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ABSTRACT

TWO-ECHELON DISTRIBUTION NETWORK DESIGN WITH
COLLABORATION AMONG CARRIERS

İSMAİL GÖKAY DOĞAN

Industrial Engineering, Master’s Thesis, October 2022

Thesis Supervisor: Asst. Prof. Dr. Esra Koca

Keywords: distribution network design, two-echelon supply chain, collaborative
supply chain, location-routing, mixed integer programming, cut-generation

Globalization, exponential growth of e-commerce and q-commerce industries, chang-
ing market habits and increased need of logistics services result in high competition
among supply chain pillars. Collaboration is an effective strategy to pursue in this
endeavour. We define a two-echelon distribution network design problem in which
parties can collaborate to complete the last-mile delivery requests in the lower ech-
elon. The objective is to minimize costs which arise from facility opening, trans-
portation and transfer of goods between regional depots. In the upper echelon,
goods are transferred from plants to regional depots via direct transportation. In
the lower echelon, goods are delivered to the customers in a milk-run fashion from
regional depots. We develop three mixed-integer linear programming models which
differ in terms of modelling outbound routing decisions. Several valid inequalities
are proposed to strengthen formulations. To solve a traditional vehicle-based formu-
lation, a cut-generation based method is developed. For the path-based formulation,
a heuristic route pool generation procedure which promotes collaboration is devel-
oped. Proposed models are tested with different problem sizes to examine solution
qualities and computational times. Moreover, models are tested under different col-
laborative network settings in which main parameters of the problem such as number
of common customers, demand amounts and number of common depots are varied
in order to explore managerial insights such as savings due to collaboration.
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ÖZET

TAŞIYICILAR ARASINDA İŞ BİRLİĞİ ALTINDA İKİ AŞAMALI DAĞITIM
AĞI TASARIMI

İSMAİL GÖKAY DOĞAN

Endüstri Mühendisliği Yüksek Lisans Tezi, Ekim 2022

Tez Danışmanı: Dr. Öğretim Üyesi Esra Koca Paç

Anahtar Kelimeler: dağtım ağı tasarımı, iki kademeli tedarik zinciri, işbirlikçi
tedarik zinciri, lokasyon-rotalama, tam sayılı doğrusal programlama, kesim üretimi

Küreselleşme, e-ticaret ve q-ticaret endüstrilerinin katlanarak büyümesi, değişen
pazar alışkanlıkları ve artan lojistik hizmetleri ihtiyacı, tedarik zinciri paydaşları
arasında yüksek rekabete neden olmaktadır. İş birliği, bu rekabet ortamında
maliyetleri azaltmak için izlenebilecek etkili bir stratejidir. Bu çalışmada, alt
kademedeki son teslimat etaplarını tamamlamak için tarafların iş birliği yapabile-
ceği iki kademeli bir dağıtım ağı tasarım problemi tanımlıyoruz. Problemin amaç
fonksiyonun hedefi tesis açılışı, nakliye ve bölgesel depolar arası mal transferinden
kaynaklanan maliyetleri en aza indirmektir. Üst kademede mallar fabrikalardan
doğrudan taşıma ile bölgesel depolara aktarılır. Alt kademede mallar, bölgesel de-
polardan süt dağıtımı şemasıyla (depodan çıkıp tüm teslimat noktalarına uğradıktan
sonra depoya geri dönecek rotalarla) müşterilere teslim edilir. Alt kademedeki rota-
lama kararlarını modelleme açısından farklılık gösteren üç karma tam sayılı doğrusal
programlama modeli geliştiriyoruz. Formülasyonları güçlendirmek için çeşitli geçerli
eşitsizlikler önerilmiştir. Geleneksel araç bazlı formülasyonu çözmek için, kesim
üretimi bazlı bir yöntem geliştirilmiştir. Rota tabanlı formülasyon için, iş birliğini
destekleyecek türde rotalar oluşturan sezgisel bir prosedür geliştirilmiştir. Önerilen
modeller, çözüm niteliklerini ve hesaplama sürelerini incelemek için farklı problem
boyutlarıyla test edilmiştir. Ayrıca modeller, ortak müşteri sayısı, talep miktarları
ve ortak depo sayısı gibi problemin ana parametrelerinin değiştirildiği farklı işbirlikçi
dağıtım ağı senaryoları altında test edilerek, iş birliğinden kaynaklanan tasarruflar
gibi yönetsel içgörüler keşfedilmiştir.

v



ACKNOWLEDGEMENTS

First and foremost, I would like to thank my previous advisor Prof. Güvenç Şahin,
for his invaluable advice and support during my undergraduate and master’s studies.
I would not be at this stage of my career without his support and endless motivation.
Moreover, I would like to thank my advisor Asst. Prof. Dr. Esra Koca Paç for her
support in the last stages of my thesis. In addition to my thesis advisor, I would also
like to thank my thesis jury members, Asst. Prof. Dr. Ezgi Karabulut Türkseven
and Asst. Prof. Dr. Ahmed Burak Paç for their valuable time to spare in my thesis
committee and for their precious comments, advice, and feedback.

I would like to thank colleagues and friends in that journey, Çağrı Doğuş İyican and
and Sinan Emre Koşunda for being a great fellow and supporting me in any stage
of my master’s studies.

I would like to thank my cousin, Hüseyin Tufan Usta for supporting me, believing
in me and being there for me whenever I needed.

I am grateful to Alperen, Cengizhan, Serhan, Sina, Çağhan and many others for
their friendship throughout the years in high school and university.

Finally, but most importantly, I would like to thank my parents Gülay and Gençay,
and my brother Güray and my girlfriend İrem for their unconditional love and endless
support. I would not come that far without their support and the sacrifices they
made.

vi



To my family...
Aileme...

vii



TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. LITERATURE REVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3. PROBLEM DEFINITION & MATHEMATICAL MODELS . . . . . . 10
3.1. Problem Definiton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2. Mathematical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.1. Model 1: Vehicle-Based Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.2. Model 2: Load-Based Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.3. Model 3: Path-Based Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4. VEHICLE-BASED FORMULATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.1. Cut generation for sub-tour elimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2. Valid Inequalities for Vehicle-Based Formulation . . . . . . . . . . . . . . . . . . . . . . 25

4.2.1. Minimum Depot Valid Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2.2. Two-Size Simple SEC Valid Inequalities . . . . . . . . . . . . . . . . . . . . . . . 27
4.2.3. Two-Size SEC Valid Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2.4. Symmetry Breaking Valid Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2.5. Outgoing Flow Valid Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.6. Carrier Inbound Flow Valid Inequalities . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.7. One Enterance Valid Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3. Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.4. Computational Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5. LOAD-BASED FORMULATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.1. Valid Inequalities for Load Based Formulation . . . . . . . . . . . . . . . . . . . . . . . . 36

5.1.1. Capacity Cut Valid Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

viii



5.1.2. Symmetry Breaking Valid Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2. Computational Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.3. Managerial Insights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6. PATH-BASED FORMULATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.1. Computational Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.2. Managerial Insights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7. CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

BIBLIOGRAPHY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

APPENDIX A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

ix



LIST OF TABLES

Table 3.1. Common notation for all three models . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 3.2. Common decision variables for all three models. . . . . . . . . . . . . . . . . 16

Table 4.1. Experimental setup parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 4.2. Results using the cut generation method with VB formulation

for the instances with 30 customers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 4.3. Effect of different combinations of valid inequalities to VB for-

mulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Table 5.1. Summary of LB Formulation results with 30 customers and
original scenario in low demand setting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Table 5.2. LB Formulation results with original scenario under high de-
mand setting for 30 & 50 customers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Table 5.3. LB Formulation results with original scenario and low demand
setting of 100 customer instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Table 5.4. Gap comparison for LB Formulation with original formulation
and additional (5.2) and (5.3) valid inequalities . . . . . . . . . . . . . . . . . . . . . . . 40

Table 5.5. Gap comparison for LB Formulation with original formulation,
(5.2) and (5.3) VIs, and all VIs for 30 customers in original scenario . 40

Table 5.6. Gap comparison for LB Formulation with original formulation,
(5.2) and (5.3) VIs, and all VIs for 50 customers in original scenario . 41

Table 5.7. LB Formulation results of original scenario and low demand
setting of 30 customer instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Table 5.8. LB Formulation results of original scenario and high demand
setting of 30 customer instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Table 5.9. Individual LB Formulation results for original scenario and low
demand setting of 30 customer instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Table 5.10. Individual LB Formulation results for original scenario and high
demand setting of 30 customers instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Table 5.11. LB Formulation results with ICC scenario and low demand
setting of 30 customer instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

x



Table 5.12. LB Formulation results with ICC scenario and high demand
setting of 30 customer instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Table 5.13. Individual LB Formulation results for ICC scenario and low
demand setting of 30 customer instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Table 5.14. Individual LB Formulation results for ICC scenario and high
demand setting of 30 customer instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Table 5.15. LB Formulation results for NCD scenario and low demand set-
ting of 30 customer instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Table 5.16. LB Formulation results for NCD scenario and high demand
setting of 30 customer instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Table 5.17. Individual LB Formulation for NCD scenario and low demand
setting of 30 customer instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Table 5.18. Individual LB Formulation results for NCD scenario and high
demand setting of 30 customer instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Table 6.1. Pre-generated route numbers for original scenario . . . . . . . . . . . . . . 62
Table 6.2. PB Formulation results for original scenario and low demand

setting of 30 customer instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Table 6.3. PB Formulation results for original scenario and high demand

setting of 30 customer instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Table 6.4. PB deviation percentages for original scenario of 30 customer

instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Table 6.5. PB Formulation results for original scenario and low demand

setting of 50 customer instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Table 6.6. PB Formulation results for original scenario and high demand

setting of 50 customer instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 6.7. PB deviations for original scenario of 50 customer instances. . . . 65
Table 6.8. PB Formulation results for original scenario and low demand

setting of 100 customer instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 6.9. PB Formulation results for original scenario and high demand

setting of 100 customer instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Table 6.10. Pre-generated route numbers for ICC scenarios . . . . . . . . . . . . . . . . . 67
Table 6.11. PB Formulation results for ICC scenario and low demand set-

ting of 30 customer instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 6.12. PB Formulation results with 30 customers and ICC scenario in

high demand setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 6.13. Original vs ICC scenario run times with 30 customer instances

under PB formulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 6.14. PB deviations for ICC scenario of 30 customer instances . . . . . . . 69

xi



Table 6.15. PB Formulation results for ICC scenario and low demand set-
ting of 50 customer instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Table 6.16. PB Formulation results for ICC scenario and high demand set-
ting of 50 customer instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Table 6.17. Original vs ICC scenario run times with 50 customer instances
under PB formulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Table 6.18. PB deviations for ICC scenario of 50 customers . . . . . . . . . . . . . . . . 71
Table 6.19. PB Formulation results for ICC scenario and low demand set-

ting of 100 customer instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Table 6.20. PB Formulation results for ICC scenario and high demand set-

ting of 100 customer instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Table 6.21. Original vs ICC scenario run times with 100 customer instances

under PB formulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Table 6.22. Pre-generated route numbers for NCD scenarios . . . . . . . . . . . . . . . . 73
Table 6.23. PB Formulation results for NCD scenario and low demand set-

ting of 30 customer instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Table 6.24. PB Formulation results for NCD scenario and high demand

setting of 30 customer instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Table 6.25. Original vs NCD scenario run times with 30 customer instances

under PB formulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Table 6.26. PB deviations for NCD scenario of 30 customers . . . . . . . . . . . . . . . 75
Table 6.27. PB Formulation results for NCD scenario and low demand set-

ting of 50 customer instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Table 6.28. PB Formulation results for NCD scenario and high demand

setting of 50 customer instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Table 6.29. Original vs NCD scenario run times with 50 customer instances

under PB formulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Table 6.30. PB deviations for NCD scenario of 50 customers . . . . . . . . . . . . . . . 77
Table 6.31. PB Formulation results for NCD scenario and low demand set-

ting of 100 customer instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Table 6.32. PB Formulation results for NCD scenario and high demand

setting of 100 customer instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Table 6.33. Original vs NCD scenario run times with 100 customer in-

stances under PB formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Table 6.34. Individual PB Formulation results for original scenario of 30

customer instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Table 6.35. Gain comparison for original scenario of 30 customer instances. 80
Table 6.36. Transfer percentages for original scenario of 30 customer in-

stances of PB formulation experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

xii



Table 6.37. Individual PB Formulation results for original scenario of 50
customer instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Table 6.38. Gain comparison for original scenario of 50 customer instances. 82
Table 6.39. Transfer percentages for original setting of 50 customer in-

stances of PB formulation experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Table 6.40. Individual PB Formulation results for original scenario of 100

customer instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Table 6.41. Gain comparison for original scenario of 100 customer instances 84
Table 6.42. Transfer percentages for original setting of 100 customer in-

stances of PB formulation experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Table 6.43. Individual PB Formulation results for ICC scenario of 30 cus-

tomer instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Table 6.44. Gain comparison for ICC scenario of 30 customer instances . . . . 86
Table 6.45. Transfer percentages for ICC setting of 30 customer instances

of PB formulation experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Table 6.46. Individual PB Formulation results for ICC scenario of 50 cus-

tomer instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Table 6.47. Gain comparison for ICC scenario of 50 customer instances . . . . 88
Table 6.48. Transfer percentages for ICC setting of 50 customer instances

of PB formulation experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Table 6.49. Individual PB Formulation results for ICC scenario of 100 cus-

tomer instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Table 6.50. Gain comparison for ICC scenario of 100 customer instances . . . 89
Table 6.51. Transfer percentages for ICC setting of 100 customer instances

of PB formulation experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Table 6.52. Individual PB Formulation results for NCD scenario of 30 cus-

tomer instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Table 6.53. Gain comparison for NCD scenario of 30 customer instances . . . 91
Table 6.54. Transfer percentages for NCD setting of 30 customer instances

of PB formulation experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Table 6.55. Individual PB Formulation results for NCD scenario of 50 cus-

tomer instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Table 6.56. Gain comparison for NCD scenario of 50 customer instances . . . 93
Table 6.57. Transfer percentages for NCD setting of 50 customer instances

of PB formulation experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Table 6.58. Individual PB Formulation results for NCD scenario of 100

customer instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Table 6.59. Gain comparison for NCD scenario of 100 customer instances . . 95

xiii



Table 6.60. Transfer percentages for NCD setting of 100 customer instances
of PB formulation experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Table 6.61. Summary of gain averages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Table A.1. LB results for original and low demand setting of 50 customer
instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Table A.2. LB results for original and high demand setting of 50 customer
instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Table A.3. LB results for ICC and low demand setting of 50 customer
instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Table A.4. LB results for ICC and high demand setting of 50 customer
instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Table A.5. LB results for NCD and low demand setting of 50 customer
instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Table A.6. LB results for NCD and high demand setting of 50 customer
instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Table A.7. Original scenario data for 30 customer instances . . . . . . . . . . . . . . . . 106
Table A.8. Original scenario data for 50 customer instances . . . . . . . . . . . . . . . . 106
Table A.9. Original scenario data for 100 customer instances . . . . . . . . . . . . . . 107
Table A.10.ICC scenario data for 30 customer instances . . . . . . . . . . . . . . . . . . . . 107
Table A.11.ICC scenario data for 50 customer instances . . . . . . . . . . . . . . . . . . . . 107
Table A.12.ICC scenario data for 100 customer instances. . . . . . . . . . . . . . . . . . . 108
Table A.13.NCD scenario data for 30 customer instances . . . . . . . . . . . . . . . . . . . 108
Table A.14.NCD scenario data for 50 customer instances . . . . . . . . . . . . . . . . . . . 108
Table A.15.NCD scenario data for 100 customer instances. . . . . . . . . . . . . . . . . . 109
Table A.16.Transfer amounts for 30 customer instances . . . . . . . . . . . . . . . . . . . . 110
Table A.17.Transfer amounts for 100 customer instances . . . . . . . . . . . . . . . . . . . 110
Table A.18.Transfer amounts for 50 customer instances . . . . . . . . . . . . . . . . . . . . 110

xiv



LIST OF FIGURES

Figure 2.1. Collaboration Types (Barratt, 2004) . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Figure 3.1. Sample network for two carriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 3.2. A small instance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 3.3. Results for collaborative and non-collaborative scenarios . . . . . . 13

Figure 4.1. Cut generation method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 4.2. Instance 1 with 30 customers and 10 total candidate depot

locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Figure 5.1. Gain comparison through OFVs for original scenario and low
demand setting of 30 customer instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Figure 5.2. Gain comparison through best bounds for original scenario
and low demand setting of 30 customer instances . . . . . . . . . . . . . . . . . . . . . 45

Figure 5.3. Gain comparison through OFVs for original scenario and high
demand setting of 30 customer instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Figure 5.4. Gain comparison through best bounds for original scenario
and high demand setting of 30 customer instances . . . . . . . . . . . . . . . . . . . . 47

Figure 5.5. Gain comparisons through OFVs for ICC scenario and low
demand setting of 30 customer instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Figure 5.6. Gain comparisons through best bounds for ICC scenario and
low demand setting of 30 customer instances . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Figure 5.7. Gain comparisons through OFVs for ICC scenario and high
demand setting of 30 customer instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Figure 5.8. Gain comparisons through best bounds for ICC scenario and
high demand setting of 30 customer instances . . . . . . . . . . . . . . . . . . . . . . . . . 52

Figure 5.9. Gain comparisons through OFVs for NCD scenario and low
demand setting of 30 customer instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Figure 5.10. Gain comparisons through best bounds for NCD scenario and
low demand setting of 30 customer instances . . . . . . . . . . . . . . . . . . . . . . . . . . 55

xv



Figure 5.11. Gain comparisons through OFVs for NCD scenario and high
demand setting o 30 customer instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Figure 5.12. Gain comparison through best bounds for NCD scenario and
high demand setting of 30 customer instances . . . . . . . . . . . . . . . . . . . . . . . . . 57

Figure 6.1. Heuristic route pool generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

xvi



LIST OF ABBREVIATIONS

FLP: Facility Location Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
VRP: Vehicle Routing Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
LRP: Location Routing Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
2E-LRP: Two-Echelon Location Routing Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2E-CLRP: Two-Echelon Capacitated Location Routing Problem . . . . . . . . . . . . . . . . 4
MILP: Mixed-Integer Linear Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
B&C: Branch and Cut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
VNS: Variable Neighborhood Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
CVRP: Capacitated Vehicle Routing Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
MIP: Mixed-Integer Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
MD: Multi-depot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
PDPTW: Pickup and Delivery with Time Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
LTL: Less-Than-Truckload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
WH: Warehouse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
DC: Distribution Center . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
BR: Biased Randomization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
ILS: Iterative Local Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2E-FLP: Two-Echelon Facility Location Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
SEC: Sub-tour Elimination Constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
O: Original . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
ICC: Increased Common Customer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
NCD: No Common Depot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
HPC: High Performance Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
GB: Gigabyte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
RAM: Random Access Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
IDE: Integrated Development Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
VB: Vehicle-Based . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
VI: Valid inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
LB: Load-Based . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
OFV: Objective Function Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

xvii



NNH: Nearest Neighborhood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
PS: Parallel Savings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
GS: Gaskell-Savings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
CMT2P: CMT Two-Phase Heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
PB: Path-Based . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

xviii



1. INTRODUCTION

Network design is one of the key pillars of the modern supply chains. In addition to
traditional supply requirements, exponential growth of e-commerce and q-commerce
industries, changing market habits and increased need of micro logistics services pro-
mote competition among parties. Into the bargain, growing logistics needs also come
along with social and environmental issues such as pollution, noise, traffic and con-
gestion. Thus, promoting cost efficient supply networks become more important
because of the increased competitiveness, and companies try to find new strate-
gies for their logistics operations to cope with the sustainability issues and high
competitiveness of the market (Aloui, Derrouiche, Hamani & Delahoche, 2020).

One strategy that can be followed by the parties of supply chains is collaboration.
Collaboration between parties indeed promises positive outcomes such as decreased
costs for businesses, companies, service providers, or increased environmental stan-
dards for community such as decreased pollution levels, noise and congestion. Hence,
improving efficiencies via collaboration in logistics design and planning processes
may have a great impact on environment and social welfare in society (Rao, Goh,
Zhao & Zheng, 2015).

In this study, we address a two echelon centralized collaborative strategic network
design problem in which companies are allowed to cooperate in the lower echelon
within the scope of last mile delivery operations. The two echelon network con-
sists of plants where products are produced, regional depots where goods are stored,
and customers. Deliveries from plants to regional depots are conducted as direct
transportation and called inbound transportation. Deliveries from regional depots
to the customers are conducted in a milk-run fashion and called outbound trans-
portation. Our goal is to determine the number and locations of regional depots,
required inbound capacity and outbound routes as well as transfer lines between
depots. Our problem includes strategic decisions such as facility decisions as well
as tactical and operational decisions such are vehicle routing and transfer line con-
struction decisions. The objective is to minimize total cost of the whole system due
to both strategic, tactical and operational decisions.
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To represent a collaborative distribution network, a single period strategic network
design problem, in which parties can interchange demands, is defined.

We define a single period strategic network design problem in which parties can
interchange demands to represent a collaborative distribution network. We develop
three mathematical models which differ from each other in terms of modelling out-
bound routing operations.

Depending on the type and cause of computational challenges, the resulting mixed-
integer linear programming formulations require different solution methods. We
conduct computational experiments with different sizes of problem instances un-
der three different collaborative network scenarios, and also two different demand
settings. Our contributions can be summarized as follows:

• A centralized network design problem is defined in which parties can collabo-
rate to satisfy other companies’ demands in the outbound routing operations.

• Three mixed-integer linear programming formulations are proposed.

• A cut generation based method to solve one of the formulations is developed.

• Route pool generation procedure which employs five heuristic algorithms and
promotes collaboration is proposed.

• Different valid inequalities are developed for each formulation in order to im-
prove the solution performance.

• Impact of different collaborative network structures is investigated.

This thesis is organized as follows. Chapter 2 consists of a literature review. Prob-
lem definition and mathematical models are presented in Chapter 3. A vehicle-based
formulation approach and related solution methodologies are presented in Chapter 4
together with computational results. Similarly, load-based and path-based formula-
tion approaches and related solution methodologies as well as computational results
are presented in Chapter 5 and Chapter 6, respectively. Finally, we conclude with
our findings and future research directions in Chapter 7.
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2. LITERATURE REVIEW

The literature review focuses on two aspects: strategic distribution network design
problems and the effect of collaboration among parties that operate over the same
network. Strategic distribution network design problems include two main decisions,
locations of the facilities and transportation decisions. Both of these decisions can
be presented under different optimization problem classes, such as facility location
problems (FLP), and vehicle routing problems (VRP). Collaboration is a strategy
that is utilized by the companies to increase service levels and decrease the costs.
In the beginning of this literature review, we focus on FLP. In the later parts,
collaborative approaches are explained.

Facility location problem is a combinatorial optimization problem, and its objective
is to determine the number and locations of a set of facilities (warehouses, cross-
docks, etc.) and assign customers to these facilities in such a way that the demands
of the customers are satisfied, and the total cost is minimized (Wu, Zhang & Zhang,
2006). On the other hand, vehicle routing problem aims to decide on a set of vehicle
routes to satisfy all or some transportation requests of the customers with the given
vehicle fleet at minimum cost (Toth & Vigo, 2014).

In a distribution network, making location and routing decisions independently may
lead to highly sub-optimal planning results (Salhi & Rand, 1989). Thus, making
those decisions simultaneously pledges better outcomes. Location-routing problems
(LRP) emerge from this basis. Given a set of possible depot locations, a set of
vehicles, and a set of customers, LRP consists of simultaneous decision-making of
opening a subset of depots, creating routes that depart from opened depots, and
assigning customers to constructed routes of vehicles to minimize total cost including
depot opening costs and transportation costs (Prodhon & Prins, 2014). The main
difference between LRP and VRP is not only routing decisions, in addition to that,
the optimal depot locations must be determined concurrently (Marinakis, 2009).

By the virtue of the complex logistics and distribution infrastructure requirements of
modern-day supply chains, many distribution systems are designed as multi-echelon
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systems. In multi-echelon distribution systems, delivery of the goods from origin to
the final destination is extended through intermediate facilities such as warehouses,
cross-docks, etc. where goods are stored, changed, packed, unpacked, merged, or
consolidated. Every single level of the distribution network refers to an echelon
(Cuda, Guastaroba & Speranza, 2015).

Two-echelon systems are very well studied in the literature because of their ap-
plicability to real-life instances and promising outcomes. Two-echelon distribution
networks consist of three disjoint sets of nodes, depots (plants or origins), satellites
which are intermediate facilities such as regional depots, consolidation points or
cross docks, and customers (Cuda et al., 2015).

The two-echelon setting of LRPs (2E-LRP) tries to answer, how many depots and/or
intermediate facilities should be opened to which locations, and which routes should
be constructed in both echelons according to the given network structure and param-
eters (Cuda et al., 2015). In terms of new problem structures and methodological
works, numerous research has been conducted. Jacobsen & Madsen (1980) is one
of the earliest studies on 2E-LRP which is motivated by a newspaper distribution
problem which finds the best locations the satellite facilities, and routes to be cre-
ated in both echelons. The authors propose three different heuristic approaches.
Boccia, Crainic, Sforza & Sterle (2010) study a 2E-LRP where homogeneous vehi-
cles in both echelons have fixed capacities. To the best of our knowledge, this study
is one of the earliest examples of capacitated 2E-LRP, i.e., 2E-CLRP. They utilize
a tabu search (TS) based heuristic algorithm.

Boccia, Crainic, Sforza & Sterle (2011) introduce three different mixed-integer lin-
ear programming (MILP) formulations for 2E-CLRP. They conduct computational
experiments by solving two of those models with a commercial solver on a data
set which is generated Boccia et al. (2011). Contardo, Hemmelmayr & Crainic
(2012) propose a branch and cut (B&C) algorithm to solve 2E-LRP. They introduce
a new two-index formulation that is used in B&C. They are able to solve small
and medium-sized instances to optimality. Schwengerer, Pirkwieser & Raidl (2012)
propose a Variable Neighborhood Search (VNS) for 2E-CLRP and conduct com-
putational study on three sets of instances which are proposed by Contardo et al.
(2012). The authors show that VNS is not able to outperform the B&C algorithm
of Contardo et al. (2012).

Over the last few years, globalization changed logistics operations, as well as it has
transformed many aspects of the modern world. Because of the exponential growth
of e-commerce and q-commerce industries, micro logistics needs have been expanded
and altered. Concerns about competitiveness and sustainability require reformer
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methods and models for planning logistics operations (Aloui, Hamani, Derrouiche &
Delahoche, 2021). Therefore, companies try to find new strategies for their logistics
operations to cope with the sustainability issues and high competitiveness of the
market (Aloui et al., 2020). In addition to these issues, inefficient logistics operations
in urban areas also create congestion, carbon emission, noise, and space consumption
problems (Cleophas, Cottrill, Ehmke & Tierney, 2019).

Collaboration may facilitate new approaches to cope with these new problems. In
the context of supply chains, collaboration is realized when “two or more inde-
pendent companies work jointly to plan and execute supply chain operations with
greater success than when acting in isolation” (Simatupang & Sridharan, 2002). As
Gonzalez-Feliu & Salanova (2012) suggest, logistics stakeholders have been led to
examine collaborative strategies to curtail costs of the supply processes. Collabo-
ration between the businesses or companies indeed promises positive outcomes for
all pillars of the logistics industry such as service providers, customers, citizens, and
the community itself. Collaboration among the parties may lead to more efficient
transportation operations in terms of fewer vehicles, less pollution, decreased trans-
portation costs, and lower prices for end products (Cleophas et al., 2019). Thus,
increased efficiencies via collaboration in logistics design and planning processes may
have a great impact on social welfare and peace in society (Rao et al., 2015).

In terms of collaboration, parties can collaborate on two dimensions: horizontal
and vertical. In vertical scheme, different levels of the supply network cooperate
such as manufacturers, customers, suppliers, and distributors (Saenz, Ubaghs &
Cuevas, 2014). In horizontal collaboration, stakeholders acting at the same level of
the supply chain cooperate. Those stakeholders may or may not be competitors of
each other, i.e, they may be part of the same supply chain network or not (Soysal,
Bloemhof-Ruwaard, Haijema & Vorst, 2018). Different types of collaboration can
be seen in Figure 2.1.
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Figure 2.1 Collaboration Types (Barratt, 2004)

In the recent years, both academic research and professional practice have focused
on horizontal collaboration in logistics systems because of the promised outcomes in
terms of multiple benefits such as decreased costs and emissions, increased customer
satisfaction rates, and profits (Pan, Trentesaux, Ballot & Huang, 2019). Horizontal
collaboration can be utilized at different decision-making levels. As Defryn, Sörensen
& Dullaert (2019) indicate, most of the previous work in the context of horizontal
collaboration, focused on transportation optimization at the operational and tacti-
cal levels. According to Verdonck, Beullens, Caris, Ramaekers & Janssens (2016),
research that focuses on the strategic level aims to design common supply networks
to achieve economies of scale, but the number of such studies is not sufficient. The
majority of the studies that focus on all different levels try to minimize costs or
maximize profits.

Two common approaches are used for horizontal collaboration problems which fo-
cus on the operational level, capacity-sharing, and order-sharing (Verdonck, Caris,
Ramaekers & Janssens, 2013). In the capacity sharing, stakeholders i.e., carriers
or shippers, try to decide on whether they will share their vehicle capacities with
the other parties or not (Defryn et al., 2019). In the second approach, all or some
of the orders can be shared with the other parties so that they can satisfy those
orders. According to Aloui et al. (2021), most of the studies at the operational level
are related to variants of VRP. The main motivation behind those studies coincides
with the findings of Chabot, Bouchard, Legault-Michaud, Renaud & Coelho (2018)
who claim that outcomes of joint route planning or collaborative strategies through
horizontal collaborative schemes pledge better economic benefits and environmental
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gains.

In terms of collaborative vehicle routing (VRP-C), there exist different strategies
to collaborate. Fusion or merging is one of those strategies in which two or more
tasks are merged into one single task. According to Weng & Xu (2014), merging
pledges lower costs. Exchanging demand is another method of collaboration; parties
can swap, exchange, or transfer their demand requests to other carriers so that the
overall cost of the network or single parties can be minimized. According to Pan
et al. (2019), there exist two major approaches to exchange demand, auctions, and
side payments. Berger & Bierwirth (2010) propose an arrangement mechanism-
based MIP model for exchanging transportation requests to maximize the profit
of the whole network without decreasing the individual profits of stakeholders and
they report that in highly competitive environments, horizontal collaboration leads
to increased profits. Özener, Ergun & Savelsbergh (2011) establish a lane exchange
approaches for long-haul transportation problems to provide a decentralized demand
transfer mechanism.

Hernández & Peeta (2011) focus on a time-dependent carrier collaboration problem
where capacity varies over time so that carriers can utilize or provide capacity during
routing. They model the problem as a minimum cost flow problem and use B&C
to solve the problem. Another paradigm for collaboration is resource pooling where
resources such as vehicles, warehouses, cross-docks etc., are pooled for the use of col-
laborators. Wang, Zhang, Guan, Peng, Wang, Liu & Xu (2020) solve a multi depot
(MD) collaborative location network planning problem with time windows. They
utilize a hybrid heuristic algorithm which consists of non-dominated sorting genetic
algorithm, K-means clustering, and Clarke-Wright savings algorithm, to solve the
problem and they conclude that the collaborative approach increase the efficiency.
Lin (2008) studies a real-life problem of a multi-national logistics company and
modeled their problem as an exact integer programming formulation. The model
is based on classical pickup and delivery with time windows (PDPTW) in which
a vehicle is allowed travel to transfer goods to another vehicle that returns to the
depot if time window constraints are not violated. The authors compared proposed
models with a new insertion-based construction heuristic and reported that cooper-
ative scenarios are more cost-effective when compared to non-cooperative scenarios.
Sprenger & Mönch (2014) establish a decision tool in which production companies
can pool their vehicles to reduce transportation costs. Fernández, Roca-Riu & Sper-
anza (2018) define a multi-depot VRP variant in which several carriers on the same
horizontal level can satisfy other carriers’ demands if a customer has demand from
both carriers. They define two MILP formulations for a centralized approach and
derive valid inequalities for each formulation. The authors proposed a branch and
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cut algorithm to solve both formulations. They showed that collaboration among
carriers leads to cost savings up to almost 21.2%.

Besides the operational and tactical levels, some studies focus on the strategic level
as well. According to Aloui et al. (2021), strategic-level decisions are less studied
in the context of collaborative planning despite the fact that they are the most
essential part of supply chain management. The majority of the studies under the
strategic-level section mainly focus on economic aspects. The number of studies
that aim to optimize environmental or social aspects is narrow.

Hernández, Unnikrishnan & Awale (2012) define a multi-hub location problem with
a centralized horizontal collaborative setting in which different Less-Than-Truckload
(LTL) carriers can open joint consolidation transshipment points. The authors de-
scribe a new MILP which is a variant of p-hub location model and solved it via
Lagrangian relaxation. They report that collaboration lead to cost savings, espe-
cially in small networks, and pledges more saving opportunities for small-sized LTL
carriers. Pan, Ballot & Fontane (2013) investigate the environmental effect of the
pooling of warehouses and distribution centers in a classical distribution network
in which different companies shared their WHs and DCs for common usage. They
provide a MILP formulation with two different objective functions depending on the
transportation modes: road, and rail. They test their models with 2 real French
companies’ data. They report that pooling yields up to 14% savings in terms of
carbon dioxide emissions. Fernández & Sgalambro (2020) define several models
to investigate collaborative approaches for hub location problems in decentralized
environments.

Nataraj et al. (2019), define a single echelon LRP in which the locations of urban
consolidation centers and consequent routes are determined simultaneously. They
utilized biased randomization (BR) technique to find good-quality solutions. They
embedded BR into an Iterative Local Search (ILS) algorithm which they call BR-
ILS. The authors investigate four different collaboration scenarios where collabora-
tion level change. The results indicate that overall warehousing and maintenance
costs decrease, service levels increase, and carbon emission levels decrease by the
virtue of collaboration. Verdonck et al. (2016) describe a collaborative scheme and
MILP for a 2E-FLP and takes into consideration that a carrier can prefer or not
prefer to join cooperation. Only the carriers who are in cooperation can open joint
depots. They conduct computational studies by using a commercial solver on a
UK-based case study. They report that overall costs are decreased by 9.1% in av-
erage via collaboration. Tang, Lehuédé & Péton (2016) propose a MILP to solve a
FLP for a centralized supply network to find the optimal locations for intermediate
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storage facilities, i.e., regional depots. In other words, all resources are pooled, and
decisions are made in a centralized context in which all pillars act like one single
entity. Ouhader & Kyal (2017) define a collaborative 2E-LRP in a full centralized
manner in which the demand of each customer can be met from any opened inter-
mediate satellite. All satellites and routes are constructed jointly. The authors have
propose a MILP where the objective function consists of cost, carbon emissions,
and created job opportunities that cover all pillars of sustainability. They showed
that collaboration can lead to reduced costs and carbon emissions. However, as
expected, collaboration can negatively affect the social aspects such as created job
opportunities.

To the best of our knowledge, no work considers a two-echelon location routing prob-
lem in which carriers on the same horizontal level can complete other carriers’ LTL
delivery requests on the second echelon and first echelon deliveries are completed
as direct shipments. Our goal is to provide a pragmatic definition of a distribution
network design problem for a centralized collaborative scheme, present exact and
matheuristic surrogate formulations as mixed integer-linear programming models,
enhance those formulations with valid inequalities and solve them using a commer-
cial solver. We examine the solutions not only in terms of computational aspects
such as solution time and quality but also with respect to managerial insights like
the effects of network structure, collaboration amount, joint facility decisions.
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3. PROBLEM DEFINITION & MATHEMATICAL MODELS

We consider a distribution network design problem: multiple companies (carriers)
operating over the same network are willing to collaborate to reduce costs. The
network consists of plants where the goods are produced, regional depots where the
goods are stored and customers which have demands from carriers. As Klibi, Martel
& Guitouni (2016) indicate, w.l.o.g. goods are assumed to be aggregated as a single
entity since they use same technology in terms of storing and handling.

Each company has one plant, numerous possible regional depot locations and cus-
tomers. It is assumed that some of the customers have demand from multiple carri-
ers; these customers are called common customers. In the context of collaboration,
the demand of a common customer can be satisfied by one of the carriers which
already has that customer in its own system. Demand from a customer can not be
splitted among carriers. If a carrier is going to satisfy the demand of a customer
which belongs to another carrier, then this carrier should satisfy the whole demand
which emerges from other carrier. Goods are sent from plants to regional depots;
then they are distributed from regional depots to customers. Transportation of the
goods from plants to regional depots is direct and called inbound transportation.
Transportation from regional depots to customers (outbound transportation) is con-
ducted as milkrun shipments where vehicles follow routes in which several customers
are visited in a specific order. For a carrier (A) to satisfy another carrier’s (B) de-
mand of a common customer from one of its depots, the goods should be sent from
one of the regional depots of B to this specific regional depot of A.

3.1 Problem Definiton

In the planning network, N denotes the set of customers. C represents the set of
operating companies (i.e, carriers). D denotes the candidate regional depot locations
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for the system where Dr is the possible depot locations for carrier r ∈ C. P is the
set of all plants where Pr is the set of plants of carrier r. Sr is the set of carriers
that has at least one common customer with carrier r, including r. In our case, each
carrier r ∈ C has a single plant. Let G = (V,A) be the underlying network where V =
N ∪D ∪P represents the set of all vertices and A = {(V ×V )\ ((N ×P )∪ (P ×N))}
is the set of arcs connecting each pair of the vertices, except the ones which connect
plant and customers. For each arc (i, j) ∈ A, there is a arc traversing cost cij . For
each regional depot d ∈ Dr of each carrier r ∈ C, there is a homogeneous fleet of
vehicles with capacity Q. For any customer i ∈ N , dr

i represents the amount of
demand of customer i from carrier r. If dr

i > 0 then i is a customer of carrier r ∈ C.
Nr represents the set of customers which belong to carrier r ∈ C. On the other hand,
Ci is the set of carriers which has i as a customer. Undoubtedly, if a customer i ∈ N

has a demand from carrier r ∈ C, then i ∈ Nr and r ∈ Ci. A customer i ∈ N can be
visited in multiple routes. In other words, the demand that belong to a customer
and emerge from different carriers can be satisfied by different routes.

If a customer only has a demand from one specific carrier (i.e |Ci| = 1 and Ci = {r∗})
than this demand should be satisfied in one of the routes which originates from one
of depots of r∗: d∗ ∈ Dr∗ . In contrast, if a customer has demand from more than one
carrier (i.e |Ci| > 1), then dr

i can be satisfied by one of the depots of these carriers
r ∈ Ci. In other words, it can be satisfied from one of the depots of the carrier which
demand is from, or it can be transferred to another carrier. For instance, carrier A

can serve customer i’s demand dB
i and carrier B can serve customer i’s demand dA

i ,
which means carriers are allowed to interchange demands, assuming that customer
i has demand from both carriers A and B. A specific demand can not be splitted
among carriers. If there exist a demand dr

i > 0, then it must be completely delivered
in one the routes of carrier r ∈ Ci.

In our problem, a carrier r ∈ C can only visit the customers that already has demand
from that carrier, i.e Nr. In any route which originates from any depot d ∈ Dr of
carrier r, only arcs that can be traversed are Ard = {(i, j) ∈ A : i, j ∈ Nr, or (i = d

and j ∈ Nr), or (i ∈ Nr and j = d)}. If a demand is satisfied by another carrier,
then this demand amount should be transferred between depots of those carriers.
In order to transfer that amount, a transfer line between the corresponding depots
must be established.

Among the strategic decisions involved in operating and managing such systems, we
focus on determining number and location of regional depots and pairs of carrier
depots between which transfer lines are to be established. In addition to that,
direct transportation for inbound transportation and routing decisions for outbound
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transportation are also considered. Flow of goods from plants to depots, depots to
other carriers’ depots and depots to customers are determined as well. A general
representation of the network structure can be found in Figure 3.1.

Figure 3.1 Sample network for two carriers

We illustrate the problem with an example and show how the carriers can collabo-
rate. Figure 3.2 depicts a small example with 2 carriers: A and B. Each carrier has
one plant: PA and PB for carriers A and B, respectively. Carrier A has two possible
depot locations, DA = {1,2} and carrier B has only one possible depot location
DB = {3}. There are three customers, N = {4,5,6}. Customer 4 has only demand
from carrier A, customers 5 and 6 have demand from both carriers. Related inbound
line, transfer line and outbound route construction costs are depicted on arcs and
based on distances between nodes. Regional depot opening and maintenance costs
are shown above regional depots. Vehicle capacity Q is 20 units.

Figure 3.3 (b) shows the result for the non-collaborative scenario. For the non-
collaborative scenario, carrier A opens depot 1 and constructs 2 routes from this
depot. One route only serves to customer 4; another route serves customers 5 and
6. Carrier B opens depot 3 and creates 2 routes for two customers, 5 and 6. Since
Q = 20, dB

5 = 11 and dB
6 = 14 have to be delivered in different routes. In non-

collaborative scenario, inbound line cost for carrier A is 16, regional depot cost is
17, and outbound routing costs are 53; total cost of carrier A = 16+17+53 = 86. For
carrier B, inbound line cost is 10, regional depot cost is 25, and outbound routing
costs are 66; total cost of carrier B = 10 + 25 + 66 = 101. Therefore, total cost for
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Figure 3.2 A small instance

Figure 3.3 Results for collaborative and non-collaborative scenarios

non-collaborative scenario is 187.

Figure 3.3 (a) shows the result for a collaborative scenario. In this scenario carrier
A opens depot 2. Carrier B opens depot 3 and creates a transfer line between
depots 3 and 2. B transfers dB

5 to carrier A and sends this amount to depot 2 which
belongs to carrier A. Carrier A constructs two routes from depot 2. In the first
route, it serves its own demands for customers 4 and 5; dA

4 and dA
5 . In the second

route, it serves its own demand for customer 6 and customer 5’s demand which is
transferred from carrier B; i.e dA

6 and dB
5 . Carrier B constructs only one route to

serve demand dB
6 . In collaborative scenario, for carrier A inbound line cost is 15,

regional depot cost is 25, and outbound routing costs are 60; total cost for carrier
A = 15 + 25 + 60 = 100. For carrier B, inbound line cost is 10, regional depot cost
is 25, and outbound routing costs are 28. In addition to that, transfer line cost
is incurred to carrier B since it constructed a transfer line between depots 3 and
2, which is equal to 5. Total cost of carrier B = 10 + 25 + 28 + 5 = 68. Therefore,
total cost for collaborative scenario is 168. In this instance, collaboration led to cost
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savings up to approximately 10% for centralized system: 187 vs 168.

For the problem setting, we make the following assumptions:

• There are enough items in plants to satisfy demand.

• Regional depots has unlimited capacity for handling goods, but once one depot
is used, opening and maintenance costs are incurred.

• All the locations for plants, candidate regional depots and customers and
distances between those locations are known in advance.

• Demand for each customer is known in advance.

• Demand of each customer from each carrier is less than Q.

• Homogeneous vehicle fleets are used.

• The set of common customers is known in advance.

• There is a centralized decision making process.

The objective of this collaborative goods distribution network design problem is
to minimize the costs which arise from regional depot opening and maintenance,
direct inbound transportation, outbound transportation and transfer line construc-
tion between regional depots. Alternative mathematical models are proposed to
solve this strategic network design problem. Mathematical models differ in terms of
formulating outbound transportation operations.
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3.2 Mathematical Models

Parameters and sets which are common for all models are defined in Table 3.2.

Table 3.1 Common notation for all three models

Set Definition
C set of carriers
N set of customers
P set of plants
D set of possible regional depot locations
Dr set of possible regional depot locations for carrier r ∀r ∈ C

Pr set of plants that belong to carrier r ∀r ∈ C

Nr set of customers that have demand from carrier r ∀r ∈ C

Ci set of carriers that have i as a customer i ∈ N

dr
i demand of customer i from carrier r i ∈ N,r ∈ C

Sr set of carriers that has at least one common
customer with carrier r, including r r ∈ C

V vertex set including regional depots and customers
V = N ∪D ∪P

A arcs in the network: A = {(V ×V )\ ((N ×P )∪ (P ×N))}
cij cost of traversing arc (i, j) (i, j) ∈ A

Brd cost of opening and operating regional depot d

of the carrier r ∀r ∈ C,d ∈ Dr

∆prd inbound transfer line construction cost ∀r ∈ C,d ∈ Dr

from plant p to depot d of carrier r p ∈ Pr

Fd,d′ cost of constructing a transfer line between
regional depots d to d′ ∀r ∈ C,d ∈ Dr, s ∈ Sr, d′ ∈ Ds, r ̸= s

Ard possible arcs that can be traversed in a route
that is assigned to carrier r’s depot d

Ard = {(i, j) ∈ A : i, j ∈ Nr, or (i = d and j ∈ Nr)
(i ∈ Nr and j = d)} ∀r ∈ C,d ∈ Dr
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In all models yrd, vd′d, δprd, πd′d, uprd and wsrd are common decision variables.
The binary decision variable yrd is equal to 1 if regional depot d which belongs
to carrier r is opened; 0, otherwise, ∀r ∈ C,d ∈ Dr. Binary decision variable vd′d

is equal to 1 if a transfer line established between depots d′ and d that belong to
different carriers; 0, otherwise. The binary decision variable δprd is equal to 1 if a
inbound transfer line is constructed between plant p and regional depot d of carrier
r; 0, otherwise. Continuous decision variable πd′d represents the amount of goods
transferred between regional depots d′ and d, uprd represents the amount of goods
sent from plant p to regional depot d of carrier r. wsrd denotes a continuous auxiliary
decision variable used to calculate amount of demand of carrier s which is satisfied
by carrier r’s regional depot d. In the subsequent sections, additional new decision
variables and parameters are defined depending on the mathematical model.

Table 3.2 Common decision variables for all three models

Dec. Var. Definition
yrd 1 if regional depot d which belongs to carrier r is opened
vd′d 1 if a transfer line established between depots d′ and d that

belong to different carriers; 0, otherwise
δprd 1 if a inbound transfer line is constructed between

plant p and regional depot d of carrier r; 0, otherwise
πd′d amount of goods transferred between regional depots d′ and d

uprd amount of goods sent from plant p to regional depot d of carrier r

wsrd amount of demand of carrier s which is satisfied by carrier r’s
regional depot d

3.2.1 Model 1: Vehicle-Based Formulation

In the first mathematical model, outbound routing decisions are denoted by decision
variables which are representing arc traversals by vehicles. This model yields an
exact solution to the problem. We define an additional parameter Krd for each
depot d ∈ Dr of carrier r ∈ C which represents the set of vehicles that belong to
depot d. We define two additional binary decision variables z and x. zk

irsd is equal
to 1 if demand dr

i is assigned to vehicle k of depot d which belongs to carrier s, for
i ∈ N,r ∈ Ci, s ∈ Ci,d ∈ Ds,k ∈ Ksd; 0, otherwise. For each carrier r ∈ C and depot
d ∈ Dr,k ∈ Krd,(i, j) ∈ Ard, xk

ij is equal to 1, if arc (i, j) is traversed by vehicle k, 0
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otherwise. The resulting formulation becomes

minimize
∑
r∈C

∑
d∈Dr

∑
k∈Krd

∑
(i,j)∈Ard

cijx
k
ij +

∑
r∈C

∑
d∈Dr

Brdyrd(3.1)

+
∑
r∈C

∑
d∈Dr

∑
s∈Sr
s̸=r

∑
d′∈Ds

Fdd′vdd′ +
∑
r∈C

∑
d∈Dr

∑
p∈Pr

∆prdδprd

subject to∑
s∈Ci

∑
d∈Ds

∑
k∈Ksd

zk
irsd = 1 ∀i ∈ N,r ∈ Ci(3.2)

∑
j∈Nr

xk
d,j ≤ 1 ∀r ∈ C,d ∈ Dr,k ∈ Krd(3.3)

∑
j∈Nr∪{d}

i̸=j

xk
j,i −

∑
j∈Nr∪{d}

i̸=j

xk
i,j = 0 ∀r ∈ C,d ∈ Dr,k ∈ Krd, i ∈ Nr(3.4)

∑
i∈Nr

∑
s∈Ci

zk−1
isrd ≥

∑
i∈Nr

∑
s∈Ci

zk
isrd ∀r ∈ C,d ∈ Dr,k ∈ Krd \min{k : k ∈ Krd}(3.5)

∑
i∈W

∑
j∈Nr\W
∪{d},i ̸=j

xk
i,j ≥ zk

isrd ∀r ∈ C,d ∈ Dr,k ∈ Krd, s ∈ Sr,W ⊂ Nr, i ∈ W ∩Ns(3.6)

∑
i∈Nr

∑
s∈Ci

ds
i z

k
isrd ≤ Q ∀r ∈ C,d ∈ Dr,k ∈ Krd(3.7)

yrd

∑
i∈N

∑
r∈C

dr
i ≥

∑
i∈Nr

∑
s∈Ci

∑
k∈Krd

zk
isrd ∀r ∈ C,d ∈ Dr(3.8)

wsrd =
∑

i∈Ns∩Nr

∑
k∈Krd

ds
i z

k
isrd ∀r ∈ C,d ∈ Dr, s ∈ Sr(3.9)

∑
i∈N

∑
r∈C

dr
i

∑
d′∈Ds

vd′,d ≥ wsrd ∀r ∈ C,d ∈ Dr, s ∈ Sr, r ̸= s(3.10)

∑
d′∈Ds

vd′,d ≤ 1 ∀r ∈ C,d ∈ Dr, s ∈ Sr, r ̸= s(3.11)

∑
d′∈Ds

πd′,d = wsrd ∀r ∈ C,d ∈ Dr, s ∈ Sr, r ̸= s(3.12)

vd′,d

∑
i∈N

∑
r∈C

dr
i ≥ πd′,d ∀r ∈ C,d ∈ Dr, s ∈ Sr,d′ ∈ Ds, r ̸= s(3.13)

|D||D|yrd ≥
∑

d′∈Ds

vd,d′ ∀r ∈ C,d ∈ Dr, s ∈ Sr, r ̸= s(3.14)

17



δprd

∑
i∈N

∑
r∈C

dr
i ≥ uprd ∀r ∈ C,d ∈ Dr,p ∈ Pr(3.15)

∑
p∈Pr

uprd +
∑

s∈Sr
s̸=r

wsrd −
∑

s∈Sr
s̸=r

∑
d

′∈Ds

πd,d′ =
∑

i∈Nr

∑
s∈Ci

∑
k∈Krd

ds
i z

k
isrd ∀r ∈ C,d ∈ Dr

(3.16)

xk
ij ∈ {0,1} ∀r ∈ C,d ∈ Dr,k ∈ Krd,(i, j) ∈ Ard(3.17)

zk
irsd ∈ {0,1} ∀i ∈ N,r,s ∈ Ci,d ∈ Ds,k ∈ Ksd(3.18)

yrd ∈ {0,1} ∀r ∈ C,d ∈ Dr(3.19)

vd′,d ∈ {0,1} ∀r ∈ C,d ∈ Dr, s ∈ Sr,d′ ∈ Ds, r ̸= s(3.20)

δprd ∈ {0,1} ∀r ∈ C,d ∈ Dr,p ∈ Pr(3.21)

uprd ∈ R+ ∀r ∈ C,d ∈ Dr,p ∈ Pr(3.22)

πd′,d ∈ R+ ∀r ∈ C,d ∈ Dr, s ∈ Sr,d′ ∈ Ds, r ̸= s(3.23)

wsrd ∈ R+ ∀r ∈ C,d ∈ Dr, s ∈ Sr(3.24)

The objective function (3.1) minimizes total cost which arise from outbound trans-
portation, opening and operating depots, inbound transportation and transfer line
construction between depots. Constraints (3.2) guarantee that each demand that a
customer has from its own carriers, is satisfied by a possible carrier (any carrier that
has this customer) once. Constraints (3.3) guarantee that each vehicle can leave a
depot at most one time. Constraints (3.4) ensure that a vehicle visiting a customer
should leave that customer. Moreover, constraints (3.3) and (3.4) work together to
describe flow equality in the vehicle routes. Constraints (3.5) depict that a vehicle
with a higher index can not be utilized if another vehicle with a lower index is not
utilized from a depot of the same carrier. In other words, the model orders used ve-
hicles in ascending order. Constraints (3.6) guarantee two restrictions. For W = {i},
they ensure that if the demand ds

i is assigned to any vehicle k ∈ Krd of depot d ∈ Dr

of carrier r ∈ Ci, then this vehicle visits customer i. Moreover, they ensure that sub-
tours are not generated since if a customer in set W is visited by a vehicle k ∈ Krd

then that vehicle use at least one arc which leaves set W . Constraints (3.7) guaran-
tee that vehicle capacities is not exceeded. Constraints (3.8) indicate that demand
can not be satisfied from a depot if the depot is not opened. Constraints (3.9) are
used to calculate amount of demand that originally belongs to carrier s ∈ C but
satisfied from carrier r’s depot d. Constraints (3.10) guarantee that a transfer line
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should be constructed from one of the depots of the other carrier to the that depot if
a carrier satisfied another carrier’s demand from its depot. Constraints (3.11) work
with constraints (3.10) to ensure that at most one transfer line can be constructed
from a carrier’s depots to another carriers’ one specific depot. Constraints (3.12)
calculates the amount that should be transferred between depots. Constraints (3.13)
guarantee that there can not be any flow of goods between different carriers’ depots
if transfer line among these depots is not constructed. Constraints (3.14) ensure
that a transfer line can not be constructed which originates from that depot if the
depot is not opened. Constraints (3.15) guarantee that goods can not be transferred
between a plant and a depot if inbound line is not constructed between a plant and
a depot. Constraints (3.16) guarantee the flow balance of goods and ensure the
enough amount of goods are transferred from plants to depots. Constraints (3.17),
(3.18), (3.19), (3.20), (3.21), (3.22), (3.23) and (3.24) define the domains and ranges
of the decision variables.

3.2.2 Model 2: Load-Based Formulation

In the second mathematical model, outbound routing decisions are modeled with de-
cision variables representing amount of loads carried. Main motivation is to decrease
high number of binary variables that are used to define outbound routing decisions
(i.e., xk

ij). Instead of using a binary decision variable to determine whether a ve-
hicle which belongs to a depot of a carrier is using an arc or not, we define a new
arc variable which uses an aggregated form of using arcs originating from a depot.
If route originating from depot d of carrier r, r ∈ C,d ∈ Dr, uses arc (i, j) ∈ Ard,
binary decision variable xrd

ij takes value 1; otherwise, it takes 0. Decreased number
of binary variables x is traded with new defined continuous variables l which are
used to control overall load of the routes on the traversed arcs. lrdh

ij represents the
load carried on arc (i, j) ∈ Ard to serve customer h ∈ Nr on a route originating from
depot d ∈ Dr of carrier r ∈ C. Lastly, as in the x variables, vehicle index is dropped
for allocation variable z as well. New binary allocation variable zirsd is equal to 1 if
dr

i is assigned to any route which originates from depot d ∈ Ds, s ∈ Ci; 0, otherwise.
The resulting formulation becomes
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minimize
∑
r∈C

∑
d∈Dr

∑
(i,j)∈Ard

cijx
rd
ij +

∑
r∈C

∑
d∈Dr

Brdyrd(3.25)

+
∑
r∈C

∑
d∈Dr

∑
s∈Sr
s̸=r

∑
d′∈Ds

Fdd′vdd′ +
∑
r∈C

∑
d∈Dr

∑
p∈Pr

∆prdδprd

subject to∑
s∈Ci

∑
d∈Ds

zirsd = 1 ∀i ∈ N,r ∈ Ci(3.26)

∑
j∈Nr∪{d}

i̸=j

xrd
j,i −

∑
j∈Nr∪{d}

i̸=j

xrd
i,j = 0 ∀r ∈ C,d ∈ Dr, i ∈ Nr(3.27)

∑
j∈Ns∪{d}

i ̸=j

xsd
i,j ≥ zirsd ∀i ∈ N,r,s ∈ Ci,d ∈ Ds(3.28)

∑
j∈Nr

lrdi
d,j =

∑
s∈Ci

diszisrd ∀r ∈ C,d ∈ Dr, i ∈ Nr(3.29)

∑
j∈Nr∪{d}

i ̸=j

lrdh
i,j −

∑
j∈Nr∪{d}

i̸=j

lrdh
j,i =

−∑
s∈Ci

diszisrd if i = h

0 if i ̸= h
∀r ∈ C,d ∈ Dr, i,h ∈ Nr

(3.30)

∑
h∈Nr

lrdh
i,j ≤ Qxrd

i,j ∀r ∈ C,d ∈ Dr,(i, j) ∈ Ard(3.31)

yrd

∑
i∈N

∑
r∈C

dr
i ≥

∑
i∈Nr

∑
s∈Ci

zisrd ∀r ∈ C,d ∈ Dr(3.32)

wsrd =
∑

i∈Ns∩Nr

ds
i zisrd ∀r ∈ C,d ∈ Dr, s ∈ Sr(3.33)

(3.10)− (3.15)

∑
p∈Pr

uprd +
∑

s∈Sr
s̸=r

wsrd −
∑

s∈Sr
s̸=r

∑
d

′∈Ds

πd,d′ =
∑

i∈Nr

∑
s∈Ci

ds
i zisrd ∀r ∈ C,d ∈ Dr(3.34)

xrd
ij ∈ {0,1} ∀r ∈ C,d ∈ Dr,(i, j) ∈ Ard(3.35)

zirsd ∈ {0,1} ∀i ∈ N,r,s ∈ Ci,d ∈ Ds(3.36)

lrdh
ij ∈ R+ ∀r ∈ C,d ∈ Dr,(i, j) ∈ Ard,h ∈ Nr(3.37)
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(3.19)− (3.24)

Constraints (3.26) ensure that demand of each customer is satisfied by a possible
carrier. Constraints (3.27) guarantee the flow equality of incoming and outgoing
arcs to customers in an aggregated route which belongs to depot d of carrier r.
Constraints (3.28) ensure that at least one arc must be activated if any of that
customer’s demand is assigned to any route of depot d of carrier s. In other words,
if a demand is assigned to a route which originates from depot d, then the customer
must be visited at least once. Constraints (3.29) ensure that amount of satisfied
demand which belongs to customer h in a route of depot d leaves that depot d.
Constraints (3.30) guarantee that required amount of assigned demands are delivered
by the routes of depot d to customer h if i = h. They also guarantee that no load
is served if i ̸= h. Constraints (3.31) depicts that amount of load served in a route
can not exceed the vehicle capacity. They also relate the variables l and x and
ensure that any load can not be carried on an arc if the arc is not used. Constraints
(3.32) indicate that any demand can not be satisfied from a regional depot if the
depot is not opened. Constraints (3.33) are used to calculate amount of demand
that originally belongs to carrier s ∈ C but is satisfied from carrier r’s depot d.
Constraints (3.34) guarantee the flow balance of goods and ensure that a sufficient
amount of goods are transferred from plants to depots. Constraints (3.35), (3.36)
and (3.37) define the domains and ranges of the decision variables.

3.2.3 Model 3: Path-Based Formulation

In the path-based formulation, outbound routes are not constructed within by the
formulation. Instead, they are selected among heuristically pre-generated routes.
We define an additional parameter R which denotes the set of pre-generated routes.
For the heuristic route creation, problem is decomposed for each carrier r ∈ C and
solved as a single depot VRP for each depot of each carrier d ∈ Dr. Then all routes in
each solution are united into a master route list. Parameter Rd represents the set of
routes which belongs to depot d ∈ Dr. αt

ird is the assignability parameter; it is equal
to 1 if demand dr

i can be assigned to route t ∈ Rd, r ∈ C,d ∈ Dr; 0, otherwise. In
other words, αt

ird is 1 if customer i is included in route t and i has demand from the
carrier who owns this route. In this respect, we define the binary decision variable
xt is equal 1 if route t ∈ R is used and 0 otherwise. Binary allocation variable zt

irsd

is equal to 1 if demand dr
i is assigned to route t ∈ Rs which originates from depot
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d ∈ Ds of carrier s ∈ C. The cost parameter c is altered as ct and denotes the length
of route t.

minimize
∑
t∈R

xtct +
∑
r∈C

∑
d∈Dr

Brdyrd +
∑
r∈C

∑
d∈Dr

∑
s∈Sr
s̸=r

∑
d′∈Ds

Fdd′vdd′(3.38)

+
∑
r∈C

∑
d∈Dr

∑
p∈Pr

∆prdδprd

subject to∑
s∈Ci

∑
d∈Ds

∑
t∈Rd

zt
irsd = 1 ∀i ∈ N,r ∈ Ci(3.39)

xt ≥ zt
isrd ∀i ∈ N,s,r ∈ Ci,d ∈ Dr, t ∈ Rd(3.40)

zt
isrd ≤ αt

ird ∀i ∈ Ns,r ∈ Ci,d ∈ Dr, t ∈ Rd(3.41) ∑
i∈Nr

∑
s∈Ci

ds
i z

t
isrd ≤ Q ∀r ∈ C,d ∈ Dr, t ∈ Rd(3.42)

yrd

∑
i∈N

∑
r∈C

dr
i ≥

∑
i∈Nr

∑
s∈Ci

∑
t∈Rd

zt
isrd ∀r ∈ C,d ∈ Dr(3.43)

wsrd =
∑

i∈Ns∩Nr

∑
t∈Rd

ds
i z

t
isrd ∀r ∈ C,d ∈ Dr, s ∈ Sr(3.44)

(3.10)− (3.15)

∑
p∈Pr

uprd +
∑

s∈Sr
s̸=r

wsrd −
∑

s∈Sr
s̸=r

∑
d

′∈Ds

πd,d
′ =

∑
i∈Nr

∑
s∈Ci

∑
t∈Rd

ds
i z

t
isrd ∀r ∈ C,d ∈ Dr(3.45)

xt ∈ {0,1} ∀r ∈ C,d ∈ Dr, t ∈ Rd(3.46)

zt
irsd ∈ {0,1} ∀i ∈ N,r,s ∈ Ci,d ∈ Ds, t ∈ Rd(3.47)

(3.19)− (3.24)

Constraints (3.39) guarantee that demand of each customer is satisfied by a possible
carrier. Constraints (3.40) relate variables x and z and ensure that a route is used if
a demand is assigned to that route. Constraints (3.41) ensure that a demand from a
customer can be assigned to a route if and only if that route contains that customer.
Constraints (3.42) guarantees that vehicle capacities are not exceeded. Constraints
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(3.43) indicates any demand can not be satisfied from a regional depot if the depot
is not opened. Constraints (3.44) are used to calculate amount of demand that
originally belongs to carrier s but it is satisfied from carrier r’s depot d. Constraints
(3.45) guarantee the flow balance of goods and ensure that a sufficient amount is
transferred from plants to depots. Constraints (3.46) and (3.47) define the domains
and ranges of the decision variables.
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4. VEHICLE-BASED FORMULATION

In the vehicle-based formulation, the number of sub-tour elimination constraints is
exponential and the number of required binary variables for outbound routing is
excessive. For the outbound routing decision variables, x, it is required to define∑

r∈C
∑

d∈Dr
|Krd||Ard| many variables. This number is polynomial but increases

the size significantly. In the original formulation, number of required constraints are
polynomial except constraints (3.6). For the vehicle-based formulation, we propose
an exact method for handling exponentially many constraints. The corresponding
exact method is based on a cut generation scheme for sub-tour elimination con-
straints.

4.1 Cut generation for sub-tour elimination

Constraints (3.6) can be separated into two different constraints, one for connecting
variables x and z, and the other one to ensure that there are no sub-tours.

(4.1)
∑

j∈Nr∪{d}
i ̸=j

xk
i,j ≥ zk

isrd ∀i ∈ N,s ∈ Ci, r ∈ Ci,d ∈ Dr,k ∈ Krd

(4.2)
∑
i∈W

∑
j∈W
j ̸=i

xk
i,j ≤ |W |−1 ∀r ∈ C,d ∈ Dr,k ∈ Krd,W ⊆ Nr

Constraints (4.1) ensure that a vehicle must visit a customer at least once if any
demand of this customer is assigned to that vehicle. Constraints (4.2) guarantee
that there is at least one arc which leaves customer set W for each vehicle Krd so
that it is ensured that no sub-tours are generated. Constraints (3.6) can be replaced
with constraints (4.1) and (4.2).
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We propose an exact method for handling exponentially many sub tour elimination
constraints with the updated constraints (4.1) and (4.2). Initially, all sub-tour elim-
ination constraints proposed in (4.2) are relaxed. Then, the relaxed version of the
problem is solved. Using the active routing variables {x : x = 1}, a sub-graph Ḡx

is constructed; all cycles in Ḡx are detected using the algorithm in Johnson (1975).
Johnson’s algorithm is used to detect all simple cycles in a graph since it has a time
complexity of O((|V | + |E|)(C + 1), C indicating all cycles in a given graph, which
is polynomial. If there are no sub-tours in the solution, the method aborts the ex-
ecution and reports the optimum solution. If there are sub-tours, current solution
for variables x is decomposed for each depot d ∈ Dr,∀r ∈ C while xd represents the
active arcs which belong to any route of depot d. For each depot d, a sub-graph Ḡd

x

is constructed. All simple cycles for each sub-graph Ḡd
x,∀d ∈ D, are identified using

Johnson’s algorithm. If any simple cycle includes depot d itself, then nothing is
identified. If there are sub-tours which do not include the depot, they are appended
to a set Γ which includes all sub-tours to be eliminated for the given depot d in
the current solution. Then sub-tour elimination constraints used to eliminate the
sub-tours that are specific to the given depot are generated as in (4.3) and added to
the model. Then, the model is resolved. As the iterations proceed, given solutions
converges to a state in which no sub-tours are found. Flowchart of the method is
represented in Figure 4.1.

(4.3)
∑
i∈γ

∑
j∈γ
j ̸=i

xk
ij ≤ |γ|−1 ∀γ ∈ Γ

4.2 Valid Inequalities for Vehicle-Based Formulation

Number of required binary variables in the vehicle-based formulation is excessive.
In order to strengthen the formulation and tighten the solution space several valid
inequalities are proposed.
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Figure 4.1 Cut generation method
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4.2.1 Minimum Depot Valid Inequalities

For any instance, first echelon transportation operations are executed in a direct
manner. In other words, inbound deliveries are conducted as direct transporta-
tion in which trucks do not ramble around depots. If there is collaboration among
carriers than that collaboration must take place at the second echelon including
transfer among depots and mutual routing. Consequently, each company has to
open and operate at least one regional depot in the system, whether it participates
in a collaboration or not. Therefore, inequalities (4.4) are valid for the vehicle-based
formulation and impose that each carrier r ∈ C must open at least one depot.

(4.4)
∑

d∈Dr

yrd ≥ 1 ∀r ∈ C

4.2.2 Two-Size Simple SEC Valid Inequalities

Sub-tour elimination is controlled by the constraints (3.6) in the original vehicle
based formulation; they generate all constraints which eliminate all possible sub-
tours. However, exponentially many constraints are required and a lower bound for
required number of constraints is equal to ∑

r∈C 2|Nr| in the original formulation.
So a cut generation based method proposed in Section 4.1 and in this method, sub-
tour elimination constraints are relaxed; in each iteration, only required sub-tour
elimination constraints are added to the model. In the early iterations, models
are tend to create sub-tours of size 2. Inequalities (4.5) eliminate all two-size sub-
tour possibilities. Thus, they also eliminate unnecessary iterations which are only
conducted to eliminate two-size sub-tours.

(4.5) xk
i,j +xk

j,i < 2 ∀r ∈ C,d ∈ Dr,k ∈ Krd, i, j ∈ Nr, i < j
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4.2.3 Two-Size SEC Valid Inequalities

(4.6)

xk
i,j +xk

j,i ≤ 2−⌈
∑

s∈Ci
ds

i z
k
isrd + ∑

s∈Cj
ds

jz
k
jsrd

Q
⌉ ∀r ∈ C,d ∈ Dr,k ∈ Krd, i, j ∈ Nr, i < j

Extended version of (4.5) is proposed in (4.6) inequalities. If any demand of a
customer i or j is assigned to a vehicle k, than this vehicle can travel only in
one way among two different customer nodes i.e, i and j. SECs are activated for
customer pairs if some demand of these customers is assigned to a vehicle. The
total amount of demand that is assigned to a vehicle can not exceed vehicle capacity
Q. Inside of ceiling operator can take values between 0 and 1. If any demand
which emerge from customers i and j are not assigned to vehicle k, then no SECs
are generated; otherwise, required two-size SECs are added to model. The ceiling
operator breaks the linear structure of the model. So inequalities (4.6) can be
replaced with inequalities (4.7).

(4.7)

xk
i,j +xk

j,i ≤ 2−
∑

s∈Ci
ds

i z
k
isrd + ∑

s∈Cj
ds

jz
k
jsrd

Q
∀r ∈ C,d ∈ Dr,k ∈ Krd, i, j ∈ Nr, i < j

4.2.4 Symmetry Breaking Valid Inequalities

Distances and incurred cost for traversing arcs (i, j) ∈ A between nodes (i.e plants,
depots and customers) are symmetrical such that cij = cji. As a consequence, model
produces two identical solutions for two different outbound routes, one for nor-
mal order, one for reversed order. In order to brake that symmetry to some ex-
tent, Archetti, Fernández & Huerta-Muñoz (2017)’s inequalities are adopted for the
vehicle-based formulation.

(4.8) xk
j,d ≤

∑
i∈Nr
i<j

xk
d,i ∀r ∈ C,d ∈ Dr,k ∈ Krd, j ∈ Nr
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4.2.5 Outgoing Flow Valid Inequalities

Total amount of products shipped from the plants must be equal to the total amount
of demand to conserve flow balance.

(4.9)
∑
r∈C

∑
p∈Pr

∑
d∈Dr

uprd =
∑
i∈N

∑
r∈C

dr
i

4.2.6 Carrier Inbound Flow Valid Inequalities

For each carrier, amount of products shipped from plants to depots must be equal to
the total amount of demand of that carrier which ensures the inbound flow balance
for each carrier r ∈ C.

(4.10)
∑

p∈Pr

∑
d∈Dr

uprd =
∑

i∈Nr

dr
i ∀r ∈ C

4.2.7 One Enterance Valid Inequalities

(4.11)
∑

i∈Nr

xk
i,d ≤ 1 ∀r ∈ C,d ∈ Dr,k ∈ Krd

Those inequalities are the counterpart of (3.3) constraints. These inequalities impose
that a vehicle can enter a depot at most once. Constraints (3.4) guarantee that a
vehicle can enter a depot at most one time by controlling entering and leaving arc
numbers. However, inequalities (4.11) strengthen the formulation.
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4.3 Experimental Design

Since we focus on a strategic model, computational experiments do not only aim to
evaluate the computational challenges of the models and solution methods but also
managerial aspects of the proposed centralized collaboration schema. Experimental
design lies at the heart of the computational experiments and directly affects the
results. Thus, it is of great importance to design experiments carefully.

In order to explore the impact of the problem size on given solution techniques and
formulations, three different problem sets are used by (Ercan, 2019). The three data
sets differ in terms of number of possible regional depots and customers as follows:

• 30 customers and 10 possible depot locations,

• 50 customers and 15 possible depot locations, and

• 100 customers and 30 possible depot locations

Each instance is constructed on a 100x100 coordinate system in which each car-
rier in the system r ∈ C has one plant at the center of the coordinate system,
(50,50). Customers are randomly distributed on the grid and candidate depot loca-
tions are determined using a k-means algorithm. Ten different instances are created
for each problem size; locations of customers, candidate depot locations, and de-
mand amounts differ in each problem instance. All distances between all nodes
(plants, depots, customers) are calculated as Euclidean distances. Regional depot
opening and maintenance costs are between 3000 and 6000. The cost of inbound
transportation is a function of distance between plant and the regional depot. The
outbound routing costs are calculated as a function of distance between travelled
nodes. The transfer line cost is a function of distance between depots. Vehicle
capacity Q is set to 1000 for each instance and problem size.

Ercan (2019) provides a problem set for a single carrier. For our computational
experiments, we use two carriers. In each instance, we distribute the customers
and candidate depot locations among two carriers while some customers and some
depot locations are common. Depending on the problem size and experimental
setup, number of customers and depot locations change in three different scenarios
as

• Original (O),

• Increased Common Customer (ICC), and
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• No Common Depot (NCD).

Three different scenarios are used to observe the effect of parameters on the compu-
tational behaviour and collaboration activities. In the Original scenario, we have a
moderate number of common customers and common depot locations to represent
an average collaboration schema. In the Increased Common Customer scenario, in
addition to the original common customers, we declare several other customer as
"common" while keeping the original common customers. In the No Common Depot
scenario, we do not declare any of the possible depot locations as common; in other
words, each carrier has to open their depots to the unique locations in the coordinate
system.

For each combination of problem size and scenario, the corresponding numbers of
customers, depot locations, common depot locations, common customers and total
depot locations are shown in Table 4.1.

Table 4.1 Experimental setup parameters

30 Customers 50 Customers 100 Customers
O ICC NCD O ICC NCD O ICC NCD

# Customers 30 30 30 50 50 50 100 100 100
# Depot Locations 10 10 10 15 15 15 30 30 30
# Common Depot Locations 4 4 0 4 4 0 8 8 0
# Common Customers 8 14 8 10 18 10 20 40 20
# Total Depot Locations 14 14 10 19 19 15 38 38 30

An example to the proposed instances can be found in Figure 4.2 with 30 customers
and 10 candidate depot locations.

Figure 4.2 Instance 1 with 30 customers and 10 total candidate depot locations
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The third dimension of our experimental setting is on the demand density. We
conduct our experiments in two different demand settings: "Low Demand" and "High
Demand". "Low Demand" setting depicts the initial demand setting in Ercan (2019)
since we already divide demand of common customers between the two carriers. In
the "High Demand" setting, we multiply all the demand by 2 to achieve a setup with
higher demand density.
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4.4 Computational Experiments

For the computational experiments, we utilize the commercial solver Gurobi. Since
Gurobi or any commercial solver has limited capabilities to solve large instance prob-
lems, we apply different solution methodologies for each formulation approach. We
utilized the High Performance Computing (HPC) server of the Sabancı University.
HPC servers are equipped with Intel(R) Xeon(R) Gold 6140 CPU @ 2.30GHz X2
processors in each node. For each run, a partition from any node of the HPC is
created with 4 cores, and 64 GBs of RAM and the partition had an 64 bit Linux
operating system. Data manipulation and preperation is conducted through Python
3.8 using PyCharm and Spyder IDE’s. Gurobi 9.1.2 is used throughout gurobipy
API. The computational time limit is set to 8 hours for 30 customer instances, 16
hours for 50 customer instances and 48 hours for 100 customer instances.

Our computational experiments started with the most simple setup, original VB
formulation of vehicle-based (VB) formulation we were not able to solve any of the
instances with 30 customers in the original scenario since they did not fit into random
access memory. Main reason is the number of constraints in (3.6) which eliminates
sub-tours and couples variables x and z. At least 2|Nr||Krd| many constraints are
generated which directly exceeds several million constraints.

Because of the space complexity of the original VB formulation, a cut generation
procedure to eliminate sub-tours is proposed in Section 4.1. We repeat all the tests
indicated above with the cut generation method in order to avoid out of memory
issues and results of those runs can be found in Table 4.2.

Table 4.2 Results using the cut generation method with VB formulation for the
instances with 30 customers

Ins. FA FB TA TB Obj ObjA ObjB T(s) Gap
1 1 2 2 1 66085 25145 40940 28800 25.5%
2 1 2 2 0 69977 27532 42445 28800 29.6%
3 - - - - - - - 28800 -
4 - - - - - - - 28800 -
5 - - - - - - - 28800 -
6 2 1 1 2 67788 42946 24842 28800 30.7%
7 - - - - - - - 28800 -
8 - - - - - - - 28800 -
9 - - - - - - - 28800 -

10 1 2 2 1 76991 34032 42959 28800 36.8%

Using the cut generation method, we are able to create and run all the instances
for the original scenario of 30 customers without having any memory related issues.
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In Table 4.2, FA and FB show how many facilities opened by carriers A and B,
respectively. TA and TB indicate how many transfer lines are constructed by carriers
A and B, respectively. While Obj shows the objective function value, ObjA and ObjB

depict the cost separately for each carrier. T (s) indicates the run time in seconds
and Gap indicates the percentage optimality gap reported by the solver. Rows with
−’s represent that no feasible solution found within given time limit.

Within 8 hours of time limit, only 4 instances obtained a solution and the average
gap for those four instances is 30.6%. For the rest of the instances, Gurobi was
not able to find any feasible solution. Thus, in order to shrink the solution space
and lower the gaps, several valid inequalities are proposed in Section 4.2. The valid
inequalities (VI) are systematically added to the model in order to see the effect on
the solution time and quality. Run results with different combinations of VIs can
be found in Table 4.3. For all runs, time limit is set to 8 hours which is same with
the previous tests.

Table 4.3 Effect of different combinations of valid inequalities to VB formulation

(4.8) (4.5) + (4.8) (4.7) + (4.8) (4.5) + (4.7) All+ (4.8)
Ins. Obj Gap Obj Gap Obj Gap Obj Gap Obj Gap
1 68814 28.3% 68664 28.4% 69287 28.1% 68008 27.7% 67683 27.4%
2 - - - - 72223 31.2% - - - -
3 76424 37.8% - - - - - - - -
4 - - - - - - - - - -
5 - - - - - - - - - -
6 - - - - 73753 36.7% - - - -
7 - - - - - - - - - -
8 - - - - - - - - - -
9 81462 36.3% - - - - - - - -

10 - - - - - - - - - -

Different combinations of VIs yield different results when compared to the results
indicated in Table 4.2. In the first column, only symmetry braking inequalities (4.8)
are added to the model. With those inequalities, solver found feasible results for
instances 3 and 9. Without those inequalities, it was not able to find any solutions
for these instances. However, solver could not find any solution for instances 2, 4 and
10. Nonetheless, it found solutions without those inequalities. Then two-size simple
SEC inequalities (4.5) are added in addition to symmetry braking inequalities; only
one instance was solved. Then, two-size simple SECs are swapped with two-size
SEC inequalities (4.7); instance 6 was solved with this combination but solver was
not able to find solutions for other instances which it found solutions before. Then
both two-size SEC inequalities are added to the model in addition to the symmetry
braking inequalities. With these 3 additional inequalities, only instance 1 is solved.
For the last test, all proposed VIs in Section 4.2 is added to the model; the solver
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reported a solution for only instance 1.

While adding new inequalities, the model size is increasing and solver behaviour
is changing. The solver was able to find new solutions which are previously not
attained. On the other hand, since new constraints are added to the model, model
size increases and search behaviour of the solver changes. Depending on the instance,
solver may or may not be able to find good or any solutions when compared to cases
in which no VIs are added. Also there is no significant change in the optimality
gaps and still all the reported gaps are not close to 0.

As mentioned earlier , there are two main drivers which increase problem complexity
in the VB formulation; number of binary variables for outbound routing decisions
and handling sub-tour elimination constraints. To cope with those challenges, sev-
eral methods are experimented with. In terms of space complexity issues, all the
difficulties are solved. However, solution times still remain too high.

Consequently, a new load-based formulation is proposed in Section 3.2.2 in which
outbound operations are controlled with continuous variables instead of a high num-
ber of binary variables. Details of load-based approach discussed in Section 5.
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5. LOAD-BASED FORMULATION

In the load-based formulation, many continuous load variables are defined in the
exchange of decreased number of binary variables. New valid inequalities are pro-
posed for load-based formulation and their effects on solution times investigated.
Then since instances become solvable, strategic analysis performed using load-based
formulation.

5.1 Valid Inequalities for Load Based Formulation

For the load-based formulation, inequalities (4.4),(4.9) and (4.10) that are proposed
in Section 4.2 are valid as well. Two different valid inequalities are proposed below
for the load-based formulation.

5.1.1 Capacity Cut Valid Inequalities

In the load-based formulation, amount of load that leaves a depot for a customer
is controlled by variables l and constraints (3.28). Therefore, minimum number of
arcs that must be used can be limited as well using inequalities (5.1) with a similar
motivation that is proposed by Fernández et al. (2018).

(5.1)
∑

j∈Nr

xrd
d,j ≥ ⌈

∑
i∈Nr

∑
s∈Ci

ds
i zisrd

Q
⌉ ∀r ∈ C,d ∈ Dr

By the same convergence with (4.6), inequalities (5.1) destruct linear structure of
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the load based model. They can be replaced with (5.2).

(5.2)
∑

j∈Nr

xrd
d,j ≥

∑
i∈Nr

∑
s∈Ci

ds
i zisrd

Q
∀r ∈ C,d ∈ Dr

5.1.2 Symmetry Breaking Valid Inequalities

As indicated in Section 4.2.4, arc traversing costs for outbound routing are symmet-
ric, i.e cij = cji. Model becomes indifferent between choosing a specific route and its
reversely ordered form which lead to same objective function value. To break this
tie, inequalities (5.3) are proposed.

(5.3) xrd
j,d ≤

∑
i∈Nr
i<j

xrd
d,i ∀r ∈ C,d ∈ Dr, j ∈ Nr

5.2 Computational Experiments

Load-based (LB) formulation comes with the additionally defined continuous vari-
ables in exchange for binary variables and reduced number of indices on different
variables as explained in Section 3.2.2. Fpr 30, 50, and 100 customer instances we
set the time limit to 8, 16, and 48 hours, respectively.

In the tables given below, FA and FB show how many facilities opened by carriers
A and B, respectively. TA and TB indicate how many transfer lines are constructed
by carriers A and B, respectively as well. While Obj shows the objective function
value, ObjA and ObjB depict the cost for each carrier. T (s) indicates the run time
in seconds and Gap indicates the percentage optimality gap reported.

We first consider the original scenario and low demand setting of 30 customers
instances. Results can be found below in Table 5.1.

Within the given time limit, all instances were solved to reasonable gaps when
compared to VB formulation and obtained a solution for each instance. Gaps deviate
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Table 5.1 Summary of LB Formulation results with 30 customers and original sce-
nario in low demand setting

Ins. FA FB TA TB Obj ObjA ObjB T(s) Gap
1 1 1 1 1 58449 26680 31769 28800 7.5%
2 1 1 1 1 61095 29329 31766 28800 6.1%
3 1 1 1 1 61527 30436 31091 28800 4.0%
4 1 1 1 1 52444 27409 25035 28800 4.2%
5 1 1 1 1 57824 20603 37221 28800 8.5%
6 1 1 1 1 59213 33838 25376 28800 7.6%
7 1 1 1 1 57160 28020 29140 28800 5.0%
8 1 1 1 1 56851 29001 27850 28800 5.3%
9 1 1 1 1 66783 36342 30441 28800 8.8%

10 1 1 1 1 61442 26724 34718 28800 8.1%

between 4.0% and 8.5%. Average gap is 6.5% for the original scenario and low
demand setting of 30 customer instances. In all the instances each carrier chose to
open one facility and create one transfer line. In order to see the behaviour of the
LB formulation with different data sets of different sizes, LB formulation is tested
with the original scenario and high demand setting of 30 customer instances and the
original scenario and high demand setting of 50 customer instances. Results can be
found in Table 5.2.

Table 5.2 LB Formulation results with original scenario under high demand setting
for 30 & 50 customers

30 Customers High Demand 50 Customers High Demand
Ins. Obj ObjA ObjB T(s) Gap Obj ObjA ObjB T(s) Gap
1 82893 36519 46374 28800 11.4% 110487 54658 55829 57600 9.3%
2 86373 40967 45405 28800 8.9% 116145 60624 55522 57601 10.1%
3 87266 42203 45063 28800 8.0% 115178 57232 57945 57600 12.7%
4 69866 34477 35389 28800 8.6% 113827 57719 56107 57600 11.4%
5 78676 32031 46645 28800 8.5% 119793 53929 65863 57600 10.9%
6 81847 46273 35575 28800 7.8% 115084 56188 58897 57600 10.5%
7 77987 38321 39666 28800 10.1% 116067 48423 67644 57600 10.8%
8 75652 33655 41998 28801 8.7% 131233 67436 63797 57600 9.9%
9 88638 42530 46108 28800 10.2% 111844 59768 52076 57600 11.1%

10 80652 35424 45229 28800 6.1% 132865 62753 70112 57600 11.0%

Once problem size increases or problem instance gets harder because of increased
demand structure, gaps increase on average. For the original scenario and high
demand setting of 30 customer instances, gaps deviate between 6.1% and 11.4%.
Average gap for ten instances is 8.8%. In the low demand setting average gap was
6.5%. For the original scenario and high demand setting of 50 customer instances,
gaps deviate between 9.3% and 11.4%. Average gap for ten instances for this setup
is 10.8%. Average gap was 8.8% in the 30 customer instances of this setting. As
problem size increases, gaps increase as well.
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Even though solutions are found for the 30 and 50 customer instances with optimality
gaps, several other runs are completed to see the behaviour of the formulation with
100 customers. For this purpose, runs are completed with the 100 customer instances
with original scenario and low demand setting. The time limit is set as 48 hours for
each run. Results can be found in Table 5.3. In Table 5.3, M indicates that server
run out of memory during branching or model creation phase and -1 indicates that
no solution found within given time limit. As it can be interpreted from Table 5.3,
with 100 customers problem grows exponentially and half of the instances do not
fit into 64 gigabytes of random access memory because of the increased number
of variables and size of the branching tree. Solutions are reported for only three
instances within 48 hours of time limit, and the reported gaps are above 55% on
average.

Table 5.3 LB Formulation results with original scenario and low demand setting of
100 customer instances

Ins. FA FB TA TB Obj ObjA ObjB T(s) Gap
1 8 7 5 5 191879 97503.25 94375 172801 55.4%
2 M M M M M M M M M
3 6 9 5 5 196658 92681.9 103976 172801 65.7%
4 M M M M M M M M M
5 M M M M M M M M M
6 - - - - - - 172801
7 M M M M M M M M M
8 M M M M M M M M M
9 - - - - - - 172800

10 8 7 6 3 194335 98975.15 95360 172801 63.4%

In order to tighten solution space and reduce gaps, valid inequalities are proposed
in Section 5.1. There exists five different valid inequalities (VI) which applies to
LB formulation. In favor of examining the effect of VIs on different data sets of
different sizes, we conduct three experiments. In all three experiments, we utilize
the original scenario of 30 and 50 customer data sets in both low and high demand
environments to see the behaviour of VIs. First experiments are conducted with no
additional VIs to have a basis for the comparison. Then, (5.2) and (5.3) added and
experiments are repeated. Lastly, all proposed VIs in the Section 5.1 are added to
the formulation and the experiments are repeated again. Results in which gaps of
first and second experiments are compared, can be found in Table 5.4.

In the Table 5.4, columns ∆O indicates original optimality gaps without any valid
inequalities. Columns ∆V I indicates the optimality gaps with the added VIs (5.2)
and (5.3). A cell is highlighted with a green color if VIs yield a better solution in
terms of lower gaps, highlighted with a red color otherwise. In the 30 customer
instances, 17 out of 20 instances are solved with lower gaps with activated VIs. In
50 customer instances, 13 out of 20 instances are solved with lower gaps. In total,

39



Table 5.4 Gap comparison for LB Formulation with original formulation and addi-
tional (5.2) and (5.3) valid inequalities

30 Customer 50 Customer
Low Demand High Demand Low Demand High Demand

Ins. ∆O ∆V I ∆O ∆V I ∆O ∆V I ∆O ∆V I

1 7.5% 8.4% 11.4% 11.1% 11.7% 11.4% 9.3% 9.5%
2 6.1% 4.8% 8.9% 8.3% 10.6% 10.6% 10.1% 9.2%
3 4.0% 4.8% 8.1% 8.0% 14.4% 13.7% 12.7% 12.0%
4 4.2% 3.4% 8.6% 7.8% 12.2% 11.3% 11.4% 10.9%
5 8.5% 8.1% 8.5% 9.0% 10.5% 10.6% 10.9% 11.5%
6 7.6% 6.0% 7.8% 7.0% 11.1% 10.2% 10.5% 10.0%
7 5.0% 4.4% 10.1% 10.0% 13.2% 11.4% 10.8% 10.8%
8 5.3% 4.9% 8.7% 7.9% 12.6% 12.5% 9.9% 9.0%
9 8.8% 7.3% 10.2% 9.4% 14.1% 14.4% 11.1% 10.4%

10 8.1% 6.8% 6.1% 5.9% 12.8% 12.5% 11.0% 11.8%

30/40 instances are solved with lower gaps when the (5.2) and (5.3) VIs are added to
the model. In some samples, the improvement is 0.1 percent, while in some samples,
up to 1.8 percent improvement is observed.

To investigate the effect of all VIs, all proposed VIs in Section 5.1 are added to the
model and experiments are repeated. Results can be found in Table 5.5 and Table
5.6 for 30 and 50 customers, respectively. ∆O indicates original gaps without any
valid inequalities. ∆(5.2)+(5.3) demonstrates optimality gaps when only (5.2) and
(5.3) VIs were added to the model. ∆All indicates gaps when all valid inequalities
are added to the model. Green cells report the best gap found, orange cells indicate
medium gap and red cells report the worst gap found for the given instance.

Table 5.5 Gap comparison for LB Formulation with original formulation, (5.2) and
(5.3) VIs, and all VIs for 30 customers in original scenario

30 Customers
Low Demand High Demand

Ins. ∆O ∆(5.2)+
(5.3)

∆All ∆O ∆(5.2)+
(5.3)

∆All

1 7.5% 8.4% 8.8% 11.4% 11.1% 11.4%
2 6.1% 4.8% 5.9% 8.9% 8.3% 9.0%
3 4.0% 4.8% 4.3% 8.1% 8.0% 8.2%
4 4.2% 3.4% 3.6% 8.6% 7.8% 7.6%
5 8.5% 8.1% 9.3% 8.5% 9.0% 9.6%
6 7.6% 6.0% 6.6% 7.8% 7.0% 7.8%
7 5.0% 4.4% 4.5% 10.1% 10.0% 11.0%
8 5.3% 4.9% 5.1% 8.7% 7.9% 8.8%
9 8.8% 7.3% 8.1% 10.2% 9.4% 9.8%

10 8.1% 6.8% 6.7% 6.1% 5.9% 6.1%

For the 30 customer instances, it is observed that still the best gaps are reported
when only inequalities (5.2) and (5.3) are added to the model. When the other
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two experiments are compared in which no VIs are added or all VIs are added, in
high demand environments, original formulation is solved with lower gaps. However,
in low demand environments, formulation with all added VIs reported lower gaps.
Nonetheless, there is not a strict distinction between those since still exceptional
instances are observed.

Table 5.6 Gap comparison for LB Formulation with original formulation, (5.2) and
(5.3) VIs, and all VIs for 50 customers in original scenario

50 Customers
Low Demand High Demand

Ins. ∆O ∆(5.2)+
(5.3)

∆All ∆O ∆(5.2)+
(5.3)

∆All

1 11.7% 11.4% 11.9% 9.3% 9.5% 9.1%
2 10.6% 10.6% 10.7% 10.1% 9.2% 11.6%
3 14.4% 13.7% 15.3% 12.7% 12.0% 12.6%
4 12.2% 11.3% 12.7% 11.4% 10.9% 12.4%
5 10.5% 10.6% 10.9% 10.9% 11.5% 11.6%
6 11.1% 10.2% 10.9% 10.5% 10.0% 10.4%
7 13.2% 11.4% 17.1% 10.8% 10.8% 10.7%
8 12.6% 12.5% 12.0% 9.9% 9.0% 9.5%
9 14.1% 14.4% 13.1% 11.1% 10.4% 10.5%

10 12.8% 12.5% 13.1% 11.0% 11.8% 11.5%

Once the results for 50 customer instances are evaluated, again best gaps are resulted
with inequalities (5.2) and (5.3). For the low demand setting, original formulation
reported better results in terms of gaps when compared to all VIs added. On the
other hand, in the high demand setting, formulation with all added VIs reported
lower gaps.

When all results indicated above considered, best results are obtained when inequal-
ities (5.2) and (5.3). As mentioned in earlier sections, this study proposes a new
collaboration schema for a strategic network design problem. Despite the models are
not solved to the optimality, with the LB formulation and proposed VIs, reasonable
solutions are reported. So we investigated the strategic outcomes of the proposed
models and collaboration schema using those results in the following Section 5.3.
All runs are completed using LB formulation + inequalities (5.2) & (5.3) for the
strategic analysis since this formulation reported best gaps as discussed above.
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5.3 Managerial Insights

Proposed models comprise managerial aspects in addition to mathematical ap-
proaches. Given an instance, companies make decisions about number and place
of the facilities, which routes and transportation lines should be defined, and which
and how many transfer lines should be constructed under collaborative schema. As
it is proposed in former sections, collaboration leads to cost savings. And the above
decisions directly affect the cost realization of the whole system. In order to in-
vestigate strategic decisions which are given under collaboration, effect of different
parameters such as common customer number or common depot number and effect
of those parameters on collaboration amounts and gains come from collaboration,
experiments are conducted under three different scenarios as explained in Section
4.3.

First set of experiments are conducted with original scenario setup for 30 customers
in both low and high demand environments. The results can be found Table 5.7.
Explanations of abbreviations of column names from FA to Gap is explained at the
beginning of Section 5.2. Only four new columns added to new tables, namely, RC,
FC, TC, IC. RC indicates outbound routing cost, FC indicates facility opening and
maintenance cost, TC describes transfer line construction cost and lastly IC defines
inbound transportation line construction cost.

Table 5.7 LB Formulation results of original scenario and low demand setting of 30
customer instances

Ins. FA FB TA TB Obj ObjA ObjB Gap RC FC TC IC
1 1 1 1 1 59178 26722 32457 8.4% 49059 7029 0 3090
2 1 1 1 1 61095 27447 33648 4.8% 49314 7029 0 4752
I 1 1 1 1 61527 30436 31091 4.8% 46250 9413 452 5412
4 1 1 1 1 52444 27409 25035 3.4% 39391 7065 522 5466
5 1 1 1 1 57719 26702 31017 8.1% 44046 7065 259 6350
6 1 1 1 1 59213 33838 25376 6.0% 46029 8334 298 4552
7 1 1 1 1 57181 28020 29161 4.4% 44474 7065 478 5164
8 1 1 1 1 56851 29001 27850 4.9% 42153 8530 523 5645
9 1 1 1 1 66615 34664 31951 7.3% 51795 7669 614 6538

10 1 1 1 1 61106 29232 31875 6.8% 47922 7065 522 5597

In the original scenario of 30 customer instances with low demand setting, each
carrier chooses to open and maintain one facility in all instances. Also in each
instance, transfer lines are constructed between opened depots for each carrier, which
means collaboration exists. In instances 1 and 2, model chose to declare depots on
same locations and create transfer line between them with no cost, which advances
collaboration. Next, same experiments are conducted for high demand environment.
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Results can be found in Table 5.8.

Table 5.8 LB Formulation results of original scenario and high demand setting of 30
customer instances

Ins. FA FB TA TB Obj ObjA ObjB Gap RC FC TC IC
1 1 2 2 1 82554 39774 42780 11.1% 64073 10995 368 7118
2 1 1 1 1 86145 40060 46085 8.3% 70892 8731 384 6139
3 1 2 2 1 87266 42203 45063 8.0% 65143 12739 325 9059
4 1 1 1 1 69007 34748 34260 7.8% 55954 7065 522 5466
5 1 2 2 1 78874 31340 47534 9.0% 57403 10995 561 9915
6 2 1 1 2 81847 46273 35575 7.0% 62660 10266 368 8553
7 2 1 1 1 78808 39394 39415 10.0% 60127 10266 282 8133
8 1 1 1 1 75266 38078 37188 7.9% 60568 8530 523 5645
9 2 2 2 1 88562 42584 45978 9.4% 59361 15663 463 13074

10 1 2 2 1 80652 35424 45229 5.9% 56439 12460 886 10867

Once the demand increased, carriers chose to open new facilities in order to deal
with increased routing costs. Overall, costs are increased since number of routes
should be created to satisfy increased demand is increased as well. Depending on
the instance, number of constructed transfer lines is also increased. Augmentation
rate of RC is higher than other costs since increased demand mainly affects number
of routes that must be constructed to satisfy increased demand. In high demand
setting, instances 1 and 2, depots are opened in different locations as well in contrast
to low demand setting.

In order to the see how much gains are achieved through collaboration, above in-
stances are solved in individual environments in which no collaboration exists be-
tween carriers. To solve instances, individual load based formulation is used which
is proposed in Appendix A which is formulated for a single carrier. For each carrier,
time limit is set to 4 hours for 30 customer instances and 8 hours for 50 customer
instances to equate total run times with collaborative scenarios. In the individual
run results, Obj shows the sum of separate objectives of each carrier ObjA and ObjB

for carriers A and B, respectively. BBA and BBB indicates the best bounds of the
objective function value that is found by the solver for carriers A and B, respectively
and BBObj indicates the sum of those value which is the OFV of integrated problem.
TA(s) and TB(s) reports the run time for the given instance and GapA and GapB

illustrates the reported lowest gap within given time limit for each carrier. Results
for the 30 customer instances with original setting under low demand environment
can be found in Table 5.9.

Instances which are solved until optimality are indicated with red color in Table
5.9. Five instances are solved to optimality. Rest is solved with lower gaps when
compared to collaborative versions. However, in order to conduct an accurate com-
parison, best bounds are also compared with the collaborative solutions. Since best
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Table 5.9 Individual LB Formulation results for original scenario and low demand
setting of 30 customer instances

Ins. Obj ObjA ObjB BBObj BBA BBB TA(s) TB(s) GapA GapB
1 65225 32188 33037 65225 32188 33037 1080 9587 0.0% 0.0%
2 67980 35502 32478 67980 35502 32478 3773 1312 0.0% 0.0%
3 70869 34267 36603 66351 32108 34244 14400 14400 6.3% 6.4%
4 58522 29866 28657 58522 29866 28657 2180 4372 0.0% 0.0%
5 65900 31679 34221 65511 31290 34221 14400 13516 1.2% 0.0%
6 66274 35616 30658 65133 34476 30658 14400 5907 3.2% 0.0%
7 63901 32540 31362 63901 32540 31362 9910 9916 0.0% 0.0%
8 61667 28201 33467 61667 28201 33467 2441 7336 0.0% 0.0%
9 73648 35447 38201 70154 33465 36689 14400 14400 5.6% 4.0%

10 65438 31330 34109 63361 31330 32031 3724 14400 0.0% 6.1%

bounds indicates the best achievable results for given individual instance, if the col-
laborative solutions with gaps still reports a better outcome against best bound of
individual scenario, it means collaborative model indeed promises gains. Gains are
identified in Figure 5.1 via comparing objective function values of non-collaborative
and collaborative scenarios. In Figure 5.1, green bars indicate overall gain of the
system, where orange and blue bars indicate gains of carrier A and carrier B, re-
spectively. Gains can be realized with − coefficients which indicates loss.

Figure 5.1 Gain comparison through OFVs for original scenario and low demand
setting of 30 customer instances

When OFVs are compared in the low demand setting of original scenario with 30
customers, magnitude of the gains which arise from collaboration deviates between
6.6% and 13.2%. In average, overall gain of the whole system is 10.1%. As men-
tioned in earlier sections, proposed model assumes that there is a centralized decision
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making mechanism so that they minimize the total cost of the all network. So that
individual carriers may suffer and worse cost realizations may occur when compared
to individual scenarios. For the given examples, gains for carrier A deviate between
-2.8% and 22.7% where average gain for carrier A is 10%. Gains for carrier B devi-
ate between -3.6% and 17.2% where average gain for carrier B is 9.9%.In instance
2, carrier B had a worse outcome when compared to individual scenario but gain
of integrated system is 10.1%. On the contrary, in the instance 8, carrier A had
a worse outcome where overall gain realization was 7.8%. As mentioned in Table
5.9, not all individual instances are solved to optimality. Therefore, best bounds are
also compared with the collaborative results to ensure and investigate the minimum
amount of gains. Results are presented in Figure 5.2.

Figure 5.2 Gain comparison through best bounds for original scenario and low de-
mand setting of 30 customer instances

Indeed gains reported in Figure 5.1 state an upper bound for the best bound re-
sults. On the other hand, gains reported in the best bound results hold a lower
bound for the "real" gains since best bound represent the best theoretical results
that can be achieved. Since some instances are solved with higher gaps, reported
best bound may be far away from real optimum solution and OFV. When the best
bounds of the individual scenario are compared with the collaborative solution, it is
observed that gains deviate between 3.6% and 11.9% which indicates that despite
gaps, collaborative scenario still provides a better cost realization. Average gain is
8.5%. For the given examples, gains for carrier A deviate between -3.6% and 22.7%
where average gain for carrier A is 8.4%. Gains for carrier B deviate between -3.6%
and 17.2% where average gain for carrier B is 8.4%.
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In order to the see the effect of demand on problem and collaboration, same ex-
periments are conducted for high demand environment of original scenario with 30
customers. Results can be found in Table 5.10

Table 5.10 Individual LB Formulation results for original scenario and high demand
setting of 30 customers instances

Ins. Obj ObjA ObjB BBObj BBA BBB TA(s) TB(s) GapA GapB
1 89531 42193 47338 84942 41280 43663 14400 14400 2.2% 7.8%
2 91773 49064 42709 90047 47339 42709 14400 2491 3.5% 0.0%
3 92738 46788 45951 90634 44684 45951 14400 4814 4.5% 0.0%
4 77789 38617 39173 73886 36798 37088 14400 14400 4.7% 5.3%
5 87299 40988 46312 82738 39351 43388 14400 14400 4.0% 6.3%
6 90180 47948 42233 84576 45397 39179 14400 14400 5.3% 7.2%
7 84438 43178 41260 79481 40536 38945 14400 14400 6.1% 5.6%
8 84637 38809 45828 79355 36768 42587 14400 14400 5.2% 7.1%
9 94613 43824 50789 91511 43824 47687 5261 14400 0.0% 6.1%

10 88344 43196 45148 85843 40695 45148 14400 6838 5.8% 0.0%

When high demand scenarios are compared with the low demand scenarios, it is
observed that the average gaps for individual scenarios are higher. None of the
problems for both carriers solved to optimality. Individual results again compared
with the collaborative scenario to see how much gains are obtained.

Figure 5.3 Gain comparison through OFVs for original scenario and high demand
setting of 30 customer instances

When OFVs are compared for the centralized system, it is seen that gains deviate
between 5.9% and 11.3% where average is 8.3%. In none of the instances, carrier
A reported a loss for the collaborative schema and reported gains deviate between
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1.9% and 23.5%. Average gain amount for the carrier A is 10.2%. For the carrier
B, collaborative setup reported worse cost realizations for three instances. Gains
for carrier B deviate between -7.9% and 18.9% where average gain for B is 6.2%.
In order to the see the lower bound of the gains, best bounds of reported individual
scenarios are also compared and the results can be found in Figure 5.4.

Figure 5.4 Gain comparison through best bounds for original scenario and high
demand setting of 30 customer instances

When the gains are compared through best bounds for high demand setting of
original scenario with 30 customers, it is seen that gains are lowered but still in
all collaborative scenarios, a positive gain is reported. Gains for whole system vary
between 0.8% and 6.6% and the average gain amount is 4.1%. For carrier A, average
gain percentage is 6.4 where gains differ between -3.6% and 20.4%. For the carrier
B, average gain percentage is 1.8 in which gains deviate between -9.6% and 12.7%.

Overall, in all experiments based on original scenario of 30 customers, proposed
models report positive acquisitions. In most cases, both carriers benefit from the
collaboration. However, there exist some instances in which one carrier reports a
worse outcome when compared to individual scenario in favor of better outcome
for whole system. To see the effect of common customer number on collaboration,
above experiments, which are conducted to identify gain structure, are repeated.
The setup, in which common customer numbers are increased, is called "Increased
Common Customer" as mentioned in Section 4.3 and abbreviated as ICC. Collab-
oration occur if a customer is called common. If it is a common customer, then
the demand which arise from this customer can be satisfied from either one of the
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carriers. When the number of common customers increase in the system, number
of opportunities increase as well. On the contrary, once the number of common
customer increases, complexity of problem increases as well since the number of
possible opportunities to complete deliveries increase as well.

First experiments of ICC scenario is conducted with 30 customers and low demand
environment. Results can be found in Table 5.11.

Table 5.11 LB Formulation results with ICC scenario and low demand setting of 30
customer instances

Ins. FA FB TA TB Obj ObjA ObjB Gap RC FC TC IC
1 1 1 1 1 59139 28287 30852 8.2% 45771 9111 158 4099
2 1 1 1 1 60859 24108 36750 6.4% 45895 8441 384 6139
3 1 1 1 1 62598 29455 33143 7.6% 47356 9378 452 5412
4 1 1 1 1 49296 22490 26805 5.9% 36191 7456 492 5157
5 1 1 1 1 57451 20065 37385 8.8% 41731 9111 259 6350
6 1 1 1 1 55410 33115 22295 7.1% 43104 7456 298 4552
7 1 1 1 1 56382 26823 29558 6.3% 43440 7456 419 5067
8 1 1 1 1 52368 26016 26352 6.7% 38905 7892 428 5144
9 1 1 1 1 65171 34556 30615 10.2% 51047 7456 512 6156

10 1 1 1 1 62071 25848 36223 10.7% 47630 7456 244 6741

In all instances all carriers chose to open one depot and construct one transfer line.
Reported optimality gaps are higher when compared the low number of customers
on average. To see the effect of high demand on this setup, same experiments are
repeated for high demand environment. Results can be found in Table 5.12.

Table 5.12 LB Formulation results with ICC scenario and high demand setting of
30 customer instances

Ins. FA FB TA TB Obj ObjA ObjB Gap RC FC TC IC
1 1 3 3 1 82197 28165 54032 12.7% 52235 16672 651 12639
2 2 1 1 2 81755 36503 45252 8.1% 57605 13572 690 9888
3 2 3 3 2 85123 36376 48747 8.8% 45362 19888 625 19247
4 1 1 1 1 65385 27469 37916 8.8% 52280 7456 492 5157
5 1 2 2 1 76175 32307 43869 8.3% 55266 10772 497 9640
6 2 2 2 2 75411 42314 33096 7.5% 47368 14965 697 12380
7 1 1 1 1 77186 38752 38434 11.2% 64244 7456 419 5067
8 1 2 2 1 65896 30849 35047 4.6% 42350 13292 731 9523
9 2 2 2 2 85490 41236 44255 10.1% 55448 14984 729 14329

10 1 2 2 1 80933 38737 42196 9.3% 55631 13409 868 11025

Once the demand setting is switched to high, number of opened facilities and con-
structed transfer lines increased. Total costs are increased when compared to low
demand setting. To see the effect of increased number of common customers on
collaboration and identify gains from that collaboration, non-collaborative scenario
experiments are completed for 30 customer ICC setting as well. Results can be
found in Table 5.13.
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Table 5.13 Individual LB Formulation results for ICC scenario and low demand
setting of 30 customer instances

Ins. Obj ObjA ObjB BBObj BBA BBB TA(s) TB(s) GapA GapB
1 69703 35091 34612 69703 35091 34612 4559 2895 0.0% 0.0%
2 72538 37847 34691 69846 35155 34691 14400 8310 7.1% 0.0%
3 71499 33590 37909 65414 30885 34529 14400 14400 8.1% 8.9%
4 59526 30338 29188 59526 30338 29188 1256 1356 0.0% 0.0%
5 70753 35529 35224 68143 34207 33936 14400 14400 3.7% 3.7%
6 65553 35590 29964 63709 33746 29964 14400 2410 5.2% 0.0%
7 68737 34698 34040 65284 32538 32747 14400 14400 6.2% 3.8%
8 65577 31011 34566 61674 29324 32350 14400 14400 5.4% 6.4%
9 75511 36010 39501 70839 34215 36624 14400 14400 5.0% 7.3%

10 69502 35046 34456 65782 33681 32101 14400 14400 3.9% 6.8%

We compare the results of collaborative scenario with best reported objective func-
tion value of individual runs as well as best bounds found. Gains that are identified
through the comparison of OFVs can be found in Figure 5.5.

Figure 5.5 Gain comparisons through OFVs for ICC scenario and low demand setting
of 30 customer instances

When the non-collaborative and collaborative scenarios are compared for low de-
mand setting of ICC scenario with 30 customers, in all instances, collaborative
scenario reports positive gains. For centralized system, gains deviate between 10.7%
and 20.1% where average gain amount is 15.8%. For carrier A, average gain percent-
age is 21.3 where gains differ between 4% and 43.5%. 43.5% is an extreme example
in which a carrier is decreased its cost almost by half with reported solutions. Car-
rier A benefits from collaboration in all instances and reports a positive gain for each
instance. For the carrier B, average gain percentage is 9.9 in which gains deviate
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between -6.1% and 25.6%. In three instances, carrier B suffer from collaboration
and reports increased cost. In order to the see the lower bound of the gains, best
bounds of reported individual scenarios are also compared and the results can be
found in Figure 5.6.

Figure 5.6 Gain comparisons through best bounds for ICC scenario and low demand
setting of 30 customer instances

When the gains are compared through best bounds for low demand setting of ICC
scenario with 30 customers, again in all instances, collaborative scenario yields better
outcomes when contrasted with individual scenarios. Gains for whole system deviate
between 4.3% and 17.2%. Average gain amount is 12.1%. Carrier A reports positive
gains for 9 out of 10 instances with an average of 17.6%. Gain percentages vary
between -1% and 41.3% for carrier A. For carrier B average gain is 6.4% where
gains deviate between -12.8% and 25.6%.

The gains with ICC scenario with low demand are higher when compared to original
scenario with low demand in average. To evaluate the effect of demand on collabo-
ration levels, same experiments are conducted for high demand environment of ICC
scenario with 30 customers. Results can be found in Table 5.14.

Similar to what we did for low demand instances of ICC, we compare the results
of collaborative scenario with best reported OFV of individual runs as well as best
bounds found. Gains that are identified through the comparison of OFVs can be
found in Figure 5.7

When collaboration results are compared with individual results through best found
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Table 5.14 Individual LB Formulation results for ICC scenario and high demand
setting of 30 customer instances

Ins. Obj ObjA ObjB BBObj BBA BBB TA(s) TB(s) GapA GapB
1 95724 44646 51078 88974 42116 46859 14400 14400 5.7% 8.3%
2 97506 50609 46898 90242 47136 43106 14400 14400 6.9% 8.1%
3 93483 46193 47290 87853 42151 45702 14400 14400 8.8% 3.4%
4 78934 39894 39040 74652 37587 37066 14400 14400 5.8% 5.1%
5 92166 45135 47031 86278 43818 42460 14400 14400 2.9% 9.7%
6 89378 48610 40768 83216 44074 39142 14400 14400 9.3% 4.0%
7 90706 45668 45039 83603 42033 41571 14400 14400 8.0% 7.7%
8 84769 40685 44085 78787 37157 41630 14400 14400 8.7% 5.6%
9 99234 45922 53312 91314 43898 47416 14400 14400 4.4% 11.1%

10 95170 46892 48279 87907 43623 44284 14400 14400 7.0% 8.3%

Figure 5.7 Gain comparisons through OFVs for ICC scenario and high demand
setting of 30 customer instances

objective function values to evaluate gains for the high demand setup of ICC setting
for 30 customers, it is seen that there is an average gain of 15.5%. For the integrated
system gains vary between 8.9% and 22.3%. Carrier A benefited from collaboration
in all instances with an average gain amount of 22.3%. Carrier A gained at least
10.2% from collaboration and 36.9% at most. On the other hand, carrier B reported
worse outcomes for 2 instances but for the rest of the instances it reported positive
gains as well. Average gain of carrier B is 8.8% where gains deviate between -5.8%
and 20.5%.

Next, best bounds of individual scenarios are compared with the collaborative sce-
nario results to asses lower bound on gains and the results can be found in Figure
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5.8.

Figure 5.8 Gain comparisons through best bounds for ICC scenario and high demand
setting of 30 customer instances

When the individual results are compared with collaborative results for the high
demand setup of ICC scenario for 30 customers through best bounds, again all
instances with collaboration reported a lower cost and more gains. Centralized
system has a gain of 9.2% on average where gains vary between 3.1% and 16.4%.
Carrier A reported better outcomes in all cases which means collaboration was
beneficial for carrier A in all cases. Carrier A gained 16.9% on average where gains
of A deviate between 4% and 33.1%. On the other hand, carrier B realized higher
costs in five instances with an average gain of 1.8%. Minimum gain of carrier B is
-15.3% and maximum gain of carrier B is 15.8%.

When the results of high demand ICC setting is compared with high demand original
scenario results, it is observed that gain percentages are higher in ICC scenarios.
Those results overlap with the expected outcomes since increased number of common
customers increase the collaboration possibility which may yield lower costs. In
original scenario’s best bound comparisons, average gains was reported as 4.1%, but
in ICC setting it is reported as 9.2%.

Overall, all experiments which are conducted with ICC setting of 30 customers
yielded positive gains. As explained in Section 4.3, in the original scenarios, carriers
declare some of the possible regional depot locations as common and no cost incurred
if a transfer line is constructed between two depots which share same location. Main
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Table 5.15 LB Formulation results for NCD scenario and low demand setting of 30
customer instances

Ins. FA FB TA TB Obj ObjA ObjB Gap RC FC TC IC
1 1 1 1 1 60011 30863 29147 6.8% 48222 7532 158 4099
2 1 1 1 1 64459 26433 38026 6.4% 51165 7532 284 5478
3 1 1 1 1 63377 31338 32039 5.9% 51274 7424 313 4366
4 1 1 1 1 54967 28233 26733 4.0% 41837 6794 66 6270
5 1 1 1 1 58945 31605 27339 6.1% 44804 7532 259 6350
6 1 1 1 1 61669 35543 26125 6.8% 49183 7226 406 4854
7 1 1 1 1 61605 31436 30169 5.9% 48431 7532 478 5164
8 1 1 1 0 58964 26534 32430 5.2% 46263 7730 57 4915
9 1 1 1 1 62428 32707 29720 5.2% 48825 6992 485 6126

10 2 1 1 2 63145 33361 29784 9.3% 39776 10457 805 12107

motivation behind this is to incentivize collaboration between carriers. To see the
effect of not opening depots on same locations, runs are repeated with "No Common
Depot" (NCD) setting. When the number of common depots are decreased in the
system, number of collaboration opportunities decrease as well.

Initial experiments of NCD scenario are conducted with 30 customers and low de-
mand environment. Results can be found in Table 5.15.

Both carriers chose to open regional depot and create transfer lines even though the
depots are not located in same geographical locations to promote collaboration. In
order to evaluate the effect of high demand density on NCD setup, same experiments
are conducted in high demand setting. Results can be found in Table 5.16.

Table 5.16 LB Formulation results for NCD scenario and high demand setting of 30
customer instances

Ins. FA FB TA TB Obj ObjA ObjB Gap RC FC TC IC
1 1 1 1 1 84202 43080 41122 9.4% 69948 8999 361 4894
2 2 2 2 2 86447 40889 45558 5.8% 57741 14396 920 13389
3 2 1 1 2 90193 48824 41369 8.2% 68118 12525 552 8998
4 2 2 1 2 75341 39598 35742 9.1% 49606 14524 82 11129
5 2 1 1 2 80076 47109 32967 8.5% 57934 11767 489 9886
6 2 2 2 2 81810 43024 38785 7.2% 55812 13658 665 11675
7 2 1 1 2 81736 42321 39415 8.5% 62153 11125 326 8133
8 2 1 1 1 79613 39707 39905 8.1% 60084 11017 213 8299
9 2 1 1 2 83058 39650 43407 8.6% 61614 10457 815 10172

10 3 1 1 2 82731 45746 36984 8.4% 53536 15150 546 13499

Once total demand in the system increases, carriers prefer to open more depots to
cope with routing costs. And still, despite the fact that depots are not located in
same locations, they prefer to establish transfer lines. To investigate the effect of
decreased number of common depots to the gains, individual runs are completed in
which carriers act as individuals and do not collaborate. Results for the individual
runs of NCD setting for 30 customers with low demand density setting can be found
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in Table 5.17.

Table 5.17 Individual LB Formulation for NCD scenario and low demand setting of
30 customer instances

Ins. Obj ObjA ObjB BBObj BBA BBB TA(s) TB(s) GapA GapB
1 62972 30239 32734 62972 30239 32734 345 2805 0.0% 0.0%
2 69764 31921 37843 69764 31921 37843 5683 9589 0.0% 0.0%
3 69981 37386 32595 68092 35497 32595 14400 2238 5.1% 0.0%
4 57514 29861 27654 57139 29861 27279 1322 14400 0.0% 1.4%
5 65043 34757 30287 63759 33472 30287 14400 2896 3.7% 0.0%
6 67162 36233 30930 66141 35211 30930 14400 939 2.8% 0.0%
7 67295 34859 32437 66097 33661 32437 14400 1341 3.4% 0.0%
8 62871 33044 29827 62298 32472 29827 14400 1273 1.7% 0.0%
9 70567 36683 33884 69610 35726 33884 14400 734 2.6% 0.0%

10 67898 36593 31306 67529 36224 31306 14400 3282 1.0% 0.0%

As we did in ICC and original scenario instances, we compare the results of collabo-
rative scenario with best reported objective function value of individual runs as well
as best bounds found. Gains that are identified through the comparison of OFVs
for NCD setting in low demand environment of 30 customers can be found in Figure
5.9.

Figure 5.9 Gain comparisons through OFVs for NCD scenario and low demand
setting of 30 customer instances

When costs of collaborative scenarios are compared with individual scenarios
through OFVs, it is observed that all instances of NCD setting of low demand
setup for 30 customers lead to positive gains. Gain amounts are lower than both
original and ICC scenarios. Average gain percentage for centralized network is 7.7%

54



where gains deviate 4.4% and 11.5%. Carrier A reported worse outcome for only one
instance and average gain of carrier A from collaboration is 9.7%. Gain percentages
of carrier A vary between -2.1 and 19.7. Carrier B reports negative gains only for
two instances. Gains for carrier B deviate between -8.7% and 15.5% where average
gain for B is 5.6%. Best bounds of individual scenarios are also compared with the
collaborative scenarios to investigate lower bounds on gains. Results can be found
in figure 5.10.

Figure 5.10 Gain comparisons through best bounds for NCD scenario and low de-
mand setting of 30 customer instances

When the gains are compared through best bounds for NCD scenario of 30 customers
with low demand setting, a similar outcome is observed with the comparison that is
conducted through OFVs. In all instances, collaboration is beneficial for centralized
system. Average gain through collaboration is 6.6%. Gains for collaborative system
vary between 3.8% and 10.3%. For two instances carrier A reported increased costs
when compared with the individual scenario. Average gain of carrier A is 7.8%
where gains deviate between -2.1% and 18.3%. For carrier B, two instances resulted
with worst outcomes but average gain of carrier B is 5.5% where gains of B deviate
between -8.7% and 15.5%.

In order to see the effect of demand density on collaboration, NCD experiments with
30 customers are repeated under high demand environment. Results can be found
in Table 5.18.

As we did in previous experiments, we compare gains for 30 customers and NCD
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Table 5.18 Individual LB Formulation results for NCD scenario and high demand
setting of 30 customer instances

Ins. Obj ObjA ObjB BBObj BBA BBB TA(s) TB(s) GapA GapB
1 87660 43034 44626 83156 39841 43315 14400 14400 7.4% 2.9%
2 97832 43943 53890 92413 41787 50626 14400 14400 4.9% 6.1%
3 98572 53252 45320 92765 48858 43907 14400 14400 8.3% 3.1%
4 77764 40805 36960 74127 38593 35534 14400 14400 5.4% 3.9%
5 88225 49267 38959 82112 45469 36643 14400 14400 7.7% 5.9%
6 89788 47081 42707 87402 45673 41730 14400 14400 3.0% 2.3%
7 86779 44246 42533 84324 41791 42533 14400 10600 5.5% 0.0%
8 83816 44627 39189 80263 41868 38395 14400 14400 6.2% 2.0%
9 90951 46161 44791 90464 46161 44303 5409 14400 0.0% 1.1%

10 89321 45671 43651 87131 45671 41460 14244 14400 0.0% 5.0%

scenario in high demand setting through best found OFVs and best reported indi-
vidual bounds. Gains that are identified through the comparison of OFVs can be
found in figure 5.11.

Figure 5.11 Gain comparisons through OFVs for NCD scenario and high demand
setting o 30 customer instances

When the comparisons is are through OFVs, in parallel of previous findings, all
instances yielded better results under collaborative scenarios. Average gain amount
is 7.2% for centralized system where gains differ between 3.1% and 11.6%. For
carrier A all instances reported better values except for two instances. Average gain
percentage for carrier A is 6%. For carrier A, gains deviate between -0.2% and
14.1%. For carrier B gains vary between -1.8% and 15.5% where average gain is
8.4%. Best bounds of individual scenarios are also compared with the collaborative
scenarios to investigate lower bounds on gains. Results can be found in Figure 5.12
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Figure 5.12 Gain comparison through best bounds for NCD scenario and high de-
mand setting of 30 customer instances

When the comparison is conducted through best bounds for high demand setting of
NCD scenario with 30 customers, all instances yielded better results under collabo-
rative scenarios expect for two scenarios. Since all the models are solved relatively
higher gaps, these two cases are exceptions with only approximately -1% deviation.
Average gain for collaborative scenarios is 3.2% where gains deviate between -1.6%
and 8.2%. Carrier A reported an average of 1.1% gain where gains vary between -
8.1% and 14.1%. Average gain of carrier B is 5.4% where gains of B deviate between
-3.9% and 10.8%.

Overall, all instances of all scenarios are solved under both low demand and high
demand environments. LB formulation was able to find solutions for all instances
with deviating gaps. To lower gaps several valid inequalities are proposed and their
effects are investigated. All tests are continued with best found combination of pro-
posed valid inequalities. From the managerial perspective, it is observed that in
all scenarios, collaboration yielded better solutions even though the collaborative
scenario instances are solved with gaps. Collaboration behaviour tested with all
three scenarios proposed in Section 4.3, namely; original, ICC and NCD. When the
original and ICC scenarios are compared, ICC instances yielded higher gains in aver-
age, as expected because of the increased number of opportunities for collaboration.
When the original and NCD scenarios are compared, NCD instances yielded lower
gains than original instances, since the collaboration gains are restricted through
distanced facility declaration. Same experiments are conducted with 50 customer
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setups as well. Results can be found in Appendix A. However, since the reported
gaps are higher in both collaborative and individual runs, comparing results do not
promise reliable insights.

As indicated in previous sections, none of the collaborative instances solved until
optimality. Moreover, solution times are 8 and 16 hours for 30 and 50 customer
instances, respectively. 100 customer instances did not yield sensible results within
48 hour time limit.

Consequently, a new path-based formulation is proposed in Section 3.2.3 to solve
problem with a path-based formulation approach in which outbound routes are
selected pre-generated routes instead of creating optimum routes. As mentioned
before, outbound routing decisions is one of the key reasons that increase time
and space complexity of the problem. Via path-based method, time and space
complexity of the model decreased in exchange of exact solutions. Details of path-
based formulation approach discussed in Section 6.
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6. PATH-BASED FORMULATION

The path-based formulation is different from the other two in the way routing deci-
sions are modeled. Instead of constructing the routes through arc traversal decisions,
the formulation selects a subset of the routes from a set of predetermined routes. As
a matter of fact, the formulation requires these routes to be generated a priori, i.e.,
a pre-processing phase to generate routes is needed. Ideally, for the mathematical
model to find the true optimal solution equivalent that can be found by either the
VB formulation or the LB formulation, all possible feasible routes must have been
generated by this pre-processing phase. Since the number of such routes are usually
exponentially many, a possible approach is to generate a limited number of good
routes.

In our approach, the set of routes are created by solving heuristically a series of single
depot VRPs: a VRP for each depot d ∈ Dr of each carrier r ∈ C. For each depot, the
problem is solved with several different heuristic algorithms and the resulting routes
are added to route pool. Then, demands of common customers are merged as if they
are a single customer of that carrier: the new version of the problem is solved with
all heuristic algorithms again. These routes are also, added to route pool. Main
motivation behind the repetition and merging demands is to mimic creation of joint
routes when the carriers collaborate and transfer their demand among themselves.
5 different well known heuristics are utilized:

• Nearest Neighborhood (NNH) (Tyagi, 1968)

• Sweep (Gillett & Miller, 1974)

• Parallel Savings (PS) (Clarke & Wright, 1964)

• Gaskell-Savings (GS) (Gaskell, 1967)

• CMT Two-Phase Heuristic (CMT2P) (Christofides, Mingozzi & P.Toth, 1979)

The working mechanisms of the heuristics or heuristic algorithm development is
beyond the scope of this study. Different heuristic algorithms are utilized to generate
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different routes and increase the diversity among routes. Since demand transfer is
allowed if vehicle capacity is not exceeded on that route, creation of sub-optimal
routes in individual cases may be beneficial to incentivize collaboration as well.
Flowchart of the route pool generation mechanism can be found in Figure 6.1.

During root pool generation, firstly an empty master route list R is defined. Then
for each depot d ∈ Dr of each carrier r ∈ C, problem is reduced to a single depot
VRP and a list Rd = {} is initialized which denotes the routes belong to depot d

and a parameter iter = 1. Then problem is solved by NNH, Sweep, PS, GS and
CMT2P heuristics separately and all found routes are appended to Rd. Then all
generated identical routes eliminated from Rd, if there is any, to break possible
symmetry. Append Rd to R. If iter = 1, then demand of other common customers
which emerge from other carriers assigned to that customer and iter is updated to
2. All reduced problem steps are repeated for this depot. Then master route list R

is used as "possible route list" for outbound routes in path-based formulation.

For the path-based formulation, inequalities (4.4),(4.9) and (4.10) that are proposed
under Section 4.2 are valid as well. One extra valid inequality is proposed for path-
based model.

(6.1)
∑
t∈R

xt ≥ ⌈
∑

i∈N
∑

r∈C dr
i

Q
⌉

Since the total demand and vehicle capacities are known and vehicles are homoge-
neous, a lower bound on the number of routes that should be used can be forced by
inequalities (6.1). Note that since (6.1) are non-linear, it can be replaced with (6.2).

(6.2)
∑
t∈R

xt ≥
∑

i∈N
∑

r∈C dr
i

Q

6.1 Computational Experiments

Path-based (PB) formulation reduces the problem size and consequently time and
space complexity drastically. Therefore, for 30 customer instances, time limit is set
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Figure 6.1 Heuristic route pool generation
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as 2 hours, 50 customer instances 4 hours and 100 customer instances 16 hours.
Note that route generation process takes no more than 2 minutes even for biggest
instances, so they are not included in solution times.

For all results tables, RA and RB columns indicate the number of used routes in
optimum solution. Rest of the column names explained at the beginning of Section
5.2.

In PB approach, computational experiments are started with original scenario and
low demand setting of 30 customer instances. Before going into details of the run re-
sults, information on number of pre-generated routes in original scenarios presented
in Table 6.1. As it can be interpreted from Table 6.1, number of possible routes per
carrier deviate between 245 and 6344 depending on the problem size and demand
structure. In Table 6.1, TRA and TRB depicts the number of pre-generated routes
for each carrier, respectively.

Table 6.1 Pre-generated route numbers for original scenario

30 Customer 50 Customer 100 Customer
Low Dem. High Dem. Low Dem. High Dem. Low Dem. High Dem.

Ins. TRA TRB TRA TRB TRA TRB TRA TRB TRA TRB TRA TRB
1 315 379 622 785 690 603 1265 1093 2819 2678 6177 5774
2 371 320 784 679 798 705 1489 1284 2780 2855 5466 5500
3 380 323 662 617 749 649 1389 1166 2627 2522 5708 5450
4 245 359 532 793 785 726 1405 1326 2672 2575 5286 4927
5 328 357 712 722 763 733 1400 1336 2619 2779 5652 6020
6 358 315 767 678 712 713 1312 1305 2836 2737 5485 5255
7 357 316 753 664 696 714 1338 1312 2838 2858 4618 4644
8 315 315 588 615 807 701 1570 1281 2769 2851 6156 6344
9 315 353 622 787 684 668 1479 1402 2814 2682 4582 4343

10 315 356 529 667 767 700 1416 1273 2870 2715 5573 5331

Results of the path-based formulation for 30 customers under original scenario and
low demand setting can be found in Table 6.2.

Table 6.2 PB Formulation results for original scenario and low demand setting of 30
customer instances

Ins. FA FB TA TB RA RB Obj ObjA ObjB T(s) RC FC TC IC
1 1 1 1 1 4 5 59212 28374 30838 2 49093 7029 0 3090
2 1 1 1 1 9 4 63258 31251 32007 6 51477 7029 0 4752
3 1 1 1 1 9 4 66487 35099 31389 4 53486 9073 105 3928
4 1 1 1 1 3 5 56495 28600 27894 2 42512 8334 492 5157
5 1 1 1 1 4 5 59675 23104 36571 5 46002 7065 259 6350
6 1 1 1 1 4 4 62773 35704 27069 4 50294 7065 382 5033
7 1 1 1 1 5 4 60823 29770 31053 3 48116 7065 478 5164
8 1 1 1 1 3 4 59838 27162 32675 5 45140 8530 523 5645
9 1 1 1 1 4 4 71090 34649 36441 6 55295 8938 333 6525

10 1 1 1 1 4 5 63738 29752 33986 3 50554 7065 522 5597

Within seconds, all of the instances are solved with 0 gap. Maximum run time is
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6 seconds. When the results are compared with the LB formulation results, both
carriers open one depot and create one transfer line between depots. Number of
total selected routes in PB formulation results deviate between 7 and 13. Same
experiments are conducted for high demand environment as well. Results can be
found in Table 6.3.

Table 6.3 PB Formulation results for original scenario and high demand setting of
30 customer instances

Ins. FA FB TA TB RA RB Obj ObjA ObjB T(s) RC FC TC IC
1 1 2 2 1 7 11 84655 37917 46738 10 66736 11299 181 6439
2 2 1 1 2 18 7 87762 49155 38607 6 66925 12130 192 8515
3 2 2 2 2 15 22 81829 41689 40140 2 50744 17032 362 13691
4 2 1 1 2 7 9 72874 35897 36977 5 53427 10266 327 8854
5 1 2 2 1 8 9 80099 33351 46748 7 59982 11440 448 8229
6 2 2 2 2 8 10 87084 44873 42211 8 59309 14641 692 12442
7 2 1 1 1 10 7 80806 44932 35874 15 62124 10266 282 8133
8 1 1 1 1 8 6 78296 42119 36177 18 63598 8530 523 5645
9 2 2 1 2 8 8 91513 46544 44970 29 62523 15967 166 12857

10 1 2 2 1 6 10 79527 37881 41646 4 55314 12460 886 10867

In high demand environment, all instances are solved under 30 seconds as well. Max-
imum solution time is 29 seconds and average solution time is 10 seconds. Number
of selected routes deviate between 14 and 37.

Since outbound routes are created heuristically, results of exact solutions which
are achieved through LB formulation, are compared with PB solutions in order
to evaluate how much PB formulation deviate from optimality. Since not all LB
formulation examples are solved to optimality, we compare both best found objective
values within 8 hour limit and best bounds found by solver. Deviation amounts for
original scenario of 30 customer instances can be found in Table 6.4.

Table 6.4 PB deviation percentages for original scenario of 30 customer instances

Low Demand High Demand
Ins ∆OF V ∆BB ∆OF V ∆BB

1 0.1% 8.4% 2.5% 13.3%
2 3.4% 8.1% 1.8% 9.9%
3 7.5% 11.9% -6.6% 7.0%
4 7.2% 10.3% 5.3% 12.7%
5 3.3% 11.1% 1.5% 10.4%
6 5.7% 11.3% 6.0% 12.6%
7 6.0% 10.1% 2.5% 12.2%
8 5.0% 9.6% 3.9% 11.4%
9 6.3% 13.1% 3.2% 12.3%

10 4.1% 10.7% -1.4% 4.5%

In deviation tables, ∆OF V indicates the percentage difference between the objective
function value of PB formulations run results and the best reported objective func-
tion value of LB formulation. In other words, it shows that how far PB solution is

63



away from the best found exact solution reported by LB model within 8 hours for 30
customer instances. Similarly, ∆BB reports the difference percentage between the
objective function value of PB model results and the best reported bound by LB
formulation. A negative sign (-) means that PB method reported a better solution.

In low demand environment of original scenario of 30 customer instances, PB formu-
lation deviates 4.8% on average when comparison is conducted through best found
OFVs of LB formulation. Minimum deviation is 0.1% which means that PB formu-
lation found a solution almost as good as exact formulation, within seconds. On the
other hand maximum deviation is 7.5%. When deviations compared through best
bounds, average difference in 10.5% where minimum variance is 8.1% and maximum
variance is 13.1%.

When best found OFVs are compared with PB formulation results for high demand
environment of the original scenario of 30 customers, it is observed that PB model
reported better outcomes for two instances. In average, PB formulation deviates
1.9% and deviation range is between -6.6% and 6%. When deviations compared
through best bounds, average difference is 10.6% where minimum variance is 4.5%
and maximum variance is 13.3%.

Overall, when the original setting of 30 customer instances investigated, PB ap-
proach deviates 3.4% in average when OFVs are compared and 10.5% on average
when bests bounds are compared. Same experiments are repeated with 50 customer
instances. PB formulation run results for low demand setting and original scenario
of 50 customer instances can be found in Table 6.5.

Table 6.5 PB Formulation results for original scenario and low demand setting of 50
customer instances

Ins. FA FB TA TB RA RB Obj ObjA ObjB T(s) RC FC TC IC
1 2 2 2 1 6 6 89476 43608 45868 12 58555 17069 147 13706
2 2 1 1 0 6 8 90619 44855 45764 21 67563 13406 239 9411
3 1 1 1 1 7 6 84881 40609 44273 37 70557 10386 285 3653
4 2 2 2 2 7 8 87623 42465 45158 29 60775 15664 396 10788
5 2 1 1 2 7 8 87197 46103 41094 13 68541 11894 370 6392
6 1 1 1 1 6 7 86500 43433 43067 22 75813 8590 181 1916
7 1 1 1 1 7 6 86940 46419 40521 21 76263 8032 223 2422
8 2 2 2 2 7 7 104264 50686 53579 44 72608 17306 584 13766
9 1 2 1 1 6 8 90836 45053 45783 92 69787 11430 43 9576

10 2 2 2 2 8 8 103262 51673 51589 32 71436 19049 692 12085

In low demand environment, all instances are solved under two minutes. Maximum
solution time is 92 seconds and average solution time is 32 seconds. Number of
selected routes deviate between 14 and 16.

The experiments are repeated for the for high demand environment and original
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scenario setting of 50 customers. Results can be found in Table 6.6.

Table 6.6 PB Formulation results for original scenario and high demand setting of
50 customer instances

Ins. FA FB TA TB RA RB Obj ObjA ObjB T(s) RC FC TC IC
1 2 2 2 2 11 12 107793 53111 54682 12 76724 17069 294 13706
2 2 2 2 2 13 13 112120 60779 51341 38 77212 19656 827 14424
3 2 2 1 2 13 11 111125 52967 58159 80 83610 17700 145 9671
4 2 3 1 2 14 12 108818 56296 52523 18 70451 22130 417 15820
5 2 3 2 2 12 13 115084 52583 62501 45 78273 20106 874 15832
6 3 3 2 2 10 14 110016 53199 56818 14 66996 23449 218 19353
7 2 2 2 2 12 15 114594 50365 64229 41 84984 17822 567 11222
8 3 2 2 3 16 11 129866 70035 59832 18 87191 21068 712 20896
9 3 3 2 3 14 13 116189 59813 56376 15 72337 22778 323 20751

10 3 2 1 2 14 13 128774 61819 66955 64 89393 22311 560 16510

In high demand environment, all instances are solved under two minutes as well.
Maximum solution time is 80 seconds and average run time is 35 seconds. As we
did in 30 customer setting, deviations are compared with the best reported OFVs
and best bounds of LB formulation. Results can be found in Table 6.7

Table 6.7 PB deviations for original scenario of 50 customer instances

Low Demand High Demand
Ins ∆OF V ∆BB ∆OF V ∆BB

1 1.4% 12.7% -2.9% 6.9%
2 8.5% 18.2% -3.3% 6.1%
3 3.5% 16.7% -3.2% 9.2%
4 2.7% 13.7% -4.4% 6.9%
5 2.6% 12.9% -5.0% 7.1%
6 6.4% 15.9% -4.3% 6.1%
7 2.1% 13.2% -1.3% 9.7%
8 5.1% 17.0% -0.3% 8.7%
9 3.6% 17.4% 4.0% 13.9%

10 3.2% 15.3% -4.3% 7.9%

In low demand and original scenario of 50 customer instances, PB formulation results
deviate 3.9% on average when comparisons are conducted through the best found
OFVs of LB formulation’s 16 hour runs. Average run time for PB formulation is
in the order of seconds. Minimum deviation is 1.4% and maximum deviation is
8.5%. When deviations compared through best bounds, average deviation is 15.3%
where minimum deviation is 12.7% and maximum deviation is 18.2%. Since LB
formulations solved with optimality gaps for 50 customer instances, deviation rate
∆BB reports an upper bound for deviation amount.

In high demand environment, when the best OFVs are compared, average deviation
turns out to be -2.5% where minimum deviation is -5% and maximum deviation is
4%. Furthermore, PB formulation found better results within seconds for 9 out of 10
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instances. When deviations are compared through best bounds, average deviation
is 8.2% where maximum deviation is 13.9%.

Overall, when the original setting of 50 customer instances investigated, PB ap-
proach deviates 0.7% in average when OFVs are compared and 11.8% in average
when bests bounds are compared.

Since solution times decreased for 30 and 50 customer instances under original sce-
nario, 100 customer instances are solved with PB formulation as well. For the 100
customer instances, only 3 solutions are found by LB formulation within 48 hours
of run time, and average gap of those instances are 61.5%. Other instances were
not be able to solved because of memory issues or no feasible solutions are reported
within given time limit. Experiments are repeated with original scenario of 100
customer instances for PB formulation. PB formulation run results for low demand
and original scenario of 100 customer instances can be found in Table 6.8.

Table 6.8 PB Formulation results for original scenario and low demand setting of
100 customer instances

Ins FA FB TA TB RA RB Obj ObjA ObjB T(s) RC FC TC IC
1 3 2 2 3 15 12 130086 67529 62556 676 98570 18080 413 13022
2 2 2 2 2 13 14 134553 65329 69224 4035 109531 15958 469 8595
3 2 3 3 2 12 13 134803 70106 64697 1955 95940 21309 674 16880
4 2 2 2 2 14 12 132917 66092 66826 1738 107289 14054 391 11183
5 2 2 2 2 13 13 139164 69815 69349 3543 118193 14318 247 6406
6 2 2 2 2 13 14 130353 64118 66236 730 109035 13525 307 7486
7 2 3 2 2 15 14 138534 69514 69020 1929 102812 21847 246 13629
8 2 3 3 2 14 13 135919 71045 64874 669 100961 17639 658 16661
9 3 2 2 3 14 14 138389 69475 68914 2698 104155 19929 705 13600

10 2 2 2 2 14 14 137148 71254 65894 1604 110825 15548 658 10118

Using PB formulation, all instances are solved to optimality. For original scenario
and low demand setting of 100 customer instances, average run time turns out to
be 1958 seconds which is approximately half an hour. Maximum run time is 3543
seconds and minimum run time is 669 seconds. Carriers started to open more depots
and declare more transfer lines. Number of total selected routes increased either for
both carriers. Since all instances are solved with no gaps, same experiments are
repeated for the high demand setting. Results can be found in Table 6.9.

For original scenario and high demand setting of 100 customer instances, average run
time is 1189 seconds which is under 20 minutes. Conversely, the deviation between
max run time and min run time is higher when compared to low demand scenario.
For the high demand scenario, minimum run time is 328 seconds and maximum run
time is 6010 seconds. In the high demand scenario, carriers prefer to open more
depot and transfer lines between depots. Number of used routes increased as well
and deviate between 45 and 59.
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Table 6.9 PB Formulation results for original scenario and high demand setting of
100 customer instances

Ins FA FB TA TB RA RB Obj ObjA ObjB T(s) RC FC TC IC
1 4 5 5 2 27 31 179192 81451 97741 358 117208 32436 383 29165
2 3 4 4 3 24 28 175510 82049 93461 921 124757 27080 770 22902
3 4 3 3 3 26 27 172583 89524 83059 495 117288 25220 659 29416
4 4 4 3 4 26 23 171736 90075 81661 535 113552 30924 814 26445
5 4 4 4 4 27 28 184279 93553 90726 350 128324 29172 842 25941
6 4 3 2 4 26 24 173623 89068 84555 1143 127297 26668 623 19035
7 3 3 3 2 24 21 165411 83634 81777 1298 122132 23824 427 19027
8 4 3 3 4 32 27 187854 99803 88052 446 136635 27551 852 22816
9 4 3 3 3 23 21 171977 84453 87524 6010 119259 26977 572 25170

10 4 4 4 3 25 29 174801 90015 84786 328 114162 32381 606 27651

All instances of original scenario are solved till optimality with PB formulation and
therefore all experiments are repeated with ICC and NCD scenarios to see the effect
of data structure on problem. Initially, experiments are started with the 30 customer
and low demand setup of ICC scenario.

Before going into details of the experiment results, information on number of pre-
generated routes in ICC scenarios presented in Table 6.10. As it can be concluded
from the Table 6.10, number of possible routes per carrier deviate between 282 and
6682 depending on the problem size and demand structure.

Table 6.10 Pre-generated route numbers for ICC scenarios

30 Customer 50 Customer 100 Customer
Low Dem. High Dem. Low Dem. High Dem. Low Dem. High Dem.

Ins. TRA TRB TRA TRB TRA TRB TRA TRB TRA TRB TRA TRB
1 346 368 705 800 748 659 1384 1174 2978 2901 6525 6308
2 383 360 817 769 857 759 1841 1611 3054 3047 5950 5874
3 366 358 678 670 783 707 1696 1508 2842 2727 6110 5919
4 282 365 605 774 881 725 1617 1297 2835 2843 5452 5485
5 359 354 773 743 784 794 1440 1456 2804 3012 6080 6570
6 377 348 818 719 802 752 1457 1376 2995 3017 5801 5804
7 370 347 818 715 797 754 1476 1382 3036 3066 4899 4960
8 334 338 654 646 909 763 1702 1371 2967 3044 6540 6682
9 349 370 703 837 747 707 1598 1504 2985 2933 4844 4726

10 322 384 596 710 784 776 1471 1411 3096 2828 6119 5563

Results of PB formulation runs for 30 customer instances under original and low
demand scenario can be found in Table 6.11.

Under two minutes, all of the instances all solved to optimality. Maximum run
time is 98 seconds and minimum run time is 9 seconds. Average run time is 27
seconds for the PB formulation results with 30 customers and ICC scenario in low
demand setting. In all instances, both carriers chose to open one depot and declare
one transfer line. Number of total selected routes vary between 8 and 12. Same
experiment is conducted for high demand environment as well. Results can be
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Table 6.11 PB Formulation results for ICC scenario and low demand setting of 30
customer instances

Ins FA FB TA TB RA RB Obj ObjA ObjB T(s) RC FC TC IC
1 1 1 1 1 4 4 61617 30649 30968 18 48249 9111 158 4099
2 1 1 1 1 6 6 66917 28582 38335 27 51542 10623 0 4752
3 1 1 1 1 4 6 64793 30357 34436 9 50906 9208 313 4366
4 1 1 1 1 4 4 52718 28585 24133 19 39614 7456 492 5157
5 1 1 1 1 4 5 61008 24980 36028 25 45289 9111 259 6350
6 1 1 1 1 5 3 58756 37667 21089 22 46450 7456 298 4552
7 1 1 1 1 5 4 62069 32040 30029 17 49127 7456 419 5067
8 1 1 1 1 4 4 54596 27326 27270 16 39947 7963 594 6092
9 1 1 1 1 3 5 69495 30289 39206 98 52908 10005 237 6345

10 1 1 1 1 4 5 65380 31796 33584 19 50773 6929 606 7073

found in Table 6.12.

Table 6.12 PB Formulation results with 30 customers and ICC scenario in high
demand setting

Ins FA FB TA TB RA RB Obj ObjA ObjB T(s) RC FC TC IC
1 1 2 2 1 6 12 82493 29554 52939 27 60454 12973 449 8618
2 3 1 1 3 21 5 85637 51811 33825 20 53441 16324 1038 14834
3 1 2 2 1 12 22 80740 35753 44987 42 58286 12471 487 9497
4 1 1 1 1 6 10 68220 29142 39078 27 55116 7456 492 5157
5 1 2 2 1 6 11 77020 25294 51726 17 55371 12973 448 8229
6 2 2 2 2 9 9 77171 42707 34464 14 49129 14965 697 12380
7 1 2 2 1 9 9 79263 38681 40582 91 58602 11318 545 8798
8 1 2 2 1 7 8 68111 30198 37913 13 44566 13292 731 9523
9 2 2 2 2 9 10 88169 41383 46786 61 58127 14984 729 14329

10 2 2 2 2 7 9 79354 35915 43438 26 46707 15420 617 16610

Optimum results for PB formulation are reported under two minutes for high de-
mand setting. Average run time is 34 seconds where run times deviate between 17
and 91 seconds. Once the demand setting switched to high, carriers started to open
more depots and define more transfer lines. Number of total selected routes vary
between and 16 and 34. When the ICC experiments with 30 customers compared
with the original scenario experiments with 30 customers, it is observed that solu-
tion times increased with ICC setup. Run time comparisons can be found in Table
6.13. Run times are indicated in terms of seconds.

Table 6.13 Original vs ICC scenario run times with 30 customer instances under PB
formulation

Instance 1 2 3 4 5 6 7 8 9 10

Low Demand Original 2 6 4 2 5 4 3 5 6 3
ICC 18 27 9 19 25 22 17 16 98 19

High Demand Original 10 6 2 5 7 8 15 18 29 4
ICC 27 20 42 27 17 14 91 13 61 26

When the results compared in Table 6.13, it is observed that ICC setting increases
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solution times. Since number of possibilities for assignment and collaboration in-
creases with the ICC scenario, solution times are increased as well.

As we did in original scenario instances, deviations are compared with the best
reported OFVs and best bounds of LB formulation for ICC scenario. Results can
be found in Table 6.14.

Table 6.14 PB deviations for ICC scenario of 30 customer instances

Low Demand High Demand
Ins ∆OF V ∆BB ∆OF V ∆BB

1 4.0% 11.9% 0.4% 13.0%
2 9.1% 14.9% 4.5% 12.3%
3 3.4% 10.7% -5.4% 3.9%
4 6.5% 12.0% 4.2% 12.6%
5 5.8% 14.1% 1.1% 9.3%
6 5.7% 12.4% 2.3% 9.6%
7 9.2% 14.9% 2.6% 13.6%
8 4.1% 10.5% 3.3% 7.7%
9 6.2% 15.8% 3.0% 12.8%

10 5.1% 15.2% -2.0% 7.4%

In low demand environment of ICC scenario of 30 customer instances, PB model
deviates 5.9% in average when comparison is conducted through best found OFVs.
Minimum deviation is 3.4% and maximum deviation is 9.2%. When deviations
compared through best bounds, average difference is 13.2% where minimum variance
is 10.5% and maximum variance is 15.8%.

When best found OFVs are compared with PB formulation results for high demand
environment of the ICC scenario of 30 customers, it is observed that PB model
reported better outcomes for two instances; instance 3 and instance 10. On aver-
age, PB formulation deviates 1.4% and deviation range is between -5.4% and 4.5%.
When deviations compared through best bounds, average difference in 10.2% where
minimum variance is 3.9% and maximum variance is 13.6%.

Overall, when the ICC setting of 30 customer instances investigated, PB approach
deviates 3.6% in average when OFVs are compared and 11.7% in average when bests
bounds are compared. Same experiments are repeated with 50 customer instances.
PB formulation run results for low demand and ICC scenario of 50 customer in-
stances can be found in Table 6.15.

In low demand environment, all instances are solved under 360 seconds. Minimum
run time is 29 seconds and maximum run time is 345 seconds where average run
time is 186 seconds. Number of selected routes deviate between 13 and 17. In order
to see the effect of demand, experiments are repeated under high demand setup.
Results can be found in Table 6.16.
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Table 6.15 PB Formulation results for ICC scenario and low demand setting of 50
customer instances

Ins FA FB TA TB RA RB Obj ObjA ObjB T(s) RC FC TC IC
1 2 2 2 2 7 6 85884 44174 41710 29 54284 17699 326 13575
2 2 1 1 2 9 6 92657 54120 38538 265 67974 12211 738 11734
3 1 1 1 1 7 6 82663 42731 39932 151 69393 9332 285 3653
4 2 1 1 2 8 7 88608 45647 42961 170 66577 12832 592 8607
5 2 1 1 2 7 7 86911 45951 40961 36 67778 12372 370 6392
6 1 1 1 1 7 6 84591 45736 38854 120 73652 8842 181 1916
7 1 1 1 1 6 8 90956 39374 51581 328 79345 8966 223 2422
8 2 2 2 2 9 8 100368 50299 50070 237 65580 17352 863 16574
9 2 2 1 2 7 7 89009 41119 47890 176 57755 18467 110 12677

10 2 1 1 2 8 7 101852 50555 51297 345 78985 14221 570 8076

Table 6.16 PB Formulation results for ICC scenario and high demand setting of 50
customer instances

Ins FA FB TA TB RA RB Obj ObjA ObjB T(s) RC FC TC IC
1 3 2 2 2 12 11 102624 50198 52426 61 63609 20525 560 17930
2 3 2 2 3 15 15 118839 63005 55833 51 76689 21427 929 19794
3 2 2 2 2 16 11 113558 60556 53002 128 84758 17668 532 10600
4 2 2 2 2 16 10 103221 58861 44360 51 73093 16999 701 12427
5 2 2 2 2 13 13 111538 54013 57525 159 78150 17162 977 15249
6 2 3 3 2 9 15 107299 48336 58964 136 72376 19854 615 14455
7 3 2 2 3 14 11 112998 58003 54995 174 74384 21660 797 16157
8 3 2 2 3 15 11 120297 64610 55687 42 77345 20598 656 21698
9 3 2 1 3 16 11 110823 55383 55441 88 70363 21726 834 17900

10 3 2 2 3 14 12 122948 63880 59069 146 79999 22598 910 19442

In high demand environment, all instances are solved under three minutes. Maxi-
mum solution time is 159 seconds and average run time is 104 seconds. When the
demand setting is high, companies started to open more depots and transfer lines
overall. Number of selected routes vary between 23 and 30. When the ICC ex-
periments with 50 customers compared with the original scenario experiments with
50 customers, it is observed that solution times increased with ICC setup. Run-
time comparisons can be found in Table 6.17. Run times are indicated in terms of
seconds.

Table 6.17 Original vs ICC scenario run times with 50 customer instances under PB
formulation

Instance 1 2 3 4 5 6 7 8 9 10

Low Demand Original 12 21 37 29 13 22 21 44 92 32
ICC 29 265 151 170 36 120 328 237 176 345

High Demand Original 12 38 80 18 45 14 41 18 15 64
ICC 61 51 128 51 159 136 174 42 88 146

When the results compared in Table 6.17, it is observed that ICC setting increases
solution times which is get along with the findings in 30 customer experiments.
Since number of possibilities for assignment and collaboration increases with the
ICC scenario, solution times are increased as well.
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As we did in 30 customer setting, deviation amounts from exact solutions are com-
pared with the best reported OFVs and best bounds of LB formulation. Results can
be found in Table 6.18.

Table 6.18 PB deviations for ICC scenario of 50 customers

Low Demand High Demand
Ins ∆OF V ∆BB ∆OF V ∆BB

1 3.1% 13.9% -0.8% 8.1%
2 8.9% 19.4% 4.4% 14.6%
3 0.6% 18.6% 3.8% 15.5%
4 8.5% 18.6% -6.1% 6.5%
5 3.5% 13.4% -2.7% 7.4%
6 5.7% 16.1% -6.5% 6.8%
7 9.2% 19.0% -6.8% 8.0%
8 6.7% 17.7% -5.4% 8.0%
9 5.9% 18.5% 4.4% 13.6%

10 3.7% 18.2% -3.2% 8.7%

PB formulation deviates 5.6% in average when ICC scenario of 50 customer instances
are compared in low demand setup through best found OFVs. Minimum deviation
is 0.6% and maximum deviation is 9.2%. When deviations compared through best
bounds, average difference is 17.3% where minimum variance is 13.4% and maximum
variance is 19.4%.

When best found OFVs are compared with PB formulation results for high demand
environment of the ICC scenario of 50 customers, it is observed that PB formulation
reported better outcomes for seven out of ten instances, except instances 2,3 and
9. PB formulation deviates -1.9% in average which means that PB formulation re-
ported better outcomes than 16 hour exact LB formulation runs within few minutes.
When deviations compared through best bounds, average difference in 9.7% where
minimum variance is 6.5% and maximum variance is 15.5%.

Overall, when the ICC setting of 50 customer instances investigated, PB approach
deviates 1.8% in average when OFVs are compared and 13.5% in average when best
bounds are compared.

Experiments are continued with ICC setting of 100 customer instances in order to
see the effect of number of increased customers to solution times and managerial
aspects with the biggest available instances. PB formulation run results for low
demand and ICC scenario of 100 customer instances can be found in Table 6.19.

All ICC and low demand scenario instances of 100 customer setting, are solved
to optimality. With the increased number of common customers, problem became
harder to solve and run times increase. Average run time for those instances is 14105
seconds which is approximately 4 hours. Minimum run time is 5335 seconds and
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Table 6.19 PB Formulation results for ICC scenario and low demand setting of 100
customer instances

Ins FA FB TA TB RA RB Obj ObjA ObjB T(s) RC FC TC IC
1 2 2 2 2 12 15 128694 56056 72638 9604 101259 15477 758 11200
2 2 3 3 2 13 15 129742 57798 71945 14403 97217 19042 480 13004
3 2 3 3 2 12 14 127583 63829 63755 3010 90843 20495 810 15435
4 3 1 1 3 14 11 128180 69858 58322 7291 100630 15392 696 11462
5 3 1 1 3 14 12 136663 70309 66353 15057 113408 14004 484 8767
6 2 3 3 2 13 15 129174 55453 73721 15271 99443 18035 244 11452
7 2 2 2 2 15 13 132599 68772 63827 14852 105916 14650 183 11850
8 2 3 3 2 13 14 138466 67378 71088 5335 104122 21636 457 12252
9 3 2 2 3 15 12 138107 70187 67920 28791 100601 22208 657 14640

10 3 2 2 3 15 13 139141 75873 63268 27424 104668 20243 606 13624

maximum run time is 28791 seconds which is almost 8 hours. Genuinely run times
increase with the ICC scenario. As it is anticipated, number of opened and created
depots are increased as well. In order to see the effect of demand amount on the
problem, same experiments are repeated under high demand setting. Results can
be found in Table 6.20.

Table 6.20 PB Formulation results for ICC scenario and high demand setting of 100
customer instances

Ins FA FB TA TB RA RB Obj ObjA ObjB T(s) RC FC TC IC
1 4 4 4 4 29 27 171710 77686 94024 5044 112140 31268 938 27364
2 4 4 4 4 29 25 163346 79945 83401 1933 103554 33093 856 25843
3 4 3 3 4 25 28 162491 81949 80542 587 107552 26793 1023 27123
4 3 4 4 3 24 24 162973 80907 82066 4796 113570 26477 1045 21882
5 4 4 3 4 29 27 182783 95253 87531 5725 121098 32309 920 28457
6 5 3 3 5 27 24 165413 79464 85949 4175 110697 29908 733 24075
7 3 3 3 3 21 22 158518 75119 83399 2538 119674 23424 402 15018
8 5 3 3 5 36 25 185498 100967 84531 15071 125966 31420 955 27157
9 4 4 4 4 22 22 159548 79042 80505 7730 99803 32197 801 26747

10 5 3 3 5 29 22 175915 94526 81389 3938 114106 35257 964 25588

In high demand environment, all instances are solved to optimality. Maximum solu-
tion time is 15071 seconds and average run time is 5154 seconds. When the demand
setting is high, companies started to open more depots and transfer lines overall.
Number of selected routes vary between 43 and 61. When the ICC experiments with
100 customers compared with the original scenario experiments with 100 customers,
it is observed that solution times increased with ICC setup. Runtime comparisons
can be found in Table 6.21. Run times are indicated in terms of seconds.

When the run times compared in Table 6.21, it is observed that ICC setting increase
run times which is also in parallel to previous findings in the 30 and 50 customer
experiments. Consequently, it can be concluded that increased number of common
customers increases the time complexity of the model.

As explained in Section 5.3, experiments are repeated with NCD setting with PB
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Table 6.21 Original vs ICC scenario run times with 100 customer instances under
PB formulation

Instance 1 2 3 4 5 6 7 8 9 10

Low Dem. Original 676 4035 1955 1738 3543 730 1929 669 2698 1604
ICC 9604 14403 3010 7291 15057 15271 14852 5335 28791 27424

High Dem. Original 358 921 495 535 350 1143 1298 446 6010 328
ICC 51 1933 587 4796 5725 4175 2538 15071 7730 3938

formulation in which carriers do not have any common depot declaration opportu-
nities. Main motivation behind those experiments is to see the effect of opening
depots on same location on collaboration and centralized gains as well as effect on
problem complexity in terms of run times and gaps. Experiments started with the
simplest setup again, 30 customers and low demand environment.

Before going into details of the experiment results, information on number of pre-
generated routes in NCD scenarios presented in Table 6.22. As it can be interpreted
from the Table 6.22, number of possible routes per carrier deviate between 179
and 4949 depending on the problem size and demand structure. When the total
route numbers compared with original and ICC scenarios it is observed that total
created route numbers under NCD setup is less because of the decreased amount of
candidate depot locations.

Table 6.22 Pre-generated route numbers for NCD scenarios

30 Customer 50 Customer 100 Customer
Low Dem. High Dem. Low Dem. High Dem. Low Dem. High Dem.

Ins. TRA TRB TRA TRB TRA TRB TRA TRB TRA TRB TRA TRB
1 225 268 478 572 620 456 1334 922 2023 2194 4438 4798
2 262 225 554 505 639 561 1349 1188 2312 2125 4473 4055
3 267 252 462 461 588 523 1272 1137 1971 2075 4238 4434
4 179 240 396 513 671 506 1244 918 2106 2021 4043 3911
5 276 234 569 490 584 605 1055 1099 2062 2136 4461 4695
6 226 233 469 528 584 533 1034 1004 2151 2190 4180 4207
7 229 241 476 539 584 529 1047 1015 2254 2199 3694 3529
8 226 202 440 416 706 555 1345 977 2262 2139 4949 4761
9 225 229 481 510 602 487 1263 1040 2108 2239 3428 3566

10 235 231 469 436 620 529 1150 948 2149 2325 4109 4666

Run results of 30 customer instances in low demand and NCD setting can be found
in Table 6.23.

Within 10 seconds, all instances are solved to optimality. Maximum run time is
6 seconds and average run time is 3 seconds for the PB Formulation results with
30 customers and NCD scenario in low demand setting. As it occurred in previous
scenario settings, almost all carriers opened one depot. However, in one of the in-
stances, instance 9, carrier B opened two depots. Moreover, in instance 4, carrier
B does not prefer to create a transfer line. These results overlap with our motiva-
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Table 6.23 PB Formulation results for NCD scenario and low demand setting of 30
customer instances

Ins FA FB TA TB RA RB Obj ObjA ObjB T(s) RC FC TC IC
1 1 1 1 1 4 4 62373 30610 31762 1 50584 7532 158 4099
2 1 1 1 1 5 4 68354 31458 36897 2 55060 7532 284 5478
3 1 1 1 1 5 6 69004 36390 32614 5 56901 7424 313 4366
4 1 1 1 0 3 5 56480 28615 27866 2 43383 6794 33 6270
5 1 1 1 1 5 4 62815 33996 28818 2 48674 7532 259 6350
6 1 1 1 1 4 4 63365 35077 28287 2 50879 7226 406 4854
7 1 1 1 1 4 4 66503 32122 34381 4 52825 7730 123 5825
8 1 1 1 1 4 4 63489 32684 30805 4 50925 6992 428 5144
9 1 2 1 1 4 4 67429 34404 33024 4 46650 10931 526 9322

10 1 1 1 1 4 4 66736 35860 30876 6 53085 7532 522 5597

tion in which it is assumed that NCD obstructs collaboration. Number of selected
routes vary between 8 and 11. Same instances experimented under high demand
environment as well. Results can be found in Table 6.24.

Table 6.24 PB Formulation results for NCD scenario and high demand setting of 30
customer instances

Ins FA FB TA TB RA RB Obj ObjA ObjB T(s) RC FC TC IC
1 1 1 1 1 8 8 86322 44535 41787 7 72068 8999 361 4894
2 2 2 2 2 10 8 89328 41463 47866 2 57931 15863 888 14647
3 2 1 1 2 9 12 85718 47741 37977 2 63643 12525 552 8998
4 2 2 2 2 7 9 76847 39792 37055 3 51097 14524 97 11129
5 2 1 1 2 10 8 81508 47715 33794 4 59367 11767 489 9886
6 2 2 2 2 8 10 83165 43643 39522 1 57168 13658 665 11675
7 1 2 2 1 8 10 82852 41615 41237 4 60759 12398 441 9254
8 2 1 1 1 7 8 81581 39435 42146 5 62053 11017 213 8299
9 2 1 1 2 9 8 85209 45088 40121 4 63765 10457 815 10172

10 3 1 1 3 10 6 82206 42062 40143 4 52217 14284 730 14975

Optimum results are found under 10 seconds for each instance of NCD and high
demand setting of 30 customer instances. Maximum run time is 7 seconds and
average run time is 4 seconds. As a result of increased demand density, carriers
started to open more depots and construct more transfer lines. Number of total
selected routes vary between 16 and 21. When the NCD experiments are compared
with original scenario experiments, for the low demand setting, there is no distinct
effect on run times. For the high demand setting, there exist some instances which
are solved faster under NCD setting. Run time comparisons can be found in Table
6.25. Run times are indicated in terms of seconds.

When the run time results examined in Table 6.25, there is no solid distinction
between low demand scenarios. In high demand setting, original scenario instances
are solved with higher run times which may be explained by decreased number of
possibilities for collaboration. But still, difference is not distinct.

Similar to what we did in original scenario and ICC scenario instances, deviations
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Table 6.25 Original vs NCD scenario run times with 30 customer instances under
PB formulation

Instance 1 2 3 4 5 6 7 8 9 10

Low Demand Original 2 6 4 2 5 4 3 5 6 3
NCD 1 2 5 2 2 2 4 4 4 6

High Demand Original 10 6 2 5 7 8 15 18 29 4
NCD 7 2 2 3 4 1 4 5 4 4

from the exact solutions are compared with the best reported OFVs and best bounds
of LB formulation for NCD scenario. Results can be found in Table 6.26.

Table 6.26 PB deviations for NCD scenario of 30 customers

Low Demand High Demand
Ins ∆OF V ∆BB ∆OF V ∆BB

1 3.8% 10.3% 2.5% 11.6%
2 5.7% 11.7% 3.2% 8.8%
3 8.2% 13.6% -5.2% 4.8%
4 2.7% 6.6% 2.0% 10.9%
5 6.2% 11.9% 1.8% 10.1%
6 2.7% 9.3% 1.6% 8.7%
7 7.4% 12.8% 1.3% 9.7%
8 7.1% 11.9% 2.4% 10.4%
9 7.4% 12.3% 2.5% 11.0%

10 5.4% 14.2% -0.6% 7.8%

When the deviations are compared through best OFVs in low demand environment
for NCD scenario, it is observed that model deviates 5.6% on average. Minimum
deviation is 2.7% and maximum deviation is 8.2%. When deviations compared
through best bounds, average deviation is 11.5% where minimum deviation is 6.6%
and maximum deviation is 14.2%. As mentioned before, since LB formulation in-
stances are not solved to optimality, comparisons through ∆BB denotes an upper
bound for deviation amount.

In high demand environment of NCD scenario of 30 customer instances, PB formu-
lation deviates 4.8% in average when comparison is conducted through best found
OFVs of LB formulation. For two instances, instance 3 and 10, PB formulation
reported lower costs within seconds. In average, PB formulation deviates 1.1% and
deviation range is between -5.2% and 3.2%. On the other hand, when deviations
compared through best bounds, average deviation is 9.4% where minimum deviation
is 4.8% and maximum variance is 11.6%. Same experiments for NCD scenario are
repeated for 50 customer instances. PB formulation run results for low demand and
NCD scenario of 50 customer instances can be found in Table 6.27.

Within a minute, all 50 customer instances with low demand scenario solved to
optimality. Maximum solution time is 57 seconds where average is 19 seconds.
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Table 6.27 PB Formulation results for NCD scenario and low demand setting of 50
customer instances

Ins FA FB TA TB RA RB Obj ObjA ObjB T(s) RC FC TC IC
1 2 2 2 1 7 7 87908 43486 44422 16 56711 17461 218 13518
2 2 2 2 1 7 9 92528 45972 46557 57 61754 15663 687 14424
3 1 1 1 1 7 6 82109 41232 40877 8 69605 8154 269 4081
4 2 1 1 2 8 7 88358 46828 41530 7 68300 12686 481 6891
5 1 1 1 1 7 8 93751 45423 48328 14 81762 9307 201 2481
6 1 1 1 1 7 7 85270 44321 40949 6 74134 9039 181 1916
7 1 1 1 1 7 7 90827 43085 47742 20 78875 9307 223 2422
8 2 1 1 2 7 7 102740 52825 49914 19 77749 14511 470 10009
9 2 2 2 1 6 8 89349 40514 48835 19 59126 17492 85 12646

10 2 1 1 2 7 7 103108 53742 49366 29 81728 11103 550 9728

The number of opened depots increased when compared to 30 customer instances.
Moreover, they declared more transfer lines. Number of total selected routes change
between 13 and 16. To see how increased demand density affect the outcomes,
experiments are repeated under high demand setup. Results can be found in Table
6.28.

Table 6.28 PB Formulation results for NCD scenario and high demand setting of 50
customer instances

Ins FA FB TA TB RA RB Obj ObjA ObjB T(s) RC FC TC IC
1 3 2 2 1 15 14 115718 58034 57685 9 75086 22861 374 17398
2 2 3 3 1 13 18 116431 54685 61746 5 73736 22010 892 19794
3 2 2 1 2 15 13 115473 55665 59808 19 87080 16217 243 11933
4 2 2 1 2 15 11 114511 61551 52960 7 86743 16385 321 11062
5 1 3 3 1 9 16 124417 53764 70653 17 92246 17861 752 13558
6 3 3 2 2 13 13 110843 57115 53729 13 66503 24343 385 19612
7 2 2 2 2 12 14 114360 51852 62509 8 84596 15878 682 13204
8 3 2 1 3 17 10 124894 72843 52052 12 81695 20982 687 21530
9 3 3 3 3 16 13 117288 59698 57590 7 68396 26772 691 21429

10 2 2 1 2 15 11 126785 67859 58926 14 93700 15472 813 16799

In the high demand setting, all instances are solved under 20 seconds. Maximum
solution time is 19 seconds and average is 11 seconds. Overall, number of opened
depots, transfer lines and selected depots increased when compared to low demand
setting. Number of selected routes vary between 25 and 31. When the NCD exper-
iments with 50 customers compared with the original scenario experiments with 50
customers, it is observed that solution times of NCD scenarios are less than original
scenarios. Run time comparisons can be found in Table 6.29. Note that run times
are indicated in terms of seconds.

When run times examined in Table 6.29, it is observed that run times are shorter
under NCD setting under both low and high demand environments. Since NCD
eliminates the number of opportunities that can rise from joint depot opening deci-
sions, instances may become more distinguishable from the perceptive of optimum
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Table 6.29 Original vs NCD scenario run times with 50 customer instances under
PB formulation

Instance 1 2 3 4 5 6 7 8 9 10

Low Demand Original 12 21 37 29 13 22 21 44 92 32
NCD 16 57 8 7 14 6 20 19 19 29

High Demand Original 12 38 80 18 45 14 41 18 15 64
NCD 9 5 19 7 17 13 8 12 7 14

depot locations. Next, deviations from exact solutions which are reported by LB for-
mulation experiments are compared with the best reported OFVs and best bounds
of LB formulation for NCD scenario. Results can be found in Table 6.30.

Table 6.30 PB deviations for NCD scenario of 50 customers

Low Demand High Demand
Ins ∆OF V ∆BB ∆OF V ∆BB

1 0.5% 11.6% 3.9% 12.5%
2 5.0% 14.9% 2.9% 12.0%
3 5.7% 17.8% 5.1% 15.1%
4 3.8% 14.8% -3.0% 9.8%
5 5.5% 14.6% -6.0% 6.9%
6 4.0% 13.2% -3.9% 6.2%
7 5.1% 16.5% -4.5% 8.5%
8 2.6% 15.4% -3.5% 7.9%
9 4.6% 16.2% 1.9% 13.5%

10 6.2% 16.9% -4.9% 8.0%

When the deviations from exact solutions compared in low demand setting through
best OFVs of LB formulation, PB formulation deviates 4.3% in average. Maximum
deviation is 6.2% and minimum deviation is 0.5% which means that PB approach
found a solution which is almost good as 16 hours of LB formulation within seconds.
When deviations compared through best bounds, minimum deviation is 11.6% and
maximum deviation is 17.8% where average deviation is 15.2%.

In high demand environment of NCD scenario of 50 customer instances, PB model
deviates -1.2% in average when comparison is conducted through best found OFVs
of LB formulation. In other words, PB formulation reports better outcomes when
compared to 16 hour runs of exact LB formulation for five instances. Maximum
deviation is 5.1% and minimum deviation is -6%. On the other hand, when devi-
ations compared through best bounds, average deviation is 10.0% where minimum
deviation is 6.2% and maximum variance is 15.1%.

Consequently, when the NCD setting of 50 customer instances investigated, PB for-
mulation deviates 1.5% on average when OFVs are compared and 12.6% on average
when best bounds are compared.
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Experiments continued with 100 customer NCD instances in order to see the effect of
number of customers to solution times and vital aspects of problem. PB formulation
run results for low demand and NCD scenario of 100 customer instances can be found
in Table 6.31.
Table 6.31 PB Formulation results for NCD scenario and low demand setting of 100
customer instances

Ins FA FB TA TB RA RB Obj ObjA ObjB T(s) RC FC TC IC
1 2 3 2 2 12 16 136420 62995 73425 628 100790 22870 133 12628
2 2 2 2 2 14 14 133221 62212 71008 1243 108422 15595 478 8726
3 2 3 2 2 12 13 134427 68625 65802 326 101546 20144 65 12672
4 2 2 2 2 13 12 134611 66603 68008 1697 113003 13596 459 7553
5 2 3 3 2 12 14 140476 70739 69737 2373 105887 20936 646 13007
6 2 2 2 2 14 14 133781 63293 70489 1372 110044 15437 371 7929
7 2 2 1 2 14 14 138358 67052 71305 696 112043 15950 241 10123
8 2 3 3 2 13 14 140567 64549 76019 1704 107112 18706 586 14163
9 3 2 2 2 14 14 141770 69315 72455 1716 104238 21249 491 15792

10 2 3 3 2 12 15 143327 67682 75645 1180 107312 20511 818 14686

All of the 100 customer instances are solved with no gap under NCD and low demand
setting. Average run time is 1294 seconds where maximum run time is 2373 seconds
and minimum run time is 326 seconds. Number of transfer lines, depots and selected
routes increased when compared to 50 customer instances. Since all instances are
solved with no gaps, same experiments are repeated for the high demand density
setting. Results can be found in Table 6.32.

Table 6.32 PB Formulation results for NCD scenario and high demand setting of
100 customer instances

Ins FA FB TA TB RA RB Obj ObjA ObjB T(s) RC FC TC IC
1 4 4 3 4 27 40 182381 84717 97663 135 122699 34744 535 24403
2 3 5 4 3 25 28 171402 76676 94726 331 110805 32665 918 27013
3 4 4 4 3 25 30 178360 90850 87510 288 117369 33478 860 26652
4 4 3 3 4 26 21 171617 86116 85501 585 121356 26729 783 22749
5 3 5 5 3 25 31 184627 89863 94764 388 123940 31495 1069 28123
6 3 4 4 2 24 28 172335 78350 93985 450 124531 27472 688 19643
7 4 3 3 3 23 21 169075 82562 86512 205 119725 26961 700 21689
8 3 5 5 2 26 32 193339 93195 100144 298 134502 32781 708 25348
9 3 3 2 3 20 22 167551 80449 87102 402 118269 27624 483 21174

10 3 5 4 3 25 27 182750 85297 97453 446 119823 33242 550 29135

In high demand environment, all instances are solved to optimality. Maximum
solution time is 15071 seconds and average run time is 353 seconds. When the
demand setting is high, companies started to open more depots and transfer lines
overall. Number of selected routes vary between 42 and 67.

When the NCD experiments with 100 customers compared with the original scenario
experiments with 100 customers, it is observed that solution times decreased with
NCD setup. Run time comparisons can be found in Table 6.33. Run times are
indicated in terms of seconds.
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Table 6.33 Original vs NCD scenario run times with 100 customer instances under
PB formulation

Instance 1 2 3 4 5 6 7 8 9 10

Low Demand Original 676 4035 1955 1738 3543 730 1929 669 2698 1604
NCD 628 1243 326 1697 2373 1372 696 1704 1716 1180

High Demand Original 358 921 495 535 350 1143 1298 446 6010 328
NCD 135 331 288 585 388 450 205 298 402 446

When the run times of 100 customer instances of original and NCD scenarios under
low demand environment are compared, 8 out 10 instances are solved faster with
NCD scenario which coincides with the finding in previous experiments. In average,
NCD instances are solved 33% faster. When the run times compared for high de-
mand setting experiments, similar behavior is observed, NCD instances get solved
faster in average.

Overall, all instances of all scenarios are solved under both low demand and high
demand environments to optimality with PB formulation. In some instances it
reported better outcomes with the 8 or 16 hours of run results of LB formulation
solutions with gaps, within seconds or few minutes. As mentioned in Section 5.2,
this study focuses on joint strategic network design in which parties may collaborate.
Consequently, we investigated managerial outcomes via PB formulation results in
Section 6.2.

6.2 Managerial Insights

In order to investigate gains achieved thorough collaboration, to see how many
percent of customers’ demand is transferred among carriers and the effect of col-
laboration on the number of created routes, individual runs are completed with PB
formulation. In the individual runs, both carriers act individually in which there is
no possibility for collaboration. In other words, problem is solved as a traditional
LRP for each carrier. Individual experiments started with original scenario of 30
customer instances. Results can be found in Table 6.34.

In both low demand and high demand settings, collaboration yield better solutions
in terms of lower costs. Gain amounts in terms of percentages can be found in Table
6.35.

When the gains are compared for original scenario instances, in low demand envi-
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Table 6.34 Individual PB Formulation results for original scenario of 30 customer
instances

Low Demand High Demand
Individual Collaboration Individual Collaboration

Ins Obj ObjA ObjB Obj ObjA ObjB Obj ObjA ObjB Obj ObjA ObjB
1 66388 32595 33793 59212 28374 30838 90528 43009 47519 84655 37917 46738
2 68956 36256 32700 63258 31251 32007 95109 50647 44462 87762 49155 38607
3 71805 34816 36989 66487 35099 31389 89502 45145 44357 81829 41689 40140
4 59756 30425 29331 56495 28600 27894 81507 39854 41653 72874 35897 36977
5 67529 32644 34885 59675 23104 36571 91368 43381 47988 80099 33351 46748
6 66488 35616 30872 62773 35704 27069 92182 49204 42978 87084 44873 42211
7 64561 33172 31389 60823 29770 31053 86870 44286 42584 80806 44932 35874
8 63114 29647 33467 59838 27162 32675 85608 38881 46727 78296 42119 36177
9 74007 35668 38339 71090 34649 36441 96850 44863 51987 91513 46544 44970

10 65777 31669 34109 63738 29752 33986 86586 42803 43784 79527 37881 41646

Table 6.35 Gain comparison for original scenario of 30 customer instances

Low Demand High Demand
Ins Gain GainA GainB Gain GainA GainB
1 10.8% 13.0% 8.7% 6.5% 11.8% 1.6%
2 8.3% 13.8% 2.1% 7.7% 2.9% 13.2%
3 7.4% -0.8% 15.1% 8.6% 7.7% 9.5%
4 5.5% 6.0% 4.9% 10.6% 9.9% 11.2%
5 11.6% 29.2% -4.8% 12.3% 23.1% 2.6%
6 5.6% -0.2% 12.3% 5.5% 8.8% 1.8%
7 5.8% 10.3% 1.1% 7.0% -1.5% 15.8%
8 5.2% 8.4% 2.4% 8.5% -8.3% 22.6%
9 3.9% 2.9% 5.0% 5.5% -3.7% 13.5%

10 3.1% 6.1% 0.4% 8.2% 11.5% 4.9%
Avg. 6.7% 8.8% 4.7% 8.0% 6.2% 9.7%

ronment, collaboration yields 6.7% of savings on average for the centralized system.
Minimum gain is 3.1% and maximum gain is 11.6%. For carrier A, average gain
percentage is 8.8%. However, in two instances, carrier A reported higher costs but
the difference is 0.8% at most. On the other hand, carrier A, benefits from collab-
oration in 8 out of 10 instances in which it benefited from collaboration with up
to 29.2% gains in some instances. Carrier B reports worse outcomes only for once
instance. Gains for carrier B deviate between -4.8% and 15.1% where average gain
for B is 4.7%.

For the high demand setting of original scenario instances, average gain is 8% where
gains deviate between 5.5% and 12.3%. Carrier A suffered from collaboration in
terms of increased costs in 3 instances. For carrier A, average gain is 6.2%, minimum
gain is -8.3% and maximum gain is 23.1%. For carrier B, average gain amount is
9.7%. For all instances, carrier B benefits from collaboration. Minimum saving
amount is 1.6% and maximum saving amount is 22.6%.

Another managerial outcome is amount of transferred goods. It is important to
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investigate how much of original demand is served by the other carriers in the system.
In the transfer percentage comparison tables like Table 6.36, columns %TDA and
%TDB indicates how much of the total demand which belongs to that carrier is
transferred to other carriers, for carrier A and B, respectively. Columns %TPA and
%TPB depicts how much of the total possible transferable amount is transferred to
other carrier, for carrier A and B, respectively.

Table 6.36 Transfer percentages for original scenario of 30 customer instances of PB
formulation experiments

Low Demand High Demand
Ins %TDA %TDB %TPA %TPB %TDA %TDB %TPA %TPB
1 13.8% 11.4% 49.3% 50.7% 16.3% 6.2% 58.3% 27.6%
2 10.6% 9.4% 44.7% 35.4% 7.6% 17.9% 32.1% 67.9%
3 14.7% 14.7% 58.7% 52.7% 9.3% 14.5% 37.1% 52.0%
4 15.1% 6.9% 53.9% 36.8% 11.8% 10.9% 42.2% 57.8%
5 18.3% 5.5% 64.5% 20.2% 18.3% 9.6% 64.5% 35.5%
6 14.0% 10.4% 55.1% 35.9% 15.4% 8.8% 60.6% 30.5%
7 10.4% 9.8% 41.0% 33.7% 8.5% 15.3% 33.4% 52.7%
8 23.0% 10.0% 68.8% 31.2% 4.9% 17.2% 14.7% 53.6%
9 17.4% 15.1% 58.7% 61.8% 3.4% 13.8% 11.5% 56.5%

10 12.5% 7.6% 48.1% 35.8% 16.7% 10.0% 64.3% 46.9%
Avg 15.0% 10.1% 54.3% 39.4% 11.2% 12.4% 41.9% 48.1%

As Table 6.36 investigated, it is observed that for low demand setting, carrier A

transfers 15% of its total demand in average and carrier B transfers 10.1% of its
total demand on average. When total possible transfer amounts are compared,
it is observed that carrier A prefers to transfer more than half of shared demand
on average. Carrier B transferred 39% percent of the possible transferable amount.
Note that, in instance 8, carrier A transfer ed 68.8% of the total transferable amount,
which means that model chose to serve most of common demand points by a route
of carrier B.

For the high demand setting, carrier A transfers 11.2% of its total demand on average
and carrier B transfers 12.4% of its total demand on average. When total possible
transfer amounts are compared, carrier A prefers to transfer 41.9% of shared demand
on average. Carrier B transferred 48.1% percent of the possible transferable amount.
In some cases, model chose to transfer only 11.5% of transferable amount for a
carrier. On the other hand, there are instances in which 67.9% of the transferable
amount is transferred to other carrier.

Next, all those strategic aspects are investigated with 50 customer instances. Results
of individual experiments with original scenario of 50 customer instances can be
found in Table 6.37.

Gains which are calculated through comparison of OFVs of individual and collabo-
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Table 6.37 Individual PB Formulation results for original scenario of 50 customer
instances

Low Demand High Demand
Individual Collaboration Individual Collaboration

Ins Obj ObjA ObjB Obj ObjA ObjB Obj ObjA ObjB Obj ObjA ObjB
1 97095 50391 46704 89476 43608 45868 117833 59881 57952 107793 53111 54682
2 97762 54057 43705 90619 44855 45764 122749 68755 53994 112120 60779 51341
3 88869 40837 48032 84881 40609 44273 116031 52893 63138 111125 52967 58159
4 92287 46175 46112 87623 42465 45158 116826 57301 59526 108818 56296 52523
5 99933 49348 50585 87197 46103 41094 128829 61427 67402 115084 52583 62501
6 92755 45260 47495 86500 43433 43067 123198 63501 59697 110016 53199 56818
7 93369 44406 48963 86940 46419 40521 120204 56897 63308 114594 50365 64229
8 106786 53323 53464 104264 50686 53579 140040 68825 71215 129866 70035 59832
9 92756 46995 45762 90836 45053 45783 121594 60682 60912 116189 59813 56376

10 107412 53168 54244 103262 51673 51589 134679 65996 68684 128774 61819 66955

rative PB formulation experiments can be found in Table 6.38.

Table 6.38 Gain comparison for original scenario of 50 customer instances

Low Demand High Demand
Ins Gain GainA GainB Gain GainA GainB
1 7.8% 13.5% 1.8% 8.5% 11.3% 5.6%
2 7.3% 17.0% -4.7% 8.7% 11.6% 4.9%
3 4.5% 0.6% 7.8% 4.2% -0.1% 7.9%
4 5.1% 8.0% 2.1% 6.9% 1.8% 11.8%
5 12.7% 6.6% 18.8% 10.7% 14.4% 7.3%
6 6.7% 4.0% 9.3% 10.7% 16.2% 4.8%
7 6.9% -4.5% 17.2% 4.7% 11.5% -1.5%
8 2.4% 4.9% -0.2% 7.3% -1.8% 16.0%
9 2.1% 4.1% 0.0% 4.4% 1.4% 7.4%

10 3.9% 2.8% 4.9% 4.4% 6.3% 2.5%
Avg 5.9% 5.7% 5.7% 7.0% 7.3% 6.7%

In low demand environment and original scenario setting of 50 customer instances,
collaboration reduces costs of centralized system by 5.9% on average. For centralized
system, minimum gain amount is 2.1% and maximum gain amount is 12.7%. For
both carriers A and B average gain amount is 5.7%. Carrier A reports a worse
outcome for only one instance where carrier B reports two.

In In high demand environment and original scenario setting of 50 customer in-
stances, average gain for collaborative schema is 7% in average. Gains deviate
between 4.2% and 10.7%. For carrier A, only two instances reported a negative
gain and on average carrier A gains 7.3% from collaboration.Carrier B reported a
increased cost for only one instance and average gain of carrier B is 6.7%.

Transfer amounts in percentages for original scenario of 50 customer instances can
be found in Table 6.39.

In low demand setting, carrier A transfers 8.5% of its total demand in average
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Table 6.39 Transfer percentages for original setting of 50 customer instances of PB
formulation experiments

Low Demand High Demand
Ins %TDA %TDB %TPA %TPB %TDA %TDB %TPA %TPB
1 5.7% 5.1% 42.8% 38.0% 6.2% 7.2% 46.5% 53.5%
2 14.8% 0.0% 71.4% 0.0% 10.8% 10.4% 51.9% 48.1%
3 7.9% 11.9% 36.9% 53.6% 10.0% 13.9% 46.6% 62.7%
4 14.3% 6.0% 67.2% 29.6% 4.6% 13.5% 21.8% 66.1%
5 7.5% 13.9% 35.5% 71.1% 11.5% 8.9% 54.6% 45.4%
6 9.9% 9.0% 49.8% 50.2% 15.6% 3.9% 78.3% 21.7%
7 1.7% 13.8% 8.7% 77.4% 15.2% 4.3% 76.1% 23.9%
8 9.2% 8.0% 55.3% 44.7% 2.5% 15.2% 15.0% 85.0%
9 4.4% 2.3% 19.7% 10.9% 5.1% 16.3% 22.5% 77.5%

10 9.9% 8.4% 45.5% 39.3% 5.9% 6.2% 27.0% 29.0%
Avg 8.5% 7.8% 43.3% 41.5% 8.7% 10.0% 44.0% 51.3%

and carrier B transfers 7.8% of its total demand in average. When total possible
transfer amounts are compared, it is observed that carrier A prefers to transfer
43.3% of shared demand in average. Carrier B transferred 41.5% percent of the
possible transferable amount in average.

For the high demand setting, carrier A transfers 8.7% of its total demand in average
and carrier B transfers 10% of its total demand in average. When total possible
transfer amounts are compared, it is observed that carrier A prefers to transfer 44%
of shared demand in average. Carrier B transferred 51.3% percent of the possible
transferable amount. In some cases, PB formulation can transfer up 85% of the
transferable amount. However, it may also choose to only transfer 15% of the
transferable amount is transferred to other carrier.

Same experiments are repeated for original scenario with 100 customer instances.
Results of individual experiments with original scenario of 100 customer instances
can be found in Table 6.40.

Table 6.40 Individual PB Formulation results for original scenario of 100 customer
instances

Low Demand High Demand
Individual Collaboration Individual Collaboration

Ins Obj ObjA ObjB Obj ObjA ObjB Obj ObjA ObjB Obj ObjA ObjB
1 138661 69258 69403 130086 67529 62556 193969 94953 99016 179192 81451 97741
2 140693 69394 71299 134553 65329 69224 188494 92613 95881 175510 82049 93461
3 140428 74080 66349 134803 70106 64697 185322 98405 86917 172583 89524 83059
4 140481 70747 69734 132917 66092 66826 186592 93513 93080 171736 90075 81661
5 145953 74726 71228 139164 69815 69349 198227 103262 94965 184279 93553 90726
6 140161 71179 68982 130353 64118 66236 186127 94872 91255 173623 89068 84555
7 148899 73072 75827 138534 69514 69020 176171 87883 88288 165411 83634 81777
8 145403 73370 72034 135919 71045 64874 202033 99887 102146 187854 99803 88052
9 143928 73783 70145 138389 69475 68914 184902 94211 90691 171977 84453 87524

10 143895 77077 66818 137148 71254 65894 187466 99056 88410 174801 90015 84786
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Gains through collaboration for the 100 customer instances of original setting can
be found in Table 6.41.

Table 6.41 Gain comparison for original scenario of 100 customer instances

Low Demand High Demand
Ins Gain GainA GainB Gain GainA GainB
1 6.6% 2.5% 9.9% 7.6% 14.2% 1.3%
2 4.6% 5.9% 2.9% 6.9% 11.4% 2.5%
3 4.2% 5.4% 2.5% 6.9% 9.0% 4.4%
4 5.7% 6.6% 4.2% 8.0% 3.7% 12.3%
5 4.9% 6.6% 2.6% 7.0% 9.4% 4.5%
6 7.5% 9.9% 4.0% 6.7% 6.1% 7.3%
7 7.5% 4.9% 9.0% 6.1% 4.8% 7.4%
8 7.0% 3.2% 9.9% 7.0% 0.1% 13.8%
9 4.0% 5.8% 1.8% 7.0% 10.4% 3.5%

10 4.9% 7.6% 1.4% 6.8% 9.1% 4.1%
Avg 5.7% 5.8% 4.8% 7.0% 7.8% 6.1%

In low demand and original setting of 100 customer instances, average gain amount
for centralized system is 5.7% where gains deviate between 4.2% and 7.5%. For
carrier A and B, average gain percentages are 5.8 and 4.8, respectively. None of the
carriers reported a loss. In high demand setting, for collaborative system, average
gain amount is 7%. Carrier A and B have an average gain of 7.8% and 6.1%,
respectively. Again, in all instances, both carriers benefited from the collaboration.

Transfer amounts in percentages for original scenario of 100 customer instances can
be found in Table 6.42.

Table 6.42 Transfer percentages for original setting of 100 customer instances of PB
formulation experiments

Low Demand High Demand
Ins %TDA %TDB %TPA %TPB %TDA %TDB %TPA %TPB
1 6.7% 13.5% 33.7% 63.8% 13.1% 3.9% 65.5% 18.6%
2 10.4% 9.7% 50.1% 47.9% 10.6% 7.7% 50.9% 37.9%
3 12.9% 8.0% 64.4% 38.3% 11.4% 6.5% 56.9% 31.0%
4 11.0% 6.7% 49.6% 28.8% 9.2% 12.8% 41.5% 55.3%
5 9.7% 10.9% 43.7% 52.4% 11.0% 8.1% 49.8% 38.8%
6 12.7% 9.3% 55.2% 39.2% 7.8% 10.9% 33.8% 46.0%
7 9.2% 9.2% 42.2% 42.4% 10.8% 12.3% 49.4% 57.1%
8 8.1% 12.1% 37.6% 57.8% 5.5% 13.8% 25.5% 65.5%
9 9.7% 9.1% 50.9% 44.8% 10.0% 7.8% 52.3% 38.6%

10 8.5% 7.1% 51.0% 39.6% 9.9% 6.2% 59.4% 34.5%
Avg 9.9% 9.5% 47.8% 45.5% 9.9% 9.0% 48.5% 42.3%

In low demand setting, carrier A transfers 9.9% of its total demand in average
and carrier B transfers 9.5% of its total demand in average. When total possible
transfer amounts are compared, it is observed that carrier A prefers to transfer
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47.8% of shared demand in average. Carrier B transferred 45.5% percent of the
possible transferable amount in average.

For the high demand setting, carrier A transfers 9.9% of its total demand in average
and carrier B transfers 9% of its total demand in average. When total possible
transfer amounts are compared, it is observed that carrier A prefers to transfer
48.5% of shared demand in average. Carrier B transferred 42.3% percent of the
possible transferable amount. In some cases, PB formulation can transfer up 65.5%
of the transferable amount. However, it may also choose to only transfer 18.6% of
the transferable amount is transferred to other carrier.

In order to see the effect of common customer number on collaboration, above
experiments, which are conducted to identify gain structure and transfer amounts,
are repeated with ICC setting.

Initial individual experiments of ICC scenario is conducted with 30 customer in-
stances. Results can be found in Table 6.43.

Table 6.43 Individual PB Formulation results for ICC scenario of 30 customer in-
stances

Low Demand High Demand
Individual Collaboration Individual Collaboration

Ins Obj ObjA ObjB Obj ObjA ObjB Obj ObjA ObjB Obj ObjA ObjB
1 70328 35307 35021 61617 30649 30968 97998 45222 52776 82493 29554 52939
2 74657 39033 35625 66917 28582 38335 101297 52859 48438 85637 51811 33825
3 73008 34690 38318 64793 30357 34436 89891 45085 44807 80740 35753 44987
4 61915 32667 29248 52718 28585 24133 80651 40683 39968 68220 29142 39078
5 71877 35933 35944 61008 24980 36028 94990 47262 47729 77020 25294 51726
6 67086 36828 30258 58756 37667 21089 90078 49075 41003 77171 42707 34464
7 68922 34731 34192 62069 32040 30029 91384 46059 45325 79263 38681 40582
8 67771 31759 36012 54596 27326 27270 86110 42038 44072 68111 30198 37913
9 75577 36075 39503 69495 30289 39206 102797 47158 55639 88169 41383 46786

10 70475 35417 35058 65380 31796 33584 95391 47771 47620 79354 35915 43438

Identified saving amounts which are calculated through comparison of optimum
solutions of individual and collaborative PB formulation experiments can be found
in Table 6.44.

In low demand environment and ICC scenario setting of 30 customer instances,
average gain amount is 12.1% for centralized system. Carrier A benefits an av-
erage gain amount of 14.1% where carrier B gains 10.3% on average. Carrier A

reported increased costs only for one instance and loss percentage when compared
to non-collaborative scenario is 2.3%. Maximum gain reported by carrier A is 30.5%.
Carrier B suffered from collaboration in two instances. Maximum gain reported by

85



Table 6.44 Gain comparison for ICC scenario of 30 customer instances

Low Demand High Demand
Ins Gain GainA GainB Gain GainA GainB
1 12.4% 13.2% 11.6% 15.8% 34.6% -0.3%
2 10.4% 26.8% -7.6% 15.5% 2.0% 30.2%
3 11.3% 12.5% 10.1% 10.2% 20.7% -0.4%
4 14.9% 12.5% 17.5% 15.4% 28.4% 2.2%
5 15.1% 30.5% -0.2% 18.9% 46.5% -8.4%
6 12.4% -2.3% 30.3% 14.3% 13.0% 15.9%
7 9.9% 7.7% 12.2% 13.3% 16.0% 10.5%
8 19.4% 14.0% 24.3% 20.9% 28.2% 14.0%
9 8.0% 16.0% 0.8% 14.2% 12.2% 15.9%

10 7.2% 10.2% 4.2% 16.8% 24.8% 8.8%
Avg 12.1% 14.1% 10.3% 15.5% 22.6% 8.8%

carrier B is 30.3%.

When gains are compared in high demand setting, average gain amount for col-
laborative schema turns out to be 15.5%, which is higher than the low demand
environment. Average gain of carrier A is 22.6% and average gain of carrier B is
8.8%. For all instances, carrier A benefited from collaboration. Maximum gain
amount reported by carrier A is 46.5% which means cost of carrier A is almost cut
in half. On the contrary, carrier B reported worse outcomes for three instances.
Maximum loss amount of carrier B is 8.4% and maximum gain amount is 30.2%.

Transfer amounts in percentages for ICC scenario of 30 customer instances can be
found in Table 6.45.

Table 6.45 Transfer percentages for ICC setting of 30 customer instances of PB
formulation experiments

Low Demand High Demand
Ins %TDA %TDB %TPA %TPB %TDA %TDB %TPA %TPB
1 17.1% 19.6% 36.5% 47.7% 32.6% 6.0% 69.6% 14.6%
2 38.1% 6.7% 79.1% 13.0% 7.0% 44.0% 14.6% 85.4%
3 24.2% 12.3% 60.8% 30.3% 30.1% 9.9% 75.6% 24.4%
4 15.4% 18.1% 33.0% 51.2% 30.2% 12.5% 64.6% 35.4%
5 23.3% 17.0% 54.6% 40.1% 36.8% 5.8% 86.4% 13.6%
6 15.3% 34.8% 35.4% 70.0% 23.2% 20.4% 53.7% 41.0%
7 21.6% 24.9% 50.0% 50.0% 24.2% 21.8% 56.1% 43.9%
8 21.1% 29.6% 39.9% 54.2% 28.8% 19.9% 54.5% 36.5%
9 39.2% 10.3% 71.8% 22.0% 22.6% 24.5% 41.3% 52.4%

10 26.4% 19.4% 54.2% 48.4% 21.8% 22.2% 44.7% 55.3%
Avg 24.2% 19.3% 51.5% 42.7% 25.7% 18.7% 56.1% 40.3%

In low demand and ICC setting of 30 customer instances, carrier A transfers 24.2%
of its total demand in average and carrier B transfers 19.3% of its total demand in
average. Which means, on average, approximately 20% of demands are exchanged
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by carriers. In average, carrier A chose to transfer 51.5% of transferable amount
where carrier B chose to transfer 42.7% of total transferable amount.

On high demand setting, a similar behaviour to low demand setting is observed.
When the transfer amount is compared through total demand amounts, in average,
carrier A transferred 25.7% of its total demand and carrier B transferred 18.7%
of its total demand. In average, carrier A chose to transfer 56.1% of transferable
amount where carrier B chose to transfer 40.3% of total transferable amount.

Later, in order to investigate strategic aspects discussed above and to see the effect
of problem size, experiments are repeated with 50 customer instances. Results of
individual experiments with ICC scenario of 50 customer instances can be found in
Table 6.46.

Table 6.46 Individual PB Formulation results for ICC scenario of 50 customer in-
stances

Low Demand High Demand
Individual Collaboration Individual Collaboration

Ins Obj ObjA ObjB Obj ObjA ObjB Obj ObjA ObjB Obj ObjA ObjB
1 100838 51836 49002 85884 44174 41710 118874 60095 58780 102624 50198 52426
2 103434 56241 47193 92657 54120 38538 138557 74733 63824 118839 63005 55833
3 89020 43118 45902 82663 42731 39932 132008 60282 71726 113558 60556 53002
4 97620 49403 48218 88608 45647 42961 123757 61935 61822 103221 58861 44360
5 103322 50243 53080 86911 45951 40961 135243 62410 72833 111538 54013 57525
6 95436 46227 49210 84591 45736 38854 125312 62932 62380 107299 48336 58964
7 99122 48470 50652 90956 39374 51581 130543 63153 67390 112998 58003 54995
8 112711 59168 53544 100368 50299 50070 137451 70227 67224 120297 64610 55687
9 98097 47944 50153 89009 41119 47890 126161 60892 65270 110823 55383 55441

10 109700 53069 56631 101852 50555 51297 140978 68176 72803 122948 63880 59069

Gain amounts achieved through collaboration can be found for PB Formulation
results with 50 customers and ICC scenario in Table 6.47.

In low demand environment of ICC scenario setting of 50 customer instances, average
gain amount by centralized collaboration schema is 10.4%. Average gain for carrier
A is 8.9% where maximum gain amount is 18.8%. For carrier B average gain amount
is 12% and maximum gain amount is 22.8%. Carrier A benefited from collaboration
in all instances. Similarly, carrier B benefited from collaboration in 9 out of 10
instances, it only reported a worse outcome for only one instance.

In high demand environment and ICC scenario setting of 50 customer instances,
average gain for collaborative schema is 14.1%. Minimum gain amount is 12.2%
and maximum gain amount is 17.5%. Overall, it can be identified that saving
amounts are higher in high demand environments when compared to low demand
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Table 6.47 Gain comparison for ICC scenario of 50 customer instances

Low Demand High Demand
Ins Gain GainA GainB Gain GainA GainB
1 14.8% 14.8% 14.9% 13.7% 16.5% 10.8%
2 10.4% 3.8% 18.3% 14.2% 15.7% 12.5%
3 7.1% 0.9% 13.0% 14.0% -0.5% 26.1%
4 9.2% 7.6% 10.9% 16.6% 5.0% 28.2%
5 15.9% 8.5% 22.8% 17.5% 13.5% 21.0%
6 11.4% 1.1% 21.0% 14.4% 23.2% 5.5%
7 8.2% 18.8% -1.8% 13.4% 8.2% 18.4%
8 11.0% 15.0% 6.5% 12.5% 8.0% 17.2%
9 9.3% 14.2% 4.5% 12.2% 9.0% 15.1%

10 7.2% 4.7% 9.4% 12.8% 6.3% 18.9%
Avg 10.4% 8.9% 12.0% 14.1% 10.5% 17.4%

environments. Carrier A reported higher costs for one instance. Average gain of
carrier A is 10.5% where maximum gain of A is 23.2%. On the other hand, carrier
B benefited from collaboration in all instances with an average gain amount of 17.4%
and maximum gain amount of 28.2%.

Transfer amounts in percentages for ICC scenario of 50 customer instances can be
found in Table 6.48.

Table 6.48 Transfer percentages for ICC setting of 50 customer instances of PB
formulation experiments

Low Demand High Demand
Ins %TDA %TDB %TPA %TPB %TDA %TDB %TPA %TPB

1 9.5% 18.6% 29.2% 55.8% 12.9% 17.0% 39.6% 50.9%
2 12.0% 20.6% 31.7% 51.9% 18.9% 17.2% 49.9% 43.4%
3 9.6% 18.7% 24.7% 48.7% 9.7% 25.2% 24.8% 65.7%
4 16.5% 21.3% 47.5% 55.9% 9.3% 25.3% 26.8% 66.3%
5 13.9% 18.2% 37.5% 56.6% 16.7% 17.0% 45.1% 52.9%
6 13.3% 25.4% 33.6% 67.1% 28.5% 4.8% 72.0% 12.7%
7 28.1% 12.6% 70.8% 33.4% 14.7% 22.6% 37.0% 59.8%
8 17.8% 20.1% 47.8% 48.6% 15.3% 24.0% 40.9% 57.9%
9 19.2% 22.2% 46.7% 57.5% 7.2% 27.1% 17.6% 70.3%

10 18.0% 13.8% 43.4% 36.9% 16.1% 24.1% 38.8% 64.1%
Avg 15.8% 19.2% 41.3% 51.2% 14.9% 20.4% 39.2% 54.4%

In low demand and ICC setting of 50 customer instances, carrier A transfers 15.2%
of its total demand in average and carrier B transfers 19.2% of its total demand in
average. When the transfer percentages are compared through total shared amounts,
carrier A transfers 41.3% of transferable amount and carrier B transfers 51.2% of
transferable amount. For given instances, PB model may choose to transfer up to
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70.8% of transferable amount.

For the high demand setting, carrier A transfers 14.9% of its total demand in average
and carrier B transfers 20.4% of its total demand on average. When total possible
transfer amounts are compared, it is observed that carrier A prefers to transfer
39.2% of shared demand on average. Carrier B transferred 54.4% percent of the
possible transferable amount.

Last set of experiments for ICC scenario, conducted with 100 customers. Results of
individual experiments with original scenario of 100 customer instances can be be
found in Table 6.49.

Table 6.49 Individual PB Formulation results for ICC scenario of 100 customer
instances

Low Demand High Demand
Individual Collaboration Individual Collaboration

Ins Obj ObjA ObjB Obj ObjA ObjB Obj ObjA ObjB Obj ObjA ObjB
1 148042 70690 77352 128694 56056 72638 198320 94339 103982 171710 77686 94024
2 145072 68416 76656 129742 57798 71945 190706 90288 100418 163346 79945 83401
3 145428 74912 70517 127583 63829 63755 191213 103207 88006 162491 81949 80542
4 145760 72830 72930 128180 69858 58322 191715 93040 98675 162973 80907 82066
5 148116 71702 76415 136663 70309 66353 204090 100317 103773 182783 95253 87531
6 143813 69715 74098 129174 55453 73721 186545 89488 97057 165413 79464 85949
7 148928 71957 76972 132599 68772 63827 179781 86361 93420 158518 75119 83399
8 151678 73904 77774 138466 67378 71088 207525 100603 106922 185498 100967 84531
9 148456 72846 75610 138107 70187 67920 185733 92038 93695 159548 79042 80505

10 155737 81753 73985 139141 75873 63268 205438 105278 100160 175915 94526 81389

For the 100 customer instances, gains are compared in Table 6.50.

Table 6.50 Gain comparison for ICC scenario of 100 customer instances

Low Demand High Demand
Ins Gain GainA GainB Gain GainA GainB

1 13.1% 20.7% 6.1% 13.4% 17.7% 9.6%
2 10.6% 15.5% 6.1% 14.3% 11.5% 16.9%
3 12.3% 14.8% 9.6% 15.0% 20.6% 8.5%
4 12.1% 4.1% 20.0% 15.0% 13.0% 16.8%
5 7.7% 1.9% 13.2% 10.4% 5.0% 15.7%
6 10.2% 20.5% 0.5% 11.3% 11.2% 11.4%
7 11.0% 4.4% 17.1% 11.8% 13.0% 10.7%
8 8.7% 8.8% 8.6% 10.6% -0.4% 20.9%
9 7.0% 3.6% 10.2% 14.1% 14.1% 14.1%

10 10.7% 7.2% 14.5% 14.4% 10.2% 18.7%
Avg 10.3% 10.2% 10.6% 13.0% 11.6% 14.3%
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In low demand setup of ICC setting of 100 customer instances, average gain amount
for centralized is 10.3%. For carrier A average gain is 10.2% and for carrier B

average gain amount is 10.6%. None of the carriers suffer from collaboration. In
high demand setup, average gains are higher for centralized system and both carriers.
Average saving through collaboration in joint system is 13% where average gain for
carrier A is 11.6% and average gain for carrier B is 14.3%.

Transfer amount information for 100 customer and ICC setting can be found in
Table 6.51.

Table 6.51 Transfer percentages for ICC setting of 100 customer instances of PB
formulation experiments

Low Demand High Demand
Ins %TDA %TDB %TPA %TPB %TDA %TDB %TPA %TPB

1 27.1% 12.0% 69.8% 30.2% 17.5% 20.0% 45.2% 50.3%
2 23.1% 18.0% 57.7% 44.6% 17.8% 23.8% 44.4% 58.9%
3 21.8% 15.9% 55.8% 39.0% 23.8% 15.0% 61.0% 36.9%
4 15.1% 26.5% 36.1% 63.5% 18.2% 21.8% 43.4% 52.2%
5 16.8% 24.1% 39.2% 61.3% 16.8% 23.4% 39.2% 59.4%
6 29.4% 15.1% 68.7% 35.6% 20.2% 23.4% 47.0% 55.1%
7 15.3% 26.5% 39.6% 69.5% 18.3% 18.3% 47.3% 48.0%
8 19.3% 20.0% 49.1% 52.2% 10.1% 26.6% 25.8% 69.7%
9 16.1% 21.7% 42.9% 56.4% 17.9% 19.0% 47.6% 49.5%

10 12.0% 21.4% 38.6% 61.8% 11.8% 21.2% 37.9% 61.1%
Avg 19.6% 20.1% 49.7% 51.4% 17.2% 21.3% 43.9% 54.1%

In low demand and ICC setting of 100 customer instances, carrier A and carrier B

transfers 19.6% and 20.1% of their total demands in average, respectively. Carrier A

transfers 49.7% of total possible transferable amount in average. Carrier B transfers
51.4% of its possible transferable amount in average. In short, carriers preferred to
transfer approximately half of their shared demand with other carriers. In high
demand environment, carrier A and carrier B transfers 17.2% and 21.3% of their
total demands on average, respectively. Moreover, carrier A and carrier B transfers
43.9% and 54.1% of their total possible transferable demand in average, respectively.

Last set of experiments for PB formulation are conducted under NCD setting in
which carriers do not have a chance to setup facilities in same location, in order to
see the effect of common depot declaration on saving and transfer amounts. First,
individual experiments of NCD scenario is conducted with 30 customer instances.
Results can be found in Table 6.52.

Gain amounts achieved through collaboration can be found for PB Formulation
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Table 6.52 Individual PB Formulation results for NCD scenario of 30 customer
instances

Low Demand High Demand
Individual Collaboration Individual Collaboration

Ins Obj ObjA ObjB Obj ObjA ObjB Obj ObjA ObjB Obj ObjA ObjB
1 64144 30955 33189 62373 30610 31762 90329 43764 46565 86322 44535 41787
2 72674 34678 37996 68354 31458 36897 102565 45504 57061 89328 41463 47866
3 70390 37605 32786 69004 36390 32614 94154 49138 45017 85718 47741 37977
4 57988 30122 27866 56480 28615 27866 80325 42479 37846 76847 39792 37055
5 65891 34768 31123 62815 33996 28818 91543 50978 40565 81508 47715 33794
6 68806 36851 31955 63365 35077 28287 91172 47993 43179 83165 43643 39522
7 68239 35120 33119 66503 32122 34381 89316 44992 44324 82852 41615 41237
8 63647 33056 30591 63489 32684 30805 87075 46628 40447 81581 39435 42146
9 71054 37170 33884 67429 34404 33024 94107 47745 46362 85209 45088 40121

10 69119 37504 31616 66736 35860 30876 89077 44556 44521 82206 42062 40143

results with 30 customers and NCD scenario in Table 6.53.

Table 6.53 Gain comparison for NCD scenario of 30 customer instances

Low Demand High Demand
Ins Gain GainA GainB Gain GainA GainB

1 2.8% 1.1% 4.3% 4.4% -1.8% 10.3%
2 5.9% 9.3% 2.9% 12.9% 8.9% 16.1%
3 2.0% 3.2% 0.5% 9.0% 2.8% 15.6%
4 2.6% 5.0% 0.0% 4.3% 6.3% 2.1%
5 4.7% 2.2% 7.4% 11.0% 6.4% 16.7%
6 7.9% 4.8% 11.5% 8.8% 9.1% 8.5%
7 2.5% 8.5% -3.8% 7.2% 7.5% 7.0%
8 0.2% 1.1% -0.7% 6.3% 15.4% -4.2%
9 5.1% 7.4% 2.5% 9.5% 5.6% 13.5%

10 3.4% 4.4% 2.3% 7.7% 5.6% 9.8%
Avg 3.7% 4.7% 2.7% 8.1% 6.6% 9.5%

In low demand environment of NCD scenario setting of 30 customer instances, av-
erage gain amount by centralized collaboration schema is 3.7%. For carriers A and
B average gain amounts are 4.7% and 2.7%, respectively. Carrier A benefited from
collaboration in all instances. Carrier B reported worse OFVs in two instances.
Moreover, carrier B reported a 0% gain for instance 4, which means that carrier B

was impartial for collaboration or non-collaboration. In high demand environment,
average gain for collaborative schema is 8.1% which is higher than the low demand
setting. For carriers A and B average gain amounts are 6.6% and 9.6%, respectively.
Next transfer amounts are investigated for NCD setting and 30 customer instances.
Results can be found in Table 6.54.

In low demand setting, carrier A transfers 11.4% of its total demand in average
and carrier B transfers 12.2% of its total demand in average. When total possible
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Table 6.54 Transfer percentages for NCD setting of 30 customer instances of PB
formulation experiments

Low Demand High Demand
Ins %TDA %TDB %TPA %TPB %TDA %TDB %TPA %TPB
1 8.1% 12.9% 29.1% 57.0% 10.4% 15.5% 31.1% 55.9%
2 9.5% 13.3% 39.8% 50.2% 8.4% 19.8% 33.7% 71.1%
3 11.0% 21.1% 43.9% 75.6% 4.3% 24.8% 15.4% 84.6%
4 13.2% 0.0% 46.9% 0.0% 12.9% 7.1% 58.2% 41.8%
5 9.9% 10.6% 35.0% 39.0% 15.6% 14.2% 56.2% 43.8%
6 12.2% 15.4% 48.0% 53.2% 10.6% 15.2% 39.5% 60.5%
7 11.2% 12.3% 44.1% 42.6% 12.6% 13.3% 47.1% 52.9%
8 12.7% 14.3% 37.9% 44.5% 14.5% 6.6% 58.5% 24.6%
9 11.3% 12.2% 38.0% 50.0% 10.5% 13.1% 43.2% 56.8%

10 14.8% 10.1% 56.7% 47.3% 9.1% 18.8% 35.1% 64.9%
Avg 11.4% 12.2% 41.9% 45.9% 10.9% 14.8% 41.8% 55.7%

transfer amounts are compared, it is observed that carrier A prefers to transfer
41.9% of shared demand in average. Carrier B transferred 45.9% percent of the
possible transferable amount in average.

For the high demand setting, carrier A transfers 10.9% of its total demand in average
and carrier B transfers 14.8% of its total demand in average. When total possible
transfer amounts are compared, it is observed that carrier A prefers to transfer 41.5%
of shared demand in average. Carrier B transferred 55.7% percent of the possible
transferable amount. In some cases, PB formulation can transfer up to 71.1% of
the transferable amount of a carrier. However, it may also choose to only transfer
15.4% of the transferable amount is transferred to other carrier.

In order to investigate strategic aspects discussed above and to see the effect of
problem size, experiments are repeated with 50 customer instances. Results of
individual experiments with NCD scenario of 50 customer instances can be found
in Tabla 6.55.

Table 6.55 Individual PB Formulation results for NCD scenario of 50 customer
instances

Low Demand High Demand
Individual Collaboration Individual Collaboration

Ins Obj ObjA ObjB Obj ObjA ObjB Obj ObjA ObjB Obj ObjA ObjB
1 98108 51103 47005 87908 43486 44422 127383 68869 58514 115718 58034 57685
2 96776 52645 44131 92528 45972 46557 134949 72823 62126 116431 54685 61746
3 87745 40949 46796 82109 41232 40877 125823 59783 66040 115473 55665 59808
4 94543 48953 45591 88358 46828 41530 124192 64327 59865 114511 61551 52960
5 99148 47848 51300 93751 45423 48328 133502 64852 68650 124417 53764 70653
6 91933 44378 47555 85270 44321 40949 117556 57716 59841 110843 57115 53729
7 92244 43109 49135 90827 43085 47742 122323 55541 66782 114360 51852 62509
8 111217 58671 52546 102740 52825 49914 134755 69539 65216 124894 72843 52052
9 98252 49279 48973 89349 40514 48835 130183 64601 65582 117288 59698 57590

10 105640 55298 50342 103108 53742 49366 134333 66933 67400 126785 67859 58926
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Gain amount in which individual and collaborative scenarios of NCD setting of 50
customer instances can be found in Table 6.56.

Table 6.56 Gain comparison for NCD scenario of 50 customer instances

Low Demand High Demand
Ins Gain GainA GainB Gain GainA GainB
1 10.4% 14.9% 5.5% 9.2% 15.7% 1.4%
2 4.4% 12.7% -5.5% 13.7% 24.9% 0.6%
3 6.4% -0.7% 12.6% 8.2% 6.9% 9.4%
4 6.5% 4.3% 8.9% 7.8% 4.3% 11.5%
5 5.4% 5.1% 5.8% 6.8% 17.1% -2.9%
6 7.2% 0.1% 13.9% 5.7% 1.0% 10.2%
7 1.5% 0.1% 2.8% 6.5% 6.6% 6.4%
8 7.6% 10.0% 5.0% 7.3% -4.8% 20.2%
9 9.1% 17.8% 0.3% 9.9% 7.6% 12.2%

10 2.4% 2.8% 1.9% 5.6% -1.4% 12.6%
Avg 6.1% 6.7% 5.1% 8.1% 7.8% 8.2%

For the low demand and NCD setting of 50 customer instances, average gain amount
for centralized system is 6.1%. Carrier A and B gains from the collaboration by 6.7%
and 5.1%, respectively. Both carriers suffer from collaboration in only one instance.
Maximum gain amount for carrier A is 17.8% and for carrier B 13.9%. For the
high demand setting, average gain amount is 8.1%. Average gain for carrier A is
7.8% and 8.2% for carrier B. Gain amounts deviate between -4.8% and 24.9% for
independent carriers depending on instance.

Transfer amounts in percentages for NCD scenario of 50 customer instances can be
found in Table 6.57.

Table 6.57 Transfer percentages for NCD setting of 50 customer instances of PB
formulation experiments

Low Demand High Demand
Ins %TDA %TDB %TPA %TPB %TDA %TDB %TPA %TPB

1 14.1% 8.7% 72.2% 36.2% 11.1% 4.3% 56.7% 17.9%
2 13.9% 6.9% 57.2% 28.2% 18.9% 3.2% 77.5% 13.0%
3 10.8% 13.1% 44.4% 55.6% 4.6% 16.2% 19.0% 68.8%
4 3.0% 4.7% 19.3% 26.2% 2.4% 11.9% 15.9% 66.7%
5 9.8% 11.4% 41.3% 56.8% 20.0% 1.5% 84.7% 7.4%
6 4.9% 10.8% 27.6% 63.9% 4.2% 8.1% 23.5% 48.2%
7 1.2% 8.2% 6.8% 48.8% 7.0% 10.2% 39.3% 60.7%
8 7.6% 10.6% 30.1% 36.9% 1.3% 22.2% 5.2% 77.5%
9 17.0% 5.4% 77.1% 22.9% 7.3% 15.9% 32.9% 67.1%

10 12.2% 11.5% 59.1% 54.7% 3.0% 11.3% 14.4% 53.5%
Avg 9.4% 9.1% 43.5% 43.0% 8.0% 10.5% 36.9% 48.1%

In low demand setting, carrier A transfers 9.4% of its total demand in average
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and carrier B transfers 9.1% of its total demand in average. When total possible
transfer amounts are compared, it is observed that carrier A prefers to transfer
43.5% of shared demand in average. Carrier B transferred 43% percent of the
possible transferable amount in average.

On high demand setting, when the transfer amount is compared through total de-
mand amounts, in average, carrier A transferred 8% of its total demand and carrier B
transferred 10.5% of its total demand. In average, carrier A chose to transfer 36.9%
of transferable amount where carrier B chose to transfer 48.1% of total transferable
amount.

Last experiments are conducted with 100 customer instances. Results of individual
runs of NCD scenario can be found in Table 6.58.

Table 6.58 Individual PB Formulation results for NCD scenario of 100 customer
instances

Low Demand High Demand
Individual Collaboration Individual Collaboration

Ins Obj ObjA ObjB Obj ObjA ObjB Obj ObjA ObjB Obj ObjA ObjB
1 141730 65537 76194 136420 62995 73425 197742 92353 105389 182381 84717 97663
2 139075 66240 72835 133221 62212 71008 183439 85872 97567 171402 76676 94726
3 144115 71444 72671 134427 68625 65802 191746 98309 93437 178360 90850 87510
4 140281 68358 71923 134611 66603 68008 183993 88281 95712 171617 86116 85501
5 147374 73295 74079 140476 70739 69737 196348 99911 96437 184627 89863 94764
6 138240 65170 73071 133781 63293 70489 181345 90101 91245 172335 78350 93985
7 146086 72181 73905 138358 67052 71305 181354 89804 91550 169075 82562 86512
8 147093 72534 74560 140567 64549 76019 205265 105431 99834 193339 93195 100144
9 146372 70927 75445 141770 69315 72455 177792 87156 90636 167551 80449 87102

10 148446 71113 77333 143327 67682 75645 193820 91883 101937 182750 85297 97453

Gains that are achieved through collaboration for NCD setting of 100 customer
instances can be identified in Table 6.59.
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Table 6.59 Gain comparison for NCD scenario of 100 customer instances

Low Demand High Demand
Ins Gain GainA GainB Gain GainA GainB

1 3.7% 3.9% 3.6% 7.8% 8.3% 7.3%
2 4.2% 6.1% 2.5% 6.6% 10.7% 2.9%
3 6.7% 3.9% 9.5% 7.0% 7.6% 6.3%
4 4.0% 2.6% 5.4% 6.7% 2.5% 10.7%
5 4.7% 3.5% 5.9% 6.0% 10.1% 1.7%
6 3.2% 2.9% 3.5% 5.0% 13.0% -3.0%
7 5.3% 7.1% 3.5% 6.8% 8.1% 5.5%
8 4.4% 11.0% -2.0% 5.8% 11.6% -0.3%
9 3.1% 2.3% 4.0% 5.8% 7.7% 3.9%

10 3.4% 4.8% 2.2% 5.7% 7.2% 4.4%
Avg 4.3% 4.8% 3.8% 6.3% 8.7% 3.9%

In low demand and NCD setting of 100 customer instances, average gain amount for
centralized system is 4.3% where gains deviate between 3.1% and 6.7%. For carriers
A and B, average gain percentages are 4.8 and 3.8, respectively. Only one instance of
carrier B reported a loss. In high demand setting, for collaborative system, average
gain amount is 6.3%. Carrier A and B have an average gain of 8.7% and 3.9%,
respectively. Maximum gain amount in collaborative system is 7.8%. Again, in high
demand setting, gain average is higher than the low demand environment.

Transfer amounts in percentages for NCD scenario of 100 customer instances can be
found in Table 6.60.

Table 6.60 Transfer percentages for NCD setting of 100 customer instances of PB
formulation experiments

Low Demand High Demand
Ins %TDA %TDB %TPA %TPB %TDA %TDB %TPA %TPB
1 8.3% 6.4% 46.7% 38.9% 8.0% 8.3% 44.6% 49.9%
2 12.0% 10.7% 58.6% 48.6% 13.2% 7.1% 64.6% 32.1%
3 5.9% 9.1% 32.8% 53.1% 10.9% 5.4% 60.9% 31.6%
4 9.7% 9.0% 46.4% 41.7% 4.7% 13.0% 22.8% 60.0%
5 8.5% 7.5% 43.7% 40.0% 13.5% 7.1% 69.7% 37.7%
6 8.8% 9.3% 43.8% 46.5% 8.9% 4.8% 44.1% 24.1%
7 7.3% 7.1% 39.7% 37.5% 7.0% 7.3% 38.0% 38.6%
8 12.9% 4.8% 69.1% 24.7% 12.3% 4.9% 66.3% 25.0%
9 9.4% 6.0% 46.3% 31.2% 10.1% 8.6% 49.6% 44.7%

10 12.4% 7.9% 54.3% 37.8% 11.4% 11.4% 50.0% 54.2%
Avg 9.5% 7.8% 48.1% 40.0% 10.0% 7.8% 51.0% 39.8%

In low demand setting, carrier A transfers 9.5% of its total demand in average and
carrier B transfers 7.8% of its total demand in average. When total possible transfer
amounts are compared, it is observed that carrier A prefers to transfer 48.1% of
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shared demand in average. Carrier B transferred 40% of the possible transferable
amount in average.

On high demand setting, when the transfer amount is compared through total de-
mand amounts, in average, carrier A transferred 10% of its total demand and carrier
B transferred 7.8% of its total demand. In average, carrier A chose to transfer 51%
of transferable amount where carrier B chose to transfer 39.8% of total transferable
amount. It is observed that, in some instances carriers chose to transfer up to 69.7%
of transferable amount.

Table 6.61 Summary of gain averages

Low Demand High Demand
30 50 100 30 50 100

O 6.7% 5.9% 5.7% 8.0% 7.0% 7.0%
ICC 12.1% 10.4% 10.3% 15.5% 14.1% 13.0%
NCD 3.7% 6.1% 4.3% 8.1% 8.1% 6.3%

Overall, when the Table 6.61 examined, it can be concluded that collaborative
schema yield gains. Minimum average gain amount is 3.7% in NCD and low de-
mand setting of 30 customer instances. On the other hand, collaboration resulted
with 15.5% gains in average for ICC and high demand setting of 30 customer in-
stances. Under all scenario types of all problem sizes, collaboration reported higher
savings in high demand environments. Moreover, ICC scenario is always reported a
higher gain percentage in average for all experiments.
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7. CONCLUSION

We study a two echelon strategic network design problem in which more than two
firms (or carriers) simultaneously make decisions to collaborate in their distribution
activities under a centralized schema. While there is no collaboration opportunity
at the upper echelon transportation, firms can collaborate at the lower echelon and
a firm can deliver the demand of a common customer for both itself and the other
carrier(s). Three different mixed-integer linear programming models are proposed.
Two of these models provide exact solutions to the problem whereas third model
relies on a restricted solution space. The objective is to minimize the total cost aris-
ing from opening and operating regional depots, constructing transfer lines between
depots and establishing both inbound and outbound routes.

Proposed MILP models differ in terms of modelling the decisions on outbound trans-
portation, i.e., routing operations. In the VB model, outbound transportation de-
cision modelling is derived from the traditional CVRP formulations and routing
decisions are controlled over vehicles. In the LB model, outbound routing decisions
are represented through load amounts carried on arcs. Both VB and LB formula-
tions yield an exact solution to the problem. In the PB model, routes are selected
from heuristically pre-generated route pool which does not necessarily include all
theoretically possible routes.

To solve the proposed models various methods are used. A cut generation approach
is utilized to control exponentially many sub-tour elimination constraints in the VB
formulation. Several valid inequalities are proposed for all three formulations. In
the PB model, a route pool is generated through well known five different heuristics
to create diversity among routes in an iterative approach to mimic collaborative
behaviour. In order to test effects of solution techniques and valid inequalities,
models are tested under different collaboration scenarios and demand density for
different problem sizes.

From a methodological point of view, results showed that the VB formulation has a
high space and time complexity. Proposed cut generation method solves the space
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complexity problem and decreases solution times. Despite the decreased time com-
plexity, the LB formulation still outperforms the VB formulation. The LB formula-
tion is strengthened with valid inequalities; two of the proposed valid inequalities for
the LB formulation successfully decrease the optimality gaps within limited solution
time. Even tough the LB formulation was able to solve instances, solution times
were still high and some gaps are reported. The PB formulation was able to solve
all instances of all problem sizes to optimality. Deviations of the PB formulation
solutions from the best bounds of LB formulation solutions vary between 3.9% and
19.4%. In some cases, the PB formulation yield better solutions than LB formulation
within given time limits, when best solutions are compared.

From a managerial point of view, proposed collaborative scheme definitely reduces
total distribution and facility costs. Depending on different parameters such as the
number of candidate depot locations, common customers, problem size and customer
distribution, the cost saving differ. When different scenarios are compared to identify
the effect above parameters on collaboration, ICC setting yield more savings than
the original setting on average. Hence, the savings due to collaboration increase as
the number of common customers in the system increases. Higher demand density
leads to higher gains on average when compared to low density. We emphasize that
the proposed models aim to minimize total cost of a centralized system. In only few
instances, individual carriers report worse outcomes in exchange of better integrated
system outcomes.

In the future studies, this problem can be considered in a multi-period setting.
Alternative exact solution methods can be implemented in order to solve larger
instances to optimality. For the PB formulation, the route pool generation can
be extended with other heuristic algorithms or meta-heuristic algorithms to create
high quality routes in order to reduce deviation from the true optimal solutions.
Moreover, other scenario types can be created such as clustered customers or high
density customer regions to investigate the effect of geographical distribution of
customers. Another challenging extension may be the increasing number of echelons
in which parties can collaborate. The potential gains and collaboration behaviour
can be tested with more than two carriers to study the effect of number of carriers
in the system.
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APPENDIX A

Individual Load-Based Formulation

minimize
∑
d∈D

∑
(i,j)∈Ad

cijx
d
ij +

∑
d∈D

Bdyd +
∑
d∈D

∑
p∈P

∆pdδpd

subject to∑
d∈D

zid = 1 ∀i ∈ N(A.1)

∑
j∈N∪{d}

i̸=j

xd
j,i −

∑
j∈N∪{d}

i̸=j

xd
i,j = 0 ∀d ∈ D,i ∈ N(A.2)

∑
j∈N∪{d}

i̸=j

xd
i,j ≥ zid ∀i ∈ N,d ∈ D(A.3)

∑
j∈N

ldh
d,j = dhzhd ∀d ∈ D,h ∈ N(A.4)

∑
j∈N∪{d}

i̸=j

ldh
i,j −

∑
j∈N∪{d}

i̸=j

ldh
j,i =

−dizid if i = h

0 if i ̸= h
∀d ∈ D,i,h ∈ N(A.5)

∑
h∈N

ldh
i,j ≤ Qxd

i,j ∀d ∈ D,(i, j) ∈ Ad(A.6)

M ∗yd ≥
∑
i∈N

zid ∀d ∈ D(A.7)

M ∗ δpd ≥ upd ∀p ∈ P,d ∈ D(A.8)

upd =
∑
i∈N

dizid ∀d ∈ D,p ∈ P(A.9)

xd
ij ∈ {0,1} ∀d ∈ D,(i, j) ∈ Ad(A.10)

zid ∈ {0,1} ∀i ∈ N,d ∈ D(A.11)

ldh
ij ∈ R+ ∀d ∈ D,(i, j) ∈ Ad,h ∈ N(A.12)

yd ∈ {0,1} ∀d ∈ D(A.13)

δpd ∈ {0,1} ∀p ∈ P,d ∈ D(A.14)

upd ∈ R+ ∀p ∈ P,d ∈ D(A.15)
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Load-Based Formulation Results of 50 Customer Instances

Table A.1 LB results for original and low demand setting of 50 customer instances

Ins. FA FB TA TB Obj ObjA ObjB Gap RC FC TC IC
I1 2 2 2 1 88184 43681 44503 11.4% 57262 17069 147 13706
I2 1 1 1 1 82885 40724 42160 10.6% 66884 9142 495 6364
I3 1 1 1 1 81902 41326 40576 13.7% 68410 9142 269 4081
I4 2 1 1 2 85243 46276 38968 11.3% 64079 11965 592 8607
I5 2 1 1 2 84943 46791 38153 10.6% 66288 11894 370 6392
I6 1 1 1 1 80984 37730 43254 10.2% 70297 8590 181 1916
I7 1 1 1 1 85120 43158 41962 11.4% 74443 8032 223 2422
I8 2 2 2 2 98903 48413 50490 12.5% 66231 15937 542 16193
I9 2 2 1 2 87599 47299 40300 14.4% 59222 15292 104 12981

I10 2 2 2 1 99984 48377 51606 12.5% 70284 17296 573 11831

Table A.2 LB results for original and high demand setting of 50 customer instances

Ins. FA FB TA TB Obj ObjA ObjB Gap RC FC TC IC
I1 3 2 2 2 110932 55205 55727 9.5% 70267 22175 560 17930
I2 2 2 2 1 115871 59294 56577 9.2% 81104 19656 687 14424
I3 2 2 2 2 114703 55808 58894 12.0% 84515 18822 536 10830
I4 2 3 1 2 113653 58611 55042 10.9% 75897 20618 531 16607
I5 3 3 2 2 120797 55977 64820 11.5% 77812 24735 640 17610
I6 3 3 2 3 114799 57141 57658 10.0% 72813 21911 278 19797
I7 2 2 2 2 116067 48423 67644 10.8% 86285 17008 603 12171
I8 3 3 3 2 130314 65564 64750 9.0% 78841 24953 663 25857
I9 3 2 2 3 111563 59156 52407 10.4% 75186 18939 323 17115

I10 3 3 3 2 134369 63328 71040 11.8% 84999 25249 607 23514

Table A.3 LB results for ICC and low demand setting of 50 customer instances

Ins. FA FB TA TB Obj ObjA ObjB Gap RC FC TC IC
I1 2 2 2 2 83263 41867 41396 11.2% 52860 16216 703 13485
I2 1 1 1 1 84433 41961 42471 11.5% 67339 10235 495 6364
I3 1 2 2 1 82198 35679 46519 18.2% 64278 12164 222 5534
I4 2 1 1 2 81117 49619 31497 11.0% 59086 12832 592 8607
I5 2 1 1 2 83847 45578 38269 10.2% 64714 12372 370 6392
I6 1 1 1 1 79798 38442 41355 11.0% 68859 8842 181 1916
I7 1 1 1 1 82583 39797 42785 10.8% 70972 8966 223 2422
I8 3 1 1 3 93621 54920 38701 11.8% 63875 14393 766 14587
I9 1 1 1 1 83780 39010 44770 13.4% 67720 8790 650 6620

I10 2 1 1 2 98063 43747 54315 15.0% 73757 14836 646 8824
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Table A.4 LB results for ICC and high demand setting of 50 customer instances

Ins. FA FB TA TB Obj ObjA ObjB Gap RC FC TC IC
I1 3 2 2 3 103423 53195 50227 8.9% 64683 20202 739 17799
I2 3 2 2 3 113615 62804 50811 10.7% 71466 21427 929 19794
I3 2 2 2 2 109297 57032 52265 12.2% 80498 17668 532 10600
I4 2 2 2 2 109488 60968 48521 11.8% 79361 16999 701 12427
I5 3 2 2 3 114577 52765 61812 9.9% 75571 19514 1016 18477
I6 2 3 3 2 114308 50232 64077 12.6% 77635 20700 588 15386
I7 3 3 2 3 120707 57080 63627 13.9% 70266 28570 750 21121
I8 3 3 3 3 126826 64419 62407 12.7% 78250 24822 917 22837
I9 3 2 2 3 105980 50572 55407 9.7% 66916 19479 662 18923

I10 3 2 2 3 126826 65516 61310 11.5% 82696 22071 1052 21007

Table A.5 LB results for NCD and low demand setting of 50 customer instances

Ins. FA FB TA TB Obj ObjA ObjB Gap RC FC TC IC
I1 2 2 2 2 87427 45364 42063 11.1% 56084 17461 364 13518
I2 2 1 1 1 87903 45916 41987 10.4% 64789 11801 387 10926
I3 1 1 1 1 77400 39223 38176 12.8% 64896 8154 269 4081
I4 2 1 1 2 84967 47538 37429 11.4% 64909 12686 481 6891
I5 1 1 1 1 88593 43364 45229 9.6% 76604 9307 201 2481
I6 1 1 1 1 81844 44080 37764 9.5% 70708 9039 181 1916
I7 1 1 1 1 86221 41223 44998 12.0% 74270 9307 223 2422
I8 2 2 2 2 100115 54480 45634 13.1% 67175 18373 392 14175
I9 1 1 1 1 85280 40300 44980 12.2% 69591 8830 543 6316

I10 2 1 1 2 96735 49987 46748 11.5% 75160 11174 569 9832

Table A.6 LB results for NCD and high demand setting of 50 customer instances

Ins. FA FB TA TB Obj ObjA ObjB Gap RC FC TC IC
I1 3 2 2 2 111195 61098 50097 8.9% 70763 21636 773 18023
I2 2 3 3 1 113047 53338 59709 9.3% 72597 20319 831 19300
I3 2 2 1 2 109629 59971 49658 10.6% 81236 16217 243 11933
I4 2 3 2 2 117987 61623 56364 12.4% 80664 19888 479 16956
I5 2 3 3 2 131831 59639 72192 12.2% 90509 23261 545 17516
I6 3 3 2 2 115120 56138 58982 9.7% 71608 22928 565 20019
I7 2 2 2 2 119526 57679 61846 12.5% 89761 15878 682 13204
I8 3 3 2 3 129326 72178 57148 11.0% 76910 25997 564 25856
I9 2 3 3 1 115069 53155 61914 11.9% 76101 20515 675 17778

I10 3 2 2 2 132982 68391 64591 12.3% 90346 20603 872 21161
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Instance Data

Column explanations as follows; N indicates the number of customers in the instance
where NA, NB and NC depict number of customers for carrier A, carrier B and
number of common customers, respectively. dA and dB indicate the demand of
carriers A and B, respectively. dS

A and dS
B depict the shared amount of demand for

carriers A and B. dT is the total demand.

Table A.7 Original scenario data for 30 customer instances

Low Demand High Demand
Ins N NA NB NC dA dC

A dB dC
B dT dA dC

A dB dC
B dT

1 30 19 19 8 3148 880 3895 880 7043 6297 1760 7790 1760 14087
2 30 19 19 8 3845 914 3458 914 7303 7690 1827 6917 1827 14607
3 30 19 19 8 3860 965 3460 965 7320 7720 1930 6920 1930 14640
4 30 19 19 8 2615 734 3889 734 6504 5230 1467 7778 1467 13008
5 30 19 19 8 3544 1007 3711 1007 7255 7089 2015 7421 2015 14510
6 30 19 19 8 3740 950 3281 950 7020 7480 1900 6561 1900 14041
7 30 19 19 8 3740 950 3281 950 7020 7480 1900 6561 1900 14041
8 30 19 19 8 3000 1004 3132 1004 6132 6000 2008 6264 2008 12263
9 30 19 19 8 3104 921 3764 921 6868 6208 1843 7529 1843 13737

10 30 19 19 8 3139 817 3834 817 6974 6279 1635 7669 1635 13947

Table A.8 Original scenario data for 50 customer instances

Low Demand High Demand
Ins N NA NB NC dA dC

A dB dC
B dT dA dC

A dB dC
B dT

1 50 30 30 10 5527 732 5465 732 10992 11054 1465 10930 1465 21985
2 50 30 30 10 6271 1303 6011 1303 12283 12543 2605 12023 2605 24566
3 50 30 30 10 5759 1231 5559 1231 11318 11517 2462 11118 2462 22635
4 50 30 30 10 6002 1276 6243 1276 12245 12004 2551 12486 2551 24490
5 50 30 30 10 5894 1243 6336 1243 12230 11789 2485 12671 2485 24460
6 50 30 30 10 5550 1105 6192 1105 11742 11101 2211 12384 2211 23485
7 50 30 30 10 5550 1105 6192 1105 11742 11101 2211 12384 2211 23485
8 50 30 30 10 6500 1080 6046 1080 12547 13000 2161 12093 2161 25093
9 50 30 30 10 5342 1206 5737 1206 11078 10683 2413 11473 2413 22157

10 50 30 30 10 5894 1280 5978 1280 11872 11789 2559 11955 2559 23744
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Table A.9 Original scenario data for 100 customer instances

Low Demand High Demand
Ins N NA NB NC dA dC

A dB dC
B dT dA dC

A dB dC
B dT

1 100 60 60 20 11821 2357 11166 2357 22987 23642 4713 22331 4713 45973
2 100 60 60 20 11664 2425 11947 2425 23611 23328 4851 23895 4851 47223
3 100 60 60 20 11143 2234 10647 2234 21791 22287 4468 21295 4468 43581
4 100 60 60 20 11215 2475 10711 2475 21926 22429 4949 21422 4949 43852
5 100 60 60 20 10953 2426 11688 2426 22642 21906 4852 23377 4852 45283
6 100 60 60 20 11775 2705 11415 2705 23191 23550 5410 22831 5410 46381
7 100 60 60 20 11835 2587 11987 2587 23822 23670 5174 23974 5174 47644
8 100 60 60 20 11611 2516 11980 2516 23591 23222 5032 23959 5032 47182
9 100 60 60 20 11970 2292 11297 2292 23267 23940 4583 22594 4583 46534

10 100 60 60 20 12220 2047 11476 2047 23696 24440 4093 22953 4093 47393

Table A.10 ICC scenario data for 30 customer instances

Low Demand High Demand
Ins N NA NB NS dA dS

A dB dS
B dT dA dS

A dB dS
B dT

1 30 22 22 14 3292 1540 3751 1540 7043 6584 3079 7502 3079 14087
2 30 22 22 14 3779 1818 3524 1818 7303 7558 3636 7049 3636 14606
3 30 22 22 14 3687 1470 3633 1470 7320 7373 2941 7267 2941 14640
4 30 22 22 14 2796 1308 3708 1308 6504 5591 2617 7417 2617 13008
5 30 22 22 14 3617 1541 3639 1541 7255 7233 3082 7277 3082 14510
6 30 22 22 14 3758 1623 3263 1623 7020 7515 3246 6525 3246 14041
7 30 22 22 14 3758 1623 3263 1623 7020 7515 3246 6525 3246 14041
8 30 22 22 14 3114 1647 3018 1647 6132 6227 3294 6036 3294 12263
9 30 22 22 14 3170 1730 3698 1730 6868 6341 3461 7396 3461 13737

10 30 22 22 14 3150 1535 3823 1535 6974 6301 3071 7646 3071 13947

Table A.11 ICC scenario data for 50 customer instances

Low Demand High Demand
Ins N NA NB NS dA dS

A dB dS
B dT dA dS

A dB dS
B dT

1 50 34 34 18 5559 1811 5434 1811 10992 11117 3623 10867 3623 21985
2 50 34 34 18 6283 2380 6000 2380 12283 12566 4760 11999 4760 24566
3 50 34 34 18 5619 2184 5698 2184 11318 11238 4369 11397 4369 22635
4 50 34 34 18 6419 2225 5826 2225 12245 12837 4450 11653 4450 24490
5 50 34 34 18 5685 2108 6545 2108 12230 11370 4216 13090 4216 24460
6 50 34 34 18 5735 2274 6007 2274 11742 11470 4548 12015 4548 23485
7 50 34 34 18 5735 2274 6007 2274 11742 11470 4548 12015 4548 23485
8 50 34 34 18 6601 2461 5946 2461 12547 13201 4921 11892 4921 25093
9 50 34 34 18 5367 2204 5711 2204 11078 10735 4407 11422 4407 22157

10 50 34 34 18 5649 2337 6223 2337 11872 11298 4674 12446 4674 23744
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Table A.12 ICC scenario data for 100 customer instances

Low Demand High Demand
Ins N NA NB NS dA dS

A dB dS
B dT dA dS

A dB dS
B dT

1 100 70 70 40 11639 4515 11348 4515 22987 23277 9031 22696 9031 45973
2 100 70 70 40 11857 4745 11754 4745 23611 23714 9490 23508 9490 47223
3 100 70 70 40 11124 4339 10667 4339 21791 22247 8678 21334 8678 43581
4 100 70 70 40 10942 4587 10984 4587 21926 21885 9174 21967 9174 43852
5 100 70 70 40 10842 4645 11800 4645 22642 21683 9290 23600 9290 45283
6 100 70 70 40 11544 4949 11647 4949 23191 23087 9899 23294 9899 46381
7 100 70 70 40 11803 4575 12019 4575 23822 23606 9150 24037 9150 47644
8 100 70 70 40 11638 4570 11953 4570 23591 23276 9141 23905 9141 47182
9 100 70 70 40 11762 4419 11505 4419 23267 23524 8838 23010 8838 46534

10 100 70 70 40 12468 3890 11229 3890 23696 24936 7780 22457 7780 47393

Table A.13 NCD scenario data for 30 customer instances

Low Demand High Demand
Ins N NA NB NS dA dS

A dB dS
B dT dA dS

A dB dS
B dT

1 30 19 19 8 3148 880 3895 880 7043 6393 2138 7694 2138 14087
2 30 19 19 8 3845 914 3458 914 7303 7708 1924 6898 1924 14606
3 30 19 19 8 3860 965 3460 965 7320 7479 2097 7160 2097 14640
4 30 19 19 8 2615 734 3889 734 6504 5649 1253 7359 1253 13008
5 30 19 19 8 3544 1007 3711 1007 7255 7825 2172 6685 2172 14510
6 30 19 19 8 3740 950 3281 950 7020 6780 1820 7261 1820 14041
7 30 19 19 8 3740 950 3281 950 7020 6780 1820 7261 1820 14041
8 30 19 19 8 3000 1004 3132 1004 6132 6352 1580 5912 1580 12263
9 30 19 19 8 3104 921 3764 921 6868 6683 1622 7054 1622 13737

10 30 19 19 8 3139 817 3834 817 6974 7362 1908 6585 1908 13947

Table A.14 NCD scenario data for 50 customer instances

Low Demand High Demand
Ins N NA NB NS dA dS

A dB dS
B dT dA dS

A dB dS
B dT

1 50 30 30 10 6056 1185 4937 1185 10992 12111 2369 9873 2369 21985
2 50 30 30 10 6145 1497 6138 1497 12283 12290 2993 12276 2993 24566
3 50 30 30 10 5567 1350 5750 1350 11318 11135 2700 11500 2700 22635
4 50 30 30 10 6579 1011 5666 1011 12245 13159 2023 11331 2023 24490
5 50 30 30 10 5603 1325 6627 1325 12230 11206 2650 13254 2650 24460
6 50 30 30 10 5724 1015 6019 1015 11742 11447 2030 12037 2030 23484
7 50 30 30 10 5724 1015 6019 1015 11742 11447 2030 12037 2030 23484
8 50 30 30 10 6686 1677 5860 1677 12547 13372 3354 11721 3354 25093
9 50 30 30 10 5734 1267 5344 1267 11078 11469 2534 10688 2534 22157

10 50 30 30 10 5998 1238 5875 1238 11872 11995 2475 11749 2475 23744
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Table A.15 NCD scenario data for 100 customer instances

Low Demand High Demand
Ins N NA NB NS dA dS

A dB dS
B dT dA dS

A dB dS
B dT

1 100 60 60 20 11052 1974 11934 1974 22987 22104 3949 23869 3949 45973
2 100 60 60 20 12285 2507 11326 2507 23611 24571 5014 22652 5014 47223
3 100 60 60 20 10640 1914 11151 1914 21791 21280 3829 22302 3829 43581
4 100 60 60 20 11175 2328 10751 2328 21926 22351 4656 21501 4656 43852
5 100 60 60 20 11128 2160 11514 2160 22642 22256 4319 23027 4319 45283
6 100 60 60 20 11563 2327 11627 2327 23191 23126 4655 23255 4655 46381
7 100 60 60 20 12080 2217 11742 2217 23822 24160 4433 23484 4433 47644
8 100 60 60 20 12084 2249 11507 2249 23591 24168 4499 23014 4499 47182
9 100 60 60 20 11296 2294 11971 2294 23267 22592 4588 23942 4588 46534

10 100 60 60 20 11359 2593 12337 2593 23696 22719 5185 24674 5185 47393
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Transfer Information for Collaborative Scenario Experiments
Columns TAA and TAB indicate the transfer amounts of carrier A and B, respec-
tively.

Table A.16 Transfer amounts for 30 customer instances

Low Demand High Demand
O ICC NCD O ICC NCD

Ins TAA TAB TAA TAB TAA TAB TAA TAB TAA TAB TAA TAB

1 434 446 562 735 225 268 1027 486 2144 449 478 572
2 409 323 1439 236 262 225 587 1240 532 3104 554 505
3 567 508 894 445 267 252 717 1004 2222 719 462 461
4 396 270 431 670 179 240 619 848 1689 927 396 513
5 650 204 842 618 276 234 1300 715 2662 420 569 490
6 524 341 575 1135 226 233 1150 579 1742 1331 469 528
7 389 320 811 812 229 241 635 1001 1821 1424 476 539
8 690 313 658 893 226 202 295 1076 1796 1203 440 416
9 541 569 1242 380 225 229 212 1041 1431 1814 481 510

10 393 292 833 743 235 231 1051 766 1374 1697 469 436

Table A.17 Transfer amounts for 100 customer instances

Low Demand High Demand
O ICC NCD O ICC NCD

Ins TAA TAB TAA TAB TAA TAB TAA TAB TAA TAB TAA TAB

1 314 278 529 1010 620 456 681 784 1433 1844 1334 922
2 931 0 755 1236 639 561 1352 1254 2374 2067 1349 1188
3 454 659 540 1065 588 523 1147 1544 1085 2869 1272 1137
4 857 378 1058 1243 671 506 557 1687 1193 2950 1244 918
5 441 884 790 1194 584 605 1356 1129 1901 2230 1055 1099
6 551 555 764 1526 584 533 1730 480 3273 576 1034 1004
7 96 855 1609 759 584 529 1682 528 1682 2720 1047 1015
8 597 483 1176 1195 706 555 324 1837 2013 2849 1345 977
9 238 131 1028 1267 602 487 543 1870 774 3100 1263 1040

10 583 503 1015 861 620 529 692 742 1814 2997 1150 948

Table A.18 Transfer amounts for 50 customer instances

Low Demand High Demand
O ICC NCD O ICC NCD

Ins TAA TAB TAA TAB TAA TAB TAA TAB TAA TAB TAA TAB

1 793 1502 3150 1366 2023 2194 3086 875 4079 4546 4438 4798
2 1215 1161 2737 2116 2312 2125 2470 1838 4213 5592 4473 4055
3 1439 855 2420 1694 1971 2075 2541 1383 5296 3202 4238 4434
4 1229 713 1655 2913 2106 2021 2056 2735 3978 4793 4043 3911
5 1061 1270 1822 2849 2062 2136 2418 1882 3639 5522 4461 4695
6 1492 1062 3400 1762 2151 2190 1827 2488 4657 5455 4180 4207
7 1091 1097 1811 3179 2254 2199 2558 2954 4327 4388 3694 3529
8 946 1455 2245 2386 2262 2139 1283 3295 2359 6368 4949 4761
9 1167 1026 1894 2491 2108 2239 2399 1771 4204 4379 3428 3566

10 1044 811 1501 2403 2149 2325 2430 1413 2946 4756 4109 4666
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