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ABSTRACT

DEVELOPING DATA-DRIVEN MODELS FOR ANOMALY DETECTION IN
AUTOMOTIVE AND ADDITIVE MANUFACTURING APPLICATIONS

SHAWQI MOHAMMED OTHMAN FAREA

MECHATRONICS ENGINEERING PH.D. DISSERTATION, JULY 2025

Thesis Supervisor: Prof. Dr. MUSTAFA ÜNEL

Keywords: Anomaly Detection, Predictive Maintenance, Transformers,
Explainable Artificial Intelligence (XAI), Air Pressure System (APS), Directed

Energy Deposition (DED)

Anomaly detection is a fundamental yet inherently challenging task in machine
learning and statistics, with wide-ranging applications spanning domains such as
healthcare, manufacturing, automotive, and aerospace. Unlike conventional classifi-
cation problems, anomaly detection must contend with intrinsic difficulties including
class imbalance, anomaly heterogeneity, and the scarcity of labeled anomalies. Ad-
dressing these challenges requires thoughtfully designed, domain-aware frameworks
capable of operating under limited supervision while maintaining robustness and
interpretability. This thesis develops several data-driven anomaly detection frame-
works, spanning supervised, semi-supervised, and unsupervised learning paradigms.
In particular, an efficient semi-supervised framework built upon Transformer ar-
chitectures is developed, effectively mitigating the inherent challenges of anomaly
detection. In addition, the thesis adopts an interpretable framework grounded in
Explainable Boosting Machine (EBM), offering transparency and domain-aligned
insights without sacrificing performance. A domain-guided preprocessing pipeline
is integrated into all frameworks to systematically incorporate expert knowledge,
facilitate robust anomaly discrimination, and improve interpretability by aligning
feature representations with meaningful physical phenomena.

Two real-world industrial applications were considered in this thesis: (1) failure de-
tection in air pressure systems (APS) of heavy-duty vehicles using operational sensor
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data, and (2) defect detection in directed energy deposition (DED) using thermal
imaging. The APS plays a vital role in ensuring the proper functioning of vehicle
subsystems such as braking and suspension, where failures can pose significant safety
risks and economic consequences. Meanwhile, DED, an effective additive manufac-
turing technology, offers a promising pathway for fabricating complex, large-scale
components; however, it suffers from recurring in-situ defect formation, compromis-
ing part reliability and quality. The data-driven models yielded promising results
in both applications. Remarkably, for APS failure detection, the semi-supervised
transformer-based approach—although trained using only a small portion of non-
anomalous data—led to strong predictive performance on par with the fully su-
pervised models, attaining 91.4% accuracy and an F1 score of 0.79. In parallel, the
interpretable EBM-based framework achieved similarly competitive performance (an
F1 score of 0.80) while providing meaningful insights into feature contributions and
potential root causes, corroborated by domain knowledge. For DED defect detec-
tion, semi-supervised models exhibited strong performance, with an accuracy and
F1 score up to 95% and 0.88, respectively.

These findings demonstrate that combining domain-specific feature engineering
with data-efficient learning paradigms enables effective anomaly detection across
diverse settings. The thesis underscores the practical utility of semi-supervised
learning—specifically for scenarios with limited anomaly labels—and highlights the
growing importance of explainability, particularly in high-stakes applications, where
transparent models such as EBM can provide actionable insights without sacrificing
accuracy. The frameworks developed in this thesis are readily adaptable to other
industrial contexts, depending on the nature of the underlying datasets (balanced vs
imbalanced) and desirable characteristics (e.g., highly interpretable). Furthermore,
they can be extended to incorporate multi-defect classification, closed-loop control
integration, and real-time decision-making.
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ÖZET

OTOMOTIV VE EKLEMELI IMALAT UYGULAMALARINDA ANOMALI
TESPITI IÇIN VERI ODAKLI MODELLER GELIŞTIRME

SHAWQI MOHAMMED OTHMAN FAREA

MEKATRONİK MÜHENDİSLİĞİ DOKTORA TEZİ, TEMMUZ 2025

Tez Danışmanı: Prof. Dr. MUSTAFA ÜNEL

Anahtar Kelimeler: Anomali Tespiti, Öngörülü Bakım, Dönüştürücüler,
Açıklanabilir Yapay Zekâ (XAI), Hava Basınç Sistemi (APS), Yönlendirilmiş

Enerji Yığma (DED)

Anomali tespiti, sağlık, imalat, otomotiv ve havacılık gibi alanları içeren geniş kap-
samlı uygulamalara sahip, makine öğrenmesi ve istatistik alanlarında temel fakat
doğası gereği zorlu bir görevdir. Geleneksel sınıflandırma problemlerinin aksine,
anomali tespiti sınıf dengesizliği, anomali heterojenliği ve etiketli anomalilerin kıtlığı
gibi içsel zorluklarla mücadele etmelidir. Bu zorlukların ele alınması, sağlamlığı ve
yorumlanabilirliği korurken sınırlı denetim altında çalışabilen, dikkatlice tasarlan-
mış, alana özgü yaklaşımlar gerektirmektedir. Bu tez, denetimli, yarı-denetimli
ve denetimsiz öğrenme paradigmalarını kapsayan çeşitli veri odaklı anomali tespiti
yaklaşımları geliştirmektedir. Özellikle, anomali tespitinin içsel zorluklarını etkili
bir şekilde azaltan Dönüştürücü mimarileri üzerine kurulu verimli bir yarı-denetimli
yaklaşım geliştirilmektedir. Ek olarak, tez, performanstan ödün vermeden şeffaflık
ve alan hizalı içgörüler sunan Explainable Boosting Machine’ne (EBM) dayalı yo-
rumlanabilir bir yaklaşım benimsemektedir. Alan rehberliğinde bir ön işleme hattı,
uzman bilgisini sistematik olarak dahil etmek, sağlam anomali ayrımını kolaylaştır-
mak ve özellik gösterimlerini anlamlı fiziksel olgularla hizalayarak yorumlanabilirliği
iyileştirmek için tüm yaklaşımlara entegre edilmiştir.

Bu tezde iki gerçek dünya endüstriyel uygulaması ele alındı: (1) operasyonel sen-
sör verileri kullanılarak ağır vasıta araçların hava basınç sistemlerinde (APS) arıza
tespiti ve (2) termal görüntüleme kullanılarak yönlendirilmiş enerji birikiminde
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(DED) arıza tespitidir. APS, arızaların önemli güvenlik riskleri ve ekonomik sonuçlar
doğurabileceği frenleme ve süspansiyon gibi araç alt sistemlerinin düzgün çalışmasını
sağlamada hayati bir rol oynamaktadır. Öte yandan, eklemeli imalatta etkili bir
teknoloji olan DED, karmaşık, büyük ölçekli bileşenler üretmek için umut verici
bir yol sunmaktadır; ancak, parça güvenilirliğini ve kalitesini tehlikeye atan tekrarlı
arıza oluşumlarından etkilenmektedir. Veri odaklı modeller her iki uygulamada da
umut verici sonuçlar vermiştir. Dikkat çekici bir şekilde, APS arıza tespiti için, yal-
nızca küçük bir anormal olmayan veri bölümü kullanılarak eğitilmiş olmasına rağ-
men, yarı-denetimli Dönüştürücü tabanlı yaklaşım, tam olarak denetimli modellerle
aynı seviyede güçlü bir tahmin performansına yol açtı ve %91,4 doğruluk ve 0,79’luk
bir F1 puanı elde etmiştir. Buna paralel olarak, yorumlanabilir EBM tabanlı yak-
laşım, alan bilgisiyle doğrulanan özellik katkıları ve olası temel nedenler hakkında
anlamlı içgörüler sağlarken benzer şekilde rekabetçi bir performansa (0,80’lik bir F1
puanı) ulaşmıştır. DED kusur tespiti için, yarı-denetimli modeller sırasıyla %95’e
ve 0,88’e kadar doğruluk ve F1 puanı ile güçlü bir performans sergilemiştir.

Bu bulgular, alan-spesifik öznitelik mühendisliğini veri açısından verimli öğrenme
paradigmalarıyla birleştirmenin farklı senaryolarda etkili anomali tespitini mümkün
kıldığını göstermektedir. Tez, özellikle sınırlı anomali etiketlerine sahip senaryolar
için yarı-denetimli öğrenmenin pratik faydasını ve özellikle yüksek riskli uygula-
malarda açıklanabilirliğin artan önemini vurgulamaktadır. Ayrıca, EBM gibi şeffaf
modellerin doğruluktan ödün vermeden eyleme geçirilebilir içgörüler sağlayabile-
ceğini ortaya koymaktadır. Bu tezde geliştirilen yaklaşımlar, temel veri setlerinin
doğasına (dengeli veya dengesiz) ve istenen özelliklere (örneğin, son derece yorum-
lanabilir) bağlı olarak diğer endüstriyel uygulamalara kolayca uyarlanabilir. Dahası,
çoklu kusur sınıflandırmasını, kapalı çevrim kontrol entegrasyonunu ve gerçek za-
manlı karar vermeyi içerecek şekilde genişletilebilirler.
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1. INTRODUCTION

Anomaly detection is a fundamental problem in machine learning (ML) and statis-
tics, with broad applicability across various domains, including additive manufactur-
ing, automotive systems, aerospace engineering, finance, and healthcare. Depending
on the specific application, it is also referred to as fault detection, outlier detection,
or novelty detection. Fundamentally, anomaly detection involves identifying data
instances that deviate significantly from the expected norm (i.e., the majority of the
dataset). These abnormal instances—commonly termed as anomalies, outliers, or
novelties—often signal critical events such as faults, failures, or threats. Therefore,
timely detection and intervention are crucial for initiating proactive measures and
minimizing their adverse impact.

Numerous real-world problems can be framed as anomaly detection tasks. Ex-
amples include identifying diseases in the healthcare sector, detecting fraudulent
transactions in finance, uncovering cyber intrusions in cybersecurity, and identify-
ing defects or faults in industrial and cyber-physical systems. Moreover, anomaly
detection serves as a cornerstone of predictive maintenance (PdM) as well as prog-
nostics and health management (PHM), both of which are aimed at minimizing
unplanned downtime and costly breakdowns through early detection of potential
failures. Consequently, robust anomaly detection techniques play a pivotal role in
ensuring system reliability, operational safety, and decision-making across diverse
domains.

The prime objective of anomaly detection is to reliably differentiate between nor-
mal and anomalous behavior, despite the inherent challenges posed by the data
complexity, dimensionality, and imbalance. Unlike conventional classification tasks,
where labeled data is abundantly available for all classes, anomaly detection typi-
cally involves sparse and heterogeneous anomalies embedded within vast volumes of
normal data. Thus, anomaly detection models must be designed to effectively handle
the rarity and variability of anomalous data while maintaining robustness against
noise and uncertainty. For high-sensitivity applications, incorporating a degree of
interpretability is also essential to support trustworthy decision-making.
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1.1 Generic Overview of Anomaly Detection

An overview of a generic anomaly detection framework is shown in Fig. 1.1.
The framework comprises three sequential stages: (i) representation learning, (ii)
anomaly scoring, and (iii) thresholding. Ideally, these stages are fully integrated,
such that the learned representations are optimized for anomaly scoring, and the
thresholding step effectively distinguishes between normal and anomalous data
points. These stages are explained as follows:

• Representation Learning: Also referred to as feature learning, this stage
aims to transform raw data into suitable representations for subsequent
anomaly detection. However, it varies depending on the nature of the anomaly
detection approach. In shallow anomaly detection methods, representation
learning often acts as an identity function, where the feature and input spaces
are identical. In contrast, kernel-based methods leverage kernel functions to
transform the input data into a higher-dimensional feature space, thereby en-
hancing the separation of normal and anomalous data. For deep anomaly
detection models, representation learning is achieved through hierarchical lay-
ers of neural networks, enabling the extraction of complex, high-level feature
representations.

Figure 1.1 Generic overview of anomaly detection
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• Anomaly Scoring: The second stage involves assigning a quantitative score
to each data instance, reflecting its likelihood of being an anomaly. Higher
scores indicate a greater degree of deviation from normal patterns. Anomaly
scoring can be achieved using various approaches, including distance-based
measures, density-based measures, or output layers in neural networks.

• Thresholding: The final stage determines whether a given data instance is
classified as normal or anomalous by comparing its anomaly score against a
threshold. Therefore, the outcome of this step is a binary label. In certain
anomaly detection frameworks, such as supervised learning and one-class clas-
sification, the scoring and thresholding steps are often combined into a single
unified decision function, further streamlining the anomaly detection process.

1.2 Intrinsic Challenges of Anomaly Detection

Anomaly detection presents several intrinsic challenges, driven by the diverse nature,
heterogeneity, and rarity of anomalies. Anomalies are typically categorized into three
distinct types as follows:

• Point anomalies: These are global anomalies that are considered abnormal
relative to the entire dataset. A point anomaly is an individual data point
that deviates significantly from the expected normal pattern. For example,
a recorded temperature of 50 °C in Istanbul would be classified as a point
anomaly, as it is highly unusual given the general climate of the region.

• Contextual (or conditional) anomalies: These are local anomalies in the
sense that they are considered abnormal with respect to their neighbors in some
spatial or temporal context. They are more complex than point anomalies
and arise in context-dependent data, such as time series or spatial data. For
example, a temperature of 30 °C in Istanbul during the winter season would
be a contextual anomaly, as 30 °C is expected in summer but highly unusual
in winter. In this case, the context (time) is crucial in identifying the anomaly.

• Group (or collective) anomalies: They are a set of data points that collec-
tively exhibit abnormal behavior relative to the rest of the dataset. However,
the individual points within the group may not be anomalous in isolation.
For instance, a prolonged sequence of near-zero values in an electrocardiogram
(ECG) signal may indicate a critical abnormality, even though each individual
value may not be anomalous when considered independently.
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In literature, the majority of studies have predominantly focused on detecting point
anomalies, the simplest and most straightforward anomaly type. However, some
recent studies (e.g., see Mumcuoglu et al. (2024a)) have employed recurrent neural
network architectures to address more complex anomalies that are typically inherent
in sequential data. Despite these efforts, effectively identifying such complex anoma-
lies remains relatively underexplored, underscoring the need for more advanced and
targeted approaches. For instance, leveraging more advanced sequential architec-
tures, such as attention-based models, holds promise for enhancing both detection
performance and computational efficiency.

Traditionally, anomaly detection has been framed as a supervised binary classifi-
cation problem, assuming that normal data belong to one class and anomalies to
another. However, this approach is often impractical in real-world scenarios due to
two fundamental characteristics of anomalies: heterogeneity and rarity. Anomalies
can originate from multiple distinct classes, making it prohibitively costly, if not in-
feasible, to obtain sufficient labeled data for each anomaly class. Consequently, the
supervised approach is only viable in cases where the dataset is relatively balanced
and limited to a single class of anomalies.

To address the aforementioned challenges, anomaly detection is frequently framed as
an unsupervised or semi-supervised1 learning problem, rather than relying solely on
supervised approaches. These three learning paradigms are illustrated in Fig. 1.2(a).
In the general semi-supervised setting, the training dataset comprises a combina-
tion of unlabeled data along with a limited number of labeled instances representing
normal and/or anomalous data. A specific case of semi-supervised learning is the
well-known one-class learning paradigm, in which the training data exclusively con-
sists of normal instances, as depicted in Fig. 1.2(a). This formulation is particularly
effective in scenarios where labeled anomalies are scarce or infeasible to obtain.

Fig. 1.2(b) further illustrates the trade-off between complexity and practicability
across the three learning paradigms, with unsupervised learning offering the highest
practicality but also posing the greatest modeling complexity. Despite addressing
labeling challenges, traditional unsupervised methods struggle to effectively handle
high-dimensional and complex data—such as images, text, and multivariate time
series—due to the curse of dimensionality. In contrast, deep learning has proven to
be highly effective in managing such high-dimensional data, leveraging hierarchical
network layers to extract informative representations. Consequently, deep learn-
ing architectures can be employed for anomaly detection, where anomaly scoring
is applied based on the learned representations. Alternatively, another approach

1In literature, semi-supervised learning is sometimes called unsupervised learning as well.

4



(a) Training data

(b) Practicability vs Complexity

Figure 1.2 Comparison of the learning paradigms

to mitigate the curse of dimensionality involves integrating domain knowledge to
extract key features from unstructured data, thus reducing dimensional complexity
while retaining essential information.

Another significant challenge in deep anomaly detection lies in the data type de-
pendency of most deep learning architectures. For instance, multilayer perceptrons
(MLPs) are generally tailored to structured, tabular data; convolutional neural net-
works (CNNs) are typically employed for image data; and recurrent architectures are
more suited to sequential data such as time series and videos. Consequently, devel-
oping a universal deep anomaly detection algorithm capable of effectively handling
diverse data types remains a complex task.

Additionally, deep anomaly detection approaches—particularly those based on un-
supervised learning—are often prone to high false alarm rates, where normal in-
stances are incorrectly classified as anomalies. One potential solution to mitigate
false alarms involves enhancing the expressiveness of the learned representations,
enabling the model to more accurately capture the underlying patterns in the data.
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Lastly, a substantial portion of the anomaly detection literature has been evalu-
ated using benchmark datasets (e.g., MNIST) originally designed for classification
tasks rather than anomaly detection. Therefore, there is a clear need for real-world
anomaly detection datasets that accurately reflect the complexities and characteris-
tics of real-world anomaly detection scenarios, enabling more reliable evaluation of
proposed anomaly detection algorithms.

1.3 Anomaly Detection in Industrial Applications

Two important real-world industrial applications of anomaly detection are failure
detection in air pressure systems of heavy-duty vehicles (HDVs) and defect detection
in directed energy deposition, a well-known additive manufacturing process. These
applications require further investigation as each one of them poses distinct and
complex challenges.

1.3.1 Failure Detection in HDVs

Heavy-duty vehicles (HDVs) are an integral part of the logistics and transportation
sectors, where their reliable operation is essential for maintaining industrial effi-
ciency. Operating under demanding conditions, HDVs are susceptible to mechanical
failures caused by factors including suboptimal driving practices, inadequate main-
tenance planning, and ineffective anomaly detection. These failures can result in
significant repercussions, ranging from unwanted operational disruptions to serious
safety issues. From a manufacturer’s perspective, vehicle breakdowns incur con-
siderable costs associated with repairs and warranty claims. For customers, each
instance of vehicle downtime results in extended periods of inactivity and increased
operational costs, compounding the overall economic burden. Such operational dis-
ruptions not only interrupt business processes but also adversely affect profitability,
emphasizing the need for minimizing downtime and maximizing vehicle availability.

The air pressure system (APS) is an important subsystem in HDVs, responsible for
maintaining adequate air pressure for the braking and suspension systems. A sub-
stantial number of roadside breakdowns in HDVs can be attributed to APS-related
malfunctions, leading to costly interventions and significant customer dissatisfaction.
Mechanical issues, sensor malfunctions, and component failures within the APS can
result in excessive load and fatigue, ultimately compromising the integrity of the
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Figure 1.3 Overview of APS failures in HDVs. The top image shows a typical HDV,
and the bottom displays three examples of failed E-APUs (images were adapted
from Mumcuoglu et al. (2024b) and Aydemir (2024)).

overall system. Some samples of failed electronic air pressure units (E-APUs) are
shown in Fig. 1.3. However, addressing these challenges requires a comprehensive
approach that includes robust maintenance planning and advanced anomaly detec-
tion systems. By integrating these strategies, businesses can effectively mitigate the
risks of mechanical failures, thereby leading to a more efficient and resilient trans-
portation ecosystem. Particularly, early detection of APS failures is paramount to
avert vehicle stranding during operation and minimize the need for costly roadside
assistance.

1.3.2 Defect Detection in Additive Manufacturing

Additive manufacturing, also referred to as 3D printing, is a transformative man-
ufacturing technology that fabricates complex structures through a layer-by-layer
deposition process guided by three-dimensional digital models. This approach of-
fers unparalleled design flexibility and enables high levels of customization. Ad-
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ditive manufacturing encompasses a diverse array of processes, including directed
energy deposition (DED) and powder bed fusion (PBF), among others, each em-
ploying distinct mechanisms for material deposition and consolidation to fabricate
high-precision components. Unlike traditional subtractive manufacturing methods,
which remove material to shape a part, additive manufacturing directly fabricates
components by sequentially adding material, typically in the form of metal powders,
polymers, or composites. This approach enables the production of complex geome-
tries and lightweight structures that would be challenging or impossible to achieve
with conventional techniques. Additive manufacturing has gained significant trac-
tion across various industries—including aerospace, automotive, and healthcare—
owing to its potential to reduce material waste, shorten production times, and enable
on-demand manufacturing. As the field continues to evolve, research efforts are in-
creasingly focused on enhancing process efficiency, improving material properties,
reducing in-situ defects, and ensuring consistent quality in additively manufactured
parts.

As one of the promising additive manufacturing processes, DED offers the ability to
fabricate dense metal components with precise functional geometries and enhanced
mechanical properties. Distinguished by its high deposition rates and optimized
material utilization, DED presents a cost-effective solution particularly for applica-
tions such as prototyping, repairing, and modifying metal parts (Wolff et al., 2019).
Moreover, it is known for its ability to process a wide range of materials, including
metals, alloys, and metal matrix composites, with the added capability of multi-
material deposition and large-scale structures manufacturing (Dong et al., 2023).
These compelling characteristics enhance its applicability across a broad range of
industries where precision, durability, and material efficiency are paramount.

The process involves the simultaneous feeding of a feedstock material—typically
in the form of powder or wire—into a melt pool created by a focused high-energy
heat source such as a laser, electron beam, or plasma arc (refer to Fig. 1.4). As
the feedstock material is continuously fed into the localized melt pool through a
nozzle system, it melts and subsequently solidifies upon subsequent cooling, forming
a strong bond with the underlying substrate or previously deposited layers. The
deposition head—typically mounted on a multi-axis robotic manipulator—follows
a predefined toolpath derived from computer-aided design (CAD) data, enabling
the fabrication of complex geometries with high dimensional precision and design
flexibility. Achieving consistent build quality relies heavily on the precise tuning of
key process parameters, including the energy source and material feed rate. This
tight control is essential for ensuring melt pool stability, which directly influences
the microstructural integrity and mechanical properties of the fabricated part.
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Figure 1.4 Overview of the DED process (Dávila et al., 2020)

Nonetheless, the primary limitation of DED processes arises from the in-situ forma-
tion of defects, including lack of fusion, porosity, cracking, and surface roughness.
Some of these defects are shown in Fig. 1.5. Such defects can significantly com-
promise the mechanical properties and overall quality of the final components (Zhu
et al., 2021). The formation of defects is predominantly attributed to factors such as
feedstock quality (e.g., impurities or porosity in the feedstock), suboptimal process
parameters (e.g., laser power and scan speed), as well as the high thermal gradients
and rapid cooling rates inherent in the DED processes (Svetlizky et al., 2021).

1.4 Motivation

This thesis addresses the anomaly detection problem by developing different data-
driven frameworks and demonstrating their effectiveness across two important in-
dustrial applications. Accordingly, the main motivation and objectives of the thesis
can be summarized under these two anomaly detection applications as follows:

Failure Detection in Heavy-duty Vehicles: Early detection of APS failures is
a particularly challenging task that requires extensive domain expertise. In prac-
tice, such failures are often identified through manual inspections during routine
maintenance or in response to customer complaints, typically when air leaks in the
APS are detected. However, this approach is reactive and prone to oversight, as air
leakages may go unnoticed or misdiagnosed. Additionally, it is not uncommon for
maintenance teams to replace fully functional units as a preventive measure or to
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Figure 1.5 Examples of defects in DED processes: (a) defect-free samples, (b) cracks,
(c) porosities, and (d) lack of fusion (Cui et al., 2020)

maintain customer satisfaction, further exacerbating operational costs. Addressing
the complexities and risks associated with APS failures in HDVs necessitates the
development of advanced anomaly detection systems. However, despite its criti-
cal importance, research on detecting APS failures using operational driving data
remains limited. Given the uncertain nature of such failures and the scarcity of
labeled data in the automotive sector, the adoption of modern ML techniques, par-
ticularly semi-supervised approaches, presents a promising direction. In addition,
recent advancements in sequential deep models have demonstrated substantial suc-
cess in anomaly detection across various domains, particularly in fault detection
tasks (Khalid Fahmi et al., 2024; Maldonado-Correa et al., 2024). Leveraging these
architectures to address the specific challenges of APS failure detection could be
especially beneficial, enhancing the reliability of HDVs and advancing the field of
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intelligent transportation systems. Such a framework would not only mitigate the
risks of unplanned vehicle breakdowns but also establish a benchmark for research
and development in predictive maintenance for commercial vehicles.

Defect Detection in DED Processes: The underlying physics of DED pro-
cesses is inherently complex, characterized by the dynamic interaction between the
deposition material and the energy source, coupled with rapid heat transfer phe-
nomena during melting and subsequent solidification (García-Moreno, 2019). These
complexities present significant challenges in developing robust physics-based mod-
els capable of accurately predicting the relationships between process parameters
and defect formation. Consequently, defect identification has traditionally relied
on post-manufacturing inspection techniques, including metallurgical analysis and
X-ray computed tomography (CT). While these techniques effectively identify and
characterize defects, they are costly, time-consuming, and unsuitable for real-time
detection, making them less practical for high-throughput production environments
where immediacy and operational efficiency are crucial. An effective alternative to
post-process inspection involves real-time monitoring of the melt pool, sometimes
coupled with feedback control and in-situ process optimization (Svetlizky et al.,
2021). To this end, thermal cameras and other temperature sensors have been ex-
tensively employed to monitor the thermal distribution and geometry of the melt
pool, both of which are critical indicators of defect formation (Tian et al., 2021). The
close correlation between defect generation and melt pool characteristics creates an
opportunity for predictive modeling utilizing advanced computational techniques,
including machine learning and deep learning. These data-driven techniques have
substantial efficacy in analyzing complex thermal patterns and enabling real-time
adjustments to process parameters, thereby enhancing defect detection and control.
Thus, such data-driven frameworks establish a foundation for the development of
more efficient and robust DED manufacturing systems.

1.5 Main Contributions of the Thesis

As stated in the previous section, this thesis develops different data-driven anomaly
detection frameworks while demonstrating their effectiveness across the two indus-
trial applications: (i) failure detection in APS systems through time series sensor
data and (ii) defect detection in DED processes using thermal imaging. The pro-
posed frameworks leverage a range of data-driven models encompassing supervised,
semi-supervised, and unsupervised learning paradigms, tailored to address domain-
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specific challenges. The primary contributions of this work are as follows:

Problem I: Failure Detection in APS Systems

• The APS failure detection is framed as a semi-supervised anomaly detection
problem, leveraging the robustness of this approach to address the inherent
challenges associated with failure detection. Building on this formulation, we
develop a framework based on two distinct transformer architectures, capital-
izing on the demonstrated effectiveness of transformers in various domains,
including anomaly detection.

• An explainable artificial intelligence-enhanced framework is developed for APS
failure detection, aiming at improving the transparency and reliability of model
predictions in this high-stakes application. The proposed framework hinges
on two explainable artificial intelligence (XAI) models, namely Explainable
Boosting Machine (EBM) and Shapley Additive Explanations (SHAP). The
framework provides interpretable and actionable explanations for the final pre-
dictions while preserving competitive performance comparable to that of black-
box models, effectively balancing predictive accuracy with interpretability.

• To effectively manage APS-related hierarchical operational data, several essen-
tial preprocessing steps are developed and integrated into the failure detection
framework. Specifically, the framework includes the extraction of strategically
engineered features, guided by domain expertise, to act as key indicators for
identifying APS failures.

• The thesis work involved the curation of an APS-related dataset consisting of
30 days of time series operational data from two distinct groups of HDVs: 30
anomalous vehicles with documented APS failures that necessitated compo-
nent replacement, and 110 vehicles classified as healthy based on their clean
maintenance records.

Problem II: Defect Detection in DED Processes

• The formulation of the defect detection task is strategically aligned with the
characteristics of the respective datasets. The problem is framed as semi-
supervised anomaly detection, given the high class imbalance of the corre-
sponding first dataset due to the scarcity of anomalies. Conversely, in the
other defect detection dataset characterized by a nearly balanced class dis-
tribution and a single defect class, the defect detection task is framed as a
supervised classification problem, leveraging the availability of sufficient la-
beled data from both classes.
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• As an essential part of the defect detection framework, a comprehensive fea-
ture extraction strategy is meticulously developed to enhance defect detection
in thermal images. It incorporates key geometric and thermal distribution
features of melt pools, alongside spatial-temporal encodings to capture the
sequential and spatial dynamics of the DED process, equipping the models
with critical contextual information for more accurate and process-aware de-
fect identification.

• Given the high cost and inherent challenges associated with collecting labeled
data for defect detection in DED processes, this work makes a significant
contribution by providing a relatively large and diverse dataset, compared
to the datasets utilized in recent studies (e.g., Park et al. (2025)). Unlike
most existing datasets, which predominantly feature simple geometries such
as thin walls and cuboids, the collected dataset focuses on a more complex
structure—multi-track, multi-layer hollow cylinders. These geometries present
a more challenging detection scenario, as porosities near the inner surface are
particularly critical, posing a heightened risk of crack initiation and reduced
fatigue life (Ahn, 2021; Kim et al., 2024).

1.6 Thesis Structure

The remainder of this thesis is structured as follows:

• Chapter 2: provides a comprehensive review of the existing literature on
anomaly detection, encompassing statistical methods, conventional ML tech-
niques, and state-of-the-art deep learning models. In addition, it reviews data-
driven approaches specifically developed for failure detection in APS systems
and defect detection in DED processes.

• Chapter 3: presents the proposed anomaly detection frameworks while
focusing on the underlying data-driven models, spanning supervised, semi-
supervised, and unsupervised learning paradigms. These models include also
XAI techniques to enhance the interpretability of anomaly detection systems.

• Chapter 4: introduces the two industrial application domains: the auto-
motive APS system and the additive manufacturing-based DED process. A
detailed description of each system is provided, followed by a thorough ex-
planation of the data preparation and preprocessing strategies applied to the
respective datasets.
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• Chapter 5: presents the experimental results of the proposed anomaly detec-
tion frameworks, along with detailed discussions. It covers failure detection in
APS systems and defect detection in DED processes.

• Chapter 6: provides the concluding remarks and future research directions
in data-driven anomaly detection and explainable AI in industrial systems.

1.7 Publications

The work of this thesis resulted in the following publications:

• Farea, S. M., Mumcuoglu, M. E., & Unel, M. (2025). An explainable AI
approach for detecting failures in air pressure systems. Engineering Failure
Analysis, 173, 109441.

• Mumcuoglu, M. E., Farea, S. M., Unel, M., Mise, S., Unsal, S., Cevik, E.,
Yilmaz, M., & Koprubasi, K. (2024). Detecting APS failures using LSTM-AE
and anomaly transformer enhanced with human expert analysis. Engineering
Failure Analysis, 165, 108811.

• Farea, S. M., Javidrad, H., Unel, M., & Koc, B. (2025). In-situ defect
detection in directed energy deposition using thermal imaging and machine
learning. Progress in Additive Manufacturing. (Minor Revision)

• Farea, S. M., Mumcuoglu, M. E., Unel, M., Mise, S., Unsal, S., Cevik, E.,
Yilmaz, M., & Koprubasi, K. (2024). Prediction of failures in air pressure
system: A semi-supervised framework based on transformers. In 2024 IEEE
22nd International Conference on Industrial Informatics (INDIN), (pp. 1–5).

• Farea, S. M., Unel, M., & Koc, B. (2024). Defect prediction in directed
energy deposition using an ensemble of clustering models. In 2024 IEEE 22nd
International Conference on Industrial Informatics (INDIN), (pp. 1–6).

• Mumcuoglu, M. E., Farea, S. M., Unel, M., Mise, S., Unsal, S., Cevik, E.,
Yilmaz, M., & Koprubasi, K. (2024). Air pressure system failures detection
using LSTM-autoencoder. In 2024 IEEE International Workshop on Metrology
for Automotive (MetroAutomotive), (pp. 82–87).

• Ozdek, U. I., Tonkaz, Y. K., Farea, S. M., & Unel, M. (2025). Semi-
supervised anomaly detection in directed energy deposition using thermal im-
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ages. In 22nd International Conference on Informatics in Control, Automation
and Robotics (ICINCO). (Under Review)

• Ayyildizli, B., Balota, B., Tatari, K., Farea, S. M., & Unel, M. (2025).
Anomaly detection in directed energy deposition: A comparative study of
supervised and unsupervised machine learning. In 22nd International Confer-
ence on Informatics in Control, Automation and Robotics (ICINCO). (Under
Review)
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2. LITERATURE REVIEW

This chapter provides a foundational review of existing approaches to anomaly de-
tection, spanning statistical methods, machine learning (ML), and deep learning
(DL) techniques. It further contextualizes the scope of this thesis by reviewing ex-
isting research in the two industrial applications: failure detection in air pressure
systems (APS) and defect detection in directed energy deposition (DED) processes.
By examining the literature landscape, this chapter establishes the motivation and
background for the anomaly detection frameworks developed in the next chapter.

2.1 Anomaly Detection

Anomaly detection has widespread applications across various domains, leading to
the publication of numerous review studies. For example, Chandola et al. (2009) re-
viewed shallow anomaly detection methods, while Pang et al. (2021) and Landauer
et al. (2023) focused on DL-based anomaly detection techniques. A broader review,
covering both shallow and deep anomaly detection approaches, was conducted by
Ruff et al. (2021). Additionally, some reviews focused on specific data types, such as
time series anomaly detection (Braei & Wagner, 2020; Zamanzadeh Darban et al.,
2024), while others have explored anomaly detection applications in specialized do-
mains, e.g., wireless sensor networks (Xie et al., 2011). This extensive anomaly
detection literature can be divided into three broad categories: statistical, classical
ML, and DL techniques. In this section, we will summarize the key algorithms in
each category, with a special emphasis on DL techniques.

2.1.1 Statistical Techniques

Statistical techniques are based on the assumption that normal data falls into high-
probability regions while abnormal data belongs to low-probability regions. There-
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fore, statistical techniques, in general, attempt to estimate the data-generating dis-
tribution. Based on that estimated distribution, data points with low probability
are deemed anomalies. The main techniques in this category are Gaussian models,
boxplots, histograms, and kernel density estimation.

Gaussian Models (GMs): GMs assume that the underlying distribution is Gaus-
sian. Then, the distance (e.g., Euclidean or Mahalanobis distance) between the data
point and sample mean is used as the anomaly score that any data point that is
more than a predefined threshold far from the sample mean is labeled as an anomaly.
This threshold can be defined based on some validation data. As an example, a GM
was proposed by Zamouche et al. (2023) to detect the anomalies among the basic
safety messages coming from connected vehicles.

Boxplots: As another statistical techniques, boxplots calculate the first quartile
(Q1), second quartile (median), and third quartile (Q3), with the difference between
Q1 and Q3 termed as the interquartile range (IQR). Then, anomalies are the data
points that are 1.5×IQR higher than Q3 or 1.5×IQR lower than Q1. This simple
technique was utilized by Sajid et al. (2021) to detect defects in concrete plates.

Histogram-based Approaches: Some histogram-based approaches were also used
in the literature for anomaly detection, one of which is Kind et al. (2009). After
reconstructing the histogram of the data, the anomaly score for any data point can
be deduced from the height of the bin in which that data point falls.

Kernel Density Estimation (KDE): KDE is a more sophisticated statistical
anomaly detection approach. This method estimates the underlying density function
of the data through a linear combination of kernel functions, each of which is centered
at one data point. Next, any data point that lies in the low-probability regions is
declared as an anomaly. A tricky difficulty associated with KDE is the choice of
its bandwidth. To remedy this problem, Zhang et al. (2018) proposed an adaptive
KDE where the bandwidth for each point depended on its distance from its k nearest
neighbors. Lang et al. (2022) utilized KDE for anomaly detection in semiconductor
fabrication processes.

Limitations of Statistical Techniques: The major drawback to GMs, though a
simple and intuitive approach, is the fact that the underlying distribution of most
practical, complex data is not Gaussian. In contrast, boxplot-based, histogram-
based, and KDE-based anomaly detection techniques are non-parametric techniques;
that is, they do not assume any specific distribution, and that makes them more
practical than the parametric GMs. However, the main disadvantage of all statistical
approaches is their inefficiency with high-dimensional data.
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2.1.2 Classical ML Techniques

The algorithms in this category can be further divided into four subcate-
gories: distance-based, clustering-based, classification-based, and reconstruction-
based techniques.

2.1.2.1 Distance-based Techniques

The distance-based techniques are relatively straightforward and depend on the
assumption that the normal data points constitute dense neighborhoods in contrast
to anomalies, which are far away from their closest neighbors.

The simplest distance-based technique is the k-nearest neighbors (KNN) algorithm.
In this algorithm, the distance between the data point and its k-th nearest neigh-
bor is defined as its anomaly score. Al Samara et al. (2023) used this technique to
detect outliers in wireless sensor networks. As another well-known distance-based
anomaly score, the local outlier factor (LOF) measures the local density of a data
point with respect to the local densities of its k nearest neighbors; this local density
of a data point is inversely proportional to the distance to its k-th nearest neighbor.
Accordingly, such an anomaly measure incorporates information about the local
neighborhood of the data point. Pokrajac et al. (2007) applied this anomaly score
to video anomaly detection. Although KNN and LOF are easy-to-implement unsu-
pervised methods, they suffer from high computational complexity as they involve
finding the k-th nearest neighbors for each data point.

Isolation forest (iForest), which is an ensemble of binary trees (Liu et al., 2008), and
its variant (Hariri et al., 2019) are considered as distance-based anomaly detection
algorithms as well. iForest tries to isolate all the data points in the hope that
anomalies will be easily isolated. Thus, anomalies normally lie near the root node
of the binary trees on average. For each data point, its anomaly score is inversely
proportional to the path length from the root node to the terminating node.

2.1.2.2 Clustering-based Techniques

Clustering is a well-established unsupervised subfield. In the anomaly detection
literature, many studies leveraged different clustering algorithms – e.g., K-means,
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Gaussian mixture models (GMM), self-organizing maps (SOM), and density-based
spatial clustering of applications with noise (DBSCAN). These anomaly detection
techniques are based upon the assumption that anomalies are not clustered together
as opposed to normal data, which normally belongs to dense clusters.

For instance, Wu et al. (2023) applied GMM to detect anomalous sounds from indus-
trial machines whilst Ramadas et al. (2003) used instead SOM for detecting network
intrusions. Further, Ijaz et al. (2020) detected outliers in a cervical cancer data set
using DBSCAN. One key disadvantage of these algorithms is that they are origi-
nally optimized for clustering, not anomaly detection. Moreover, anomalies in some
applications tend to form their clusters, which violates the underlying assumption.

2.1.2.3 Classification-based Techniques

One-class Support Vector Machine (One-class SVM) and Support Vector Data De-
scription (SVDD) have been widely used in the literature for anomaly detection.
While one-class SVM searches in the kernel space for the hyperplane separating the
data from the origin with the maximum margin, SVDD searches for the hypersphere
with the minimum radius that encloses the data in the kernel space. Yet, both algo-
rithms are equivalent in the case of the Gaussian kernel. These one-class classifica-
tion algorithms hinge upon the assumption that normal data comes from one class;
hence, the learned boundary is used to separate the normal data from anomalies.
Hejazi & Singh (2013) applied one-class SVM to detect fraudulent transactions in
credit cards. SVDD, on the other hand, was implemented by Zhang et al. (2016) to
detect anomalous objects and behaviors in videos.

The limitation of classification techniques is their sensitivity to the existence of
anomalies in the training data. To overcome this limitation, they are trained in a
one-class semi-supervised fashion where the training data includes only normal data.

2.1.2.4 Reconstruction-based Techniques

Principal component analysis (PCA) and its variants, like kernel PCA and robust
PCA, are the key shallow reconstruction-based algorithms. Their underlying as-
sumption is that normal data, contrary to anomalies, can be efficiently reconstructed
from a reduced low-dimensional space. In accordance with that assumption, the re-
construction error between a data point and its reconstructed version is considered
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as its anomaly score. For instance, Jablonski et al. (2015) utilized PCA for anomaly
detection in hyperspectral images. Nonetheless, the main limitation of using PCA
and its variants for anomaly detection is that they are optimized for dimension
reduction rather than anomaly detection.

2.1.2.5 Limitations of Classical ML Techniques

ML anomaly detection techniques are inefficient in dealing with high-dimensional
data, including images and time series. That is due to their shallow nature and
inherent dependence on handcrafted features. The common solution for that limita-
tion is deep learning, which has been proven to deal efficiently with high-dimensional
data without any prior feature extraction step.

2.1.3 DL Techniques

Recently, many DL approaches have been proposed for anomaly detection. These ap-
proaches can be categorized into four subcategories: deep feature extraction-based,
reconstruction-based, one-class classification-based, and self-supervised learning-
based techniques.

2.1.3.1 Deep Feature Extraction-based Techniques

Since shallow anomaly detection methods fail to deal with high-dimensional data,
the naïve extension is by using deep learning solely for feature extraction, on top of
which a shallow anomaly detection method is used to produce anomaly scores for
the data points.

Andrews et al. (2016) combined transfer learning with one-class SVM for anomaly
detection in the benchmark MNIST dataset (Lecun et al., 1998). One-class SVM was
trained on the features extracted from a pre-trained VGG. Similarly, a pre-trained
ResNet-50 was used by Pang et al. (2020) as a feature extractor; then, a fully
connected single-hidden-layer neural network was trained based on these features
to produce the anomaly score. In contrast, one-class SVM was trained by Ribeiro
et al. (2020) using autoencoder-extracted features from video data.
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The main drawback of these methods is that representation learning is completely
independent from anomaly scoring. As a result, the learned representations might
not be optimized for anomaly detection; in other words, these representations might
not be sufficiently expressive to enable the discrimination between normal and ab-
normal data.

2.1.3.2 Reconstruction-based Techniques

Autoencoders (AE) and generative adversarial networks (GAN) are the key tech-
niques in this subcategory. They are normally trained using only normal data (i.e.,
one-class semi-supervised learning) so that AE (or GAN) learns the regularities of
normal data. During the test stage, the reconstruction error is used as the anomaly
score. Similar to PCA-based techniques, the underlying assumption is that normal
data is easy to reconstruct from the latent space, whereas anomalies are poorly
reconstructed as they are not seen during training.

Bergmann et al. (2019) applied a convolutional AE, together with other anomaly
detection methods, to the MVTec anomaly detection dataset. This dataset is recog-
nized as an anomaly detection benchmark comprising defect-free images and some
images with different defects. Semi-supervised learning was adopted in this work,
where the training data consisted of only defect-free images. Tsai & Jen (2021)
utilized a regularized convolutional AE to detect anomalies (i.e., defects) among
images of liquid crystal displays and printed circuit boards.

The previous works dealt with image data, for which a convolutional architecture
was adopted as the underlying AE architecture. For sequence data, on the other
hand, a recurrent architecture is normally proposed so as to capture the intrinsic
temporal dependence in sequence data. Zhang et al. (2019) proposed a convolutional
recurrent AE to detect anomalies in multivariate time series collected from a power
plant. First, signature matrices were generated from the multivariate time series.
Next, these matrices were fed into the convolutional AE, and an attention-based
convolutional long short-term memory (LSTM) network was applied in the latent
space to capture the temporal dependencies. The reconstruction errors between the
original signature matrices and their reconstructed signature matrices were com-
puted to provide anomaly scores. Similarly, Park et al. (2018) built a variational
AE based on LSTM, a recurrent neural network (RNN) variant, to model time de-
pendencies in multivariate time series. On the other hand, Su et al. (2019) combined
a variational AE with another RNN variant—gate recurrent unit (GRU)— to detect
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anomalies in two aerospace-related multivariate time series and a third multivariate
time series collected from a server machine. Kieu et al. (2019) used the median
of the reconstruction errors of recurrent AE ensembles as the anomaly score. In
contrast, Lu et al. (2017) integrated a denoising AE with an RNN and applied their
proposed method to different sequential datasets.

Another research direction in AE-based methods is through imposing a probabilistic
model on AE’s latent space. Abati et al. (2019) estimated the probability density of
the latent representations. Their overall training objective was to minimize the re-
construction error while maximizing the log-likelihood of the latent representations.
At test, the anomaly score was computed as the combination of the reconstruction
error and negative log-likelihood. Likewise, Zong et al. (2018) implemented a GMM
to estimate the density of the latent representations, where the parameters of the
GMM were learned through a separate neural network. Therefore, the parameters of
AE and GMM were learned simultaneously in an end-to-end fashion. The anomaly
score was calculated from the sample energy. Unlike the previous unsupervised
methods, Zhou et al. (2021) followed a supervised paradigm and implemented a
binary classifier on the hidden representations of an LSTM-based AE.

As one of the earliest works in GAN-based anomaly detection, Schlegl et al. (2017)
proposed a GAN for anomaly detection in tomography images of the retina. How-
ever, at test time, they implemented a backpropagation-based optimization to map
the test image into the latent space of the trained generator. Likewise, Deecke et al.
(2019) used a GAN for anomaly detection in image data while conducting an it-
erative gradient-based search for a latent variable in the latent space at test time.
Unlike Schlegl et al. (2017), only the reconstruction error between the test image
and its reconstructed version was used as the anomaly score. One obvious short-
coming of the aforesaid studies is the computationally expensive optimization during
testing. As fast alternatives, Zenati et al. (2019,1) adopted a bidirectional GAN.
The bidirectional GAN involves an additional encoder, along with the generator and
discriminator, to perform the mapping from the input space into the latent space.
Similar to bidirectional GAN, Schlegl et al. (2019) proposed a two-step approach;
the first step involved training a GAN while the second step involved training an
additional encoder based on the already trained generator.

Additionally, RNN-based GANs were suggested in the literature to process sequence
data. Li et al. (2019) proposed an LSTM-based GAN (i.e., LSTM was used as the
underlying architecture for the generator and discriminator) for anomaly detection in
time series. At test time, a combination of the discriminator-produced probability
of the test sample and the reconstruction error between the test sample and its
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generator-reconstructed version was used as the anomaly score. However, testing
was computationally expensive since it involved an optimization problem to search
for the closest latent variable to the test sample. Apart from the previous GAN-
based methods, which were based on the reconstruction error, Liang et al. (2021)
proposed a probabilistic GAN-based method in which the discriminator-produced
probabilities of signature matrices were used as their anomaly scores.

The limitation of reconstruction-based approaches is that they are not directly opti-
mized for anomaly detection. While AE-based methods are optimized for dimension
reduction, GAN-based methods are optimized for data generation. GANs are also
renowned for their efficiency in estimating the distribution of high-dimensional, com-
plex data. However, they suffer from instability during training due to vanishing
gradients, which leads to their failure to converge. Some researchers suggested using
Wasserstein GAN instead, claiming it was more stable than standard GAN.

2.1.3.3 One-class Classification-based Techniques

One-class classification is one of the most efficient anomaly detection approaches.
As the prime work in this direction, Ruff et al. (2018) proposed deep SVDD, a deep
learning extension of standard SVDD, for unsupervised anomaly detection. Deep
SVDD trains a deep neural network to transform the majority of the network outputs
into a hypersphere with minimum volume (i.e., deep SVDD solves the optimization
problem of standard SVDD using deep neural networks). This hypersphere can be
considered as the discriminative boundary between normal and abnormal data. The
same research team extended deep SVDD into the semi-supervised setting where
some portions of labeled data, both normal and abnormal data, were available in
addition to the unlabeled data (Ruff et al., 2019,2). Besides the objective of the un-
supervised deep SVDD, the semi-supervised version aimed to correctly discriminate
the labeled anomalies from the labeled normal data as well.

2.1.3.4 Self-supervised Learning-based Techniques

Many researchers have proposed self-supervised approaches for anomaly detec-
tion. Given unlabeled data, self-supervision involves creating an auxiliary classi-
fication/prediction task with corresponding pseudo-labels in the hope of learning
expressive representations for anomaly detection through this auxiliary task. Ac-
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cordingly, normal data is expected to be consistent with this auxiliary task compared
to anomalies, which are most likely to be inconsistent with the task.

For static image data, the auxiliary task can be multiclass classification of differ-
ent geometric transformations (e.g., flipping and rotation) which have already been
applied to the data. Each transformation is considered a pseudo-class. Golan &
El-Yaniv (2018) trained a deep neural network to perform this auxiliary classifica-
tion using only normal images. At inference, the test image underwent the same
transformations, and its anomaly score was induced from the softmax probabili-
ties of the trained neural network. Wang et al. (2019) adopted a similar approach
but in an unsupervised fashion. Although both normal and abnormal data were
included during training, the model favored the normal data, as the majority, over
anomalies during training. In contrast, the auxiliary task used by Li et al. (2021)
was a binary classification between normal images and synthetic abnormal images.
These synthetic images were generated by pasting randomly cut patches into ran-
dom locations in those normal images. Yi & Yoon (2020) combined a deep SVDD
with self-supervision to improve its efficiency for patch-based anomaly detection. As
the auxiliary task, they trained a deep network to predict the relative position of
a random patch with respect to one of its eight neighbor patches in a 3-by-3 grid.
Nonetheless, the above-mentioned geometric transformations are appropriate only
for image data. Thus, Bergman & Hoshen (2020) generalized these transformations
into affine transformations, which are applicable even for non-image data.

In sequential data, the auxiliary task is normally defined as a prediction of a future
sample based on past samples. Contrary to normal data, which is assumed to be easy
to predict, anomalies are assumed to be unpredictable. Liu et al. (2018) followed this
approach for anomaly detection in video data; they implemented U-net to predict
a future frame from past frames, and the anomaly score was calculated based on
the discrepancy between the predicted frame and its ground truth. In a similar
manner, Munir et al. (2019) used convolutional neural networks (CNN) to predict
the next time stamp of a time series based on the past time stamps in a predefined
horizon. Unlike these studies, Ren et al. (2019) conducted a binary classification
to discriminate anomalies from normal data using a CNN trained on fast Fourier
transform-based features extracted from time series. However, the anomalies were
synthetically created while the real unlabeled data was considered normal data.

Like reconstruction-based techniques, the limitation of self-supervised learning-
based methods is that the learned representations are optimized for auxiliary tasks
rather than anomaly detection. To sum up, a summary of the presented anomaly
detection literature is provided in Table 2.1.
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2.2 APS Failure Detection

The detection of failures in the air pressure system (APS) has been widely explored
through a range of approaches, including traditional methods, ML, and DL ap-
proaches. This section categorizes the existing research in this direction into these
three methodological domains and presents a comparative evaluation of their re-
spective strengths and limitations.

2.2.1 Traditional Techniques

Traditional approaches for detecting APS failures primarily utilize rule-based sys-
tems, expert-driven methodologies, and statistical techniques. While these methods
can be effective, particularly when supported by well-established domain expertise,
they often lack the adaptability and predictive capabilities offered by ML and DL
models.

For instance, Fan et al. (2015a) introduced the Consensus Self-Organizing Model
(COSMO) for APS failure detection in a fleet of Volvo buses. They later enhanced
this approach by integrating COSMO with expert-driven techniques (Fan et al.,
2015b) and incorporating echo state networks, a recurrent neural network (RNN)
variant, to improve predictive accuracy and enhance failure detection (Fan et al.,
2016). In a different study, Nowaczyk et al. (2013) proposed a fuzzy rule-based
model for detecting APS failures in Volvo trucks, benchmarking its performance
against ML algorithms such as decision trees and random forests.

2.2.2 ML Techniques

Unlike traditional approaches, ML techniques excel at uncovering intricate, complex
patterns within data, enabling them to make accurate predictions and classifications.
As a result, both classical ML algorithms (e.g., k-nearest neighbors) and ensemble-
based methods (e.g., Random Forest) have been extensively employed in APS failure
detection.

A significant portion of research in this category has focused on APS failure detection
using the publicly available Scania Trucks dataset (Scania CV AB, 2016). Various
ML classifiers have been applied, including k-nearest neighbors (KNN) (Costa &
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Nascimento, 2016; Ozan et al., 2016; Rafsunjani et al., 2019), Naive Bayes (Rah-
man & Sumathy, 2024), logistic regression (Hussain et al., 2024; Muideen et al.,
2023; Rahman & Sumathy, 2024), Support Vector Machine (SVM) (Costa & Nasci-
mento, 2016; Rafsunjani et al., 2019; Selvi et al., 2022; Syed et al., 2020), XGBoost
(Cerqueira et al., 2016; Hussain et al., 2024; Lokesh et al., 2020), and Random For-
est (RF) (Cerqueira et al., 2016; Gondek et al., 2016; Jose & Gopakumar, 2019;
Ranasinghe & Parlikad, 2019). Nevertheless, this dataset presents challenges due
to severe class imbalance and missing values. To mitigate the class imbalance issue,
researchers have employed rebalancing techniques such as the Synthetic Minority
Over-sampling Technique (SMOTE). Additionally, missing data has been addressed
using various imputation strategies, including median imputation and KNN-based
methods.

Despite these efforts, a significant limitation shared by studies utilizing the Scania
Trucks dataset lies in the anonymization of feature names, implemented to protect
proprietary information. While this preserves data confidentiality, it substantially
hinders model interpretability by obscuring the semantic meaning of individual fea-
tures. As a result, it becomes challenging to assess the relevance of specific inputs in
the model’s decision-making process or to validate their contributions using domain
knowledge—an essential aspect for gaining trust in safety-critical applications.

Beyond the Scania dataset, Prytz et al. (2013,1) explored APS failure prediction
in Volvo trucks, applying decision trees, RF, and KNN classifiers. To handle class
imbalance in their dataset, they also leveraged the SMOTE technique. Meanwhile,
Panda & Singh (2023) investigated APS failure detection in medium-duty vehicles,
utilizing decision tree classifiers, both with and without boosting, on a dataset con-
sisting of diagnostic trouble codes in addition to onboard operational data.

2.2.3 DL Techniques

Various DL techniques have also been applied to APS failure detection, capitalizing
on their proven ability to automatically extract hierarchical and complex features
from raw data. In contrast, traditional ML methods typically depend on manual
feature engineering, which is often labor-intensive and potentially less effective. As a
result, DL approaches offer significant advantages when analyzing large-scale, high-
dimensional datasets.

Rengasamy et al. (2020) investigated the use of DL classifiers based on different
deep neural network architectures for APS failure detection in the Scania Trucks
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dataset. The deep architectures include multilayer perceptron (MLP), CNN, and
RNN. In contrast, Fan et al. (2016) applied echo state networks, a rapid variant of
RNNs, for identifying APS failures in Volvo bus fleets.

2.2.4 Limitations of APS Failure Detection Literature

The main limitations in the current body of research on APS failure detection can
be summarized as follows:

• Problem formulation: A key limitation is the prevalent formulation of the
problem as a supervised classification task. This approach presumes that there
exists only a single class of APS failures. However, APS failures are inherently
heterogeneous, as failures in different components can lead to distinct failure
types. For example, a malfunctioning pressure sensor results in a failure mode
that differs from one caused by a mechanical valve breakdown. Due to this
heterogeneity, the failure instances within the training dataset do not compre-
hensively represent all possible failure classes. A more suitable approach is to
frame APS failure detection as a semi-supervised learning problem. In this
paradigm, models are trained exclusively on normal (i.e., healthy) data, en-
abling them to learn the normal behavior and distribution. During inference,
these models reconstruct normal data with high accuracy while struggling to
do the same for anomalous data. The resulting reconstruction errors serve as
anomaly scores, effectively identifying failures. Furthermore, by relying solely
on normal data for training, this approach inherently addresses the issue of
class imbalance, a common challenge in failure detection tasks.

• Model explainability: Another significant limitation is the heavy reliance
on black-box ML/DL models. Although these models often deliver strong
predictive performance, their lack of interpretability poses a major challenge.
The opaque nature of these models makes it difficult for manufacturers and
end-users to comprehend the reasoning behind their predictions, potentially
diminishing confidence in the obtained predictions.

Conversely, explainable artificial intelligence (XAI) has gained traction in vari-
ous automotive applications, offering enhanced transparency and interpretabil-
ity. For example, in the context of autonomous vehicle localization, Char-
roud et al. (2023) applied explainable AI techniques, including SmoothGrad
and VarGrad, to generate gradient-based explanations for their deep learn-
ing model. Li et al. (2023) utilized Shapley Additive Explanations (SHAP), a
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well-known XAI technique, to enhance the interpretability of their lane change
detection model. On the other hand, Mohanty & Roy (2023) leveraged SHAP
to gain insights into the key factors influencing energy consumption at elec-
tric vehicle charging stations. Despite the increasing adoption of XAI in the
automotive field, its integration into APS failure detection remains notably
limited. As highlighted in Table 2.2, there is a noticeable gap in the literature
when it comes to leveraging XAI techniques to improve model explainability
in this domain.

Ahmad Khan et al. (2024) explored the use of XAI techniques, specifi-
cally LIME (Local Interpretable Model-agnostic Explanations) (Ribeiro et al.,
2016,1) and SHAP (Lundberg & Lee, 2017), to explain the predictions of
black-box models applied to APS failure detection in the Scania Trucks
dataset. However, due to proprietary constraints, the dataset’s features are
anonymized, significantly limiting the interpretability and reliability of the
generated explanations. Without knowledge of the actual feature semantics,
understanding the influence of specific inputs on model decisions becomes chal-
lenging, ultimately reducing the practical value of these explanations.

2.3 DED Defect Detection

A wide range of statistical, ML, and DL approaches have been explored in the
literature for defect detection in DED processes. A substantial number of these
studies have focused on detecting porosities in laser-based DED systems, leveraging
thermal images of melt pools as a primary data source. Additionally, most research
efforts have been directed toward Ti-6Al-4V components.

Statistical Approaches: Among statistical methods, the Spatial-Temporal Con-
ditional Autoregressive (STCAR) model was employed by Guo et al. (2020), while
Dual Control Charting (DCC), in combination with multilinear principal component
analysis, was utilized by Khanzadeh et al. (2018) to predict porosity in Ti-6Al-4V-
deposited parts based on thermal melt pool images.

Compared to statistical techniques, ML and DL methods have demonstrated supe-
rior performance across various domains, including defect detection. Their ability to
process large-scale, high-dimensional image data gives them a significant advantage
over statistical approaches. As a result, a substantial portion of existing research has
focused on leveraging ML and DL techniques for defect detection in DED processes.
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ML Approaches: For example, Khanzadeh et al. (2018) applied multiple ML
models—including linear and quadratic discriminant analysis, decision trees, KNN,
and SVM—for in-situ porosity detection through thermal imaging of the melt pool.
Similarly, Shin et al. (2023) utilized artificial neural network (ANN), KNN, and SVM
classifiers to identify pores in single-layer 316L steel specimens. Their approach
integrated thermal data from a pyrometer with melt pool images captured by a
charge-coupled device (CCD) camera to enhance accuracy. On the other hand, Chen
& Moon (2024) employed multiple ML classifiers, including SVM, Random Forest,
and XGBoost, for defect detection in wall structures using data collected from a
CCD camera and a microphone. Additionally, Assad et al. (2024) implemented
logistic regression, KNN, SVM, and MLP models to identify process instabilities in
thin 316L steel walls based on high-speed camera data. On a different front, Gaja
& Liou (2018) developed supervised classifiers using logistic regression and ANN to
detect porosities and cracks through acoustic signals obtained from acoustic emission
sensors mounted on the fabricated part.

DL Approaches: DL techniques have also been widely utilized to address defect de-
tection in additive manufacturing. Various studies have explored CNNs and hybrid
deep learning models for this purpose. For instance, Zhang et al. (2019) developed
a compact CNN-based classifier to detect porosity in sponge titanium parts using
melt pool images captured by a high-speed digital camera. Similarly, Cui et al.
(2020) proposed a CNN classifier for identifying multiple defect types, including
cracks, porosity, and lack of fusion. Tian et al. (2020) introduced a VGG16-based
classifier for porosity detection in thin-wall structures manufactured via Laser En-
gineered Net Shaping (LENS). Their approach utilized thermal images of the melt
pool acquired through a built-in pyrometer. Expanding on CNN applications, Patil
et al. (2023) evaluated multiple CNN architectures—AlexNet, VGG16, GoogleNet,
and ResNet—to detect rough texture and voids in Inconel 625 structures, including
horizontal and vertical wall structures as well as cuboid components. In another
study, Tian et al. (2021) integrated RNNs with CNN classifiers to detect poros-
ity in titanium samples by fusing thermal data from a pyrometer and a thermal
camera. Beyond image-based defect detection, Chen et al. (2023) employed a CNN-
based classifier to identify pores and cracks in wall structures using acoustic signal
analysis. Additionally, Dong et al. (2023) addressed issues related to size drift and
dimensional inconsistencies by implementing a ResNet18-based model to predict
deposited layer sizes. Their approach incorporated process parameters, melt pool
images, and temperature data to enhance predictive accuracy.

Semi-supervised/Unsupervised Approaches: Beyond the supervised ap-
proaches discussed earlier, semi-supervised and unsupervised techniques have also
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been explored in the literature for defect detection in DED processes. These meth-
ods offer advantages in scenarios where labeled data is limited or unavailable. For
instance, Zheng et al. (2024) introduced a semi-supervised framework utilizing a
convolutional autoencoder followed by a classification head to detect porosity in
30CrNi2MoVA specimens based on melt pool images. In the realm of unsuper-
vised learning, Gaja & Liou (2017) applied K-means clustering in combination with
PCA for dimensionality reduction to identify cracks and porosity in titanium- and
steel-based alloys using acoustic signals. Similarly, García-Moreno (2019) employed
SOM, another unsupervised clustering algorithm, to detect porosity in aluminum-
based manufactured parts. Building on the use of SOM, Khanzadeh et al. (2016,1,1)
developed a porosity detection methodology that analyzed thermal images of melt
pools in titanium alloy-based single-track thin walls. More recently, Farea et al.
(2024) proposed an ensemble approach using DBSCAN (Density-Based Spatial Clus-
tering of Applications with Noise) to identify defects in Inconel 718 samples based
on thermal melt pool images. These semi-supervised and unsupervised strategies
demonstrate the potential of clustering and feature-learning techniques in defect de-
tection, particularly when labeled data is scarce. An overall summary of all studies
reviewed in this section is presented in Table 2.3.
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Table 2.3 Summary of DED defect detection literature (S: supervised learning, SS:
semi-supervised learning, US: unsupervised learning)

Study Heat
source

Feedstock
type

Feedstock
material

Sensor Defect type Learning
scheme

Technique

Guo et al.
(2020)

Laser Powder Ti-6Al-4V Pyrometer Porosity Statistical STCAR

Khanzadeh
et al. (2018)

Laser Powder Ti-6Al-4V Pyrometer Porosity Statistical DCC

Khanzadeh
et al. (2018)

Laser Powder Ti-6Al-4V Pyrometer Porosity S ML classifiers

Gaja & Liou
(2018)

Laser Powder Ti-6Al-4V
H13 steel

AE sensors * Cracks
Porosity

S ML classifiers

Shin et al.
(2023)

Laser Powder 316L steel Pyrometer
CCD camera

Porosity S ML classifiers

Chen & Moon
(2024)

Laser Powder MS C300 Microphone
CCD camera

Cracks
Porosity

S ML classifiers

Assad et al.
(2024)

Laser Wire 316L steel High-speed
camera

Process
instabilities

S ML classifiers

Zhang et al.
(2019)

Laser Powder Titanium High-speed
camera

Porosity S DL classifier

Cui et al.
(2020)

Laser Powder Stainless steel
Ti-6Al-4V
AlCoCrFeNi
Inconel 718

Pyrometer Cracks
Porosity
Lack of fusion

S DL classifier

Tian et al.
(2020)

Laser Powder Ti-6Al-4V Pyrometer Porosity S DL classifier

Tian et al.
(2021)

Laser Powder Ti-6Al-4V Pyrometer
IR camera

Porosity S DL classifiers

Patil et al.
(2023)

Laser Powder Inconel 625 Camera Porosity
Rough texture

S DL classifier

Chen et al.
(2023)

Laser Powder C300 steel Microphone Porosity
Cracks

S DL classifier

Dong et al.
(2023)

Laser Powder CoCrNi Pyrometer Layer size S DL classifier

Zheng et al.
(2024)

Laser Powder 30CrNi2MoVA CCD camera Porosity SS DL classifier

Gaja & Liou
(2017)

Laser Powder Ti-6Al-4V
H13 steel

AE sensors * Cracks
Porosity

US ML clustering

Khanzadeh
et al. (2016)

Laser Powder Ti-6Al-4V Pyrometer Porosity US ML clustering

Khanzadeh
et al. (2017)

Laser Powder Ti-6Al-4V Pyrometer Porosity US ML clustering

Khanzadeh
et al. (2019)

Laser Powder Ti-6Al-4V Pyrometer Porosity US ML clustering

García-Moreno
(2019)

Laser Powder Al-5083 Camera Porosity US ML clustering

* In this table, AE sensors refer to acoustic emission sensors
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3. METHODOLOGY

This chapter presents the methodological foundation of the proposed anomaly detec-
tion frameworks. It begins with a high-level overview of a generic anomaly detection
framework, outlining its principal components and flow. It then delves into the core
modeling module, which, in this thesis, involves a range of black-box machine learn-
ing (ML) techniques as well as explainable AI methods, leading to multiple frame-
works. These techniques encompass supervised, semi-supervised, and unsupervised
paradigms, each tailored to specific anomaly detection scenarios.

3.1 Overview of Anomaly Detection Framework

An overview of the proposed anomaly detection framework is presented in Fig. 3.1.
This thesis focuses on two distinct application domains: automotive systems and ad-
ditive manufacturing. In the context of automotive systems, anomalies are detected
using time series data acquired from various onboard sensors, as will be elaborated
in the following chapter. Conversely, anomaly detection in additive manufacturing
is performed through thermal images of the melt pool.

The general framework ideally comprises three sequential stages: (i) data prepara-
tion and preprocessing, (ii) anomaly detection, and (iii) interpretability. The data
preparation and preprocessing stage involves essential steps such as missing value
imputation, segmentation, and feature extraction—each tailored to the character-
istics and requirements of the specific dataset. Detailed procedures for this stage
are presented in the subsequent chapter. The second stage entails the employment
of data-driven, black-box models for anomaly detection. These models span super-
vised, semi-supervised, and unsupervised learning paradigms, selected according to
the nature of the detection task and the availability of labeled data. Finally, the
third stage introduces interpretability into the pipeline through both ante-hoc and
post-hoc explainable AI (XAI) techniques, enhancing transparency and supporting
trust in the model predictions. Ante-hoc models, such as Explainable Boosting
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Figure 3.1 Overview of anomaly detection framework

Figure 3.2 Data-driven models across the two industrial applications

Machines (EBM), integrate detection and interpretation simultaneously, whereas
post-hoc methods provide explanations after model training1. Fig. 3.2 illustrates
the full spectrum of the data-driven models utilized in this thesis, indicating their
learning scheme and specific application to each of the two industrial problems. The
following sections provide an in-depth discussion of these data-driven techniques.

3.2 ML Models for Anomaly Detection

As illustrated in Fig. 3.1, the ML models employed for anomaly detection span across
three primary learning paradigms: supervised, semi-supervised, and unsupervised

1It is also noted that some of the anomaly detection frameworks proposed in this thesis do not include an
interpretability module.
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learning. The supervised models include Support Vector Machine (SVM), Random
Forest, and XGBoost. Although EBM is also a supervised model, it is discussed
separately in Section 3.3 due to its nature as a transparent, glass-box model. The
semi-supervised category encompasses transformer-based architectures, as well as
models like one-class SVM and Isolation Forest (iForest), which—depending on the
training configuration—can also operate in fully unsupervised settings. In addition
to these, the unsupervised models include DBSCAN (Density-Based Spatial Clus-
tering of Applications with Noise) and t-SNE (t-distributed Stochastic Neighbor
Embedding).

3.2.1 Supervised Approaches

A straightforward approach to anomaly detection frames the problem as a supervised
binary classification task. However, this formulation is only appropriate when the
dataset is relatively balanced and includes one or more well-represented anomaly
classes. In this thesis, the supervised models employed for anomaly detection include
a kernel machine (i.e., SVM) as well as tree ensemble methods—Random Forest and
XGBoost. These models are widely recognized for their effectiveness in supervised
learning, particularly in the context of structured data, and demonstrated strong
performance in fault and anomaly detection in various domains (Khan et al., 2023;
Noshad et al., 2019; Zhang et al., 2018).

3.2.1.1 SVM

The SVM algorithm is designed to identify an optimal hyperplane that separates
data points from different classes with the greatest possible margin. This hyperplane
serves as a decision boundary, partitioning the feature space into distinct regions
associated with each class label. For datasets that are linearly separable, SVM
seeks the hyperplane that maximizes the margin, which is the distance between the
hyperplane and its closest data points (known as support vectors) from each class.

In cases of linearly non-separable datasets, SVM leverages the kernel trick to map
the original input features into a higher-dimensional space where a linear separation
becomes feasible. This transformation is performed implicitly, avoiding the compu-
tational burden of explicitly calculating the high-dimensional feature coordinates.
Through the use of kernel functions, SVM is able to model complex, non-linear
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relationships within the data efficiently. In this work, the Radial Basis Function
(RBF) kernel, also referred to as the Gaussian kernel, is employed. The RBF kernel
is mathematically defined as follows:

(3.1) K(xi,xj) = exp(−||xi −xj ||2

2σ2 )

where xi and xj represent the i-th and j-th input instances, respectively. The
parameter σ defines the kernel scale, and || · || denotes the Euclidean norm.

In practical applications, achieving perfect separation between data points is rarely
feasible due to factors such as noise and overlapping class distributions. To accom-
modate this, SVM introduces the concept of a soft margin, which permits a limited
number of misclassifications. The balance between minimizing classification errors
and maximizing the margin is governed by the regularization parameter C. Higher
values of C prioritize the accurate classification of training instances, potentially re-
sulting in a narrower margin, whereas lower values of C allow for a broader margin
by tolerating more classification errors.

The effectiveness of an SVM model is highly sensitive to the selection of its key
hyperparameters, notably the choice of kernel function, the regularization parameter
C, as well as kernel-specific parameters (such as the kernel scale in the case of the
RBF kernel). Careful tuning of these hyperparameters is essential to strike an
appropriate balance between model complexity and generalization performance.

3.2.1.2 Random Forest

Random Forest is widely recognized for its robustness to noisy data and its strong
resistance to overfitting, demonstrating high effectiveness across a broad range of
applications (Parmar et al., 2019). Random Forest is an ensemble learning method
that builds upon the principle of bootstrap aggregating (bagging) to improve the
predictive performance of individual decision trees, which are inherently prone to
overfitting the training data. During the training phase, the algorithm operates by
constructing a collection of decision trees—often referred to as weak learners. Each
tree is trained on a different bootstrap sample, created by randomly sampling with
replacement from the original training dataset, with the sample size matching that
of the original data. Additionally, at each node within a tree, only a randomly
selected subset of features is considered for splitting, rather than the full feature set.
This dual source of randomness—both in the data used to build each tree and in
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the feature selection process—reduces the correlation among individual trees. As a
result, Random Forest effectively mitigates overfitting while significantly enhancing
the ensemble’s ability to generalize to unseen data.

The final prediction of the Random Forest model is obtained by aggregating the
outputs of all individual trees in the ensemble through a majority voting mechanism.
In this process, the class label predicted by the majority of trees is selected as the
overall prediction, as formalized by the following equation:

(3.2) ŷi = mode{hj(xi)|j = 1,2, ...,m}

Here, ŷi refers to the predicted class of the observation xi, hj(xi) is the j-th decision
tree, and m is the number of weak learners (trees) in the ensemble.

This aggregation strategy significantly reduces variance and enhances the overall
robustness of the model (Breiman, 2001; Parmar et al., 2019), enabling Random
Forest to maintain strong performance even in the presence of noisy features. Addi-
tionally, since the individual decision trees are trained independently, the Random
Forest algorithm naturally supports parallel processing, leading to a substantial ac-
celeration in training time. These characteristics make Random Forest particularly
well-suited for handling large-scale datasets efficiently.

One of the notable strengths of Random Forest is its intrinsic capability to quantify
and rank the importance of input features based on their predictive performance. By
leveraging measures such as the reduction in Gini impurity or the decrease in model
accuracy upon feature permutation, Random Forest assigns an importance score to
each feature, reflecting its relative contribution to model performance. This capabil-
ity not only improves the model interpretability but also facilitates efficient feature
selection—enabling practitioners to prioritize influential features, eliminate noise,
and optimize computational efficiency without compromising predictive power. Such
interpretability is particularly valuable in high-dimensional datasets, where identi-
fying key features is essential for both optimizing model performance and deriving
meaningful domain-specific insights.

3.2.1.3 Extreme Gradient Boosting (XGBoost)

XGBoost (Chen & Guestrin, 2016) is a highly efficient and scalable implementation
of the gradient boosting framework (Friedman, 2001), introduced to address the
limitations of traditional boosting algorithms in terms of speed, scalability, and
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model performance. Widely adopted in both industry and academia, XGBoost has
demonstrated exceptional accuracy and robustness across a wide range of ML tasks,
including classification, regression, and ranking. It has been widely adopted in
various fields, including additive manufacturing, automotive, and bioinformatics.

At its core, XGBoost constructs an additive model in a forward manner, where
new weak learners (i.e., decision trees) are sequentially added to adjust the residual
errors made by existing trees. In other words, each boosting iteration fits a new
tree to the residuals of the current model’s predictions. At the t-th iteration, the
model attempts to minimize a regularized cost function that combines a convex loss
function measuring prediction accuracy and a regularization term to control model
complexity:

(3.3) L(t) =
n∑

i=1
l
(

yi , ŷ
(t−1)
i +ft(xi)

)
+Ω(ft)

where yi represents the ground truth label of the i-th observation, and ŷ
(t−1)
i de-

notes its predicted value at iteration t − 1. In addition, l is the loss function (e.g.,
logistic loss for classification) while Ω(ft) is the regularization term penalizing the
complexity of the newly added tree ft. This regularized objective function improves
the generalization ability of the model by reducing overfitting, which is especially
important when working with noisy or high-dimensional datasets.

Like Random Forest, XGBoost, as an ensemble-based algorithm, offers the ability
to quantify and rank feature importance based on their contribution to the model’s
predictive performance. This built-in mechanism enhances the interpretability of
XGBoost by providing insights into which input features most significantly influence
the model’s decisions. Therefore, XGBoost can be deemed a supervised learning
baseline with a proven capability to capture complex, non-linear relationships while
offering a degree of interpretability through feature importance measures.

3.2.2 Semi-supervised Approaches

The proposed semi-supervised anomaly detection approaches encompass three dis-
tinct methodologies: reconstruction-based transformer architectures, distance-based
iForest, and classification-based one-class SVM models. In all these methods, the
training phase is conducted exclusively on normal (non-anomaly) data, enabling
the models to learn the underlying patterns of healthy system behavior and detect
deviations indicative of anomalies.
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It is important to note that both iForest and one-class SVM can also be applied in
an unsupervised setting, wherein the models are trained on datasets containing both
normal and anomalous instances. Within the context of this thesis, both iForest and
one-class SVM were applied under both learning paradigms, facilitating a systematic
comparison of their performance across different settings and providing insights into
their robustness in the absence of labeled anomaly data.

3.2.2.1 Transformer-based Models

Originally introduced by Vaswani et al. (2017), transformers have become state-of-
the-art models across several domains, including natural language processing (Brown
et al., 2020), speech recognition (Kim et al., 2022), and computer vision (Liu et al.,
2021). Recently, transformer-based architectures have also shown great promise in
anomaly detection (Tuli et al., 2022; Xu et al., 2021), and in related applications
like fault detection (Maldonado-Correa et al., 2024).

Architecturally, transformers are built upon attention mechanisms organized within
an encoder-decoder framework. Their attention layers enable them to capture global
dependencies by dynamically focusing on different parts of input sequences, re-
gardless of sequence length. In contrast to recurrent neural networks (RNNs) and
their improved variants, transformers are capable of modeling long-range tempo-
ral relationships without suffering from the vanishing gradient problem—a well-
known limitation of RNN-based architectures. Additionally, transformers can pro-
cess all elements of an input sequence simultaneously, offering a key advantage in
parallelization. This parallelism significantly accelerates both training and infer-
ence, particularly when leveraging modern hardware like graphics processing units
(GPUs) (Vaswani et al., 2017). These preferred characteristics are largely attributed
to the so-called multi-head attention mechanism, serving as the core part of trans-
former architectures. In the following, we delve more into this intriguing mechanism.

Multi-Head Attention Mechanism. The mechanism begins by transforming the
positionally encoded input sequence X ∈RN×d—with N d-dimensional tokens—into
three distinct representations: the value (V), key (K), and query (Q) matrices. This
transformation is accomplished via linear projections using three separate learnable
weight matrices, W V ∈ Rd×dk , W K ∈ Rd×dk , and W Q ∈ Rd×dk , as follows:

(3.4) V = XW V , K = XW K , Q = XW Q

where dk represents the dimensionality of the embedding space.
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The attention mechanism comprises multiple parallel attention heads, each follow-
ing the same computational structure but employing independent sets of weight
matrices. This design enables the model to project the input sequence into diverse
representation subspaces, allowing it to capture different types of contextual rela-
tionships and dependencies among the tokens.

Within each attention head, the output is a convex combination (i.e., a weighted
sum) of the value (V) vectors, where the combination weights reflect the relative
importance of other tokens in the sequence with respect to a given token. These
weights are computed by applying the softmax function to the scaled dot product of
the query and key matrices, as depicted in Fig. 3.3 and detailed in Eq. (3.5). The
resulting attention scores emphasize the most relevant parts of the input sequence
(the rows of the value matrix V ) by assigning higher weights to tokens2 deemed
more contextually relevant. This mechanism enables the model to selectively aggre-
gate information, thereby producing latent representations that effectively capture
the underlying dependencies and interactions among subsequences within the input
sequence, regardless of its length.

(3.5) Attention(Q,K,V ) = softmax(QKT

√
dk

) ·V

Finally, the outputs from all attention heads are concatenated and projected through
another linear transformation to form the final output of the multi-head attention
sub-layer. This aggregation allows the model to integrate various aspects of inter-
token dependencies, thereby producing a richer and more expressive representation
of the input sequence.

In this work, transformer-based models were employed for detecting APS failures,
incorporating two distinct architectures. The first model is the vanilla architecture
adapted for semi-supervised anomaly detection in time series data. In contrast, the
second model is built upon a more sophisticated architecture, TranAD, introduced
by Tuli et al. (2022) for time series anomaly detection. This model is distinguished
by its impressive performance across a wide range of time series anomaly detection
benchmarks. The detailed description of both models is provided below.

• First architecture: The architecture of the first transformer-based model
is illustrated in Fig. 3.5. It consists of a single-layer encoder and a single-
layer decoder. Given that the input sequences were normalized to the [0,1]
range, a sigmoid activation function was applied at the output layer, following

2Here, a token refers to a single data instance constructed from features extracted via a sliding window.
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Figure 3.3 Multi-head attention mechanism. For the self-attention case, X and Y
are the same, while they are different for the cross-attention case.

the recommendation by Tuli et al. (2022), as it typically leads to improved
performance. The overall objective of the model is to reconstruct the input
windows using latent representations learned through the multi-head attention
mechanisms in both the encoder and decoder. Each input sequence is formed
using 10 consecutive samples, where each sample comprises the statistical fea-
tures derived from a sliding window, as will be detailed in Section 4.1.2. The
overall loss function, serving as the anomaly score, is defined according to the
following:

(3.6) Loss = ||Ŝt −St||

where St refers to the input sequence and Ŝt denotes its reconstructed coun-
terpart.

• Second architecture: The architecture of the TranAD model is illustrated
in Fig. 3.5. It employs a transformer-based framework to reconstruct input se-
quences by leveraging attention-driven feature representations. Its core struc-
ture comprises an encoder and dual decoders operating in parallel. The en-
coder extracts global attention-based representations from the input sequence,
capturing its contextual information. Meanwhile, the two decoders indepen-
dently attempt to reconstruct subsequences of the original input based on
these representations. In the current work, both decoders aim to reconstruct
the current window using encoder-extracted representations from the past ten
timestamps. To enhance sensitivity to subtle deviations indicative of anoma-
lies, TranAD utilizes a two-stage adversarial training framework. During the
initial phase, both decoders work to reconstruct the current window with max-
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Figure 3.4 Vanilla transformer architecture (Farea et al., 2024). The input of the
model is a sequence of 10 d-dimensional data points (d is 11 in this work).

imum accuracy. In the subsequent phase, the second decoder tries to recon-
struct the current window while conditioning on the reconstruction error of
the first decoder from the first phase. This reconstruction error is referred
to as the focus score in Fig. 3.5. Such an adversarial mechanism directs the
model’s attention to short-term trends and magnifies poorly reconstructed
subsequences, thereby improving the detection of anomalies. The composite
loss function used for training the model is formalized as follows:

(3.7) Loss = 1
n

· ||O1 −W ||2 +(1− 1
n

) · ||Ô2 −W ||2

where O1 and Ô2 represent the outputs of Decoder 1 in the initial phase and
Decoder 2 in the subsequent phase, n refers to the training epoch, while W

denotes the input window at the current timestamp.
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Figure 3.5 TranAD architecture (dotted lines refer to Phase 2) (Mumcuoglu et al.,
2024b)

Since both transformer-based models are trained in a semi-supervised learning
paradigm, they are expected to reconstruct normal windows with higher accuracy
compared to anomalous ones. Consequently, the reconstruction errors of the input
windows will serve as their respective anomaly scores. Nevertheless, from a practical
standpoint, it is essential to derive a single anomaly score that reflects the status of
the APS in each vehicle. To achieve this, for a given vehicle, the overall anomaly
score is computed as the median of the anomaly scores across all windows associ-
ated with that vehicle. The median is preferred over the mean because of its known
robustness to noisy scores and outliers.
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3.2.2.2 Isolation Forest

Isolation Forest (iForest), introduced by Liu et al. (2008), is a tree-based ensemble
algorithm designed for anomaly detection. Unlike classification-based or clustering-
based anomaly detection approaches, iForest takes a fundamentally different per-
spective by isolating anomalies rather than profiling normal data. The underlying
insight is that anomalies are few in number and different in characteristics. Thus,
they are easier to isolate than normal instances. iForest is renowned for its compu-
tational efficiency, scalability to high-dimensional datasets, and its minimal reliance
on hyperparameter tuning. Coupled with its unsupervised nature, these strengths
have established iForest as a popular and robust baseline for anomaly detection
across different domains, including cybersecurity, finance, and manufacturing.

The algorithm works by recursively partitioning the data space using randomly
selected features and corresponding split values. A collection of binary trees, known
as isolation trees (iTrees), is constructed, where each tree is grown by randomly
selecting a feature and a random split value between the minimum and maximum
values of that feature. This process continues until all instances are isolated or a
predefined maximum tree depth is reached.

The path length of a data instance is defined as the number of edges traversed
from the root node to the terminating node. Since anomalies tend to be isolated
closer to the root of the tree due to their sparsity and distinctiveness of their feature
values, they generally have shorter average path lengths across the ensemble of trees.
Accordingly, the anomaly score for a data point x is computed based on the average
path length h(x), and is defined as the following:

(3.8) S(x,n) = exp (−h(x)
c(n) × ln2 )

Here, h(x) is the average path length of x over all grown trees, n is the number of
data instances in the dataset, and c(n) is the average path length of unsuccessful
searches in a Binary Search Tree, approximated as

(3.9) c(n) = 2H(n−1)− 2(n−1)
n

where H(i) is the i-th harmonic number.

According to Eq. (3.8), anomaly scores lie in the range (0,1], where values close to
1 indicate a high likelihood of anomaly. A user-specified threshold can be applied
to classify data instances as normal or anomalous.
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3.2.2.3 One-class SVM

One-class Support Vector Machine (one-class SVM) is a well-established unsuper-
vised learning algorithm designed for anomaly detection. Unlike conventional binary
or multiclass SVMs, which aim to separate labeled data into distinct categories, one-
class SVM attempts to learn the decision boundary (a hyperplane) that separates
the majority of the data from the origin with the maximum margin. The primary
objective is to identify whether new instances deviate significantly from this distri-
bution.

Mathematically, one-class SVM aims to find a decision boundary that optimally
encloses the majority of the training data, possibly in a high-dimensional feature
space. This is achieved by mapping the d-dimensional input data Xi ∈ Rd to a
higher-dimensional feature space via a kernel function and then finding a hyper-
plane that maximally separates the origin from this transformed data. The decision
function for a new data instance x is expressed as follows:

(3.10) f(x) = sign(
n∑

i=1
αiK(xi,x)− b)

Here, αi is the Lagrange multiplier, xi represents the i-th support vector, and b is the
bias term. K(xi,x) is the kernel defining the dot product between the i-th support
vector and the test data point x in the high-dimensional kernel (feature) space. As
with the supervised SVM model, the RBF kernel was utilized for one-class SVM as
well, owing to its capability to capture complex, non-linear relationships within the
data. The RBF kernel is defined as follows:

(3.11) K(xi,xj) = exp(−γ||xi −xj ||2)

where γ is the kernel width parameter, which controls the scale of the influence of
support vectors.

In addition to γ, the parameter ν serves as a regularization hyperparameter that
defines an upper bound on the fraction of training errors and a lower bound on the
fraction of support vectors. Proper tuning of both γ and ν is critical to achieving an
optimal balance between sensitivity to anomalous data instances and generalization
to unseen data.

A new data instance x is considered either normal or an anomaly according to the
decision function in Eq. (3.10). If f(x) = 1, then that data instance is deemed
normal. Otherwise, the data instance is considered anomalous since f(x) = −1.
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3.2.3 Unsupervised Approaches

This section introduces two unsupervised learning algorithms, namely DBSCAN
and t-SNE, both of which were employed for preliminary defect detection in DED
processes. DBSCAN functions as a density-based clustering algorithm to identify
patterns and anomalies in the feature space, while t-SNE serves as a nonlinear
dimensionality reduction technique for visualizing high-dimensional data in a lower-
dimensional space.

3.2.3.1 DBSCAN

An unsupervised clustering approach based on DBSCAN was adopted for prelimi-
nary defect detection in DED processes. This choice of learning paradigm was ne-
cessitated by the nature of the associated dataset, which lacks ground-truth labels
and thus precludes supervised and semi-supervised learning. The adopted method-
ology utilizes an ensemble of DBSCAN models to improve robustness and mitigate
the sensitivity of the algorithm to hyperparameter selection. DBSCAN is a ro-
bust, density-based clustering algorithm that excels at identifying arbitrary-shaped
clusters and detecting noise or outliers—making it highly suitable for anomaly de-
tection tasks. Compared to other ML clustering algorithms such as K-means and
self-organizing maps (SOMs), DBSCAN does not require prior specification of the
number of clusters. Instead, it groups data into one or more high-density clus-
ters while labeling low-density, unclustered points as outliers, which in this context
correspond to potential defects. The DBSCAN algorithm relies on two key hyper-
parameters:

• Eps (ϵ): defines the radius of the neighborhood around each point. It is also
known as the neighborhood search radius, serving as the key hyperparameter.

• MinPts: indicates the minimum number of points required within this radius
to form a dense cluster. It specifies the minimum number of neighboring points
for a core point.

A detailed explanation of the algorithm and guidelines for hyperparameter selection
can be found in Ester et al. (1996). According to these two hyperparameters, the
data points can be categorized into the following:

• Core point: a data point that has at least MinPts neighboring points (includ-
ing itself) within its ϵ-neighborhood. Core points reside in the dense interior of
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a cluster and play a pivotal role in defining and expanding cluster structures,
as they can directly reach other core points as well as border points.

• Border point: a data point that falls within the ϵ-neighborhood of a core
point but does not itself have enough neighboring points (i.e., fewer than
MinPts) to qualify as a core point. Border points typically lie on the outer
edges of clusters and are reachable from core points but do not contribute to
expanding the cluster.

• Noise point: any other data point that is neither a border point nor a core
point. Such points do not belong to any cluster and are considered outliers
or anomalies. They are located in sparse regions of the data space with in-
sufficient nearby points to be considered part of a cluster. In the context of
anomaly detection, these noise points are of particular interest, as they often
correspond to rare, defective, or abnormal patterns that deviate substantially
from the general data distribution.

These three DBSCAN point categories are pictorially illustrated in Fig. 3.6 for visual
clarity. The clustering performance of DBSCAN is highly sensitive to its two key
hyperparameters: Eps and MinPts. Varying these parameters results in different
clustering behaviors. In this work, four distinct values were selected for each of
these hyperparameters (as will be discussed in Section 5.2.2.2), while using the
Euclidean distance as the distance measure. This configuration yielded an ensemble
of 16 DBSCAN models, each representing a unique parameter combination. To
improve the robustness of anomaly detection in the absence of ground-truth labels,
a majority voting strategy was employed. Under this ensemble scheme, a data
point (i.e., an image) is classified as an outlier only if at least 9 out of the 16
models identify it as such. This majority voting approach mitigates the uncertainties
inherent in working with unlabeled datasets and enhances the reliability of the
clustering outcome. The underlying rationale is that the likelihood of multiple
independent (or weakly dependent) models incorrectly labeling the same data point
is relatively low; thus, consensus among the majority provides a more confident
approximation of the ground-truth label.

3.2.3.2 t-SNE

t-SNE (Van der Maaten & Hinton, 2008) is a nonlinear dimensionality reduction
technique widely used for exploratory data analysis and high-dimensional data visu-
alization. It is particularly effective at mapping complex high-dimensional data into
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Figure 3.6 Overview of DBSCAN clustering. Data points are categorized into core,
border, and noise (outliers) points.

a lower-dimensional space (typically a two-dimensional or three-dimensional space),
while preserving the local structure of the original data space. The technique is an
enhancement of Stochastic Neighbor Embedding (Hinton & Roweis, 2002), offering
a more stable optimization process and improved visualization quality

Unlike linear methods such as PCA, which preserve global variance, t-SNE focuses on
maintaining pairwise similarities between data points based on their probability dis-
tributions. In the high-dimensional space, t-SNE models the similarity between two
points using a Gaussian distribution centered at each one. In the low-dimensional
embedding, these similarities are modeled using a Student’s t-distribution with one
degree of freedom (a Cauchy distribution), which allows t-SNE to better handle the
so-called “crowding problem” and to separate clusters more effectively.

The core idea behind t-SNE is to minimize the Kullback-Leibler (KL) divergence
between the joint probability distributions of the high-dimensional data and their
corresponding low-dimensional embeddings. This is achieved through an iterative
optimization process using gradient descent.

In this thesis, t-SNE was employed as a postprocessing tool to support the inter-
pretation of clustering results obtained through the DBSCAN algorithm. Feature
vectors extracted from thermal images were projected into a two-dimensional space
using t-SNE, thereby enabling a qualitative assessment of cluster separability and
anomaly distribution. The provided visualization is assumed to approximate the un-
derlying cluster topology in the original feature space. Consequently, t-SNE plays
a complementary role in validating the clustering structure identified by DBSCAN
and offers valuable insights into the latent organization of the unlabeled dataset.
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3.3 Explainable AI for Anomaly Detection

Explainable AI (XAI) plays a critical role in enhancing the interpretability and
trustworthiness of anomaly detection systems. By integrating XAI into the model-
ing pipeline, these systems not only identify anomalous behavior but also provide
insights into the contributing factors of such events. This dual capability supports
regulatory compliance and promotes safer, more transparent decision-making—an
increasingly important consideration, especially in light of transparency mandates
introduced by the EU AI Act in 2024 (European Commission, 2021).

XAI methods are classified into two categories: post-hoc and ante-hoc techniques.
Post-hoc methods are applied after training to interpret the outputs of complex,
opaque (black-box) models. Prominent examples include LIME (Local Interpretable
Model-Agnostic Explanations) (Ribeiro et al., 2016,1) and SHAP (Shapley Additive
Explanations) (Lundberg & Lee, 2017), which offer local and global interpretability
by attributing feature contributions to individual predictions. In contrast, ante-hoc
methods are inherently interpretable models that generate explanations by design.
Classical models such as linear regression and decision trees fall into this category,
though they often sacrifice predictive performance for transparency.

A notable exception is Explainable Boosting Machine (EBM), which achieves a
strong balance between accuracy and interpretability. EBMs are inherently explain-
able models that leverage generalized additive models with modern enhancements,
often rivaling the predictive power of black-box approaches like random forests and
gradient-boosted trees (Nori et al., 2019). In this thesis, explainable frameworks
incorporating EBM and SHAP were developed to enhance model transparency and
enable interpretable anomaly detection across a real-world industrial application.

3.3.1 Explainable Boosting Machine (EBM)

EBM is an interpretable, glass-box model grounded in the framework of generalized
additive models (GAMs). In GAMs, the prediction is formulated as a linear com-
bination of functions applied individually to each feature, along with an intercept
term. Analogous to linear regression, each feature function represents its indepen-
dent contribution to the prediction. However, unlike linear regression, GAMs allow
these functions to be non-linear, enabling the model to capture complex relationships
between features and the target variable without sacrificing interpretability.
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Building upon the classical GAM framework, EBM introduces key enhancements,
notably the ability to model pairwise interactions between features. Furthermore,
EBM leverages advanced ML techniques such as bagging and gradient boosting to
learn the shape of each feature function. Specifically, each feature function is mod-
eled through an iterative gradient boosting process, where a sequence of shallow
decision trees is trained using only that individual feature and the residuals from
the previous trees (see Fig. 3.7). To maintain invariance to the ordering of features,
a very low learning rate is employed throughout training. In parallel, EBM auto-
matically identifies and learns important pairwise feature interactions. Ultimately,
the model’s prediction is computed as a linear combination of the learned individual
feature functions and pairwise interaction terms, formulated as follows:

(3.12) g(E[y]) = a0 +
∑

i

fi(xi)+
∑
i<j

fij(xi,xj)

In this formulation, a0 represents the intercept term, xi denotes the i-th feature, and
fi(xi) corresponds to the feature function learned for feature xi. Similarly, fij(xi,xj)
captures the pairwise interaction function between features xi and xj . Both the in-
dividual feature functions and the interaction functions are constructed using an
ensemble of weak learners, specifically shallow decision trees. The model further
incorporates a link function g(.), which adapts the EBM framework to various pre-
dictive tasks, such as regression or classification. In classification problems, the
inverse link function g−1(.) typically corresponds to a sigmoid function for binary
classification or a softmax function for multi-class settings. For regression tasks,
g−1(.) simplifies to the identity function.

The relative importance and contribution of any feature xi to the model’s final
prediction can be directly interpreted from the plot of its associated feature func-
tion fi(xi). Likewise, the impact of pairwise feature interactions can be visualized
through a two-dimensional heatmap representing the interaction function fij(xi,xj).
These visualizations facilitate the generation of both global and local model expla-
nations in a straightforward and transparent manner.

Compared to widely used post-hoc explainability techniques such as SHAP and
LIME, EBM offers several compelling advantages. EBM is inherently an end-to-end,
glass-box model that achieves predictive performance comparable to advanced black-
box algorithms, including random forests and gradient-boosting machines. Further-
more, it is distinguished by its computational efficiency at inference time, requiring
only straightforward additive operations and table lookups within the learned feature
and interaction functions (Nori et al., 2019). In contrast, techniques like LIME and
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Figure 3.7 EBM architecture (Farea et al., 2025). It consists of shallow decision
trees, each of which is trained on a single feature and the residual from the previous
decision tree.

SHAP, while powerful, are often associated with substantial computational overhead
due to the need for extensive perturbations and sampling-based approximations (Das
et al., 2020). Motivated by these strengths, we adopt EBM as the backbone of our
XAI-enabled framework for APS failure detection, enabling both accurate anomaly
identification and transparent, real-time explanations of model predictions.

3.3.2 Shapley Additive Explanations (SHAP)

SHAP (Lundberg & Lee, 2017) represents a unified interpretability framework for
interpreting the predictions of any (trained) black-box ML model. Rooted in game
theory, SHAP offers a principled approach to model interpretability by constructing
a simplified, inherently explainable surrogate model, known as an explanation model,
that serves as an interpretable approximation of the original black-box model.

At the core of SHAP is the concept of additive feature attribution models, where
the model output is expressed as a linear combination of the input features. For
each individual prediction, SHAP computes an importance score—known as a SHAP
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value—for every input feature. These SHAP values quantify the contribution of each
feature toward the final model output, offering a clear and consistent explanation
of the prediction. Formally, for a prediction f(x) of a data instance x, SHAP
approximates the output as follows:

(3.13) f(x) ≈ g(x) = ϕ0 +
d∑

j=1
ϕj

where f(x) is the prediction of the original black-box model, g(x) is the output
of the simplified explanation model, and d is the number of input features. ϕ0 is
the expected value of the model output over the training distribution (the baseline
prediction), and ϕj represents the contribution (or SHAP value) of the j-th input
feature towards the model’s prediction f(x).

To compute SHAP values for a specific instance, the algorithm evaluates the
marginal contribution of each feature by considering all possible combinations (coali-
tions) of features, assessing how the inclusion or exclusion of a given feature influ-
ences the model prediction. Although the exact computation of Shapley values is
computationally expensive for models with many features (exponential in the num-
ber of features), various approximation methods, such as KernelSHAP and Tree-
SHAP, have been developed to make SHAP scalable to real-world datasets and
complex models.

Overall, SHAP offers a robust, mathematically grounded approach for attribut-
ing model predictions to individual input features, thereby enhancing model trans-
parency, supporting feature importance analysis, and enabling practitioners to build
greater trust in ML models, particularly in high-stakes or regulated domains.
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4. INDUSTERIAL APPLICATIONS

This chapter introduces the two real-world industrial applications: the air pressure
system (APS) in heavy-duty vehicles (HDVs) and directed energy deposition (DED),
an additive manufacturing process. For each application, a brief overview of the sys-
tem is provided first to establish the operational context for that industrial system.
This is followed by a description of the dataset(s) associated with each application,
along with a detailed account of data preparation and preprocessing procedures, each
tailored to the specific characteristics and requirements of the respective domain.

4.1 Air Pressure System (APS) in HDVs

The APS plays a key role in delivering pressured air to various HDV subsystems such
as braking and suspension systems, with the electronic air processing unit (E-APU)
serving as its central component. It combines an electronically controlled air drying
mechanism with a multi-circuit valve, which allocates air to various vehicle circuits.
The system consists of two main service braking circuits and an additional circuit for
the parking brake and trailers, each equipped with a pressure sensor to continuously
monitor pressure levels. The E-APU transmits pressure data along with a binary
signal indicating the air compressor’s status to the vehicle’s electronic control units
(ECUs) via the controller area network (CAN) bus. The internal design of E-APU
ensures that a failure in one circuit does not compromise the entire braking system.
A schematic representation of the APS, highlighting the central role of the E-APU,
is provided in Fig. 4.1.

The E-APU electronically monitors the vehicle and engine status, facilitating an
optimized compressor operation cycle. Air compression is reduced during high en-
gine load conditions and increased during engine overrun phases to enhance fuel
efficiency. It also schedules regeneration cycles to preserve air purity and quality,
removing moisture and contaminants that could lead to corrosion, wear, or system
malfunctions. In cases of faults—such as mechanical failure, overpressure, or fail-
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Figure 4.1 Overview of the air pressure system (Mumcuoglu et al., 2024b)

safe mode activation—the E-APU communicates the degraded operational status
via the CAN bus.

Failures in the APS can stem from design flaws, manufacturing defects, or adverse
operational conditions. Common issues include component wear caused by manu-
facturing defects, system overuse, or contaminated air supply. Moisture in the air
supply, often due to air dryer malfunctions, can lead to corrosion in the compressor,
valves, and air tanks. Additionally, harsh operating environments, such as extreme
temperatures, and poor driving habits significantly contribute to the failure of APS
components.

4.1.1 Dataset Description

The APS dataset comprises the operational data of cloud-connected Ford trucks.
It was collected from these FMAX-branded trucks, operating across Turkey as well
as other European countries. These vehicles were meticulously selected by experts
to reflect a variety of conditions. They encompass different seasons, multiple times
throughout the year, and a wide spectrum of mileages, providing a comprehensive
representation of real-world usage scenarios. The dataset contains time series driving
signals recorded over 30-day periods from two groups of vehicles. The first group
includes 30 anomalous vehicles having experienced E-APU failures with subsequent
E-APU replacements. In contrast, the other group consists of 110 healthy vehicles
with a clean maintenance history. For anomalous vehicles, the dataset includes run-
to-failure data, which captures daily driving records leading to the failure. On the
other hand, for healthy vehicles, 30-day historical data sequences were selected from
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various periods throughout the year. In total, the dataset comprises 3,550 daily
driving records from 140 vehicles. Further details are provided in Table 4.1.

Table 4.1 Description of the APS dataset

Details Healthy
subset

Anomalous
subset

No. of vehicles 110 30
No. of daily records 2,779 771
No. of daily records per vehicle [min-max] [15-30] [17-30]
Avg. No. of datapoints per record 32,988 32,988
No. of drive cycles 18,556 5,552
No. of relevant signals 9 9
Nominal sampling rate 1 Hz 1 Hz

The raw dataset includes an extensive set of time series signals, capturing the overall
vehicle dynamics, operational state, and certain environmental conditions. However,
many of these signals are not directly relevant to the braking system. To focus on
the APS, only nine APS-specific signals were selected, along with a DateTime signal
that records the timestamp of each entry. All other signals were discarded. Table 4.2
provides a detailed list of these nine signals.

4.1.2 Data Preparation and Preprocessing

Data preparation and preprocessing constitute a crucial phase in data analytics
pipelines, involving key steps such as data cleaning, segmentation, interpolation,
and feature extraction. These steps are essential for maintaining data quality and
supporting the subsequent task of model development. Such a preprocessing pipeline
is particularly important in complex, hierarchical datasets, such as the operational
data collected from HDVs.

The APS dataset consists of 140 vehicles in total, each contributing 15 to 30 daily
driving records. Every daily record contains multiple drive cycles of varying dura-
tions. To structure the data effectively, the daily driving records were first divided
into individual drive cycles where the temporal gap between any consecutive cycles
is at least five minutes. This is because the absence of data logging for more than
five minutes simply indicates that the vehicle was off.
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Table 4.2 APS-specific signals ("On change" indicates that data logging is triggered
only when the signal value changes.)

No. Signal Sampling period
[seconds]

1 Air compressor status on change
2 Brake pedal position on change
3 Service brake circuit 1 air pressure 1
4 Service brake circuit 2 air pressure 1
5 Parking and/or trailer air pressure 1
6 Engine speed 1
7 Vehicle speed 1
8 Total traveled distance 10
9 Engine total hours of operation 300

The dataset suffers from missing data due to connectivity issues or inconsistent sam-
pling rates across different signals. To address the missing data in each signal, we
applied data imputation tailored to the characteristics of that signal. Based on the
imputed data, moving statistics—such as mean, minimum, and standard deviation—
were computed using sliding windows. This sliding window-based downsampling
helps reduce the volume of raw data and enhance the extraction of informative fea-
tures, e.g., duty cycle. Furthermore, it helps smooth out noisy signals, particularly
when using moving averages. A visual representation of the preprocessing pipeline
is provided in Fig. 4.2, illustrating how each data point in the preprocessed dataset
corresponds to a set of features derived from sliding window-based moving statistics.

Key features were extracted through the application of sliding windows. These
features were carefully designed based on expert knowledge, ensuring they effectively
capture APS failures. They were meticulously handcrafted to serve as a reliable
indicator of system anomalies. The extracted features are listed in Table 4.3, and
they are as follows:

Duty Cycle: The duty cycle quantifies the air compressor’s operational duration
within the sliding window, expressed as a percentage of the total window duration.
It serves as a crucial indicator of APS failures, as malfunctioning vehicles typically
exhibit higher duty cycles compared to healthy ones. This increase occurs because
faulty APS components disrupt the air supply, forcing the air compressor to operate
for extended periods to compensate.

Air compressor on/off count: It measures the number of times the air compressor
switches on and off within the respective sliding window. Elevated values of this
frequency-based feature often indicate a fault in the APS, such as air leakage, which
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Figure 4.2 Data preparation and preprocessing pipeline (Farea et al., 2025). Firstly,
the daily driving records are segmented into drive cycles, followed by the application
of data imputation, and the extraction of moving statistics through sliding windows
(w is the window length and s is the window shift)

prevents the system from maintaining optimal pressure levels across the circuits.
As a result, the compressor operates more frequently to compensate for pressure
loss. However, high values of this feature are not always a sign of failure. The air
compressor also cycles on and off more frequently during the regeneration process,
which ensures air quality by removing moisture and contaminants from the supply.
Although this is a normal function, it occurs infrequently. Another normal scenario
where frequent cycling is expected is during braking events, where pressure demands
fluctuate rapidly. In summary, persistently high values of this feature across multiple
sliding windows, without braking events, are considered anomalous and may signal
an underlying APS failure.

Minimum and standard deviation of pressures: The minimum values and
standard deviations of Service Brake Circuit 2 Air Pressure (P2) and Parking and/or
Trailer Air Pressure (P3) were also included as key features. Since Service Brake
Circuits 1 and 2 operate in parallel and are highly correlated, only Service Brake
Circuit 2 was considered. Pressure irregularities often signal APS failures. For in-
stance, air leakage causes lower minimum pressures and higher variability, as the
system struggles to maintain stable pressure levels. Conversely, a faulty relief valve
may lead to excessive pressurization, resulting in abnormally high minimum pres-
sure values. Due to their sensitivity to such failures, minimum pressure values and
standard deviations serve as key indicators of potential APS malfunctions.
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Table 4.3 List of the features extracted from the APS dataset (using sliding windows)

No. Feature Abbreviation

1 Duty cycle DutyCycle
2 Air compressor on/off count AC_on/off_count
3 Min. of service brake circuit 2 air pressure P2_min
4 Std. of service brake circuit 2 air pressure P2_std
5 Min. of service brake circuit 3 air pressure P3_min
6 Std. of service brake circuit 3 air pressure P3_std
7 Mean of brake pedal position BrakePedalPos_mean
8 Mean of engine speed EngineSpeed_mean
9 Std. of engine speed EngineSpeed_std
10 Std. of vehicle speed VehicleSpeed_std

Mean of Brake Pedal Position: Since the braking system relies on pressurized
air from the APS, braking activity significantly influences APS behavior. Thus, the
average brake pedal position serves as a crucial indicator for detecting APS failures.
In both anomalous and healthy vehicles, an increased brake pedal position mean
often correlates with higher duty cycles and more frequent compressor activations.
This is expected during intensive braking when the demand for pressurized air is
naturally higher. However, persistently elevated brake pedal engagement may signal
aggressive driving habits, which can strain the APS and contribute to the wear of
the overall vehicle system.

Mean and standard deviation of the engine speed: These statistical measures
provide insights into the vehicle’s dynamic behavior. For example, engine speed av-
erages can indicate idling periods, while standard deviation serves as a key indicator
for identifying irregular patterns such as aggressive driving or fluctuating vehicle
loads. When such driving behaviors persist over extended periods, they can accel-
erate wear and contribute to failures across multiple vehicle subsystems, including
the APS.

Standard deviation of the vehicle speed: It serves as a key indicator of variable
driving conditions and behavioral patterns, much like its counterpart in engine speed.
However, while engine speed variability primarily reflects internal vehicle dynamics,
fluctuations in vehicle speed are more directly influenced by external factors. These
include road conditions, traffic flow, route characteristics, and driver behavior—such
as instances of aggressive driving, including rapid acceleration, harsh braking, and
erratic speed changes.
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4.2 Directed Energy Deposition (DED)

DED has emerged as a highly promising additive manufacturing technology, offering
the ability to fabricate dense metal components with precise functional geometries
and enhanced mechanical properties. Distinguished by its high deposition rates and
optimized material utilization, DED presents a cost-effective solution for applica-
tions such as prototyping, repairing, and modifying metal parts (Wolff et al., 2019).
Furthermore, its capability to support multi-material fabrication and manufacture
large-scale structures (Dong et al., 2023) enhances its applicability across industries
such as aerospace, automotive, and healthcare.

DED processes utilize computer-aided design (CAD) models to precisely guide a
high-energy heat source, which melts and deposits material in a track-by-track,
layer-by-layer fashion to incrementally build components. Typically integrated into
a multi-axis computer numerical control (CNC) system, the heat source—commonly
a laser, plasma arc, or electron beam—enables controlled deposition of feedstock,
which is introduced in either powder or wire form. While DED can accommodate a
variety of materials, including metals, ceramics, and composites, it is predominantly
used for metal additive manufacturing, leading to its alternative designation as Di-
rected Metal Deposition (DMD). When employing a laser-based heat source, it is
also referred to as laser metal deposition (LMD), laser cladding, or Laser-Engineered
Net Shaping (LENS). The process’s versatility in handling diverse feedstocks and
its precise control over deposition make it particularly well-suited for fabricating
intricate geometries, repairing damaged metal parts, and enhancing component per-
formance.

4.2.1 Dataset Description

This thesis addresses defect detection in DED processes using three distinct datasets.
The first two datasets, hereinafter designated as DED-IN718 and DED-IN718-U,
were curated as part of the thesis work and are based on the Inconel 718 (IN718) al-
loy. In contrast, the third dataset, hereinafter referred to as DED-Ti64, features the
Ti-6Al-4V (Ti64) alloy. It was introduced by Zamiela et al. (2023) and is publicly
available. The names of the datasets reflect the respective feedstock materials em-
ployed during fabrication. While DED-IN718 and DED-Ti64 are supervised datasets
that include ground-truth labels, DED-IN718-U is an unsupervised dataset, distin-
guished by the absence of such labels.
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4.2.1.1 IN718-based Datasets

The samples were fabricated using a LASERTEC 65 DED hybrid machine, which
integrates a five-axis CNC milling system with a laser-based powder deposition unit,
as depicted in Fig. 4.3. The deposition system utilizes the COAX14 coaxial nozzle to
precisely deliver metallic powder from the hoppers to the substrate via a controlled
feeding mechanism. The laser source is a fiber laser operating at a wavelength of
1064 nm, with a maximum power output of 2500 W. A 15 mm-thick C45 steel
plate served as the substrate, providing ample space to accommodate all deposited
samples without interference. To maintain an inert processing environment, argon
gas was employed as both the carrier and shielding gas, preventing oxidation and
ensuring optimal material properties.

Figure 4.3 DED machine (DMG MORI, 2024) and sample configuration for DED-
IN718 datsaset

The datasets consist of thermal images of the melt pool, captured by a thermal
camera embedded within the deposition nozzle. This camera continuously moni-
tors the melt pool, recording spatial temperature distributions that are crucial for
analyzing defect formation mechanisms. The feedstock material is IN718, a nickel-
chromium superalloy renowned for its exceptional mechanical strength, thermal sta-
bility, and corrosion resistance. These properties make IN718 a preferred choice

61



Table 4.4 Chemical composition (in percentage) of the IN718 alloy-based powder

Material Ni Fe Cr Ti Al Nb Mo
Inconel 718 Balance 18 19 1 0.5 5 6

Table 4.5 DED process variables for the IN718-based datasets

Process Variable DED-IN718 DED-IN718-U

Laser power (W) 400 - 1000 1500 - 2500
Laser spot diameter (mm) 1.6 3
Scan speed (mm/min) {500, 700, 900} 750 - 1350
Powder flow rate (g/min) 12 15
Shield gas (l/min) 5 5
Carrier gas flow rate (l/min) 3 6
Layer thickness (mm) 0.97 ∼ 1.1 0.45

in high-performance applications, including aerospace engines and nuclear reactors
(Ma et al., 2015; Zhang et al., 2021). In this research, the powder particles range in
diameter from 70 to 120 µm, with their elemental composition detailed in Table 4.4.

For the DED-IN718 dataset, five multi-layer, multi-track cylindrical samples were
fabricated using varying laser power and scan speed settings, to investigate the
effects of different process parameters. The complete set of process parameters is
outlined in Table 4.5. The laser power was initially set at 1000 W and gradually
reduced to 400 W throughout the build direction, with a 25 W decrement every three
successive layers. Each layer was constructed using a single continuous deposition
track, which circled the cylindrical structure four times, as illustrated in Fig. 4.3.
Due to the variations in process parameters, layer thickness was adjusted accordingly
to ensure successful deposition. This diverse selection of parameter configurations
was deliberately implemented to enhance the dataset’s comprehensiveness, capturing
the dynamic behavior of the deposition process across different operating conditions.

The DED-IN718 dataset comprises a total of 7,490 thermal images, each captured
at a standard resolution of 164 × 218 pixels. In contrast, the DED-IN718-U dataset
consists of 2,894 thermal images in total, each with a standard resolution of 164 ×
218 pixels. Nonetheless, some of these images correspond to inter-layer transition
periods when the laser was inactive, resulting in frames without a visible melt pool.
After filtering out these melt pool-free images, the DED-IN718 dataset contains
4,889 valid thermal images, while the DED-IN718-U dataset includes 2,295 valid
thermal images, as detailed in Table 4.6. Fig. 4.4 presents sample thermal images,
where the heated melt pools can be observed at the center of each frame, highlighting
the region of active material deposition.
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Table 4.6 Overview of the IN718-based datasets

Data set DED-IN718 DED-IN718-U

Collected images 7490 2894
Invalid images 2601 599
Valid images 4889 2295

Figure 4.4 Representative thermal images from the DED-IN718 dataset. Two ther-
mal images are shown for each deposited sample.

For the DED-IN718 dataset, following deposition, the characterization of porosi-
ties in all fabricated samples was conducted using a Phoenix V micro-computed
tomography (µCT) scanner equipped with a 300 kV micro-focus X-ray tube. To
ensure adequate penetration and high-resolution defect detection, the scans were
performed at 240 kV and 220 A. The voxel size was set to 10 µm, optimized based
on the sample dimensions. A full 360° rotation consisted of 2,500 projection images,
determined according to the manufacturer’s guidelines and voxel size considerations.
The machine sensitivity was configured to 2×2, with a frame resolution of 2300 ×
2300 pixels. Each image was captured with an exposure time of 334 ms. To mitigate
the beam-hardening effect, a 500 µm copper filter was applied, allowing for higher-
energy X-ray penetration. For comprehensive porosity characterization, VGStudio
MAX (Volume Graphics, 2023) was used to process the µCT scan data, with a min-
imum defect detection threshold of 10 µm. According to the analysis, 2,268 thermal
images (46.4%) were associated with porosities, whilst the remaining 2,621 images
(53.6%) were classified as defect-free.

One of the fabricated samples is shown in Fig. 4.5. In the same figure, the internal
porosities, detected via X-ray µCT, are displayed as well. The identified porosities
vary in size, ranging from 60 µm to 0.8 mm in diameter. Conversely, Fig. 4.6 displays
an example thermal image of the melt pool, alongside its respective temperature
distribution. The temperature histogram exhibits a multimodal profile, indicating
distinct thermal zones. The first peak, observed around 1180 °C, corresponds to the
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(a) Deposited sample

(b) Porosities distribution

(b) Porosities distribution

Figure 4.5 One sample with its X-ray CT-identified porosities. The porosities were
color-coded according to their diameters.

background temperature. The second peak, approximately 1450 °C, represents the
heat-affected zone, including the nozzle tip and the melt pool boundary. Finally,
the third peak, near 1800 °C, signifies the core region of the melt pool.

4.2.1.2 DED-Ti64 Dataset

The DED-Ti64 dataset, introduced by Zamiela et al. (2023), consists of in-situ
thermal images and post-process porosity annotations for Ti-6Al-4V thin-walled
structures manufactured using the OPTOMEC Laser Engineered Net Shaping
(LENS™) 750 DED system. Thermal imaging was performed using a Stratonics
dual-wavelength pyrometer, capturing top-down melt pool and heat-affected zone
views at temperatures exceeding 1660 oC. The original pyrometer images (752×480
pixels) were cropped to 200 × 200 pixels centered around regions above 1000 oC to
isolate the melt pool. Post-fabrication, internal porosity was characterized using
a Nikon XT H225 X-ray computed tomography (XCT) system, while the MyVGL
Studio MAX DefX algorithm was applied to the volumetric XCT data to quantify
and localize porosity within the fabricated structures.

The dataset includes a total of 1,564 thermal images in CSV format, each with
a resolution of 200 × 200 pixels (some representative thermal images are shown
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(a) Sample image (b) Temperature histogram

(c) 3D temperature distribution

Figure 4.6 Sample thermal image and its temperature distribution. The temperature
distribution is viewed as both a 2D histogram and a 3D plot.

Figure 4.7 Representative thermal images from the DED-Ti64 dataset

in Fig. 4.7). Each image is annotated with a binary label indicating the presence
(1) or absence (0) of porosity, based on the XCT analysis. The dataset is notably
imbalanced, comprising 1,493 non-defective samples and 71 defective ones—resulting
in a class imbalance of approximately 4.5%. In addition to the binary labels, each
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thermal frame is supplemented with metadata including timestamp, frame number,
spatial coordinates, melt pool features, and porosity size where applicable (ranging
from 0.05 mm to 0.98 mm). This dataset provides a valuable benchmark for defect
detection in metal additive manufacturing, particularly in the context of highly
imbalanced and high-temperature sensor data.

4.2.2 Data Preparation and Preprocessing

The main objective of data preparation and preprocessing is to convert the raw
thermal images into compact feature representations that capture the essential char-
acteristics of the melt pools. These features serve as a concise and informative ab-
straction of the thermal dynamics, facilitating efficient and structured modeling.
The proposed preprocessing pipeline effectively transforms unstructured image data
into a structured tabular form, thereby enabling the application of static ML models
such as tree-based ensembles and kernel-based methods, which perform optimally
on well-defined feature spaces.

In its raw form, the collected DED-IN718 and DED-IN718-U data represent the
radiation intensities emitted from the melt pool, rather than direct temperature
measurements. To obtain accurate thermal readings, these intensities are first con-
verted into temperature values using a calibration file provided by the manufacturer.
This calibration file contains a lookup table that maps each recorded radiation in-
tensity to its corresponding temperature, ensuring precise thermal characterization
of the melt pool.

An overview of the proposed preprocessing pipeline for the three datasets is shown
in Fig. 4.8. The pipeline includes region-of-interest (RoI) extraction, segmentation,
feature extraction, feature selection, and finally normalization. More details about
these steps are provided in the following subsections.

Figure 4.8 Proposed preprocessing pipeline for defect detection
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4.2.2.1 RoI Extraction

For the DED-Ti64 dataset, the raw thermal images acquired via the dual-wavelength
pyrometer had a resolution of 752 × 480 pixels. However, each image was cropped
to 200 × 200 pixels to isolate the region of interest, which focused on the melt pool
and surrounding heat-affected zone. In contrast, for the DED-IN718 dataset, the
region of interest was isolated in each thermal image through the application of
circular masking. This masking process preserved only the pixels within a circular
area centrally aligned with the image while setting all external pixels to zero, as
illustrated in Fig. 4.9(a). By focusing on the central region, this image processing
method ensured that the melt pool, which is consistently positioned at the center of
thermal images, remained in the analysis while excluding background noise and the
nozzle tip. As shown in Fig. 4.9, the nozzle tip frequently exhibits temperature levels
comparable to the melt pool; therefore, the exclusion of the nozzle tip is critical to
prevent interference in subsequent analyses. Accordingly, the RoI extraction step
proposed here plays a fundamental role in enhancing the accuracy and efficiency of
defect detection by concentrating only on the most relevant parts of thermal images
and discarding the irrelevant image regions.

Original Image

Masked Image

(a) RoI Extraction
(Circular Masking)

Histogram of Meltpool

Histogram of Image

(b) Segmentation

Meltpool’s Binary 
Image

Meltpool’s Thermal 
Image

Segmented 
Meltpool

Meltpool

Nozzle Tip

Background

0

Figure 4.9 Thermal image preprocessing: (a) Region-of-interest (RoI) extraction
via circular masking, and (b) segmentation of RoI into the segmented binary and
thermal images of the melt pool (histograms of the input image and melt pool are
shown on the left)
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4.2.2.2 Threshold Segmentation

Following RoI extraction, the melt pool was segmented using a threshold-based
segmentation approach. For the DED-based datasets, a prespecified temperature
threshold around 1330 °C, corresponding to the approximate melting point of IN718
alloys (ESPI Metals, 2024), was employed to isolate the melt pool region. Similarly,
for the DED-Ti64 dataset, a threshold of 1640 °C was applied, reflecting the esti-
mated melting point of Ti-6Al-4V alloys. The largest connected region within the
image exhibiting temperatures at or above this threshold was identified and seg-
mented. The resulting segmentation output, illustrated in Fig. 4.9(b), includes both
binary and thermal versions of the melt pool. This dual segmentation strategy serves
two key purposes: The binary segmentation facilitates the extraction of melt pool
geometry and shape-related features. On the other hand, the thermal segmentation
provides the foundation for histogram-based color and texture feature extraction,
as elaborated in the next subsection. By leveraging both binary and thermal repre-
sentations, this methodology ensures a comprehensive characterization of the melt
pool, focusing exclusively on its critical attributes while eliminating irrelevant back-
ground noise. This approach enhances the precision of feature extraction, enabling
an accurate assessment of melt pool dynamics and potential process anomalies.

4.2.2.3 Feature Extraction

IN718-based Datasets: This work utilizes two distinct categories of features: melt
pool-related features and process-related features. The melt pool features, extracted
directly from each thermal image, are further classified into three subgroups: shape,
color, and texture. These features capture critical aspects of the melt pool’s ge-
ometry and thermal distribution. Meanwhile, the process-related features provide
context and insights into the process conditions that influence melt pool behavior.
A comprehensive list of all extracted features for the DED-IN718 and DED-IN718-U
datasets is presented in Table 4.7, and they are explained in detail as follows:

(a) Shape Features: They encapsulate the geometric characteristics of the melt
pool. These features serve as critical indicators of potential defects, as irregularities
in melt pool geometry often correlate with underlying defect formation during the
deposition process. The extracted shape features from the melt pool include:

• Area: represents the area of the melt pool region. It is determined as the
total number of pixels in that region.
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Table 4.7 List of extracted features from the IN718-based datasets (features marked
with * are extracted from both DED-IN718 and DED-IN718-U, while the remaining
features are exclusive to the DED-IN718 dataset)

Melt pool-related features Process-related features
Shape features Color features Texture features

Area * Mean * Contrast * Sample ID
Perimeter Standard deviation * Correlation * Scan speed
Major axis length * Skewness * Energy * Laser power
Minor axis length Kurtosis * Homogeneity * Cylindrical coordinates (ρ, θ, z)
Equivalent diameter Entropy
Circularity * Mode
Eccentricity * Median (Q2)
Solidity 1st quartile (Q1)
Orientation 3rd quartile (Q3)

• Hole area: is the total number of pixels within the melt pool region that have
temperature values less than the predefined threshold temperature (1330 °C).

• Perimeter: represents the total length of the melt pool’s boundary.

• Major/Minor axis length: is the length (in pixels) of the major/minor axis
of the equivalent ellipse. The equivalent ellipse is defined as an ellipse whose
second moments are equal to those of the melt pool region.

• Equivalent diameter: is the diameter of the equivalent circle. The equiva-
lent circle is defined as a circle whose area is equal to the melt pool’s area.

• Circularity: represents the roundness of the melt pool region and it is calcu-
lated according to the following formula:

(4.1) Circularity = 4π ×Area

(Perimeter)2

where it is between 0 and 1, with 1 corresponding to a perfect circle.

• Eccentricity: is the eccentricity of the equivalent ellipse and it is calculated
according to the following formula:

(4.2) Eccentricity =
√

1− b2

a2

Here, a and b represent the lengths of the major and minor axes. The ec-
centricity value ranges from 0 to 1, where 0 indicates a perfect circle and 1
represents a degenerate ellipse, or a line.

69



• Orientation: is the angle (in degrees) between the major axis of the equiva-
lent ellipse and the x-axis. It ranges from −90o to 90o.

• Solidity: it is defined according to the following formula:

(4.3) Solidity = A1
A2

where A1 is the area of the melt pool and A2 is the area of the smallest convex
polygon that completely encloses the melt pool, both measured in pixels.

(b) Color features: They are derived from the temperature histogram of the melt
pool (refer to Fig. 4.9), providing insights into its temperature distribution. These
features are instrumental in identifying anomalous images that may indicate the
presence of defects. The extracted color features are outlined in Table 4.7. These
features include various statistical measures, such as mode, median, and first and
third quartiles. The other used statistics are defined as follows:

(4.4) Mean (µ) = 1
n

∑
(i,j)∈R

I(i, j)

(4.5) Std. (S) =
√√√√ 1

n−1
∑

(i,j)∈R

[I(i, j)−µ]2

(4.6) Skewness = 1
n S3

∑
(i,j)∈R

[I(i, j)−µ]3

(4.7) Kurtosis = 1
n S4

∑
(i,j)∈R

[I(i, j)−µ]4

(4.8) Entropy = −
∑

i

pi log2 pi

where R denotes the extracted region containing the melt pool with a total of n

pixels, I(i, j) represents the temperature value at the (i, j) pixel, and pi refers to the
relative frequency of the i-th bin within the histogram of R.

(c) Texture Features: The texture features are extracted from the melt pool
region using the Gray-Level Co-occurrence Matrix (GLCM). This matrix analyzes
the spatial relationships between pixel pairs in the segmented thermal version of
the melt pool (see Fig. 4.9). It is constructed by evaluating how frequently pairs
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of pixels with specific temperature values occur at a given distance and orientation
relative to each other. This approach captures how pixel values vary in relation to
their neighbors, thereby providing texture information on the melt pool region. The
spatial configuration of these pixel pairs is governed by two user-defined parame-
ters: the distance between the pixels and the orientation angle at which they are
examined. The following features are extracted from the formed GLCM:

• Energy: is the sum of the squared elements of the GLCM matrix according
to the following formula:

(4.9) Energy =
∑
i,j

[M(i, j)]2

where M(i, j) represent the (i, j) element in the GLCM matrix.

• Correlation: indicates the joint probability occurrence of the specified pixel
pairs and is computed according to the following formula:

(4.10) Correlation =
∑
i,j

(i−µi)(j −µj)×M(i, j)
σi σj

where µi represent the mean of the i-th row with standard deviation σi, and
µj is the mean of the j-th column with standard deviation σj .

• Contrast: quantifies the local variation in the GLCM matrix, and is calcu-
lated as follows:

(4.11) Contrast =
∑
i,j

|i− j|2 ×M(i, j)

• Homogeneity: measures the similarity between the distributions of the
GLCM diagonal and the GLCM elements. It is calculated according to the
following formula:

(4.12) Homogeneity =
∑
i,j

M(i, j)
1 + |i− j|

(d) Process-related Features: In addition to the abovementioned features di-
rectly associated with the melt pool, process-related features are also incorpo-
rated to provide context for the thermal images—linking them to the respective
process parameters, the fabricated sample, and spatio-temporal information inside
each sample. The process parameters include laser power and scan speed, whilst
spatio-temporal information is determined based on the cylindrical coordinates of
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the fabricated sample in hand. The cylindrical coordinates reflect the sample’s
cylindrical geometry more accurately as opposed to the Cartesian coordinates (refer
to Fig. 4.5(a)). For each thermal image, the process-related features offer critical
contextual insight complementing the melt pool-related features which capture the
fundamental characteristics of the melt pool’s thermal distribution and geometry.
The process-related features establish a connection between each thermal image and
its manufacturing environment by incorporating spatial, temporal, and process pa-
rameter information. This holistic approach is essential for understanding defect
formation. For example, defects are more likely to occur in upper layers and inner
tracks than in lower layers and outer tracks, due to the cumulative effects of verti-
cal and lateral heat buildup (see Fig. 4.5(b)). By integrating these complementary
feature sets, the model gains a more holistic understanding of the manufacturing
process, enhancing its ability to detect defects with greater accuracy.

DED-Ti64 Dataset: As with the DED-IN718 dataset, key shape and color features
are extracted from the DED-Ti64 dataset. In addition to these core features, several
supplementary shape, color, and texture features are extracted as well. Notably,
gradient-based texture features are computed to quantify the spatial temperature
transitions within the thermal images, capturing the rate of change across the melt
pool in both horizontal and vertical directions. A comprehensive list of all extracted
features for the DED-Ti64 dataset is presented in Table 4.8.

4.2.2.4 Feature Selection

The extracted features may exhibit dependencies, with some features expected to
be correlated. To address this, a Pearson correlation test was performed as a pre-
processing step to assess the correlation among these features. This test evaluates
the linear pairwise correlation between each feature pair. It is applied to all feature
pairs to construct the correlation matrix, which is defined as follows:

(4.13) C(i, j) = Cov(fi,fj)
σi σj

where C(i, j) is the correlation coefficient between the i-th and j-th features.
Cov(fi,fj) represents the covariance between the i-th feature, with standard de-
viation σi, and the j-th feature, with standard deviation σj . The correlation coeffi-
cient values range from -1 to 1, where the magnitude indicates the strength of the
correlation, and the sign indicates the direction of the relationship.
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Table 4.8 List of the features extracted from the DED-Ti64 dataset

Shape features Color features Texture features

Area Mean Gradient mean
Perimeter Standard deviation Gradient maximum
Maximum Variance Gradient standard deviation
Minimum Skewness
Major axis length Kurtosis
Minor axis length Median (Q2)
Orientation 1st quartile (Q1)
Circularity 3rd quartile (Q3)
Eccentricity Interquartile range (IQR)
Aspect ratio
Centroid coordinates
Peak temp coordinates

4.2.2.5 Normalization

The input features vary in scale, which causes features with higher scales to dominate
those with lower scales. To address this, normalization is performed by subtracting
the mean and dividing by the standard deviation of each feature, as follows:

(4.14) f
′
i = fi −µi

σi

where fi is the i-th feature with mean µi and standard deviation σi while f
′
i is its

normalized version.

This normalization method, commonly referred to as Z-score normalization or stan-
dardization (see Cabello-Solorzano et al. (2023)), transforms all features into a con-
sistent scale, ensuring a mean of 0 and a standard deviation of 1. By standardizing
the features, the influence of each feature during training is balanced, which typi-
cally leads to notable improvements in both the accuracy and numerical stability of
machine learning models.
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5. EXPERIMENTAL RESULTS

This chapter presents the experimental validation of data-driven anomaly detection
frameworks applied to the two real-world industrial applications described in the
previous chapter. Initially, the results for failure detection in the air pressure system
(APS) are detailed and examined. Subsequently, the chapter discusses and analyzes
the defect detection results within directed energy deposition (DED) processes.

5.1 Detection of APS Failures

This thesis explores various frameworks for APS failure detection, spanning super-
vised, semi-supervised, and explainable approaches. This section presents and thor-
oughly discusses the results obtained from these frameworks, with particular empha-
sis on the most promising ones—the EBM-based and transformer-based frameworks.
Through detailed comparative evaluation, their strengths, limitations, and practical
applicability in APS failure detection are critically examined.

5.1.1 Supervised Learning

The supervised models utilized in this thesis for APS failure detection include the
black-box models, namely Random Forest and XGBoost, as well as the explainable
AI (XAI) models: EBM and SHAP. EBM functions as an ante-hoc XAI model, gen-
erating both predictions and interpretable explanations simultaneously. In contrast,
SHAP is a post-hoc XAI model that provides interpretability by being trained on
top of existing black-box models to explain their predictions. In this work, SHAP
was applied to fit an explainer to Random Forest, enabling a detailed interpretation
of its predictions and serving as a baseline for assessing the explainability of the
EBM model.
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To ensure a comprehensive evaluation, the methodology for assessing model per-
formance is first outlined. This is followed by a detailed presentation and analysis
of the classification results for each supervised model. Finally, the interpretability
outcomes generated by the XAI models are presented and thoroughly discussed.

5.1.1.1 Evaluation Approach

The performance of the supervised models was evaluated using a stratified five-fold
cross-validation scheme, as illustrated in Fig. 5.1. Unlike holdout validation, which
assesses the model using only a subset of the dataset, this approach ensures that the
entire dataset is tested, thereby providing a more comprehensive evaluation of model
performance. The APS dataset exhibited a notable class imbalance, with 79% of
the data representing healthy vehicles (majority class) and 21% representing anoma-
lous vehicles (minority class). To address this imbalance, stratified sampling was
employed within the five-fold cross-validation, ensuring that each fold maintained
the original class distribution. This approach prevents the minority class from being
underrepresented in any fold, thus preserving the integrity of the evaluation process.

In the cross-validation process, the dataset was divided into five stratified folds,
and each of the supervised models was trained five times, accordingly. At each
run, one fold served as the testing set, whilst the remaining four folds were used for
training. As depicted in Fig. 5.1, each testing fold received classification probabilities
from the respective trained model. Specifically, Fi ∈ R

N
5 ×d and yi ∈ R

N
5 represent

the i-th fold and its associated model-provided probabilities where N denotes the
total size of the dataset and d is the corresponding dimensionality (the number of
features). Vi ∈ Rni×d refers to the set of ni data instances from the i-th vehicle,
with their corresponding probabilities denoted by v̂i ∈ Rni and the vehicle-level
anomaly score si ∈ R. Since each vehicle consists of multiple observations, each
has an individual classification probability; the probabilities of the testing folds
were combined and then grouped by vehicle. While the classification probability
for each observation serves as its anomaly score, a vehicle-level anomaly score is
needed to provide a more meaningful assessment. To this end, the anomaly score
for each vehicle was defined as the median of the classification probabilities across
its observations, effectively capturing the overall likelihood of anomalous behavior
for that vehicle and its APS. Finally, a one-dimensional grid search was conducted
to identify the optimal probability threshold that maximized the F1 score. This
optimized threshold was then applied to classify each vehicle as either Healthy or
Anomaly, based on its aggregated anomaly score.
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Figure 5.1 Validation scheme for evaluating supervised models (Farea et al., 2025)

5.1.1.2 Classification Results

Evaluation Metrics: The classification performance of the supervised models is
summarized in Table 5.1. All three models were trained using the default values
of their hyperparameters, adhering to the procedure outlined by Nori et al. (2019).
Overall, the models achieved comparable results, with an accuracy of 91.4% and
an F1 score of approximately 0.80. Notably, despite being a glass-box model, EBM
demonstrated performance comparable to the more complex black-box models, Ran-
dom Forest and XGBoost. These findings underscore EBM’s ability to maintain
high predictive accuracy in detecting APS failures while simultaneously providing
interpretable explanations for its predictions. Unlike conventional glass-box models,
which often trade off accuracy for interpretability, EBM effectively balances both,
delivering robust performance without sacrificing transparency.

A statistical analysis was conducted to determine whether significant performance
differences exist among the three supervised models—Random Forest, XGBoost,
and EBM. The analysis was performed using the Kruskal-Wallis H test (Kruskal &
Wallis, 1952), a non-parametric alternative to ANOVA that does not require assump-
tions of normality or homogeneity of variance, making it well-suited for the current
setting. Each model was evaluated over five independent runs, and the statistical
test was applied to each performance metric. The resulting p-values, summarized
in Table 5.2, were above 0.1 for all evaluation metrics, indicating no statistically
significant differences in performance among the models. This finding reinforces the
comparable predictive capabilities of the glass-box EBM relative to the black-box
models, demonstrating EBM’s potential as a viable, interpretable alternative that
maintains competitive performance without sacrificing transparency.
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Table 5.1 Supervised learning results for APS failure detection

Supervised model Precision Recall F1 score Accuracy AUC

Random Forest 0.82 0.77 0.79 91.4% 0.892
XGBoost 0.80 0.80 0.80 91.4% 0.886
EBM 0.80 0.80 0.80 91.4% 0.881

Table 5.2 Kruskal–Wallis H test results assessing statistical differences in perfor-
mance among the supervised models

Metric Precision Recall F1 score Accuracy AUC
p-value 0.651 0.183 0.32 0.494 0.108

Confusion Matrices: Fig. 5.2 presents the confusion matrices for the three su-
pervised models. All models demonstrated comparable performance in terms of
true positives, true negatives, false positives, and false negatives, with EBM and
XGBoost producing identical results. Notably, both EBM and XGBoost exhibited
a well-balanced performance between false alarm (false positive) and miss (false
negative) rates. These findings again emphasize the strong performance of EBM,
especially in comparison to the black-box baseline models.
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Figure 5.2 Confusion matrices of the supervised models applied to the APS dataset
(with the row-normalized percentages displayed)

5.1.1.3 Explainability Results

Both XAI models, EBM and SHAP, generate two levels of explanations: global and
local. Global explanations offer a comprehensive overview of the model’s behavior
across the entire dataset, illustrating the relative importance of input features and,
in the case of EBM, their pairwise interactions as well. This perspective provides
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a broader understanding of how various input features collectively influence model
predictions. Conversely, local explanations focus on the model’s reasoning behind a
specific prediction for a particular instance (e.g., a single vehicle), delivering a more
detailed, instance-specific interpretation of the model’s decision-making process.

Global Explanations: Fig. 5.3 illustrates the feature importances provided by
EBM, ranked in descending order based on their mean absolute scores (or contri-
butions). Similarly, the global explanations generated by SHAP are presented in
Fig. 5.4 utilizing the beeswarm and heatmap plots, which display the ranked impor-
tance of input features in descending order. Overall, the feature importance rankings
produced by the two independent models are closely aligned, demonstrating consis-
tency between EBM and SHAP in identifying key predictive features. Furthermore,
the identified ranking aligns well with domain knowledge, highlighting the most
influential features such as AC_on/off_count, BrakePedalPos_mean, DutyCycle,
P2_min, and P3_min. This ranking is consistent with domain expertise, as de-
scribed in Section 4.1. For example, air leakage, a common APS issue, is typically
characterized by increased AC_on/off_count and DutyCycle values, along with de-
creased P2_min and P3_min values. However, these patterns may also occur during
episodes of heavy braking, underscoring the importance of BrakePedalPos_mean
in providing contextual information. Accordingly, BrakePedalPos_mean is ranked
among the three most important features, reflecting its critical role in distinguishing
between normal and anomalous behavior under varying operational conditions.
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Figure 5.3 EBM-provided feature importance (Farea et al., 2025). Features are
ranked in descending order according to importance.
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(a) 

(b) 

Figure 5.4 SHAP-provided global explanations (Farea et al., 2025): (a). beeswarm
plot showing the ranking of feature importance and the distribution of SHAP values
for each feature across the entire dataset, and (b). heatmap plot showing feature
importance rankings based on only 1000 data instances, with the classification prob-
ability log-odds function f(x) shown at the top

The per-feature explanations generated by EBM for the five key features are pre-
sented in Fig. 5.5. Each feature is depicted with two graphs: the upper graph plots
the feature’s contribution scores against its value range, while the lower graph dis-
plays the feature’s histogram across the dataset, with low-density regions excluded
to minimize the impact of potential outliers. According to Eq. (3.12), positive
contribution scores drive predictions towards the ’Anomaly’ class, whereas negative
scores indicate a tendency toward the ’Healthy’ class.

For SHAP, the per-feature explanations are embedded in the beeswarm plot (see
Fig. 5.4(a)), which offers a detailed visualization of feature importance and the
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Figure 5.5 EBM explanations for the key features in the APS dataset (Farea et al.,
2025). For each feature, its contributions (scores) across different ranges of its
values are shown as a line plot, accompanied by a bar plot displaying the feature’s
distribution throughout the dataset, while excluding low-density regions.

distribution of SHAP values relative to feature values. This plot provides a concise
yet information-rich summary of how the important features impact the model’s
final predictions. Each point represents a single data instance, with its position on
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the x-axis indicating the SHAP value (i.e., the feature’s contribution score to the
prediction) and its color denoting the feature value.

For both EBM and SHAP, AC_on/off_count and DutyCycle exhibit increasing
trends in contribution scores as their values rise, signifying that higher values of
these features are key indicators of potential APS failures, particularly during light
braking periods. In contrast, BrakePedalPos_mean demonstrates a decreasing trend
in contribution scores, with notably negative scores at higher values. This pattern
counterbalances the high positive scores of AC_on/off_count and DutyCycle dur-
ing heavy braking episodes, where increased APS activity is expected to maintain
sufficient air pressure for braking. For P2_min and P3_min, the scores reveal dual
behavior. Low values are associated with positive scores, indicating a potential air
leakage issue due to insufficient minimum pressure. Conversely, very high values also
receive positive scores, suggesting a possible overpressurization scenario, potentially
caused by a malfunctioning relief valve. Overall, the distribution of contribution
scores—both EBM scores and SHAP values—demonstrates a remarkable alignment
with domain knowledge, reinforcing the credibility of the model’s interpretability
and its relevance to real-world APS failure detection scenarios.

Local Explanations: The local explainability of both XAI models was further as-
sessed and compared for a healthy vehicle and an anomalous vehicle, as illustrated
in Fig. 5.6. These local explanations provide valuable insights into the model’s
decision-making process, illustrating the specific factors that influenced its predic-
tions for individual samples (i.e., vehicles). Both models generated consistent expla-
nations, effectively aligning in their interpretation of key features for each vehicle.
For the healthy vehicle, both EBM and SHAP attributed its classification primarily
to the low values of AC_on/off_count and DutyCycle, coupled with normal val-
ues of P2_min and P3_min, indicating stable APS operation. Conversely, for the
anomalous (faulty) vehicle, both models identified high values of AC_on/off_count,
DutyCycle, and P3_std as significant indicators of anomalous behavior, aligning
with known patterns of APS failure. This consistency between EBM and SHAP
underscores the robustness of their interpretability frameworks in accurately identi-
fying key failure indicators in APS data.

Further Investigation of EBM Local Explainability: The EBM-generated
local explanations were further analyzed by examining additional six vehicles: two
healthy vehicles correctly classified by EBM (true negatives) in Fig. 5.7, two anoma-
lous vehicles correctly classified by EBM (true positives) in Fig. 5.8, and one anoma-
lous vehicle misclassified by EBM as healthy (false negative) and one healthy vehicle
misclassified by EBM as an anomaly (false positive) in Fig. 5.9. For each sample
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Figure 5.6 Comparison of local explanations generated by EBM and SHAP for a
healthy vehicle and an anomalous (faulty) vehicle (Farea et al., 2025)

vehicle, the upper section illustrates the local explanations, with the per-vehicle av-
erage feature values indicated in parentheses. In contrast, the lower section presents
time series plots of the key indicative features: DutyCycle, AC_on/off_count, and
minimum pressures. These time series plots facilitate a detailed examination of the
temporal evolution of each feature, providing valuable domain knowledge-based in-
sights. The anomaly score—calculated as the median probability of all windows (i.e.,
data points) associated with that vehicle—is also provided. This score quantifies the
EBM model’s confidence in classifying the vehicle as anomalous. Additionally, the
anomaly flags for each indicative feature are displayed above their respective time
plots. The flag values range from zero to two, depending on the severity of the
anomalous behavior exhibited by that feature. These EBM-generated local expla-
nations for the six sample vehicles are as follows:

• EBM accurately classified Sample 1 as healthy, as shown in Fig. 5.7, primarily
due to the low values of AC_on/off_count and DutyCycle, both of which align
with typical APS behavior in non-anomalous conditions. P2_min and P3_min
maintained normal values, further supporting the "healthy" classification. This
assessment is corroborated by the time plots of DutyCycle, AC_on/off_count,
and minimum pressures, which exhibit normal patterns with zero flags for each
feature, indicating the absence of anomalous behavior.
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Figure 5.7 EBM-generated local explanations for correctly classified healthy vehicles
(Farea et al., 2025). For each sample, the upper plot presents the EBM-provided
explanations, with the vehicle-wise average values of the features indicated in paren-
theses. The lower plot depicts the daily average time series of the key features.

• Similarly, the EBM model correctly classified Sample 2 as healthy, despite its
relatively high AC_on/off_count value. This classification is justified by the
elevated BrakePedalPos_mean, as highlighted in the corresponding local ex-
planation plot. In this context, the high AC_on/off_count value is interpreted
as normal behavior during heavy braking periods, demonstrating the model’s
capability to contextualize feature values based on operational conditions.

83



Duty Cycle
Anomaly flags: 2

AC On/Off Count
Anomaly flags: 2

Minimum Pressure
Anomaly flags: 1

P3
_m

in
 (D

ai
ly

 A
vg

.)

P1
_m

in
 (D

ai
ly

 A
vg

.)

A
C

 O
n/

O
ff

 C
ou

nt
 (D

ai
ly

 A
vg

.)

A
C

 O
n/

O
ff

 C
ou

nt
 (D

ai
ly

 M
ax

.)

D
ut

y 
C

yc
le

 (D
ai

ly
 A

vg
.)

N
um

be
r 

of
 w

in
do

w
s 

(D
ai

ly
)

Time to Failure (days)Time to Failure (days) Time to Failure (days)

Duty Cycle
Anomaly flags: 2

AC On/Off Count
Anomaly flags: 2

Minimum Pressure
Anomaly flags: 1

P3
_m

in
 (D

ai
ly

 A
vg

.)

P1
_m

in
 (D

ai
ly

 A
vg

.)

A
C

 O
n/

O
ff

 C
ou

nt
 (D

ai
ly

 A
vg

.)

A
C

 O
n/

O
ff

 C
ou

nt
 (D

ai
ly

 M
ax

.)

D
ut

y 
C

yc
le

 (D
ai

ly
 A

vg
.)

N
um

be
r 

of
 w

in
do

w
s 

(D
ai

ly
)

Time to Failure (days) Time to Failure (days) Time to Failure (days)

Duty Cycle
Anomaly flags: 2

AC On/Off Count
Anomaly flags: 2

Minimum Pressure
Anomaly flags: 1

P3
_m

in
 (D

ai
ly

 A
vg

.)

P1
_m

in
 (D

ai
ly

 A
vg

.)

A
C

 O
n/

O
ff

 C
ou

nt
 (D

ai
ly

 A
vg

.)

A
C

 O
n/

O
ff

 C
ou

nt
 (D

ai
ly

 M
ax

.)

D
ut

y 
C

yc
le

 (D
ai

ly
 A

vg
.)

N
um

be
r 

of
 w

in
do

w
s 

(D
ai

ly
)

Time to Failure (days)Time to Failure (days) Time to Failure (days)

Duty Cycle
Anomaly flags: 2

AC On/Off Count
Anomaly flags: 2

Minimum Pressure
Anomaly flags: 1

P3
_m

in
 (D

ai
ly

 A
vg

.)

P1
_m

in
 (D

ai
ly

 A
vg

.)

A
C

 O
n/

O
ff

 C
ou

nt
 (D

ai
ly

 A
vg

.)

A
C

 O
n/

O
ff

 C
ou

nt
 (D

ai
ly

 M
ax

.)

D
ut

y 
C

yc
le

 (D
ai

ly
 A

vg
.)

N
um

be
r 

of
 w

in
do

w
s 

(D
ai

ly
)

Time to Failure (days) Time to Failure (days) Time to Failure (days)

Figure 5.8 EBM-generated local explanations of correctly classified anomalous vehi-
cles (Farea et al., 2025)

• Samples 3 and 4, both anomalous vehicles, were accurately classified as anoma-
lous based on their high values of DutyCycle and AC_on/off_count, as indi-
cated in Fig. 5.8. Upon closer examination of the time plots for these features,
their values remained elevated throughout the final month before failure, with
a notable increasing trend, particularly in the DutyCycle plot for Sample 3.
The EBM-generated explanations effectively highlight the extended and fre-
quent operation of the air compressor as a potential root cause of APS failure,
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Figure 5.9 EBM-generated local explanations of misclassified vehicles (Farea et al.,
2025)

emphasizing how sustained high values of DutyCycle and AC_on/off_count
serve as early indicators of impending malfunction.

• Sample 5, a vehicle with a reported APS failure, was misclassified as healthy.
It has a low median probability of being an anomaly (0.089) as shown in
Fig. 5.9. The model’s decision was driven by the low values of DutyCycle and
AC_on/off_count, alongside the normal values of P2_min and P3_min. The
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corresponding time plots for these features confirm this assessment, displaying
no significant anomalies or trends, and all features received zero flags. The
absence of discernible abnormal behavior during the final month before fail-
ure suggests that the root cause of APS failure might have been subtle and
not easily detectable through these key features. Another plausible explana-
tion is that the E-APU was replaced as a preventive measure despite being
functionally intact, though such cases are considered rare.

• Lastly, Sample 6, a healthy vehicle, was incorrectly classified by the EBM
model as anomalous, attributing its decision to the elevated AC_on/off_count
and the low values of P2_min and P3_min, as depicted in Fig. 5.9. The time
plots of these three features reveal some degree of anomalous behavior, with
each receiving one flag, indicating slight deviations from expected patterns.

5.1.2 Semi-supervised Learning

As stated in Chapter 3, two transformer-based architectures were employed as semi-
supervised models for APS failure detection: a vanilla transformer-based model and
the more advanced TranAD architecture. The vanilla transformer-based model was
applied to a reduced version of the APS dataset, consisting of all the 30 anomalous
vehicles and 77 of the 110 healthy vehicles. In contrast, for TranAD, the complete
APS dataset was considered, allowing for a more comprehensive evaluation. For the
vanilla transformer-based model, 70% of the healthy data in the reduced dataset was
used for training, with the remaining 30% of the healthy data reserved for validation.
Meanwhile, TranAD was trained using varying proportions of the healthy data, as
detailed in Table 5.3. In each case, the remaining proportion of the healthy data
served as the validation set. During inference, both models were evaluated on their
respective full datasets, incorporating all healthy and anomalous vehicles to assess
their generalization capabilities. For both models, the maximum number of training
epochs was selected as 20, while all the other hyperparameters were set as the default
values specified by Tuli et al. (2022).

Evaluation Metrics: The results summarized in Table 5.3 highlight distinct per-
formance patterns between the two models. Despite its relatively simple architec-
ture, the vanilla transformer model achieved promising results, with an accuracy
exceeding 85% and an F1 score of 0.76. Notably, the model exhibited a high recall
of 0.83, indicating its effectiveness in detecting 83% of anomalous vehicles. However,
its relatively low precision suggests a higher false alarm rate, indicating potential
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Table 5.3 Results of transformer-based models (HVs denoting healthy vehicles’ data)

Model Training Data Precision Recall F1 Score Accuracy

Vanilla transformer 70% of HVs 0.69 0.83 0.76 85.1%
TranAD model 20% of HVs 0.82 0.77 0.79 91.4%

40% of HVs 0.81 0.73 0.77 90.7%
60% of HVs 0.73 0.80 0.76 89.3%
80% of HVs 0.79 0.77 0.78 90.7%

over-sensitivity to anomalies. In contrast, the TranAD model, a more sophisticated
architecture, achieved superior performance, with an accuracy of 91.4% and an F1
score of 0.79. It also demonstrated higher precision, effectively reducing false alarms
while maintaining strong recall. Remarkably, TranAD achieved its best performance
using only 20% of the healthy data for training, which highlights its data efficiency
and generalization capability under limited training data conditions. This impressive
performance can be attributed to its effective attention mechanisms and adversarial
training strategy, which enable the model to extract informative representations and
accurately detect anomalies even with reduced training data. This finding under-
scores TranAD’s robustness and adaptability, reinforcing its potential as a reliable
anomaly detection framework in data-constrained scenarios.

Confusion Matrices: The false positives and false negatives for both models are
highlighted in their corresponding confusion matrices in Fig. 5.10. For TranAD,
the matrix reflects the scenario in which only 20% of the healthy data was used for
training. The vanilla transformer model exhibits a relatively high rate of false pos-
itives, indicating a tendency to incorrectly classify healthy instances as anomalous.
In contrast, TranAD maintains a more balanced performance, with a manageable
number of false positives and false negatives, effectively controlling the false alarm
rate while still capturing anomalous instances.
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Figure 5.10 Confusion matrices for the transformer-based models
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Figure 5.11 Learning curves for the semi-supervised models: (a) vanilla transformer-
based model (Farea et al., 2024) (b) TranAD model (HVs: healthy vehicles’ data)
(Mumcuoglu et al., 2024b)

Learning Curves: The learning curves for both models are shown in Fig. 5.11. For
TranAD, the displayed curves represent the averaged training and validation learning
curves across multiple experiments, with different proportions of the healthy data
utilized for training. TranAD demonstrates a substantially faster learning rate than
the vanilla transformer model, rapidly achieving accurate reconstruction of input
windows within the first two epochs. In contrast, the vanilla transformer requires
over six epochs to reach a comparable level of accuracy. It is noteworthy that
TranAD achieves this rapid convergence using only 20% of the healthy data.

Further Investigation into TranAD Performance: Lastly, Fig. 5.12 presents
a comparison between a sample driving section from a healthy vehicle and a cor-
responding section from an anomalous vehicle, aiming to diagnose the root causes
of the anomaly as identified by the TranAD model. The displayed driving sections
include the true duty cycle, compressor on/off count, and minimum pressure sig-
nals, alongside their TranAD-reconstructed counterparts. Beneath each signal, the
respective reconstruction error is plotted, highlighting discrepancies between the
actual and reconstructed signals. The TranAD model accurately reconstructs the
signals in the healthy driving section, indicating a close match between the original
and reconstructed data. In contrast, it struggles to reconstruct certain segments
of the anomalous driving section accurately. Such poorly reconstructed areas are
highlighted in red within Fig. 5.12. These discrepancies, marked as high recon-
struction errors, are indicative of potential anomaly sources. A closer examination
of these segments reveals that the three signals indeed exhibit abnormal patterns
compared to the typical behavior observed in the healthy section. Moreover, it is
noteworthy that TranAD demonstrates a heightened sensitivity to short anomalous
segments, particularly within the minimum pressure signal. This ability to detect
even short-duration anomalies underscores its effectiveness in detecting subtle, lo-
calized anomalies within the data.

88



Figure 5.12 True vs TranAD-reconstructed driving sections from a healthy vehicle
and an anomalous vehicle (Mumcuoglu et al., 2024b)

5.1.3 Overall Comparison

Table 5.4 provides a comprehensive comparison of the data-driven models applied
to APS failure detection. Overall, the supervised models and the TranAD model
demonstrated strong and comparable performance, effectively addressing the detec-
tion task. However, the primary emphasis is placed on EBM, as an interpretable
model, and TranAD, as a semi-supervised architecture, while the remaining models
serve as baseline references for evaluating their performance.

EBM’s performance is particularly noteworthy, with several key strengths high-
lighted as follows:

• Strong Performance: Despite being a glass-box interpretable model, EBM
delivered performance comparable to advanced black-box models such as Ran-
dom Forest and XGBoost, effectively balancing interpretability and classifica-
tion accuracy. This capability to offer clear, interpretable insights into its
decision-making process while achieving black-box-level accuracy highlights
the practical value of EBM in real-world applications, particularly in high-
stakes settings where model explainability is crucial.

• Explanation Diversity and Computational Efficiency: The explana-
tions generated by both EBM and SHAP, a widely recognized XAI baseline,
align well with domain expertise. However, EBM demonstrates clear advan-
tages over SHAP in terms of explanation diversity and computational effi-
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Table 5.4 Comparison of data-driven models for APS failure detection: The best
result for each metric is shown in bold, and values comparable to the best are
underlined.

Learning paradigm Model Precision Recall F1 Score Accuracy AUC

Supervised Random Forest 0.82 0.77 0.79 91.4% 0.892
XGBoost 0.80 0.80 0.80 91.4% 0.886
EBM 0.80 0.80 0.80 91.4% 0.881

Semi-supervised Vanilla transformer 0.69 0.83 0.76 85.1% 0.891
TranAD model 0.82 0.77 0.79 91.4% 0.890

ciency. While SHAP focuses exclusively on individual feature attributions,
EBM extends beyond single features to incorporate pairwise feature inter-
actions, resulting in richer, more comprehensive explanations. In terms of
computational efficiency1, EBM is significantly faster than SHAP, as shown
in Table 5.5. The time complexity per observation for EBM is approximately
1 millisecond, while SHAP requires around 0.7 seconds per observation, rep-
resenting a substantial increase in computational cost. This notable difference
positions EBM as a more practical choice for large-scale or real-time applica-
tions, effectively maintaining interpretability and accuracy while significantly
reducing computational overhead.

On the other hand, the performance of TranAD demonstrated several significant
strengths, as outlined below:

• Data Efficiency and Rapid Convergence:TranAD exhibited exceptional
data efficiency, achieving robust performance using only 20% of the healthy
data for training, a fraction of the training data used by the other models. Ad-
ditionally, it demonstrated fast convergence during training, effectively learn-
ing representative patterns in a relatively short training period.

• Effective Semi-Supervised Learning: Despite its semi-supervised formu-
lation, TranAD delivered performance comparable to fully supervised models
(see Table 5.4). This outcome is particularly significant given that the semi-
supervised approach is inherently more challenging, as it is trained without la-
beled anomalies. Nevertheless, this formulation is more practical in real-world
scenarios, where labeled anomalous data is typically scarce. Through the
semi-supervised formulation, TranAD effectively addressed critical anomaly
detection challenges such as class imbalance and anomaly heterogeneity.

1The experiments were conducted on a Windows 11 system with an Intel Core i7-10510U CPU (1.80 GHz
base clock) and 16 GB of RAM, using the following implementations: InterpretML (0.5.0) for EBM,
Scikit-learn (1.2.2) for Random Forest, and SHAP (0.46.0) for SHAP TreeExplainer.
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Table 5.5 Time complexity of EBM and SHAP (measured in seconds per observation)

Model Time complexity (s)

(Random Forest + SHAP) ( 3.995×10−4 + 6.749×10−1)
EBM 1.161×10−3

• Temporal Sequence Modeling: As a sequential architecture, TranAD effec-
tively captures temporal dependencies across input windows, a capability that
static models like Random Forest and XGBoost lack. This temporal mod-
eling capacity is particularly advantageous in APS failure detection, where
anomalies often manifest as subtle, time-dependent patterns (e.g., conditional
or group anomalies).

Overall, TranAD’s combination of data efficiency, effective semi-supervised learning,
and temporal modeling capabilities underscores its robustness and suitability for
APS failure detection, particularly in data-constrained and sequential data settings.

Main Limitations of EBM and TranAD-based Frameworks: Unlike TranAD,
EBM faces limitations in its static modeling nature, which restricts its capacity to
capture temporal dependencies inherent in time series data. Additionally, its reliance
on fully supervised training necessitates labeled data for both normal and anomalous
classes. In contrast, the primary limitation of the semi-supervised TranAD-based
framework lies in the challenge of providing meaningful interpretations for its predic-
tions, primarily due to the absence of labeled anomalous instances during training.
Furthermore, such semi-supervised models are not explicitly optimized to distin-
guish between normal and anomalous data; rather, they are trained to reconstruct
the training data—typically normal instances—as discussed in Section 2.1.3.2.

5.1.4 Ablation Study: Investigation of Window Parameters

This subsection investigates the impact of the sliding window parameters— window
length and shift—on the APS failure detection performance of EBM and TranAD.
For EBM, three window lengths (5, 10, and 20 minutes) were examined, with each
tested under two shift configurations: a full window-length shift and a 50% overlap
(i.e., half-window shift)2. The corresponding results are summarized in Table 5.6.

2The results presented in Section 5.1.1 for all supervised models, including EBM, are based on a nominal
window length of 10 minutes and a window shift of 5 minutes.
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Table 5.6 Effect of window size and shift on the performance of EBM

Window parameters Evaluation metrics

Size Shift Precision Recall F1 score Accuracy AUC

5 min 2.5 min 0.846 0.733 0.786 91.4% 0.881
5 min 0.774 0.800 0.787 90.7% 0.885

10 min 5 min 0.800 0.800 0.800 91.4% 0.881
10 min 0.767 0.767 0.767 90.0% 0.889

20 min 10 min 0.686 0.800 0.738 87.9% 0.884
20 min 0.667 0.867 0.754 87.9% 0.879

Among the tested configurations, a 10-minute window combined with a 5-minute
shift yielded the highest F1 score, indicating the best trade-off between precision
and recall. This outcome suggests that the chosen window length is sufficiently long
to extract informative features—such as the DutyCycle and AC_on/off_count—
without introducing excessive temporal smoothing. The use of overlapping windows
(50% shift) improved performance for the 10-minute window, but had minimal effect
on the shorter (5-minute) and longer (20-minute) windows.

In the case of the TranAD model, the analysis compared two window lengths: the
default 20-minute setting (as reported in Section 5.1.2) and a shorter 10-minute win-
dow. In both scenarios, the window shift was fixed at 10 minutes. The resulting F1
scores across different training data proportions are shown in Fig. 5.13. On average,
the 20-minute window outperformed the shorter alternative, especially when only
20% of the healthy data was available for training. This finding aligns with domain-
specific insights: longer input sequences lead to more meaningful and robust values
for the key indicators, such as the duty cycle and compressor activation patterns,
which are crucial for accurately modeling normal and anomalous behavior.

Figure 5.13 Effect of the input window length on the performance of TranAD
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5.2 Detection of DED Defects

In the context of defect detection in DED processes, this thesis incorporates three
distinct datasets. Two of them, referred to as DED-IN718 and DED-IN718-U, were
curated and prepared as part of this research, while the third dataset, referred to as
DED-Ti64, is publicly available.

For the DED-IN718 dataset, the defect detection framework was developed using su-
pervised models, given its balanced class distribution and single-class anomalies. In
contrast, the framework for the DED-Ti64 dataset was based on one-class SVM and
iForest, implemented in semi-supervised and unsupervised settings, aligning with
the dataset’s imbalanced class distribution. Lastly, a fully unsupervised approach
was adopted for the DED-IN718 dataset due to the lack of ground-truth labels.

5.2.1 Supervised Learning

This section starts by presenting the feature correlation analysis for the DED-IN718
dataset, followed by a comprehensive evaluation of the supervised models, Random
Forest and SVM, applied to the same dataset.

Feature Correlation Analysis: As detailed in Section 4.2, a comprehensive set
of shape, color, and texture features was extracted from each thermal image in
the DED-IN718 dataset. These features, combined with process-related features,
provide a comprehensive summary of both the melt pool characteristics and the
spatio-temporal context of each image. Consequently, it is expected that normal
(defect-free) images will exhibit distinct feature patterns compared to anomalous
(defective) images based on this feature set.

However, the extracted features may contain redundancies due to interdependen-
cies, potentially compromising model performance and computational efficiency. To
address this, a Pearson correlation analysis was conducted to assess the linear re-
lationships between feature pairs. The resulting correlation matrix, presented in
Fig. 5.14, provides the pairwise correlation coefficients. Features with a correlation
coefficient exceeding 0.7 in magnitude were considered highly correlated, and only
one feature from each highly correlated pair was retained. Through this analysis,
the initial set of 29 features was significantly reduced to 17, effectively eliminating
12 redundant features while maintaining the most informative ones. This feature
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Circularityf5Eccentricityf4MajorAxisLengthf3HoleAreaf2Areaf1
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LaserPowerf29ScanSpeedf28SampleIDf27Zf26

Figure 5.14 Pearson pairwise correlation between extracted features (redundant fea-
tures to be excluded due to high correlation with other features are marked in red)

selection process obviously reduces dimensionality and enhances the model’s effi-
ciency, facilitating more robust and computationally efficient learning. The final
set of selected features, along with their statistical characteristics, is presented in
Table 5.7. Given the varying value ranges of the selected features, feature normal-
ization was subsequently applied to standardize the data, ensuring that all features
contribute equally during the classification process. This step is crucial to maintain
model accuracy and stability.

Classification Results: The five-fold cross-validation results for both Random
Forest (RF) and SVM are presented in Table 5.8, with the corresponding hyperpa-
rameter configurations detailed in Table 5.9. Following a series of experiments, the
selected hyperparameters were identified as those providing the best overall perfor-
mance. For the Random Forest model, the default hyperparameter settings were
maintained, as adjustments to these values did not lead to notable performance
enhancements.

The evaluation metrics, summarized in Table 5.8, include two scenarios: (i) us-
ing the complete set of 29 features and (ii) using only the 17 selected features.
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Table 5.7 Selected features for the DED-IN718 dataset and their statistics

Feature category Feature name mean std min max

Shape Features

(1) Area (in pixels) 3491 469.6 0 5731
(2) HoleArea (in pixels) 16.04 15.34 0 187
(3) Major Axis Length (in pixels) 74.88 6.050 0 94.28
(4) Eccentricity * 0.5509 0.1255 0 0.9016
(5) Circularity * 0.5395 0.1050 0 1.969
(6) Orientation (in degrees) 1.990 51.66 -89.95 89.97

Color Features

(7) Mean (in oC) 1594 51.81 0 1761
(8) Skewness * 0.04952 0.3952 -0.8334 1.747
(9) Mode (in oC) 1813 200.1 0 2007
(10) 1st Quartile (in oC) 1462 33.93 0 1569

Texture Features (11) Correlation * 0.9007 0.03596 -1.0158E-4 0.9410
(12) Homogeneity * 0.9195 0.01579 0 0.9998

Process-related Features

(13) Theta (in degrees) 180 101.8 25.71 334.3
(14) Rho (in mm) 8.585 0.9644 7.1 10.5
(15) Z (in mm) 27.37 14.41 1.56 52.02
(16) Sample ID 2.918 1.337 1 5
(17) Scan Speed (in mm/min) 627.3 143.2 500 900

* These are dimensionless quantities.

Table 5.8 Results of the supervised classifiers on the DED-IN718 dataset

Model Feature Set Precision Recall F1 Score AUC Accuracy

Random Forest All features 0.802 0.857 0.829 0.903 83.6%
Selected features 0.812 0.858 0.834 0.910 84.2%

SVM All features 0.804 0.836 0.820 0.890 83.0%
Selected features 0.796 0.858 0.826 0.896 83.2%

The corresponding receiver operating characteristic (ROC) curves for both models
under these scenarios are illustrated in Fig. 5.15, where the area under the ROC
curve (AUC) remains consistently high for both models, with values around 0.9
(see Table 5.8). These high AUC values indicate the supervised classifiers’ strong
discriminative ability in distinguishing defect-free from defective thermal images,
highlighting their effectiveness in binary classification tasks. Notably, reducing the
feature set did not diminish model performance; instead, it led to a slight improve-
ment, especially for Random Forest. This enhancement underscores the effectiveness
of feature selection, which eliminated redundant features while preserving the infor-
mative ones, thereby improving model accuracy and computational efficiency.

When comparing the performance of the two classifiers, the Random Forest model
consistently outperformed the SVM model across all evaluation metrics. Random
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Table 5.9 Hyperparameters of the supervised classifiers (n denotes the training data
size, k is the total number of input features, and f is the number of features to
randomly select at each split)

Random Forest SVM
Hyperparameter Value Hyperparameter Value

- No. of learners (m) 100 - Kernel function Gaussian
- Split criterion Gini Impurity - Kernel scale 3.85
- No. of features (f)

√
k - Regularization parameter (C) 1

- Max. number of splits n−1
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Figure 5.15 ROC curves for the supervised classifiers on the DED-IN718 dataset

Forest achieved the highest accuracy, approximately 84%, along with an F1 score
exceeding 0.83, attaining a well-balanced performance between precision and recall.
In terms of precision, Random Forest demonstrated a value of 0.81, signifying that
81% of the thermal images classified as anomalous are actual anomalies with internal
defects. Additionally, it achieved a recall of approximately 0.86, effectively detecting
86% of the actual anomalous images. This balanced performance between precision
and recall highlights Random Forest’s strong capability in identifying defects while
minimizing false positives, making it a more reliable classifier for this application of
defect detection based on thermal imaging data.

The confusion matrices for both classifiers are depicted in Fig. 5.16. When utilizing
the complete set of features, SVM generates fewer false positives than Random For-
est, but at the cost of higher false negatives, suggesting that it is more conservative
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Figure 5.16 Confusion matrices of the supervised classifiers applied to the
DED-IN718 dataset: (a) using all features and (b) using the selected features as
the input features

in predicting defects. However, when the selected feature set is employed, Ran-
dom Forest shows substantial improvement, with reductions in both false positives
and false negatives, underscoring its robustness and enhanced generalization ability
with a more concise, independent feature set. In contrast, SVM exhibits a notable
reduction in false negatives with the selected features; however, this gain is counter-
balanced by an increase in false positives, indicating a trade-off in its classification
strategy. Overall, Random Forest consistently outperforms SVM, particularly in re-
ducing false positives, which is critical for maintaining high defect detection accuracy
and reducing unnecessary false alarms.

Fig. 5.17 illustrates representative true positive cases, comprising thermal images
which Random Forest successfully classified as anomalous, along with key melt pool
characteristics. Corresponding X-ray images are also provided, where CT-identified
porosities are annotated with relevant characteristics, including spatial coordinates
and diameters. The thermal images exhibit nonuniform temperature distributions,
frequently marked by overheating or underheating and accompanied by irregular
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(a) (b)

Figure 5.17 Examples of anomalous thermal images in the DED-IN718 dataset:
(a) thermal images, each annotated with its ground truth and predicted labels (where
1 refers to the defective class), along with the corresponding classification probability
provided by Random Forest; and (b) the corresponding X-ray images, where CT-
identified porosities are highlighted and accompanied by their key characteristics.

melt pool geometries. Insufficient fusion resulting from underheating is a predomi-
nant factor contributing to porosity formation. In contrast, overheating introduces
potential complications, such as increased surface roughness and compromised me-
chanical integrity (Ranjan et al., 2023). Additionally, overheating can exacerbate
pore generation through gas entrapment, driven by pronounced temperature differ-
entials between the melt pool and surrounding powder particles (Zhao et al., 2021).
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5.2.2 Semi-supervised and Unsupervised Learning

iForest and one-class SVM were applied to the DED-Ti64 dataset under both semi-
supervised and unsupervised settings. In contrast, only an unsupervised approach
using DBSCAN was applied to the DED-IN718-U dataset due to the absence of
ground-truth labels. This section first presents the results for the DED-Ti64 dataset,
followed by the results for the DED-IN718-U dataset.

5.2.2.1 DED-Ti64 Dataset

Feature Correlation Analysis: The correlation matrix presented in Fig. 5.18
delivers valuable insights into the relationships among features in the DED-Ti64
dataset, facilitating a more informed selection of features for anomaly detection.
Similar to the DED-IN718 dataset, by leveraging this correlation analysis, the fea-
ture set can be refined to eliminate redundancy while preserving key information,
ultimately enhancing model efficiency and effectiveness in detecting defects.

Certain features exhibit strong correlations, notably the temperature mean, median,
and first quartile (Q1), with correlation coefficients of 0.98 or higher. Retaining only
one representative from such highly correlated groups can significantly reduce model
complexity while preserving essential information. A similar relationship is evident
between variance and standard deviation, where their strong association justifies
the exclusion of one. This pattern also extends to gradient-based features, such as
gradient mean and gradient standard deviation. Additionally, geometric features—
such as major axis length, minor axis length, area, and perimeter—demonstrate
consistently high positive correlations among each other, further supporting the
case for dimensionality reduction without sacrificing critical information.

Accordingly, filtering out redundant features resulted in a substantial reduction in
model complexity, effectively achieving significant dimensionality reduction while
also enhancing model accuracy. As shown in Table 5.10, models trained on the
reduced feature set outperformed those using the complete set of features.

Performance Evaluation: The evaluation metrics for iForest and one-class SVM
across different feature sets and learning paradigms are presented in Table 5.10.
To ensure a comprehensive assessment, both models were evaluated under semi-
supervised and unsupervised learning settings using both the complete and the se-
lected feature sets.
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Figure 5.18 Feature correlation matrix for the DED-Ti64 dataset

Table 5.10 Results of iForest and one-class SVM on the DED-Ti64 dataset

Feature Set Training iForest One-class SVM

Precision Recall F1 Accuracy Precision Recall F1 Accuracy

All Features Semi-Supervised 0.81 0.91 0.86 94% 0.75 0.96 0.84 93%
Unsupervised 0.62 0.68 0.64 96% 0.39 0.67 0.49 93%

Selected Features Semi-Supervised 0.82 0.96 0.88 95% 0.76 0.97 0.85 93%
Unsupervised 0.74 0.84 0.78 98% 0.44 0.77 0.56 94%

Overall, iForest consistently outperformed one-class SVM in both learning
paradigms. The best results for both models were achieved using the selected
features in the semi-supervised setting, underscoring the effectiveness of semi-
supervised learning in detecting anomalies for these models. Specifically, iForest
achieved a precision of 0.82, a recall of 0.96, and an F1 score of 0.88, indicating
strong detection capabilities. In comparison, the optimal performance of one-class
SVM was characterized by a precision of 0.76, a recall of 0.97, and an F1 score of
0.85, demonstrating a relatively strong recall but a slightly lower precision.

Under the unsupervised learning setting, iForest maintained relatively stable per-
formance, with an F1 score of 0.78, highlighting its robustness to variations in data
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distribution. In contrast, one-class SVM’s performance deteriorated significantly,
with the precision and F1 score dropping to 0.44 and 0.56, respectively. This find-
ing indicates the sensitivity of one-class SVM to training data impurities and its
limited generalization capacity in unsupervised scenarios.

The confusion matrices in Fig. 5.19 provide a detailed visual representation of the
classification performance of iForest and one-class SVM under the semi-supervised
learning paradigm, offering valuable insights into each model’s effectiveness in iden-
tifying normal and defective samples. The key observations are as follows:

• Effect of Learning Paradigm: The choice of training paradigm (semi-
supervised vs. unsupervised) had a pronounced impact on model performance:
Under the semi-supervised setting, one-class SVM achieved an F1 score of
0.85, with corresponding precision 0.76 and recall 0.97, effectively capturing
anomalous instances while maintaining a relatively controlled false positive
rate (see Fig. 5.19). Nonetheless, in the unsupervised setting, its performance
declined sharply, with the F1 score dropping to 0.56, alongside a decrease in
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Figure 5.19 Confusion matrices for iForest and one-class SVM applied to the DED-
Ti64 dataset (semi-supervised setting): (a) using all features and (b) using the
selected features
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precision to 0.44 and recall to 0.77. This pronounced decline underscores the
model’s susceptibility to data contamination, as the inclusion of both normal
and anomalous data during training compromises its ability to effectively dis-
tinguish between classes, leading to significant misclassifications. For iForest,
the semi-supervised approach yielded a precision of 0.82, a recall of 0.96, and
an F1 score of 0.88, reflecting a balanced trade-off between defect detection
and false positive minimization (see Fig. 5.19). However, under the unsu-
pervised setting, iForest’s F1 score decreased to 0.78, with a corresponding
decrease in precision to 0.74 and recall to 0.84. Although iForest exhibited
greater robustness than one-class SVM, the increase in false positives under-
scores the impact of training data purity on model reliability. Overall, the
semi-supervised training scheme demonstrated clear advantages, significantly
enhancing both precision and recall for both models.

• Effect of Feature Selection: Feature selection played a prime role in opti-
mizing model performance, particularly in distinguishing normal from anoma-
lous instances. For iForest, the use of the selected feature set reduced the
number of missed anomalies from 6 to 3, resulting in an increase in recall from
0.91 to 0.96, while maintaining a comparable false alarm rate of approximately
5% (see Fig. 5.19). This represents a clear improvement over the model trained
on the full feature set (refer to Fig. 5.19(a)), where a higher number of missed
anomalies was observed. Similarly, one-class SVM’s performance improved
slightly under the selected feature set. This pattern suggests that eliminating
redundant features enabled the model to focus on more informative features,
effectively enhancing its capacity to distinguish between normal and defective
instances.

• Comparison Between iForest and one-class SVM (when using the
selected features): iForest achieved a high recall of 0.96, correctly identifying
68 out of 71 defective instances, underscoring its strong sensitivity to anomalies
(see Fig. 5.19(b)). However, it misclassified 16 normal instances as anomalies,
leading to a precision of 0.82. Accordingly, this performance results in an F1
score of 0.88, effectively balancing defect detection and false positive reduction.
In contrast, one-class SVM achieved a slightly higher recall of 0.97, detecting
69 out of 71 anomalous instances. However, its precision dropped to 0.76,
misclassifying 22 normal samples as anomalies, indicating a higher rate of false
positives. Consequently, one-class SVM has an F1 score of 0.85, reflecting a
trade-off between higher defect detection and increased false alarms. These
results suggest that iForest maintains a better balance between precision and
recall, making it more reliable in practical DED applications where minimizing
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false positives is critical. Conversely, one-class SVM prioritizes recall at the
expense of higher false positive rates, potentially increasing costs associated
with unnecessary defect identification.

5.2.2.2 DED-IN718-U Dataset

Feature Correlation Analysis: The distributions of the extracted features are
shown in Fig. 5.20, several of which exhibit approximately Gaussian behavior (e.g.,
mean and energy). Based on these distributions, images with feature values lying in
the distribution tails are likely to correspond to defective instances, thereby enabling
spatial differentiation between normal and anomalous images in the feature space.
The corresponding summary statistics for the extracted features are provided in Ta-
ble 5.11. Nonetheless, the initial set of 12 extracted features may exhibit redundancy
due to potential linear dependencies. To identify and address such correlations, a
Pearson correlation analysis was performed to assess the pairwise linear relationships
among the features. The resulting correlation matrix, shown in Fig. 5.21, reveals
that area, homogeneity, and contrast are highly correlated, with absolute correla-
tion coefficients exceeding 0.9. This strong linear dependence suggests that these
features carry overlapping information. Consequently, to reduce redundancy while
retaining discriminative power, contrast and homogeneity were excluded.

Defect Detection Results: A DBSCAN ensemble was employed for defect detec-
tion, comprising 16 distinct models. This ensemble was constructed by systemati-
cally varying the two key DBSCAN hyperparameters: MinPts and Eps. Following
the guidance of Ester et al. (1996), MinPts—representing the minimum number of
points required to form a dense region—should be set to at least k + 1, with k de-
noting the number of features. Given that the dataset dimensionality (k) is 10, four
sufficiently spaced MinPts values were selected: 11, 16, 21, 26, to encourage diver-
sity among the models. Eps, which defines the neighborhood radius for a point, was
selected based on the analysis of the k-distance graph, a widely adopted technique
in DBSCAN hyperparameter tuning (Ester et al., 1996; Schubert et al., 2017). This
graph, illustrated in Fig. 5.22, depicts the sorted distances of each data point to its
k-th nearest neighbor for various MinPts values. From the inflection region of these
curves, four Eps values were identified: {1.0, 1.5, 2.0, 2.5}, spanning the informa-
tive range of the k-distance graph. Combining these four MinPts values with the
four selected Eps values yielded a diverse ensemble of 16 DBSCAN configurations.
This ensemble structure enhances robustness and generalization by incorporating
variability across different clustering granularities and density assumptions.
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Figure 5.20 Distributions of the extracted features from the DED-IN718-U dataset

Table 5.11 Statistics of features extracted from the DED-IN718-U dataset

Features mean std min max

Area (in pixels) 11059 4908 427 35752
Major axis length (in pixels) 142 50.2 37.9 331

Eccentricity 0.506 0.145 0.076 0.946
Circularity 0.367 0.169 0.044 0.811

Mean (in oC) 1697 46 1515 1879
Standard dev. (in oC) 105 20.3 9.49 179

Skewness 0.263 0.384 -0.729 1.19
Entropy 5.53 0.248 2.64 5.94

Energy 29.9 9.80 5.62 91.0
Correlation 0.859 0.039 0.406 0.962
Contrast 0.460 0.149 0.011 0.963

Homogeneity 0.753 0.091 0.388 0.984

The clustering results are provided in Table 5.12. The DBSCAN ensemble detected
two structured clusters alongside some anomalies (outliers) in the feature space.
A significant majority of the thermal images (2228 instances) were grouped into
Cluster 1, while a smaller subset of 25 images was assigned to Cluster 2. The
remaining 42 images did not belong to either cluster and were consequently labeled
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Figure 5.21 Pairwise correlation between features extracted from the DED-IN718-U
dataset

Figure 5.22 K-distance of data points in the DED-IN718-U dataset (ordered accord-
ing to distance to k-nearest neighbors)

as anomalies by the DBSCAN ensemble. Given the dominance of Cluster 1 in terms
of population, it is presumed to represent the baseline class—namely, defect-free
or normal images. In contrast, the relatively small size of Cluster 2 suggests it
may correspond to group anomalies instead of normal images. As such, Cluster 2
warrants additional investigation, which is addressed in the subsequent analysis.
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Table 5.12 Results of the DBSCAN ensemble

Cluster Cluster 1 Cluster 2 Anomalies

No. of images 2228 25 42

Postprocessing Analysis and Visualization: To visually assess the clustering
results, Fig. 5.23 presents representative images randomly selected from each of the
two identified clusters, as well as from the detected anomalies. Beneath each image,
the number of DBSCAN models in the ensemble that assigned the corresponding
label is provided. Upon inspection, the anomalous samples appear distinct from
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Figure 5.23 Representative images from both identified clusters and the detected
anomalies (Farea et al., 2024). The number of votes received from the DBSCAN
ensemble for each cluster is indicated below each image, where a value of -1 denotes
classification as an anomaly by the ensemble.
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those in Cluster 1 (defect-free class). The anomalies exhibit either overheating (e.g.,
the second image in the anomalies row of Fig. 5.23) or underheating accompanied
by visibly distorted melt pool shapes (e.g., the remaining images in the same row).
Underheating often results in lack of fusion and contributes to porosity formation,
whereas overheating can degrade surface quality and lead to diminished mechanical
properties (Ranjan et al., 2023). The sample images from Cluster 2 reveal melt
pools with either slight geometric distortions or moderate signs of overheating. No-
tably, these samples were classified as anomalous by at least six models within the
ensemble. This consistent labeling suggests that Cluster 2 likely corresponds to a
set of group anomalies—anomalous instances that form a coherent cluster.

As a postprocessing analysis, the clustering structure of the thermal images was fur-
ther examined using a dimensionality reduction technique. The high-dimensional
feature representations of the images were projected into a two-dimensional space
via t-SNE, as shown in Fig. 5.24. This nonlinear technique preserves local struc-
tures in the data and offers an intuitive visualization of the clustering behavior. As
depicted in Fig. 5.24, Cluster 1 and Cluster 2 exhibit clear separation, while the
detected anomalies tend to reside along the boundaries of both clusters. This spa-
tial configuration aligns with the earlier visual inspection of representative images
in Fig. 5.23, reinforcing the interpretation that Cluster 1 corresponds to normal
samples, Cluster 2 to group anomalies, and the remaining isolated points to individ-
ual (point) anomalies. Together, these observations support the effectiveness of the
clustering approach in capturing distinct thermal behaviors within the dataset.
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Figure 5.24 t-SNE visualization of the selected features in the DED-IN718-U dataset
(the identified clusters and anomalies are displayed) (Farea et al., 2024)
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6. CONCLUSION

This thesis addresses the critical challenge of anomaly detection by developing and
evaluating a range of data-driven frameworks tailored to two distinct industrial ap-
plications: failure detection in air pressure systems (APS) of heavy-duty vehicles
using operational data and defect detection in directed energy deposition (DED)
processes through thermal imaging. The proposed frameworks encompass super-
vised, semi-supervised, and unsupervised learning paradigms, alongside explainable
models utilized to enhance the transparency and interpretability of the anomaly de-
tection process. Additionally, a domain knowledge-driven preprocessing pipeline—
including steps such as data imputation, segmentation, and sliding window-based
downsampling—was implemented to facilitate the extraction of informative features
specific to each application. Subsequently, data-driven models were constructed
to effectively distinguish between anomalous and normal instances based on these
meticulously engineered features.

For APS failure detection, key features such as duty cycle, air compressor operating
frequency, and minimum pressures across various braking circuits were identified as
indicative of system health, according to domain expertise. The modeling phase
involved both fully supervised models, including Random Forest and XGBoost,
and semi-supervised transformer-based architectures, notably TranAD. Despite be-
ing trained in a one-class semi-supervised fashion using only normal data, TranAD
achieved performance comparable to the fully supervised models, demonstrating re-
markable data efficiency and rapid learning convergence. Specifically, when trained
on a reduced dataset (only 20% of healthy data), TranAD maintained strong predic-
tive performance with an accuracy of 91.4%, an F1 score of 0.79, and precision and
recall values of 0.82 and 0.77, respectively. However, the primary limitation of the
semi-supervised approach was its lack of interpretability, as the model was trained
to reconstruct input sequences without providing transparent explanations for its
predictions.

To address this limitation, an interpretable framework based on Explainable Boost-
ing Machine (EBM) was employed for APS failure detection. EBM, a glass-box in-
terpretable model, offered comprehensive insights into the decision-making process
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through feature importance rankings and local explanations for individual predic-
tions. The explanations provided by EBM closely aligned with domain knowledge
and were also corroborated by the explanations generated by SHAP (Shapley Ad-
ditive Explanations), a robust XAI baseline. Despite its inherently interpretable
nature, EBM delivered predictive performance comparable to black-box models,
achieving an accuracy of 91.4% and F1 score of 0.80. Thus, it effectively balanced
transparency and predictive accuracy, offering critical interpretability without sac-
rificing model performance. Additionally, EBM facilitated the identification of po-
tential root causes of APS failures and highlighted specific features contributing
to misclassified instances. These findings underscore the practical value of EBM
in many anomaly detection applications where it generates valuable explanations
about the decision-making process while maintaining strong predictive performance.
However, EBM’s reliance on fully labeled data restricts its applicability in contexts
where anomaly data is sparse or prohibitively expensive to collect. Moreover, unlike
transformer-based architectures, its static modeling nature constrains its ability to
capture temporal dependencies inherent in sequential data, presenting a potential
area for future improvement.

In addition, future work may focus on enhancing the explainability of semi-
supervised models for APS failure detection to foster human-in-the-loop decision-
making. Integrating post-hoc XAI techniques tailored for semi-supervised settings
could provide actionable insights into model predictions, enabling domain experts to
validate and refine model outputs effectively. They can even intervene in the mod-
eling loop, e.g., by redesigning the input features or relabeling some of the data.
Additionally, the proposed frameworks can be extended to other predictive mainte-
nance applications across sectors such as automotive and aerospace, demonstrating
their adaptability to diverse operational contexts. Furthermore, exploring the inte-
gration of remaining useful life estimation for APS components presents a promising
avenue for future research.

This thesis also addressed defect detection in DED-manufactured IN718 and
Ti–6Al–4V parts using thermal imaging, with each dataset presenting distinct chal-
lenges. The supervised datasets include single-type anomalies (i.e., porosities); how-
ever, the supervised IN718 (DED-IN718) dataset featured balanced class distribu-
tions, whereas the Ti–6Al–4V (DED-Ti64) dataset was characterized by significant
class imbalance.

To effectively capture defect-related patterns, key features summarizing the geome-
try and thermal distribution of the melt pool were extracted from thermal images.
Additionally, for the DED-IN718 dataset, spatio-temporal context was integrated

109



to capture positional and temporal relationships among thermal images within the
same deposited part, thereby enriching the feature set for subsequent modeling.

For the DED-IN718 dataset, supervised learning models—Random Forest and Sup-
port Vector Machine (SVM)—were employed to classify thermal images as normal
or anomalous based on the extracted features. Given the balanced nature of the
dataset, the supervised classifiers demonstrated robust performance, achieving an
AUC of approximately 0.9, an F1 score of 0.83, and an accuracy of 84%. Notably,
Random Forest exhibited superior robustness in reducing false positives, underscor-
ing its effectiveness in detecting porosities in DED processes.

In contrast, the DED-Ti64 dataset required approaches capable of handling class
imbalance. Accordingly, Isolation Forest (iForest) and one-class SVM were applied
using both semi-supervised and unsupervised training paradigms. Optimal perfor-
mance was achieved in the semi-supervised setting, yielding an F1 score of 0.88
and an accuracy of 95%. Across both training paradigms, iForest consistently out-
performed one-class SVM, which showed strong sensitivity to data contamination
during training. These results underscore the robustness of iForest’s ensemble-based
approach in detecting anomalies within imbalanced datasets, even in the presence
of noisy or contaminated training data.

The current approach for defect detection leveraged expert-engineered features, ef-
fectively incorporating domain knowledge through tailored preprocessing steps. This
methodology enabled the extraction of key indicators of porosity formation in DED
processes. Future research could explore semi-supervised or self-supervised deep
learning architectures to automate feature extraction while retaining a degree of
interpretability. Extending this framework to other additive manufacturing tech-
nologies, such as powder bed fusion, would further demonstrate its generalizability
and practical relevance in industrial settings. In addition, integrating real-time de-
fect detection with closed-loop control systems could enable immediate corrective
actions, enhancing process reliability. Future work could also broaden the scope
beyond porosity detection to include the classification of multiple defect types—
such as cracks and lack of fusion—enhancing the diagnostic capabilities of anomaly
detection systems for safety-critical applications.
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