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ABSTRACT

EVENT SEGMENTATION IN EPISODIC MEMORY:
THE ROLE OF PREDICTION ERRORS, CONTEXTUAL TRANSITIONS,
AND AFFECTIVE MODULATION

BERNA GULER
Experimental Psychology, Ph.D. Dissertation, June 2025

Dissertation Supervisor: Asst. Prof. EREN GUNSELI

Keywords: event segmentation, context, prediction error, emotion regulation,

episodic memory

Episodic memory allows us to structure continuous experience into discrete, mean-
ingful events, yet the mechanisms that shape segmentation and how different factors
influence this process are not fully understood. This thesis investigates how predic-
tion errors, contextual stability, and affective processes influence event segmentation.
Across a series of behavioral experiments, I show that stable contextual informa-
tion plays a more critical role in triggering event boundaries than prediction errors
alone. Furthermore, while high-reward associations during the ongoing experience
can enhance memory, they do not consistently alter the segmented structure of the
experience. Finally, I demonstrate that retrospective cognitive reappraisal of emo-
tional events can reorganize how past experiences are segmented and remembered.
Together, these findings challenge traditional models that emphasize prediction er-
rors and highlight the flexible, dynamic nature of memory organization shaped by
both bottom-up and top-down influences.
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OZET

EPIZODIK BELLEKTE OLAY SEGMENTASYONU:
TAHMIN HATALARININ, BAGLAMSAL GECISLERIN VE DUYGU
DUZENLEMENIN ROLU

BERNA GULER
Deneysel Psikoloji, Doktora Tezi, Haziran 2025

Tez Damismani: Dr. Ogr. Uyesi EREN GUNSELI

Anahtar Kelimeler: olay segmentasyonu, baglam, tahmin hatasi, duygu diizenleme,

olaysal bellek

Epizodik bellek, siirekli deneyimlerimizi anlamh ve ayrik olaylara doniigtiirmem-
izi saglar. Ancak, olay segmentasyonunu sekillendiren mekanizmalar ve bu siireci
etkileyen farkl faktorlerin nasil igledigi hentiz tam olarak anlagilmamigtir. Bu tez,
tahmin hatalarinin, baglamsal stabilitenin ve duygusal stireclerin olay segmentasy-
onu lzerindeki etkilerini aragtirmaktadir. Davranigsal deneylerden olugan bir dizi
caligma kapsaminda, yalnizca tahmin hatalarindan ziyade, stabil baglamsal bilginin
olay smirlariin ortaya ¢ikmasinda daha kritik bir rol oynadigi gosterildi. Ayrica,
deneyim sirasinda yiiksek odiil beklentisinin bellegi giiclendirebildigi, ancak olay
segmentasyonunu tutarh bir gekilde degistirmedigi goriildii. Son olarak, duygusal
olaylara yonelik geriye doniik biligsel yeniden degerlendirme yoluyla, ge¢gmis deney-
imlerin nasil segmental olarak yapilandirildiginin ve hatirlandiginin yeniden sekil-
lenebilecegi gosterildi. Bu bulgular, segmentasyonun olusumuna dair tahmin hata-
larini 6nceliklendiren geleneksel modelleri sorgulamakta ve bellek organizasyonunun
hem asagidan yukari hem de yukaridan asagi islemleme ile sekillenen esnek ve di-
namik dogasini vurgulamaktadir.
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1. GENERAL INTRODUCTION

Episodic memory is essential for human life as it holds the “summary records of past
experiences” (Conway 2009). As time inevitably moves forward, episodic memory
plays a crucial role in encoding, storing, and later retrieving experiences, enabling
individuals to become consciously aware of their past under specific conditions and at
a particular time (Tulving 1993). By this property, episodic memory has a distinct
ability to allow humans to mentally time-travel through their experiences. This
process is supported by autonoetic awareness, which is defined as a process that
enables us to access the subjective timeline of past events mentally (Tulving 2002).
Thanks to these, a person can remember the past, recall specific information in a

given moment, and imagine future scenarios.

Different properties of episodic memory were defined to clarify its characteristics
(Conway 2009). Episodic memories are richly detailed representations of past ex-
periences that integrate sensory, perceptual, conceptual, and emotional information
and are often encoded as vivid, image-like mental representations. They carry a
distinct spatial perspective, either from the original point of view or as an outside
observer. When recalled, episodic memories are accompanied by a subjective sense
of re-experiencing and play a central role in autobiographical memory. Despite their
specificity, they are highly susceptible to forgetting as well. Lastly, they are an-
chored in a specific temporal context, reflecting brief slices of experience typically

ordered in time as they occurred.

To understand how episodic memories are temporally organized, one essential pro-
cess to consider is event segmentation. It refers to the process of mentally parsing
continuous experience into discrete, meaningful memory units. Even though we
perceive the world as a continuous stream of experiences, memories are chunked
into discrete units, such as remembering the time spent at work and commuting
back home as two separate events: a work event and a commute event. Event
segmentation plays a significant role in forming episodic memories (DuBrow and

Davachi 2013; Ezzyat and Davachi 2011), generating future thinking (Demblon and



D’Argembeau 2014), and making predictions about upcoming events (Bilkey and
Jensen 2021) by structuring memories into meaningful and retrievable memory bits

(Zacks et al. 2007).

1.1 Theories of Event Segmentation

Different theories aim to explain the mechanisms underlying event segmentation.
Among these, the most influential is the Event Segmentation Theory (EST; Zacks
et al. 2007). According to EST, observers form cognitive representations that enable
them to perceive ongoing experiences in a dynamic world. These representations,
maintained in working memory, are called event models. EST posits that perception
is not continuous; rather, the perceptual system interprets events through predic-
tions and expectations about what is likely to happen next (Zacks 2019). Within
this framework, it is proposed that event segmentation occurs when there is a per-
ceptual or conceptual mismatch between incoming information and the predictions
generated by the current event model. This mismatch is known as a prediction
error. For instance, an observer may form an event model centered on the goal of
preparing a meal, but this model is replaced when an unexpected message arrives
that requires an immediate response. In this case, the observer must update the ex-
isting event model in working memory to reflect the new circumstances (Nolden et
al. 2024). In sum, prediction errors emerge when expectations based on the current
event model do not align with real-world input. These errors play a crucial role in
the structure and formation of events, as they trigger the updating of event models

and the segmentation of experiences.

An alternative theory suggests that event segmentation is not triggered by only
prediction errors but also internally generated inferences and motivations (DuBrow
and Davachi 2016; Shin and DuBrow 2021). In this view, segmentation arises when
there is a mismatch between inferred expectations and incoming information, shift-
ing the emphasis away from low-level sensory processing. Such transitions can reflect
contextual shifts that are shaped by either external cues or internal cognitive pro-
cesses. Supporting this perspective, studies have shown that segmentation occurs
when participants voluntarily switch between task rules based on their motivations,
rather than being externally instructed (Wang and Egner 2022). Furthermore, seg-
mentation does not emerge when prediction errors are triggered in the absence of

contextual stability following a transition (Giiler et al. 2025).

Another theory, the structured event memory (SEM) (Franklin et al. 2020), claims



that Bayesian statistical learning and latent structure inferences are the main driving
factors in generating segmented memories. Humans learn predictable scene dynam-
ics through experience and represent these experiences as schematic patterns to reg-
ulate noisy environmental information, improve recall, and support generalization.
Events are evaluated as latent components that generate segmented experiences over
time. Accordingly, the model emphasizes relational and temporal aspects of events
and offers a flexible understanding of scaling the natural input in episodic memory.
Even though SEM suggests that boundaries are triggered by prediction error, it
focuses more on statistical comparison between the current event structure and the
experiences. If the experience does not belong to the current event structure, then

the occurrence of a new event is triggered.

Lastly, the event horizon model (EHM) (Radvansky 2012; Radvansky and Zacks
2014) explains the occurrence of event segmentation by offering a causal structure
of experiences and how people use this structure to assist memory retrieval. When
multiple associated events are available, recall of a memory can be interrupted,
and the reverse pattern is observed when recall depends on a single event. This
perspective is also highly associated with representing current experiences in working
memory because it assists in accessing related memories by holding the current event
model active. Therefore, recalling experiences from across events would be difficult

since they rely on different event models.

1.2 What Influences Event Segmentation, and How Does It Affect
Episodic Memory

Event segmentation typically occurs at boundaries that are determined by salient
physical changes during continuous perceptual activity (Butz et al. 2021), such
as changes in object categories (DuBrow and Davachi 2016), background colors
(Heusser et al. 2018), and motion features (Schubotz et al. 2012). For example,
transitioning from one object category to another during learning is typically in-
terpreted as a contextual shift, leading individuals to perceive it as the onset of a
new event (Giiler et al. 2024, 2025). Moreover, event boundaries are influenced by
our interactions with the external world, as boundaries form when our predictions
are not met regarding stimulus categories (Clewett and Davachi 2017; Zacks et al.
2011; Zacks and Swallow 2007), learned regularities (Hard et al. 2019), goal-directed
actions (Huff et al. 2012), temporal order (Schapiro et al. 2013; van de Ven et al.
2021), or task rules (Wang and Egner 2022). In line with the role of external factors



in event segmentation, event boundaries overlap across individuals (Baldassano et
al. 2018; Chen et al. 2017; Speer et al. 2003; Zacks 2019).

The transition between events influences the formation of episodic memory in terms
of temporal and source memory (Clewett et al. 2020; Clewett and Davachi 2017).
One of the most consistent findings supporting event segmentation is that temporal
order memory indicates higher accuracy for items within the same event compared
to items that span an event boundary, referred to as within-event and across-event
items, respectively. Another commonly observed effect is subjective temporal dis-
tance, whereby items within an event are perceived as temporally closer than items
that cross an event boundary. Notably, these effects emerge when the objective
temporal distance between item pairs is held constant, suggesting that the presence
of an event boundary disrupts sequential encoding and alters the perceived tem-
poral structure of experience (DuBrow and Davachi 2014, 2016; Pu et al. 2022).
Moreover, attentional resources tend to increase at event boundaries to facilitate
the processing of novel information and the transition between events. This height-
ened allocation of attention is associated with enhanced source memory and recall
for boundary items and those presented in close temporal proximity (Heusser et al.
2018; Gold et al. 2017; Pradhan and Kumar 2022). Therefore, event segmentation
allows temporal, spatial, or goal-directed discontinuities in experience to be marked,

enabling the organization and sequencing of episodic memories.

1.3 Underlying Neural Mechanisms of Event Segmentation

The event segmentation phenomenon is supported by neuroimaging studies (Baldas-
sano et al. 2017; Sols et al. 2017; Speer et al. 2007). fMRI and electrocorticography
studies have shown that the hippocampus tends to encode information, particularly
at event boundaries (Baldassano et al. 2017; Ben-Yakov et al. 2013; Liu et al. 2022;
Michelmann et al. 2021). These boundary-related signals are thought to support
the formation of discrete memory traces, as the hippocampus plays a role in tem-
poral integration by updating contextual representations when prediction errors or
perceptual changes occur. Beyond the hippocampus, regions such as the posterior
medial cortex and medial prefrontal cortex have also been implicated in processing
event boundaries and supporting narrative comprehension and memory integration
(Zacks et al. 2001; Reagh et al. 2020). Together, these findings suggest that event
segmentation relies on a distributed network that monitors contextual shifts and

supports the reorganization of ongoing experience into meaningful memory units.



1.4 Part 1. Underlying Mechanisms of Event Segmentation: Prediction
Error vs Contextual Stability

The underlying mechanism for perceiving these event boundaries remains a central
theoretical question. Two prominent accounts propose distinct mechanisms. While
one of them emphasizes the prediction error as an underlying factor, the alterna-
tive suggests the stability of the context. Even though studies are confirming the
contributions from both accounts, the clear distinction between them has not been
tested. Accordingly, in Part 1, prediction error will be used as a mismatch between
the expected likelihood of an event transition and its actual occurrence. On the
other hand, the concept of contextual stability will be used to refer to the sustained
presence of an internal or external context, such as perceptual features or internal

goal inferences, over a period of time.

The event segmentation theory (EST) emphasizes prediction error, the detection
of mismatches between expected and actual event representation, as a trigger for
segmentation. Event boundaries are often characterized by increased uncertainty
due to carrying information about multiple potential outcomes or actions following
a transition, thereby increasing the cognitive conflict. Accordingly, prediction errors
arise at event boundaries because the current event model no longer supports accu-
rate anticipation of upcoming events (Kurby and Zacks 2008). These momentary
errors are cues for the cognitive system to update or replace the existing model.
When individuals detect the onset of a new event, this internal conflict is typically

resolved or diminished, indicating a shift to a newly selected event model.

An alternative view highlights the role of contextual stability, where changes in per-
ceptual, semantic, or affective context occur, prompting a new event to be inferred
(Clewett and McClay 2024; DuBrow and Davachi 2016; Loh et al. 2016; Wang and
Egner 2022). Accordingly, the emergence of a new event model can also be defined
by predictable transitions, such as shifts in motivations, goals, or expected percep-
tual changes. What is critical at this point is the change in the existing context,

regardless of its predictability.

While both mechanisms have received empirical support, the relative contributions
of each and whether one of them is a more prominent factor remain unclear. Ac-
cordingly, in Part 1, we aimed to disentangle these mechanisms by independently
manipulating prediction error and contextual stability across 4 experiments, allowing

us to assess their distinct and potentially interactive effects on event segmentation.



1.5 Part 2. Online Effects of Reward on Event Segmentation

People tend to prioritize information that is associated with reward, and in doing
so, may fundamentally reshape how memories are structured and organized over
time. Think back to a vacation you've taken. You may have visited several cafés,
shops, and museums, some memorable, and others forgettable. Over time, you
might realize that the moments you remember most clearly tend to come from a
specific type of experience. In this case, all the local food spots you discovered
unexpectedly and loved. Even if you can’t recall every single dish, the category of
“local food discoveries” becomes more vivid in your memory and stands out from
the rest of the trip in your memories. This suggests that our brains may prioritize
and segment experiences not just based on individual events, but also on the reward

value associated with broader categories.

Effects of online reward associations are also observable in various cognitive pro-
cesses that are closely linked to event segmentation. For instance, visual working
memory performance can be enhanced, and reward-associated items can be better
maintained, regardless of their perceptual salience (Gong and Li 2014). Addition-
ally, attentional processes can be modulated and increased by reward expectations
associated with stimuli held in working memory (Infanti et al. 2015). Moreover,
such prioritization during online encoding has resulted in stronger long-term mem-
ory representations for these items (Sandry et al. 2020). Given these findings, it
becomes crucial to understand how the structure of memory and event segmenta-
tion may dynamically change when reward-related information is introduced during

online learning.

Although reward has been widely studied in relation to attention and memory,
relatively few studies have directly examined its influence on event segmentation.
Reward-related associations may act as meaningful boundaries, leading to the seg-
mentation of ongoing experience into discrete memory episodes. For instance,
Rouhani et al. (2020) demonstrated that unexpected changes in reward value (re-
ward prediction errors) can generate boundaries, resulting in better recall for in-
formation that follows such events. Similarly, surprising or motivationally salient
outcomes can restructure the experience flow and generate distinct memory segments
(Kalbe and Schwabe 2022). While these findings imply a link between reward associ-
ations and event segmentation, more research is needed to understand how abstract
or category-level reward associations, rather than trial-by-trial surprises, may shape

the structure of episodic memory during ongoing learning.

To address this gap, Part 2 investigated whether online category-level reward associ-



ations influence how people segment and encode unfolding experiences. Specifically,
we tested whether high-reward categories are more likely to be treated as bound-
aries in ongoing experience, thereby altering the structure of episodic memory during

encoding and later retrieval.

1.6 Part 3. Retrospective Effects of Emotion Regulation on Event

Segmentation

Beyond perceptual processing, event segmentation is increasingly recognized as be-
ing sensitive to top-down influences. Affective and motivational states, in particular,
can shape how experience is structured in memory both as it unfolds and in ret-
rospect. How we learn to associate value with certain categories or meanings and
how that value reshapes the way we mentally organize our past can determine the
structuring of experiences and how we interpret them later. For example, imagine
having an argument with your partner. In the moment, the experience might natu-
rally divide into “before the fight” and “after the fight.” But perhaps hours or even
a day afterward, you reflect on the event and come to realize that you may have
been at fault. This new understanding does not just update your beliefs; it can lead

you to re-segment the memory retrospectively.

Such cases highlight the dynamic nature of memory and suggest that event seg-
mentation is not a fixed process, but one that can be flexibly restructured by later
emotional or inferential insights. Emotional transitions, especially those involving
shifts in arousal, valence, or motivational relevance, may operate as internal bound-
aries, segmenting experience and altering how surrounding information is encoded.
For instance, memory can be retrospectively prioritized for neutral items temporally
close to the rewarded items (Braun et al. 2018). In that sense, memory for events
can be modified retrospectively through processes such as reinterpretation, emotion
regulation, or the emergence of new goals. These observations raise important ques-
tions about the flexibility of event boundaries and the extent to which segmentation

is subject to ongoing cognitive control.

Building on this idea, Part 3 investigates whether event structure can be altered
retrospectively through cognitive reappraisal. Specifically, we examined how the
memory representations of negative high-arousal stimuli change when those stimuli
are later reinterpreted through reappraisal. By comparing conditions in which cog-
nitive reappraisal was applied, negative experience was only reconsidered or when

none of them applied, we aimed to test whether altering the emotional meaning of



previously encoded events leads to changes in their segmentation and organization in
memory. This approach allows us to assess how top-down emotional regulation may
reshape the boundaries of past experiences and influence how they are reconstructed

over time.

1.7 General Aim

The present thesis investigates these questions across three lines of inquiry. First,
it contrasts prediction error with contextual stability as candidate mechanisms for
driving segmentation, aiming to isolate their unique and interactive effects. Sec-
ond, it examines how moment-to-moment changes in reward associations influence
segmentation during encoding. Finally, it explores whether retrospective emotional
regulation, specifically cognitive reappraisal of negative experiences, can reshape the
structure of previously encoded events. Together, these studies aim to clarify how
cognitive, affective, and motivational signals jointly determine how events are parsed

and represented in episodic memory.



2. PART 1: UNDERLYING MECHANISMS OF EVENT
SEGMENTATION

2.1 Introduction

Imagine walking on the beach and continuing your walk in the city. While the
initial experience feels continuous, your memory will likely be segmented into distinct
beach and city events. This process, known as event segmentation, involves parsing
continuous experiences into discrete units in episodic memory (Zacks 2019). It
influences how we encode and remember experiences (Davachi and DuBrow 2015;
Heusser et al. 2018; Wu et al. 2023), making our memories easier to navigate

(Michelmann et al. 2023).

Although the factors that generate distinct events are well studied, developing a
global theory that involves these factors has been challenging. The dominant view
is that event segmentation occurs due to prediction errors. According to the event
segmentation theory, a prediction error signals the memory to create a new event
(Rouhani et al. 2020; Zacks et al. 2009; Zacks and Swallow 2007). Following a
prediction error, the observer forms a representation of what is happening now,
called an event model, to predict the future and compare this model to the ongoing
experience (Bailey et al. 2013). This theory was supported by studies that found
violations of predictions result in event segmentation, as seen in cases of unexpected
changes in narratives, background colors, or object movements (Eisenberg et al.
2018; Heusser et al. 2018; Reynolds et al. 2007; Zacks 2004; Zacks et al. 2011;
Zacks and Tversky 2001).

While event segmentation theory remains dominant, an alternative perspective, the
contextual stability account, offers a different explanation. This account suggests
that what drives segmentation is a transition across stable contexts, such as a change
in object categories, task rules, or reward values (DuBrow and Davachi 2016; Loh
et al. 2016; Wang and Egner 2022; Yates et al. 2023). Consistent with this,



contextual overlap is critical for indices of segmented memories, such as coherent
temporal encoding of events (Qiu et al. 2023; Schapiro et al. 2013; Sherman et al.
2023) and strong associations among items and sources (Polyn et al. 2009; Rouhani
et al. 2023; Siefke et al. 2019). Moreover, an fMRI study showed that items
within a context exhibit higher hippocampal pattern similarity than items across
different contexts, with this enhanced similarity predicting smaller perceived tem-
poral distances between within-context items, a key metric for segmented memories
(Ezzyat and Davachi 2014). Notably, even anticipated transitions and voluntary
task switches, which are presumably free from prediction errors, have been shown
to cause segmented memories (Pettijohn and Radvansky 2016; Shim et al. 2024,
Wang and Egner 2022). Together, these studies suggest that having stable contexts,

rather than experiencing prediction errors, is the main driver of segmentation.

Although these two views have been described in detail (Shin and DuBrow 2021;
Zacks et al. 2011; Zacks and Swallow 2007), a conclusive comparison of their con-
tributions to event segmentation has yet to be achieved. This gap may stem from
the inherent challenge of dissociating these two views, as transitions in context have
been suggested to produce prediction errors (Greve et al. 2017; Grisoni et al. 2021;
Kim et al. 2014; Yazin et al. 2021). Consequently, effects typically attributed
to prediction errors might also reflect shifts across stable contexts. For example,
moving from one room to another while carrying virtual objects results in poorer
memory performance for objects across rooms than objects from the same room
(Radvansky et al. 2011; Radvansky and Copeland 2006). This poorer performance
can be interpreted in two ways: one perspective attributes it to prediction errors
triggered by perceptual changes, while the other considers it the consequence of a
shift from one stable context to another (Wang and Egner 2022; Zacks et al. 2011).

Here, we developed an experimental procedure to overcome the challenge of dis-
entangling the contributions of prediction errors and contextual changes in event
segmentation by keeping prediction errors constant while manipulating contextual
stability (Experiments 1-3) and keeping contextual stability constant while manip-
ulating prediction errors (Experiment 4). Participants viewed images of real-life
objects of various categories, and performed different task that provided different
associated reward values (DuBrow and Davachi 2016; Ezzyat and Davachi 2014;
Wang and Egner 2022; Wen and Egner 2022). In all experiments, violations of
expectations regarding the upcoming object category, task rule, and reward value
were considered prediction errors, such as when a series of a particular task rule
was interrupted by another. Experiments 1-3 manipulated contextual stability by
either having the same object category, task rule, or reward value across a series of

successive items (prediction error + stable context) or having a deviant item inter-
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spersed across others (prediction error only). In Experiment 4, we kept contextual
stability constant and manipulated prediction errors by providing a counter for the
remaining number of items in an object category and task rule. Thus, a prediction
error regarding a transition in object category or task rule was present only in the
absence of a counter. In all experiments, after a brief intervening task that aimed
to prevent rehearsal, participants completed temporal order and temporal distance
tasks commonly used to assess event segmentation (Clewett et al. 2019; DuBrow
and Davachi 2013; Rouhani et al. 2020; Sols et al. 2017; Wang and Egner 2022).

2.2 Methods

2.2.1 Ethical Approval

The study was conducted at Sabanci University, Istanbul, Turkey. The experiments
of the study were approved by the Sabanci University Research Ethics Council
(SUREC) and were in line with the principles of the Declaration of Helsinki (World
Medical Organization 1964).

2.2.2 Open Science Practices

The experiments reported in this article were not preregistered. Analysis script, raw
data files, and code for the experiments are available on the Open Science Framework

repository (https://osf.io/zasmy/).

2.2.3 Participants

Before conducting the study, we ran a statistical power analysis using Bayesian
sequential design. We averaged the effect sizes across six studies that primarily
measured event segmentation through temporal judgment tasks (D’Argembeau et
al. 2015; Heusser et al. 2018; Horner et al. 2016; Sols et al. 2017; Van De Ven
et al. 2022; Wang and Egner 2022). We used an uninformed Cauchy distribution
as the prior. For Experiments 1 and 2, the minimum and maximum number of
participants were determined as 40 and 126, with a maximum power of .68 and a
minimum power of .37 (false positive rate: .02), respectively. For Experiments 3

and 4, we ran the power analysis by considering the effect sizes of the within-subject
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design studies (Clewett et al. 2020; DuBrow and Davachi 2013; Heusser et al. 2018;
Horner et al. 2016; Sols et al. 2017; Van De Ven et al. 2022; Wang and Egner 2022;
Wen and Egner 2022), and the minimum and maximum number of participants were
determined as 53 and 240, with a maximum power of .57 and a minimum power of

40 (false positive rate: .02), respectively.

For Experiments 1 and 2, we ran 42 participants and data from 2 participants
were removed from further analyses due to being more than 2.5 standard deviations
above or below the grand average in any of the measures. The main analyses were
carried out with 40 participants in each experiment (Experiment 1: 29 female,
Mage = 22.8, SDage = 3.29; Experiment 2: 32 female, Mage = 22.5, SDage = 2.21).
For Experiment 3, we collected data from 63 participants. Data were removed
from 6 participants due to the experiment crashing when participants pressed an
invalid key, producing incomplete data and from 4 participants for being 2.5 standard
deviations above or below the grand average in any of the measures. The analyses
were conducted with 53 participants (29 male, Mage = 22.8, SDage = 2.79). For
Experiment 4, we initially collected data from 53 participants but did not observe
event segmentation. To eliminate the possible explanation of fatigue, we conducted
the same experiment with 12 rounds, as in previous studies (Heusser et al. 2018;
Van De Ven et al. 2022) and collected data from 23 participants. During the data
collection process, we spotted a mistake in the analysis code, the correction of which
resulted in robust event segmentation both in the older 16-round version and the
newer 12-round version (excluding 2 practice blocks from each condition). Therefore,
we combined the data across these two versions, adding up to 76 participants in
total. 6 participants were removed for being 2.5 standard deviations above or below
the grand average in any of the measures. The analyses were conducted with the

remaining 70 participants (25 male, Mage = 22.2, SDage = 2.76).

2.2.4 Stimuli

A collection of 721 photographs of real-life objects, animals, and plants were used as
memory items for Experiments 1 and 2, while a total of 910 animate and inanimate
photographs were used for Experiments 3 and 4 (available in the OSF repository).
We rescaled these photographs to have comparable pixel counts (500x500 pixels;
12.2° wide). The experiment was programmed in MATLAB via the Psychophysics
Toolbox (Brainard 1997; Pelli 1997; Kleiner et al. 2007). The viewing distance was
65 cm from the screen. The background was gray (RGB = [127.5 127.5 127.5]).
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2.2.5 Design

The experimental procedure for the experiments is shown in Figure 2.1. Each round
consisted of three phases: encoding, filler task, and memory test. Experiments 1

and 2 took 75 minutes, and Experiment 3 and 4 took 90 minutes.

During encoding, participants evaluated the objects according to a task rule by using
right or left arrow keys. Each response (e.g., like or dislike) was associated with one
side of the screen and, therefore, one arrow key (i.e., left or right). Images did not
repeat in the experiment and their assignment to conditions was counterbalanced
across participants. The display duration for objects was 2500 ms with a 2000 ms

inter-stimulus interval (ISI).

2.2.5.1 Experiment 1

Experiments 1 and 2 included 12 blocks, including one practice block. In Experiment
1, 30 items in each block came from three different object categories (real-life objects,
animals, plants). One of the categories will be referred to as the critical category,
and the other two as non-critical categories. Items from the critical category were
evaluated with a different rule (e.g., bigger or smaller than a shoebox) than the
non-critical categories (e.g., natural or manmade). Moreover, the critical category
provided reward, while the non-critical categories provided no reward. The goal of
switching the object category, task rule, and reward at ‘boundaries’ was to increase
the chances of segmentation. The critical category appeared in every six items
(boundary items), and within-event items were from non-critical categories. Within-
event image categories were equally chosen from non-critical categories and appeared
in random order to ensure that each block had an equal number of non-critical
categories. The task rule was shown on the screen during both the IST and the object
display. Images from the critical category were used to explore event boundaries.
Participants were informed that they would evaluate the critical category items with

a different rule and get a reward value for their judgments.

After encoding 30 images, participants performed basic mental summation for 45
seconds as a filler task (Wang and Egner 2022). After the filler task, participants
received the memory tests. During the memory test phase, participants were given
8 image pairs that they encoded during the encoding phase. Half the pairs were
within, and the other half were across-event items. The temporal distance was equal
for each pair, as there were always two images between the tested pairs. For each

image pair, participants first made temporal order judgments by indicating which
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item came first during encoding using left and right arrow keys corresponding to the
pair items’ positions on the screen. The positions of the pair items were randomly
shuffled for each tested pair. Next, participants made temporal distance judgments
for the same image pair among four options (very far, far, close, very close) by
assessing the temporal distance between images during encoding. Participants were
also asked to indicate their level of confidence in their temporal order and temporal
distance judgments (high or low confidence). Reaction time, confidence judgment,

and accuracy were recorded.

2.2.5.2 Experiment 2

Experiment 2 was the same as Experiment 1 except for the following differences in
Phase 1. First, participants evaluated every six consecutive items with the same
rule (e.g., like/dislike) and the same reward value (e.g., high reward). In other
words, task and reward values changed after every six items. Therefore, there was
contextual stability during these items. Second, there was no critical category, as
boundaries were determined via the stability of the task rule and reward value across

six consecutive items.

2.2.5.3 Experiment 3

Experiment 3 was identical to Experiments 1 and 2 except for the following differ-
ences. The prediction error blocks (Experiment 1) and contextual stability blocks
(Experiment 2) were combined into a single experiment as a within-subjects ma-
nipulation. There were 14 experimental blocks, 7 for prediction error and 7 for
contextual stability. The block order was random except for avoiding repeating the
same condition more than twice across consecutive blocks. Before the study, par-
ticipants completed two practice rounds for each condition. All remaining changes
aimed to simplify the design and reduce unnecessary variance in Phase 1. First,
there was no reward manipulation. Second, each block had two predefined object
categories (e.g., toys and flowers) instead of three, minimizing semantic related-
ness and strengthening transitions. Third, instead of three rules, there were two
rules throughout the experiment, which were “bigger or smaller than a shoebox”
and “like or dislike”. Fourth, object categories, their presentation order within and
across blocks, and task rules to evaluate each object category were counterbalanced
across participants and conditions. Lastly, in prediction error blocks, each event

consisted of 5 items from a single object category and were evaluated with one rule,
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Figure 2.1 (A) Main phases of Experiment 1. There were three phases: encoding,
filler task, and memory test. At the encoding phase, participants evaluated each
image with a rule. In the memory test phase, participants performed temporal
order and temporal distance judgment tasks for image pairs. (B) At the encoding
phase, Experiment 1 aimed to create prediction errors by including a distinct object
category, task rule, and reward value every 5-6 items. Experiment 2 involved stable
contexts, where the transitioned task rule and reward value persisted for 5-6 items
before another change. Experiment 3 manipulated these factors as a within-subject
variable without reward. (C) Experiment 4 manipulated the predictability of event
transitions with a counter for the remaining objects in a given category and task
rule in half of the rounds.
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and the boundary items were from the other category and were evaluated with the
other rule. For contextual stability blocks, each event consisted of 6 items from a
single object category and were evaluated with the same rule. Thus, for both con-
ditions, the event transitions were every 6 items to ensure equal event onsets across
conditions. This revision enabled the same order-items to be asked in temporal
order and temporal distance tasks in both conditions. In contrast, in Experiments

1 and 2, the offsets of events (i.e., the boundaries) were matched, not the onsets.

2.2.5.4 Experiment 4

Experiment 4 was identical to Experiment 3 except for the following changes that
were introduced to manipulate prediction errors. There were two block types: In
predictable blocks, a counter indicated how many items were left for the upcoming
transition, which was displayed during ISI. There was no counter in unpredictable
blocks (Figure 1C). There were 16 blocks, though some participants completed only
12 blocks due to a coding mistake (see Participants). The first of each block type was
for practice, leaving 7 experimental blocks for each block type (and 5 for each block
type in the 12-block version). The block type alternated every four blocks, and the
order was randomized across participants. In each round of Phase 1, participants
encoded 36 objects. Two changes were made to increase prediction errors. First, the
object category repeated for either 5, 6, or 7 objects, instead of being fixed. Second,
for each run, each event length occurred twice in a run in a pseudo-random order,
without repetition across consecutive events (Shim et al. 2024). On the memory

test (Phase 3), there were 6 item pairs: 3 within-events and 3 across-events.

2.3 Results

Analyses were conducted with JAMOVI 2.3 (2023) and the Bayesian Methods mod-
ule (jsq). Bayesian paired and independent samples t-tests compared the within-
subject differences for within vs. across boundary effects. Confidence judgments and
RTs for each measure were reported in the supplementary material. BF'10/01 values
below 1 were considered as no evidence, 1-3 as anecdotal evidence, 3-6 as moderate

evidence, 6-10 as substantial evidence, and larger than 10 as strong evidence for
H1/HO.
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2.3.1 Experiment 1: Does Prediction Error Generate Event Boundaries?

For temporal order memory, accuracy was higher for within-event pairs (M = .68,
SD = .11) than across-event pairs (M = .64, SD = .10), with anecdotal evidence,
BF10 = 1.98 (Figure 2.2.A). For temporal distance judgments, reported distance
was higher for across-event pairs (M = 2.41, SD = .24) than within-event pairs (M
= 2.35, SD = .22), also with anecdotal evidence, BF10 = 1.41 (Figure 2.2.C). Thus,
Experiment 1 provided only anecdotal evidence for event segmentation, as reflected
by higher temporal order accuracy and shorter perceived distance for within vs.

across events.

2.3.2 Experiment 2: Does Contextual Stability Generate Event Bound-

aries?

For temporal order memory, accuracy was higher for within-event (M = .70, SD
= .12) compared to across-event pairs (M = .58, SD = .12), with strong evidence,
BF10 = 2050.37 (Figure 2B). For temporal distance judgments, temporal distance
was higher for across-event pairs (M = 2.43, SD = .25) than within-event pairs (M
= 2.32, SD = .29), with strong evidence, BF10 = 22.61 (Figure 2.2.D). Thus, in

Experiment 2, we obtained strong evidence for event segmentation.

2.3.3 Between-subjects Comparison Across Experiments 1 and 2

To evaluate the contributions of contextual stability and prediction error to event
segmentation, we performed between-subjects t-tests on segmentation scores across
Experiments 1 and 2. Segmentation scores were calculated by subtracting the mean
accuracy for across-event pairs from within-event pairs for the temporal order task.
For the temporal distance task, the subtraction was reversed so that higher values
consistently indicated larger segmentation. This procedure was applied to accuracy,

RT, and confidence judgments for both tasks.

The segmentation score for temporal order accuracy was higher in Experiment 2 (M
= .12, SD = .11) than in Experiment 1 (M = .03, SD = .10), with strong evidence,
BF10 = 10.21. The segmentation score for temporal distance did not differ between
Experiment 1 (M = -.05, SD = .18) and Experiment 2 (M = -.10, SD = .20), with
anecdotal evidence for the null, BFO1 = 1.52. These results suggest that contextual

stability is more important than prediction errors in generating event boundaries
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(Figure 2.3).

Figure 2.2 (A and B) Temporal order accuracy and (C and D) temporal distance
judgments for within-event and across-event items for Experiment 1 and Experiment
2.
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2.3.4 Experiment 3: Within-subject Replication of Experiments 1 and 2

In prediction error blocks, temporal order memory accuracy for within-event pairs
(M = .64, SD = .11) was higher than across-event pairs (M = .57, SD = .07), with
strong evidence, BF10 = 92.4. Similarly, in contextual stability blocks, temporal
order memory accuracy was higher for within-event pairs (M = .73, SD = .12) than
for across-event pairs (M = .60, SD = .11), with strong evidence, BF10 = 2.08e+7.

For temporal distance judgments in the prediction error blocks, there was no dif-
ference between within (M = 2.40, SD = .30) and across-event pairs (M = 2.43,
SD = .29), with moderate evidence, BFO1 = 4. In contrast, in contextual stability
blocks, temporal distance was evaluated higher for across-event pairs (M = 2.40, SD
= .31) than within-event pairs (M = 2.18, SD = .32), with strong evidence, BF10
= 436286.

To directly compare segmentation across conditions, we computed the difference
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Figure 2.3 Temporal order memory accuracy difference between within and across
items for Experiments 1 and 2.
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scores (within minus across) as segmentation indices. For temporal order, segmen-
tation was higher for contextual stability (M = .12, SD = .12) than for prediction
errors (M = .07, SD = .13), with anecdotal evidence, BF10 = 2.18. For temporal
distance judgments, segmentation was higher for contextual stability (M = .21, SD
= .24) than prediction errors (M = .02, SD = .17), with strong evidence, BF10 =
360 (Figure 2.4).

2.3.5 Experiment 4: Does Prediction Error Play a Role?

In predictable blocks, temporal order accuracy was higher for within-event pairs (M
= .68, SD = .13) than for across-event pairs (M = .56, SD = .10), with strong evi-
dence, BF10 = 1.53e+6. Similarly, in unpredictable blocks, temporal order accuracy
was higher for within-event pairs (M = .67, SD = .13) than for across-event pairs
(M = .56, SD = .11), with strong evidence, BF10 = 135011.

Temporal distance judgments also showed strong segmentation effects in both con-
ditions: In predictable blocks, the evaluated distance was higher for across-event
pairs (M = 2.57, SD = .33) than for within-event pairs (M = 2.24, SD = .34), with
strong evidence, BF10 = 7.93e+7. Similarly, in unpredictable blocks, the evaluated
distance was higher for across-event pairs (M = 2.54, SD = .32) than within-event
pairs (M = 2.26, SD = .31), with strong evidence, BF10 = 1.27e+S8.

To directly compare segmentation across conditions, we computed the difference

scores (within minus across) for each measure. For temporal order memory, segmen-
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Figure 2.4 Temporal order memory and temporal distance judgments for Experi-
ment 3. The Bayes Factor above reflects the comparison of the segmentation scores
(within-across difference) across conditions.
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tation did not differ between predictable (M = .12, SD = .15) and unpredictable
blocks (M = .11, SD = .16), with substantial evidence for the null, BFO1 = 7.12.
Similarly, for temporal distance, segmentation did not differ between predictable
(M = .33, SD = .36) and unpredictable blocks (M = .28, SD = .30) with moderate
evidence for the null, BFO1 = 4.02 (Figure 2.5). Thus, there was equal segmentation

across predictable and unpredictable blocks.

Figure 2.5 Temporal order memory and temporal distance judgments for Experi-
ment 4. The Bayes Factor above reflects the comparison of the segmentation scores
(within-across difference) across conditions.
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2.4 Discussion

We contrasted two accounts of the underlying mechanism of event segmentation.
The prevailing view in the literature posits that event boundaries are shaped by
prediction errors (Zacks 2004; Zacks et al. 2007). In contrast, an alternative theory
proposes that transitions across stable contexts drive event boundaries (Shin and

DuBrow 2021). A direct comparison of the two views has been challenging due to
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the difficulty of disentangling their respective influences. Here, we overcame this

challenge by independently manipulating each factor across four experiments.

In Experiment 1, we introduced a transient change in object, rule, and reward cate-
gories to induce prediction errors, while in Experiment 2, the changed task rule and
reward persisted for 5-6 more items during event to establish contextual stability.
Segmentation was larger in Experiment 2 than in Experiment 1. We replicated this
result in Experiment 3 using a within-subjects design. Observing more robust event
segmentation when events have more consistent contextual information emphasizes
the importance of contextual stability. However, it can be argued that contextual
stability leads to higher prediction errors and, hence, better event segmentation. To
address this issue, in Experiment 4, we manipulated prediction errors by providing a
counter for the remaining number of items before transitions across stable contexts.
Segmentation was equally robust for predictable and unpredictable transitions, re-
vealing no effect of prediction errors. These outcomes challenge the influential event
segmentation theory and instead emphasize the pivotal role of contextual stability

in event segmentation.

Various aspects of contextual stability can segment events. First, having a common
context can contribute to the structuring of memories by promoting associations
among information within the same context and improving sequential order mem-
ory (Davachi and DuBrow 2015; DuBrow and Davachi 2016; Ezzyat and Davachi
2011; Farrell 2012; Horner et al. 2016; Pu et al. 2022; Rouhani et al. 2020; Sols
et al. 2017). These associations may contribute to the segmented structure dur-
ing retrieval, given the importance of context binding for episodic memory retrieval
(Ezzyat and Davachi 2011; Yonelinas et al. 2019). Such associations can also assist
in relating the current event with remote episodic memories that share the same con-
text, helping to generalize from similar experiences (Hahamy et al. 2023). Second,
contextual shifts may drive the removal of prior goals and task-related information
from memory and their update with information appropriate for the new context. In
line with this, we recently demonstrated that a context change triggers the reactiva-
tion of task-related long-term memories in working memory (Ozdemir et al. 2024).
This reactivation might explain how updating task-related information occurs at

event boundaries.

As the field advances, it becomes crucial to clarify both the mechanisms behind
segmentation and the ways different memory measures capture its components. Al-
though prediction errors have long been considered central to event segmentation,
previous findings may reflect transitions across stable contexts, as prediction errors
occur at transitions in perception, reward, or semantics (Rouhani et al. 2020; Speer

et al. 2004; Zacks 2004). Given the overlap of contextual shifts and prediction errors
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during encoding, future studies should exercise caution while interpreting the con-
tributions of each to memory structuring. An open question for future research is to
reveal which of the two is critical for triggering an event boundary: the contextual

change itself or its stability after a transition.

Moreover, identifying what drives segmentation is closely tied to how it is measured,
as different memory tasks may capture distinct facets of the same underlying pro-
cess. We found the segmentation difference for temporal order memory between
Experiments 1 and 2, while the condition difference was more robust for tempo-
ral distance judgments in Experiment 3. These differences across experiments may
be attributable to noise, or they may also reflect different underlying memory pro-
cesses tapped by the two tasks (DuBrow and Davachi 2014; Pu et al. 2022; Wang
and Egner 2022), which can be evaluated by future studies.

Despite the contributions of the current study, two limitations can be addressed.
First, in Experiment 4, participants may have noticed that transitions consistently
occurred every 5 to 7 items in the unpredictable condition. This regularity could
have provided some predictability, thereby reducing the degree of prediction errors
(Greve et al. 2017, 2019; Van Kesteren et al. 2012). Such a reduction may partly
explain the absence of segmentation difference between conditions. Nevertheless, the
presence of strong event segmentation in the predictable condition, where prediction
errors were minimized, provides compelling evidence that contextual stability is the
primary factor for segmentation. Second, while our findings suggest that prediction
errors, as operationalized in our paradigm, are not sufficient to induce segmentation
without contextual stability, different types of prediction errors may still contribute
to segmentation. For example, a recent study demonstrated that a single highly
negative arousing image embedded within a sequence of neutral stimuli was suffi-
cient to trigger segmentation (Harris et al. 2025). Thus, strong prediction errors
involving survival-related information, such as threat signals, may be sufficient to
segment episodic memories. However, since the arousing stimulus occurred in a
fixed, predictable position, segmentation in that study may have been driven by

arousal itself rather than by prediction error per se.

We would like to clarify that we are not arguing more broadly against the influence of
prediction errors on memory. Although our findings show that prediction errors are
insufficient to drive event segmentation in the absence of stable contexts, prediction
errors play a well-established role in various memory-related processes (Loock et al.
2025; Pupillo et al. 2023; Ortiz-Tudela et al. 2024). For example, prediction errors
have been shown to enhance memory encoding without generating segmentation
(Wang and Egner 2023) by increasing attention to unexpected stimuli (Greve et
al. 2017), and to support memory updating by facilitating the integration of new
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information that violates prior expectations (Sinclair et al. 2021). Additionally,
prediction errors can trigger memory reorganization, restructuring the temporal or
semantic relationships among events (Bein et al. 2020; Rouhani et al. 2020; Swallow
et al. 2022).

To conclude, we found that switching across stable contexts contributes to event
segmentation above and beyond prediction errors. The lack of event segmentation
when only prediction error but not contextual stability was present challenges the
prevailing event segmentation theory that posits segmentation is driven by prediction
errors. These findings underscore the need for a comprehensive understanding of
event segmentation mechanisms, shedding light on how our minds organize and

remember our experiences .
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3. PART 2: ONLINE EFFECTS OF REWARD ON EVENT
SEGMENTATION

3.1 Introduction

Our daily life experiences are segmented into distinct memory units that form the
foundation of episodic memory, a process known as event segmentation. This mech-
anism supports the initial encoding of ongoing experience and helps to bind new
information with previous memories (Sols et al. 2017). Segmented memory units
are considered essential for guiding attention and perception, and for constructing
a coherent episodic memory structure (Zacks and Tversky 2001). Moreover, seg-
mentation influences nontemporal aspects of episodic memory as well, including
memory for individual items and their associated source information (Clewett et al.
2019). Event segmentation is typically studied as an online process, where memory
performance is examined in relation to perceptual or external cues that shape how
experience is segmented during initial encoding (Giiler et al. 2025; Harris et al.
2025; Wang and Egner 2022; Wen and Egner 2022).

Since segmentation helps determine which information will be encoded and how
it is later retrieved, understanding the factors that modulate this process, such as
reward value, is important. Beyond its potential effects on segmentation, reward
has been shown to influence memory and related cognitive processes more broadly.
Motivational salience and reward enhance memory consolidation, increase attention
allocation, and prioritize information in memory (Miendlarzewska et al. 2016; Ray-
mond and O’Brien 2009). Studies indicated that reward can influence both what
information is prioritized in memory and how it is temporally and structurally or-
ganized. For instance, memory for neutral items was enhanced when they occurred
close in time to reward-associated items (Braun et al. 2018), suggesting that moti-
vational salience can retroactively prioritize information. These findings imply that
reward-related signals enhance item-level encoding and may influence the organiza-

tion of episodic memory.
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Even though there are studies evaluating the role of reward-related processes on
event segmentation, a clear understanding of their role is still missing. Most existing
work has focused on reward prediction errors, violations of expected outcomes, as
potential triggers for segmentation (Rouhani et al. 2018; Rouhani et al. 2020;
Rouhani et al. 2023). These studies suggest that reward related prediction errors
can function similarly to perceptual or contextual shifts in prompting new event
models. While these prediction errors have been shown to enhance recognition and
source memory for boundary and within event items, they impair temporal order
memory across events. Notably, some of these studies have manipulated reward
expectations at the category level, suggesting that learned associations can influence

how ongoing experience is segmented.

However, unlike these studies, the current work does not manipulate the presence or
absence of prediction errors, as it primarily focuses on how changes in reward associ-
ations influence segmentation. We examine how stable and contextually cued reward
associations affect event segmentation during learning, and whether the segmenta-
tion is changing compared to less-rewarded transitions. Accordingly, participants
encountered novel objects from different categories in each block, and categories did
not repeat across blocks. At the beginning of each block, participants are informed
whether they are in high-low or low-low contextual transitions. This setup allows us
to test whether motivationally salient category changes, when paired with a higher
reward context, are more likely to be segmented compared to similar transitions in

a less rewarding context.

Importantly, while the category-reward associations were block-specific and not car-
ried across the experiment, participants acquired them through experience within
each block. Thus, our design offers a way to investigate whether within-block learn-
ing of value associations, in the absence of explicit prediction error, can influence
segmentation by altering attentional engagement and event models. The goal of the
present study is to determine whether reward value associated with contextual tran-
sitions reshapes the perceived structure of ongoing experience, compared to similar

transitions in a low-reward condition.
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3.2 Methods

3.2.1 Ethical Approval

The study was conducted at Sabanci University, [stanbul, Turkey. The experiments
of the study were approved by the Sabanci University Research Ethics Council
(SUREC) and were in line with the principles of the Declaration of Helsinki (World
Medical Organization 1964).

3.2.2 Open Science Practices

The experiments reported in this article were not preregistered.

3.2.3 Participants

For Experiment 1, we collected data from 30 participants (9 male, Mage = 21.6,
SDage = 4.85). Outliers were controlled by evaluating each participant being 2.5
standard deviations above or below the grand average of temporal order accuracy
and temporal distance judgments. There were no outliers. All participants were
included for further analysis. For Experiment 2, we collected data from 54 partic-
ipants (17 male, Mage = 21.8, SDage = 1.86). 3 participants were removed due
to being 2.5 standard deviations above or below the grand average of temporal or-
der accuracy and temporal distance judgments. Analysis were conducted with 51

participants.

3.2.4 Stimuli

A collection of 805 photographs from various categories (e.g., cars, cats, flowers)
was used as memory items in Experiment 1. For Experiment 2, an additional 569
photographs were included to create new object categories. Each image was carefully
selected to be as perceptually distinct as possible. We rescaled these photographs
to have comparable pixel counts (500x500 pixels; 12.2° wide). The experiment
was programmed in MATLAB via the Psychophysics Toolbox (Brainard 1997; Pelli
1997; Kleiner et al. 2007). The viewing distance was 65 cm from the screen. The
background was gray (RGB = [127.5 127.5 127.5]).
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3.2.5 Design

The experimental procedure for the experiments is shown in Figure 3.1. Each round
consisted of three phases: encoding, choice task, and memory test. The Experiments
1 and 2 took 75 minutes.

Figure 3.1 Experimental design for Experiments 1 and 2. First, participants encoded
images from different object categories associated with different reward value. In
figure, the phase 1 represents an exemplary high-rewarded transition. Second, they
performed a choice task to indicate which item was associated with higher reward
value during encoding. Lastly, they performed temporal order and temporal distance
memory tasks. In experiment 2, each event consists of two object categories instead
of one.

| Phase 1 (Encoding) | l&fe_u | Phase 3 (Memory Test) |

Event 5 3 4 5 6 Choice Temporal | Temporal
1 Task Order Distance

Temporal Order Task

"\ Boundary item “Which @
came first?” h

- -
Temporal Distance Task

“Very far/ far/ close/ ('s
very close?”

Which item was
with high

value? { ﬁ

Across-event pair

8 pairs, self-paced

3.2.5.1 Experiment 1

There were 15 blocks, 7 for high-low and 7 for low-low reward transitions. Partic-
ipants performed a practice task before moving to the main experiment. In each
block, there were three phases; encoding, choice task, and memory test. During
encoding, participants encoded 30 images from two different object categories (e.g.,
cars - cats). Each event consists of 5 images from a specific object category. Each
encoding phase includes 6 events in total, 3 from each object category (e.g., AAAAA-
BBBBB). Object categories were predefined to eliminate the semantic relatedness
between them. The appearance of object categories were counterbalanced for each
participant. Before the experiment, reward values were randomly generated for low
- low and high - low transitions by using MATLAB randfixedsum function. Accord-
ingly, min and max values and their sum were controlled for high and low reward

values. For low reward blocks, participants can earn values between 1 to 20 TL dur-
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ing blocks. For high reward blocks, participants can earn values between 70 to 100
TL. Random reward values within these ranges were associated with each object.
Participants are informed that they will get 1 percent of their total gain as a mon-
etary reward. The total earnings were fixed at 100 TL in all cases, but participants
were not informed of this and believed they could influence their earnings through
their responses. During encoding, participants were passively learned the objects
and their associated reward value. They were also instructed to form a narrative
with the objects to help their encoding of temporal information. Object duration

was 2500 ms with 2000 ISI. Images did not repeat in the experiment.

During the second phase, participants performed a choice task in which they saw
two images on the screen from the just encoded sequence and asked which item was
associated with higher reward value. They were also informed that their correct
answers will be added to their total gain. There were 4 pairs of images in each

round and were self-paced.

In the last phase, participants performed a memory test assessing their temporal
order and temporal distance judgments for image pairs that they learned during
encoding. There were 8 image pairs: 4 for within-event and 4 for across-event pairs.
There were always 2 images between image pairs so the objective temporal dis-
tance was the same for each pair. For each image pair, participants first evaluated
temporal order by indicating which item came first, and then they evaluated per-
ceived temporal distance between them. Order information and pair type (within or
across) for each pair was counterbalanced, and the questions were self-paced. They
also indicated their level of confidence for each answer. RTs and accuracy were

recorded.

3.2.5.2 Experiment 2

In Experiment 2, all procedures were kept identical except for one modification.
Each round included images from four different categories. Each event was con-
structed using two object categories, and object selection was randomized such that
at least two images from each category were used (e.g., ABABA — CDCDC). The
object categories used in each round were unique and did not repeat throughout the
experiment. To preserve semantic relatedness between categories within an event, all
category pairings (e.g., cats and cars for one event, flowers and watches for another)
were predetermined. This modification was introduced to reduce the transition cost
associated with object category changes and to better isolate the contribution of

reward changes to event segmentation.
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3.3 Results

Analyses were conducted with JAMOVTI 2.3 (2023) and the Bayesian Methods mod-
ule (jsq). Bayesian paired samples t-tests compared the within-subject differences for
within vs. across boundary effects. Confidence judgments and RTs for each measure
were reported in the supplementary material. BF10/01 values below 1 were consid-
ered as no evidence, 1-3 as anecdotal evidence, 3-6 as moderate evidence, 6-10 as

substantial evidence, and larger than 10 as strong evidence for H1/HO.

3.3.1 Experiment 1: Do Online Changes in Reward Value Generate a

Segmentation Difference?

Temporal order accuracy was higher for within-event (M = .69, SD = .09) compared
to across-event pairs (M = .61, SD = .08), with strong evidence, BF10 = 292. For
high rewarded transitions, temporal order accuracy was higher for within-event (M
= .69, SD = .10) compared to across-event pairs (M = .59, SD = .10), with strong
evidence, BF10 = 49.8. For low rewarded transitions, temporal order accuracy was
higher for within-event (M = .70, SD = .12) compared to across-event pairs (M =
.62, SD = .11), with moderate evidence, BF10 = 4.37.

Temporal distance judgments were higher for across-event pairs (M = 2.48, SD =
.29) than within-event pairs (M = 2.20, SD = .27) , with strong evidence, BF10 =
126784. For high rewarded transitions, distance judgments were higher for across-
event pairs (M = 2.45, SD = .34) than within-event pairs (M = 2.20,SD = .28) ,
with strong evidence, BF10 = 650. For low rewarded transitions, distance judgments
were higher for across-event pairs (M = 2.50, SD = .27) than within-event pairs (M
= 2.20,SD = .29) , with strong evidence, BF10 = 67383. These results indicated
the general trend of segmentation that is higher temporal order accuracy and less

perceived temporal distance for within-event pairs compared to across-event pairs.

For our main interest, we compared the segmentation score between high and low
rewarded transition blocks. Segmentation scores were calculated by subtracting the
mean accuracy for across-event pairs from within-event pairs for the temporal order
task. For the temporal distance task, the subtraction was reversed so that higher
values consistently indicated larger segmentation. For temporal order memory, there
was indifference between high (M = .09, SD = .13) and low rewarded transitions
(M = .08, SD = .16), with moderate evidence, BF01 = 4.92 (see Figure 3.2). Sim-

ilarly, for temporal distance judgments, there was indifference between high (M =
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.25, SD = .28) and low rewarded transitions (M = .29, SD = .24), with moderate
evidence, BF01 = 3.85 (see Figure 3.3). As a result, we were not able to observe
any segmentation differences when specific information was associated with a high

reward value compared to when it was linked to a low reward value.

Figure 3.2 Segmentation score (difference value) for temporal order memory for
Experiment 1 and 2.
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Figure 3.3 Segmentation score (difference value) for temporal distance judgments
for Experiment 1 and 2.
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3.3.2 Experiment 2: Does Reducing the Strength of Category Transi-
tions Make the Effect of Reward on Segmentation More Apparent?

Temporal order accuracy was higher for within-event (M = .66, SD = .10) compared
to across-event pairs (M = .58, SD = .08), with strong evidence, BF10 = 18003. For

high rewarded transitions, temporal order accuracy was higher for within-event (M
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= .68, SD = .11) compared to across-event pairs (M = .58, SD = .10), with strong
evidence, BF10 = 16133. For low rewarded transitions, temporal order accuracy
was higher for within-event (M = .64, SD = .13) compared to across-event pairs
(M = .59, SD = .09), with moderate evidence, BF10 = 3.33. Temporal distance
judgments were higher for across-event pairs (M = 2.44, SD = .21) than within-event
pairs (M = 2.34, SD = .24) , with strong evidence, BF10 = 66. For high rewarded
transitions, distance judgments were higher for across-event pairs (M = 2.42, SD
= .19) than within-event pairs (M = 2.31, SD = .24) , with strong evidence, BF10
= 150. For low rewarded transitions, distance judgments were higher for across-
event pairs (M = 2.45, SD = .25) than within-event pairs (M = 2.38, SD = .28)
, with anecdotal evidence, BF10 = 2.10. These results indicated the general trend
of segmentation that is higher temporal order accuracy and less perceived temporal

distance for within-event pairs compared to across-event pairs.

For our main interest, we compared the segmentation score between high and low
rewarded transition blocks. For temporal order memory, high rewarded transitions
(M = .10, SD = .11) indicated higher segmentation than low rewarded transitions
(M = .04, SD = .13), with anecdotal evidence, BF10 = 1.83 (see Figure 2). For
temporal distance judgments, there was indifference between high (M = .11, SD =
.19) and low rewarded transitions (M = .07, SD = .21), with moderate evidence,
BF01 = 3.39 (see Figure 3). As a result, while temporal order memory showed
a tendency toward increased segmentation following high-reward transitions, the
evidence remained anecdotal. In contrast, temporal distance judgments revealed no
such difference between types of reward transitions, with moderate evidence favoring
the null.

3.4 Discussion

The present study investigated whether contextual reward associations influence how
individuals segment ongoing experience. Across two experiments, we consistently
replicated the classic segmentation effect: participants showed higher temporal order
accuracy and smaller perceived temporal distances for within-event item pairs com-
pared to across-event pairs. This pattern supports the idea that event boundaries
shape the structure of episodic memory by influencing how temporal information is
encoded and recalled (Clewett and Davachi 2017; Sols et al. 2017; Swallow et al.
2009; Wang and Egner 2022).

Our primary goal was to evaluate whether segmentation is further modulated by the
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reward value of the category transition. Specifically, we questioned whether transi-
tions associated with high-reward contexts lead to greater segmentation than those
associated with low-reward contexts. Contrary to our expectations, high-rewarded
contextual transitions did not change the strength of segmentation compared to low-
rewarded transitions. In Experiment 1, segmentation scores did not differ between
high and low-rewarded transitions. In Experiment 2, we observed a slight increase
in segmentation for high-rewarded transitions in the temporal order task, but this
effect was only supported by anecdotal evidence, and it did not replicate in tem-
poral distance judgments. Taken together, these findings suggest that the presence
of motivationally salient category changes alone may not be sufficient to reshape
event structure, even when the perceptual distinctiveness of category transitions is

minimized to allow the effects of reward to emerge more clearly.

These results raise the possibility that event segmentation may not operate on a
flexible, but instead reflects a more discrete, all-or-none process. Accordingly, when
a boundary is perceived regardless of what kind of change it represents (e.g., per-
ceptual, task-related, reward, motivation), additional modulatory signals such as
reward value may have limited influence on the strength of segmentation. In other
words, the presence of any salient shift (e.g., a change in object category) may be
sufficient to trigger the formation of a new event model, and further enhancements,

such as associated motivational value, may not amplify the segmentation effect.

While previous studies have demonstrated that emotionally or motivationally salient
events can reorganize memory (Palombo and Cocquyt 2020; Talmi et al. 2019), it
remains unclear whether such effects are driven by salience alone or by underlying
violations of expectation. For instance, studies have shown that unexpected high
arousal events can act as segmentation cues, triggering event boundaries and reor-
ganizing temporal memory structure (Rouhani et al. 2018, 2020, 2023). However,
unlike these prior studies where segmentation effects were primarily driven by viola-
tions of learned expectations, our findings suggest that motivational salience alone,
when not accompanied by prediction error, may be insufficient to change the degree

of segmentation.

An alternative explanation is that altering the degree of segmentation may require
more relevant emotional or motivational signals. In our study, participants knew
that they would receive the associated rewards, and their performance had only a
limited influence on the final amount. This minimal contingency may have reduced
the motivational significance of high-rewarded transitions, weakening their poten-
tial to increase segmentation effects. While the reward still carried positive valence,
its motivational relevance may have been diminished. Previous studies have shown

that emotional events can trigger segmentation and shape memory organization par-
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ticularly when they are negatively salient, behaviorally consequential or personally
motivational (Harris et al. 2025; McClay et al. 2023; Murty and Adcock 2017).
Thus, it is possible that a stronger emotional or motivational context change might
be necessary to generate segmentation regardless of the prediction error. Addition-
ally, the extent of this effect may be shaped by both the emotional valence and the

degree of arousal associated with the event.

Taken together, even though we observe segmentation in both conditions, our find-
ings suggest that changes in reward value may be insufficient to alter the degree of
segmentation. These findings help clarify the limits of motivational salience as a
segmentation cue and encourage future research to examine how surprise, affective
meaning, and learning interact to shape the dynamic structure of memory. Future
studies could further explore whether segmentation can be modulated by emotional
or motivational signals that vary in intensity or character, such as by manipulating
the degree of emotional salience or comparing different types of emotional content.
Such work may clarify how affective signals influence event boundaries and the tem-

poral organization of episodic memory.
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4. PART 3: RETROSPECTIVE EFFECTS OF EMOTION
REGULATION ON EVENT SEGMENTATION

4.1 Introduction

Event segmentation refers to the cognitive process by which continuous streams of
information are parsed into discrete, meaningful units or events in memory. This
process helps structure and organize episodic memories, allowing us to make sense
of ongoing experience and predict what might happen next (Zacks et al. 2007;
Radvansky and Zacks 2017; Clewett et al. 2019). Previous studies investigated
event segmentation as events take place, i.e., online, during the real-time perception
and encoding of continuous experience. However, memories are not static records
of experience; instead, they are dynamic and malleable representations that can be
updated or reorganized after their initial formation, i.e., offline, outside the moment
of perception (de Oliveira Alvares and Do-Monte 2021; Dunsmoor et al. 2022; Favila
et al. 2020; Lee et al. 2017; Moscovitch et al. 2016; Scully et al. 2017; Tambini and
Davachi 2019). Thus, although event segmentation has traditionally been studied as
an online phenomenon, it is also crucial to understand how memory structure may

shift retrospectively (offline) in response to later experience or reinterpretation.

Retrospective changes can occur in memory via the creation and deliberation of as-
sociations with other memories (Chang et al. 2021; Dudai et al. 2015; Landmann et
al. 2014; Paller and Voss 2004), or memory itself acquires new meanings through un-
dergoing different cognitive evaluations, such as new emotional attributions (Samide
and Ritchey 2021). For example, when a category of studied items is later associ-
ated with reward or punishment, this association can retrospectively generalize to
other items in the same category that were studied before the reward/punishment
association was learned (Clewett et al. 2021; Dunsmoor et al. 2015; Oyarzun et al.
2016; Patil et al. 2017).

This dynamic structure of memory allows us to build predictive models of the world
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that can be updated with newly acquired information, enabling more accurate pre-
dictions of the future (Hohwy et al. 2021). For instance, imagine recalling a walk
you took with your partner that initially seemed uneventful. Later, after learning
that the conversation during that walk marked the beginning of a deeper conflict,
you may retrospectively redefine the memory, segmenting it into two distinct parts:
before and after the emotional shift. In this case, event segmentation occurs af-
ter the fact, shaped by new significance attributed to the experience. In contrast,
some experiences may already be segmented at the time of encoding — for example,
during an argument with your partner, you might immediately perceive a shift in
tone or emotion and remember it as two segments: before and after the disagree-
ment. Yet, even when segmentation is initially present, later cognitive reappraisal
or reflection may reshape the internal boundaries or alter the perceived meaning
of each segment. In both scenarios, the ability to revise and restructure memo-
ries based on motivationally relevant information enhances our capacity to adapt,

forecast outcomes, and make more informed decisions in everyday life.

Although it has been demonstrated that newly learned information can influence
memory retrospectively, it is unclear the effects of experiences on the segmentation
of previously encoded memories. Accordingly, the main purpose of this section is to
study the retrospective influences of emotional processes on event segmentation, or

retro-segmentation, on previously encoded memories.

Emotional experiences are an essential factor in influencing memory, affecting both
the strength and structure of what is remembered. Emotional arousal can prioritize
the retention of goal-relevant information (Mather and Sutherland 2011), disrupt
the sequential recall of events (Bisby and Burgess 2014), and bias memory for spe-
cific events (Talmi 2013). Such processing influences the organization of memories
by amplifying the perceived salience of certain events or moments, thereby influ-
encing how episodic memories are structured and segmented (McClay et al. 2023).
Importantly, these influences are not limited to the moment of encoding; emotional
processes can also reshape memory traces during consolidation and retrieval, by
altering their accessibility, vividness, or meaning (Dunsmoor et al. 2015; Tambini
and Davachi 2019). While prior studies have primarily examined how emotion af-
fects single memory traces or specific associations at or near the time of encoding,
less is known about whether and how the broader structure of memory, such as
the segmentation of continuous experience, can be reshaped retrospectively based
on later-acquired salient information or emotional processing. The current study
addresses this gap by testing whether emotional processing can modulate event seg-

mentation even after initial encoding.

Among the processes involved in emotional processing that are particularly rele-
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vant to memory modification, cognitive reappraisal stands out, as it involves active
cognitive control and enables the re-evaluation of specific memories, facilitating the
formation of new associations related to the original event (Gross 1998). Reap-
praisal involves cognitively reframing the emotional meaning of an event to change
its impact (Gross 2002). It has been shown to influence emotional responses and
how memories are encoded, stored, and later retrieved (Buhle et al. 2014; Samide
and Ritchey 2020). Therefore, reactivating previous memories contributes to mem-
ory modification. By intentionally changing how one interprets a previously encoded
emotional experience, reappraisal may reshape the internal boundaries of that mem-
ory, reorganizing it into different segments or altering its narrative structure. For
example, an argument with a partner might later be seen not as a single moment,
but as a series of phases—tension building, the conflict, and what followed—after
rethinking about event. Such processing makes cognitive reappraisal an ideal tool
for examining whether and how retro-segmentation can be triggered by top-down,
evaluative processes. In this study, we therefore employed cognitive reappraisal
alongside more passive and neutral control conditions to investigate its potential to

modify the structure of previously encoded emotional events.

In addition to examining the general effects of emotional processing on retro-
segmentation, the current study also considers how this process may vary across
individuals. Prior research has shown that factors such as anxiety, depression, and
post-traumatic stress symptoms can influence memory encoding, emotional process-
ing, and cognitive control (Bisby et al. 2020; Rubin et al. 2008). By considering
these individual differences, we aimed to explore whether variations in emotional
or cognitive profiles predict the degree to which previously encoded events are seg-

mented in memory.

To investigate the dynamics of retrospective segmentation in memory, we presented
participants with negative stimuli among neutral everyday objects. After that, we
asked them to engage with those previously encoded negative images in one of three
ways: through cognitive reappraisal, by simply reflecting on the image, or by com-
pleting a filler task designed to divert attention away from emotional processing.
Participants’ temporal memory was assessed immediately after to examine the ini-
tial effects of retrospective evaluation on memory structure. We expected to see
segmentation at temporal tasks regardless of the conditions due to high emotional
arousal image at encoding. We expected to observe segmentation effects in tempo-
ral memory tasks across all conditions, given the presence of emotionally arousing
stimuli during encoding. However, we hypothesized that segmentation would be
strongest in the cognitive reappraisal condition, followed by the reflection condi-

tion, and weakest in the filler task condition, indicating the retrospective impact of
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varying levels of cognitive engagement with the previously encoded material. Addi-
tionally, we expected that emotion-driven segmentation to be positively correlated
with higher PTSD, stait and trait anxiety, intrusive thoughts, negative affect, dys-

function in emotion regulation and depression scores.

4.2 Methods

4.2.1 Open Science Practices

The experiments and hypothesis reported in this article were not preregistered.

4.2.2 Ethical Approval

The study was conducted at University of California, Los Angeles (UCLA), United
States. The experiment was approved by UCLA Institutional Review Boards (IRBs)
and was in line with the principles of the Declaration of Helsinki (World Medical
Organization 1964). Participants had provided written informed consent before the

study, and they got course credit for their attendance.

4.2.3 Participants

A power analysis was conducted in G*Power 3.1 to estimate the appropriate sam-
ple size. This analysis was based on data from a highly matched event boundary
paradigm, which used pairwise temporal order memory and temporal distance mem-
ory as indices of event segmentation (Harris et al. 2025). The average Cohen’s d
value (.56) is obtained from the effect size of temporal order and temporal distance
judgments for boundary and non-boundary pairs. An alpha level of 0.05 and a power
level of 0.80 showed that 40 participants would be necessary to obtain the weakest

temporal memory effect.

We collected data from 48 participants (35 F, Mage = 19.9, SDage = 1.08). All
participants were between the ages of 18-35, native or fluent English speakers, had
normal or corrected-to-normal vision, and had no history of neurological trauma.
2 participants were removed due to being 2.5 standard deviations above or below

the grand average of temporal order accuracy and temporal distance judgments
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regardless of the conditions. Analysis were conducted with 46 participants.

4.2.4 Materials

540 neutral daily life objects were selected from the existing datasets (Gabrieli et
al. 1997; Kensinger et al. 2006). To induce emotional event boundaries, 15 nega-
tive valenced (M = 2.12, SD = 1.39) and highly arousing (M = 6.41, SD = 2.12)
images were selected from the International Affective Picture System (IAPS) (Lang
et al. 1997). We normalized the luminance of all object images and IAPS images
using MATLAB’s SHINE toolbox to limit any non-cognitive influences on pupil di-
lation responses. The experiment was designed using Psychopy Experiment Builder,
version 2024.2.4 (Peirce et al. 2019).

4.2.4.1 Clinical questionnaires

At the end of the first session of the experiment, participants were asked to com-
plete six questionnaires to assess their current mood states, emotion regulation abil-
ities, depression level, trauma and anxiety symptomatology. Qualtrics was used to
present these questionnaires including the 10-item emotion regulation questionnaire
(ERQ: Gross and John 2003), the 20-item the Positive and Negative Affect Schedule
(PANAS: Watson et al. 1988), the 16-item Dysregulation in Emotion Regulation
Scale (DERS-16: Bjureberg et al. 2016), the 40-item State-Trait Anxiety Inventory
Forms Y-1 and Y-2 (STAIL: Spielberger 1983), the 5-item Persistent and Intrusive
Negative Thoughts Scale (PINTS: Magson et al. 2019) the 20-item Posttraumatic
Stress Disorder Checklist for DSM-5 (PCL-5: Blevins et al. 2015), and the 21-item
Beck Depression Inventory (BDI: Beck et al. 1988). We also assessed the subjective
evaluation of emotional regulation during the task on a Likert scale from 1 to 7
by asking, “How well did you use cognitive reappraisal to reduce your emotional
response to the negative images?”, “How much effort did you put into using reap-
praisal during the task?”, and “How successful was that strategy in helping you

regulate your emotions?”.

4.2.4.2 Emotion regulation training

Before starting the main experiment, participants were trained on how to use cogni-

tive reappraisal as a cognitive strategy in response to an emotionally negative image.
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During the practice, participants were informed that they would see a negative im-
age on the screen paired with either the letter "T" or "R". If the letter "R" appeared,
they were instructed to apply a cognitive reappraisal strategy to the image; if the
letter "T" appeared, they were asked to simply view the image and fully experience
any feelings that naturally arose. They were also informed that this strategy would
be used again in the second phase of the main experiment. To introduce reappraisal
techniques, the experimenter presented an example negative image and described
three reappraisal strategies adapted from McRae et al. (2008): (1) It is not real
(e.g., the events depicted are staged or acted); (2) Things will improve (e.g., the
situation will resolve over time); and (3) It is not as bad as it appears (e.g., the
situation could be worse). Participants then practiced these instructions with four

negative images, alternating between “R” and “T” trials, paced by the experimenter.

To ensure that participants correctly applied cognitive reappraisal during the R tri-
als, they were asked to verbally share the reappraisal strategies they used for four
negative images with the experimenter. The experimenter monitored these verbal
reports to verify the correct use of reappraisal and address any misunderstandings
or incorrect approaches. Following this, participants were presented with four ad-
ditional negative images and asked to apply similar strategies internally, this time
without speaking aloud. During this phase, the cue letter was displayed for 0.5 sec-
onds, and images remained on the screen for 4 seconds, matching the timing used in
the main experiment. Participants were informed that they would be required to use
the cognitive reappraisal strategy during the second phase of the main experiment,
and that they would have 8 seconds to implement it. The negative images used

during the practice phase were not included in the main experiment.

4.2.5 Design

The experimental procedure is shown in Figure 4.1. The experiment took 90 min-
utes. There were 15 blocks, divided into three conditions (five for each): cognitive
reappraisal, re-experience/think, and dot counting, used as a control. The order of
the conditions was randomized for each participant by ensuring that they did not
repeat twice in a row. There were three phases included: encoding, cognitive tasks,
and a memory test. In the first phase, participants encoded 24 neutral images (a
total of 360) and one emotional image (a total of 15). The image order was kept
constant: 13 neutral, one emotional, 11 neutral. The image display duration was 4
seconds, and participants evaluated the images based on how much they liked the

item, rating from 1 to 4 (1: not at all, 4: very much).
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At the beginning and end of the second phase, participants completed a 45-second
arrow task. They were instructed to indicate the direction of the arrows on the
screen by pressing the keys (1 for left, 2 for right). This filler task was included to
prevent potential emotional carryover effects from the encoding phase to the second
phase, and from the second phase to the subsequent memory test. During the second
phase, participants performed either one of the conditions after the arrow task. Task
durations in this phase were equalized across conditions to eliminate confounding
effects that could result from differences in time spent on each condition (see Figure
4.1.B).

For the reappraisal condition, the word cue “reappraisal” was shown on the screen
for 8 seconds, and participants were asked to make an cognitive reappraisal about the
just-encoded negative image. For the re-experience condition, the word “think” was
displayed on the screen for 8 seconds, and participants were asked to simply think
about the image. Following reappraisal and re-experience conditions, three questions
were displayed on the screen for 4 seconds. The questions were implemented to
evaluate the arousal, valence, and vividness regarding the negative image as follows:
“How intense were your feelings when recalling the image?”, “How vivid or clear
is the mental image that comes to mind when you think about this picture?”, and

“How unpleasant did recalling that image make you feel?”.

For the dot-counting condition, dots in different numbers from 1 to 7 were displayed
on the screen for a total of 20 seconds. Participants were asked to report the number
of dots on the screen using a scale. This condition was included as a control to assess
the direct impact of encountering an emotional boundary item during encoding on
memory performance (e.g., Harris et al. 2025). The dot task allows us to assess
temporal memory for the emotional boundary item without interacting with the

emotional processing and cognitive reappraisal.

For the memory test, participants’ memory was assessed with temporal order and
temporal distance judgment tasks. For temporal order memory, two neutral objects
were displayed on the screen from the encoding list, and participants were asked
to identify which object came first in chronological order. There were four choices:
1: ‘definitely left’; 2: ‘maybe left’; 3: ‘maybe right’; 4: ‘definitely right’. Temporal
distance memory was assessed for the same object pair by asking how far apart in
time the two items were in the list. There were four options to respond by using
the same keys: ‘very close’, ‘close’; ‘far’, and ‘very far’, respectively. The distance
between the image pairs was kept constant by three intervening objects. A total
of nine object pairs were tested per list: three pre-boundary pairs, three emotional
boundary-spanning pairs, and three post-boundary pairs. Therefore, there were 45

temporal order and distance judgments for each condition across 15 lists. The mem-
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ory tests were self-paced, and the image pairs stayed on the screen for a maximum

of & seconds.

4.3 Results

Analyses were conducted with JAMOVI 2.3 (2023). Repeated measures analysis
of variance (ANOVA) was conducted to compare the within-subject differences for

within vs. across boundary effects across conditions.

4.3.1 Temporal Order Memory

Temporal order memory accuracy was evaluated with 2 (Pair Type: emotional
boundary-spanning, same-context pair) x 2 (Cognitive task: reappraise, think, and
control) factorial design. Assumptions of repeated-measures ANOVA were met (ps
> .05). Visual inspection of the Q-Q plot suggested that the residuals were approx-
imately normally distributed. Additionally, Levene’s tests indicated no significant
violations of the homogeneity of variances assumption (ps > .05). There was a
significant main effect of pair type on temporal order memory, F(1, 45) = 4.98, p
= .03, n2p = 0.100 (Figure 3). Accordingly, same-context pairs indicated higher
accuracy (M = .64, SD = .08) compared to boundary-spanning pairs (M = .61,
SD = .08), t(45) = 2.20, p = .01. However, there was no significant main effect of
condition, F(2, 90) = 0.32, p = .72, n2p = .007, nor a significant condition X pair
type interaction, F(2, 90) = 0.56, p = .57, n2p = .012.

Follow-up comparisons with paired t-tests between pair types indicated that order
memory was significantly higher for same-context pairs (M = .63, SD = .10) com-
pared to boundary-spanning pairs (M = .59, SD = .14) in the think condition, t(45)
= 1.86, p = .03. However, order memory did not significantly differ by pair type in
reappraise, t(45) = 1.32, p = .09, and control condition, t(45) = .30, p = .38.

4.3.2 Temporal Distance Judgments
The same analysis design was used to assess the temporal distance judgments be-

tween pair types and conditions. Assumptions of repeated-measures ANOVA were

met (ps > .05). Visual inspection of the Q-Q plot suggested that the residuals were
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Figure 4.1 The design of the experiment including three phases; encoding, cognitive
task and memory test (Section A). Participants learned 24 neutral and 1 negative
arousal images. During second phase, they either do cognitive reappraisal about
the negative image, think about the negative image, or dot counting task as a
control condition. Reappraisal and think conditions were followed by three scales
assessing the arousal, valence and vividness regarding the negative image. They
performed another arrow task before moving to the third phase. In memory test,
they performed temporal order and temporal distance tasks for image pairs from
encoding. The section B indicates the detailed flow of each individual steps in the
experiment.
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approximately normally distributed. There was a significant main effect of pair type
on temporal order memory, F(1, 45) = 12.30, p = .001, n2p = 0.21 (Figure 3). Ac-
cordingly, perceived temporal distance was higher for boundary-spanning pairs (M
= 2.56, SD = .24) compared to same-context pairs (M = 2.47, SD = .20), t(45) =
-3.41, p < .001. However, there was no significant main effect of condition, F(2, 90)
= 1.90, p = .15, n2p = .041, nor a significant condition X pair type interaction, F(2,
90) = 2.95, p = .057, n2p = .062.

Follow-up comparisons with paired t-tests between pair types indicated that per-
ceived temporal distance was significantly higher for boundary-spanning pairs (M =
2.60, SD = .28) compared to same-context pairs (M = 2.46, SD = .21) in the think
condition, t(45) = -3.85, p < .001. Similarly, perceived temporal distance was higher
for boundary-spanning pairs (M = 2.58, SD = .29) compared to same-context pairs
(M = 2.47, SD = .25) in the reappraise condition, t(45) = -2.41, p = .01. However,
there was no significant difference between pair types in the control condition, t(45)
=45, p = .32.

Figure 4.2 Temporal order memory accuracy and temporal distance judgments across
conditions and for each pair type
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4.3.3 The Relationship Between Individual Differences and Retro-

segmentation

We examined the associations between temporal order memory, temporal distance
judgments, and individual difference measures using Spearman’s rho correlation. To
this end, we first computed a segmentation score for each temporal measure. For
temporal distance judgments, segmentation scores were calculated by subtracting
same-context pair ratings from spanning-boundary pair ratings, such that higher
scores indicated greater segmentation. For temporal order memory, segmenta-
tion scores were calculated by subtracting spanning-boundary accuracy from same-
context accuracy, again reflecting greater segmentation with higher values. These

calculations were performed separately for each condition.

Here, we reported the correlations between temporal measures and individual differ-
ences scores. There were positive correlations between the temporal order segmenta-
tion score in think condition with PANAS negativity score (p = .35, p = .016), and
PINTS (p = .31, p = .031). Accordingly, people who felt more negative and have
persistent intrusive negative thoughts, they indicated higher segmentation in think
condition. There was no other significant correlation between temporal measures

and segmentation scores (see Appendix Figure C.1).

4.4 Discussion

The present study investigated whether emotional processing, particularly cognitive
reappraisal, can change the structure of previously encoded experiences, leading to
retro-segmentation. Across conditions, we replicated classic segmentation effects:
participants showed better temporal order memory and perceived greater temporal
distance for same-context compared to boundary-spanning pairs. Moreover, we
particularly indicated the segmentation of previously encoded experiences on think
and reappraise conditions than control condition. These findings extend previous
literature by showing that emotional processing of salient stimuli can influence not
only the perception of events as they unfold but also the structure of memories that
have already been encoded (Clewett et al. 2019; McClay et al. 2023; Harris et al.
2025).

Contrary to our hypothesis, cognitive reappraisal did not significantly enhance seg-
mentation relative to the think or control conditions. While we expected that active

reinterpretation of the emotional image would produce stronger segmentation by

45



altering the internal representation of the event, we could not observe main condi-
tion effect on segmentation patterns. However, pairwise comparisons indicated that
the segmentation patterns were only absent in the control condition. This indicates
that retrospective emotional processing, whether through reappraisal or passive re-

flection, has a significant role in changing the structure of encoded memories.

Our findings are both consistent with and extend those of a previous study that
examined similar emotional processing in the context of event segmentation (Harris
et al. 2025). They also tested the effects of emotional processing on participants’
ongoing experiences (i.e., online) using the same manipulation and similarly found
condition-independent segmentation effects. By replicating their findings and incor-
porating a control condition, our study provides an evidence that it is not merely
exposure to a negative stimulus, but emotional engagement with it, that drives

changes in event segmentation.

In line with prior studies suggesting individual variability in emotional memory pro-
cessing (Bisby et al. 2020; Rubin et al. 2008), we also explored whether cognitive or
affective traits predicted susceptibility to retro-segmentation. Correlational analyses
revealed that participants with higher negative affect and more persistent intrusive
thoughts indicated higher segmentation in the think condition. This finding im-
plies that individuals who are more emotionally reactive, prone to rumination may
be more likely to impose boundaries on prior experiences when reflecting on them.
This indicates a consistency with that negative emotional states heighten memory
selectivity and disrupt continuity (Bisby and Burgess 2014), potentially leading to

more segmentation.

The fact that this correlation emerged only in the think condition can also be in-
terpreted as consistent with the influences of emotional processes on segmentation.
Individuals who are more prone to negative affect and rumination may exaggerate
the emotional reflecting in a given situation, which aligns with prior findings showing
that higher PTSD is associated with increased segmentation and less segmentation
agreement (Pitts et al. 2022; Sherrill et al. 2019). Importantly, this effect appears
to extend to retrospectively processed experiences as well, suggesting that emotional

tendencies can shape the structure of memory even after encoding has occurred.

To state the limitations of the current study, one issue can be mentioned. Even
though participants were instructed to either do cognitive reappraisal or thinking,
we cannot be sure about whether they are engaging them adequately. Also, they
may do cognitive reappraisal in the think condition as well just because they were
practicing both, which can be vice versa as well. To eliminate such limitation,

physiological markers can be evaluated. For instance, participants’ pupil dilation
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can be evaluated during second phase to see whether there is a difference in pupil
dilation between conditions. In this case, increased pupil dilation will be associated
with higher cognitive control that is expected to be seen during cognitive reappraisal

compared to simple reflection and simple filler task.

Future research could evaluate four issues that enrich the findings of the current
study. First, alternative forms of top-down modulation (e.g., narrative construc-
tion, or self-relevance manipulation) can be evaluated to understand the possible
contributions of different processes to induce retro-segmentation. Second, retro-
segmentation effects can be evaluated with the consolidation process, meaning that
participants’ memory performances can be evaluated 24 hours apart to consider
whether the segmentation patterns will change with consolidation. Third, neu-
roimaging or pupillometry measures could help clarify whether reappraisal engages
different cognitive or affective mechanisms than simple reflection. Fourth, individual
difference factors such as emotion regulation style may moderate the extent to which
emotional processing alters memory boundaries, which is a promising direction to

understand more personalized models of memory structure.

Taken together, our findings provide a support for the idea that emotional process-
ing, particularly reflection and reappraisal, can influence how previously encoded
experiences are segmented in memory. Although cognitive reappraisal did not pro-
duce a significantly stronger effect than thinking, individual differences in negative
affect and intrusive thoughts correlated with the degree of segmentation, highlight-
ing the complex interplay between emotional traits and memory structure. This
work contributes to emerging views that memory is not only shaped at the time of

encoding, but continues to be reorganized and re-framed in light of new experiences.
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5. GENERAL DISCUSSION

The present research offers a broadening understanding of event segmentation by
evaluating its underlying factors, how different factors modulate the segmentation
of ongoing experience, and whether the structure of encoded memories can be mod-
ulated by later processing. Also, we evaluated the emotional processing as a mod-
ulator for segmentation of experiences. Accordingly, we considered how perceived
reward can change the structure of experiences, and whether down-regulation of
emotions for encoded experiences can influence the structure of those memories. Ad-
ditionally, we evaluated how individual differences with emotional processing mod-
ulate the segmentation patterns. These studies contribute both to understand the

processing of segmentation and dynamic nature of episodic memory.

Part 1 introduces a strong alternative view to the long lasting understanding of
event segmentation which was considered the prediction errors were the main leading
mechanisms to generate discrete events. Across four experiments, the results con-
sistently showed that segmentation was stronger when contextual stability, such as
consistent task rules or object categories, were maintained. Critically, when predic-
tion errors were manipulated while having contextual continuity (e.g., unpredictable
transitions), segmentation did not reliably increase. These results challenge core as-
sumptions of event segmentation theory and instead highlight contextual stability

as the dominant factor in segmenting experience.

Part 2 evaluated whether online changes in reward associations could modulate event
segmentation. Although participants reliably showed better temporal order memory
and shorter perceived temporal distances for within-event compared to across-event
pairs, no consistent segmentation differences observed between high-rewarded and
low-rewarded conditions. Even when the perceptual salience of transitions was re-
duced to enhance the influence of motivational cues, reward value alone did not
significantly shape event boundaries. This suggests that reward salience may not
be a strong modulator of segmentation strength. Alternatively, segmentation may

reflect a relatively inflexible structure, such that its degree cannot be easily altered
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by motivational factors.

Part 3 tested whether emotional processing, particularly cognitive reappraisal, could
retrospectively structure the segmentation of already encoded experiences. Across
all conditions, including reappraisal, thinking, and a control task, classic segmenta-
tion effects were observed. However, no significant differences emerged across con-
ditions. Interestingly, pairwise comparisons indicated that segmentation appeared
strongest in the reappraisal and thinking conditions compared to control, and indi-
vidual differences such as negative affect and intrusive thoughts predicted stronger
segmentation in the think condition. These findings suggest that emotional process-
ing can change the structure of past events, and that individual affective profiles

may play a critical role in this process.

Across studies, we also confirmed our findings regarding the underlying factors of
event segmentation. In Part 1, we found that contextual stability is a dominant
factor in generating segmented events, rather than mere prediction errors (i.e., un-
expected transitions within a given context). Accordingly, encountering a single
deviant stimulus was not sufficient to elicit segmentation. In line with this, in Part
3, we did not observe differences in temporal memory between same-context and
boundary-spanning pairs in the control condition, whereas such differences were
present in the reappraisal and think conditions. This suggests that even if the stim-
ulus is emotionally salient, encountering it as a single deviant category may not be
sufficient to segment an experience into meaningful units. Instead, segmentation ap-
pears to emerge when individuals engage in emotional processing of that experience,
which may generate a sense of contextual structure. Actively trying to understand
a past experience, or attempting to down-regulate the negative emotions associ-
ated with it, may require evaluating that experience within a broader interpretive

framework, essentially reconstructing a context around the memory.

Another point to consider across studies in understanding the nature of event seg-
mentation is that the dividing memories into discrete units may not operate through
a highly sensitive or fine-tuned mechanism. In Part 2, our findings suggested that
even when certain moments within an experience become relatively more salient or
prioritized, this shift does not meaningfully change the segmentation process. Simi-
larly, in Part 3, we did not observe a significant difference in segmentation between
the reappraisal and think conditions. Although reappraisal involves greater cognitive
effort, the act of emotional processing itself, rather than its specific form or intensity,
appeared to be the critical factor influencing segmentation. In other words, while
emotional engagement contributed to structural changes in memory, variations in
the depth or strategy of emotional processing did not result in significantly different

segmentation patterns. These findings suggest that, although memory segmentation
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may require a stable contextual framework, it does not appear to be finely tuned to
subtle differences in emotional processing. From an evolutionary perspective, this
could reflect an adaptive feature of memory: rather than creating distinct memory
units for varying degrees of emotional engagement, the system may favor efficiency
by segmenting experiences only when major contextual shifts occur, thereby con-

serving cognitive resources.

That said, this interpretation should be approached with caution. In the present
studies, retrospective evaluation of experiences occurred under relatively mild ma-
nipulations, such as cognitive reappraisal and modest differences in reward value. It
remains possible that under different task demands, reward contingencies, or emo-
tional processing frameworks, segmentation could vary more substantially across
conditions. For instance, emotional conditioning (Dunsmoor et al. 2015), affec-
tive storytelling or narrative reframing (Habermas and Bluck 2000), or emotional
imagery involving autobiographical recall (Holland and Kensinger 2010) may more
strongly influence the degree of segmentation. Future research should take these
possibilities into account, as doing so may shed light on how we reshape our ex-
periences in everyday life and clarify which specific factors make the structure of

episodic memory more or less susceptible to change.

Findings of the present research offers important implications to existing theories of
memory organization by demonstrating that segmentation is shaped by a dynamic
interplay of contextual, motivational, and emotional factors. First, the results high-
light contextual stability, rather than prediction error, as the primary driver of event
boundaries, suggesting that continuity and internal coherence may be more effective
cues for structuring memory than mere surprise or mismatch. Second, while re-
ward value is known to enhance memory for individual items, it does not appear to
modulate the degree of event segmentation, pointing to a possibility of an inflexible
structure compared to single representations. Third, the findings show that segmen-
tation can be retrospectively modified through emotional processing. However, the
absence of a clear difference between cognitive reappraisal and thinking conditions
suggests that it is the act of emotional engagement itself, rather than the specific
strategy used, that plays a key role in restructuring memory. This effect may be
particularly pronounced in individuals with higher emotional reactivity. Finally, the
finding that individuals with higher negative affect or more intrusive thoughts tend
to show stronger segmentation highlights the influence of emotional traits on mem-
ory organization. This suggests that how we segment our experiences in memory

may, in part, reflect stable aspects of our emotional makeup.
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APPENDIX A

A.1 Part 1: Underlying Mechanisms of Event Segmentation

Response times (RT) and confidence judgments were provided in the supplementary

materials due to space constraints.

A.1.1 Experiment 1

Confidence judgments for temporal order judgments were lower for across-event pairs
(M = .65, SD = .18) than within-event pairs (M = .69, SD = .16), BF10 = 46.18.
RT in order judgments were higher for across-event pairs (M = 3.49, SD = 1.35)
compared to within-event pairs (M = 3.38, SD = 1.23), with anecdotal evidence,
BF10 = 1.80 (Supplementary Figure 1A & 2A). There was anecdotal evidence for
equal temporal distance judgment RT for within-event (M = 1.48, SD = .38) and
across-event pairs (M = 1.45, SD = .34), BF01 = 1.54 (Supplementary Figure
3A). Moreover, there was moderate evidence for indifference in temporal distance
confidence judgments between within-event pairs (M = .70, SD = .26) and across-
event pairs between item pairs (M = .67, SD = .26), BF01 = 3.11 (Supplementary
Figure 4A).

A.1.2 Experiment 2

Confidence judgments for order judgments were higher for within-event (M = .69,
SD = .15) compared to across-event pairs (M = .66, SD = .14), with anecdotal
evidence, BF10 = 1.75 (Supplementary Figure 2B). RTs during order judgments
were higher for across-event pairs (M = 3.98, SD = 1.46) compared to within-event
pairs (M = 3.70, SD = 1.40), BF10 = 60.55 (Supplementary Figure 1B). Confidence
judgments for temporal distance were higher for within-event pairs (M = .72, SD =
.18) than across-event pairs (M = .69, SD = .21), with anecdotal evidence, BF10=
1.19 (Supplementary Figure 4B). There was substantial evidence for the indifference

of RTs for temporal distance judgments for within (M = 1.65, SD = .50) and across-
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event pairs (M = 1.66, SD = .48), BF01 = 3.14 (Supplementary Figure 3B).

A.1.3 Comparison between Experiments 1 & 2

For the comparison between Experiment 1 and 2, the event segmentation score
(within- minus across-event scores) for temporal order RTs was higher for Exper-
iment 2 (M = .27, SD = 45) than for Experiment 1 (M = .11, SD = .32), with
anecdotal evidence, BF10 = 1.38. There was indifference between experiments for
confidence judgments for temporal order (BFO1 = 2.35), temporal distance RTs
(BF01 = 1.92), and confidence judgments for temporal distance judgments (BF01

= 2.40), with anecdotal evidence.

A.1.4 Experiment 3

The measures were evaluated for the prediction error blocks. There was no evidence
for the difference between within and across-pairs for RT in temporal order memory
(BF10 = 0.15), confidence judgments in temporal order memory (BF10 = 0.22),
RTs for temporal distance judgments (BF10 = 0.15), and confidence judgments for
temporal distance judgments (BF10 = 0.38). For the contextual stability blocks, RTs
in temporal order memory were higher for across-event pairs (M = 4.61, SD = 4.16)
than within-event pairs (M = 3.85, SD = 2.42), BF10 = 3.95. Confidence judgments
for within-events (M = .73, SD = .15) were higher than across-event pairs (M =
.64, SD = .18) in temporal order with strong evidence, BF10 = 567.31. Confidence
judgments for temporal distance judgments were higher for within-events (M = .73,
SD = .23) than across-events (M = .67, SD = .25), with strong evidence, BF10 =
23.58. There was no evidence for the difference between across and within-event

pairs’ RTs for temporal distance judgments (BF10 = .41).

We compared the difference scores for each measure between conditions. RTs for
temporal order indicated higher segmentation in contextual stability (M = .76, SD
= 2.07) than prediction error blocks (M = .02, SD = 1.60), with anecdotal evidence,
BF10 = 2.26. Confidence judgments for temporal order generated higher segmenta-
tion for contextual stability (M = .08, SD = .13) than prediction error (M = .01, SD
= .10), with substantial evidence, BF10 = 7.02. RTs (BF10 = .22) and confidence
judgments (BF10 = 0.60) for temporal distance judgments were not differentiated

between conditions.
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A.1.5 Experiment 4

For the predictable blocks, RTs were higher during within-event (M = 3.16, SD =
1.00) than across-event pairs (M = 3.53, SD = 1.38) for temporal order memory,
BF10 = 151.90. Confidence judgments for within-event pairs (M = .68, SD = .19)
were higher than across-event pairs (M = .60, SD = .21) for temporal order memory,
BF10 = 192.04. Similarly, confidence judgments for within-event pairs (M = .69,
SD = .25) were higher than across-event pairs (M = .63, SD = .29) for temporal
distance memory, BF10 = 113.09. There was no evidence for the difference between

within and across-event pairs for RTs for temporal distance judgments (BF10 =

16).

For the unpredictable blocks, RTs were higher for across (M = 3.63, SD = 1.51)
than within-event pairs (M = 3.35, SD = 1.23) for temporal order memory, BF10
= 4.05. Confidence judgments were higher for within-event pairs (M = .69, SD =
.19) than across-event pairs (M = .57, SD = .21) for temporal order memory, BF10
= 159250. Similarly, confidence judgments were higher for within-event pairs (M =
.69, SD = .24) than across-event pairs (M = .64, SD = .27) for temporal distance
judgments, BF10 = 32.82. There was no evidence for the difference between within

and across-event pairs for RTs for temporal distance judgments (BF10 = .20)

We compared the difference scores for each measure between conditions. There was
no evidence for the difference in segmentation scores between variables (BF10 >
13).

Figure A.1 Temporal order memory RTs for within and across-event pairs in Exper-
iment 1 and Experiment 2.
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Figure A.2 Temporal order memory confidence judgments for within and across-

event pairs in Experiment 1 and Experiment 2.
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Figure A.3 RTs for temporal distance judgments for within and across-event pairs

in Experiment 1 and Experiment 2.
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Figure A.5 Temporal order memory accuracy for within and across-event pairs be-

tween Experiments 1 and 2.
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Figure A.6 Temporal order memory accuracy for within and across-event pairs be-

tween conditions for Experiment 3.
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Figure A.7 Temporal order memory RTs for prediction error and contextual stability
blocks in Experiment 3. The Bayes Factor above reflects the comparison of the
segmentation scores (within-across difference) across conditions.
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Figure A.8 Temporal order memory confidence judgments for prediction error and
contextual stability blocks in Experiment 3. The Bayes Factor above reflects the
comparison of the segmentation scores (within-across difference) across conditions.
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APPENDIX B

B.1 Part 2: Online Effects of Reward on Event Segmentation

B.1.1 Experiment 1

RTs for temporal order were higher for across-event (M = 4.10, SD = 1.76) than
within-event pairs (M = 3.57, SD = 1.22), with strong evidence, BF10 = 81.1. For
high-rewarded transitions, RTs for temporal order were higher for across-event (M
= 4.06, SD = 1.87) than within-event pairs (M = 3.64, SD = 1.24), with anecdotal
evidence, BF10 = 1.75. For low-rewarded transitions, RTs for temporal order were
higher for across-event (M = 4.14, SD = 1.76) than within-event pairs (M = 3.50,
SD = 1.27), with strong evidence, BF10 = 384.

Confidence judgments for temporal order were higher for within-event (M = .69, SD
= .13) than across-event pairs (M = .59, SD = .16), with strong evidence, BF10 =
575. For high-rewarded transitions, confidence judgments for temporal order were
higher for within-event (M = .69, SD = .14) than across-event pairs (M = .58, SD
= .16), with strong evidence, BF10 = 86. For low-rewarded transitions, confidence
judgments for temporal order were higher for within-event (M = .69, SD = .15) than
across-event pairs (M = .60, SD = .19), with strong evidence, BF10 = 23.8.

There was an indifference between RTs for the temporal distance between across-
event (M = 1.44, SD = .47) and within-event pairs (M = 1.42, SD = .45), with
moderate evidence, BFO1 = 4.48. For high-rewarded transitions, there was an indif-
ference between RTs for the temporal distance between across-event (M = 1.46, SD
= .48) and within-event pairs (M = 1.43, SD = .44), with moderate evidence, BF01
= 4.05. For low-rewarded transitions, there was an indifference between RTs for
the temporal distance between across-event (M = 1.42, SD = .49) and within-event
pairs (M = 1.41, SD = .48), with moderate evidence, BF01 = 4.99.

Confidence judgments for temporal distance were higher for within-event (M = .69,
SD = .20) than across-event pairs (M = .63, SD = .21), with strong evidence, BF10
= 40.5. For high-rewarded transitions, confidence judgments for temporal distance
were higher for within-event (M = .70, SD = .20) than across-event pairs (M = .64,
SD = .21), with moderate evidence, BF10 = 4.64. For low-rewarded transitions,
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confidence judgments for temporal distance were higher for within-event (M = .68,
SD = .21) than across-event pairs (M = .62, SD = .24), with anecdotal evidence,
BF10 = 2.99.

B.1.2 Experiment 2

RTs for temporal order were higher for across-event (M = 3.94, SD = 1.86) than
within-event pairs (M = 3.68, SD = 1.59), with strong evidence, BF10 = 25.9. For
high-rewarded transitions, there was indifference between RTs for temporal order
across-event (M = 4.06, SD = 1.87) and within-event pairs (M = 3.64, SD = 1.24),
with anecdotal evidence, BF01 = 1.99. For low-rewarded transitions, RTs for tem-
poral order were higher for across-event (M = 3.98, SD = 2.07) than within-event
pairs (M = 3.61, SD = 1.69), with strong evidence, BF10 = 39.1.

Confidence judgments for temporal order were higher for within-event (M = .68, SD
= .14) than across-event pairs (M = .59, SD = .15), with strong evidence, BF10
= 95009. For high-rewarded transitions, confidence judgments for temporal order
were higher for within-event (M = .68, SD = .14) than across-event pairs (M =
58, SD = .18), with strong evidence, BF10 = 73778. For low-rewarded transitions,
confidence judgments for temporal order were higher for within-event (M = .68, SD
= .16) than across-event pairs (M = .60, SD = .15), with strong evidence, BF10 =
106.

RTs for the temporal distance were higher for within-event (M = 1.63, SD = .64)
than across-event pairs (M = 1.56, SD = .70), with anecdotal evidence, BF01 =
1.71. For high-rewarded transitions, there was an indifference between RTs for the
temporal distance between across-event (M = 1.55, SD = .69) and within-event pairs
(M = 1.63, SD = .64), with anecdotal evidence, BFO01 = 1.83. For low-rewarded
transitions, there was an indifference between RTs for the temporal distance between
across-event (M = 1.58, SD = .76) and within-event pairs (M = 1.64, SD = .68),
with anecdotal evidence, BFO1 = 2.16.

Confidence judgments for temporal distance were higher for within-event (M = .66,
SD = .22) than across-event pairs (M = .61, SD = .23), with strong evidence, BF10
= 161. For high-rewarded transitions, confidence judgments for temporal distance
were higher for within-event (M = .67, SD = .21) than across-event pairs (M =
62, SD = .24), with strong evidence, BF10 = 109. For low-rewarded transitions,
confidence judgments for temporal distance were higher for within-event (M = .64,
SD = .25) than across-event pairs (M = .60, SD = .24), with moderate evidence,
BF10 = 5.72.
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APPENDIX C

C.1 Part 3: Retrospective Effects of Emotion Regulation on Event

Segmentation

The correlation table can be seen in Figure C.1
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Figure C.1 Correlation matrix for individual difference measures and segmentation scores.

TO reap TO view TO_think TD reap TD view TD_think PANAS pos PANAS neg ERQ reap ERQ supp PINTS sum  STAI state STAI trait DERS BDI PCL
TO _reap —
TO _view -04 —
TO_think -20 0 —
TD_reap -23 -31* 18 —
TD_view -14 04 04 A0 —
TD_think 0o -01 -03 -12 26 —
PANAS pos -02 -23 =13 20 =13 -13 —
PANAS neg 00 -05 350 -16 -03 02 013 —
ERQ_reap -0 -22 -8 .02 -05 -7 0.21 =22 —
ERQ_supp 12 -28 -08 04 -04 02 007 25% -03 —
PINTS_sum -19 08 ) o =17 -04 -05 -0.04 g =23 11 —
STAI state 09 -02 22 -13 =03 05 -0.22 ) b -4 26 43w —
STAIL trait 10 -00 2 -22 05 -03 -0.21 Sk -31* 25 Slees BT —
DERS -07 -0 22 -11 =01 -0z -0.02 ) g -31* 28 . A Sres NEL —
BDI 07 -02 A9 -16 =00 14 <023 52 -33* 28 AT ik A Birer S —
PCL =10 02 A5 -13 -15 -11 0 B =10 20 H2FEE Agees HarE HI%EE LT —

Note. ® p< 05, %% p< 01, %% p<

001



	ABSTRACT
	ÖZET
	LIST OF FIGURES
	GENERAL INTRODUCTION
	Theories of Event Segmentation
	What Influences Event Segmentation, and How Does It Affect Episodic Memory
	Underlying Neural Mechanisms of Event Segmentation
	Part 1. Underlying Mechanisms of Event Segmentation: Prediction Error vs Contextual Stability
	Part 2. Online Effects of Reward on Event Segmentation
	Part 3. Retrospective Effects of Emotion Regulation on Event Segmentation 
	General Aim

	PART 1: UNDERLYING MECHANISMS OF EVENT SEGMENTATION
	Introduction
	Methods
	Ethical Approval
	Open Science Practices
	Participants
	Stimuli
	Design
	Experiment 1
	Experiment 2
	Experiment 3
	Experiment 4


	Results
	Experiment 1: Does Prediction Error Generate Event Boundaries?
	Experiment 2: Does Contextual Stability Generate Event Boundaries?
	Between-subjects Comparison Across Experiments 1 and 2
	Experiment 3: Within-subject Replication of Experiments 1 and 2
	Experiment 4: Does Prediction Error Play a Role?

	Discussion

	PART 2: ONLINE EFFECTS OF REWARD ON EVENT SEGMENTATION
	Introduction
	Methods
	Ethical Approval
	Open Science Practices
	Participants
	Stimuli
	Design
	Experiment 1
	Experiment 2


	Results
	Experiment 1: Do Online Changes in Reward Value Generate a Segmentation Difference?
	Experiment 2: Does Reducing the Strength of Category Transitions Make the Effect of Reward on Segmentation More Apparent?

	Discussion

	PART 3: RETROSPECTIVE EFFECTS OF EMOTION REGULATION ON EVENT SEGMENTATION
	Introduction
	Methods
	Open Science Practices
	Ethical Approval
	Participants
	Materials
	Clinical questionnaires
	Emotion regulation training 

	Design

	Results
	Temporal Order Memory
	Temporal Distance Judgments
	The Relationship Between Individual Differences and Retro-segmentation

	Discussion

	GENERAL DISCUSSION
	BIBLIOGRAPHY
	APPENDIX A
	Part 1: Underlying Mechanisms of Event Segmentation
	Experiment 1
	Experiment 2
	Comparison between Experiments 1 & 2
	Experiment 3
	Experiment 4


	APPENDIX B
	Part 2: Online Effects of Reward on Event Segmentation
	Experiment 1
	Experiment 2


	APPENDIX C
	Part 3: Retrospective Effects of Emotion Regulation on Event Segmentation


