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ABSTRACT

ROBOTIC FORCE CONTROL VIA A REINFORCEMENT LEARNING
APPROACH

DOĞANAY KARAKIŞ

Mechatronics Engineering, M.Sc. Thesis, July 2025

Thesis Supervisor: Assoc. Prof. Kemalettin Erbatur

Keywords: reinforcement learning, q-learning, elbow manipulator, force control

This thesis investigates the use of reinforcement learning (RL) for robotic force
control using a planar elbow manipulator tasked with applying force to a rigid
surface. Inspired by simplified but effective simulation environments such as Grid-
World, our approach leverages Q-learning to train the manipulator in a discrete
action–continuous state setting. The robot agent learns through interaction to es-
tablish end-effector contact without prior knowledge of the system’s dynamics. The
proposed control strategy is implemented in a simulated environment that captures
the manipulator’s kinematics and the interaction forces with a two-layered wall. Un-
like traditional force control methods, which often require accurate dynamic models
and extensive offline tuning, our approach enables fast learning with fewer than
10,000 training iterations. This allows for real-time or near-real-time application
potential in physical systems. Simulation results demonstrate that the Q-learning
agent successfully converges to a stable and effective contact establishment policy.
The study contributes to bridging foundational reinforcement learning algorithms
and practical robotic control problems, highlighting the feasibility of lightweight,
model-free learning architectures for force-regulated interaction tasks.
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ÖZET

PEKİŞTİRMELİ ÖĞRENME YAKLAŞIMIYLA ROBOTİK KUVVET
KONTROLÜ

DOĞANAY KARAKIŞ

Mekatronik Mühendisliği, Yüksek Lisans Tezi, Temmuz 2025

Tez Danışmanı: Doç. Dr. Kemalettin Erbatur

Anahtar Kelimeler: pekiştirmeli öğrenme, q-öğrenme, dirsek manipülatörü, kuvvet
kontrolü

Bu tez, sert bir yüzeye kuvvet uygulamakla görevli düzlemsel bir dirsek ma-
nipülatörü kullanarak robotik kuvvet kontrolü için pekiştirmeli öğrenmenin (RL)
kullanımını araştırmaktadır. GridWorld gibi basitleştirilmiş fakat etkili simülasyon
ortamlarından ilham alan yaklaşımımız, manipülatörü ayrık eylem – sürekli durum
ortamında eğitmek için Q-öğrenmeyi kullanmaktadır. Robot ajan, sistemin dinamik-
lerine dair önceden bilgi sahibi olmadan etkileşim yoluyla uç efektör temasını sağla-
mayı öğrenir. Önerilen kontrol stratejisi, manipülatörün kinematiğini ve iki katmanlı
bir duvar ile etkileşim kuvvetlerini yakalayan simüle edilmiş bir ortamda uygulan-
mıştır. Doğru dinamik modeller ve kapsamlı çevrimdışı ayarlamalar gerektiren ge-
leneksel kuvvet kontrol yöntemlerinin aksine, yaklaşımımız 10.000’den az eğitim it-
erasyonu ile hızlı öğrenmeyi mümkün kılar. Bu da fiziksel sistemlerde gerçek zamanlı
veya gerçek zamana yakın uygulama potansiyelini sağlar. Simülasyon sonuçları, Q-
öğrenme ajanının kararlı ve etkili bir temas kurma politikası üzerinde başarılı bir
şekilde yakınsadığını göstermektedir. Çalışma, temel pekiştirmeli öğrenme algorit-
maları ile pratik robotik kontrol problemlerini birleştirmeye katkı sağlamakta ve
kuvvet kontrollü etkileşim görevleri için hafif, model gerektirmeyen öğrenme mi-
marilerinin uygulanabilirliğini vurgulamaktadır.
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1. INTRODUCTION

Robotic systems frequently perform tasks involving direct contact with their envi-
ronment—such as polishing, pushing, or compliant assembly—which require precise
force regulation. In many safety-critical domains, including industrial assembly,
surgical robotics, and human–robot collaboration, the ability to maintain controlled
interaction forces directly affects both performance quality and operator safety (Bic-
chi & Tonietti, 2004; Hogan, 1985). Establishing contact from zero force into a
stable force-regulated mode is particularly challenging, since any overshoot or insta-
bility can cause damage to parts, injuries to humans, or failure of the task. These
challenges highlight the fundamental need for adaptive and reliable force-control
strategies in modern robotic applications.

Classical control methods like impedance and hybrid position/force control depend
heavily on accurate dynamic models and carefully tuned parameters (Hogan, 1985;
Raibert & Craig, 1981). However, these traditional approaches often fail to gener-
alize to new contexts or adapt to uncertainties in real time. For example, small
modeling errors or parameter variations may cause instability or degraded per-
formance, making such controllers unsuitable for highly variable or unstructured
environments (Whitney, 1987). These limitations have motivated researchers to
investigate learning-based and adaptive approaches that can offer robustness with-
out requiring exact system knowledge. Limitations underscore the importance of
adaptive, data-driven strategies, naturally leading to reinforcement learning as a
compelling framework for robotic control.

Reinforcement learning (RL) presents a model-free alternative, allowing an agent to
learn through experience by maximizing a reward signal over time. RL encompasses
a broad range of algorithms that enable agents to learn optimal behaviors through
trial-and-error interactions with their environment. By continuously updating value
functions or policies based on feedback, RL methods can handle stochastic dynamics
and delayed rewards, which are common in real-world robotic tasks. By framing the
control task as a Markov Decision Process (MDP), RL enables robotic agents to op-
timize their actions based on observed outcomes. Within this spectrum, Q-learning
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represents one of the foundational algorithms, notable for its ability to estimate
the optimal action-value function without requiring a model of the environment.
Its convergence properties and simplicity make it particularly suitable for discrete
action spaces, serving as a baseline for more advanced RL approaches (Kaelbling
et al., 1996; Sutton & Barto, 2018; Watkins & Dayan, 1992).

In this work, we propose a Q-learning-based force control strategy for a planar elbow
manipulator. The manipulator must learn to find a two-staged wall of unknown
position and establish contact with steady force without having access to its own
dynamics or those of the environment. Quantized joint positions of the manipulator
are employed as RL state variables; the search direction in the Cartesian workspace
is the quantized action variable. Once the steady contact is established, the control
system can be switched into a classical force control algorithm. Our learning design
is inspired by grid-based environments, where agents learn optimal actions over
discrete steps. The novelty of this approach lies in its ability to achieve stable
contact using fewer than 10,000 training iterations—addressing a critical barrier in
robotic RL systems: learning speed. This lightweight framework is promising for
real-world implementations where computational and time budgets are limited.

The thesis is organized as follows. The next chapter presents a literature survey of
reinforcement learning in the field of contact and force control. Chapter 3 introduces
the dynamic model of a planar elbow manipulator. The learning algorithms are run
on this particular robot model in this thesis work. The Q-learning approach pro-
posed is discussed in Chapter 4. Chapter 5 presents simulation results. Conclusions
are drawn in Chapter 6. References and an appendix for the developed code follow
lastly.
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2. LITERATURE SURVEY

2.1 Reinforcement Learning (RL) and its Foundations in Robotics

Reinforcement Learning (RL) is a branch of machine learning that models intelli-
gent decision-making in dynamic environments through interaction (Sutton & Barto,
2018). It is typically formalized using the Markov Decision Process (MDP), a math-
ematical framework defined by a tuple (S,A,P,R,γ), where S represents the state
space, A the action space, P the state transition probabilities, R the reward func-
tion, and γ ∈ [0,1) the discount factor. The agent seeks to learn a policy π(a | s) that
maximizes the expected cumulative discounted reward over time (Sutton & Barto,
2018).

Policy optimization in RL can be approached in two major ways: value-based and
policy-based methods. Value-based approaches such as Q-learning approximate the
expected reward for each state-action pair and derive policies indirectly, whereas
policy-based methods like REINFORCE or actor-critic models directly parameter-
ize and optimize the policy. For robot manipulators, value-based methods struggle
with high-dimensional or continuous action spaces. This limitation motivated the
development of deterministic policy gradient (DPG) methods, where policies map
directly from states to continuous actions (Lillicrap et al., 2015). However, algo-
rithms like Q-learning can be used effectively when the action space is discrete or
can be discretized.

The integration of deep learning into RL led to the emergence of Deep RL (DRL),
where neural networks approximate value functions or policies. Deep Q-Networks
(DQN) provide a foundational structure for controlling manipulators when the ac-
tion space is discretized. To overcome the limitations of DQN in continuous control
problems, algorithms like Deep Deterministic Policy Gradient (DDPG) (Fujimoto
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et al., 2018) and Twin Delayed DDPG (TD3) were developed. These methods com-
bine actor-critic architectures with deep networks and experience replay, enabling
stable learning in continuous action spaces. These architectures are particularly ef-
fective in controlling continuous outputs like joint torques or velocities for a planar
manipulator (Lillicrap et al., 2015).

One of the most significant challenges in applying RL to real-world robots is sample
inefficiency. Traditional model-free RL methods often require hundreds of thousands
of interactions, which is impractical in physical systems. Researchers have proposed
multiple strategies to address this issue: Experience Replay, Reward Shaping, Cur-
riculum Learning, and Learning from Demonstration (LfD) (Argall et al., 2009).

The architecture of the policy and value networks in DRL greatly influences learning
stability and generalization. For controlling a planar manipulator, shallow networks
may underfit complex dynamics, while very deep networks risk overfitting to simu-
lation noise. Common design practices involve multi-layer perceptrons (MLPs) with
two or three hidden layers, using activation functions like ReLU or tanh. Normaliza-
tion techniques like LayerNorm or BatchNorm help stabilize training, and parameter
noise or entropy regularization can encourage exploration (Lillicrap et al., 2015).

Sim2Real transfer refers to transferring a policy trained in simulation to a physical
robot without requiring retraining. This is crucial in robotics, where simulation
allows for fast, parallelized, and risk-free learning. Mismatches between simulated
and real environments (the “reality gap”) degrade policy performance. Techniques
like domain randomization, where physical parameters are varied during simulation,
improve robustness by exposing the policy to a broad distribution of dynamics (To-
bin et al., 2017). Another method is progressive networks, where policies trained in
simulation are frozen and augmented with new trainable layers that adapt to real-
world dynamics (Rusu et al., 2017). One of the primary concerns when deploying
RL in physical robotic systems is safety. To address this, researchers have explored
safe exploration strategies, including constraint-aware policy optimization, shielding
mechanisms, and risk-sensitive RL (Sutton & Barto, 2018).

While model-free RL offers flexibility and generality, classical model-based control
methods remain dominant in industrial automation due to their predictability, ef-
ficiency, and theoretical guarantees. Inverse kinematics and impedance control are
widely used for planar manipulators to follow a known trajectory or apply a specific
force (Ikeura & Inooka, 1995; Whitney, 1982; Yamamoto & Fujita, 2017). However,
these methods require accurate modeling of dynamics and contact forces (Huang
et al., 2020; Jiang et al., 2021; Park et al., 2019). RL, in contrast, can implicitly
learn such relationships from data without requiring explicit modeling (Xu et al.,
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2019). Hybrid strategies are emerging as a practical solution, where a model-based
controller ensures stability while an RL agent fine-tunes performance (Sutton &
Barto, 2018).

A major advantage of RL is its capacity to handle multimodal sensory data. In a task
involving a planar manipulator and a surface, these sensors include Force/Torque
(F/T) sensors, joint torque inference, and proprioceptive signals (joint angles and
velocities) (Chen et al., 2022; Huang et al., 2020; Kim et al., 2016; Zhao et al., 2019).
This sensor fusion allows for more robust and adaptive behavior, particularly when
detecting the exact moment of contact (Chen et al., 2022; Huang et al., 2020; Kim
et al., 2016; Takahashi & Fujita, 2020; Zhao et al., 2019).

Despite significant progress, challenges remain, such as sample efficiency, reward de-
sign, and transfer learning across different robot configurations or tasks. Promising
directions include Meta-RL, Hierarchical RL (Jeong et al., 2020), and Self-supervised
RL.

2.2 Robotic Manipulators and Surface Contact: Classical and
Contemporary Perspectives

The task of a manipulator touching a flat surface involves several complexities:
dynamic uncertainties, surface interaction, and the need for safe contact (Luo et al.,
2018).

Classical approaches for contact tasks include Inverse Kinematics and Position Con-
trol, Impedance Control (Ikeura & Inooka, 1995), and Hybrid Force-Position Control
(De Luca & Mattone, 2005). These methods require accurate models of the manip-
ulator and surface dynamics, along with carefully tuned parameters.

Sensing plays a pivotal role in contact tasks. Force/Torque (F/T) sensors provide
direct feedback on the contact state. Joint torque sensors enable indirect estimation
of external forces (De Luca & Mattone, 2005). Proprioceptive sensors determine the
robot’s kinematic state. Sensor fusion techniques, which combine data from multiple
sensors, demonstrate improved robustness in contact detection and control (Chen
et al., 2022; Huang et al., 2020; Zhao et al., 2019).
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A robust system must be able to handle errors that may occur during the con-
tact task. This includes contact failure detection and automated retries (Beltran-
Hernandez et al., 2020; Fan et al., 2019).

2.3 Reinforcement Learning in Manipulator Contact Tasks

Traditional control strategies often fail under uncertainties such as friction variations
or surface roughness (Ajoudani et al., 2018). In contrast, Reinforcement Learning
(RL) offers a data-driven, model-agnostic, and adaptive approach capable of learning
contact strategies through interaction (Xu et al., 2019). This flexibility makes RL
highly suitable for applications where manipulators need to interact with complex
and unknown environments (Ajoudani et al., 2018). Q-learning can be used to learn
this task when the manipulator’s action space is discretized.

Model-free RL is the most common approach applied to the planar manipulator
contact problem. Algorithms like Q-learning can be used successfully by discretizing
the action space (e.g., increase torque, decrease torque, or hold it constant). Within
this framework, a Q-learning agent can learn a controlled approach trajectory, the
amount of force to apply at contact, and decisions on moving or staying on the
surface.

A key advantage of RL is its ability to process multimodal sensory input, such as
joint angles, velocities, and force/torque data (Duan et al., 2017; Sadeghi et al.,
2016). This sensor fusion helps to accurately detect and react to the moment of
contact, thereby preventing damage and optimizing task success (Kim et al., 2016;
Zhao et al., 2019).

To overcome the slow convergence of RL, Learning from Demonstration (LfD) can
be used. Expert trajectories can be recorded and used to initialize the RL agent’s
policy or guide its exploration, enabling the robot to learn safely and efficiently
(Argall et al., 2009; Nagabandi et al., 2018).

Sim2Real transfer is critical for the planar manipulator. Domain randomization
can be used to bridge the reality gap by training the agent with a wide range of
simulation parameters, making the policy more robust to real-world uncertainties
(Andrychowicz et al., 2020; Tobin et al., 2017).
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Open research problems include the inefficiency of Q-learning in continuous action
spaces, real-time response limitations, and generalization to different surfaces. Hy-
brid approaches that combine model-free RL, model-based planning, and classical
control are also an area of active research (Xu et al., 2019).
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3. DYNAMIC MODEL OF A PLANAR ELBOW MANIPULATOR

This chapter presents the physical modeling of the planar elbow manipulator. Planar
manipulators are frequently preferred in robotics research due to their motion being
confined to a two-dimensional workspace. This restriction simplifies their kinematic
and dynamic analysis compared to three-dimensional robotic systems. In particular,
executing contact tasks on a flat surface constitutes a fundamental performance test
for such mechanisms.

The manipulator investigated in this work is a custom-built, two-degree-of-freedom
(DOF) direct-drive prototype developed in the Robotics Laboratory at Sabancı Uni-
versity. A photograph of the setup is provided in Fig. 3.1. The control system is
implemented on a dSPACE 1102 DSP board, with a PC-based graphical interface.
Servo control routines are coded in C, compiled within the dSPACE environment,
and then downloaded to the DSP for execution. Both joints—the base and the
elbow—are driven by Yokogawa Dynaserv direct-drive motors, each equipped with
high-resolution position encoders capable of 1,024,000 pulses per revolution. The
maximum torque capacity of the base motor is 200 Nm, while the elbow motor
provides up to 40 Nm.

The general dynamic equation of the system can be expressed as:

J1 0
0 J2

q̈1

q̈2

 +D(q1, q2)

q̈1

q̈2

(
C(q1, q2, q̇1, q̇2)+

B1 0
0 B2

)q̇1

q̇2


+

Fc1

Fc2

 +JT
M

Fex

Fez

 =

τ1

τ2


(3.1)

In Eq.(3.1), q1 and q2 denote the angular positions of the base and elbow joints, re-
spectively, as illustrated in Fig. 3.2. The constants J1 and J2 represent rotor inertias
for the corresponding joints. The matrix D(q1, q2) is the manipulator’s inertia ma-
trix, while C(q1, q2, q̇1, q̇2) accounts for centripetal and Coriolis effects. The viscous
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friction coefficients for the joints are Bt values, and Fc1, Fc2 correspond to Coulomb
friction torques. The vector [Fex ,Fez ]T contains the environmental interaction forces
at the end-effector in the base frame’s x and z directions. The Jacobian JM relates
Cartesian velocities to joint velocities and, for this planar case, is a 2 × 2 matrix.
Joint torques τ1 and τ2 serve as control inputs. Due to the manipulator’s horizontal
configuration, gravitational effects on joint torques are negligible.

The inertia matrix D and Coriolis/centripetal matrix C are given explicitly as:

D(q1, q2) =

m1l21 +m2
(
l21 + l22 +2l1l2 cosq2

)
+ I1 + I2 m2

(
l22 + l1l2 cosq2

)
+ I2

m2
(
l22 + l1l2 cosq2

)
+ I2 m2l22 + I2


(3.2)

C(q1, q2, q̇1, q̇2) = (m2l1lc2 sinq2)
−q̇2 −(q̇1 + q̇2)

q̇1 0

 (3.3)

The parameters used in Eqs. (3.2) and (3.3)—including link masses, lengths, inertia
values, and center-of-mass locations—are summarized in Table 3.1. The inertia and
center-of-mass coordinates are obtained from CAD models of the links (Fig. 3.1),
while rotor inertias J1 and J2 are specified by the manufacturer. Both matrices are
derived using the Euler–Lagrange formulation. Friction parameters, particularly
Coulomb friction, are challenging to estimate precisely; therefore, viscous friction
coefficients B̂1 and B̂2 listed in Table 3.1 are based on experimental measurements
with force sensors.
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Figure 3.1 A direct-drive (SCARA) robot arm along with its corresponding CAD
link representations

Figure 3.2 Definitions of the robot’s joint angles and its link length parameters
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Table 3.1 Dynamic parameters of the robot

Parameter Value

Link 1 mass m1 (inc. elbow motor) 17.9 kg
Link 1 inertia I1 (inc. elbow motor) 0.54 kg·m2

Motor 1 rotor inertia J1 0.167 kg·m2

Link 1 length l1 (joint center to joint center) 0.40 m
Link 1 COM distance lc1 0.277 m
Joint 1 viscous friction coefficient B̂1 3 N·m·s/rad
Link 2 mass m2 3.25 kg
Link 2 inertia I2 0.04 kg·m2

Motor 2 rotor inertia J2 0.019 kg·m2

Link 2 length l2 (joint center to tool center) 0.28 m
Link 2 COM distance lc2 0.09 m
Joint 2 viscous friction coefficient B̂2 0.6 N·m·s/rad

The following chapter focuses on the Q-learning algorithm applied to this robotic
platform.
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4. Q-LEARNING ALGORITHM

4.1 Problem Definition

The problem definition revolves around employing Q-learning, a reinforcement learn-
ing method, to enable a planar elbow manipulator with two degrees of freedom to
achieve a specific task. This manipulator, characterized by its two joints—a shoulder
joint and an elbow joint—must learn to establish contact with a wall whose position
and orientation are unknown. The wall itself is two-staged, featuring a recessed
area where contact must be established for the task to be considered successful.
The learning process involves discretizing both the state variables and the action
space to simplify the problem and make it computationally feasible. The state vari-
ables correspond to the joint angles of the manipulator, with the shoulder joint angle
quantized into 25 discrete values representing a complete rotation of 2π radians, and
the elbow joint angle similarly quantized into 25 values. This discretization allows
the manipulator to represent its position in a finite number of states, facilitating the
application of Q-learning for decision-making.

The action space is also discretized, consisting of 37 possible actions that correspond
to directions spanning 2π radians in the x-y Cartesian plane. Each action represents
a direction in which a Cartesian control force of constant magnitude is applied to
the manipulator’s tool tip. The application of this force drives the manipulator in
the chosen direction, with the ultimate goal of making contact with the recessed
area of the wall. To translate the Cartesian control force into joint control torques,
a Jacobian Transpose relation is employed, which ensures that the manipulator’s
movements are consistent with the applied forces and the geometry of its structure.
This approach allows the manipulator to explore its environment effectively and
adjust its joint angles to achieve the desired contact.
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The learning process hinges on the manipulator’s ability to interact with the envi-
ronment and receive feedback based on its actions. Through the iterative updates
of Q-learning, the manipulator learns an optimal policy by associating state-action
pairs with rewards. When the manipulator successfully applies a steady force within
the wall’s recessed area for more than 0.1 seconds, the task is regarded completed.
The challenge lies in the manipulator’s need to explore the environment to locate
the wall and its recess, which requires a balance between exploration and exploita-
tion during learning. Additionally, the discretization of states and actions must be
carefully designed to ensure that the manipulator can learn efficiently while main-
taining the precision required to achieve the task. The framework also addresses
the challenges of stability during force application, as the manipulator must main-
tain steady contact within the recess to fulfill the task requirements. The constant
magnitude of the applied force is crucial for ensuring consistent interactions with
the environment, while the Jacobian Transpose relation provides the necessary con-
trol over joint torques to achieve the desired movements. Overall, this framework
combines the principles of reinforcement learning, state-action discretization, and
robotic control to enable the planar elbow manipulator to perform a complex task
in an unknown environment, demonstrating the potential of Q-learning in robotic
applications.

The task description in the x-y plane is illustrated in Figures 4.1-4.4.

Figure 4.1 Typical manipulator and world setting
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Figure 4.2 Direction search under fixed Cartesian force magnitude

Figure 4.3 Contact with the first stage of the wall
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Figure 4.4 Contact with the recess (second-stage wall), which represents the goal
configuration

4.2 Learning Strategy

In this study, a Q-learning algorithm is employed in conjunction with robot dynamic
simulations to achieve a specific learning task. The simulations involve applying a
Cartesian force with a fixed magnitude of 10 N, while its direction is determined
by the learning algorithm. This force is reflected into joint torques using the tool
Jacobian relation, and these torques serve as the sole control signals for the robot:

τ = JT FCartesian, (4.1)

FCartesian = 10
cos(θ)

sin(θ)

 . (4.2)

Here θ is the angle of search and is in the range of (−π,+π). The angle is obtained
from the discrete angle parameter in the set of [1,2,...,37] by linear interpretation.
19, for example, corresponds to θ=0.
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During each learning step, the dynamic simulation is executed for a fixed simulation
time, which is set to 0.1 seconds in this work. At the end of this simulation time,
the Q-value corresponding to the initial state and action pair is updated.

The learning process is structured into episodes, each consisting of 30 steps. At the
beginning of an episode, the initial joint positions are set randomly. However, in
subsequent steps within the same episode, the destination joint configuration from
the previous step becomes the initial joint configuration for the next step. After
each step, in addition to updating the Q-value for the current state-action pair, the
action with the maximum Q-value is identified and recorded in a table. This table
is later used as a guide for determining the Cartesian direction in which the "guide"
Cartesian force is applied to establish wall contact.

During the learning phase, an epsilon-greedy approach is employed to balance ex-
ploration and exploitation. At each step, a random number between 0 and 1 is
generated. If this random number is greater than the epsilon value (fixed at 0.9 in
this study), the action with the maximum Q-value is chosen for the current state.
Otherwise, a random action is selected. This approach ensures that the algorithm
explores different actions.

The described methodology combines dynamic simulation, reinforcement learning
principles, and robotic control strategies to achieve effective learning and decision-
making for the task at hand. By employing the epsilon-greedy approach and up-
dating Q-values iteratively, the system learns to optimize its actions based on the
accumulated knowledge and feedback from the environment.

4.3 Q-Value Update

In this thesis, the Q-learning algorithm is implemented with a specific reward mech-
anism. After each step, as described previously, the reward is defined as the max-
imum x-directional component of the robot tool tip’s position during the 0.1 sec
simulation. This design assumes that the wall structure is located in the positive
x-direction relative to the origin. Importantly, the precise location and orientation
of the wall are unknown to the learning algorithm. By defining the reward in this
manner, the robot is incentivized to move toward the wall and actively search for
the recess. This reward mechanism drives the robot to explore its environment
effectively, motivating it to move closer to the wall structure without relying on

16



explicit positional data. The learning algorithm uses this reward signal to update
its Q-values, gradually improving its policy for selecting actions that maximize the
reward. The update rule for the Q-value incorporates this reward, along with the
learning rate and discount factor, ensuring that the algorithm balances immediate
rewards with long-term gains. Through this approach, the robot learns to navigate
towards the wall structure and adapt its movements based on the feedback received
from the environment, demonstrating the effectiveness of reinforcement learning in
scenarios with limited prior knowledge of the surroundings.

The update rule is as follows:

Q(st,at) = (1−α)Q(st,at)+α
(

rt +γ max
a

Q(st+1,a)
)

(4.3)

The update rule for the Q-value in this thesis is formulated as a discrete low-pass
filter difference equation. Specifically, the Q-value of a state-action pair is updated
by combining the current reward and the discounted future maximum reward, both
weighted by the learning coefficient. In this equation, Q(st,at) represents the quality
value of taking action at at state st. Once the action at is executed, the system
transitions to the next state, denoted as st+1.

The reward obtained from performing the action at is rt. Additionally, the potential
reward in the next state st+1, reached by selecting the action with the highest reward,
is multiplied by the discount factor γ. This discounted future reward is then added to
the current reward to provide a comprehensive measure of the action’s effectiveness.

The learning constant, α, plays a crucial role in this update process. It acts as a
weighting factor that determines the influence of the new information on the Q-
value. From a signal processing perspective, α can also be interpreted as a low-pass
filter constant, as it helps smooth the updates and reduce the impact of sudden
changes in rewards.

This formulation ensures that the Q-learning algorithm balances immediate rewards
with long-term gains, enabling the robot to progressively refine its policy and im-
prove its decision-making capabilities over time.

The next chapter discusses simulation results with this algorithm.
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5. SIMULATION RESULTS

5.1 Dynamics Related Routines

The simulation is based on the dynamics of a two-link planar elbow manipulator.
The equations of motion, derived using the Euler-Lagrange formulation, are given
by:

D(q)q̈ +C(q, q̇)q̇ +Bq̇ +g(q) = τ −J(q)T FE (5.1)

The terms in equation 5.1 and their corresponding functions in the simulation code
are:

• D(q): The inertia matrix, computed by a function (see Appendix,
d_computation_fnc.m).

• C(q, q̇): The Coriolis and centrifugal matrix, computed by a function (see
Appendix, c_computation_fnc.m).

• B: The viscous friction matrix.

• g(q): The gravity vector, computed by a function (see Appendix,
g_computation_fnc.m).

• J(q): The Jacobian matrix, which relates joint velocities to end-effector ve-
locity. It is computed by a function (see Appendix, j_computation_fnc.m).

• FE: The external force vector, representing the contact force from the wall,
computed by a function (see Appendix, external_force_computation_fnc.m).
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The forward and inverse kinematics of the manipulator are handled by
dedicated functions (see Appendix, forward_kinematics_fnc.m and in-
verse_kinematics_fnc.m).

5.2 Q-Learning Framework and Parameters

Instead of relying on the dynamic model for control, the system learns a policy using
a model-free Q-learning algorithm. The core of this approach is the discretization
of the continuous state space into a manageable grid-like structure.

• State Space: The robot’s state is a four-dimensional vector [q1, q2, q̇1, q̇2],
representing the two joint angles and their velocities. In our final work, the
velocity components are dropped due to size of the space to be explored and
q1 and q2 are used as stated variables. This continuous state is mapped to a
discrete grid position using a discretization function. The Q-table is defined
with a grid size of 25 × 25 × 25 × 25, as specified in the parameters file (see
Appendix, q_learning_ke_parat.m).

• Action Space: The action space is discrete, with a size of 37 possible actions.

• Reward Function: The reward signal, calculated in the episode script (see
Appendix, grid_episode_ke.m), is designed to encourage the robot to estab-
lish and maintain contact with the wall.

• Algorithm Parameters: The parameters file (see Appendix,
q_learning_ke_parat.m) defines key parameters including the learning
rate (α), the discount factor (γ), and the exploration rate (ϵ). The training
loop (see Appendix, episode_iteration_loop.m) uses an epsilon-greedy
policy where ϵ decays over time.
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5.3 Simulation Architecture

The simulation is structured around a main training loop (see Appendix,
episode_iteration_loop.m) that iterates for a set number of episodes. In each
episode, the grid_episode_ke.m script is called to simulate a fixed number of
steps. The one_second_simulator_fnc.m serves as the physics engine, calculat-
ing the robot’s dynamic response to the chosen action. The Q-table is updated at
each step using the Q-learning update rule implemented in q_updater_ke.m (see
Appendix). After the training is complete, the learned policy is evaluated using a
dedicated test simulator (see Appendix, test_simulator_fnc.m). The results are
then visualized using a plotting script (see Appendix, result_plotter.m).

This section will present the quantitative and visual results of the Q-learning simu-
lation. The plots are generated by result_plotter.m.

• Force Convergence: A plot showing the end-effector’s contact force magni-
tude over time. This figure will demonstrate the agent’s ability to approach
the wall, make contact, and regulate the force to a stable target value.

• End-Effector Trajectory: A plot of the end-effector’s position in the Carte-
sian (x-y) plane, visually representing the path taken by the robot from its
initial position to the point of contact with the wall.

5.4 Simulations

Simulation results are presented in Figures 5.1–5.4. A learning process spanning a
total of 1000 individual episodes was conducted. Within each of these episodes, a
sequence of dynamic simulation-based searches was performed, with each episode
comprising 30 steps. Each step was executed over a brief duration of 0.1 seconds.
The learning algorithm employed specific hyperparameters to guide its optimization
process. One of these parameters, ϵ, which is commonly associated with exploration–
exploitation trade-offs in reinforcement learning, was set to a value of 0.9, encour-
aging a higher degree of exploration during the learning procedure. Additionally,
the learning rate, denoted as α, was assigned a value of 0.1, ensuring gradual up-
dates to the system’s knowledge base. The discount factor, γ, which plays a critical
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role in determining the importance of future rewards, was configured to be 0.8,
striking a balance between immediate and long-term reward considerations. This
entire process, including the computationally intensive simulations and parameter
adjustments, was executed on an Intel i-9 processor, which enabled the code to run
efficiently. The total time required for completing all 1000 episodes, along with their
associated computations, amounted to approximately 300 seconds.

Figure 5.1 shows the heatmap of learned actions on the discrete shoulder angle–
elbow angle plane. Shades of blue indicate the 37 actions over the 25 × 25 state
plane. Upon closer examination, it becomes evident that the heatmap reveals a pat-
tern of varying intensities, with darker and lighter shades distributed across different
locations within the discrete state space. These shades represent the relative values
or characteristics of specific regions within the state space, offering a visual depic-
tion of how the system behaves or responds under certain conditions. However, a
noteworthy observation is that a significant number of cells within the discrete state
space exhibit action values that are relatively average or moderate, rather than dis-
playing extreme values. This phenomenon can be attributed to the dynamics of the
learning process itself, particularly during its initial stages. Early in the learning
procedure, a solution was discovered for establishing contact with the second seg-
ment or gate of the wall. This discovery had a profound impact on the subsequent
evolution of the learning process, shaping the way the system interacted with the
environment and influencing the distribution of action values across the state space.
As a result, many regions within the state space settled into a pattern where their
action values remained within an average range, reflecting the influence of the early
solution on the learning trajectory. This insight underscores the importance of ini-
tial discoveries in shaping the overall behavior of a system during a learning process
and highlights how specific solutions can contribute to the stabilization of certain
regions within the state space.
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Figure 5.1 The heatmap of learned actions on the shoulder angle-elbow angle
plane. The shades of blue indicate the actions with the highest Q-value.

Figure 5.2 Contact force components in the test simulation. The y-directional
component of contact force is not modelled. This corresponds to frictionless walls.
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The x-directional force component exhibits two distinct regions characterized by
the woodpecker effect, with one region centered around 0.7 seconds and the other
around 5.2 seconds. The first region is more pronounced due to the longer distance
of acceleration following the initial standstill, resulting in a greater force impact.
During the first stage of interaction with the wall, the tool tip comes to a temporary
halt in the x direction, before the second stage of contact is established. In this
second stage, the contact force peaks are smaller, and the number of knocks is
reduced, indicating a less intense interaction compared to the initial stage.

In the simulations, the first stage of the wall is positioned at a distance of 0.6 me-
ters from the origin, oriented perpendicular to the x-axis. This section includes a
gap spanning 20 centimeters, located between y = 0.1 meters and y = −0.1 meters,
effectively creating an opening within these boundaries. The second stage is aligned
parallel to the first wall, maintaining a consistent orientation, and is situated at
a distance of 0.65 meters from the origin. This arrangement ensures a structured
layout with precise spatial relationships between the two stages.

Figure 5.3 provides detailed time plots illustrating the movement of the robot tool
tip along both the x and y coordinates. The trajectory in the x-direction ultimately
comes to a halt when it encounters the recessed section of the wall, effectively
stopping its forward motion. In contrast, the movement in the y-direction behaves
differently, as the tool tip does not come to a stop but instead slides along the surface
of the wall, maintaining a tangential path relative to its structure.

Figure 5.4 illustrates the x-y trajectory of the tool tip as it progresses through its
motion. Initially, the tool tip interacts with the surface of the first wall stage,
sweeping across it before transitioning into the gap located between the two stages.
Following this movement, the tool tip ultimately establishes contact with the second
wall stage, completing its trajectory.
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Figure 5.3 Cartesian x and y trajectories

Figure 5.4 x-y trajectory obtained with the learned actions
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6. CONCLUSION

This thesis explores the application of Q-learning, a reinforcement learning tech-
nique, in the domain of robotic force control for contact tasks, specifically focusing on
a planar elbow manipulator. By leveraging the principles of reinforcement learning
within a grid-inspired framework, the study successfully demonstrates how adaptive
and model-free regulation of contact establishment can be achieved with minimal
training requirements. The approach emphasizes simplicity and efficiency, showcas-
ing the ability of a lightweight controller to deliver effective performance with rapid
convergence rates. This characteristic positions the controller as a practical solu-
tion for real-time systems, where responsiveness and adaptability are critical. The
primary contribution of this work lies in validating that such a streamlined learning
mechanism can meet the demands of dynamic environments, offering a promising
alternative to more complex, resource-intensive methods.

In addition to demonstrating feasibility, the proposed framework contributes to on-
going efforts in bridging the gap between fundamental reinforcement learning meth-
ods and practical robotic applications. Unlike classical force control approaches,
which often rely on accurate models and extensive offline tuning, the results of
this study highlight the potential of model-free learning strategies in uncertain and
variable conditions. This makes the approach particularly relevant for tasks in in-
dustrial assembly, surface processing, and human–robot collaboration, where safe
and adaptive force regulation is crucial.

Nevertheless, the study has been limited to a simulation-based environment. The
transition to physical robotic platforms will inevitably introduce additional chal-
lenges such as sensor noise, friction uncertainties, and communication delays. Fu-
ture research should therefore investigate sim-to-real transfer strategies, to improve
robustness in real-world implementations. Moreover, the integration of lean deep re-
inforcement learning methods could provide the ability to handle higher-dimensional
state and action spaces, thereby extending the applicability of the approach to more
complex manipulation tasks.
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In summary, this thesis shows that a relatively simple reinforcement learning frame-
work can achieve rapid and stable learning in robotic contact tasks. The findings
indicate that lightweight, model-free controllers can be both efficient and effective.

Future research efforts could focus on applying the proposed methodology to a phys-
ical robotic system. This would involve transitioning from simulation-based studies
to practical implementation, enabling the validation of theoretical findings in real-
world scenarios.
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APPENDIX

Software Listings

Listing A1
addrun.m
function addrun ()

episode_iteration_beginning_no = number_of_episodes +1;
number_of_episodes = number_of_episodes + number_of_episodes_to_add

episode_performance_list =[ episode_performance_list , zeros (1,
number_of_episodes_to_add )];

filtered_episode_performance_list =[
filtered_episode_performance_list , zeros (1,
number_of_episodes_to_add )];

heavily_filtered_episode_performance_list =[
heavily_filtered_episode_performance_list , zeros (1,
number_of_episodes_to_add )];

epsilon_list =[ epsilon_list , zeros (1, number_of_episodes_to_add )
];

% epsilon =0.9;

episode_iteration_loop
result_plotter

end
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Listing A2
c_computation_fnc.m
function result = c_computation_fnc (theta , theta_dot )

global l1 lc1 w1 h1 m1 I1
global l2 lc2 w2 h2 m2 I2

sinq2 = sin(theta (2));
h = -m2*l1*lc2*sinq2;
C=zeros (2 ,2);
C(1, 1) = h * theta_dot (2);
C(1, 2) = h * ( theta_dot (1)+ theta_dot (2));
C(2, 1) = -h * theta_dot (1);
C(2, 2) = 0;
result =C;

Listing A3
d_computation_fnc.m

function result = d_computation_fnc (theta)

global l1 lc1 w1 h1 m1 I1
global l2 lc2 w2 h2 m2 I2

theta;
cosq2 = cos(theta (2));

D=zeros (2 ,2);
D(1 ,1) = m1 * lc1 ^2 ...

+ m2 * (l1^2 + lc2 ^2 +2* l1*lc2*cosq2) ...
+ I1 ...
+ I2;

D(1 ,2) = m2 * (lc2 ^2 + l1*lc2*cosq2) ...
+ I2;

D(2 ,1) = D(1, 2);
D(2 ,2) = m2 * lc2 ^2 ...

+ I2;

result =D;
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Listing A4
episode_iteration_loop.m

for episode_iteration_no = episode_iteration_beginning_no :
number_of_episodes

episode_iteration_no

% epsilon =epsilon - epsilon_decrement
if epsilon < epsilon_lower_limit

epsilon = epsilon_lower_limit ;
end
epsilon_list ( episode_iteration_no )= epsilon ;

episode_result = grid_episode_ke ();

total_episode_reward =0;
step_counter =0;
for iteration_index =1: episode_length

if episode_result ( iteration_index ,11) ~=333
total_episode_reward ...

= total_episode_reward ...
+ episode_result ( iteration_index ,10); %1 apr 2025
%+ episode_result ( iteration_index ,7); %1 apr 2025

step_counter = step_counter +1;
end

end
average_episode_reward = total_episode_reward / step_counter ;
episode_performance_list ( episode_iteration_no ) ...

= average_episode_reward ;

filtered_average_episode_reward ...
= average_episode_reward * display_lambda ...
+ filtered_average_episode_reward *(1- display_lambda );

filtered_episode_performance_list ( episode_iteration_no ) ...
= filtered_average_episode_reward ;

heavily_filtered_average_episode_reward ...
= average_episode_reward * diplay_heavy_lambda ...
+ heavily_filtered_average_episode_reward *(1-

diplay_heavy_lambda );
heavily_filtered_episode_performance_list ( episode_iteration_no )

...
= heavily_filtered_average_episode_reward ;

end
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Listing A5
external_force_computation_fnc.m
function result = external_force_computation_fnc ( tool_cartesian_pos ,

tool_cartesian_vel )

global x_wall b_wall k_wall
global hole_size_wall
global wall_model_active

p_tool_x = tool_cartesian_pos (1);
p_tool_y = tool_cartesian_pos (2);
v_tool_x = tool_cartesian_vel (1);

f_tool_vector =zeros (2 ,1);

if p_tool_x > x_wall
f_spring = k_wall *( p_tool_x - x_wall );

else
f_spring = 0;

end

if p_tool_x > x_wall && v_tool_x > 0
f_damper = b_wall * v_tool_x ;

else
f_damper =0;

end

f_tool_vector (1) = f_spring + f_damper ;
f_tool_vector (2) = 0;

%hole
if (abs( p_tool_y ) < hole_size_wall /2) && ( p_tool_x > x_wall )

wall_model_active =0;
% f_tool_vector (1) =0;
% f_tool_vector (2) =0;

end

if wall_model_active ==0
f_tool_vector (1) =0;
f_tool_vector (2) =0;

end

result = f_tool_vector ;
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Listing A6
forward_kinematics_fnc.m
function result = forward_kinematics_fnc (theta)

global l1 lc1 w1 h1 m1 I1
global l2 lc2 w2 h2 m2 I2

cosq1 = cos(theta (1));
cosq12 = cos(theta (1)+ theta (2));
sinq1 = sin(theta (1));
sinq12 = sin(theta (1)+ theta (2));

p_vector =zeros (2 ,1);
p_vector (1) = l1 * cosq1 + l2 * cosq12 ;
p_vector (2) = l1 * sinq1 + l2 * sinq12 ;

result = p_vector ;

Listing A7
g_computation_fnc.m
function result = g_computation_fnc (theta)

global l1 lc1 w1 h1 m1 I1
global l2 lc2 w2 h2 m2 I2
global g_c

cosq1 = cos(theta (1));
cosq12 = cos(theta (1)+ theta (2));

g=zeros (2 ,1);
g(1) = ( (m1*lc1 + m2 *l1)*cosq1 + m2*lc2* cosq12 )*g_c;
g(2) = m2*lc2* cosq12 *g_c;

result =g;
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Listing A8
grid_episode_ke.m
function result = grid_episode ()

global start_position
global end_position
global episode_length
global list_of_forbidden_locations
global number_of_forbidden_locations
global gamma
global number_of_actions
global policy_seed_ke
global episode_iteration_no
global epsilon
global max_q_action_array
global alpha
global q_array
global x_wall
global grid_x_mid grid_x2_mid
global grid_y_mid grid_y2_mid

result =zeros( episode_length ,11);

x_limit =0.6;
p_forw = forward_kinematics_fnc ([0;0]) ;
x_forw = p_forw (1);

while ( x_forw > x_limit ) || ( x_forw < 0.1)
random_p (1)=pi -rand *2* pi;
random_p (3)=pi -rand *2* pi;
p_forw = forward_kinematics_fnc ([ random_p (1); random_p (3) ]);
x_forw = p_forw (1);

end
random_p (2) =0;
random_p (4) =0;
step_initial_position =random_p ’;

result (1: episode_length ,11) =333* ones( episode_length ,1);

for step_iteration_no =1: episode_length
if step_initial_position ~=[333;333;333;333]

[ action_number , action_value ]= policy_ke_fnc (
step_initial_position );

[ step_final_position , reward ]= one_second_simulator_fnc (
step_initial_position (1) , ...
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step_initial_position (2) , ...
step_initial_position (3) , ...
step_initial_position (4) , ...
action_number );

result ( step_iteration_no ,1:4)= step_initial_position ’;
result ( step_iteration_no ,5)= action_number ;
result ( step_iteration_no ,6:9) =[ step_final_position (1)

grid_y_mid step_final_position (3) grid_y2_mid ];
result ( step_iteration_no ,10)= reward ;

step_initial_position = step_final_position ;

end

if step_final_position ~=[333;333;333;333]
dummy_aaa = q_updater_ke ( result ( step_iteration_no ,:));

end

end

reward_column_with_extra_row =[ result (: ,10) ;333];
for step_iteration_no = episode_length : -1:1

if reward_column_with_extra_row ( step_iteration_no +1) ==333
...
&& reward_column_with_extra_row ( step_iteration_no ) ~=333

last_reward = reward_column_with_extra_row ( step_iteration_no )
;

result ( step_iteration_no ,11)= last_reward ;
end
if reward_column_with_extra_row ( step_iteration_no +1) ~=333

...
&& reward_column_with_extra_row ( step_iteration_no ) ~=333

result ( step_iteration_no ,11)= reward_column_with_extra_row (
step_iteration_no )...
+gamma* result ( step_iteration_no +1 ,11);

end
end
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Listing A9
inverse_kinematics_fnc.m
function result = inverse_kinematics_fnc ( p_input )

global l1 lc1 w1 h1 m1 I1
global l2 lc2 w2 h2 m2 I2

x_input = p_input (1);
y_input = p_input (2);

D_variable =( x_input ^2+ y_input ^2-l1^2-l2 ^2) /(2* l1*l2)

if norm( D_variable ) > 1
result =[555;555];

else
theta2_output =atan2(sqrt (1- D_variable ^2) ,D_variable );
theta1_output =atan2(y_input , x_input ) ...

-atan2(l2*sin( theta2_output ),l1+l2*cos(
theta2_output ));

result =[ theta1_output ; theta2_output ];
end

Listing A10
j_computation_fnc.m
function result = j_computation_fnc (theta)

global l1 lc1 w1 h1 m1 I1
global l2 lc2 w2 h2 m2 I2

cosq1 = cos(theta (1));
cosq12 = cos(theta (1)+ theta (2));
sinq1 = sin(theta (1));
sinq12 = sin(theta (1)+ theta (2));

J=zeros (2 ,2);
J(1, 1) = -l1*sinq1 - l2* sinq12 ;
J(1, 2) = -l2* sinq12 ;
J(2, 1) = l1*cosq1 + l2* cosq12 ;
J(2, 2) = l2* cosq12 ;

result =J;
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Listing A11
q_learning_ke_parat.m
clear all
close all

global start_position
global end_position
global grid_x_size grid_y_size grid_x2_size grid_y2_size
global episode_length
global list_of_forbidden_locations
global number_of_forbidden_locations
global gamma
global number_of_actions
global new_return_contribution_coefficient
global policy_seed_ke
global episode_iteration_no
global epsilon
global max_q_action_array
global q_array
global alpha

global l1 lc1 w1 h1 m1 I1
global l2 lc2 w2 h2 m2 I2
global g_c
global x_wall b_wall k_wall
global step_time stop_time no_of_iterations
global Kp Kd
global B
global wall_contact_counter
global mid_action_number
global Force_coefficient
global grid_x_mid grid_y_mid grid_x2_mid grid_y2_mid
global attack_force
global hole_size_wall
global wall_model_active

% simulation parameters
step_time = 0.001;
stop_time = 0.1;
no_of_iterations = floor( stop_time / step_time + 1);

no_of_links = 2;
l1 = 0.3;
lc1 = 0.15;
w1 = 0.02;
h1 = 0.02;
m1 = 2.5;
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I1 = m1*(w1 ^2+ h1 ^2) /12;

l2 = 0.3;
lc2 = 0.15;
w2 = 0.02;
h2 = 0.02;
m2 = 2.5;
I2 = m2*(w2 ^2+ h2 ^2) /12;

g_c =9.81;

x_wall =0.4;
b_wall =10;
k_wall =100;
hole_size_wall =0.05;

B = [0.1 0; 0 0.1];
Kp = [200 0 ; 0 130];
Kd = [25 0 ; 0 8];

Force_coefficient =1;
attack_force =10;

% learning parameters
gamma =0.9;
display_lambda =0.01;
diplay_heavy_lambda =0.001;
alpha =0.1;
epsilon_upper_limit =0.9;
epsilon_lower_limit =0.1;
epsilon =0.9;
epsilon_decrement =0.001;

grid_x_size =25;
grid_y_size =25;
grid_x2_size =25;
grid_y2_size =25;

grid_x_mid =1+( grid_x_size -1) /2;
grid_y_mid =1+( grid_y_size -1) /2;
grid_x2_mid =1+( grid_x2_size -1) /2;
grid_y2_mid =1+( grid_y2_size -1) /2;

start_position = x_y_4_discretization_fnc ([1;0;1;0]) ;

episode_length =30;
number_of_episodes =100;
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number_of_episodes_to_add =800;

number_of_actions =37;
mid_action_number =1+( number_of_actions -1) /2;

policy_seed_ke =ones (1, number_of_actions )/ number_of_actions ;

q_array =zeros( grid_x_size , grid_y_size , grid_x2_size , grid_y2_size ,
number_of_actions );

max_q_action_array =ceil( number_of_actions *rand( grid_x_size ,
grid_y_size , grid_x2_size , grid_y2_size ));

episode_performance_list =zeros (1, number_of_episodes );
filtered_episode_performance_list =zeros (1, number_of_episodes );
heavily_filtered_episode_performance_list =zeros (1,

number_of_episodes );
epsilon_list =zeros (1, number_of_episodes );

filtered_average_episode_reward =0;
heavily_filtered_average_episode_reward =0;

wall_contact_counter =0;
wall_model_active =1;

episode_iteration_beginning_no =1;
episode_iteration_loop
result_plotter
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