

suggest that phase transition within the shear layer changes the strength and dynamics of 

the shed vortices at the end of the shear layer.  

Figure 6.13 illustrates a schematic of shear and wake mode in shear cavitating flow, which 

includes more details about cavitation dynamics in these modes. The shear mode (Figure 

6.13(1)) includes a developed separation bubble. As mentioned, this mode is associated 

with small vortex shedding and small collapses which do not release enough energy to 

have a remarkable influence on the vapor within the shear layer. This shedding continues 

for a while (depending on the flow condition) until development and movements of eddies 

within the shear layer leads to a collapse of a large amount of vapor at the end of the shear 

layer (Figure 6.13(2)). The speed of a shock wave is governed by the pressure ratio across 

the wave and the thermophysical properties of the medium. While analytical relations 

exist for ideal gases, predicting shock wave speed in complex two-phase media becomes 

more challenging. For such cases, numerical simulations or experimental data are often 

required to determine the shock wave speed. The Mach number (𝑀𝑎), which represents 

the ratio of the relative velocity of the shock wave to the local speed of sound in the 

undisturbed medium, can be calculated using the relative shock wave speed and local 

speed of sound. In experimental results the shock wave speed can be approximated as the 

speed of condensation front. Estimating the speed of sound in a two-phase blend is 

possible through the homogeneous equilibrium model (accounting for immediate inter-

phase heat transfer) or the homogeneous frozen model (neglecting heat transfer between 

phases). The general formulation that can be used by both models for estimation of local 

speed of sound can be expressed as follows(Bhatt et al., 2021a; Brennen, 2013):  

1

𝜌𝑚𝑐𝑖
=
𝛼𝑖

𝑝𝑖
[(1 − 𝜖𝑣)𝑓𝑣 + 𝜖𝑣𝑔𝑣] +

1−𝛼𝑖

𝑝
𝑖
1+𝜂 𝜖𝑙𝑔

∗𝑝𝑐
𝜂
                                                                                 (6.4) 

where 𝜌𝑚 shows the local mixture density, 𝛼𝑖 and 𝑝𝑖 are local void fraction and pressure, 

𝑝𝑐is critical pressure, 𝑓𝑣, 𝑔𝑣,  𝜂, and 𝑔
∗ are material dependent parameters. 𝜖𝑙 = 𝜖𝑣 = 0 
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corresponds to the homogeneous frozen model and 𝜖𝑙 = 𝜖𝑣 = 1  corresponds to the 

homogeneous equilibrium model. From speed of condensation within the two-phase 

mixture in Figure 6.12 (𝑡0 + 𝛿𝑡 to 𝑡0 + 5𝛿𝑡) (Mach number, 𝑀𝑎 > 1) it can be inferred 

that the collapse leads to a shockwave generation. After the propagation of the shockwave 

through the shear layer condensation occurs. According to our results, (Figures 6.13 and 

6.12), the amount of condensation highly depends on the strength of vortices within the 

shear layer, which is proportional to the velocity gradient across the shear layer width and 

Re number. The condensation of the vapor within the shear layer triggers the wake mode 

and breaking of the separation bubble (Figure 6.13(4)). Figures 6.13(5) and 6.13(6) show 

wake mode shedding and subsequent development of the separation bubble, as was 

discussed earlier. Since Cases III and IV exhibit comparable shedding mechanisms, a 

unified schematic will be presented to illustrate the critical parameters governing this 

phenomenon in shear cavitating flow. The upstream propagation of pressure waves 

triggered by the collapse of large vapor packets during reattachment initiates the breakup 

of the separation bubble and transition to wake mode, which is a notable finding, also 

supported by previous study of Maurice et al. (Maurice et al., 2021). This suggests that 

the pressure wave propagation exacerbates the imbalance between effective forces 

involved in turbulent separation bubble formation, specifically the Reynolds stress and 

pressure forces, as previously discussed. Consequently, more frequent and intense 

collapses in the reattachment area are likely to enhance the wake mode. The collapse 

intensity and frequency are influenced by several parameters, including the bubble size, 

distribution, and compression rate, which are dependent on Re and cavitation numbers. 

Despite previous studies demonstrating the occurrence of the wake mode across various 

Re numbers in single-phase flows, there remains a gap in understanding of how the 

Reynolds number affects the shedding mode behavior. Given that the pressure and 

velocity fluctuations due to cavitation and bubble collapses significantly impact the 

equilibrium between Reynolds stress and pressure forces, drawing definitive conclusions 

about the effect of Reynolds number on the shedding behavior independently is 

challenging. 
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Figure 6.13 Schematic illustration shear and wake mode shedding mechanism in shear 

cavitating flow (numbering is in accordance with the sequence of events). (1) shear mode 

shedding, (2) pressure-induced collapse of vapor packet at reattachment, (3) vapor 

condensation within the shear layer, (4) breaking if separation bubble, (5) wake mode 

shedding, and (6) development of vapor and separation bubble. 

The frequency characteristics of Cases III and IV are examined using the pre-multiplied 

power spectral density (PSD) at particular streamwise positions along the path of 

maximum fluctuation in void fraction (𝛼𝑟𝑚𝑠
′ ). The positions of the probes are indicated 

by red square zones in Figure 6.7 (right column). For Case III, the peak PSD values 

correspond to Strouhal numbers ( 𝑆𝑡ℎ ) of approximately 0.005, 0.06, and 0.14, 

representing the slow, medium, and high-frequency void fraction fluctuations within the 

shear layer (Figure 6.14(a)). These Strouhal numbers can be interpreted as dimensionless 

frequencies that characterize the shedding or oscillation patterns within the TSB. The 

dominant frequency observed at Probe 1 (plot specific to each probe is determined by the 

probe number) for Case III falls within the medium frequency range of the PSD plot. By 

considering the spatio-temporal map and instantaneous images in Figure 6.13, it can be 

inferred that this frequency likely corresponds to the shedding of vapor packets in the 

wake mode of the TSB. In the wake mode, almost the entire vapor content within the 

shear layer condenses. Therefore, the observed frequency likely reflects the shedding 

frequency of shear cavitation in the wake mode. Probes 2 and 3 exhibit a broader range 

of dominant frequencies, encompassing low, medium, and high frequencies. The high 
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frequencies stem from KH instabilities within the shear layer, which influences the 

fluctuations of vapor content in this region. In the case of the micro step, the flow 

separation and the presence of the shear layer can create velocity differences that trigger 

the KH instability. The Kelvin-Helmholtz instability is characterized by the development 

of spanwise vortices within the shear layer. These vortices can form due to the shearing 

motion between the fluid layers with different velocities. As the vortices grow and interact 

with the surrounding flow, they cause mixing and deformation of the shear layer.  Probe 

3, situated in the region of the maximum void fraction, also shows a significant presence 

of low-frequency components in the PSD. The characteristic time scale associated with 

this dominant low frequency is considerably larger (almost 12 times) compared to the 

typical frequencies of wake mode shedding. This suggests that this low-frequency 

component is linked to external factors such as pressure pump fluctuations. Finally, the 

dominant frequencies at Probe 4 lie in the medium and high ranges, which correspond to 

the wake mode and shedding mode near the reattachment zone. 

Case IV exhibits a similar pattern of dominant frequencies compared to Case III, but with 

two key differences (Figure 6.14(b)). Firstly, two distinct medium frequencies are 

observed, particularly prominent in Probes 2 and 3. These frequencies appear to be 

harmonics of each other, suggesting a relationship between their periodicities. Secondly, 

the overall range of dominant frequencies in Case IV is lower compared to Case III. This 

difference might be attributed to the influence of the vapor phase on the dynamics of 

coherent structures within the shear layer. Similar observations have been reported in 

other studies(Bhatt et al., 2021a; Maurice et al., 2021) .  
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Figure 6.14 Premultiplied power spectral density of void fraction for (a) Case III, and 

(b) Case IV for four probes (probes (1)-(4)) determined by red squares in Figure 8 right 

column (Each subplot is determined with the corresponding probe numbers 1 to 4.).  
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6.3 Conclusion 

This study presents the first comprehensive experimental investigation of shear cavitation 

within a microscale BFS configuration. By examining four distinct cavitation regimes 

and analyzing void fraction distribution, we identified three primary cavitation zones: 

generation, transport, and condensation. The influence of Reynolds number and 

cavitation number on these zones was elucidated. 

For cases III and IV, two distinct vortex shedding mechanisms were identified near the 

reattachment zone: wake mode and shear mode. Similar shedding regimes were 

documented in the study by Maurice et al.(Maurice et al., 2021) investigating cavitating 

flow within a macro-scale backward-facing configuration. In our case, the wake mode 

was initiated by a disruption of the separation bubble. This disruption resulted from the 

pressure wave generated by the collapse of large vapor packets, which subsequently 

disturbed the shear layer and recirculation zone, allowing for deeper vapor penetration 

within the channel. These findings suggest that the disturbances introduced by cavitation 

and collapse events substantially alter the equilibrium of forces within the separation 

bubble, ultimately triggering wake mode shedding. Conversely, the shear mode exhibits 

higher shedding frequency with less vapor penetration. The influence of these shedding 

modes depends on flow regimes. At higher upstream pressure (4.83 MPa), both modes 

are observed, with the wake mode leading to deeper vapor penetration due to its stronger 

vortices. At lower pressure (3.79 MPa), weaker vortices limit vapor transport within the 

shear layer even during the shedding mode. Additionally, the weaker vortices at lower Re 

number are more susceptible to pressure wave condensation, which results in a more 

reduction in vapor content compared to the higher Re number case. 

The results indicate that nuclei predominantly accumulate in the second half of the shear 

layer during cavitation inception, coinciding with the region of maximum void fraction. 

This area is also where vapor bubbles collapse, generating new nuclei that become 

entrained within the recirculation zone and contribute to subsequent cavitation. As 

pressure rises, nuclei distribution extends throughout the separation bubble, including the 

first half of the shear layer and the corner vortex. While the free stream is the primary 

source of nuclei in the inception regime, a reduction in cavitation number leads to a 

predominance of nuclei originating from collapsing vapor packets. This finding aligns 
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with Allan et al. study17 that incipient cavity collapse sites serve as preferential locations 

for new bubble formation. 

Additionally, RMS of bubble concentration indicates substantial fluctuations in bubble 

population within these regions, emphasizing the dynamic nature of the nuclei 

distribution. Other findings, such as the association of cavitation inception with coherent 

structures in the shear layer and the impact of cavitation on shedding dynamics, align with 

previous studies of cavitating flow in a macroscale backward-facing step device. These 

results contribute significantly to understanding the influence of nuclei distribution and 

dynamics on cavitation inception and development within microscale BFS flows. 

The results of this study offer valuable insights that may inform future research on shear 

cavitation at the microscale. Exploring the effects of fluid properties and geometric 

variations on shear cavitation could be a promising direction for future studies. 

 

 

  

javascript:;


 

208 
 

 

7 CONCLUSION AND RECOMMENDATIONS 

7.1 Summary and Conclusions 

 This doctoral thesis presents a comprehensive investigation on intricate dynamics 

of turbulent separated flows and cavitation within microscale BFS configurations. 

Through a synergistic combination of advanced numerical simulations and novel 

experimental analyses, this thesis advanced our understanding of the fundamental 

mechanisms governing cavitation inception, development, and its interaction with 

complex turbulent structures, particularly in the presence of surface modifications. This 

thesis will present the following contribution to the literature: 

Methodological Advancements: The foundation of this research lies in a robust and 

sophisticated methodological framework. A custom-developed three-dimensional fully 

compressible cavitation flow solver, built upon OpenFOAM's rhoCentralFoam and 

enhanced with Helmholtz-Zentrum Dresden-Rossendorf (HZDR)'s Subgrid-Scale (SGS) 

model, proved instrumental. This solver's capability to handle low Mach number 

compressible flow physics and thermodynamic non-equilibrium through a dedicated 

vapor volume fraction transport equation was critical for accurately capturing intricate 

phenomena such as shock waves and baroclinic vortex dynamics inherent in cavitating 

flows. The use of a second-order, four-stage low-storage Runge-Kutta time integration 

scheme with adaptive Courant-Friedrichs-Lewey (CFL) control ensured both accuracy 

and computational efficiency for the Large Eddy Simulations (LES). Complementing 

these numerical capabilities, the thesis introduced the first comprehensive experimental 

analysis of shear cavitation in a microscale BFS configuration, providing invaluable 
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validation and opening new avenues for understanding microscale cavitation 

complexities. 

Cavitation's Impact on Turbulent Separated Flows: The initial phase of this research 

meticulously investigated the intrinsic influence of cavitation on the mean characteristics 

and unsteady behavior of the TSB. Numerical results, rigorously validated against 

experimental data and established literature, demonstrated that cavitation significantly 

alters the shear layer, leading to its narrowing and a postponement of reattachment. The 

accumulation of vapor within the shear layer profoundly reshaped coherent structures, 

making spanwise vortical structures longer and thinner. Analysis of mean pressure and 

RMS pressure fluctuations revealed a decline within the shear layer but a marked increase 

in the reattachment region, directly attributable to the intense condensation and bubble 

collapse events. Crucially, vapor generation was shown to trigger a decoupling between 

Reynolds stress components, converting Reynolds shear stress to TKE, while 

condensation and collapse intensified Reynolds normal stresses, particularly in the 

streamwise direction. Regarding TSB dynamics, cavitation consistently led to a decrease 

in dominant frequencies. Two prominent low-frequency modes, LF1 and LF2, were 

identified as being linked to reattachment point displacement. Cavitation was found to 

reinforce the TSB breathing mechanism associated with LF1, leading to more energetic 

low-frequency fluctuations along the shear layer and reattachment. Conversely, high-

frequency fluctuations became more energetic in the reattachment region under cavitating 

conditions, indicative of frequent bubble collapses. Modal analysis, including SPOD, 

highlighted that large coherent structures fluctuating at LF1 were more significant and 

energetic in the presence of cavitation, underscoring the deep coupling between phase 

change and dominant flow structures. 

Geometric Control (the Role of Riblets): Building upon the fundamental understanding 

of cavitation-turbulence interaction, the thesis then delved into the transformative role of 

riblet-equipped surfaces. This work unequivocally established the Blockage Ratio (BR) 

as a pivotal parameter governing the fluid dynamics. Riblets fundamentally reshaped the 

Turbulence Kinetic Energy (TKE) budget, shifting TKE transport from local 

production/dissipation to significantly enhanced turbulent diffusion and convection, 

particularly within the shear layers above the ribs. The Reynolds stress tensor underwent 

substantial modifications, with anisotropy components near the wall notably reduced and 

their spatial distribution altered, signifying a profound change in turbulent mixing and 
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momentum transfer. Morphological and spectral analyses of coherent structures revealed 

that riblets promote larger and slower structures, evidenced by expanded temporal scales 

and a shift of the high-energy zone towards lower frequencies. Dynamic Mode 

Decomposition (DMD) provided compelling visualizations, showing that riblets disrupt 

uniform coherent structures, fostering distinct, often pairwise, low-frequency vortices 

near the ribs and crests that were demonstrably stronger and larger with increasing BR. 

Crucially, these riblet-modified flow characteristics directly dictated the observed 

cavitation patterns. Even at low BR, intermittent cavitation initiated within vortex cores 

above the ribs. As BR increased, the enhanced strength and size of these coherent 

structures translated into significantly larger and more intense cavitation packets. The 

complete vapor-filling of the recirculation zone and corner vorticity, alongside the 

shedding of large, cylindrical vapor packets from the separation bubble whose size and 

intensity directly scaled with BR, provided irrefutable evidence of this direct linkage. The 

channel ultimately transitioned into a supercavitation regime in Region II for all BRs, 

with varying void fraction distributions dependent on the specific riblet geometry. 

Microscale Peculiarities (Experimental Insights): The experimental component of the 

thesis provided unprecedented insights into shear cavitation unique to microscale 

environments. This first-ever experimental analysis in a microscale BFS configuration 

systematically explored four distinct cavitation regimes. It highlighted critical differences 

from macroscale phenomena, emphasizing the dominant role of surface forces on nuclei 

distribution and vapor formation at the microscale. Distinct timescales were identified for 

phenomena like shedding and shockwave propagation. The study revealed that vortex 

strength in the shear layer plays a critical role in cavity shedding during upstream 

shockwave propagation. Increased pressure was shown to notably elevate the mean 

thickness, length, and intensity of cavitation within the shear layer. The identification of 

two distinct vortex modes (shedding and wake) at the reattachment zone, analogous to 

macroscale findings but with unique microscale characteristics, elucidated their impact 

on cavitation shedding frequency and downstream penetration. The stronger, lower-

frequency wake mode was found to transport cavities deeper into the channel. 

Furthermore, nuclei predominantly accumulated in the second half of the shear layer 

during cavitation inception, coinciding with the region of maximum void fraction and 

subsequent bubble collapse, which generates new nuclei entrained into the recirculation 

zone. 
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Overall Contribution: In conclusion, this Ph.D. thesis stands as a significant 

contribution to the fields of turbulent flows and cavitation, particularly within microscale 

systems. By seamlessly integrating sophisticated numerical modeling, capable of 

handling compressible flow physics across relevant Mach number regimes and complex 

thermodynamic interactions, with pioneering experimental observations, it has elucidated 

the profound and multi-faceted interplay between fluid mechanics, phase change, and 

geometric design. The findings demonstrate that engineering surface features like riblets 

are not passive elements but actively reshape turbulence (affecting TKE transport, 

Reynolds stresses, and coherent structures), which, in turn, directly governs the inception, 

evolution, and intensity of cavitation. This holistic understanding is paramount for the 

advanced design, optimization, and control of microfluidic devices, energy conversion 

systems, and other applications where both turbulent flow characteristics and cavitation 

are critical considerations, offering novel pathways for targeted flow control strategies. 

The outputs of this thesis have led to the following research articles: 

▪ Maleki, M., Imanzadeh, M., Kosar, A., Ghorbani, M. Effect of Riblet-Mounted 
Surfaces and Blockage Ratio on Separating Flow. To be submitted. 

 

▪ Maleki, M., Priyadarshi, A.  Tzanakis, I., Kosar, A., Ghorbani, M. New insights 

into the cavitation instabilities in micro-venturi channel revealed using in-situ 

high-speed imaging. To be submitted. 

 

▪ Maleki, M., Rokhsar Talabazar, F., Heyat Davoudian, S., Dular, M., Koşar, A., 

Petkovšek, M., Šmid, A., Zupanc, M., & Ghorbani, M. The formation of 

hydroxyl radicals during hydrodynamic cavitation in microfluidic reactors using 

salicylic acid dosimetry. Chemical Engineering Journal, 511, (2025). 

 

▪ Maleki, M., Rokhsar Talabazar, F., Toyran, E., Priyadarshi, A., Aghdam, A.S., 

Villanueva, L.G., Grishenkov, D., Tzanakis, I., Kosar, A., Ghorbani, M. New 

Insights on Cavitating Flows Over a Microscale Backward-Facing Step, Physics 

of Fluids 36, no. 9 (2024). 

 

▪ Maleki, M., Rokhsar Talabazar, F., Koşar, A., & Ghorbani, M. On the spatio-

temporal dynamics of cavitating turbulent shear flow over a microscale 

backward-facing step: a numerical study, International Journal of Multiphase 

Flow 177 (2024). 

 

▪ Maleki, M., Rokhsar Talabazar, F., Seyedmirzaei Sarraf, S., Sheibani Aghdam, 

A., Bayraktar, S., Tuzcuoğlu, E., Koşar, A. and Ghorbani, M, Detergent 
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7.2 Recommendations for Future Research 

Building upon the foundational understanding established in this thesis, several promising 

avenues for future research emerge. A crucial next step involves a comprehensive 

investigation into the broader influence of surface roughness on TSB and cavitation 

dynamics in separating flows, utilizing both experimental and advanced numerical 

studies. Methodologically, there is a clear need for developing novel numerical models 

that more accurately account for surface nucleation phenomena and rigorously integrate 

the subgrid-scale (SGS) effects of individual bubbles within multiphase flow simulations. 

This could be achieved either by combining the Eulerian framework with a Lagrangian 

framework accounting for individual SGS bubbles, or through developing an appropriate 

SGS model considering SGS surface tension effects. Furthermore, conducting controlled 

studies specifically targeting the cavitation inception mechanism in devices featuring 

various types of roughness would provide invaluable insights. Ultimately, extending the 

findings of this research to more complex geometries prevalent in industrial applications 

will be vital for translating fundamental knowledge into practical engineering solutions 

for cavitating flow systems. 
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Appendix A. Post-Processing, Treatment, and Analysis 

The flow was simulated for a total duration of 1.5 milliseconds, with 3000 time snapshots 

captured at intervals of 5e-7 seconds. Statistical stationarity was achieved after the initial 

400 time steps (2e-4 seconds). 

Considering the large amount of data, a specific subdomain (0 ≤  x̃ ≤ 10) was used for 

data analysis. This region is of prime interest since the coherent structures within the shear 

layer are the focus (for both cases, the same mask and parameters were used). 

Spanwise averaged two-dimensional average fields, which represent the average flow 

behavior across the channel depth of |z∗ | ≤ 1/3  (z* was the nondimensionalized z with 

respect to the half depth of the channel), were obtained for the subdomain. As discussed 

in the 'Three Dimensional effects' section, three-dimensional effects are minimal in this 

region, and fluctuations have negligible spanwise variations. 

 

The data analysis procedures utilized in the Results sections are included for each 

subsection below: 

 

1. Characteristics of the Mean Flow 

Measurement of the RRI and thickness of the shear layer (𝛅𝛚): 

In this study, the mean flow RRI is identified by either the isoline U=0 on the mean 

streamwise velocity field or the set of points where the backflow coefficient γ is equal to 

0.5 (γ being defined as the fraction of time during which the flow moves downstream can 

be calculated easily as the fraction of positive grid values for x components of U) (Stella, 

2017; Stella et al., 2017). 

The vorticity thickness is defined as (Stella et al., 2017):  

δω = (Umax − Umin)/(∂U/ ∂y)max 

where Umax and Umin are the maximum and minimum streamwise mean velocity values 

at each specific horizontal distance from the step, respectively. 

Two-point autocorrelation: 

Two-point autocorrelation for the streamwise velocities component in x-y plane is given 

as: 



 

ii 
 

Rxx(xref, xref + Δx) =
〈u(xref)u(xref + Δx)〉

〈u(xref)u(xref)〉
    

 

where xref  is the reference coordinate, and Δx  is the distance between the reference 

coordinate and other location within the computational domain. u  is the fluctuating 

velocity field (both streamwise and cross-streamwise components were used in the 

calculations). The angle bracket represents the ensemble averaging over all time slots. 

Different reference coordinates are adopted along the shear layer to capture spanwise 

vortical structures within this region. 

 

2. Spectral Analysis 

Pre-multiplied power spectral density (PSD): The sampling interval was t̃ =
TU∞

H
=

288 with a sampling rate of  
fsH

U∞
= 10.67. The Welch method with Hanning window was 

utilized to compute pre-multiplied PSD for a total of 11 equal-length segments in time 

with 50% overlap (Hu et al., 2019; NA and MOIN, 1998).  Each segment comprises 512 

samples, and the resulting frequency range Sth =
fH

U∞
= 0.021~5.33. 

Spectral coherence: the spectral coherence for two statistically stationary signals 𝑥(𝑡) 

and 𝑦(𝑡) was obtained using the following expression (used for reversed flow and average 

pressure over the step): 

𝐂𝐱𝐲(𝐟) =
|𝐏𝐱𝐲(𝐟)|

𝟐

𝐏𝐱𝐱(𝐟)𝐏𝐲𝐲(𝐟)
 , 𝟎 ≤ 𝐂𝐱𝐲(𝐟) ≤ 𝟏                                                                 

where Pxy(f) represents cross-PSD between x(t) and y(t), and Pxx(f) is PSD value for 

x(t). Spectral coherence is used for the calculation of cross-PSD between normalized 

values of average pressure over the step and reversed flow. 

Cross-correlation for phase delay estimation:  

The phase delay is estimated by finding the time lag at which the cross-correlation 

function between the two signals reaches its peak. The Cross-correlation for two discrete 

signals x(t) and y(t) is given as: 

𝐑𝐱𝐲(𝛕) = ∑ 𝐱(𝐭)𝐲(𝐭 + 𝛕 )

∞

𝐭=−∞
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where 𝛕 is the time lag between two signals. To improve the accuracy of the phase delay 

estimation, especially for signals with different magnitudes, the signals are normalized 

by their maximum values and centered by subtracting their means before performing the 

cross-correlation (Hertz and Azaria, 1985). 

Spatio-temporal correlation: 

Spatio-temporal correlation for the fluctuating pressure field is found as (Weiss et al., 

2015): 

Rpp(Δx, Δt) =
〈p′(xref, tref)p′(xref + Δx, tref + Δt)〉

prms
′ (xref)prms

′ (xref + Δx)
    

 

3. Modal Analysis: 

SPOD: 

The details about the theory and derivation of this technique are provided in the 

literature(Schmidt and Colonius, 2020; Towne et al., 2018). From the mathematical point 

of view, SPOD modes represent the eigenvectors of cross-spectral density matrix at each 

frequency, and the eigenvalues indicate the energy associated with that specific mode and 

frequency. Considering that the focus is on the pressure and velocity fluctuations, the 

workflow proposed by He et al.(He et al., 2021) was adopted in the calculations, where 

the SPOD was implemented to decompose the solution vector containing the pressure, 

velocity components and entropy as q = [p, U, V,W, Δs]T, along with the weight vector 

of  Wg = [
1

γp̅
, ρ̅, ρ̅, ρ̅,

(1−γ)p̅

γR2
 ] which is defined based on the total disturbance energy to 

quantify the energy associated with disturbances in the flow. A weight matrix Wg was 

used to scale different flow variables, and the definition of Wg influences the physical 

meaning of SPOD mode energy, which stands for the energy content of each mode. 

In the framework of SPOD, the solution vector q can be decomposed to modes at various 

frequencies as: 

q(𝐗, t) = ∑ q̂j(𝐗) exp(i2πfjt) + c. c.
∞
j=1                                            (30) 

= ∑ ∑ aj
kϕj

k(𝐗) exp(i2πfjt) + c. c.
Nb
k=1

∞
j=1                                            (31) 

where i = √−1, and c. c. is the complex conjugate counterpart. Equation (30) represents 

the Fourier transform of q.  Fourier transformation was performed using the Welch 
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method with overlapped window(Welch, 1967), which allows ensemble averaging over 

multiple realizations. The Fourier transform coefficient for jth frequency (q̂j(𝐗)) was 

decomposed to expansion coefficients aj
k  and POD modes ϕj

k . POD modes were 

calculated from eigenvectors of cross spectral density matrix (by considering the weight 

coefficients) and were orthonormal to each other so that ϕj
m(𝐗)[ϕj

n(𝐗)]
T
= δmn . 

Considering orthonormality of POD modes, the contribution of mode ϕj
k(𝐗) to the total 

disturbance energy was determined using the eigenvalues of the cross spectral density 

matrix, which could be expressed based on the expansion coefficient as λj
k = |aj

k|
2
.  

The details about the parameters used in the present SPOD analysis are included in Table 

A1. Considering the large amount of data, a specific subdomain (0 ≤ x̃ ≤10) was used 

for SPOD calculations.  This region is of prime interest since the coherent structures 

within the shear layer are the focus of this study (for both cases, the same mask and 

parameters were used). 

 

Table A 1. Parameters related to the SPOD calculations. 

Variables 

Number 

of Grid 

points of 

the 

Mask 

Number of 

Snapshots 

Sampling 

Frequency 

(Sth) 

Number 

of 

Frequen

cies 

Number of 

Overlappe

d 

Snapshots 

Number 

of 

Blocks 

(Modes) 

𝐩, 𝐔, 𝐕, 𝐔, 𝚫𝐬 2,959,

200 

3000 5.33 256 128 22 
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Appendix B. Visualization and Data Processing 

Void fraction measurements were conducted for analyzing the hydrodynamic cavitation 

characteristics obtained from the experimental results and for the comparison with the 

numerical results. For this purpose, cavitating flow images are collected by a double-

shutter high-speed (CMOS) camera (Phantom v310, a trademark of Vision RESEARCH). 

The camera was placed 250 mm from the image plane, and illuminations were made using 

an optic fiber light source. The image acquisition was performed with time interval of 

133𝜇𝑠  and exposure time of 6.93 𝜇𝑠 . The image resolution was 720×1280 with 2.7 

𝜇𝑚 𝑝𝑥−1 optical magnification. 3500 series of sequential images with the same contrast 

and brightness were used for data processing and analysis. Previous studies(Bilu et al., 

2014)  demonstrated a correlation between the grey level value in images and the void 

fraction value. Based on this correlation, we utilized the grey level value as a proxy for 

void fraction values in our experimental results.  

To accurately estimate void fraction in images containing surface defects on the device 

surface, we adopted a deep learning approach using the DeepLabv3+ neural 

network(Chen et al., 2018). Traditional thresholding techniques proved ineffective due to 

their sensitivity to surface imperfections. DeepLabv3+'s ability to handle complex image 

backgrounds and learn robust feature representations made it a viable approach for 

accurate void fraction segmentation. Each initial image and its corresponding mask were 

segmented into overlapping patches of 320×320 pixels with a 50% overlap to capture fine 

details and to avoid edge artifacts. This resulted in 21 image-mask pairs per initial image. 

To standardize input for the network, all patches were resized to 256×256 resolution. 

Image labels were generated using Labkit from the ImageJ software for supervised 

learning. Subsequently, 50 randomly selected images (1050 patches) were labeled and 

further divided into 90% training and 10% testing sets, which ensured sufficient data for 

robust model training and performance evaluation. 

Patches of images and their corresponding masks were used as inputs and targets for the 

deep learning models. Pixel-wise softmax was applied to the output logits to compute the 

probability of each class in each pixel (Although segmentation for multiple classes was 

possible, two classes of void fraction and background were considered in this study). 
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Multiclass cross-entropy loss function(Shie Mannor et al., 2005) was employed to 

penalize any deviation from the target value, and Adam with weight decay (AdamW) 

optimizer(Loshchilov and Hutter, 2019) was selected for the optimizing procedure.  

In addition to the loss function, three more metrics, namely, mean IOU (average over 

classes), accuracy and F1 score (harmonic mean of precision and recall), were 

implemented to evaluate and compare the performance of the networks for the 

segmentation task(YASSINE ALOUINI, 2021). Furthermore, batch sizes of 2 and 280 

number of epochs were considered during the training of the networks. The performances 

of the network on training and test data in the last epoch are provided in Table S.1, which 

represents an acceptable performance of the network in segmentation task.  

 

Table B 1. Training and test segmentation results using DeepLabv3+ neural network. 

Training  Test  

Loss Accuracy 

score 

F1 

score 

mIOU Loss Accuracy 

score 

F1 

score 

mIOU 

0.0087 0.996 0.996 0.954 0.007 0.996 0.996 0.959 

 

Following the training and optimization process, we deployed the trained network to 

segment a set of 3500 collected images. These images were then used for void 

characterization. For each image, we isolated the pixels associated with the void fraction 

segments. Subsequent to this, we normalized these pixel values shown by 𝐼(𝑖, 𝑗) (related 

to the pixel value for 8-bit grayscale images) based on the maximum pixel value (255 for 

the white color). This normalization process allowed us to assign a range of values from 

0 to 1 to each void pixel, instead of using the binary 0/1 values. This new range of values 

better captures changes in vapor concentration within the corresponding region. In the 

next section, some results of void fraction along with comparisons with numerical results 

are provided. 
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An alternative method for void fraction estimation that was implemented in our study is 

as follow. the void fraction was determined by correlating the grayscale values from 2D 

images captured by a high-speed camera with the actual void fraction, a method supported 

by prior research (Bilu et al., 2014; Wang and Zhang, 2023). The analysis proceeded using 

these grayscale values. Each frame from the high-speed imaging was treated as an 

intensity matrix (A(t, x, y)), where (t) denotes the time index, and (x) and (y) represent 

the row and column indices, respectively. The intensity within this matrix ranges from 0 

(representing black) to 255 (representing white). 

Given that the brightness and contrast of the images remained consistent throughout the 

high-speed capture, aligning with findings from earlier studies(Bilu et al., 2014; Wang 

and Zhang, 2023), we inferred that the intensity of cavitation (the density of bubbles per 

pixel) could be proportionally estimated from the grayscale levels of each image. 

However, it's important to note that the background also exhibits some degree of 

greyness, potentially leading to inaccuracies in calculating the void fraction for areas 

deemed defective. To mitigate this, we subtracted the background contribution from each 

snapshot matrix to minimize errors. 

Considering the significant disparity in dimensions between the depth of our device (60 

µm) and the width of the channel (400 µm), we anticipated minimal variation in vapor 

concentration along the depth axis. Consequently, we disregarded these depthwise 

variations in our calculations. Therefore, the mean and variance of void fraction can be 

estimated as: 

𝛼̅(𝑥, 𝑦) =
1

𝑁𝑡
∑𝐼(𝑡, 𝑥, 𝑦)

𝑁𝑡

𝑡=0

 

𝑣𝑎𝑟(𝛼(𝑥, 𝑦)) =
1

𝑁𝑡
∑(𝐼(𝑡, 𝑥, 𝑦) − 𝛼̅(𝑥, 𝑦))

2
𝑁𝑡

𝑡=0

 

where 𝐼(𝑡, 𝑥, 𝑦) is the subtracted and normalized grey level intensity of pixel at (𝑥, 𝑦) 

location which belongs to the time step t. This value was obtained by subtracting the 

background intensity and then normalizing by the maximum possible pixel value 

(typically 255 for 8-bit grayscale images). The number of time snapshots used for data 

analysis was 10000 in all cases, except the Case II with 1500-time snapshots. 
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The frequency characteristics of cavitation regimes (Cases III and IV) were evaluated 

using the pre-multiplied power spectral density (PSD) at specific streamwise locations 

along the region of maximum void fraction fluctuation (𝛼′𝑟𝑚𝑠) pathway. For all the cases, 

the sampling interval was 𝑇 = 0.125 𝑠 with a sampling rate of 𝑓𝑠 = 8𝑒4 𝐻𝑧. The Welch 

method with Hanning window was utilized to compute pre-multiplied PSD for a total of 

39 equal-length segments in time with 50% overlap(Hu et al., 2019; NA and MOIN, 

1998). Each segment comprised 512 samples, and the resulting frequency range was 

𝑆𝑡ℎ =
𝑓𝐻

𝑈0
= 4𝑒 − 4~0.2.  

A method similar to Allan et al. (Allan et al., 2023), was employed to quantify bubble 

nuclei from high-speed camera images. First, the background subtraction and 

normalization were performed on the grayscale images. This process removed 

background noise and ensured consistency across images. For each cavitation regime, a 

3D matrix was created, with two spatial dimensions representing bubble location and a 

third dimension representing time. A threshold intensity value (10% of maximum pixel 

intensity) was used to identify potential void regions (areas with vapor bubbles) within 

each pixel. The matrix was then segmented into void and non-void regions. Void regions 

were subdivided into disconnected groups (groups without shared pixels). Subsequently, 

in each time frame, connected groups smaller than a threshold size (25 μm in each 

direction) were considered as potential nuclei. Notably, a single group within the 3D 

matrix could track the movement and evolution of a single bubble over time. Finally, the 

spatial 2D domain was discretized into subdomains with a size of 100𝜇𝑚 × 100𝜇𝑚. The 

average RMS of the number of nuclei within each subdomain were calculated. This 

approach could provide information about both the average and fluctuating characteristics 

of the nuclei distribution. 

 

 


