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ABSTRACT: The field of nanomedicine is currently in a

revolutionary phase, propelled by the significant potential of sl Bthchional el
nanoparticles, which offer several advantages over traditional drug Systems Capacity Translation
delivery systems. The purpose of this paper is to aggregate

contemporary knowledge of nanoparticles developed and applied in oS E ’ MK
drug delivery across major disease classes. Accordingly, we offer, @ ' ) @ Cancers i
through a thorough search of the literature, a comprehensive — g oiive targe""ga &y 'Sf::::::
overview of the prevalent nanoparticles used in drug delivery O3 KI? ) 9.9

systems, covering polymeric, lipid-based, inorganic, and carbon- Soss" 'f'@ Theranostics

based nanoparticles, and discuss their advantages and limitations. S “ : »

This work primarily focuses on studies published in the last S years, s B e% Neurodegenerative
aiming to provide an up-to-date assessment of the critical Rassivallargeting Disorders

nanoparticles in drug delivery. Narratively, we synthesize a

comprehensive overview of the state-of-the-art in nanocarrier technology, providing in-depth insights into the key nanoparticle
types presented in the contemporary literature, their fundamental benefits, potential clinical applications, and limitations impeding
their development and adoption. We note that there are gaps and opportunities for concerted efforts focused on developing
biocompatible and biodegradable nanoparticles, establishing scalable and cost-effective manufacturing processes, and addressing
regulatory challenges associated with nanoparticle-based drug delivery systems. These challenges persist despite the immense
translational success of nanoparticle-based drug delivery systems and necessitate continued interdisciplinary research and cross-
industry collaboration among scientists, clinicians, and regulatory bodies.
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1. INTRODUCTION that enhances therapeutic outcomes and reduces adverse
effects in practical terms.

Fundamentally, some of the most explored benefits of
nanocarriers include enhancement of drug pharmacokinetics;
targeted and controlled delivery; and theranostic functionaliza-
tions. In terms of pharmacokinetic enhancement, nanocarrier
drug delivery systems offer better solubility and bioavailability
profiles, overcoming the physicochemical limitations of several
active pharmaceutical ingredients (APIs). As has been
discussed in recent literature, nanoparticles effectively achieve
better aqueous solubility of hydrophobic APIs.”* This is
especially important for less soluble drugs such as hydro-
cortisone, the properties of which can be enhanced by

The physicochemical properties of materials constituting
conventional drug delivery systems have significant implica-
tions for drug release profiles and have been demonstrated to
cause bioavailability constraints and inconsistent plasma levels,
leading to subpar clinical responses and, ultimately, adverse
drug reactions.’ From a clinical or translational viewpoint, the
insufficiency of traditional delivery systems arises from
unfavorable material properties that impair solubility and
bioavailability and have significant ramifications for clinical
outcomes and patients’ quality of life. It is necessary to
overcome these limitations within the pharmaceutical industry,
and one of the approaches that have been recently explored is
nanoparticle-based drug delivery systems. These systems are ——
based on nanocarriers, possessing unique features that enhance Received:  April 29, 2025 —
biodistribution, stability, solubility profiles, and other pharma- Revised:  June 11, 2025
cokinetic parameters, ultimately reducing toxicity, with the Accepted: June 11, 2025
added possibility of more precisely controlled cargo delivery.” Published: June 17, 2025
Leveraging these properties, drugs encapsulated within or

conjugated with nanoparticles can be delivered in a manner
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Figure 1. Schematic illustrations of a) Enhancement of the oral uptake of liraglutide through polylactide acid (PLA) nanoparticles. Reproduced
with permission from ref 6. Copyright 2019 Elsevier Inc.; b) Active targeting and passive targeting of nanodelivery-based formulations in tumors.
Reproduced from ref 24. Available under a CC-BY 4.0 license. Copyright 2023 Shi et al; c) Benefits of curcumin encapsulation as CLEN.
Reproduced from ref 31. Available under a CC-BY 4.0 license. Copyright 2020 Gupta et al,; d) Theranostic application of nanoparticles in cancer
therapy and diagnosis of multifunctional carbon-based nanoparticles. Reproduced from ref 26. Copyright 2023 American Chemical Society.

encapsulation in a chitosan-coated magnetic core—shell
nanocarrier.” In a similar vein, Uhl et al. functionalized drug-
loaded polylactic acid (PLA) nanoparticles with a cyclic cell-
penetrating peptide for higher oral liraglutide stability and
bioavailability. In effect, enhancing solubility and bioavail-
ability using nanocarriers results in better drug absorption,
distribution, and therapeutic efficacy, while reducing reliance
on organic solvents or surfactants with safety concerns.” It is
this pharmacokinetic enhancement capability of nanocarriers
that has largely driven their adoption for APIs that are unstable
and difficult to store, handle, and administer.* ' As recently
noted, nanoparticles provide physical barriers, controlled
release, minimized exposure to degradation, and surface
modification potential that can be leveraged to enhance the
stability of unstable biologic agents."' While this protective
property depends on the nanoparticle composition and drug-
loading efficiency, the general propensity of nanocarriers to
improve the shelf life of unstable drugs has, over time, proven
valuable in protein and gene therapy, among other biologic
agents.lz_17

A quick glance through recent literature shows that some of
the most promising applications of nanocarriers are targeted,
controlled delivery and functionalizations for theranostic
applications. They have also been discussed in recent literature
for the delivery of natural products, not only enhancing their
bioavailability and pharmacokinetics but also providing much-
needed dosage standardization and social acceptance.'® By
their nature, nanocarriers can be tailored during synthesis and
functionalization for specific release behaviors that enhance
therapeutic efficacy by maintaining drug concentrations within
the therapeutic window for an extended period. The impact of
these possibilities is wide-reaching and demonstrable in both
clinical and humanistic outcomes. Advanced nanocarrier
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systems reduce the need for frequent dosing, improving
patient compliance and quality of life. Nanocarriers also
provide specific properties that solve very peculiar disease
management challenges, such as antimicrobial resistance in
infectious diseases and biodistribution in neurological dis-
eases.' "’

There is a plethora of strategies employed to tune release
kinetics from nanocarriers, including modifying the nano-
particle composition, size, and surface properties and
incorporating stimuli-responsive principles that trigger drug
release in response to specific environmental cues such as pH,
temperature, or enzymatic activity.21 Targeted release mini-
mizes off-target effects and ensures cargo delivery only under
the right pathophysiological circumstances. Polymer-based
nanoparticles, liposomes, and inorganic and carbon nanotubes
are some of the nanocarriers that have been developed to
respond to extrinsic actuators of cargo release.” Moreover,
nanocarriers can be engineered to selectively accumulate in
target sites through passive targeting, which exploits certain
pathophysiological characteristics (hyperacidity and hyper-
thermia in tumors, for example), or active targeting, wherein a
ligand with high affinity and specificity for a target protein is
attached to the nanoparticle surface, improving drug internal-
ization and increasing the local concentration of the
therapeutic payload.”*>

The theranostic potential of nanocarriers makes them
advantageous over conventional diagnostic and therapeutic
methods.”® Nanocarriers incorporating imaging agents, such as
fluorescent dyes, radionuclides, or contrast agents, can provide
real-time visualization and tracking of drug biodistribution and
accumulation in vivo. One notable example of a theranostic
nanocarrier is anticancer drug-loaded iron oxide nanoparticles
functionalized with targeting ligands and magnetic resonance

https://doi.org/10.1021/acsami.5c07366
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imaging (MRI) contrast agents, concurrently allowing targeted
drug delivery and MRI-based real-time monitoring of in vivo
drug accumulation for personalized treatment strategies.”’
Similarly, gold nanoparticles are deployed in photothermal
therapy (PTT), done by converting absorbed light into heat by
a nonradiative process.”””” Combining this capability with
near-infrared photothermal imaging, Guan et al. demonstrated
that clustered gold nanoparticles showed theranostic dual
capability in human prostate cancer cells with high efliciency
and selectivity.”

Some of the nanocarrier designs reported in the literature for
targeted and controlled drug delivery as well as theranostic
applications are illustrated in Figure 1.

Over time, nanocarrier-based drug delivery systems have
taken on multiple distinct configurations, including molecular-
level-loaded, surface-loaded, matrix-loaded, and cavity-loaded
nanocarriers, as classified by Wang et al.*> Our research group
recently published a review detailing the compositions and
characteristics of these nanocarrier designs, elucidating critical
aspects of the process and shedding light on factors that
influence their efficacy and biocompatibility.”> Additionally,
recent papers have provided rich commentary on the growing
potential of nanocarriers in healthcare and biomedical
research.”*7*® Despite their revolutionary impact in medicine
and diagnostics, nanocarriers still pose key challenges regarding
their toxicity, commercial scalability, regulatory oversight, and
some design considerations. In this paper, we comprehensively
discuss state-of-the-art drug nanocarriers as a snapshot of the
last 5 years. We aggregate emergent nanocarrier applications
from a translational perspective, focusing on how nano-
medicines may further advance medicine. For this, we provide
insights into the key nanocarriers presented in contemporary
literature, their clinical applications, and the challenges yet to
be overcome in nanocarrier development and translational
deployment.

2. NANOCARRIER SYSTEMS IN DRUG DELIVERY

2.1. Polymeric Nanoparticles. Polymeric nanoparticles
(Poly-NPs) comprise nanoparticles (NPs) of synthetic
biocompatible polymers such as polylactic-co-glycolic acid
(PLGA), polyethylene glycol (PEG), poly(vinyl alcohol)
(PVA), and polylactic acid (PLA) or naturally occurring
polymers such as cellulose, hyaluronic acid (HA), starch, and
chitosan. One critical advantage of Poly-NPs is their versatility
in drug-loading. They can incorporate a wide range of
therapeutic agents, including small molecules, proteins,
peptides, and oligonucleotides.””**

Poly-NPs are prepared in a variety of ways that provide
control over the physicochemical properties determining drug-
loading and release behavior.”” Self-assembled Poly-NPs are
formed when discrete polymer chains spontaneously order into
well-defined nanostructures—a process driven by thermody-
namic equilibration and intermolecular forces. In nano-
precipitation, prepolymerized chains self-assemble due to
sudden desolvation into well-defined nanostructures deter-
mined by the experimental conditions of polymer concen-
tration and solvent chemistry among others. Some other
methods have been employed such as ionic gelation, in situ
polymerization, and self-assembly, as well as atomization or
spray drying of polymer emulsions and suspensions. Template-
driven assembly of Poly-NPs is another approach that has been
more recently explored and offers the advantages of delicate
control over the shape and morphology of the NPs, allowing

irregularly shaped Poly-NPs and Poly-NPs with hollow cores
to be reproducibly synthesized.*

Drugs are usually loaded into Poly-NPs by surface
adsorption, matrix dispersion, or encapsulation. Depending
on their structural organization, they can be further classified
into nanocapsules and nanospheres (Figure 1b). In nano-
capsules, a polymeric shell surrounds a liquid or semisolid core,
whereas nanospheres are solid, matrix-type systems.”' Drug-
loading in these systems is by passive or active linkage. Passive
loading techniques are simple and scalable chemical processes
that cause the accumulation of drugs within the NP structures
through hydrophobic or electrostatic physisorption. On the
other hand, active loading involves chemical linkages rationally
designed to reversibly attach drug molecules to functional
groups on the Poly-NPs. Active linkage provides precise
control over drug release but is comparatively cost-intensive.
For example, Miele et al. designed a core—shell Poly-NP to
deliver electrostatically loaded anti-HIV RNA-interfering
oligonucleotides, overcoming stability and immunogenicity
issues of siRNA and alternative delivery modalities such as viral
vectors.” Similarly, active linkage of cinnamaldehyde, an
antibacterial agent, to a Poly-NP backbone by acid-labile acetal
linkages provided pH-sensitive drug release from the
construct.”

In general, Poly-NPs are a versatile class of nanocarriers with
immense clinical potential. Poly-NP surfaces can be function-
alized with targeting ligands or stealth polymers such as
polyethylene glycol (PEG) to enhance target specificity and
prolong circulation time in the body."* This targeted delivery
approach can minimize off-target effects, improve the
therapeutic index of the encapsulated drugs, and offer the
possibility of triggered or stimuli-responsive drug delivery."*’
Poly-NP-based drug delivery also protects active principles
from degradation, increasing their stability and shelf life, which
is crucial for maintaining the potency and efficacy of the
therapeutic agents.*® Poly-NPs have notable advantages over
other nanocarrier systems. They offer better stability,
controlled release properties, and ease of surface modification
than lipid-based nanoparticles.’” They are also typically more
biocompatible and biodegradable than inorganic nanocarriers
such as gold or iron oxide, which may accumulate in the body
and cause toxicity concerns."’

2.2. Lipid-Based Nanoparticles. Lipid-based nanopar-
ticles (LNPs) are a significant advancement in the field of drug
delivery, having been developed from cationic and pH-sensitive
lipid-coated nucleic acid capsules deployed in the 1980s.**
They offer a versatile platform that can be tailored to meet the
specific needs of various therapeutic applications.’”*’ LNPs are
characterized by a unique structure, typically consisting of a
core surrounded by a shell of amphiphilic molecules such as
phospholipids or surfactants that stabilize the core—shell
structures. LNPs can solubilize and deliver diverse therapeutic
agents including small molecules, peptides, proteins, and
nucleic acids.*

Based on their structures and components, LNPs are further
classified as Liposomes, Solid Lipid Nanoparticles (SLNs), and
Nanostructured Lipid Carriers (NLCs).”">” Liposomes are
self-assembled vesicles composed of phospholipid bilayers,
encapsulating aqueous cores.”® In SLNs, solid lipid cores are
surrounded by amphiphilic shells.””> The drug-loading and
long-term stability drawbacks of SLNs prompted the develop-
ment of NLCs, which essentially incorporate mixtures of solid
and liquid lipid molecules in the core matrix to reduce its

https://doi.org/10.1021/acsami.5c07366
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Figure 2. Chemical structures and schematic representations of various nanoparticles utilized in drug delivery systems. a) Synthetic and natural
Poly-NPs; b) b(1) Quintessential nanosphere and nanocapsule structures. Reproduced from ref 83. Available under a CC-BY 4.0 license. Copyright
2020 Baldim et al. b(2) A hydrophobic drug encapsulated within an amphiphilic Poly-Np to stabilize it in a hydrophilic solvent environment; c)
Some lipids used to prepare LNPs; d) Types of LNPs. Adapted from ref 83. Available under a CC-BY 4.0 license. Copyright 2020 Baldim et al; e)
Inorganic nanoparticles; f) Possible modifications of a magnetic nanocarrier; g) Carbon-based nanoparticles; h) Structural features of key carbon-
based nanocarriers. Reproduced from ref 26. Copyright 2023 American Chemical Society.

crystallinity, improve drug-loading, and reduce leakage.’*
Recently, hybrid drug delivery systems have been developed,
combining the beneficial properties of LNPs and other
nanocarrier materials such as Poly-NPs. These lipid-polymer
hybrid nanocarriers structurally comprise drug cores enclosed
in a polymer layer with an outer functionalized lipid coating,
providing better mechanical integrity to achieve better stability,
reduced drug leakage, and efficient drug entrapment.>®

The lipid components of LNPs can vary widely and, as
presented in Figure 2¢,d, comprise physiological lipids such as
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triglycerides, fatty acids, and cholesterol, which are generally
biocompatible and biodegradable, reducing the risk of toxicity
associated with certain other nanoparticle systems. The
scalability of LNP production has been crucial for their
commercial viability and widespread application in drug
delivery. LNPs can be manufactured using both solvent-
based and nonsolvent-based techniques such as microemulsion
and high-pressure homogenization (HPH), which are simpler
and more cost-effective techniques than those used for
polymeric nanoparticles.”® Additionally, the versatility of

https://doi.org/10.1021/acsami.5c07366
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LNPs expands their potential applications across multiple
disease areas.

Within LNPs, SLNs and NLCs exhibit significant advantages
over liposomes. Compared to liposomes, for instance, SLNs
and NLCs are more physically stable and have therefore
garnered considerable attention and widespread produc-
tion.’”"” Additionally, while liposomes and SLNs are more
susceptible to degradation and leakage, NLCs have been
designed to enhance the nanocarrier’s stability, thereby
improving shelf life. #8557 Commercially, LNPs recently
caught global attention, having been the nanocarriers of choice
for COVID-19 mRNA vaccine delivery.””®" They have also
been formulated severally to deliver highly unstable nucleic
acid therapeutics and poorly soluble drugs.”**’

2.3. Inorganic Nanoparticles. Inorganic NPs are a
diverse class of nanocarriers, comprising metals, metal oxides,
silica, and other inorganic nanomaterials, which confer unique
optical, magnetic, and thermal properties that make them
attractive for drug delivery applications.””*® Inorganic NPs
generally share exceptional material properties that make them
versatile drug nanocarriers. For example, the interesting
plasmonic properties of gold NPs have been exploited for
photothermal therapy and phototriggered drug release.”*®
Similarly, iron oxide NPs have been incorporated into
nanocarrier systems for magnetic targeting and imaging
functions due to their superior magnetic properties.”’ As
exemplified by plasmonic gold NPs and paramagnetic iron
oxide NPs, inorganic nanocarriers have properties that can be
easily engineered to design multifunctional platforms with
theranostic capabilities.

The structural composition of inorganic nanoparticles is
often defined by a solid core or hollow inorganic nanomaterial,
surface-functionalized to enhance biocompatibility, targeted
delivery, and drug-loading efficiency. Luther and colleagues
described payload thiol conjugation to a monolayer-coated
gold core, providing improved cellular uptake and cell-specific
targeting.”” Similarly, thermally stable and chemically inert
mesoporous silica NPs (MSNs) are synthesized using
surfactant-stabilized micellar templates, resulting in honey-
comb-structured constructs with hollow core channels where
drugs can be physically or covalently loaded.”” On some
occasions, inorganic NP-based nanocarriers have been coated
with polymeric molecules to improve their colloidal properties
and biocompatibility and provide more avenues for surface
functionalization. This has, for example, manifested in a
chitosan-coated multilayered iron-oxide and gold nano-
composite for doxorubicin delivery.”” Additionally, polymeric
coatings are often incorporated into inorganic nanocarriers to
prevent oxidation of the inorganic nanoparticles and as steric
barriers to prevent agglomeration, opsonization, and the
residual magnetization associated with magnetic nanocar-
riers.®” ™%’ Metal—organic frameworks (MOFs) have also
been employed in conjunction with organic hydrogels to
achieve highly porous structures that can load active targeting
ligands and drugs and leverage the magnetic properties of the
MOFs for multimodal targeting and specific drug delivery.”’

Inorganic particles are advantageous in their well-defined
physicochemical properties and ease of engineering. They also
have relatively higher surface area-to-volume ratios that give
them better drug-loading efficiency profiles, coupled with their
interesting thermal, magnetic, electronic, and optical properties
that are applicable in theranostic and targeted delivery systems.
However, inorganic nanoparticles, particularly those containing

heavy metals, have potential toxicity concerns. The long-term
biocompatibility and clearance of inorganic nanoparticles
remain areas of active research. Complexities in their synthesis
and functionalization can also pose hurdles in scaling up
production, making it imperative to develop cost-effective and
reproducible manufacturing workflows.

2.4. Carbon-Based Nanoparticles. Carbon-based NPs
are some of the most thoroughly researched nanomaterials.
They have found use in energy applications, electronics,
packaging, purification, and several other industries. Carbon-
based NPs generally present high surface area-to-volume ratios
and tunable nanoscale morphology and surface chemistry,
making them suitable as nanocarriers with enhanced entrap-
ment efficiency and ligand-functionalized targeted delivery
capabilities. Structural forms of carbon-based NPs that have
been developed in the literature include carbon nanotubes,
graphene oxide, fullerenes, nanodiamonds, carbon dots, and
carbon quantum dots, each of which offers distinct character-
istics that make them suitable for specific applications in drug
delivery (Figure 2g,h).29’71_73

Carbon nanotubes (CNTs) are one-dimensional or three-
dimensional (in the case of multiwalled CNTs) nanostructures
that are explored for their high surface area and physisorptive
and chemisorptive cargo-loading capacity. Their ability to
traverse cell membranes also makes CNTs suitable for
intracellular drug delivery, an invaluable pharmacotherapeutic
phenomenon in immuno-oncology. The nanocarrier properties
and capacities of CNTs are determined by their structural and
dimensional features. Molecular dynamics simulations have, for
example, reported the dependence of CNTSs’ doxorubicin
entrapment efficiency on the diameter and chirality of the
CNTs, as well as the presence and nature of defects within the
nanotubes.”*

Graphene is a two-dimensional nanomaterial consisting of
sp>-hybridized carbon atoms arranged in a honeycomb lattice
structure with delocalized electrons. The chemical features of
graphene endow it with interesting photothermal and
electronic properties that have driven its adoption into a
wide range of applications. Having a large surface area and 7-
orbitals of delocalized electrons, the graphene molecule
provides ample area for adsorption, through 7—7 stacking, of
aromatic compounds. This has been explored to functionalize
graphene as a multidrug carrier.”” Some derivatives of
graphene such as graphene oxide (GO) and reduced graphene
oxide (rGO) have also been developed for the delivery of
antineoplastic agents, anticoagulants, and nucleic acid pay-
loads, among others.”> Other carbon-based nanocarriers have
also been used in drug delivery. Carbon dots, for example, are
spherical carbon-based NPs, less than 10 nm in size and rich in
carboxyl, hydroxyl, and amino functional groups, that have
found recent success in drug delivery to the central nervous
system.76

The structural features of carbon-based NPs determine their
pharmacokinetic properties as drug carriers. The needlelike
structure of CNTs, for example, allows them to penetrate cell
membranes more efficiently than spherical carbon-based
NPs.”” Carbon-based NPs also frequently have reactive side
groups that can be functionalized for targeted delivery and
improved biocompatibility. Their chemical properties render
them amenable to covalent and noncovalent functionalizations
that serve diverse purposes of therapeutic values.”””® These
have resulted in targeting ligand-functionalized carbon NP-
based drug delivery systems as well as theranostic platforms

https://doi.org/10.1021/acsami.5c07366
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Figure 3. llustrations of a) Smart nanoparticles’ multifunctional use in cancer management. Reproduced from ref 4. Available under a CC-BY 4.0
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Faiyaz et al,; f) Nano-Se as an efficient approach to treating HD demonstrated in a C. elegans model. Reproduced from ref 178. Copyright 2019
American Chemical Society.

with real-time drug delivery and response monitoring,”*’* Like
inorganic NPs, certain carbon NPs such as graphene and
CNTs have unique optical and electronic properties that have
been directly exploited in the literature for photothermal

therapy, bioimaging, and actuated drug release.

80,81

CNTs

exhibit strong optical absorbance in the near-infrared region,
converting photonic energy to heat—a physical phenomenon

underlying their use

in photothermal therapy and light-

controlled drug delivery. Combining multiwalled CNTs with

37388

plasmonic gold NPs has achieved synergistically high efficacy

in PTT against breast cancer cells.®*

Despite the merits of carbon-based NPs as nanocarriers, they
still face peculiar challenges in healthcare, stemming from their
potential toxicity concerns, limited biodegradability, clearance,
and synthesis reproducibility. Carbon-based NPs require
precise control over process parameters during synthesis to

control the size, purity, and functionalization. This also
translates to higher production costs and complexity,

https://doi.org/10.1021/acsami.5c07366
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constituting a drawback for large-scale production.”” Despite
these challenges, carbon-based NPs offer unique advantages for
drug delivery due to their high drug-loading capacity, improved
cellular uptake, versatile functionalization, and multifunctional
capabilities. Nonetheless, intelligent nanoparticle design, sur-
face modification, and thorough characterization approaches
are required to ensure their safe and effective use as
nanocarriers.

The chemical and structural features of some Poly-NPs,
LNPs, inorganic NPs, and carbon-based NPs that have been
adopted as nanocarriers are illustrated in Figure 2.

3. POTENTIAL CLINICAL APPLICATIONS OF
NANOPARTICLE-BASED DRUG DELIVERY SYSTEMS

3.1. Cancer Therapy. Current clinical approaches to
managing cancers involve chemotherapy, immunotherapy,
radiotherapy, and surgical procedures. While these have largely
resulted in significant strides over the past few decades,
research is ongoing to improve oncologic pharmacotherapies,
enhancing their efficacy and toxicity profiles through
optimization of pharmacokinetic parameters and targeted,
controlled in vivo delivery. Accordingly, nanocarriers have been
explored due to their intrinsic properties that can overcome
challenges associated with antineoplastic APIs, such as poor
solubility, nonspecific biodistribution, and adverse effects.
Some of the nanocarriers adopted for cancer therapy include
Poly-NPs, liposomes, and inorganic NPs, which have been
investigated to deliver both single and combination therapies.*”

The unique properties of nanocarriers can be exploited to
enable passive preferential accumulation and cargo release at
tumor sites associated with leaky vasculature and impaired
lymphatic drainage, a phenomenon typically referred to as
Enhanced Permeability and Retention (EPR). As discussed
earlier, nanocarriers can also be functionalized for active
targeting strategies to au%ment EPR through the conjugation
of target-specific ligands.”**> There are several instances of
these approaches to enhancing cancer therapy in contemporary
literature.

Crucially, smart nanocarrier systems have emerged as one
such nanomaterial-based approach to antineoplastic drug
delivery. Smart nanocarriers leverage established biophysical
principles and well-researched material properties to achieve
predictable and controllable delivery phenomena. They offer
promising advancements over conventional cancer therapy,
enabling a more sophisticated treatment strategy. Smart
nanocarrier systems often consist of a core nanomaterial with
a peculiarly desirable property functionalized with a combina-
tion of targeting ligands, biopolymer coatings, and/or actuator
molecules for stimulus or signal responsivity. Gold NPs are
commonly used in the core of these systems due to the ease of
their synthesis, particle size and morphology control, ease of
surface functionalization, and biocompatibility stemming from
their relative chemical inertness. Nonetheless, some other
inorganic NPs, Poly-NPs, and carbon NPs have been adopted
singly and in combinations.

Xu et al. developed a porous gold nanoshell construct,
loaded with emtansine together with a photosensitizer for
synergistic chemotherapy upon near-infrared irradiation,
achieving on-demand drug delivery, remarkable tumor
regression, and prolonged survival in in vivo models.*®
Similarly, Hou et al. designed a smart nanocarrier system
comprising a nanoporous silica core functionalized with
plasmonic silver quantum dots and hyaluronic acid for the

multistimulus-responsive delivery of doxorubicin.®” Dai et al.
also reported the development of a theranostic nanocarrier
system for simultaneous imaging and photothermal therapy.*®
This system, composed of a gold nanorod core and an MSN
shell, could efficiently accumulate in tumors and generate heat
upon near-infrared light irradiation (NII), leading to tumor
ablation, while facilitating NII-mediated delivery of a small
molecule inhibitor of the immune checkpoint protein, PDLI,
as well as a vaccine stimulating in vivo production of an anti-
VEGEF antibody. Other studies have designed multifunctional
smart nanocarrier systems that respond to pathophysiological
cues such as pH, enzymatic activity, and redox reactions, as
well as external stimuli such as photoradiation, sound, electric,
and magnetic fields."

In contrast to smart nanocarrier systems, much simpler
nanocarrier systems have also been designed, exploiting simple
material properties for direct cytotoxicity and EPR, wherein
the NP adopted itself demonstrates the desired antineoplastic
and/or targeting effect. Designing one such system, Abdellatif
et al. investigated chitosan-capped silver nanoparticles with
inherent activity against breast cancer cells.*” The schematic
illustration of this simple design is presented in Figure 3b.
Additionally, several studies have reported the in wvitro
anticancer activities of selenium nanoparticles against breast,
lung, colorectal, prostate, cervical, and liver cancer cell lines,
mediated by their inhibition of cancer metastases, paving the
way for subsequent studies and optimizing the synthesis and
morphology of these simple nanomaterial systems for potential
antineoplastic applications.”

Nanocarriers have recorded tremendous translational
success in cancer, and several nanocarrier-based formulations
have already received clinical approval. These include Doxil
(liposomal doxorubicin), Abraxane (albumin-bound paclitax-
el), and Onivyde (liposomal irinotecan).***>”" An overview of
contemporary studies that have examined nanocarriers for the
delivery of anticancer agents is presented in Table 1.

3.2. Infectious Diseases. Infectious diseases are often
difficult to treat radically due to conventional treatment
challenges such as antimicrobial resistance, which develops due
to subtherapeutic microbial site accumulation. Infectious
diseases, caused by a wide array of pathogenic microorganisms,
are typically more prevalent in the developing world, where
logistical challenges compound disease treatment with supply
chain inefliciencies, drug stability issues, and healthcare
financing models that result in low patient adherence, coupled
with drug-related toxicities and extended therapeutic regimens.
To address these challenges and shore up antimicrobial
therapy options, especially considering recent global and
regional epidemics, several approaches have been explored
on both scientific and policy framework fronts.'”® Nanoma-
terials, with their potential for advancing diagnosis and
treatment of infectious diseases, have emerged as one of the
forerunners of technologies to combat infectious diseases in
contemporary times.

Nanocarriers have shown promise in formulations delivering
different antimicrobial classes, including antimicrobial pep-
tides, vaccines, oligonucleotide molecules, and small-molecule
antimicrobial agents against several pathogens of clinical
significance. The value of nanocarriers in these formulations
arises from their improvement of the active principles’
solubility, stability during storage, and persistence within the
physiological environment, as well as the possibility of
functionalizing these systems for passive or active targeting

https://doi.org/10.1021/acsami.5c07366
ACS Appl. Mater. Interfaces 2025, 17, 37383—37403
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and accumulation at target sites. Some NPs also possess
antimicrobial activities themselves. These properties, along
with smart, stimulus-responsive delivery principles, improve
therapeutic outcomes by overcoming common mechanisms
through which pathogens develop and exert antimicrobial
resistance. %’ Additionally, the controlled release of active
principles from nanocarrier systems circumvents the need for
frequent dosing, improving patient adherence, while maintain-
ing therapeutic serum levels and target site accumulation of the
antimicrobial agents, leading to an overall enhancement of
clinical and humanistic outcomes of infectious disease
therapies.

Many instances of anti-infectious agents formulated in
nanocarrier systems have been reported in recent literature.
These include Poly-NPs explored for antiretroviral delivery in
HIV/AIDS and inorganic NPs, such as silver and gold,
investigated for their antimicrobial properties and potential
applications in wound healing and infection control, among
other such applications.""”""" In a study conducted by Cao et
al, MSN-supported silver—bismuth nanoparticles (Ag—Bi@
Si02 NPs) were developed for enhanced antibacterial
treatment, combining hyperthermia and the antimicrobial
activity of silver against methicillin-resistant Staphylococcus
aureus (MRSA) (Figure 3d).'"”

The Pfizer-BioNTech and Moderna COVID-19 vaccines
utilized LNPs to encapsulate and deliver mRNA encoding the
SARS-CoV-2 spike protein, eliciting a robust immune
response. Building on the success of LNP-delivered mRNA
vaccines, a more recent study by the COVARNA consortium
developed multiple LNP- and Poly-NP-based nanoemulsion
and nanocapsule prototypes in delivering mRNA vaccines
against SARS-CoV-2.""? In addition to antiviral agents and
vaccines, nanocarrier systems have also been developed against
other difficult-to-treat infectious diseases such as mycobacteria,
characterized by multidrug resistance, polypharmacy, and long
treatment periods. SLNs, loaded with the antibiotic rifampicin
and surface-functionalized with mannose for targeted delivery
to Mycobacterium tuberculosis, exhibited enhanced intracellular
uptake and improved efficacy against drug-resistant strains,
offering a promising approach for combating antimicrobial
resistance in mycobacteria.114

Antimicrobial peptides and other immunotherapeutic
antimicrobials are some other classes of anti-infectives that
have been formulated in nanocarrier systems. Zhang et al.
reported the development of gold nanoparticles coated with
ultrashort antimicrobial dipeptides for treating bacterial
infections. The nanoconstruct demonstrated potent antibacte-
rial activity against multidrug-resistant strains, including
MRSA.""” In a similar study, NPs carrying bacterial outer
membrane vesicles (OMVs) stimulated immune reactions
against Shigella.''®

Nanocarriers and NPs also offer advantages in combating
parasitic pathogens. Different self-assembled protein NPs have
been reported to target distinct stages of the malaria parasite’s
lifecycle, for example.''” This has given rise to nanovaccines
designed to generate antibodies against plasmodial species
while also possessing the size and mobility to traverse the
lymphatic system presenting antigenic material on MHC
molecules to elicit a sustained cellular immune response.''”''*

Leveraging the unique properties of NPs, innovative
strategies to combat infectious diseases are being developed,
offering improved therapeutic outcomes and addressing
challenges such as drug resistance and targeted delivery. The

FDA has approved several NP-based formulations for the
treatment of infectious diseases, including AmBisome (lip-
osomal amphotericin B) for invasive fungal infections and
Abelcet (lipid complex amphotericin B) for severe fungal
infections in patients intolerant to conventional amphotericin
B.* Additionally, intricate designs of nanocarriers have been
exploited for multifunctional purposes, exemplified by a recent
nanogel designed for antimicrobial and enamel remineraliza-
tion purposes,119 further demonstrating the translational
potential of nanocarrier systems. Some of the important recent
advances in nanocarrier-based anti-infective formulations are
summarized in Table 2.

3.3. Neurodegenerative Disorders. Neurodegenerative
disorders are chronic diseases, often requiring lifelong
management with multiple drugs and complex regimens that
mostly only provide symptomatic relief. The management of
neurodegenerative disorders is often further complicated by
biodistribution challenges encountered due to the physio-
logical role of the blood—brain barrier (BBB). The
physicochemical properties of most APIs used in managing
neurodegenerative disorders render them ineflicient in crossing
the BBB. Further, bioimaging, diagnostic, and disease
monitoring strategies are hampered by the impaired distribu-
tion of biosensing constructs into the central nervous system.
In multiple recent studies, nanocarrier systems have shown
promise in addressing these and other challenges peculiarly
associated with managing neurodegenerative disorders, such as
Alzheimer’s disease (AD),"*°~'** Parkinson’s disease
(PD),"”"**'* and multiple sclerosis."*'~'**

NPs can afford more efficient transport through the BBB,
leveraging one or more researched mechanisms such as
adsorptive-mediated transcytosis, receptor-mediated transcy-
tosis, and cell-mediated transport.'**'*> Accordingly, nano-
carrier systems have been reported on multiple occasions to
effectively deliver cargo to the central nervous system, offering
a competitive advantage over conventional formulations for the
same purpose. This is especially important in the context of
smart nanocarrier systems with which both normal healthy
features and pathophysiological changes in the BBB can be
targeted to deliver cargo only in intended in vivo conditions. In
a recent study, Nong et al. conjugated LNCs with antibodies
that bind cell adhesion molecules (VCAM) expressed at the
BBB to enable targeted delivery to the inflamed BBB in acute
ischemic stroke. Anti-inflammatory drugs administered intra-
venously after ischemic stroke reduced cerebral infarct volume
by 62% (interleukin-10 mRNA) or 35% (dexamethasone) only
when they were encapsulated in VCAM-targeted LNCs."*

Nanocarrier constructs can either cross the blood—brain
barrier (BBB) effectively or bypass it altogether to reach
specific central nervous system regions. This additional unique
ability afforded by the physiochemical profile of NPs provides
immense clinical benefits (Figure 3e). Their importance is
highlighted in their continued use for formulating numerous
neurotherapeutic agents ranging from small molecules to
phytochemicals and peptides, among others."*” In a recent
study, chitosan Poly-NPs achieved direct nose-to-brain delivery
of donepezil hydrochloride, bypassing the BBB, to treat AD."'*
Confocal micrography studies confirmed delivery to the brain
by the LNPs, which delivered the API almost thrice as well as
intranasal and 10 times more than oral donepezil formulations.
A similar study explored intranasally administered magnetic
nanoparticles for bioimaging of target brain regions, potentially
leveraging the BBB-bypassing capability of the nanocarrier.'*”
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Supplementation of essential molecules that are deficient in
neurodegenerative diseases has also been improved with
nanocarrier systems. Cong et al. explored selenium nano-
particles (Nano-Se) for Huntington’s disease (HD) therapy in
transgenic Caenorhabditis elegans (C. elegans) models. At low
doses, Nano-Se significantly decreased neuronal death,
improved behavioral function, and protected C. elegans against
damage caused by stress (Figure 3f). An overview of
nanocarrier-based systems developed for neurodegenerative
disease management is presented in Table 3.

The translational potential of nanocarriers is further
demonstrated in the number of approved nanomedicines,
patents, and clinical trials involving these systems in the
management of cancers, infectious diseases, and neuro-
degenerative disorders.'®® Sorrentino and colleagues recently
discussed and outlined nanocarrier-based formulations that
have been approved for cancer therapy.'® Similarly, a 2024
review by Melo and colleagues comprehensively discusses
some randomized clinical trials of nanomedicines in the
management of various cancers,’’® while another review
explored the patent landscape of nanomedicines in cancer.'”!
Similar recent reviews have explored the clinical translations of
nanocarriers in the management of infectious diseases'’>~""*
and neurodegenerative diseases.'”>”""" Some recent nano-
carrier systems designed for the management of cancers,
infectious diseases, and neurodegenerative diseases, as reported
in the literature, are illustrated in Figure 3.

4. LIMITATIONS OF NANOPARTICLE-BASED DRUG
DELIVERY SYSTEMS

4.1. Toxicity, Biocompatibility, and Delivery Barriers.
Nanoparticles interact uniquely with biological systems in ways
that might introduce biotoxicity. It is important to fully
demystify the biodistribution, clearance, and long-term effects
of nanocarrier systems in their various configurations.'”’
Recent studies have reported systemic inflammation arising
from NPs in multiple toxicology models. CNTs have, for
example, triggered inflammatory responses accompanied by
lipid dysregulation-mediated granuloma formation in mice."*’
An earlier study already demonstrated a significant relationship
between the morphology of nanotubes with the severity of
toxicity, with higher aspect ratio CNTs having more
pronounced adverse effects."®" Additionally, several studies
have reported inflammatory responses with single-walled
carbon nanotubes (SWCNTs)."®>

Inorganic NPs, especially metal oxides, may also cause
oxidative stress by generating cytotoxic reactive oxygen species
(ROS). Defects and vacancies, often associated with copper
oxide, zinc oxide, iron oxides, and other metal oxide NPs, can
catalyze ROS production through photochemistry or Fenton
reactions, resulting in oxidative damage to lipids, proteins, and
nucleic acids in the cells.'”'** While these mechanisms confer
important functionality on the inorganic NPs, they pose a
biotoxicity challenge and have been the target of recent
biocompatibility optimization research.

Generally, there is ongoing research to better understand
NPs’ interactions with biosystems and develop strategies for
mitigating potential toxicity, such as surface modifications, or
using alternative materials with improved biocompatibility
profiles such as Poly-NPs and LNPs, enabling safe use,
handling, and production."**"*> The biocompatibility and
minimal toxicity inherent in natural and biodegradable
synthetic polymers such as chitosan and PLGA, due to their

chemical similarity to biomolecules, have thus far driven their
adoption in biomedical applications.'®® Similarly, LNPs bear
physicochemical similarities to cellular membranes and are
thus generally safe with minimal toxicity."®”

4.2. Scale-Up and Commercial Manufacturing. To
ensure the commercial viability of nanoparticle-based drug
delivery systems, scalable and cost-effective manufacturing
processes are being developed. These range from microfluidic
technologies to continuous manufacturing processes such as
twin-screw extrusion, membrane emulsification techniques
coupled with microfluidic devices, and high-pressure homog-
enization. Other approaches include continuous flow reactors
and microreactors, which have been used for the industrial
production of protein NPs such as albumin-bound paclitaxel
(Abraxane). Anderluzzi et al. demonstrated a scalable
manufacturing process for SLNs, optimizing a microfluidizer-
based high-shear mixing process followed by a tangential flow
filtration workflow, controlling process parameters to achieve
desired NP size and polydispersity.'*® A similar scale-up
attempt operationalized two multiinlet vortex mixers for the
sequential flash nanoprecipitation of MSNs."®” The MSNs
loaded with the nematocidal agent, abamectin, achieved high
encapsulation rates, maintained nematocidal activity, and had
tunable morphology with the optimization of process
parameters.

Several other scalable production workflows for NPs based
on nanoprecipitation, supercritical fluid technology, extrusion,
and microfluidization, among other techniques, have been
discussed in recent literature. °~'”* Crucially, each technique
has its peculiar advantages and limitations, necessitating further
research to enable scalable, cost-effective, sustainable, and
reproducible production of nanocarriers for industrial applic-
ability. It is important to note that there is a lack of
comprehensive standards in the characterization and reporting
of nanocarriers, resulting in fragmented and frequently
uncompilable protocols and findings. This needs to be
surmounted with transparency and standardization if nano-
carriers are to be adopted at scale and manufactured
industrially as they are essential for commercial viability and
clinical translation.

4.3. Regulatory Challenges. Oversight of the major
global pharmaceutical markets is conducted by the FDA in the
United States and the EMA in Europe. The regulatory
frameworks established by these authorities concerning
nanomedicine research generally prioritize critical consider-
ations related to quality and safety—from pharmacological,
biodegradation, environmental toxicity, and biocompatibility
standpoints.'”’ Investigational medicinal product (IMP)
applications are required to state, in addition to the drug
development stage, clinical trial phase, duration, study
population characteristics, therapeutic use case, and disease
specificity. However, as nanocarrier-based drug formulations
proceed to clinical trials, their dossiers are also generally
required to include the manufacturing process parameters as
well as characterization findings to enable a more robust
assessment, given that the quality characteristics may not
necessarily translate to in vivo properties.”"'”> This also
applies in marketing authorizations or new drug applications,
where scale-up manufacturing process parametrization must be
comprehensively provided in the case of nanomedicines.'”®

While much of regulation existing to guide research and
manufacturing of nanocarrier-based pharmaceuticals is derived
from interpretations of existing medicine research and

https://doi.org/10.1021/acsami.5c07366
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development guidelines, Alejandro et al. persuasively argue that terms that specifically cater to the peculiarities of nano-
there are regulatory challenges that still stem from the lack of particles.'”* Notably, nanomedicines, when they are offered
standardized definitions of nanomedicine research-related regulatory definitions, are typically perceived in terms of
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approximate size limits, which do not sufficiently capture the
intricate material properties that may have significant
ramifications from a clinical perspective.'”*

Similarly, the Organization for Economic Co-operation and
Development (OECD) has steadily released reports that
epitomize the evolving regulatory landscape of nanocarriers
in the pharmaceutical industry. The ENV/CBC/
MONO(2023)7 is an extensive compilation of national
regulatory updates submitted by OECD member states. It
consolidates information on policy developments, safety
assessment methodologies aligned with the OECD council
recommendation, and refinements in best practice frame-
works.'”” A recent version, ENV/CBC/MONO(2024)1,
provides a more recent snapshot, tracking ongoing national
initiatives, OECD-endorsed protocols, and considerations for
advanced materials as regulatory science progresses. The
underlying imperative in these efforts seems to be to establish a
coherent, internationally aligned regulatory structure. None-
theless, disparities currently exist in regional policies, priorities,
and directions, complicating a broader effort to bring
nanomedicines to the market in a globally integrated manner.

Globally, regulatory agencies, such as the U.S. Food and
Drug Administration (FDA) and the European Medicines
Agency (EMA), are tasked with establishing frameworks for
the evaluation and approval of nanomedicines. As has been
emphasized by the authorities, there is an undoubted need for
a harmonized international regulatory framework detailing
standardized methods for characterizing and assessing nano-
carriers’ safety and efficacy. So far, the US and EU have
unsurprisingly been at the forefront of regulating nano-
medicines and publishing specific guidelines, while other
jurisdictions lack clear regulatory direction.

Existing regulations by the FDA and EMA still face some
core challenges as nanomedicine rapidly advances. One such
challenge is the adequacy of the regulatory framework itself.'”®
The EMA website lists the “Scientific guidelines on nano-
medicines,” aiming to help develogers prepare marketing
applications for nanomedicines.'”” Notably, the EMA’s
strategy for regulating nanomedicines involves establishing a
dedicated workin§ group to address regulatory issues related to
these products.””” While this approach enables dynamism in
response to new insights and advancements, creating adequate
regulations is challenging when knowledge of nanomedicines is
limited. This has important implications for maintaining
patient safety and regulating the use of nanomedicines in
clinical settings.”"

In a nutshell, nanotechnology is developing faster than
regulatory frameworks can keep up. Novel nanomaterials with
increased complexity continue to be developed and tuned on
the atomic scale, complicating the incorporation of nano-
carriers in drug delivery from a regulatory standpoint.
Undoubtedly, there needs to be continued collaboration and
cross-talk among researchers, industry stakeholders, and
regulatory agencies for there to be clear and consistent
regulatory directions that ensure the safety and efficacy of these
innovative products as they transition to clinical use.

4.4. Methodical Challenges in Personalized Medicine.
Nanocarriers provide a world of possibilities for the precise
control of drug pharmacokinetics and delivery profiles.
However, successful translational adoption can only be realized
when they can reliably and reproducibly be modified using
simple, scalable methods to fit the idiosyncrasies and
peculiarities of patients on a case-by-case basis. Currently,

this is a challenge because, while the technology appears
capable of incorporating patient-derived biomaterials and
functionalizations to adapt to patient-specific needs, existing
synthesis and fabrication methods of nanomaterials are
expensive already as is, and this new requirement would only
make them less accessible.

Patient heterogeneity is an important variable that must be
accounted for in the design and development of nanocarrier-
based drug delivery systems. The tumor microenvironment, for
example, often varies from patient to patient and influences the
accumulation and distribution of nanoparticles within the
tumor tissue. De Maar et al. recommended developing patient-
specific formulations tailored to the features of each patient’s
tumor microenvironment, accounting for vascular permeabil-
ity, interstitial fluid pressure, and extracellular matrix
composition differences across patients.””” From a different
perspective, there is the challenge of immune responses and
the potential for drug resistance. Some contemporary studies
propose integrating multiomics data to develop more precise
and effective personalized nanomedicines, considering the
complex interplay between genetic, molecular, and environ-
mental factors influencing disease progression and treatment
response.””?%> These are rather idealistic approaches to
further personalizing nanomedicine; and their implications on
cost, scalability, and accessibility must be considered.

A machine learning model was recently reported to predict
cellular uptake and intracellular trafficking of nanoparticles
based on their physicochemical properties and the genetic
profile of the target cells.'»*°® This is an exciting development,
and not only could it enable the efficient design of personalized
nanoparticle formulations tailored to the specific genetic
makeup of individual patients, but it also means that
computational advances could democratize access to these
tools, making it possible to determine optimal nanocarrier
configurations from a library using patient data at minimal cost
and within shorter periods than it would ordinarily take to
experimentally establish patient fit.

Schematic depictions of the biological barriers that govern
pharmacokinetics, nanotechnology applications in personalized
medicine, and an overview of theranostic nanocarrier platforms
are shown in Figure 4.">'%%*%7

5. CONCLUSION

Nanocarrier-based drug delivery systems show remarkable
potential to overcome many limitations of conventional drug
delivery methods. The unique properties of nanoparticles, such
as size, surface area, and ability to encapsulate and deliver
drugs in a controlled and targeted manner, have made them
attractive candidates for various therapeutic applications.
Nonetheless, nanocarriers are still riddled with important
challenges that must be addressed, especially to allow their
progress to industrial-scale manufacturing and clinical
adoption.

Current pertinent challenges include biocompatibility and
toxicity issues arising from the unique interaction of NPs with
biosystems and scale-up roadblocks due to technological
complexities that impair reproducibility and accessibility.
Going forward, the real game-changer in nanocarrier
technology will likely come from biocompatible and/or
biodegradable NPs that can be produced at scale using cost-
effective manufacturing processes; even the most groundbreak-
ing technology will not matter if it is too expensive and
inaccessible. Additionally, the global regulatory space appears
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to be a maze to navigate at the moment, presenting an
opportunity for concerted efforts to develop evidence-based
policy frameworks that account for near-future advancements
in the bionanotechnology field and harmonize global direction
to produce standardized protocols for development, character-
ization, and validation. Therefore, while there will continually
be new nanoconstructs being developed and adapted for
various disease conditions, future research is likely to
drastically increase in areas of sustainable and scalable
nanocarrier manufacturing, as well as policy research and
regulatory outlooks.

In a nutshell, nanocarrier-based drug delivery is a field that is
moving fast, with the potential to completely upend the way
diseases are diagnosed and treated. However, it is important to
note that none of this happens in a vacuum, and several
stakeholders need to commit to collaboration, without which
even the most promising breakthroughs in nanocarrier research
may fail to make a real difference in patient care.
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