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A B S T R A C T 

We compute the achromatic gravitational imprint that Kerr space–time leaves on linear polarization at the photon ring. Recasting 

parallel transport in a null Frenet–Serret frame yields a single scalar evolution law for the electric-vector position angle. On the 
observer’s screen, the Kerr-minus-Schwarzschild pattern on the direct critical curve is non-zero, strictly odd under spin reversal 
after a half-turn azimuth relabelling, and tightly confined to a thin annulus. Using backward-shot, Carter-separated geodesics with 

midpoint RK2 transport, we achieve second-order convergence and degree-scale amplitudes that grow monotonically with spin 

and inclination (RMS � 0 . 5–2◦ for a/M � 0 . 8, i � 60◦). Three independent constructions – Frenet–Serret line integral, explicit 
Levi–Civita transport of the polarization vector, and the phase of the Walker–Penrose constant – agree ray by ray. We then define 
a parity-odd ring estimator that is intrinsically achromatic after standard wavelength-squared regression, symmetry-protected 

against common even-parity systematics, and compressed into low azimuthal modes. This yields a minimal two-parameter 
template (spin and inclination) for mm/sub-mm polarimetry of horizon-scale rings in sources such as M87∗ and Sgr A∗. The 
pipeline enables either a detection of the strong-field parallel-transport phase induced by frame dragging or informative upper 
limits. 

Key words: accretion, accretion discs – black hole physics – gravitation – magnetic fields – polarization – relativistic processes. 
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 I N T RO D U C T I O N  

he rotation of linear polarization by gravity is a purely geometric,
chromatic effect: as a null ray threads curved space–time, parallel
ransport twists the electric-vector position angle (EVPA) by an
mount fixed by the connection rather than by plasma microphysics.
his has long been formalized in general relativity through invariant

ransport along null geodesics and standard texts (M. Walker & R.
enrose 1970 ; C. W. Misner, K. S. Thorne & J. A. Wheeler 1973 ;
. Chandrasekhar 1983 ), and it was predicted to imprint degree-
cale rotations in radiation emerging from the Kerr metric (P. A.
onnors & R. F. Stark 1977 ; P. A. Connors, T. Piran & R. F. Stark
980 ). Complementary ‘gravitomagnetic’ formulations clarified why
he effect vanishes in Schwarzschild to leading order and appears
ith frame dragging in Kerr, emphasizing its integral, wavelength-

ndependent character (M. Nouri-Zonoz 1999 ; M. Sereno 2004 ). 
Horizon-scale imaging now places this classical prediction within

each. Theory isolates a narrow critical curve (‘photon ring’) formed
y null geodesics that skim the photon region and concentrate lensing
ignatures on the observer’s screen (S. E. Gralla, D. E. Holz & R.

. Wald 2019 ). The Event Horizon Telescope (EHT) provides the
equisite angular resolution and has delivered resolved polarimetry of

87∗ and, more recently, Sgr A∗, revealing ordered EVPA structures
 E-mail: mehmet-baran.okten@warwick.ac.uk , 
aran.okten@sabanciuniv.edu 
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n ring-like morphologies that invite geometry-level interpretation
fter standard λ2 regression (i.e. χ ( λ2 ) = χ0 + RM λ2 , where RM is
he rotation–measure (RM); G. B. Rybicki & A. P. Lightman 1979 ;
. H. T. Collaboration 2019 , 2021 ). The 2024 Sgr A∗ polarization

mages and their companion interpretation paper strengthen this case
y showing a highly polarized, spiral EVPA pattern on event-horizon
cales (T. E. H. T. Collaboration 2024a , b ). 

Modern theory sharpens the connection between Kerr geometry
nd observable polarization. Gravitational Faraday rotation and its
pin–Hall counterpart have been formulated in a local, observer-
rame language that ties the achromatic phase directly to gravito-
agnetic fields in Kerr A. A. Shoom ( 2024 ) and B. A. Parvin & M.
. Lusk ( 2025 ). Polarization holonomy has been quantified explicitly

n the Kerr metric, providing an operational definition of the parallel-
ransport angle for admissible trajectories (M. T. Lusk 2024 ). On
he imaging side, universal polarimetric signatures of the photon
ing have been identified, suggesting that ring-focused observables
an encode black-hole spin with minimal emissivity dependence (E.
imwich et al. 2020 ). 
Despite this progress, a gap remains: there is no observation-ready,

chromatic template defined strictly on the direct critical curve that
i) is framed as a screen-space observable, (ii) is symmetry-protected
gainst common even-parity systematics, and (iii) compresses the
nformation into a small set of azimuthal modes amenable to
nterferometric data. Prior analyses either compute parallel transport
ith gauge choices that obscure the observer-screen EVPA, or
ropose ring-based morphologies that entangle geometric and plasma
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ffects, complicating inference and null tests (A. Brodutch & D. R.
erno 2011 ; E. Himwich et al. 2020 ). Numerical pipelines can also
uffer artefacts near horizontal screen crossings unless turning-point 
ranches are handled carefully, obscuring degree-scale signals in 
recisely the region of interest. 
We close this gap by recasting polarization transport in a null 

renet–Serret (FS) frame and showing that the EVPA obeys a 
ingle scalar evolution law along each geodesic–the screen-rotation 
torsion) integral. Evaluated on the observer’s screen, the Kerr–
inus–Schwarzschild EVPA on the direct critical curve is non-zero, 

trictly odd under spin reversal after a half-turn azimuthal relabelling, 
nd tightly localized to a thin annulus about the ring. Using backward-
hot, Carter-separated rays with mid-point transport, we obtain 
econd-order convergence and degree-scale amplitudes that grow 

onotonically with spin and inclination (B. Carter 1968 ; J. M.
ardeen 1973 ). Three independent routes – FS torsion integral, 
xplicit Levi–Civita transport, and the phase of the Walker–Penrose 
onstant – agree ray by ray, fixing the observable without gauge 
mbiguity (M. Walker & R. Penrose 1970 ; S. Chandrasekhar 1983 ).
inally, we define a parity-odd ring estimator that is intrinsically 
chromatic after λ2 regression G. B. Rybicki & A. P. Lightman 
 1979 ), symmetry-protected against even-parity leakage, and com- 
ressed into low azimuthal modes, yielding a minimal two-parameter 
spin, inclination) template tailored to current mm/sub-mm polarime- 
ry (E. H. T. Collaboration 2021 ; T. E. H. T. Collaboration 2024a ). 

Standard RM analyses target the chromatic slope of χ ( λ2 ) and 
re therefore sensitive to magneto-ionic gradients and depolarization 
B. J. Burn 1966 ; D. D. Sokoloff et al. 1998 ; A. E. Broderick &
. D. Blandford 2004 ; M. A. Brentjens & A. G. Bruyn 2005 ; G.
eald 2009 ). Plasma-forward GRMHD templates can reproduce 
olarized ring morphologies but inherit emissivity and transfer as- 
umptions that complicate parameter compression and null tests (M. 

ościbrodzka et al. 2017 ; A. Jiménez-Rosales & J. Dexter 2018 ; T. E.
. T. Collaboration 2021a , b ). In contrast, our screen-space statistic is
chromatic by construction (the λ2 →0 intercept), parity-odd on the 
ing (cancelling even-parity leakage), and ring-localized , yielding a 
wo-parameter geometry-only template directly comparable across 
ands. For subsequent observational use, we refer to this residual 
s the Geometric Polarization Invariant , denoted χG , equivalent 
o our odd-channel EVPA after λ2 regression. Quantitatively, the 
stimator compresses polarized-ring information into two physical 
arameters ( a, i) with degree-level RMS amplitudes, whereas RM 

ts constrain a chromatic slope and GRMHD forward models require 
igh-dimensional emissivity and transfer choices (B. J. Burn 1966 ; 
. D. Sokoloff et al. 1998 ; M. Mościbrodzka et al. 2017 ; A. Jiménez-
osales & J. Dexter 2018 ). 

 T H E O RY:  N U L L  GEODESICS,  A  N U L L  FS  

RAME,  A N D  E V PA  

.1 Kerr metric and Carter separation 

e use Boyer–Lindquist coordinates xμ = ( t, r, θ, ϕ) with signature
 −, + , + , + ) and adopt units G = c = M = 1, following standard
exts (C. W. Misner et al. 1973 ; S. Chandrasekhar 1983 ). The non-
anishing metric functions of Kerr are 

 ( r) = r2 − 2 r + a2 , (1) 

nd 

( r, θ ) = r2 + a2 cos 2 θ, (2) 
here a is the specific angular momentum. A useful auxiliary 
unction is defined by 

 ( r, θ ) = ( r2 + a2 )2 − a2 � sin 2 θ. (3) 

hese expressions reproduce the Kerr metric as given in standard 
eferences B. Carter ( 1968 ) and S. Chandrasekhar ( 1983 ). 

The non-vanishing metric components in Boyer–Lindquist coor- 
inates take the familiar form 

gtt = − (
1 − 2 r 

� 

)
, (4a) 

gtϕ = − 2 ar sin 2 θ
� 

, (4b) 

grr = � 
� 

, (4c) 

gθθ = �, (4d) 

gϕϕ = A sin 2 θ
� 

. (4e) 

ecause Kerr possesses two Killing vectors and a Killing tensor, 
eodesic motion is completely separable (V. P. Frolov & D. ňák 2007 ;
. Carter 1968 ). In modern language, this integrability arises from a
on-degenerate principal tensor that generates hidden symmetries of 
he Kerr spacetime and ensures separability of the Hamilton–Jacobi 
quation (V. P. Frolov & D. ňák 2007 ). Introducing the scalefree
nvariants ξ ≡ Lz /E and η ≡ Q/E2 , the radial motion obeys 

d r 

d v 
= ±

√ 

R( r) , (5) 

ith 

( r) = [
( r2 + a2 ) − aξ

]2 − �
[
( ξ − a)2 + η

]
, (6) 

here the potential R( r) follows directly from the Hamilton–Jacobi 
quation (B. Carter 1968 ; S. Chandrasekhar 1983 ). As emphasized
y V. P. Frolov & D. ňák ( 2007 ), the separation constants ξ and η
riginate from the hidden symmetries encoded in the principal tensor. 
he polar equation reads 

d θ

d v 
= ±

√ 

� ( θ ) , (7) 

here 

 ( θ ) = η + a2 cos 2 θ − ξ 2 cot 2 θ. (8) 

hile the azimuthal and time components satisfy 

d ϕ 

d v 
= ξ

sin 2 θ
− a + a

[
( r2 + a2 ) − aξ

]
� 

, (9) 

nd 

d t 

d v 
= −a

(
a sin 2 θ − ξ

) + ( r2 + a2 )
[
( r2 + a2 ) − aξ

]
� 

, (10) 

hich complete the set of first integrals. 

.2 Screen mapping and the camera basis 

 zero–angular–momentum observer (ZAMO) at ( robs , θobs = 

, ϕobs = 0) defines a two dimensional screen with orthonormal axes
ˆ α, ˆ β) (J. M. Bardeen 1973 ; S. Chandrasekhar 1983 ). We parame-
erize the observer’s screen by polar coordinates ( ρ, φ) with φ = 0
t prograde conjunction and adopt a Sachs-anchored orthonormal 
asis { e1 , e2 } fixed at robs ; EVPAs are measured in this basis after
ubtracting the circular mean. We take ˆ α to point rightward and 
ˆ upward on the image plane. In the asymptotically flat limit, the

apping between screen coordinates and the conserved quantities is 
MNRAS 544, 2172–2179 (2025)
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iven by the Bardeen map ξ = −α sin i, η = β2 + ( α2 − a2 ) cos 2 i 
J. M. Bardeen 1973 ), where α increases to the right and β upward. At
nite radius we recover ( ξ, η) by projecting the photon 4-momentum
nto the ZAMO tetrad and extracting ( E, Lz , Q ) (S. Chandrasekhar
983 ). 
Define the lapse N = √ 

� �/A and the frame-dragging angular
elocity ω = −gtϕ /gϕϕ = 2 ar/A . The orthonormal ZAMO tetrad is
hen given by standard constructions (S. Chandrasekhar 1983 ) 

μ
(ˆ 0 ) = N−1 (1 , 0 , 0 , ω) , (11a) 

μ
(ˆ r ) =

(
0 ,

√ 

� / � , 0 , 0
)
, (11b) 

μ
( ˆ θ) =

(
0 , 0 , 1 /

√ 

� , 0
)
, (11c) 

μ
( ˆ ϕ ) =

(
0 , 0 , 0 ,

√ 

� √ 

A sin θ

)
. (11d) 

hich satisfies gμνe
μ
( ˆ a ) e

ν

( ˆ b ) 
= ηab . 

.3 Null FS frame and polarization transport 

et kμ = d xμ/ d v be the future-directed null tangent with affine
arameter v (so ∇k k

μ = 0). Along each geodesic we erect a null
oving frame { ea } = { k, �, e1 , e2 } satisfying 

 · � = −1 , (12) 

nd 

A · eB = δAB , (13) 

here eA satisfies, 

 · eA = 0 , (14) 

ith A, B ∈ { 1 , 2 } . The frame is propagated by Levi–Civita transport
long k, 

k ea 
μ = ωa 

b eb 
μ, (15) 

nd 

ab = −ωba = g( ea , ∇k eb ) , (16) 

here ωab are the Ricci rotation coefficients (M. Walker & R.
enrose 1970 ). Because the geodesic has vanishing curvature (no
cceleration), the only physically relevant coefficient is the screen–
otation (torsion) 

( v) ≡ ω12 = g( e1 , ∇k e2 ) = −g( e2 , ∇k e1 ) . (17) 

his torsion encapsulates the gravitational Faraday rotation; its
nterpretation as the gravitomagnetic analogue of the electromagnetic
araday effect has been discussed in the literature (M. Nouri-Zonoz
999 ; M. Sereno 2004 ; A. Brodutch & D. R. Terno 2011 ; A. A.
hoom 2024 ; M. B. Ökten 2025 ). In weak–field approximations

he rotation angle can be expressed as a line integral of the
ravitomagnetic field along the ray (M. Nouri-Zonoz 1999 ; M.
ereno 2004 ), closely mirroring the FS integral used here. This
mphasizes that σ plays the same role in our formulation as the
ravitomagnetic Faraday rotation in previous analyses. Under a local
otation eA → RA 

B ( ψ( v)) eB of the screen basis, σ → σ + ψ ′ ( v),
hile the EVPA χ transforms as χ → χ + ψ + const . Let f μ be

he linear-polarization 4-vector, orthogonal to kμ and Levi–Civita
ransported, 

f · k = 0 , (18a) 

∇k f
μ = 0 . (18b) 
NRAS 544, 2172–2179 (2025)
ecomposing f on the screen basis as f μ = cos χ e
μ
1 + sin χ e

μ
2 

efines the EVPA χ ( v) and leads to the scalar evolution law (M.
alker & R. Penrose 1970 ) 

d χ

d v 
= σ ( v) , (19) 

o that the observable rotation between source and observer is 

χ =
∫ vobs 

vsrc 

σ ( v ) d v , (20) 

p to a global gauge. 
Define the complex screen vector mμ ≡ ( eμ

1 + i e
μ
2 ) /

√ 

2 and the
omplex polarization scalar p ≡ fμmμ for a polarization f μ with
 ·k = 0 and ∇k f

μ = 0. Levi–Civita transport of { e1 , e2 } gives
k m

μ = i σ mμ, hence d(arg p) / d v = σ while | p| is constant, which
s consistent with equation ( 19 ). Introducing the Walker–Penrose
calar κ and 

WP ≡ (
fμmμ

)2 
κ = p2 κ, (21) 

ne has arg KWP = 2 arg p + const , so 

( v ) = 1 
2 arg 

[
KWP ( v )

] + const . (22) 

 screen rotation eA →RA 
B ( ψ) eB shifts σ →σ + ψ ′ and χ →

+ ψ + const , while KWP gains only a constant phase; with the
bserver’s gauge fixed, �χ is unchanged. 

.4 Spin oddness and ring geometry 

e evaluate the achromatic Kerr imprint on the direct critical curve.
ampling the ring at azimuth φ with screen coordinates [ α( φ) , β( φ)]
nd mapping to [ ξ, η] via the Bardeen map, we integrate equations
 5 )–( 10 ) and equation ( 19 ) from a proxy emission radius rstop to the
amera. The camera-frame EVPA is 

( φ) = atan2 
(
f · ˆ β, f · ˆ α

)∣∣∣
obs 

, (23) 

nd 

χgrav ( φ) ≡ χKerr ( φ) − χSchw ( φ) , (24) 

here ˆ α and ˆ β are the image-plane unit vectors. Because the torsion
nters linearly in the connection, reversing the spin ( a → −a) flips
χgrav while relabelling the ring by φ → φ + π E. Himwich et al.

 2020 ). 

χgrav ( φ; a) = −�χgrav 

(
φ + π ; −a

)
. (25) 

e therefore define an odd channel χodd ( φ) = �χgrav ( φ) −
χgrav ( φ + π ), which doubles the signal and cancels even-parity

ontaminants. We will refer to this achromatic, parity-odd ring
bservable as the Geometric Polarization Invariant ; we denote it
y χG ≡ χodd . 

 C O M P U TAT I O N  

ur numerical pipeline follows the analytic formulation of Section 2
hile incorporating several practical improvements. We work in
oyer–Lindquist coordinates and construct a ZAMO tetrad at the
bserver to define the camera screen { ˆ α, ˆ β} (J. M. Bardeen 1973 ;
. Chandrasekhar 1983 ). Each backwards-shot ray is specified by
creen coordinates ( α, β) and launched using the ZAMO-frame
rescription implied by equations (11), then transformed to coor-
inate components with the tetrad kμ = eμ

( ˆ a ) k
( ˆ a ) ; the constants of

otion ( E, Lz , Q ) are recovered from the separated first integrals in
quations ( 5 )–( 10 ) (B. Carter 1968 ; S. Chandrasekhar 1983 ). This
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nite-radius formulation reduces to the usual Bardeen mapping in 
he robs → ∞ limit (J. M. Bardeen 1973 ). 

The direct critical curve is obtained by solving for the impact 
adius ρ( φ) on a uniform, even-length azimuthal grid. Let N denote
he number of azimuthal samples on this grid. We bracket the capture
oundary at fixed φ and determine ρ( φ) by bisection, classifying 
 ray via the Carter potentials R( r) and � ( θ ) (B. Carter 1968 ;
. Chandrasekhar 1983 ). Capture is defined as either crossing the 
orizon or asymptoting to a spherical photon orbit (detected via 
 double root of the radial potential), while escape is flagged by
 persistent outward-moving streak once the ray has passed the 
bserver (B. Carter 1968 ; S. Chandrasekhar 1983 ). To guarantee 
hat the bracket straddles the capture boundary, the upper bound is
xpanded exponentially if needed, a coarse linear/logarithmic scan 
s used to locate any sign flip, and a micro jitter of φ near β = 0
eeds the polar branch. This yields a robust, branch-safe Kerr critical 
urve. For the Schwarzschild reference, we either apply the same 
isection or enforce the analytic circle ρ = 3

√ 

3 M for comparison. 
The outer horizon radius is 

+ 

= 1 +
√ 

1 − a2 , (26) 

n the units G = c = M = 1 adopted throughout. Once ξ and η
re fixed, we integrate the geodesic inward using a mid-point 
second order) scheme applied to the Carter-separated velocities 
d t/ d v , d r/ d v , d θ/ d v , d ϕ/ d v ) (B. Carter 1968 ; S. Chandrasekhar
983 ). The affine step is adaptively scaled to obey a per–step polar cap 
 �θ | ≤ �θmax , which stabilizes the evolution where the connection 
aries rapidly. Turning points are handled without event detection: we 
review branch flips at the midpoint and flip sθ when � changes sign
nd sr when R falls below a small threshold, where sθ , sr ∈ {+ 1 , −1 }
re the polar and radial branch signs. At each step, we record the
tart and mid-point geometry coordinates, metric and Christoffels, 
he null tangent kμ, and an auxiliary null nμ built so that k · n = −1
for a clean replay of polarization transport. Integration halts at the 

orizon, at a spherical photon orbit, or upon satisfying the outward- 
scape criterion; in all cases, the strong-field segment controlling the 
hoton-ring phase is captured. 
We use adaptive RK2 midpoint steps with a polar cap at turning

oints: 

v = min 
{
�vmax , εtol / ‖ ẏ ‖}, (27) 

nd 

 �θ | ≤ �θmax = 5 × 10−3 rad , (28) 

lip the polar momentum at turning points when θ̇ θ ′′ < 0, terminate 
he integration if r ≤ r+ 

+ 10−6 M or if the radial step under-resolves
 �r < 10−9 M), and place the observer at robs = 103 M with a Sachs-
nchored orthonormal screen and fixed global gauge. 

We compute �χgrav along identical rays by three routes: first, the 
S torsion integral

∫ 
σ d v; secondly, explicit Levi–Civita transport 

f f μ with projection onto the observer’s screen; thirdly, one half of
he phase of KWP . Agreement is quantified by the maximum absolute 
oute-wise discrepancy over azimuth, δroute , and by the ring-averaged 
oot-mean-square dispersion, RMS φ, defined by 

route ≡ max 
φ

∣∣�χ (FS ) − �χ (LC / WP ) 
∣∣. (29) 

nd 

MS φ ≡
〈 (

�χ − 〈 �χ〉φ
)2 

〉 1 / 2 

φ
. (30) 
At each recorded start state, we define a Sachs screen by projecting
ny vector v via 

μ
νv

ν = vμ + kμ( n ·v) + nμ( k ·v) , (31) 

toring nμ with the step to preserve gauge consistency. After the in-
ard pass, we set the source gauge by projecting the coordinate basis
ector ∂ ϕ onto the Sachs screen at the endpoint and normalizing with 
he local metric (M. Walker & R. Penrose 1970 ; S. Chandrasekhar
983 ). We then replay Levi–Civita transport backward (endpoint 
 observer) with a midpoint RK2: at each step we integrate

 f μ/ d v = −�μ
νρ kνf ρ , project the predicted f μ with ( 31 ) using

he stored ( kμ, nμ, gμν), and normalize once at the start of the step.
his ‘midpoint replay’ reproduces the FS integral

∫ 
σ d v and keeps 

μ orthogonal to the null pair throughout. At the observer, the EVPA
s read as χ = atan2 ( f · ˆ β, f · ˆ α) in the ZAMO frame, wrapped to
 −90◦, 90◦] (M. Walker & R. Penrose 1970 ; S. Chandrasekhar 1983 ).

For each azimuth φ, we compute the Kerr EVPA χKerr on the
err critical curve and the Schwarzschild EVPA χSchw on the corre- 

ponding Schwarzschild curve. Their difference �χ ( φ) is converted 
o a spin-2 quantity P ( φ) = exp 

[
2i �χ ( φ)

]
, and the residual spin-2

auge is removed by subtracting 1 
2 arg 〈 P 〉φ . We then form 

odd ( φ) = P ( φ) P ( φ + π )−1 , (32) 

nd 

even ( φ) = P ( φ) P ( φ + π ) , (33) 

nd extract χodd = 1 
2 arg Podd , χeven = 1 

2 arg Peven . The odd channel 
solates the gravitational signal because �χ ( φ; a) obeys the exact
pin-odd symmetry �χ ( φ; a) = −�χ ( φ + π ; −a) (B. Carter 1968 ;
. M. Bardeen 1973 , see also equation 25 ); its azimuthal RMS Aodd =
 χ2 

odd 〉1 / 2 
φ summarizes detectability. The even channel is consistent 

ith numerical noise across our runs. 
We synthesize a narrow annulus centred on the direct critical curve

nd assign 

synth ( φ) = χ0 + �χgrav ( φ; a, i) + n ( φ) , (34) 

ith Gaussian n ( φ) of standard deviation σχ per beam. Stokes
 Q, U ) are formed and convolved with a circular Gaussian beam
f FWHM θbeam 

; per-pixel λ2 regression removes dispersive Fara- 
ay rotation. The odd channel χodd ( φ) ≡ 1 

2 

[
χ ( φ) − χ ( φ + π )

]
is

egressed against the template family Ta,i ( φ) ≡ �χgrav ( φ; a, i) with
nverse-variance weights w( φ), 

̂ 

odd =
∑ 

φ χodd ( φ) Ta,i ( φ) w( φ) ∑ 

φ T 2 
a,i ( φ) w( φ) 

, (35) 

nd 

NR 

2 =
∑ 

φ T 2 
a,i ( φ) w( φ) 

σ 2 
χ

. (36) 

e report bias and variance of ̂ Aodd versus ( σχ , θbeam 

). 
For quick forecasts, we provide 

RMS 
odd ( a, i) = C1 sin i

a/M 

1 + C2 (1 − a/M) 
deg , (37) 

ith ( C1 , C2 ) least-squares fitted to our ( a/M, i) grid; exact tem-
lates Ta,i ( φ) and tabulated RMS values are provided as arrays. 
Both the forward geodesic and backward transport integrations 

re second-order accurate, with a global O( h2 ) error once the θ -
ap controls the step size. Constraint preservation is monitored 
y reprojecting and re-normalizing f μ on the Sachs screen at 
ach start; violations remain at machine precision. Ray by ray, the
MNRAS 544, 2172–2179 (2025)



2176 M. B. Ökten

M

Figure 1. Odd-parity EVPA χodd ( φ) on the direct critical curve for a high- 
spin, high-inclination example ( a/M = 0 . 9, i = 80◦). The curve is smooth 
and non-sinusoidal, with degree-scale amplitude and no aliasing artefacts. 
Odd differencing removes the gauge freedom and suppresses even-parity 
contributions. 
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Figure 2. Dependence on spin and inclination. Rows correspond to incli- 
nations i = 20◦, 50◦, and 80◦; columns display the Kerr–Schwarzschild 
difference �χgrav ( φ), the odd channel χodd ( φ) and the even channel χeven ( φ). 
Amplitudes rise with both a/M and i, while the even channel remains near 
the noise floor. Vertical axes are in degrees; within each row the three panels 
share identical y-limits, while ranges differ by row solely for visibility. 

Figure 3. Even-channel detectability map. The colour scale shows the root- 
mean-square amplitude Aeven (degrees) across spin a/M and inclination i. 
The even channel is close to zero across most of the parameter space, with 
modest amplitudes appearing only at low inclinations and large spins. These 
values remain small relative to the odd-channel amplitude, consistent with 
the spin-odd nature of the geometric signal. 
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VPA from this Levi–Civita replay agrees with that obtained by
irectly integrating the FS torsion σ = g( e1 , ∇k e2 ) using the same
idpoint rule, and the complex Walker–Penrose invariant remains

onstant along each ray (M. Walker & R. Penrose 1970 ; S. Chan-
rasekhar 1983 ). For a representative case ( a/M, i) = (0 . 9 , 80◦),
alving the affine step four times yields EVPA max-norm differ-
nces of (2 . 1 , 0 . 53 , 0 . 13 , 0 . 032)◦, consistent with O( h2 ); algebraic
onstraints remain � 10−13 along all rays. 

 F I N D I N G S  

he achromatic Kerr contribution to the EVPA on the photon
ing is quantified by the difference �χgrav ( φ) between Kerr and
chwarzschild solutions after subtracting a constant gauge. In the
chwarzschild limit, this quantity vanishes, while in Kerr space–

imes, it reflects the presence of frame dragging through the null
S scalar law (cf. equation 19 ), where σ is the screen-rotation
ate. Across the full range of spins and inclinations examined,
χgrav ( φ) varies smoothly over 0 ≤ φ < 2 π and exhibits degree-

cale modulations that track where null geodesics spend longer near
he horizon. Because vacuum parallel transport is used, the signal
s intrinsically achromatic; any wavelength dependence in observed
VPAs can be removed via a standard per-pixel λ2 regression. 
At high spin and inclination, the azimuthal profile becomes
arkedly non-sinusoidal. Fig. 1 presents the odd-parity waveform

odd ( φ) for a/M = 0 . 9 and i = 80◦. The curve is smooth and non-
inusoidal, with flattened extrema and shoulders shifted towards the
pproaching and receding limbs. This morphology reflects the un-
qual accumulation of σ ( v) = g( e1 , ∇k e2 ) along chords that weight
he strong-field region differently; rays launched near the projected
quatorial limbs penetrate deeper and linger longer near the spherical
hoton orbit, increasing the net phase. The amplitude is of a few
egrees, and the waveform is free of aliasing or noise artefacts. By
ontrast, an identical calculation in Schwarzschild yields a residual
VPA consistent with zero after the mean is removed, as one expects

rom spherical symmetry. 
The dependence on spin a/M and inclination i, together with

he separation into the full Kerr–Schwarzschild difference �χgrav ,
he odd channel χodd , and the even channel χeven , is summarized in
ig. 2 . Each row fixes an inclination (20◦, 50◦, or 80◦) and each
NRAS 544, 2172–2179 (2025)
olumn displays a different projection. The panels reveal that the
mplitude of �χgrav and χodd increases monotonically with both a 
nd i: at fixed i, the signal rises from zero at a = 0 to degree-scale
alues by a/M ≈ 0 . 9, while at fixed a, it grows with inclination,
eflecting that chords slicing the high- σ equatorial belt contribute
ore torsion. The even channel remains near numerical noise across

ll spins and inclinations. Note that the vertical axis scales differ by
ow, spanning approximately ±50◦ for i = 20◦, ±10◦ for i = 50◦,
nd ±1◦ for i = 80◦, while within each row the three columns share
he same range; this choice maximizes visibility without altering the
rends. 

To further characterize the even channel, Fig. 3 presents a
etectability map for the even channel root mean square Aeven 

cross spin and inclination. The colour scale illustrates that Aeven 

s negligible (dark colours) over most of the parameter space,
articularly at moderate to high inclinations where the signal is
trongly suppressed. Only at low inclinations and large spins, does
he even projection become less effective, producing amplitudes of
 few degrees; these remain small compared with the odd-channel
mplitudes and reinforce that the even channel contains little physical
nformation. This map therefore confirms that the near-null behaviour
f χeven observed in Fig. 2 holds across the entire ( a, i) plane. 
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Figure 4. Azimuthal derivative d( �χgrav ) / d φ along the ring at i = 20◦ for 
a/M = 0, 0.5 and 0.9. The derivative is flat except for a step at φ � 180◦, 
corresponding to the polar turning point. No random spikes or oscillations 
are present. 
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Figure 5. Signal-to-noise ratio as a function of the number of azimuthal 
samples N for per-sample EVPA uncertainties σχ = 0 . 3◦, 0 . 5◦, 1 . 0◦, and 
2 . 0◦. Increasing N boosts the SNR with diminishing returns; smaller σχ

yields higher SNR. 
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The geometric signal is strictly odd under spin reversal with a 
imple azimuthal relabelling: 

χgrav ( φ; a) = −�χgrav 

(
φ + π ; −a

)
. (38) 

onsequently, forming the odd channel 

odd ( φ) = �χgrav ( φ) − �χgrav ( φ + π ) (39) 

oubles the desired signal and cancels all even-parity contaminants. 
n practice, reversing the spin while keeping the line of sight fixed
ields curves that overlap after a half-cycle shift, with residuals at 
achine precision. Since gtφ ∝ a flips sign under a → −a while

he ring relabels by φ �→ φ + π , the gtφ-odd part of σ = g( e1 , ∇k e2 )
ntegrates to give this relation. Calibration errors and beam asym- 

etries tend to be even under φ �→ φ + π and are thus strongly
uppressed in χodd . 

Three independent numerical routes – integrating the FS scalar σ , 
ransporting the full polarization vector f μ with the Levi–Civita con- 
ection, and extracting the phase from the Walker–Penrose invariant 
agree ray by ray within numerical round off. Convergence tests 
ith halved affine steps show the expected second-order behaviour 
nce the polar-angle step cap is in the asymptotic regime; differences 
etween successive resolutions fall below one degree for all cases 
isplayed in Figs 1 –3 . Constraint violations remain at round off and
o not correlate with phases of maximal EVPA modulation. Varying 
he observer radius from robs = 400 to 800 M changes the results
y less than our plotting precision, and adjusting the turning-point 
topping rule alters only the absolute phase, which is removed by 
ur gauge. 
A smoothness check on the derivative of �χgrav is shown in Fig. 4

or i = 20◦ and spins a/M = 0, 0.5 and 0.9. Each curve is flat near
ero except for a sharp step at φ � 180◦ associated with the polar
urning point. There are no random spikes or oscillations, confirming 
hat the azimuthal waveform is single valued and free of needle like
rtefacts. Similar behaviour is observed at higher inclinations. 

Because Faraday rotation is dispersive, the geometric contribution 
hould be extracted achromatically by regressing the EVPA against 
2 and taking the residual at zero wavelength: 

( λ2 ) = χ0 + RM λ2 . (40) 

fter this step, finite resolution smooths azimuthal structure and 
ixes neighbouring radii, but the signal’s radial localization en- 

ures that selecting a narrow annulus retains most of the signal 
hile reducing beam-induced biases. Sparse ( u, v) coverage yields 

zimuthally non-uniform errors; the root-mean-square statistic is 
obust against such heteroscedasticity. Scattering and calibration 
rrors that are approximately even under φ �→ φ + π cancel to 
rst order in χodd . Residual RM gradients can leak into the odd
hannel but can be monitored by differencing adjacent frequency 
ands. Although the template is emissivity agnostic, optically thin 
ynchrotron weighting emphasizes certain chords; to first order this 
eweights modes without changing parity, introducing a global scale 
actor and a small phase shift that can be absorbed by a two-parameter
atched filter. Higher order images cluster near the critical curve 

nd accumulate larger phases, but blend into the main ring at finite
esolution; thus the direct-image template slightly underestimates the 
ull signal if subring contrast is significant. To isolate the geometric
ontribution in real data, we first perform per-beam λ2 regression to 
orm χ0 , allowing for internal RM structure and modest conversion 
T. W. Jones & S. L. O’Dell 1977 ; M. Kennett & D. Melrose 1998 ;
. D. Sokoloff et al. 1998 ). We then convolve all bands to a common

ircular beam and co-register them to suppress beam-imprinted parity 
I. Martı́-Vidal et al. 2016 ; E. H. T. Collaboration 2019 ). A narrow
nnulus bracketing the direct critical curve is selected on the image
lane; opposite azimuths are differenced to obtain χG ( φ), which 
s fitted to Ta,i ( φ) with a small phase nuisance. Slowly varying
agneto-ionic terms (e.g. RM gradients or external screens) are 

ominated by even parity and are therefore strongly suppressed by 
he odd projection, whereas an achromatic residual in χG that is 
onsistent across a low-/high-band split is the geometric signal (A. 
. Broderick & R. D. Blandford 2004 ; M. Mościbrodzka et al. 2017 ;
. E. H. T. Collaboration 2021a , b ). Because even-parity terms cancel

dentically in χodd , residual magneto-ionic leakage enters only at 
(∂ φRM ) and is bounded empirically by low-/high-band splits; in 

ur injections, the induced bias on the odd-channel amplitude is 
 0 . 5◦ for EHT-like beams and RM gradients. Three immediate

ull checks – Schwarzschild extraction ( ⇒ χodd ≈0), agreement 
etween independent low/high sub-bands after separate λ2 fits, and 
nvariance under a 90◦ restoring-beam rotation — verify parity and 
chromaticity in practice. 

If N denotes the number of approximately uniform azimuthal 
amples and σχ the per-sample EVPA uncertainty after λ2 removal, 
 matched-filter estimate of the signal-to-noise ratio scales as 

NR ∼ 〈 χgrav , T 〉φ
σχ

√ 

N/ 2 

〈 T , T 〉1 / 2 
φ

. (41) 

ince the signal is dominated by a few low-order modes, tens of
amples suffice provided σχ is a few degrees. Fig. 5 plots the SNR
ersus N for per-sample uncertainties σχ = 0 . 3◦, 0 . 5◦, 1 . 0◦, and
 . 0◦. Each curve increases monotonically and exhibits diminishing 
eturns; smaller σχ yields substantially higher SNR. The parity 
MNRAS 544, 2172–2179 (2025)
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rojection doubles the gravitational signal and halves even-parity
oise, thereby enhancing detectability for a given data quality. 
For EHT-like settings with N ≈48 azimuthal samples and σχ ≈1◦

fter λ2 removal, the amplitude SNR SNR A ≈ ( Aodd /σχ )
√ 

N/ 2 is ∼7
t ( a/M, i) = (0 . 9 , 80◦), implying sub-0.1 precision in a/M or a few
egrees in i from the measured slope of Aodd ( a, i). 
Robustness tests varied the observer radius, emission proxy,

zimuthal sampling (from about 36 to 128 points), affine step size
with factor-of-eight refinements) and the method used to map finite-
adius geodesics to the critical curve. Only the expected sensitivity
merged: the azimuthal rootmeansquare stabilizes once M � 48 and
he step size is sufficiently small; the phase can shift by a fraction
f a bin if the start of the tessellation changes, motivating the use
f an RMS summary and a matched filter that includes a marginal
hase. None of these choices affects the parity, radial localization or
onotonic scaling. The sign of the primary lobe in χodd ( φ) fixes the

rojected spin direction (up to a π relabelling), while the amplitude
rows monotonically with a at fixed i and with i at fixed a. A joint fit
o the amplitude and modestly phase-sensitive shape therefore breaks
he degeneracy between a and i when combined with standard ring-
iameter measurements. Because the observable is achromatic, data
rom multiple bands can be combined after λ2 removal to increase
 without bias. 
Finally, it should be emphasized that plasma birefringence and

bsorption are not included here: the template defines a geometric
aseline rather than a complete radiative transfer solution. In practice,
ne should remove dispersive rotation via λ2 regression, isolate
 narrow ring annulus, form the odd channel and fit the result
ith a two-parameter FS template allowing for amplitude and a

mall azimuthal phase. Residual frequency-dependent signatures
ound unremoved Faraday structure; even-parity residuals bound
nstrumental leakage. Simulated analyses suggest that these controls
eep biases in the odd-channel amplitude below about 0 . 5◦ for typical
HT configurations, well below the severaldegree signals expected
t high spin and inclination. 

 C O N C L U S I O N S  

e have recast the gravitational rotation of linear polarization in Kerr
s the integral of a single scalar – the null FS screen-rotation rate
= g ( e 1 , ∇ k e 2) – accumulated along photon trajectories that

orm the critical curve. This formulation yields an achromatic, ring-
ocalized, parity-odd template for the electric-vector position angle
EVPA) on the observer’s screen, independent of plasma emissivity
nd robust to gauge choices. Three independent constructions – (i)
he FS scalar integral

∫ 
σ d v, (ii) explicit Levi–Civita transport

f the polarization vector, and (iii) the phase inferred from the
alker–Penrose invariant – agree ray by ray at machine precision,

losing the theoretical loop and fixing the observable unambiguously.
umerically, a mid-point geodesic/transport scheme with constraint-
reserving orthonormalization attains the expected O( h2 ) conver-
ence and keeps all algebraic constraints at round off, ensuring
hat the degree-scale modulations we report are physical rather than
umerical. For clarity and future reuse, we name this observable the
eometric Polarization Invariant ( χG ). 
The resulting screen-space signature has four properties that
atter for observation. First, it is non-zero in Kerr and vanishes

n Schwarzschild up to a global gauge , confirming that frame
ragging is the sole driver of the pattern. Secondly, it is strictly odd
nder a → −a once the trivial relabelling φ �→ φ + π on the ring
s applied; the odd-parity combination χodd ( φ) = χ ( φ) − χ ( φ + π )
herefore doubles the signal and cancels even-parity contaminants.
NRAS 544, 2172–2179 (2025)
hirdly, it grows monotonically with spin and inclination , reaching
egree-scale RMS for a/M ∼ 1 viewed at high i. Fourthly, it is
ocalized in radius to a narrow annulus bracketing the direct photon
ing; sampling a few neighboring circles shows a sharp peak of the
dd-channel RMS within | δρ| /M � 0 . 2 of the critical curve and a
apid fall-off outside. Together, these features define a compressed,
ymmetry-protected observable that lives precisely where mm/sub–
m VLBI data sets have geometric leverage. 
The plots constructed from our calculation clarify what a detection

hould look like. The azimuthal waveform of �χ grav ( φ) is not
urely sinusoidal: at moderate spins an m = 1 component dominates,
hile higher harmonics emerge gradually as a/M → 1 and i → 90◦.
his decomposition is useful in practice because modest azimuthal
ampling already captures most of the signal power. The strict
ddness under φ �→ φ + π is a decisive advantage in real data,
here beam asymmetries, calibration drifts, and residual foregrounds

re approximately even on a ring. Taken together, the amplitude
ersus spin/inclination monotonicity and the low-order azimuthal
tructure mean that a simple two-parameter family of templates
ndexed by ( a, i), augmented by a small phase nuisance, can support
arameter inference without entanglement with detailed emissivity
odels. 
The same geometry suggests a minimal, observation-ready

ipeline. One first removes dispersive Faraday rotation by per-pixel
or per-beam) λ2 regression to form an achromatic EVPA residual at
 fiducial frequency. One then extracts a narrow annulus around the
ing (via image-plane apertures or visibility-domain ring fits), forms
he odd channel by differencing opposite azimuths, and regresses the
esult against the FS template family. Because the statistic is parity-
dd, even-parity leakage from bandpass errors, beam systematics,
nd slowly varying foregrounds is strongly suppressed; because the
tatistic is achromatic, multiband data can be coherently combined
fter λ2 removal. In this framework, higher order images that cluster
ear the critical curve effectively enhance the measured amplitude
nce convolved with a finite beam, making our direct-image template
onservative rather than optimistic. 

Several caveats are explicit by design. We do not include plasma
irefringence, absorption, or emissivity weighting in the definition
f the geometric template; these effects reweight azimuthal modes
nd shift phases mildly but do not alter achromaticity or spin-odd
arity. Sparse ( u, v) coverage and finite beams smooth azimuthal
tructure; this is mitigated by radial localization and by using RMS-
ype summaries that are insensitive to small phase shifts. Interstellar
cattering and time variability (especially relevant for Sgr A∗)
equire cadence-aware processing, but the odd-parity differencing
emains symmetry-protected scan by scan. Algorithmically, moving
he observer farther out or adjusting the turning-point stopping rule
hanges only an overall gauge that is removed before statistics are
ormed. 

Two theoretical extensions are natural. The first is to express σ in a
rincipal-null Newman–Penrose tetrad to make the connection with
pin coefficients and the Killing–Yano tensor fully analytic, turning
ur numerical equivalences into closed identities. The second is to
evelop near-ring asymptotics at high spin and inclination, clarifying
hich azimuthal modes dominate and how higher order images

enormalize the annular amplitude. On the data side, the immediate
ext step is to inject the odd-parity ring estimator into synthetic
m/sub-mm polarimetric data sets built from GRMHD snapshots
ith realistic calibration, thereby turning our qualitative detectability

tatements into instrument-specific forecasts. In parallel, applying
he method to existing M87∗ and Sgr A∗ data sets – after standard λ2 

emoval and ring extraction – can already deliver either a detection
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f the achromatic, parity-odd Kerr imprint or tight upper limits that 
onstrain combinations of ( a, i) and emissivity reweighting. 

The torsion of a null moving frame provides a compact, physi-
ally transparent bridge from strong-field geometry to a symmetry- 
rotected observable on the sky. By isolating the achromatic, spin- 
dd EVPA pattern on the photon ring and by closing the triangle be-
ween FS, Levi–Civita, and Walker–Penrose constructions, we have 
roduced a practical template and estimator that meet the data where 
hey are. A positive detection would amount to a direct measurement 
f a parallel-transport phase sourced by frame dragging; a non- 
etection, interpreted through the same parity-aware pipeline, would 
till return informative bounds and stress-test instrument systematics 
nd plasma models. Either outcome moves polarization holonomy 
rom theory into measurement, sharpening the interface between 
ifferential geometry and horizon-scale polarimetry. In practice, 
eporting χG (or its upper limit) after parity and achromaticity checks 
rovides a geometry-only diagnostic that is immediately comparable 
cross bands and epochs. 
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