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ABSTRACT

THE MOTION OF A CYLINDER NEAR A PLANAR WALL UNDER
CONFINEMENT

ZEYNEP ÖZALP

Mechatronics Engineering, M.Sc. Thesis, August 2025

Thesis Supervisor: Prof. Serhat Yeşilyurt

Keywords: low-reynolds swimming, stokes flow, rigid body motion

The motion of a cylinder in a viscous fluid near a planar wall under geometric confine-
ment is central to microrobotics, microfluidics, and other low-Reynolds-number transport
applications. A cylinder’s trajectory arises from hydrodynamic forces and torques that
are strongly modulated by geometry and boundary placement (e.g., gap height, domain
aspect ratio, and open versus closed lateral boundaries). Prior work has treated infinite
and finite cylinders in unbounded domains and cylinders interacting with walls, including
deformable interfaces; however, the role of confinement geometry itself remains underex-
plored. In this thesis, the motion and hydrodynamic loading of infinite and finite-length
cylinders across several confinement scenarios, using 2D/3D creeping-flow simulations, is
investigated. The results show that confinement geometry significantly alters the force
balance and induces complex motion, including behaviors not observed in unbounded or
infinite-cylinder cases. The findings provide insight into the origin and nature of macro-
flow-induced translation, offering a refined understanding of finite-body hydrodynamics
in constrained environments.
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ÖZET

SINIRLI GEOMETRILERDE DUVAR YAKININDA SILINDIRLERIN HAREKETI

ZEYNEP ÖZALP

Mekatronik Mühendisliği, Yüksek Lisans Tezi, Ağustos 2025

Tez Danışmanı: Prof. Dr. Serhat Yeşilyurt

Anahtar Kelimeler: düşük reynolds rejiminde yüzme, stokes akışı, katı cisim hareketi

Düzlemsel bir duvarın yanında ve viskoz bir sıvının içinde bulunan bir silindirin hareketi,
mikroakışkanlar, mikrorobotik ve düşük Reynolds sayılı rejimde taşınım gibi çeşitli uygu-
lama alanlarında önem taşımaktadır. Silindirin bulunduğu ortamın sınırları ve geometrisi
hem silindirin maruz kaldığı hidrodinamik kuvvetler hem de yörüngesi üzerinde güçlü
bir etki göstermektedir. Önceki çalışmalarda duvar yanındaki sonlu ve sonsuz uzunluk-
taki sınırsız alanlarda hareket eden silindirlerin maruz kaldığı hidrodinamik kuvvetleri ve
silindirlerin yumuşak, deforme olabilen duvar yanındaki hareketleri incelenmiştir. Fakat 3
boyutlu ve sınırlandırılmış bir alanda silindirin maruz kaldığı kuvvetler ve yörüngesi yeter-
ince araştırılmamış literatürde bir boşluk olarak kalmıştır. Bu tez literatürdeki boşluğu
tamamlayıp farklı şekillerde sınırlandırılmış alanda sonlu ve sonsuz silindirin hareketini
ve üzerindeki hidrodinamik kuvvetleri incelemeyi amaçlamaktadır. Yapılan simülasyon-
ların sonucunda, silindirin içinde bulunduğu geometrinin ve sınırlandırma şeklinin kuvvet
dengesini önemli bir ölçüde değiştirdiği ve kompleks hareketler sergilediğini ortaya çıkar-
mıştır. Bulgular, makro akış kaynaklı hareketin kökenine bir ışık tutarak sınırlandırılmış
ortamlarda sonlu cisimlerin maruz kaldığı hidrodinamik etkilere dair rafine bir anlayış
sunmaktadır.
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1. INTRODUCTION

The motion of particles and bodies in viscous flows near boundaries is a fundamental prob-
lem in fluid mechanics, with relevance spanning biology, physics, and engineering (Lauga,
DiLuzio, Whitesides & Stone, 2006; Pak & Lauga, 2014). At the microscale, fluid motion
is governed by the low-Reynolds-number (creeping-flow) regime, where inertial effects are
negligible and viscous forces dominate (Stokes, 2009). In this limit, the linearity and
reversibility of the Stokes equations provide a powerful theoretical framework, yet the
presence of nearby boundaries fundamentally alters the flow field. Boundaries break the
spatial symmetry of disturbance flows, increasing hydrodynamic drag, modifying rota-
tion–translation coupling, and, in many cases, producing entirely new modes of motion
not seen in unbounded domains (Spagnolie & Lauga, 2012).

When a particle moves close to a wall or within a confined geometry, the disturbance
it generates interacts with the boundaries and is reflected back into the flow. These
wall-mediated interactions can modify translational and rotational mobilities, generate
lift or drift forces, and induce trajectory deviations such as reorientation, circling, or
trapping (Czajka, Antosiewicz & Długosz, 2019; Lauga et al., 2006). The magnitude
and nature of these effects depend not only on the wall separation, but also on the
geometry of the particle and confining boundaries, the imposed flow, and the presence
of additional surfaces or interfaces. As a result, near-wall hydrodynamics is not merely
a boundary condition to be accounted for; it is often the primary factor determining
motion, stability, and transport efficiency in microscale systems (Caldag & Yesilyurt,
2019; Koens & Montenegro-Johnson, 2021; Saintyves, Rallabandi, Jules, Ault, Salez,
Schönecker, Stone & Mahadevan, 2020; Spagnolie & Lauga, 2012; Zhu, Lauga & Brandt,
2013).

The impact of these effects is evident across a wide range of scientific and technological
contexts. In biological systems, microorganisms such as bacteria, sperm cells, and ciliates
routinely navigate in proximity to surfaces, where hydrodynamic coupling to the bound-
ary alters swimming speed, orientation, and stability (Ishimoto & Gaffney, 2013; Lauga
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et al., 2006). These mechanisms underlie observed behaviors such as accumulation near
walls, circular swimming, and boundary-following trajectories, and they play a role in
processes from biofilm formation to reproductive guidance (Spagnolie & Lauga, 2012).

In synthetic systems, particularly magnetic and chemically driven microswimmers, similar
wall-induced effects can be exploited for targeted transport, but can also introduce chal-
lenges such as unintended drift or trapping (Caldag & Yesilyurt, 2019; Lauga et al., 2006;
Zhu et al., 2013). In microelectromechanical systems (MEMS), micron-scale gaps lead to
lubrication-dominated regimes where viscous resistance, pressure gradients, and squeeze-
film effects govern device performance and wear (Choi, Lee, Choi & Maeng, 2010; Day
& Stone, 2000; Sen, Wajerski & Gad-el Hak, 1996; Witelski, 1998). In colloidal suspen-
sions and microfluidic devices, particle–wall interactions control sedimentation, sorting,
and trapping, providing passive mechanisms for lab-on-a-chip diagnostics and separation
processes (Abel, Stangle, Schilling & Aksay, 1994; Daddi-Moussa-Ider, Nasouri, Vilfan &
Golestanian, 2021). Across these domains, the interplay between hydrodynamics, confine-
ment geometry, and particle shape dictates function, efficiency, and reliability (Batchelor,
1970; Koens & Montenegro-Johnson, 2021).

Over the past decades, a rich body of theoretical work has emerged to describe these
phenomena, beginning with classical solutions for simple geometries, such as spheres
translating or rotating near a single wall, and later extending to slender bodies, fibers,
and cylinders (Batchelor, 1970; Cox, 1970; Jeffery & Filon, 1922; Mitchell & Spagnolie,
2015). Analytical approaches, often built on the Lorentz Reciprocal Theorem, method
of reflections, and lubrication theory, have provided closed-form solutions for idealised
configurations (Crowdy, 2011; Happel & Brenner, 1983; Jeffrey & Onishi, 1981). These
models have revealed how geometry, aspect ratio, and wall proximity govern mobility and
resistance coefficients, and how coupling between translation and rotation emerges in the
presence of broken symmetry (Katz, Blake & Paveri-Fontana, 1975; Koens & Montenegro-
Johnson, 2021; Teng et al., 2022). While such theoretical progress has been substantial,
much of it assumes simplified conditions such as infinite cylinders, single planar walls, or
purely two-dimensional configurations.

In reality, many microscale systems involve finite-length bodies within fully three-
dimensional confinement, where multiple boundaries interact hydrodynamically and
where flow cannot be reduced to a single-wall problem. In these settings, wall-induced
coupling can drive unexpected behaviors, including spontaneous slipping, reverse rota-
tion, or trajectory deflection, whose onset depends sensitively on the confinement ratio,
body geometry, and boundary arrangement (Caldag, Demir & Yesilyurt, 2022; Caldag
& Yesilyurt, 2019; Saintyves et al., 2020; Teng et al., 2022). Experimental studies have
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begun to probe these effects, but systematic mapping of parameter space in confined
Stokes flow environments remains limited.

This thesis addresses this gap by investigating the motion of finite-length cylinders near
walls under varying degrees of confinement in the low-Reynolds-number regime. Com-
bining numerical simulation with analytical scaling arguments, the study examines how
confinement geometry modifies hydrodynamic resistance, torque generation, and transla-
tion–rotation coupling, with a particular focus on identifying the conditions under which
slipping or forward motion occurs. The results contribute to a more complete under-
standing of near-wall hydrodynamics in realistic three-dimensional environments, with
implications for both biological systems and engineered microscale devices.

1.1 Literature Review

In microscale fluid mechanics, many flows occur in the low-Reynolds-number regime,
where viscous forces dominate over inertia, the governing Stokes equations are linear,
and the motion is reversible under time reversal (Happel & Brenner, 1983; Leal, 2007;
Stokes, 2009). In this regime, the presence of nearby boundaries plays a decisive role
in determining particle dynamics (Jeffrey & Onishi, 1981; Mitchell & Spagnolie, 2015;
O’Neill, 1964). Walls break the symmetry of the surrounding flow, leading to increased
hydrodynamic drag, changes in far-field decay rates, and coupling between translational
and rotational motion (Gavze & Shapiro, 1997; Goldman, Cox & Brenner, 1967; Katz
et al., 1975; Koens & Montenegro-Johnson, 2021; Rallabandi, Saintyves, Jules, Salez,
Schönecker, Mahadevan & Stone, 2017; Spagnolie & Lauga, 2012; Teng et al., 2022).
These near-wall effects occur regardless of whether the moving body is a sphere, cylinder,
or more complex shape. They are a universal feature of microscale hydrodynamics across
both natural and engineered systems (Crowdy, 2011; Ishimoto & Gaffney, 2013; Zhu
et al., 2013).

The effects introduced by walls and confinement have critical importance across a wide
range of application fields. For example, they govern the swimming patterns of mi-
croorganisms in confined habitats, influence the efficiency and precision of microrobotic
navigation (Acemoglu & Yesilyurt, 2015; Caldag & Yesilyurt, 2019; Lauga et al., 2006;
Spagnolie & Lauga, 2012; Zhu et al., 2013), dictate wear and performance in MEMS de-
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vices(Choi et al., 2010; Day & Stone, 2000; Sen et al., 1996; Witelski, 1998), and control
transport processes in colloidal suspensions and microfluidic devices (Abel et al., 1994;
Choi et al., 2010; Dong, Lum, Hu, Zhang, Ren, Onck & Sitti, 2020; Leal, 2007; Mitchell &
Spagnolie, 2015). As such, understanding how objects move near walls is a central chal-
lenge in microhydrodynamics, with implications extending from the fundamental physics
of viscous flows to the design of next-generation biomedical and industrial technologies.

In biological systems, many microorganisms navigate near solid boundaries, where hydro-
dynamic wall interactions significantly modify their swimming kinematics and stability
(Spagnolie & Lauga, 2012). These interactions can induce behaviors such as circular
swimming, accumulation near surfaces, and reorientation of swimming direction, all aris-
ing from the coupling between the organism’s propulsive mechanism and the hydrody-
namic image systems generated by the boundary (Crowdy, 2011; Ishimoto & Gaffney,
2013; Lauga et al., 2006; Spagnolie & Lauga, 2012). For example, pusher-type swim-
mers such as Escherichia coli generate thrust from the rear via rotating helical flagellar
bundles (Das & Lauga, 2018; Lauga et al., 2006; Spagnolie & Lauga, 2012), creating a
net hydrodynamic torque in the presence of a no-slip wall that drives persistent circular
trajectories (Lauga et al., 2006; Zöttl & Stark, 2012). Sperm cells and other flagellated
swimmers similarly experience wall-induced reorientation and trapping, phenomena cap-
tured in multipole models and slender-body simulations that link near-wall attraction to
the strength and orientation of force dipoles and higher-order hydrodynamic singulari-
ties (Ishimoto & Gaffney, 2013; Koens & Montenegro-Johnson, 2021; Spagnolie & Lauga,
2012). Ciliated protozoa such as Paramecium propel themselves via coordinated nonre-
ciprocal ciliary beating, where metachronal wave patterns can be tuned to enhance net
flow generation and surface-bound locomotion (Dong et al., 2020; Ishimoto & Gaffney,
2013). The resulting dynamics are strongly geometry-dependent: variations in cell shape,
flagellar arrangement, and beating kinematics determine whether a swimmer behaves as
a puller, pusher, or neutral type, which in turn dictates its stability and accumulation
behavior near boundaries (Daddi-Moussa-Ider et al., 2021; Ishimoto & Gaffney, 2013;
Spagnolie & Lauga, 2012). These hydrodynamic mechanisms, often supplemented by
steric and lubrication forces in the near-field (Happel & Brenner, 1983; Leal, 2007; Salez
& Mahadevan, 2015), underpin a wide range of biological functions, including micro-
bial navigation toward nutrient-rich surfaces, sperm guidance in reproductive tracts, and
ciliate-mediated feeding currents in aquatic environments.

Artificial microswimmers designed for biomedical applications, such as targeted drug
delivery, minimally invasive surgery, and in-situ diagnostics, often operate in confined
microchannel environments where wall effects play a decisive role in their propulsion and
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guidance (Acemoglu & Yesilyurt, 2015; Caldag & Yesilyurt, 2019). Magnetic helical mi-
crorobots, inspired by bacterial flagella, generate propulsion through the rotation of a
rigid helical tail actuated by an external magnetic field, with swimming speed and tra-
jectory stability determined by the balance between magnetic and viscous torques at low
Reynolds number (Acemoglu & Yesilyurt, 2015; Caldag & Yesilyurt, 2019; Das & Lauga,
2018). In cylindrical channels, confinement modifies the hydrodynamic resistance ma-
trix, altering both translational and rotational velocities; these effects can be exploited to
achieve controlled steering by adjusting actuation frequency or magnetic field orientation
(Acemoglu & Yesilyurt, 2015; Zhu et al., 2013). However, the same near-wall hydrody-
namic interactions that enable guided motion can also produce unintended drift, circular
trajectories, or trapping, particularly for pusher-type swimmers whose head–tail counter-
rotation generates lateral hydrodynamic torques in proximity to boundaries (Lauga et al.,
2006; Spagnolie & Lauga, 2012). Numerical and experimental studies have shown that
confinement geometry, channel diameter, and tail length significantly influence stability,
with narrow channels enhancing alignment along the channel axis while also increasing
susceptibility to step-out or wobbling instabilities at suboptimal actuation parameters
(Acemoglu & Yesilyurt, 2015; Caldag, Acemoglu & Yesilyurt, 2017; Caldag & Yesilyurt,
2019; Zöttl & Stark, 2012). The ability to predict and harness these wall-mediated dynam-
ics is critical for designing microrobotic systems capable of reliable navigation through
vascular networks, microfluidic devices, and other constrained environments relevant to
precision therapeutic delivery.

In MEMS devices, where moving components operate within micron-scale gaps, hydrody-
namic lubrication fundamentally governs performance and stability (Happel & Brenner,
1983; Leal, 2007). In such confined geometries, the proximity of walls amplifies vis-
cous resistance and alters pressure distributions, directly influencing drag, dissipation,
and overall efficiency (Choi et al., 2010; Day & Stone, 2000). Devices such as rotary
actuators, viscous micropumps, and air-bearing sliders rely on precise lubrication-film
characteristics to maintain performance (Day & Stone, 2000; Sen et al., 1996; Witelski,
1998). In rotary-cylinder micropumps, lubrication theory predicts strong coupling be-
tween torque, flow rate, and pressure drop at small clearances, with eccentric placement
enabling controllable pumping or motoring depending on rotation direction (Choi et al.,
2010; Day & Stone, 2000; Sen et al., 1996). Analytical models further show that de-
sign trade-offs, throughput, and rotational speed cannot be maximized simultaneously
(Choi et al., 2010; Day & Stone, 2000). Similarly, in high-speed air-bearing sliders for
data storage, compressible lubrication flows generate lift that balances applied loads, and
stability arises from nonlinear interactions between bearing geometry and gap pressure
fields (Witelski, 1998). At the nanoscale flying heights of these devices, compressibility
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and side-leakage effects become decisive (Witelski, 1998). Across these systems, even
slight deviations in alignment or clearance can shift force balances, tipping the system
between smooth operation and contact (Choi et al., 2010; Day & Stone, 2000)

In colloidal suspension and microfluidic systems, hydrodynamic interactions with nearby
boundaries are often the dominant factor governing particle sedimentation, translation,
and rotation. At low Reynolds numbers, these wall-mediated effects arise from the al-
teration of disturbance flows and the amplification of lubrication stresses (Mestre, 1973;
Salez & Mahadevan, 2015), which modify drag coefficients, influence particle alignment,
and, under certain conditions, generate hydrodynamic trapping. Classical analyses, such
as De Mestre et al.’s treatment of slender cylinders settling near plane boundaries, quan-
tify wall-correction factors for drag and reveal that orientation stability is generally lost
except for specific geometric configurations (Mestre, 1973). More recent studies extend
these insights to confined geometries relevant for lab-on-a-chip applications, where non-
linear hydrodynamic coupling between translation and rotation leads to complex accu-
mulation patterns and sorting dynamics (Mitchell & Spagnolie, 2015). Rallabandi et al.
(Rallabandi et al., 2017) demonstrated that wall-induced coupling between rotational and
translational motion can be tuned to control particle orientation and lateral drift, forming
the basis for passive hydrodynamic sorting and trapping strategies in microfluidic envi-
ronments. Bioinspired designs, such as cilia-driven flows, create recirculating zones that
selectively retain or expel particles based on size, motility, or surface properties, offering
additional control over sorting efficiency (Dong et al., 2020). Optimal control frameworks
similarly exploit wall-induced hydrodynamic torques to achieve high-efficiency positioning
and separation of both passive particles and active swimmers (Spagnolie & Lauga, 2012).
These mechanisms directly support applications in high-throughput biomedical assays
(Acemoglu & Yesilyurt, 2015; Caldag & Yesilyurt, 2019), microfluidic sorting and trans-
port, and precision coating flows, where thin-film lubrication and elastohydrodynamic
interactions between particles and compliant boundaries can be harnessed to modulate
motion and contact forces (Salez & Mahadevan, 2015). As such, the ability to accurately
predict and leverage particle–wall interactions remains central to advancing the control
and performance of colloidal systems, microfluidic platforms, and next-generation diag-
nostic technologies.

The theoretical study of hydrodynamic interactions between particles and boundaries at
low Reynolds number originates from classical solutions for spheres near walls. Seminal
work by O’Neill on the slow viscous motion of a sphere translating parallel to a plane
boundary solved the Stokes equations in bispherical coordinates, producing exact ex-
pressions for the mobility and resistance coefficients and showing that the parallel drag
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increases logarithmically with decreasing gap height (O’Neill, 1964). Complementary
analyses for motion parallel to the wall (Goldman et al., 1967) and later extensions to
finite confinement provided wall-correction factors that remain standard in microhydrody-
namic modeling. These solutions demonstrated that wall proximity modifies not only the
magnitude of hydrodynamic forces but also the scaling of resistance with particle–wall
separation, laying the groundwork for more complex geometries. The transition from
spheres to non-spherical bodies introduced symmetry-breaking effects and additional hy-
drodynamic coupling between translation and rotation. Jeffery’s pioneering analysis of
the motion of circular cylinders in viscous fluids (Gavze & Shapiro, 1997; Jeffrey & Onishi,
1981). Subsequent work on the slow motion of a cylinder near a plane wall (O’Neill, 1964)
revealed fundamental differences from spheres, including the absence of lateral forces on a
steadily rotating cylinder and the lack of torque on a translating one. For slender bodies,
Cox’s slender-body theory (Cox, 1970) and its extensions incorporated wall effects via
singularity methods and Stokeslet image systems, enabling analytical predictions for the
mobility of fibers and rods near boundaries(De Mestre & Russel, 1975; Katz et al., 1975;
Koens & Montenegro-Johnson, 2021). De Mestre’s analysis of the low-Reynolds-number
fall of slender cylinders near rigid walls (Mestre, 1973) quantified the drag anisotropy and
demonstrated that stable orientations during sedimentation are rare except in narrowly
defined configurations. These foundational studies established the primacy of geome-
try—sphere, cylinder, or slender fiber—in determining mobility and resistance scaling,
and they form the analytical backbone for contemporary theories describing near-wall dy-
namics of complex-shaped passive and active particles (Gavze & Shapiro, 1997; Spagnolie
& Lauga, 2012).

The study of cylindrical motion near a single rigid wall at low Reynolds number has
its roots in the exact solution of Jeffery (Jeffery & Filon, 1922), who employed bipolar
coordinates to calculate the torque on an infinite circular cylinder rotating in a viscous
fluid, both in isolation and in proximity to another cylinder or a wall. This analysis
provided one of the earliest treatments of wall-induced hydrodynamic coupling in two-
dimensional Stokes flow. Building on this foundation, Jeffery & Onishi (Jeffrey & Onishi,
1981) presented a general formulation for the mobility and resistance functions of an
infinite cylinder translating or rotating parallel or perpendicular to a nearby plane wall.
Their exact solutions, obtained via stream-function representations in bipolar coordi-
nates, revealed qualitative differences from the spherical analogue, such as the absence of
a lateral force on a steadily rotating infinite cylinder near a wall, in contrast to the finite
force experienced by a sphere. These idealised results remain important benchmarks for
validating numerical methods and asymptotic theories in near-wall hydrodynamics.
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Two analytical tools have been central to this class of problems. The Lorentz reciprocal
theorem allows relations between distinct force–velocity or torque–angular-velocity prob-
lems without directly re-solving the governing Stokes equations, enabling the derivation
of new mobility and resistance relations from known configurations (Happel & Brenner,
1983; Leal, 2007). Lubrication theory, applied in the limit of small cylinder–wall sepa-
ration, captures the leading-order pressure gradients and shear stresses in the thin film,
predicting the divergence of resistance and torque coefficients with decreasing gap (Koens
& Montenegro-Johnson, 2021). The combination of these methods has been extended to
account for end effects in finite-length cylinders, where symmetry is broken and rota-
tion–translation coupling becomes significant (Teng et al., 2022), as well as to compliant
boundaries, where elastic deformation of a coating modifies the lubrication pressure and
can induce additional lift or torque (Rallabandi et al., 2017; Saintyves et al., 2020; Salez
& Mahadevan, 2015). Further refinements include analyses of reverse rotation phenom-
ena (Merlen & Frankiewicz, 2011; Seddon & Mullin, 2006) and the motion of immersed
cylinders near soft, elastic coatings (Rallabandi et al., 2017), both of which illustrate the
sensitivity of near-wall dynamics to boundary material properties. Together, these the-
oretical developments provide a rigorous framework for interpreting and predicting the
hydrodynamics of rigid and flexible cylindrical bodies in the presence of a single bound-
ary, while also serving as the foundation for modern extensions to active and anisotropic
particles.

In Stokes flows, translation–rotation coupling arises from the asymmetry introduced when
a particle moves in proximity to a boundary, where the disturbance flow interacts with
the wall and alters the hydrodynamic resistance matrix. The effect is particularly strong
for elongated bodies, where the unequal distribution of hydrodynamic stresses along the
body induces rotation during translation, or conversely, lateral drift during pure rotation
(Koens & Montenegro-Johnson, 2021; Rallabandi et al., 2017; Teng et al., 2022). In bio-
logical systems, such coupling manifests in characteristic near-wall swimming behaviors.
For example, pusher-type bacteria such as E. coli generate rear-mounted thrust that,
in the presence of a no-slip wall, produces a net torque driving persistent circular tra-
jectories (Das & Lauga, 2018; Lauga et al., 2006; Spagnolie & Lauga, 2012). Similarly,
slender-body and multipole models predict that wall-mediated hydrodynamic coupling
reorients swimmers and can lead to stable trapping, depending on the strength and ori-
entation of the force dipoles (Spagnolie & Lauga, 2012; Zhu et al., 2013). In synthetic
systems, microrobots driven by rotating helical tails experience analogous coupling ef-
fects: translation generates rotation and vice versa, enabling passive steering in confined
geometries but also making them susceptible to unintended drift or alignment shifts (Ace-
moglu & Yesilyurt, 2015; Caldag & Yesilyurt, 2019). Across both natural and engineered
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microswimmers, understanding and exploiting translation–rotation coupling is essential
for predicting near-wall trajectories and designing systems that can either harness or
suppress these hydrodynamic interactions, depending on the application.

In microscale hydrodynamics, confinement refers to the modification of particle motion by
nearby boundaries that restrict the surrounding fluid domain. Geometries can range from
a single plane wall to two parallel plates, cylindrical channels, or fully enclosed cavities,
each imposing distinct hydrodynamic constraints. Confinement alters both translational
and rotational mobilities by modifying the disturbance flow fields and amplifying wall-
mediated lubrication stresses. For cylinders, these effects are captured in theoretical and
computational models that incorporate wall-correction factors into the hydrodynamic re-
sistance matrix, revealing pronounced increases in drag and altered translation–rotation
coupling at small gap ratios (Mitchell & Spagnolie, 2015; Teng et al., 2022). In compliant-
walled systems, additional coupling arises from elastohydrodynamic deformations, as de-
scribed by lubrication theory for soft interfaces (Salez & Mahadevan, 2015), where wall
compliance can either enhance or diminish resistance depending on geometry and ma-
terial properties. Such modifications to mobility are not merely quantitative; they can
induce qualitative changes in particle dynamics, including trajectory reorientation, align-
ment along symmetry axes, and confinement-induced trapping, with direct implications
for microfluidics, MEMS operation, and targeted microrobotic navigation.

Rotation in confined geometries exhibits behaviors absent in unbounded Stokes flow, in-
cluding spontaneous reverse motion. This effect arises from asymmetries in the lubrication
layer thickness and the resulting pressure gradients, which generate hydrodynamic torques
capable of reversing or altering rotation direction.Teng et al. (2022) demonstrated, using
three-dimensional lubrication theory, that finite-length cylinders near walls exhibit end
effects that fundamentally change their rotational dynamics under confinement. Sain-
tyves et al. (2020) experimentally observed rotation–translation coupling in cylinders
sedimenting in narrow gaps, identifying asymmetric pressure distributions in the lubri-
cation film as the primary mechanism for induced rotation. Similarly, Seddon & Mullin
(2006) reported reverse rotation of cylinders in narrow channels, where geometric confine-
ment and lubrication asymmetry combined to produce motion opposite to that expected
from unconfined hydrodynamics.

The geometry of confinement not only determines the magnitude of hydrodynamic resis-
tance but also introduces directional anisotropy, where mobility coefficients differ signif-
icantly along orthogonal directions. Cylindrical particles translating parallel to channel
walls experience markedly different resistance compared to motion perpendicular to them,
a trend amplified as the gap-to-radius ratio decreases (Gavze & Shapiro, 1997; Mitchell &
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Spagnolie, 2015). Variations in confinement geometry, such as replacing rigid walls with
compliant boundaries, can further modify near-wall hydrodynamics through wall defor-
mation, altering flow topology and lubrication pressures (Salez & Mahadevan, 2015).
In background shear flows, confinement can enhance or suppress lateral migration de-
pending on the interplay between shear-induced lift forces and wall-mediated lubrication
stresses (Zöttl & Stark, 2012). These sensitivities to gap ratio, wall compliance, and im-
posed background flows make accurate geometric characterization essential for predicting
motion in both natural and engineered microscale systems.

1.2 Motivation

Across a broad range of disciplines, from microbiology and colloid science to MEMS design
and microrobotics, near-wall hydrodynamics has emerged as a central factor in predicting
and controlling motion at low Reynolds numbers. Theoretical frameworks, supported by
both analytical and numerical studies, have provided deep insights into wall-mediated
resistance, translation–rotation coupling, and confinement-induced modifications to mo-
bility. However, much of this foundational work has been carried out under idealised
assumptions, such as infinite-length bodies, single rigid walls, two-dimensional symme-
try, or axisymmetric flows (Czajka et al., 2019; Jeffrey & Onishi, 1981; Rallabandi et al.,
2017). While these simplifications enable analytical progress, they often neglect geomet-
ric and boundary complexities encountered in real-world systems, including finite-body
effects, end interactions, and multi-wall confinement.

Despite significant advances, relatively few studies address the fully three-dimensional
motion of finite-length cylinders in confined Stokes flow, where all three spatial dimen-
sions contribute to hydrodynamic resistance and coupling. In particular, the onset and
character of slipping, a regime in which a rotating body exhibits net translation without
external forcing, remain poorly mapped as a function of confinement ratio and gap geom-
etry (Saintyves et al., 2020; Teng et al., 2022). The interplay between lubrication-layer
asymmetry, end effects, and multi-wall interactions in such settings is not well resolved
in the existing literature. This thesis addresses this gap through a combined numerical
and parametric approach, systematically mapping cylinder motion across a range of con-
finement scenarios (channel, open tank, closed tank) and identifying the hydrodynamic
mechanisms governing the transition between pure rotation, slipping, and translation-
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dominated regimes.

1.3 Thesis Outline

This thesis investigates low–Reynolds–number motion of a cylinder near a wall under
three confinement types (channel, closed tank, open tank) in both 2-D (infinite) and 3-D
(finite-length) settings. Chapter 1 motivates the problem and frames the role of con-
finement in near-wall microhydrodynamics. Chapter 2 provides a review of the existing
theory on infinite and finite-length cylinders near a wall in an unbounded domain. Chap-
ter 3 introduces the geometry and boundary conditions, presents the governing equations,
and outlines the finite-element implementation and validation. Chapter 4 reports how gap
size, aspect ratios, and confinement scenario affect the direction and magnitude of motion
in 2-D and 3-D, and decomposes forces into cap vs. side contributions and pressure- vs.
shear-driven components. Chapter 5 concludes with the main findings on how confine-
ment sets translation direction and magnitude, and summarizes the mechanistic picture
that links side pressure and shear with end-cap effects.
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2. THEORETICAL BACKGROUND

Understanding the hydrodynamic behavior of cylindrical bodies near boundaries requires
a theoretical framework that captures the interplay between viscous forces, geometric con-
finement, and wall interactions in the low Reynolds number regime. Theoretical models
based on Stokes flow and lubrication theory have long served as the foundation for analyz-
ing such systems, offering insights into the forces and torques experienced by translating
and rotating bodies. This chapter reviews the canonical solutions for infinite cylinders
near rigid planar walls and extends the discussion to include more recent developments
that account for end effects, wall deformability, and finite-length geometries.

2.1 Flow over an Infinite Cylinder Near a Wall

In his 1922 paper, Jeffery & Filon (1922) presented an analytical solution for the motion
of a viscous fluid between two non-concentric rotating cylinders by employing bipolar
coordinates. He solved the biharmonic equation governing two-dimensional steady viscous
flow and derived the stream function for configurations in which one cylinder encloses the
other. Jeffery & Filon (1922) showed that steady flow is only possible when one cylinder is
enclosed by another. If both cylinders are placed in an infinite fluid, a steady flow cannot
be maintained because the fluid motion spreads out without limit. He also calculated
the torque per unit length required to maintain the rotation of the inner cylinder in
both enclosed and semi-infinite domains. Jeffery’s work is notable for its rigorous use
of bipolar coordinates and for laying the groundwork for the study of rotational motion
in low-Reynolds-number hydrodynamics. Building upon this, Jeffrey & Onishi (1981)
extended the analysis to more complex boundary conditions by considering a cylinder
near a plane wall. While Jeffery & Filon (1922) focused on confined flows between two
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cylinders, the later study reformulated the bipolar coordinate system to model a cylinder
adjacent to a planar boundary, treating the wall as a limiting case of a concentric outer
cylinder of infinite radius. This reformulation enabled an analytical solution for Stokes
flow under three distinct motion types: rotation of the cylinder, translation parallel to
the wall, and translation perpendicular to the wall.

A key insight of their work was the decoupling of force and torque under certain con-
straints: a rotating cylinder experiences no net translational force, and a translating
cylinder experiences no net torque. These results, which contrast with the behavior of
a sphere in similar settings, demonstrate that the coupling between translational and
rotational motion can vanish in planar geometries. The authors provided explicit expres-
sions for the forces and torques in each scenario and further validated their findings using
lubrication theory in the near-wall limit.

Theory is formulated as highly dependent on the ratios in the geometry (Figure 3.1),
so we start with defining δwall = h0/R, where h0 is the minimum gap height between
the cylinder and the wall and R is the radius of the cylinder. The viscosity of the fluid
medium is µ, and the rotational and translational velocity of the cylinder parallel to the
wall is defined as Ω and U , respectively. Using these parameters, Jeffrey & Onishi Jeffrey
& Onishi (1981) showed that the non-dimensional force (non-dimensionalised by µU) over
the cylinder when translating next to a wall is defined as:

(2.1) f∥ = −4π log
(

1+ δwall +
√

2δwall + δ2
wall

)−1

Additionally, they solved for the torque per unit length (non-dimensionalised by µΩR2)
of the cylinder that is rotating next to the wall with the velocity Ω as:

(2.2) τ = −4π
1+ δwall√

2δwall + δ2
wall

These expressions show how the hydrodynamic interactions intensify as the cylinder ap-
proaches the wall (i.e., as δwall → 0), and they reveal decoupling behaviors, such as zero
torque during translation and zero force during rotation—contrasting with the behavior
of spheres.

While the primary focus of this thesis is on parallel translation and rotation near bound-
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aries, the solution for the translation of a cylinder perpendicular to wall is worth noting.
Although not directly relevant to the present analysis, this case is included here to provide
a more complete overview of near-wall hydrodynamic behavior at low Reynolds numbers.

This configuration introduces a strong geometric dependence, captured by the dimen-
sionless gap ratio δwall = h0/R, where h0 is the minimum wall-cylinder distance and R

is the cylinder radius. Jeffery & Onishi derived the non-dimensional force acting on the
cylinder (scaled by µV ), where V is the speed of translation away from the wall, as

f⊥ = −4π

log
(

1+ δwall +
√

2δwall + δ2
wall

)
−

√
2δwall + δ2

wall
1+ δwall

−1

,

This expression reveals a logarithmic singularity as the gap narrows, indicating a sharp
increase in resistance to motion. The result is particularly relevant in modeling sedimen-
tation or lift-off dynamics and complements the parallel translation and rotation cases
by completing the set of canonical motions near a boundary.

Additional studies by Ray Ray (1936) and Davis (1993) extended the analysis to gen-
eralized resistance coefficients for disk-shaped bodies. While these contributions are not
directly applicable to the current study, they are noted here for completeness within the
broader context of low-Reynolds-number hydrodynamics.

2.2 Flow over a Finite Cylinder

This study examines both infinite and finite-length cylinders, making it necessary to
consider theoretical models that account for end effects. Among these, the work of Teng
et al. (2022) is particularly relevant. Their three-dimensional lubrication theory describes
the coupled translation and rotation of finite-length cylinders near rigid planar walls and
was motivated by the experimental findings of Saintyves et al. (2020). While Saintyves
et al. (2020) focused on soft substrates and elastohydrodynamic effects, Teng et al. (2022)
extended the framework to rigid boundaries, isolating the role of geometric confinement.

An earlier study by Rallabandi et al. (2017) laid the theoretical groundwork by investi-
gating the spontaneous rotation of an infinite cylinder sliding near a soft elastic wall in
a viscous fluid. Using a two-dimensional model under low Reynolds number conditions,
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they employed lubrication theory and the Lorentz reciprocal theorem to derive analytical
expressions for the cylinder’s angular velocity, showing that it scales with the cube of the
sliding speed and the square of the wall’s elastic deformation. These predictions were vali-
dated through numerical simulations solving the Reynolds lubrication equation to capture
the pressure and torque distributions. The results revealed that wall deformation breaks
flow symmetry, generating a lift force and inducing torque-free rotation. Notably, the
study bridges theoretical predictions with experimental observations of buoyancy-driven
rotation on soft inclines, offering valuable insights into elastohydrodynamic interactions.

Inspired by this foundational work, Saintyves et al. (2020) extended the investigation to
finite-length cylinders, which are more representative of real-world systems. The theory
of Rallabandi et al. (2017) predicted that a cylinder sliding parallel to a soft wall must ex-
perience spontaneous rotation in the absence of external torque—analogous to frictional
rolling in rigid body mechanics—due to symmetry-breaking in the pressure field caused
by wall deformation. However, this theory showed quantitative discrepancies when com-
pared with experimental results. To address this issue, Saintyves et al. (2020) developed a
composite theoretical model that incorporates both the elastohydrodynamic torque along
the cylinder’s curved surface and a newly identified viscous torque arising from friction
at the cylinder’s ends, highlighting the critical role of end effects in finite-length cylinder
motion. They derived scaling laws that predict the angular velocity as a sum of contribu-
tions from both mechanisms and validated these predictions through a series of controlled
experiments. Using aluminum and brass cylinders of varying aspect ratios, immersed in
silicone oil and sliding down soft polymer-coated inclines, they systematically varied the
polymer coating’s stiffness, thickness, and incline angle. High-resolution imaging and
particle tracking allowed precise measurement of rotation and translation speeds. The
results showed a clear transition from edge-effect-dominated rotation in short cylinders
or stiff coatings to coating deformation-dominated rotation in longer cylinders or softer
coatings. This comprehensive approach not only confirmed the qualitative predictions
of the theory of Rallabandi et al. (2017) but also provided a quantitative framework for
understanding motion near soft boundaries.

Motivated by discrepancies observed in experiments on finite-length cylinders sliding near
soft inclines Saintyves et al. (2020), Teng et al. (2022) developed a three-dimensional lu-
brication theory to describe the coupled translation and rotation of finite-length cylinders
near rigid planar walls. Unlike classical models for infinite cylinders, their approach ex-
plicitly incorporates end effects, which are crucial for capturing the coupling between force
and torque. By applying the Lorentz Reciprocal Theorem within the lubrication region,
they converted complex surface integrals into more tractable line integrals, allowing for
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analytical expressions of hydrodynamic force and torque. Solving the Reynolds equation
under these constraints and incorporating corrections from flow outside the lubrication
region, they derived the following expressions for force and torque:

(2.3) F̂ = −2πµÛ lL
h0

ex − 3πµV̂ l3L

2h3
0

ez, T̂ = −2πµRΩ̂lL
h0

ey,

Subsequently, Teng et al. (2022) isolate the individual contributions of translation and
rotation to the hydrodynamic force and torque by solving the lubrication equations under
distinct motion conditions. By incorporating the influence of flow outside the lubrication
layer and leveraging the linearity of Stokes flow, they superimpose these solutions to
construct a unified expression. This leads to a compact resistance matrix formulation
that captures the coupled dynamics of finite-length cylinders translating and rotating
near a rigid wall as follows:

(2.4)
F

T

 =
RF U RF Ω

RT U RT Ω

U

Ω



The terms RF Ω and RT U are cross-coupling resistance coefficients that arise due to the
presence of end effects in finite-length cylinders. These coefficients are absent in classical
formulations such as Jeffery & Filon (1922), which assume infinite cylinders and therefore
neglect end-induced interactions. However, coupling between translation and rotation
does occur in spherical or finite geometries, as demonstrated in both experimental and
numerical studies. Due to the symmetry of Stokes flow, these cross-coupling terms are
mathematically identical, as noted by Hinch (1972). In contrast, the diagonal resistance
coefficients RF U and RT Ω also incorporate end effects but represent the direct hydrody-
namic resistance to translation and rotation, respectively. All of these resistance terms
depend on the integral that captures the influence of the lubrication pressure distribution
and varies with both the gap height and the cylinder’s aspect ratio.
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3. METHODOLOGY

This chapter outlines the numerical and theoretical framework employed to investigate
the low-Reynolds-number behavior of a rigid cylinder near a planar boundary under
varying confinement conditions. The approach combines analytical assumptions under the
Stokes regime with high-fidelity finite element simulations using COMSOL Multiphysics.
The study involves both two- and three-dimensional configurations to isolate the role of
end effects and geometric confinement on hydrodynamic coupling between rotation and
translation. The subsequent sections describe the problem formulation, boundary and
motion constraints, governing equations, numerical setup, and validation strategy.

3.1 Problem Definition

In creeping flow regimes, even simple geometric configurations can give rise to complex
hydrodynamic behavior due to the dominance of viscous forces and the influence of nearby
boundaries. One such configuration is a rigid cylinder near a planar wall, where the cou-
pling between translational and rotational motion is sensitive to geometric confinement.
While classical theory suggests that a force-free rotating infinite cylinder does not trans-
late, and a torque-free translating cylinder does not rotate, the presence of nearby walls
and a three-dimensional environment with a finite length cylinder introduces end effects
that break this decoupling.

This study investigates the hydrodynamic behavior of a rigid cylinder placed near a planar
wall inside a viscous, incompressible fluid. The objective is to understand how varying
degrees and types of geometric confinement influence the forces and torques acting on the
cylinder, particularly under prescribed rotation. Two boundary conditions are applied
to the cylinder. First, a force-free condition, in which a rotational velocity is prescribed
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while the net hydrodynamic force is constrained to zero. Second, a fixed condition, where
the cylinder is rotated at a constant angular velocity without translation, allowing a net
hydrodynamic force to develop.

The effect of confinement is studied across three scenarios: channel, open tank, and
closed tank geometries. Both 2D and 3D cases are examined to evaluate the role of
dimensionality and end effects. In 3D, the length-to-diameter ratio and wall proximity
are varied to assess back-wall influence, while in 2D, aspect ratios between the bounding
boxes width and height and gap height are systematically studied to optimize the region
of interest before extending to 3D. The study aims to map the dependence of force-
torque coupling and slipping motion on confinement geometry, providing insight into
low-Reynolds-number transport and near-wall motion in microfluidic environments.

To guide the reader through the range of simulations conducted, a table summarizing all
of the simulations is provided in Table 3.1. It summarizes the different configurations
studied, categorized by dimensionality, motion constraints, and confinement geometry.

Table 3.1 Summary of simulation cases across dimensionality, motion type, and confine-
ment geometry, including key geometric parameters.

Dimensionality Motion Type Confinement Varied Parameters

2D

Force-Free
Channel

Wx/Wz, dwallOpen Tank
Closed Tank

Fixed
Channel

Wx/Wz, dwallOpen Tank
Closed Tank

3D

Force-Free
Channel

L, WyOpen Tank
Closed Tank

Fixed
Channel

L, WyOpen Tank
Closed Tank

Although two distinct boundary conditions are applied to the cylinder, force-free and
fixed, the resulting dynamics are evaluated jointly within each confinement scenario
(Channel, Open Tank, and Closed Tank). Rather than treating these conditions sep-
arately, forces, torques, and velocities of the cylinders are analyzed together to provide
a more holistic understanding of near-wall hydrodynamics. This integrated approach en-
ables direct comparisons and highlights the physical interplay between translation and
rotation under geometric confinement.
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3.1.1 Geometry

A finite-length cylinder with a unit diameter D = 2R = 1 (set to unity for non-
dimensionalisation purposes) and length L is placed inside a rectangular domain with
dimensions Wx, Wy, and Wz. The cylinder is placed at the geometric center of the xy-
plane, with a minimum gap height from the bottom wall denoted by dwall. To reduce
computational cost and take advantage of the symmetry of the geometry, a symmetry
condition is applied on the xz plane. Forces in the y-direction are zero due to symmetry,
and the forces in the z-direction are neglected. The cylinder rotates only about the y-
axis with angular velocity Ω, and translates only in the x-direction with velocity U . The
rotation frequency is set to unity, f = 1, corresponding to an angular velocity of Ω = 2π.
The characteristic velocity scale used in the non-dimensionalization is defined as Ũ = f̃ D̃,
where tildes denote dimensional quantities.

To investigate the effects of confinement in both axial and transverse directions, simula-
tions were conducted in both two- and three-dimensional domains. The two-dimensional
simulations represent the idealized limit of an infinitely long cylinder and were used to per-
form extensive parametric sweeps across the wall gap height dwall and domain aspect ratios
Wx/Wz. To capture the full range of near-wall hydrodynamic interactions, simulations
were conducted for dimensionless wall distances dwall spanning five orders of magnitude,
from 10−1 to 10−6. Between 0.1 and 0.01, the values were sampled using linear decrements
of 0.01. From 0.01 to 0.001, the spacing was reduced to uniform steps of 0.001. Below
0.001, the sampling was further refined with progressively smaller increments—typically
1×10−4 to 1×10−5—and extended logarithmically down to dwall = 1×10−6. This adap-
tive spacing strategy ensured sufficient resolution near contact, where steep gradients in
force and velocity occur due to lubrication effects. Aspect ratios in the range of 0.5 to
6 were selected, as this interval was found to sufficiently capture the transitions in the
direction of cylinder motion under varying confinement conditions. The domain width
Wx and height Wz values for their respective aspect ratios are presented in Table 3.2.

Table 3.2 Aspect ratios considered in 2D simulations and their corresponding non-
dimensionalised domain lengths.

Aspect Ratio (Wx/Wz) Domain Width (Wx) Domain Height (Wz)
0.5 20 40
2 40 20
3 15 5
6 30 5
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Evaluation of these 2D cases offered a computationally efficient way to explore a broad
parameter space and to inform the design of more computationally intensive 3D simula-
tions.

Based on insights obtained from the two-dimensional simulations, appropriate values for
the aspect ratio and the minimum wall distance dwall were selected to guide the three-
dimensional study. Since the primary objective of this investigation is to characterize the
conditions under which backward slipping occurs, dwall was fixed at 0.05, and an aspect
ratio of 3 was chosen. Accordingly, a bounding box with dimensions Wx = 35, Wz = Wx/3,
and a variable Wy was constructed, with the cylinder positioned at the geometric center
of the domain.

The cylinder was assigned a finite length L, and both the cylinder length and the domain
depth Wy were systematically varied to explore the effects of axial confinement and
proximity to the back wall. Specifically, L was varied across four representative values,
L = 0.5, 1, 3, 6, to capture behavior ranging from short, disk-like bodies to elongated
cylinders. Simultaneously, domain depths of Wy = 7, 10, 30 were used to evaluate how
the clearance between the cylinder and the back wall influences the resulting motion. This
configuration enabled a comprehensive assessment of how confinement in all directions
modulates the hydrodynamic interactions and the dynamics of the cylinder.

A schematic view of the three-dimensional simulation setup is shown in Figure 3.1.

𝑥𝑦

𝑧

𝑊𝑥

𝑊𝑦

𝑊𝑧

𝐿
𝐷
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Ω

𝑈

Figure 3.1 Schematic representation of the 3-D computational domain.
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3.1.2 Boundary Conditions

To analyze the effect of the confinement on the cylinder’s motion, appropriate boundary
conditions were applied to both the bounding box and the cylinder. These conditions are
categorized based on the confinement scenarios of the domain and the mobility and force
constraints imposed on the cylinder.

3.1.2.1 Boundary Conditions of the Bounding Box

The domain boundary conditions were defined according to three distinct confinement
scenarios: Channel Mode, Open Tank Mode, and Closed Tank Mode. These configurations
were designed to mimic varying degrees of confinement that the cylinder can experience.
In all scenarios, the bottom wall of the domain and the surface of the cylinder were
assigned no-slip boundary conditions, ensuring zero velocity at those interfaces as well as
the back wall of the computational domain for the three-dimensional cases.

Three different confinement configurations were employed: In Channel Mode, the left
and right boundaries are stress-free, the top is no-slip, and the bottom is a no-slip wall,
aiming to simulate a flow channel with partial confinement, much like a micro pump.
In Open Tank Mode, only the top boundary is open (stress-free), while the other walls
are no-slip. This setup represents a fluid-filled tank open to the atmosphere. In Closed
Tank Mode, all boundaries are no-slip, fully enclosing the domain and simulating a sealed
environment.

Figure 3.2 shows a schematic of the domain with corresponding boundary condition
assignments for each mode. The table alongside provides a summary of the boundary
conditions applied to the vertical walls in the 2D projection.

3.1.2.2 Boundary Conditions of the Cylinder

The cylinder’s surface was treated as a no-slip wall in all cases, with two primary motion
constraints depending on the simulation mode: the force-free case and the fixed case.
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(a) Schematic representation of the boundary conditions.

Confinement BCleft BCtop BCright

Channel σ ·n = 0 u = 0 σ ·n = 0
Open Tank u = 0 σ ·n = 0 u = 0
Closed Tank u = 0 u = 0 u = 0

(b) Summary of boundary conditions applied to each wall for the confinement cases.

Figure 3.2 Overview of 2-D confinement boundary conditions.

In the force-free configuration, the cylinder was allowed to translate in the x-direction
while rotating about the y-axis. The translational velocity U was determined implicitly by
enforcing a zero net hydrodynamic force in the x-direction. This condition is particularly
relevant under creeping flow assumptions, where inertial effects are negligible and motion
is governed primarily by viscous forces.

In the fixed configuration, the cylinder was constrained to pure rotation about its axis,
with no translational motion. In both cases, due to symmetry and the imposed boundary
conditions, motion in the y and z-directions was neglected.

The general surface velocity of the rotating and translating cylinder can be described as:

u =


U

0
0

 +


0
Ω
0

 ×


x−x0

y −y0

z − z0



Here, (x0,y0, z0) denotes the geometric center of the cylinder. Due to symmetry and the
assumptions outlined above, the translational velocities in the y- and z-directions (V and
W ), as well as the angular velocities about the x- and z-axes (ωx and ωz), are set to
zero. As a result, the surface velocity expression simplifies. In the force-free case, the
cylinder translates in the x-direction to maintain zero net hydrodynamic force, yielding
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the velocity field.

u =


U +Ω(z − z0)

0
−Ω(x−x0)


In the fixed case, the cylinder is not permitted to translate and is only allowed to rotate
about the y-axis, leading to the surface velocity

u =


Ω(z − z0)

0
−Ω(x−x0)



These velocity boundary conditions, along with the lubrication regime characterized by
a small gap dwall ≪ R, allow the application of near-wall hydrodynamic approximations
such as those introduced by Teng et al. (2022).

3.2 Governing Equations

This section outlines the mathematical framework used to describe the motion of a viscous
fluid interacting with a rotating cylinder near a solid boundary under low Reynolds
number conditions. The analysis begins with the general incompressible Navier–Stokes
equations and proceeds to the simplified Stokes equations, which govern the creeping flow
regime relevant to this study. Special emphasis is given to the force-free configuration,
where the translational motion of the cylinder emerges from hydrodynamic interactions
rather than being explicitly imposed. The numerical implementation of these governing
equations and associated constraints is discussed in the context of the finite element
framework used throughout the simulations.

3.2.1 Navier–Stokes Equations
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The Navier–Stokes equations describe the motion of an incompressible fluid. In the non-
dimensional variables, it is as follows:

∇·u = 0,(3.1)

∂u
∂t

+(u·∇)u = −∇p+ 1
Re

∇2u.(3.2)

Dimensional quantities are denoted with a tilde. We use the cylinder diameter D̃ as the
length scale; hence, the reference velocity becomes Ũref = f̃ D̃, where f̃ is the dimensional
rotation frequency, the time scale set to t̃ref = D̃/Ũref , and the pressure scale becomes
P̃ref = ρ̃ Ũ2

ref . With these choices, the Reynolds number is defined as:

(3.3) Re = ρ̃ Ũref D̃

µ̃
= ρ̃ f̃ D̃2

µ̃
.

For a spinning cylinder, the dimensional tangential speed at the surface is

Ũτ = Ω̃ D̃

2 = π f̃ D̃ (since Ω̃ = 2πf̃)(3.4)

so the non-dimensional no-slip condition on the cylinder surface is

u·τ = Ũτ

Ũref
= π, u·n = 0.(3.5)

3.2.2 Stokes Equations

In this study Re ≪ 1, so inertial effects are negligible relative to viscous stresses. Ne-
glecting the inertial terms in (3.2) yields the steady Stokes equations in the same scaling,

−∇p+ 1
Re

∇2u = 0, ∇·u = 0.(3.6)

Throughout the thesis we set D = 1 for non-dimensionalization; thus Wx, Wz, L, and
dwall are reported in units of D.
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3.2.3 Hydrodynamic Force Balance

In the force-free configuration, the cylinder is prescribed a rotational velocity Ω about
the y-axis, while its translational velocity U in the x-direction is not imposed explicitly.
Instead, the net hydrodynamic force acting on the cylinder in the x-direction is set to
zero, allowing the translation to emerge from the flow field. This is implemented via the
following surface integral condition:

(3.7)
∫

Sc

σ ·nx dS = 0

where σ is the Cauchy stress tensor, Sc is the surface of the cylinder including its end caps,
and nx is the unit normal vector in the x-direction. In the finite-element implementation,
this constraint is enforced weakly using a Lagrange multiplier, enabling the solver to
determine the resulting translational velocity that satisfies the force-free condition.

Due to the imposed symmetry and geometry of the problem, the net force in the y-
direction is zero, and no translation is allowed in the z-direction. Although a non-zero
hydrodynamic force may still arise in the z-direction due to confinement and asymmetry,
it does not contribute to motion under the assumptions of the present study.

3.3 Numerical Approach

To investigate the low-Reynolds-number hydrodynamics of a cylinder near a wall, numer-
ical simulations were conducted using the commercially available finite element method
(FEM) package COMSOL 6.2. The Creeping Flow module was employed, as viscous
effects dominate the flow regime, rendering inertial contributions negligible, for the so-
lution of the flow field. Additionally, the Global ODEs and DAEs module was utilized
to ensure the hydrodynamic force balance and to implicitly solve for the cylinder. This
section outlines the mesh generation strategy, solver configuration, and validation of the
numerical model.
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3.3.1 Mesh

During the meshing process, distinct strategies were employed for two-dimensional and
three-dimensional domains due to their differing computational demands. Owing to the
significantly lower computational cost of 2D simulations, finer mesh resolution and fluid
discretization were adopted for the two-dimensional cases. Despite this refinement, the
total number of degrees of freedom (DOFs) across all 2D simulations typically was around
approximately 400,000, with the number of elements varying between 25,000 as a mini-
mum and 1,500,000 as a maximum (for extremely small gap heights), depending on the
specific geometry and aspect ratio of the domain.

For the two-dimensional geometries, the mesh was generated with respect to the cylinder
radius R = D/2. A bounding box was defined based on the desired aspect ratio, and
an additional refinement box was introduced around the cylinder to allow for local mesh
refinement. Within this inner refinement region, the maximum and minimum element
sizes were set to R/10 and R/1000, respectively. In the outer area, these values were set
to R/2 and R/200, respectively. For both domains, the maximum element growth rate
was defined as 1.1, with a curvature factor of 1.0 and a narrow region resolution of 2.
To ensure accurate representation of the curved boundary of the cylinder, a quadratic
Lagrange geometry shape function was used. Additionally, two boundary layers were
applied along both the cylinder surface and the bottom wall, with a stretching factor of
3 and a thickness adjustment factor of 1. This meshing strategy was applied consistently
across all confinement configurations and for all considered aspect ratios of the bounding
box for the 2-D domains. Figure 3.3 shows a representative mesh for the 2-D domain
when dwall = 8×10−5, which accurately represents near-wall meshes, with 429598 DOFs.

In 3-D domains, a parametric mesh was employed to ensure geometric adaptability across
varying cylinder lengths. Quadratic Lagrange elements were used to represent the curved
geometry of the cylinder accurately. Along the cylinder’s top, 20 element nodes were
distributed. Whereas at the bottom half of the cylinder, element nodes were distributed.
These nodes were later on mapped along the cylinder’s surface parametrically by in-
troducing a length-dependent function ceil(min(30,L/(R/5))) to ensure decent element
number for both short disks like cylinders and long cylinders. Finally, fine triangular
elements at the end of the cylinder were applied, with the maximum element size being
R/10, with the maximum element growth rate of 1.1. This mesh setup was done to ensure
high resolution in regions of strong shear and pressure gradients.

For the remainder of the domain, free tetrahedral elements were used, with a growth
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(a) Mesh of the entire computational domain

(b) Close-up view of the mesh between the bottom wall and the cylinder

Figure 3.3 Mesh configuration used in the 2-D simulations

factor of 1.2 and a curvature factor of 2 to balance element quality and computational
cost. Two boundary layer meshes were introduced along the bottom wall and the sides
of the cylinder with a stretching factor of one and a thickness adjustment factor of 5 to
capture near-wall gradients. Overall, for this setup, the number of degrees of freedom
reaches over three million in some cases, but generally remains around two million degrees
of freedom. Figure 3.4 shows the full domain mesh and a close-up view near the wall-
cylinder interface. For this particular case, the DOF is around 2.1 million.

(a) Mesh of the entire computational domain viewed
from the xz plane

(b) Close-up view of the mesh near
the bottom wall and cylinder

Figure 3.4 Mesh configuration used in the 3-D simulations

3.3.2 Solver Configuration

Simulations were performed using the finite-element method (FEM) based commercial
software package COMSOL 6.2. For two-dimensional simulations, quadratic elements
were employed for both the velocity and pressure fields (P2+P2 isoparametric elements).
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In three-dimensional cases, a mixed formulation using P2+P1 elements (quadratic for
velocity and linear for pressure) was utilized to ensure numerical stability and reduce
computational cost. In both cases, quadratic elements were enforced for the geometry
shape to ensure accurate isoparametric representation of the cylinder surface. Second-
order Lagrange multipliers were applied as weak constraints on the cylinder boundary to
impose no-slip conditions and enable accurate force calculations with quadratic conver-
gence.

Newton’s method was employed to handle the nonlinearities of the governing equations,
with the system linearized at each iteration. The resulting sparse linear systems were
solved using the direct MUMPS (MUltifrontal Massively Parallel sparse direct Solver),
chosen for its robustness and efficiency in handling large degrees of freedom arising from
fine mesh resolution. The orthonormal block size was set to 10,000,000 to accommodate
the high memory demand. The maximum number of iterations is limited to 100 to
ensure convergence within a reasonable computational cost. For the linear solver, the
pivot threshold and scaling options were kept at their default settings. The fully coupled
approach was adopted to solve all degrees of freedom simultaneously, which improves
convergence for strongly coupled multiphysics problems. All simulations were conducted
on a workstation equipped with an Intel i9-9000 processor and 128 GB of RAM, with 100
GB allocated to COMSOL.

3.3.3 Validation

To ensure the reliability of the numerical model, validation was carried out against results
reported by Teng et al. (2022), who developed a three-dimensional lubrication theory
for finite-length cylinders near rigid walls under creeping flow conditions. In particular,
the hydrodynamic force acting on a translating cylinder near a rigid wall was used as the
primary validation metric.

A bounding box with the dimensions Wx = 35D, Wz = 2
3Wx and Wy = Wx/4 was cre-

ated and a cylinder with the length L and diameter D was placed in the geomet-
ric center of the box. The study involved a parametric investigation over the non-
dimensional gap height and cylinder length. Specifically, dwall was varied, across the
values 0.04, 0.08, 0.2. 0.4, 0.8, 2, 4, 8, and the cylinder length was set to L = 0.1, 0.5, 2.
No rotation was assigned to the cylinder and a unitary translational velocity U = 1 was
given to calculate the forces for the cylinder. Figure 3.5 shows the meshing of the valida-
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tion model for dwall = 0.5 and L = 2, with the total of 1094972 DOFs for this particular
case.

(a) Mesh of the validation model viewed from the xz
plane

(b) Close-up view of the mesh near
the bottom wall and cylinder for
the validation model

Figure 3.5 Example mesh configuration used in the validation models

A comparison of the resulting force in the x-direction is shown in Figure 3.6, with the
dashed lines representing the current model and solid lines showing the reference data
from Teng et al. The relative error percentage remained below 3% across all cases,
indicating strong agreement and confirming the accuracy of the implemented numerical
approach.

Minor discrepancies may arise from differences in mesh density, solver tolerances, or
implementation differences in the commercial package. However, these deviations were
found to be negligible and do not impact the validity of the results for further parametric
studies.
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Figure 3.6 Comparison between the calculated force of the models. Figure a) The dashed
lines represent the Force in the x direction of our model, and the solid lines with markers
represent the results of Teng et al. (2022). b) Relative error percentage between the
models.
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4. RESULTS

4.1 Channel Confinement

This section presents the numerical results for the channel-type confinement, where lateral
boundaries are left open (stress-free) to allow fluid exchange. This setup mimics a scenario
where consistent flow from the inlet and outlet is permitted and caused by the rotation
of the cylinder, enabling the examination of flow-driven pumping effects. The results
are grouped by dimensionality (2D and 3D) and are discussed in terms of translational
motion, hydrodynamic forces and torques, and the volumetric flow rate induced through
the channel.

4.1.1 2-D Results

In the 2D simulations, the gap between the cylinder and the wall (dwall) was varied across
different domain aspect ratios (Wx/Wz) to analyze the proximity to the wall and how
the aspect ratio of the bounding box affects the motion of the cylinder. By keeping the
cylinder force-free, its translational velocity was solved implicitly as explained in Section
3.2.3.

When a rotating infinite cylinder near a wall is in an unbounded domain, no translation
occurs since the cylinder experiences no force. However, in the presence of a confinement,
this condition does not apply due to the flow structure becoming asymmetrical under the
influence of the boundaries, and the torque and force it experiences become coupled. In
Figure 4.1, the whole range of dwall values for the cylinder under channel confinement
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can be seen. As the dwall → 0, the cylinder approaches a rolling-like behavior with its
velocity becoming 2π, behaving as if it is in contact with the wall. As the gap height
between the cylinder and wall increases, the cylinder enters a transition region between
9×10−6 < dwall < 7×10−5. The required gap height for the cylinder to start translating
is affected by the aspect ratio of the bounding box, as it is highly dependent on the forces
experienced by the cylinder. However, the effect of the aspect ratio shows itself much
more clearly as the cylinder gets farther away from the wall, especially for dwall > 10−4

Figure 4.1 Cylinder velocities for the channel mode, shown for the full range of dwall
values.

Figure 4.2 shows the cylinder motion for dwall > 10−4, where the translational direction
and velocity magnitude become sensitive to the domain aspect ratio. Specifically, shallow
channels (Wx/Wz ≳ 2) result in negative cylinder velocity (backwards motion), while
deeper channels (Wx/Wz ≲ 2) lead to forward translation of the cylinder. The aspect ratio

32



of Wx/Wz ≲ 2 becomes essential for the channel confinement as the cylinder’s behavior
is more enunciated as we get further away from it.

Figure 4.2 Cylinder velocities for the channel mode, shown after the transition region
where the cylinder’s motion starts to exhibit the confinement effect.

Figure 4.3 illustrates the volumetric flow rate at the channel inlet, calculated via inte-
gration of the velocity profile at the inlet. Unlike cylinder velocity, the flow rate shows
a direct dependence on the geometric aspect ratio as 1

Wx/Wz
, with the slight discrepancy

due to the friction experienced by the fluid as the channel gets longer in the Wx direction.

In the fixed-cylinder case, the cylinder is stationary in its place. It rotates around the y-
axis, allowing examination of the hydrodynamic forces and torques that would ultimately
drive translational motion under force-free conditions. The primary quantities of interest
are the torque and the hydrodynamic forces acting in the x-direction. As shown in
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Figure 4.3 Flow rate under channel confinement, computed by integrating the velocity at
the channel inlet.

Figure 4.4, the viscous torque experienced by the cylinder closely follows the analytical
prediction by Jeffrey & Onishi (1981).

In contrast, the analysis of the x-direction force reveals a measurable deviation from the
behavior predicted for an unbounded domain. Using Equation 2.1, the hydrodynamic
force for the unbounded case is computed by substituting the translational velocity ob-
tained from the corresponding force-free simulation, rather than assuming a unit transla-
tional velocity. As the theoretical model is derived from lubrication theory, the resulting
force (represented by the dashed lines in Figure 4.4.b) corresponds to the lubrication the-
ory prediction for an unbounded domain translating with the prescribed velocity shown
in Figure 4.2. The comparison underscores the influence of confinement, particularly
the proximity of the top wall, as the deviation from the theoretical prediction increases
with increasing gap height. This trend identifies the range of gap heights for which the
lubrication-theory formulation becomes insufficient in capturing the actual hydrodynamic
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behavior under confinement.

To facilitate a comprehensive interpretation of the numerical results, the velocity fields
and corresponding streamline patterns across the computational domain are presented
in Figure 4.17 for a domain aspect ratio of 3, with dwall values of 0.1 and 0.001. In
both configurations, the rotation of the cylinder generates a localized recirculating flow
between the cylinder surface and the upper boundary of the domain. This circulation is
distinctly captured and delineated by the streamline patterns, making its spatial extent
and orientation identifiable. Nevertheless, the velocity magnitude within this recircu-
lating region is significantly smaller compared to the flow velocities observed along the
principal inlet–outlet pathway, where the majority of the fluid transport occurs. Impor-
tantly, the volumetric flow rate is higher for smaller gap heights, due to the elevated
pressure gradients generated in the confined region, which accelerate the bulk of the fluid
through the main flow path.

Analysis of the pressure field further reveals that lower gap heights produce markedly
elevated pressure levels in the downstream region immediately following the cylinder.
This effect arises due to the increased confinement of the flow between the cylinder and
the wall, which restricts fluid passage and amplifies the local pressure gradients.
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Figure 4.4 Hydrodynamic forces and torques acting on the cylinder under channel con-
finement. a) Viscous torque compared to Jeffery & Onishi’s analytical prediction. b)
Total force in x-direction, including comparison with the unbounded case (dashed lines).
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a)

b)

Figure 4.5 Velocity Fields and their respective streamlines under channel confinement
with the Wx/Wz = 3 a) Results for dwall = 0.1. b) Results for dwall = 0.001.
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4.1.2 3-D Results

The translational velocity of the cylinder in a three-dimensional channel configuration is
shown in Figure 4.6. For short, disk-like cylinders, the influence of the back wall on the
surrounding flow remains minimal. As a result, the cylinder’s velocity remains relatively
constant regardless of the domain width in the y-direction ( Wy ). However, as the
cylinder length L increases, the proximity of the cylinder ends to the back wall begins
to affect the flow field significantly. The reduced clearance between the cylinder ends
and the lateral wall constrains the flow, thereby altering the hydrodynamic environment
and influencing the cylinder’s motion. This effect becomes evident through the onset
of slipping behavior, particularly for longer cylinders, even if the resulting translational
velocity remains relatively small in magnitude.

To rationalize this behavior, the hydrodynamic force distribution is examined under fixed-
cylinder conditions. As shown in Figure 4.7, the total force acting on the cylinder,
normalized by its length, decreases with increasing cylinder length, a trend consistent
with the observed reduction in velocity magnitude. For short cylinders, the influence of
the back wall remains approximately constant across all values of Wy, whereas for longer
cylinders the effect of domain length becomes more pronounced.

When the total force is decomposed into contributions from the cylinder caps and the
lateral sides (all resolved in the x-direction), the caps are found to account for roughly 30%
of the total force in the case of short cylinders. However, as the cylinder length increases,
the relative contribution of the caps becomes highly sensitive to the domain length. For
moderate-length cylinders (L = 3), short domains yield cap contributions as high as 47%
of the total force, whereas in long domains this value decreases to approximately 34%.
In contrast, for long cylinders (L = 6), the trend reverses: in short domains, the caps
contribute only about 5%, while in long domains their contribution rises dramatically
to 91%. At this point, the dominance of the cap forces alters the direction of motion,
producing forward translation instead of the backward slip observed for long cylinders in
short domains.

Although the total force decreases with cylinder length, these results demonstrate that
the cap contribution cannot be neglected. On the contrary, the strong dependence of the
cap forces on both cylinder length and domain confinement highlights their central role
in determining the net hydrodynamic response of the system.

Finally, the lateral forces acting on the cylinder are examined with respect to their physi-
cal origin. Under Stokes flow conditions, these forces can be decomposed into two distinct
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Figure 4.6 Translational velocity of the cylinder in the x-direction under channel-type
confinement for various domain widths Wy.

contributions: pressure-driven forces and shear-driven forces. As anticipated, the rotation
of the cylinder gives rise to pressure and shear components that act in opposite directions,
with both increasing in magnitude as the cylinder length is extended. The relative rate
of increase, however, is influenced by the domain length and ultimately determines the
net hydrodynamic behaviour of the cylinder.

For shorter cylinders, the domain length exerts little influence on the relative balance of
forces, and the shear-driven contribution dominates over the pressure-driven component.
As a result, cylinders of small length exhibit comparable dynamical behavior irrespec-
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tive of their exact size. By contrast, as the cylinder length increases and the domain
length begins to affect the flow structure significantly, the relative growth of the two
force components diverges. For instance, in the short-domain configuration (Wy = 7),
the shear-driven forces increase by approximately 8.17%, whereas the pressure-driven
forces exhibit a much larger increase of about 20%. In longer domains, however, this
trend is reversed: the increase in pressure-driven forces decreases to around 19%, while
the shear-driven forces rise to 8.78%. These variations underscore the sensitivity of the
force balance to both cylinder length and domain confinement, highlighting their role as
decisive factors in determining the resulting cylinder motion
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Figure 4.7 Hydrodynamic forces and torques acting on a finite-length cylinder with vary-
ing Wy under channel-type confinement. a) Total force in the x-direction; b) Force at
the cylinder ends; c) Force on the cylinder sides;
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Figure 4.8 Hydrodynamic forces and torques acting on a finite-length cylinder’s side with
varying Wy under channel-type confinement. a) Shear-induced torque on the sides; b)
Pressure force on the sides;

42



4.2 Closed Tank Confinement

The closed tank confinement represents the most constrained flow environment considered
in this study, wherein all boundaries of the domain are closed and no-slip walls. This
setup eliminates any flow paths, resulting in fully entrapped flow. The objective of this
configuration is to investigate how the cylinder behaves under complete hydrodynamic
confinement, especially in the presence of recirculating flows generated by the cylinder’s
rotation.

Significant differences are observed between the two and three-dimensional simulations in
terms of cylinder motion. In the two-dimensional cases, the cylinder consistently exhibits
a backward slipping motion regardless of the aspect ratio of the computational domain.
As shown in Figure 4.9, the influence of confinement manifests in the magnitude of this
slipping motion, which eventually saturates as the aspect ratio Wx/Wz increases. This
indicates that beyond a certain increase in the domain aspect ratio, it has a negligible
influence on the cylinder’s translational velocity.

In contrast, the three-dimensional simulations reveal more nuanced behavior. Backward
slipping motion is only observed for sufficiently elongated cylinders (i.e., high L) and when
the axial domain width Wy remains small to moderate. When Wy is large, the increased
clearance between the cylinder ends and the back wall allows more fluid motion, thereby
reducing the forces responsible for translation. As a result, slipping is suppressed in
wider domains, underscoring the critical role of axial confinement in three-dimensional
environments (see Figure 4.12).

4.2.1 2-D Results

The translational velocity of the cylinder is obtained by imposing a force-free condition in
the x-direction, as defined in Equation 3.7. The influence of complete confinement on the
resulting motion is presented in Figure 4.9. In contrast to the forward motion observed in
channel-type configurations (Figure 4.2), the cylinder consistently moves in the backward
direction when placed in a confined tank. This reversal in direction highlights the strong
impact of global recirculation and flow obstruction within the domain. Moreover, the
cylinder’s velocity asymptotically approaches a constant value beyond an aspect ratio of
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Wx/Wz ≈ 3, demonstrating that the vertical extent of the domain with respect to its
width ceases to influence the hydrodynamic interactions.

Figure 4.9 Translational velocity of the cylinder under closed tank confinement in 2-D,
shown after the transition region where confinement-induced effects dominate the motion.

To analyze the forces responsible for the slipping behavior, the cylinder is held fixed,
allowing direct computation of the hydrodynamic torque and force. As shown in Fig-
ure 4.10, the viscous torque acting on the cylinder aligns well with the analytical expres-
sion provided by Jeffrey & Onishi (1981), remaining unaffected by domain confinement.
However, the total force in the x-direction reveals a clear dependence on the aspect ratio.
Notably, the force magnitudes for Wx/Wz = 3 and Wx/Wz = 6 are nearly identical, which
is consistent with the observed velocity saturation under the force-free condition.

Furthermore, comparison of the forces experienced by the cylinder with the theoretical
force calculated using Equation 2.1 for unbounded domains reveals a significant deviation.
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This discrepancy arises due to confinement effects, which alter the macro flow structure
within the domain.

To develop a more comprehensive understanding of how complete confinement influences
the slip behaviour of the cylinder, the streamline patterns and velocity fields across the
entire computational domain are examined for an aspect ratio of 3 with dwall values of
0.001 and 0.1. As illustrated in Figure 4.9, both configurations exhibit slip; however,
the slip velocities differ markedly between the two cases. Owing to the fully confined
nature of the domain, the flow exhibits a continuous recirculation zone that extends
throughout the bulk of the domain. The intensity and spatial extent of this recirculating
flow directly influence the hydrodynamic forces acting on the cylinder, thereby governing
the magnitude of slip.

The influence of gap height on the global flow structure becomes particularly evident
when comparing the relative extents of the recirculation regions. For larger dwall, the
primary recirculation zone occupies a greater proportion of the domain, extending further
into the main flow path relative to configurations with smaller gap heights. In addition
to the dominant central recirculation, secondary vortical structures are observed in the
corners of the domain; the size of these corner recirculations decreases progressively as the
gap height increases, indicating a systematic reorganisation of the overall flow topology.
Examination of the near-cylinder velocity field shows that, for smaller gap heights, the
fluid near the cylinder attains higher velocities than in cases with larger gap heights.

Moreover, a detailed comparison of shear-driven and pressure-driven contributions to
the hydrodynamic loading provides a more refined understanding of the mechanisms
underlying slip behaviour. For larger gap heights, the upper surface of the cylinder is
subjected to a pronounced shear-driven force component, whereas in the smaller gap
heights this contribution is negligible. This shift in the relative dominance of shear and
pressure forces plays a key role in determining the observed differences in slip dynamics
between the two gap-height conditions.
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Figure 4.10 Hydrodynamic forces and torques acting on the cylinder under closed tank
confinement. a) Viscous torque compared with the analytical solution of Jeffrey & Onishi
(1981). b) Total hydrodynamic force in the x-direction. The superposition of curves for
Wx/Wz = 3 and Wx/Wz = 6 illustrates the asymptotic behavior of the confined force
response.
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a)

b)

Figure 4.11 Velocity Fields and their respective streamlines under closed tank confinement
with the Wx/Wz = 3 a) Results for dwall = 0.1. b) Results for dwall = 0.001.
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4.2.2 3-D Results

Three-dimensional simulations under force-free boundary conditions were conducted to
explore the influence of both cylinder length L and domain width Wy on the resulting
translation. As shown in Figure 4.12, backward motion persists only when the cylinder
is sufficiently long and the domain is narrow in the y-direction. This trend reflects
the critical role of lateral confinement in shaping the flow field. Specifically, for shorter
cylinders or wider domains, the flow can bypass the cylinder ends with minimal resistance,
reducing the net hydrodynamic force and thereby suppressing translation.

Beyond the cylinder’s velocity, the influence of confinement can also be assessed through
the lateral forces acting on the cylinder. The effect of confinement on these forces becomes
apparent beginning with the moderate cylinder length of L = 3, irrespective of the domain
length Wy, with the notable exception of the cap contributions. The forces originating
from the cylinder caps are only significantly affected when the back wall is sufficiently close
to the cylinder ends to alter the flow structure. Consequently, the relative contribution
of the caps varies strongly with both cylinder length and domain confinement.

For short cylinders, the cap contribution remains approximately constant at 27–29% of
the total force. However, as the contribution from the side surfaces decreases, the cap
contribution rises to about 68% in the short-domain configuration and 34% in the long-
domain configuration. With increasing cylinder length, the side forces not only change
in magnitude but also reverse direction, thereby diminishing the relative contribution of
the caps. For example, at L = 6, the cap forces account for only 4% of the total in the
short-domain case, whereas in the long-domain case this value increases substantially to
61%.

These results underscore that the relative importance of cap versus side forces is strongly
modulated by both cylinder length and domain confinement. As the side forces evolve in
magnitude and direction with increasing length, a detailed examination of the dominant
contributions becomes essential for accurately characterizing the overall hydrodynamic
behaviour.

The influence of axial confinement is further demonstrated by analyzing the distribution
of shear and pressure-induced forces acting on the cylinder. As illustrated in Figure 4.14,
these forces change with the domain width Wy and cylinder length L. Notably, the
combination of shear forces and pressure-driven contributions on the cylinder’s side sur-
faces can become sufficiently negative to induce net translation in the x-direction. This
mechanism is particularly relevant for longer cylinders, where confinement effects inten-
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Figure 4.12 Translational velocity of the cylinder in the x-direction under closed tank
confinement for various Wy values. Backward slipping is observed for long cylinders in
narrow domains.

sify due to limited axial clearance. Figure 4.13.c highlights this behavior by showing the
summed contributions of torque and pressure forces on the cylinder’s surfaces, revealing
the hydrodynamic conditions under which slipping motion is initiated.

For shorter cylinders, the shearing and pressure-driven forces on the sides of the cylinder
have a much lower magnitude as opposed to the longer cylinder cases, in contrast to the
forces at the caps of the cylinder, which are higher. Even though the lower magnitude of
the dominating forces over the cylinder, it experiences a forward translation with higher
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velocity because, the pressure-driven forces which are the opposing force that causes
cylinder to exhibit the slipping motion, are not enough to dominate both the forces at
the cylinders ends and the shearing forces on its sides.

In narrow domains (Wy ≲ 10) with long cylinders L = 6, pressure-driven forces dominate
due to strong confinement effects on the macro flow within the domain. In contrast, in
wider domains, shear forces gain relative prominence. The slipping motion arises in cases
where pressure forces surpass the resisting shear forces on the cylinder’s sides, providing
the net driving force required for translation. This trend underscores the importance of
flow confinement in both transverse and axial directions for enabling motion.
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Figure 4.13 Hydrodynamic forces and torques on a finite-length cylinder under closed
tank confinement with varying Wy. a) Total force in the x-direction; b) Force on cylinder
ends; c) Force on cylinder sides;
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Figure 4.14 Hydrodynamic forces and torques acting on a finite-length cylinder’s side
with varying Wy under channel-type confinement. a) Shear-induced torque on the sides;
b) Pressure force on the sides;
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4.3 Open Tank Confinement

The open tank configuration investigates the hydrodynamic behavior of a cylinder in a
partially confined domain, where the top boundary is open while all other boundaries
are sealed. This arrangement, resembling an aquarium, allows fluid to enter and escape
through the top, thereby altering the global flow topology compared to the fully enclosed
configuration discussed in Section 4.2. The aim is to evaluate how partial confinement
modifies the forces acting on the cylinder and its resulting motion.

In the 2-D cases, the aspect ratio of the domain strongly influences the direction of mo-
tion. As the tank becomes deeper (i.e., larger Wx/Wz), the cylinder transitions from
backward slipping to forward translating motion. In contrast, the 3-D simulations high-
light the influence of axial confinement; slipping motion is only observed for sufficiently
long cylinders in relatively narrow domains. For example, while a 2-D cylinder may move
forward at Wx/Wz = 3, its 3-D counterpart will only slip if both the cylinder is long and
the domain is sufficiently narrow, a condition that closely resembles its 2-D counterpart.

The results from the force analysis reinforce this observation. In 2-D, the magnitude and
direction of the hydrodynamic force along the x-axis are directly linked to the presence or
absence of the top wall. In 3-D, the relative contributions of shear and pressure forces on
the sides of the cylinder become dominant factors governing the net force in x direction
and, consequently, the translational behavior.

4.3.1 2-D Results

The translational velocity of the cylinder is computed under force-free conditions by
enforcing a zero net hydrodynamic force in the x direction. This setup allows investigation
of the macro flow interactions and their influence on the direction and magnitude of the
cylinder’s motion.

As illustrated in Figure 4.15, as the gap increases, confinement effects become more
pronounced. The results reveal a critical dependence on the domain aspect ratio Wx/Wz.
In shallower domains, the cylinder moves forward, while in deeper domains, the effect of
the macro flow generates backward slipping motion. This transition in motion direction
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demonstrates the sensitivity of the cylinder to global flow structures imposed by the
confinement geometry.

Figure 4.15 Translational velocity of the cylinder in the x-direction under open tank
confinement in 2-D. Results are shown beyond the initial transition region to capture
confinement-dominated behavior.

The fixed-cylinder simulations enable evaluation of the hydrodynamic forces and torques
acting on the cylinder surface. Figure 4.16 presents the results for viscous torque and
net force in the x-direction. The viscous torque (Figure 4.16.a ) is consistent with the
analytical predictions of Jeffrey & Onishi (1981) and prior confinement configurations.
However, the net force in the x-direction shows a clear sensitivity to tank depth. At
lower aspect ratios, the force is positive (forward motion), while at higher aspect ratios,
it becomes negative, driving backward slipping motion.

Interestingly, the agreement between the numerically computed forces and the theoretical
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predictions from unbounded domain analysis is more nuanced in the open tank configura-
tion. This suggests that the influence of the open top boundary is qualitatively different
from that of lateral walls, showcasing the importance of the top boundary and highlight-
ing that in its absence, the force experienced by the cylinder is much closer to that of the
unbounded cylinder when compared to the other confinement configurations. The effect
of this can also be seen in the velocity of the cylinder, as its magnitude both for forward
translation and backward slipping is much lower.

For the further understanding of the macroflow within the domain, analysis of the stream-
lines and velocity magnitudes of the domain is performed for the aspect ratio of 3 and
dwall values of 0.1 and 0.001, respectively. Unlike the cases before, no dominating recir-
culation zones appear in the open tank confinement due to the absence of the top wall;
however, small secondary recirculations appear at the bottom corners of the domain. The
size of these zones is dependent on the gap height, as the gap height increases, the zones
become larger, but their effect on the macro flow remains minimal.

55



Figure 4.16 Hydrodynamic forces and torques acting on the cylinder under open tank
confinement. a) Viscous torque compared to the analytical model of Jeffrey & Onishi
(1981); b) Viscous force in the x-direction; c) Total hydrodynamic force. Force direction
changes with domain aspect ratio, indicating confinement-dependent motion.
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b)

a)

Figure 4.17 Velocity Fields and their respective streamlines under open tank confinement
with the Wx/Wz = 3 a) Results for dwall = 0.1. b) Results for dwall = 0.001.
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4.3.2 3-D Results

In 3-D simulations, the cylinder’s translational velocity is again obtained by enforcing a
force-free condition along the x-axis. The results, shown in Figure 4.18, demonstrate that
slipping occurs only when the cylinder is both long (L = 6) and the axial domain width
is relatively small (Wy = 7). This behavior contrasts sharply with the 2-D simulations,
where similar geometric parameters led to consistent motion. The absence of slipping in
shorter cylinders reflects the diminished influence of wall-induced pressure gradients and
shear stresses.

Figure 4.18 Translational velocity of the cylinder under open tank confinement in 3-D for
various Wy values. Slipping occurs only for the case L/D = 6, Wy = 7.
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To investigate this behavior in greater detail, the forces and torques acting on the rotating,
fixed-position cylinder are decomposed into contributions from the lateral sides and the
end caps. In addition, pressure-driven and viscous components are considered separately
to clarify their respective roles. As illustrated in Figure 4.19, the total force in the x-
direction reverses only for the configuration with L = 6 and Wy = 7, consistent with the
corresponding force-free simulations, where the cylinder exhibits backward slip.

When the total force is partitioned into side and cap contributions, trends similar to those
observed in the channel and closed-tank confinements emerge. As in those cases, the
relative importance of cap forces diminishes with increasing cylinder length and becomes
particularly sensitive when the clearance between the cylinder ends and the back wall is
small. By contrast, deviations in the lateral side forces appear once the cylinder reaches
moderate lengths (e.g., L ≥ 3), at which point the overall flow structure begins to shift.

Quantitatively, short cylinders exhibit a relatively stable cap contribution of approxi-
mately 28–30% of the total lateral force. For the moderate cylinder length (L = 3), the
cap contribution in the short-domain case rises to 36%. In contrast, in the long-domain
case it decreases to 29%, a value comparable to that of the short-cylinder configuration.
For the long cylinder (L = 6), this trend is reversed: the cap forces contribute only about
7% of the total force in short domains, while in long domains their contribution increases
to 41%. Notably, in contrast to the earlier confinement cases, the long-cylinder config-
uration with a moderate domain length shows a markedly higher cap contribution of
approximately 61% of the total force in the x-direction, underscoring the sensitivity of
the force distribution to the combined effects of cylinder length and axial confinement.

To elucidate the underlying hydrodynamic mechanisms, the lateral forces are decomposed
into their shear- and pressure-driven components. Both contributions increase with cylin-
der length, as expected under Stokes flow conditions. However, it is their relative balance,
particularly on the cylinder sides, that determines the direction of net motion. In most
cases, the net lateral force on the cylinder sides remains positive, indicating that the shear-
driven forces, which promote forward translation, dominate. Backward slipping occurs
only when the pressure-driven contribution exceeds the opposing shear-driven forces.

This behavior can be better understood by examining the relative growth rates of the
two contributions. For shorter domain lengths, the shear-driven force increases by ap-
proximately 8.35% with cylinder length, whereas the pressure-driven component grows
by 19.7%. In contrast, for longer domains, the pressure-driven forces increase by 18.84%,
while the shear-driven forces grow by only 9%. The comparatively stronger growth of the
pressure contribution in confined, short-domain configurations is sufficient to reverse the
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direction of motion, producing backward slip for long cylinders.

These findings highlight the critical role of axial confinement in establishing the hydro-
dynamic conditions necessary for slip. In narrow domains, confinement amplifies the
pressure gradients around the cylinder, enabling pressure forces to dominate over shear
forces. By contrast, in wider domains, the flow is able to bypass the cylinder more
effectively, diminishing the influence of pressure gradients and thereby suppressing the
slipping mechanism.
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Figure 4.19 Hydrodynamic forces and torques on a finite-length cylinder under open tank
confinement with varying Wy. a) Total force in the x-direction; b) Force on end caps; c)
Force on sides; Slipping occurs only in the high-aspect-ratio, narrow-domain case.
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Figure 4.20 Hydrodynamic forces and torques acting on a finite-length cylinder’s side
with varying Wy under open tank confinement. a) Shear-induced torque on the sides; b)
Pressure force on the sides;
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5. DISCUSSION & CONCLUSION

5.1 Discussion

For the case of an infinite cylinder, the role of confinement is critical in determining the
direction and magnitude of its motion. When comparing different confinement types, it
is evident that as the cylinder approaches the wall (dwall → 0), it behaves as though it
is in contact with the boundary. However, as the gap increases, notable differences in
the cylinder’s behavior emerge. Under fully confined conditions, the cylinder consistently
exhibits slipping motion regardless of the bounding box dimensions. Nevertheless, beyond
a certain box depth, this slipping velocity saturates, and further increases in domain
aspect ratio no longer impact the result. In contrast, under channel and open tank
configurations, the direction of motion becomes highly sensitive to the aspect ratio of the
domain. In channel confinement, both forward and backward motion are observed, with
backward slipping dominating as the box width increases relative to its height. Open
tank conditions demonstrate the opposite behavior: slipping occurs in shallow domains
but with considerably lower magnitude compared to channel confinement.

These trends are further clarified through the analysis of hydrodynamic forces acting on
the cylinder. As expected, the viscous torque remains consistent across all confinement
types and aspect ratios, aligning well with the analytical predictions by Jeffrey & Onishi
(1981). However, the lateral hydrodynamic force in the x-direction follows a nearly
constant trend across small wall distances and only begins to deviate when the cylinder
is sufficiently far from the wall for the confinement to influence the global flow field. The
deviation between the numerically computed Fx and its analytical counterpart, valid in
unbounded domains, captures the effect of confinement on the surrounding flow. This
deviation plays a decisive role in determining the net motion of the cylinder, both in
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direction and magnitude.

The behavior of finite-length cylinders presents a more complex picture. When the aspect
ratio of the bounding box is fixed at 3, the 2-D simulations generally show backward
slipping motion under all confinement types, with the exception of the open tank scenario.
In 3-D, however, short cylinders remain stationary under all conditions. Slipping only
emerges when the cylinder is sufficiently long, and even then, it depends heavily on the
confinement type. In channel confinement, long cylinders slip regardless of the box depth
Wy. Under closed tank conditions, slipping is observed only when the box is shallow to
moderately deep. In the open tank scenario, slipping is confined to configurations where
the box is narrow and the cylinder is long. These results highlight the three-dimensional
sensitivity of the problem and demonstrate that motion patterns absent in 2-D simulations
may appear in 3-D due to additional flow degrees of freedom. For instance, while a 2-D
cylinder under open tank confinement and Wx/Wz = 3 does not slip, its 3-D counterpart
does so when L is high and Wy is small. Similarly, although the closed tank configuration
consistently results in slipping in 2-D, in 3-D this only occurs under the right combination
of cylinder length and bounding box depth.

To rationalize these results, a detailed force decomposition was performed. The total
hydrodynamic force acting on the cylinder was split into side and end contributions as
follows:

(5.1)
∑
cyl

F =
∑
side

F +
∑
cap

F

This decomposition revealed that the length of the cylinder strongly influences the relative
contribution of these components. As shown in Figures 4.7, 4.13, and 4.19, increasing
the cylinder length L shifts the dominance of the total force from the cylinder’s end caps
to its side walls.

The side force component, ∑
side F, is primarily governed by lubrication effects in the

narrow nip region between the cylinder and the wall, such that:

∑
side

F ≈
∑
nip

F

For further clarity, the side force is decomposed into pressure-driven and shear-driven
components:
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(5.2)
∑
side

F =
∑
side

Fp +
∑
side

Fshear

This distinction is instrumental in understanding the origin of the observed motion. When
shear forces dominate, they generate a net positive traction due to the clockwise rota-
tion of the cylinder, which results in forward motion. Conversely, when pressure forces
exceed shear contributions, the resulting negative net force drives backward slipping. It
is important to note that because the cylinder’s rotation direction is fixed, shear-induced
forces consistently promote forward motion, making pressure forces the critical factor in
determining whether slipping occurs.

Finally, the end cap forces ∑
cap F are where three-dimensional effects become prominent,

as they capture the flow-induced forces and drag arising from the interaction with the
external flow field. These forces are velocity-dependent and can be expressed as:

(5.3)
∑
cap

F =

∣∣∣∣∣∣
∑
cap

Fflow

∣∣∣∣∣∣ −

∣∣∣∣∣∣
∑
cap

Fdrag

∣∣∣∣∣∣ for U > 0

(5.4)
∑
cap

F =

∣∣∣∣∣∣
∑
cap

Fflow

∣∣∣∣∣∣ +

∣∣∣∣∣∣
∑
cap

Fdrag

∣∣∣∣∣∣ for U < 0

These expressions show that when the cylinder moves forward, the drag opposes the flow-
induced pressure forces, reducing the net cap contribution. In contrast, during backward
motion, both effects add constructively, further reinforcing the motion. This further
supports the finding that the relative magnitude and direction of side and cap forces,
governed by confinement geometry and cylinder length, serve as the primary determinants
of translational behavior.

This study investigated the motion of both infinite and finite-length cylinders rotating
near a wall under different confinement conditions. The results demonstrate that confine-
ment geometry and domain aspect ratio are crucial in determining not only the magnitude
but also the direction of translational motion. While infinite cylinders show consistent
behavior across configurations, finite-length cylinders exhibit more complex dynamics,
with slipping behavior emerging only under specific conditions of cylinder length and
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bounding box dimensions.

The accompanying force analysis revealed that the net direction of motion is determined
by the balance between shear and pressure forces acting on the cylinder’s sides. Shear
forces arising from viscous traction consistently promote forward motion, whereas pres-
sure forces—amplified by geometric confinement—can induce backward slipping. Addi-
tionally, flow-induced and drag-related forces on the end caps gain prominence in finite
cylinders, contributing further to the overall dynamics. These findings underscore the
limitations of purely two-dimensional analyses and emphasize the importance of three-
dimensional modeling when predicting real-world behavior of cylindrical bodies in con-
fined viscous flows.

5.2 Conclusion

This study demonstrates that the cylinder’s motion near a planar wall is jointly controlled
by gap height, domain aspect ratio, and the specific confinement geometry. For the
2D (effectively infinite-length) problem, increasing the wall–cylinder gap reduces wall-
induced drag and increases speed, while confinement keeps the force balance distinct
from the unbounded case. Crucially, aspect ratio does not act alone: in channel-type
confinement, slip appears once the aspect ratio exceeds roughly two, whereas in open-
tank confinement, the trend reverses and slip is promoted below that threshold. In closed-
tank confinement, slip persists across aspect ratios but its magnitude saturates once the
aspect ratio is about three. The 2D results also highlight the role of the top boundary,
with force components remaining at an order-one magnitude in both the streamwise and
wall-normal directions across the parameter range.

The fully 3D (finite-length) simulations demonstrate that 2D predictions are not gener-
ally representative because torque–force coupling and end effects can flip the direction
of motion. Cases that translate forward in 2D may slip in 3D (e.g., open-tank with
long cylinders in short domains), while the opposite can occur for longer domains in
channel and closed-tank configurations. The main contributions of this work are: a uni-
fied comparison across channel, open-tank, and closed-tank confinements that identifies
the reversal of aspect-ratio thresholds and the saturation of slip; a clear demonstration
of how 3D end effects reweight cap versus side contributions and thereby overturn 2D
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trends; and a qualitative force-decomposition framework that diagnoses when pressure-
driven side forces dominate shear-driven contributions, providing a practical criterion to
anticipate slip versus forward translation. Together, these results explain when and why
confinement induces or suppresses slip, clarify the limits of 2D surrogates, and offer a
usable guide for predicting motion in constrained microfluidic and robotic settings.

5.3 Future Work

A key next step is an experimental program that validates and extends these findings
by rotating a magnetized cylinder near a wall with electromagnetic actuation. Initial
trials with Helmholtz coils showed that, due to the high sensitivity of the magnetic field
to coil alignment and current imbalance, the observed translation of the cylinder can be
dominated by unintended electromagnetic forces (from small field gradients), making it
difficult to isolate hydrodynamic slip. To address this, we propose a closed-loop, vision-
based control experiment that deliberately nulls translation while the cylinder is rotated
at a prescribed rate, and then uses the control effort as a readout of the hydrodynamic
tendency.

Concretely, a uniform, rotating field B(t) (Helmholtz pair) sets the spin rate Ω about
+y, while an independent gradient channel (e.g., a Maxwell/anti-Helmholtz pair along x)
applies a small, controllable magnetic force F EM

x via calibrated coil currents. A real-time
vision loop (frame-rate ≳100 Hz) holds the cylinder’s x-position fixed (U ≈0) by adjusting
the gradient current to cancel any hydrodynamic drift. In steady state,

(5.5) F EM
x +F hyd

x (dwall,L,Wy,Ω) = 0 =⇒ F hyd
x = −F EM

x

so the sign and magnitude of the required coil current directly report the direction and
strength of the slip that would occur under force-free conditions. With a one-time cali-
bration of the actuation map  B

∇B

 = Ai, F EM
x ≈ c⊤

x i

(5.6)
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(where i are coil currents and cx is obtained from measurements with the cylinder far
from boundaries), the experiment can quantitatively recover F hyd

x versus the gap ratio
dwall, the cylinder length L, and axial confinement Wy.

Practically, the setup would use a high-viscosity working fluid (e.g., silicone oils) and
frequencies ensuring Re ≪ 1, a rigid cylinder with a magnetic moment aligned to +y

(e.g. Neodymium Magnets that are magnetized across the diameter), and a glass/PDMS
chip that realizes the three confinements studied numerically (channel, closed tank, open
tank). Micro-PIV can capture surrounding flow to corroborate shear/pressure trends; the
rolling check U → ΩR as dwall → 0 and the Jeffrey & Onishi torque curve provide internal
benchmarks. Control-wise, an inner loop regulates Ω via the rotating uniform field while
an outer loop regulates x-position via the gradient; the logged gradient currents (after
baseline subtraction measured far from walls) yield F hyd

x and its sign.

This approach enables four targeted validations: (i) reproduce forward/backward direc-
tion reversals as functions of dwall and domain aspect ratios; (ii) demonstrate saturation
of backward slip in closed tanks at large Wx/Wz; (iii) show that 3-D slip emerges only
beyond a critical L and is strongly modulated by Wy; and (iv) separate “cap-dominated”
from “side-dominated” regimes by varying L at fixed dwall and Wy. Extensions include de-
formable (soft) walls to probe elastohydrodynamic amplification of pressure loads, weak-
inertia tests (Re ∼ 10−1) to assess robustness of direction maps, and noncircular cross-
sections to quantify shape sensitivity. Finally, compiling phase diagrams for sign(U) and
|U | over (dwall,Wx/Wz) in 2-D and (dwall,L,Wy) in 3-D—together with simple pump-
ing metrics (flux per unit torque) in channel mode—would translate the fundamental
mechanisms into actionable design guidance.
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