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ABSTRACT

EFFECT OF DATASET REDUCTION TECHNIQUES ON COMPUTATIONAL
COMPLEXITY AND PREDICTIVE PERFORMANCE OF CLASSIFICATION
PROBLEM

SUAT AKKAS
Data Science M.Sc. THESIS, January 2025

Thesis Supervisor: Asst. Prof. Ezgi KARABULUT TURKSEVEN

Keywords: Sampling, Dimensionality Reduction, Similarity, Classification,

Computational Performance

The usage of big data in the industry increases day by day. This situation exists
also in the financial industry. The usage of big data in the financial sector leads
to enormous improvement in the areas of financial problems such as credit scoring
problems. However, the usage of big data also increases the computational time and
usage of available resources enormously. Therefore, this issue makes the usage of
big data in some applications and some situations inefficient.

To handle inefficiency in the usage of big data, we have focused on the sampling
methods in this study. By using row-wise sampling algorithms and dimensionality
reduction in data, we aimed to reduce computational time for solving credit scoring
problems. However, our aim in this study is not just a reduction in computational
time but also the performance of the model usage in credit scoring in the case of
usage of big data. We have used also feature selection and transformation algorithms
in order to observe the effect of selection and transformation algorithms on different
sample sizes of sampled data in terms of predictive power. Moreover, to validate
whether the sample dataset represents the main dataset or not, we have used a
bunch of similarity metrics for different data types that exist in the datasct.

By using this methodology, we have observed the relation between the computational
time, power and data representativeness for different sample sizes of sampled data.
According to our findings from our study, it is possible to preserve the predictive
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power of models until some sample size, with decreasing the computational amount
in significant amounts. By demonstrating the relation between the computational
time versus predictive power relations with different sample sizes and different fea-
ture reduction methods, we aim to propose the sample size and feature reduction
selection for one’s main concerns.



OZET

VERI KUMESI AZALTMA TEKNIKLERININ SINIFLANDIRMA
PROBLEMININ HESAPLAMA KARMASIKLIGI VE TAHMIN PERFORMANSI
UZERINDEKI ETKISI

TEZ YAZARI

Tez Damismani: Yrd. Doc¢. Dr. Ezgi KARABULUT TURKSEVEN

Anahtar Kelimeler: Ornekleme, Boyut Indirgeme, Benzerlik, Siniflandirma, Hesaba,

Dayali Peformans

Biiytik verinin endiistride kullanimi her gegen giin artmaktadir. Bu durum finans
endiistrisinde de mevcuttur. Biiyiik verinin finans sektortinde kullanimi, kredi puan-
lama sorunlar1 gibi finansal sorunlar alaninda muazzam iyilegtirmelere yol a¢mak-
tadir. Ancak, biiytik verinin kullanimi ayni zamanda hesaplama siiresini ve mevcut
kaynaklarin kullanimini da muazzam sekilde artirmaktadir. Bu nedenle, bu sorun
bazi uygulamalarda ve bazi durumlarda biiyiik verinin kullanimini verimsiz hale
getirmektedir.

Biytk verinin kullanimindaki verimsizligi ele almak icin bu calismada érnekleme
yontemlerine odaklandik. Satir bazli ¢rnekleme algoritmalar: ve siitun bazli boyut
indirgeme kullanarak, kredi puanlama sorunlarini ¢ézmek i¢in hesaplama siiresini
azaltmay1 amacladik. Ancak, bu calismadaki amacimiz sadece hesaplama siiresini
azaltmak degil, aynm1 zamanda biiytik verinin kullanimi durumunda kredi puanla-
masinda model kullaniminin performansini da azaltmaktir. Ayrica, tahmin giicii
acisindan orneklenen verilerin farklh 6érnek boyutlarinda se¢im ve doniigtiirme algo-
ritmalarimin etkisini goézlemlemek icgin 6zellik se¢imi ve doniigtiirme algoritmalarim
da kullandik. Ayrica, 6rnek veri setinin ana veri setini temsil edip etmedigini dogru-
lamak icin, veri setinde bulunan farkl veri tipleri i¢in bir dizi benzerlik metrigi
kullandik.

Bu metodolojiyi kullanarak, orneklenen verilerin farkli O6rnek boyutlarn igin
hesaplama stiresi, gii¢ ve veri temsiliyeti arasindaki iligkiyi gozlemledik. Caligmamiz-
dan elde ettigimiz bulgulara gore, hesaplama miktarini énemli miktarda azaltarak,
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modellerin tahmin giiciinii belirli bir 6rnek boyutuna kadar korumak miimkiindiir.
Farkli 6rnek boyutlar1 ve farkli 6zellik azaltma yontemleriyle hesaplama stiresi ile
tahmin giici iligkileri arasindaki iligkiyi gostererek, ana endiseler i¢in 6rnek boyutu
ve Ozellik azaltma secimini énermeyi amacliyoruz.
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1. INTRODUCTION

The dramatic increase in data generation has affected the organization’s decision-
making processes and the usage of data frequencies. Big data is beneficial for decision
making processes by improving processes’ accuracy in the organizations, it gives op-
portunities for retrieving more informative insights, However, it also brings some
challenges for storage, computational efficiency such as considerably long computa-
tional times and lack of processing power to mine this data or extracting informa-
tion from it. Big data management is challenging for organizations, especially while
aiming for operational efficiency and minimum time-consuming operations. As men-
tioned in He & Garcia (2009) study, organizations mostly face considerable problems
in learning from large and complex datasets, especially dealing with imbalanced data

sets, which are mostly common in real-world applications.

Those issues about big data emerged in most of the sectors. One of those sectors is
financial sector. Usage of big data in financial sector is becoming crucially impor-
tant for decision making processes such as credit scoring. Applications of machine
learning algorithms on big data in credit scoring decisions have become powerful
and practical tools for credit risk assessment and how effective in processing com-
plex, multidimensional data for accurate predictions is demonstrated by Lessmann,
Baesens, Seow & Thomas (2015). Moreover, Bao, Xie, Song & Song (2019) have
mentioned that although more sophisticated models they have used as integrated
approach of unsupervised and supervised learning methods, reached superior re-
sults, they require large amounts of computational resources, and more complex

optimization strategies to overcome this problem.

In order to handle these computational challenges led by usage of big data, sev-
eral approaches used such as GPU acceleration, distributed computing systems and
algorithmic optimizations. The optimization of model architecture and data prepro-
cessing suggested by Xia, Hu, Hu, Shi, Bai, Zhong, Lu & Zhang (2017), for an answer
to this problem. In later years,Zhang, Luo & Du (2021) emphasized the importance
of balancing model complexity with computational efficiency, while demonstrating

the effectiveness of ensemble methods in credit scoring. Thus, the main issue arises
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the question that in order to reach the optimal predictive performance, should the
entire data set be used or if samples sclected from the data set carcfully is enough

while significantly reducing computational complexity?

Considering the advanced methodologies and recent algorithms used in credit scor-
ing, this thesis focused on sampling methodologies on applications of machine learn-
ing algorithms in the area of credit scoring. The main problem and the challenging
one in this sampling approach is to ensure that the sampled data maintains the rep-
resentativeness of the original dataset and captures the main patterns of the original
data set by also maintaining the essential relationship between features and target
as in the main data. This relationship is crucial in terms of predictive power of the
machine learning models, especially in classification problems of credit scoring. This
challenge of representativeness of the sample data requires careful consideration of
sampling techniques that can capture the data distribution across both numerical

and categorical variables as well documented in Lessmann et al. (2015).

The solution to this problem could be the computers with high computational power.
Although this approach is effective in reducing computational time, this is not a
proper answer to our problem, in the case of limited resources such as GPU, and
limited access to highly advanced technologies. Moreover, as the sample size of
data gets much bigger, there would be still a necessity for datasets with relatively
smaller sizes in terms of efficient problem solving. Because of those issues, we
have focused on effect of sampling methods in our study to overcome this problem
discussed above. Moreover, still, it is worth to discuss the alternative solution to
sampling methodologies. Methods that work with the whole dataset but uses sub-
samples during its steps such as mini batch method. However, this approach is
based on using whole dataset but using sub-samples of it iteratively. Because, this
method uses whole dataset eventually, this does not reduce the computational time.
This method could be effective only if the usage of parallelization while applying
this method. Even if mini batching applied with parallel processing, reduction in
computational power, will not be realized in the usage of GPU. There would be still

high memory usage.

To reach correct answers to those questions, we have used a credit application
dataset, this data set includes 518546 rows, in other words credit applications, and
1312 distinct features. Those features that exist in data consist of properties of this
specific application. Some of those features have categorical characteristics. How-
ever, some of those features have continuous characteristics. Suppose the features
are grouped according to the information each of those features carries. In that case,

we can say that we have feature groups such as demographic, financial situation,



application properties-based, and account-based features. The summary of the fea-
tures is provided in Table 1.1. As this dataset includes both numerical variables and
categorical variables, it provides an ideal environment for our experiments. Also,
the scale and complexity of our dataset used for credit application scoring align with
the high dimensional challenges addressed by Bao et al. (2019) in their integrated

machine-learning approach.

In demographic features, we have age, hometown, location, and demographic
information-based features. Those features are categorized in our dataset most
as categorical. Moreover, the second group of features in our dataset is features
related to the application’s financial situation. Those features include the income
information of the applicant; total accounted debt, and the financial risk of the ap-
plicant. As we named before, the third group of features are grouped as application
properties features. Those features mostly consist of mixed-type features. In other
words, those features include both categorical and numerical data-type features.
The continuous part of that feature group are a number of credit applications of an
applicant, number of rejected applications, and also combination of those features.
The categorical part of this feature group consists of how the application occurred
and which way the applicant applied for one credit. The final feature group consists
of features related to the accounts of the applicants. Those features are transaction
information of applicant’s accounts in a time-based manner. The remaining features
of this group are number of delinquencies, which means the credit debt of this ac-
count is not paid on time. Thus, the total number of features with those groups

becomes 1202 for numerical features and 110 features for categorical features.

Table 1.1 Feature Data Types According to Feature Groups

Feature Groups/Data Type | Numerical | Categorical
Demographic 25 52
Financial Situation 738 11
Application Properties 238 22
Account Properties 201 25
Total 1202 110

This dataset includes a number of applications in one year to the bank, and we
also have 46424 applications for a one-month period, which is derived from one
month later from our development data. Thus, this dataset will be used in order
to validate our foundations coming from the results of our experiments. A target
column also exists in our dataset. The definition of this target column is the default
information of this application. This means that if an application defaults according
to the definition of default stated, then the target column becomes 1. Otherwise,
the target column is labeled as 0. The definition of default is the three consecutive
3



unpaid installments in one year. Thus, from a one-year perspective, starting from
the application date, if the application does not pay its monthly installments three
consecutive times, this application’s target value is labeled as one. By using this
definition for target value, when we investigate the target ratio of the data, we
have observed that this is a highly imbalanced dataset. The target ratio of our
development dataset is observed as 0.0261, and for the test period, it is observed
as 0.033. This means that we need to consider this situation when applying model
algorithms, sampling, and feature reduction techniques. The structure of the data

is summarized in Table 1.2.

Table 1.2 Training and Test Data Target Ratios

Training | Test
Number of Rows | 518546 | 46424
Target Ratio 0.026 0.033

The structure of this thesis is designed in order to investigate data sampling rep-
resentativeness and its contribution to efficiency systematically. Thus, in the first
step, we conduct comprehensive similarity control between the original dataset and
its different-sized row-wise random samples to find optimal sampling thresholds. We
will also investigate how the feature transformation and feature selection algorithms
affect sampled data compared to the original dataset. Finally, we will observe the
impact of machine learning models such as logistic regression and boosting models
on sampled data again compared to its original dataset in terms of model perfor-
mance metrics. To conclude, our study aims to conduct a comparative analysis on
the representativeness of different-sized sample data according to its original data set
in terms of column-wise similarity, feature selection, and transformation algorithms’
effects on sampled data, finally the comparison of predictive performance between
original dataset and sampled data of different sizes by aiming to gain computational

efficiency.

The thesis is organized as follows: Section 2 focuses on sampling, and similarity
methods used to calculate representativeness. Section 3 describes PCA algorithm’s
application to sample data and main data. Section 4 reveals the results of classifi-
cation algorithm performance on different sample sizes. We conclude this study and

provide future research directions in Section 5.

This comprehensive approach allows us to not only address the computational chal-
lenges of big data in credit scoring but also provide practical guidelines for main-

taining model performance while significantly reducing computational complexity.



2. Sampling and Similarity Metric Results

2.1 Structure of Data and Data Sampling

Our problem consists of a highly imbalanced dataset. In addition, our study focuses
on reducing the dataset row-wise and column-wise (by using feature transforma-
tion algorithms), and we need those transformations and sampling to represent the
dataset. Therefore, our study must consider imbalance target ratios while applying

those algorithms.

In this section, we will be giving the results of our experiments on similarity metrics
used for continuous features and categorical features. This part includes only row
sampling methodology, and the investigation of similarity test results of this sam-
pling method whether similar to those of the main data. We have used a stratified
random sampling method for our row-wise samples. According to the definition by
Xia et al. (2017), stratified random sampling is a probability sampling technique that
divides a population into distinct subgroups and selects samples from each stratum.
The primary aim is to ensure that each subgroup is adequately represented in the
sample, thus improving the precision and generalizability of the findings. We have
used this method because of its simplicity and the representative power of the main
dataset. We do not use other methods used mostly for imbalanced datasets because
our focus is on the whole representation of data without changing its properties,
distribution, and, more importantly, target ratio. Moreover, the reason not to use
direct random sampling instead stratified based on the same concerns explained in
the previous sentence. We have applied stratification only on target feature in other

words response variable.

Thus, by preserving the target ratio in each data sample derived from the main

development data, we have selected 6 levels of sample size. The sample sizes of the



main dataset consist of 20%,10%, 5%, 1%, 0.5%, and 0.1% of the size of the main
dataset. Morcover, cach of those datasets includes the same ratio for the target.
After sampling the main dataset according to this methodology, we have started to
investigate the representativeness of those samples for the main dataset. In order to
compare those samples’ representativeness, we also have sampled 20 times for each
sample size with different random states. Thus, we have tried those results for each

sample size 20 times.

In order to measure the representativeness of samples, we have investigated some of
the tests which suit our case. In order to do that, firstly we have investigated the
normality of our features. However, most of the features we have investigated do
not fit the normality assumption. As can be seen from Figure 2.1 below, when we
plotted histogram plots of those features with the correct binning, we have observed
that most of the features skewed by violating the normal distribution. We have

provided one example of our features in Figure 2.1.
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Figure 2.1 Histogram Plot of Feature 546

Therefore, we eliminated parametric options for similarity testing that assume nor-
mality, such as the t-test and z-test as stated in Delacre, Lakens & Leys (2017).
After that, we investigated other similarity tests and metrics that are robust to

deviation from normality distributions and non-parametric.

2.2 Similarity Metrics for Continuous Features



From those non-parametric and distribution-free similarity tests, we have started our
experimentation with KS-Test. The test was developed by the studies conducted
by Kolmogorov and Smirnov as explained in Dodge (2008). The test approach is
based on the maximum deviation from one distribution to another. The test for-
mula provided below represents the supremum of the distance between the empirical
cumulative distribution functions of two samples. In the formula F; and F5 repre-
sent empirical cumulative distribution function of two sample data, sample; and

samples respectively. The KS test statistic is shown as:

(2.1) D =sup|Fi(x) — Fa(z)|

The simplicity of this approach makes this test applicable to real-world problems.
As Jr. (1951) demonstrated, while the test is powerful at finding location and shape
differences, it is not sensitive to the differences in tails of distribution. Moreover,
because the main focus is on maximum deviation for the test, it is not powerful at de-
tecting small differences throughout the distribution. Although it is a distributional-
free method, the decision of this test relies on the p-value. P-value is unreliable when
a large dataset is used. Recent advances in the availability of big data also have
revealed the limitation of p-value-based statistical tests. The analysis conducted by
Lipsmeyer (2013) has shown us that even in the small or trivial differences between
data sets, the p values could become extremely sensitive as the size of the samples
increases. Thus, this situation showed that with large samples, the statistical signif-
icance becomes a trivial statement, as shown in their study. However, as mentioned
in the study by Wasserstein & Lazar (2016), the statistical difference does not mean
a real difference between two data sets, especially for the big data. What is impor-
tant in their work is that with a large enough sample size, any trivial difference can
yield a statistically significant result. As imagined, this situation makes relying on
p-value lead to misleading results for real-world applications in which most of the

samples are classified as large sample sizes.

In Figure 2.2, the x axis represents the sample ratios, the bar graph on the plot
represents the KS statistics value. The line graph in Figure 2.2, represents the p-
value of KS statistic. The situation mentioned in the previous paragraph for p-value
calculation, can be seen in Figure 2.2; as the sampling ratio decrease, the p-value
gets larger and larger. However, this means that if the sample size is relatively
much smaller than the main data, it is more probable to have a larger p-value. This
situation is not logical, so it is also observed by our experimentation that this p-value

cannot be used for a decision of representativeness. However, as it can be derived
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from Figure 2.2, the statistic value is not working as a p-value and does not depend
on the sample size. Thus, this makes the statistic value of the KS Test reliable for

usage in similarity testing.
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Figure 2.2 KS Test Statistics and P Value Change with Sampling Ratio

In our experiments, we have observed that scaling the data does not impact the
KS statistics p-value. Whether the scaling is applied or not, the KS test statistic
gives the same results. However, this is not the case for all methods we have used
for similarity. Thus, while using those test statistics, we have scaled our continuous

feature set with the min-max scaling method.

Before moving on to the similarity metric results, decision thresholds for accepting
a test result indicate whether the two datasets are similar to each other or not.
Although we did the research to find the right threshold for the methods used, a
proper threshold doesn’t exist for some of the metrics we have used. To overcome
this problem about the threshold point, we have applied a method by using uniform
and normal distributions. Firstly, we randomly selected 500000 samples from a
dataset which is uniformly distributed between 0 and 1. To that data, we added
a random noise variable which is normally distributed, with a mean equal to zero,
and different standard deviation levels at 0.1, 0.05, 0.01, and 0.001. Then, for each
standard deviation, we have created similar results for each test metric or statistic

used, and calculated their corresponding thresholds.

After determining all of those thresholds for each of the metrics we would use for

our experiments, we have started to apply our tests to each sample with different

sample sizes. In addition, we repeated this process for each sample size every time

with different random states. For each sample size, and for each feature we take
8



the average of all those twenty trials, and thus, detected the result of metric or

statistical test.

The KS test is the first test to be used for similarity testing in our experiments.
This test is preferable for us because it is able to give insights about the overall dis-
tribution similarity between two data sets and is more robust to outliers. Figure 2.3
below illustrates the KS Test similarity score between the main data and sample

data with different ratios for all of the features.
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Figure 2.3 KS Test Statistics Similarity by Sample Size and Threshold

In Figure 2.3, the x axis represents the sampling ratios derived from the main. The y
axis represents the similarity percentage of the main data between sample datasets.

This similarity percentage is calculated as follows:

o Calculate the KS Test static value of relative sample size, which means 1202

continuous features

o (alculate how many features pass the test for each threshold value calculated

based on using different standard deviations

o Divide those features that passed the test by the total number of continuous

features; reach the calculation of similarity percentage.

o (alculate these results twenty times for different random states, and report

their average as the last result of the similarity percentage value

Thus in Figure 2.3 each bar represents the similarity percentages, and line graphs

demonstrates the trends as the sample size decreases. Also, those line graphs are

colored differently to indicate that each different colored line represents the different
9



standard deviation-based thresholds. As we can see from the figure, there is a very
high similarity when the sampling ratio equals 0.2. Except for the smallest ratio
used, which indicates 0.001 standard deviations, the data performs nearly perfectly
for other threshold values. All of those test results are very close to 1. Even though
sampling ratios get smaller, in the thresholds based on standard deviations 0.005,
and 0.1, the samples pass the test in greater percentages. With the deviation 0.01,
until sample 0.01, the sample datasets mostly pass the test. Therefore, this situation
actually indicates that overall distribution of the main and sample test preserved
especially until the sampling ratio 0.05 of main data. However, just by looking the

KS test, it is hard to say the data preserves all structure even if in its extreme values.

The next metric we examine is the Wasserstein Distance. This test relies on the
magnitude of distribution differences rather than statistical significance. One of
those novel methods is the Wasserstein distance, in other words Earth Mover’s
Distance(EMD). This method suggested by Peyré & Cuturi (2020) has a formula
for two probability distributions P and Q which is defined as below:

(2.2) W(P,Q) = inf{E[d(X,Y)]: X ~ P,Y ~Q}

In the formula provided above, X ~ P represents the random variable derived from
the probability distribution P, and Y ~ @) represents the random variable derived
from the propability distribution of Q. d(X,Y’) stands for the distance between
points X and Y and the formula is basically infimum of expected value of this
distance. The Wasserstein distance additionally quantifies how much the two dis-
tributions differentiate from each other and whether they differ. Thus, this insight,
given by the Wasserstein distance, makes this metric also valuable for real-world
applications. Also, the calculation of this metric for distribution with finite samples

is as follows:

N 1
(2.3) Pp==Y "0,
n;
(2.0 On="1%
. m—m/: Yi

In this formula provided above ¢, stands for Dirac mass value at point x, for these
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empirical distributions, Sommerfeld & Munk (2017) showed that the Wasserstein

distance can be computed as:

2.5 Wi P,Q = min i i d(Ti, Y
25 (PoQu) = min, i ylaso)

In the formula I1( P, Q,,) represents the set of n x m matrices with row sum 1/n and
column sums 1/m. The Wasserstein Distance is a more comprehensive metric than
the KS Test. This is because the optimal distance for converting one distribution

to another can be observed.

From Figure 2.4, it can be seen that the Wasserstein Distance behaves more pow-
erfully than the KS Test based on its comprehensive approach. As can be seen
from Figure 2.4, a 0.01 standard deviation-based threshold dramatically decrease
the Wasserstein Distance by increasing the sample size. However, when we look at
the standard deviation point, is labeled as 0.05, it can still be concluded that the

sample is similar to the main data until the sampling ratio is 0.01.
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Figure 2.4 Wasserstein Test Statistics Similarity by Sample Size and Threshold

Moreover, we also investigated density function behaviour of our main data and
related samples. In order to do that, we first need the estimates of the pdf of
our main and sample datasets because the distribution is unknown for most of the
features and it is hard to fit a known distribution. Therefore, we have used kernel
density estimation to achieve this. After predicting density functions of our datasets,

we have created 100 samples in the interval of each feature’s minimum and maximum
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values. After we got the results of those random samples in the predicted density
function, we obtained sufficient conditions to compare the two dataset’s density
function behavior. We have used two different metrics for this aim. The first metric
we have used is KL divergence. As proposed by Kullback & Leibler (1951) provided

the formula as follows:

(2.6) KL(P|IQ) = [ pla)og(p(x) /a(x))da

As indicated in the formula itself, it measures the relative entropy between two
probability distributions, which are stated as P and () and their probability density
functions as p(z) and ¢(x) in the formula above. However, there are some limitations
of this test. One of the limitations of this method is its asymmetry, and dependency
of Q(x) value’s being denominator, which means Q(z)’s value to be zero, leading
the result of the metric being infinity. Thus, in order to overcome those limitations,
Wang, Nagy, Gilg & Kuang (2012) offer a methodology in their study by demon-
strating the effectiveness of Kernel density estimation (KDE). Using KDE leads to
more robust estimates especially for the case of limited samples. The results of this
metric can be seen in Figure 2.5. Because the KL divergence is not a symmetric
metric, we examine the main data distribution with sample data by giving priority
to the main data distribution. When the results are observed from the figure, it is
the most powerful test for deviation from the main distribution. Although it dra-
matically labels datasets as not representative according to other tests we have used,

actually it is correlated with their performance on the classification algorithms.

For the maximum threshold value based on 0.1 standard deviation, the first three
sample sizes gives the highest similarity results. However, there is a sharp decrease
in KL divergence, after the sampling ratio decreased to 0.01. This is the most
correlated part of the model performance results according to the sampling ratios.
When we change threshold, the KL divergence becomes a much more powerful test,
and those results become much more powerful than can be accepted. Thus, it can
be determined for this test that a standard deviation of 0.1 is more suitable for
deciding on the similarity scores. In addition to KL divergence, Lin (1991) proposed
a method called The Jensen-Shannon (JS) divergence, which handles some of the
limitations that KL divergence has. As formulated in the original work conducted
by Lin (1991), the method is defined as follows:
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Figure 2.5 KL Divergence Similarity by Sample Size and Threshold

(27) JSD(PI|Q) = S KL(PI|M) + S KL(QI|M)

In this equation, M represents %(P+Q) which is the average distribution of two
samples. In his study, Nielsen & Dane-Nielsen (2014) demonstrated that the square
root of the JS divergence satisfies the triangle inequality, which makes this met-
ric symmetric, which is not the case for KL divergence. This property makes this
test more preferable in terms of applicability. Thus, the difference between the two
metrics is one is symmetric, and the other one is not symmetric. Therefore, JS
divergence can be defined as symmetric version of KL divergence. The results of
JS divergence more conservative on eliminating feature similarities. This is demon-

strated in Figure 2.6 provided below for JS Divergence results.

For the threshold values based on standard deviations 0.1 and 0.05, the metric
behaves more steadily. Except for the last sampling ratio, all sampling ratios have
performed well in terms of JS Divergence. However, there is a sharp difference
between the threshold values for 0.01, 0.001, and 0.1, 0.05. Thus, those thresholds

for standard deviations 0.01 and 0.001 are unreliable results.

As a result of those analyses, we can conclude that based on our experiments,

until the sampling ratios 0.005 and 0.001, the row-wise stratified random sampling

represented the main data until the sampling ratio of 0.01. Moreover, test statistics

such as KS Test, results statistics data, which demonstrate representativeness, reach

sampling ratios with 0.005 of the size of the main data. In addition to those tests, we
13
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Figure 2.6 JS Divergence Similarity by Sample Size and Threshold

have also applied experiments for Mann Whitney U test and Anderson Darling Test.
Mann & Whitney (1947) developed a method for two independent samples. The
test statistic shown below does not make any normality assumptions and provides

a powerful alternative to the distribution-based tests mentioned above.

(2.8) U=nina+[ni(n1+1)/2]— Ry

In the formula, nq, ny are the sample sizes of the sample 1 and sample 2, and R;
represents the sum of ranks of the first sample. The study conducted by Mann &
Whitney (1947) is based on the Wilcoxon Test as stated in Noether (1992) , which
also proposes a rank-based method similar to this test. According to this paper,
the test’s approach is combining both sample data, ranking all observations coming
from all of the two sample data, and then analyzing this ranking accordingly. This
method is not sensitive to outliers in data with this approach. According to Blair &
Higgins (1980), the Mann-Whitney test achieves 95% of the power of the t-test even
if the data is distributed normally. Considering the robustness of outliers, deviation
from normality, and efficiency compared to other methods, the Mann-Whitney U

Test can be classified as a powerful statistical analysis tool.

The study conducted by Anderson & Darling (1952) improved the approach of
Cramer von Mises by modifying this approach to make it more tail-weighted. Their

test statistic formulated for finite samples is as follows:

14



(2.9) A= —n—(1/n)Y (2i— 1) F(Y;) +1In(1 — Fo(Yni1-4))]

7

In the formula n represents the sample size, F; and F5 represent the cumulative
distribution function of This enhanced approach, which gives more weight to the
tails of the distribution differences, makes this approach essential, especially for
applications in which extreme values are of special importance, such as financial

applications.

Because the high dependency on a sample size of the Whitney U-test leads to incon-
sistent results for the similarity of the main data and sample data. The results of
an experiment on sample data and main data similarity using the Mann Whitney-U
test have a very high percentage of features that pass the Mann Whitney-U test
such that 99% of features pass the test even if the sample size equals 0.005 of the
main data size. These results are obtained by using the threshold values derived
from 0.001 standard deviations. Even if we use this threshold, the result of repre-
sentativeness did not change or reduce. Thus, the test is not reliable for us to use
it.

However, because of the ability of the Anderson Darling test to detect dissimilarity
between two datasets, especially on the tail, it is worth sharing the experiment

results. Thus, we have provided the results of the test in Figure 2.7.
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Figure 2.7 Anderson Darling Test Statistics Similarity by Sample Size and Threshold

However, Anderson Darling’s results show the effect of sample size; thus, they are
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not reliable for our case. Thus, we relied on the tests we applied above to calculate

similarity between the main dataset and related sample datasets.

2.3 Similarity Tests for Categorical Features

The second part of our similarity calculations is based on suitable tests and metrics
for categorical features. We have also applied those similarity metrics to continuous
features by binning them into 10 equal quantiles. Those metrics we will be using
for this part are the Population Stability Index, Chi Square test, Hellinger Test,
Overlapping Coeflicient, Total Variance Deviation, and, finally, JS divergence.

Before applying those tests to categorical, we investigated the frequencies of each
unique value of those features. If the frequency of a unique value is less than 0.001,
then we have grouped it as a low-frequency category. This is because when the
frequencies get very small, the PSI or Chi-Square Test does not work because the
probability of observing this unique group in my test data becomes very small.
Thus, PSI and Chi-Square test could not produce a result. However, we do not use
this property for continuous features. Instead, we have used quantile binning for
continuous features based on main dataset values. Also, we apply PSI separately
for null ratios of features. This means that null ratio difference has become another

experiment for us to develop.

PSI is the first test we have started our similarity score calculation for categorical
and binned continuous features. Population Stability Index (PSI) is an essential tool
in credit scoring applications especially for monitoring purposes such as investigating
population drift. As Potgieter, van Zyl, Schutte & Lombard (2023) demonstrated,

PSI has a formula as:

(2.10) > (Pri— Poi)In(Py;/ Py;)

7

In the formula Py; is the probability of the i*” category or event in the first distribu-
tion, and Py; is the probability of the i category or event in the second distribution.
As Taplin & Hunt (2019) mentioned some application issues of this index, those in-

clude the correct binning for continuous data, and preventing zero frequencies may
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occur in bins by introducing small constant which avoids undefined logarithms. Ex-
tensive studies have been conducted in order to determine validated threshold values
for PSI. One of those studies which is conducted by Potgieter et al. (2023), demon-
strated PSI values below 0.1 does not indicate any significant population change.
However, PSI values between 0.1 and 0.25 could mean a moderate shift between two

populations compared.

Although PSI has a great field of usage for detecting population shifts in credit scor-
ing problems, the test did not perform well in our case. The test results of PSI get
very high scores in terms of our similarity scores. Even if the sampling ratio equals
0.001 of the main dataset row size, the similarity score has reached 0.99. Thus,
from our point of view, the results are not sufficient and enough to say that the two
datasets are similar to each other. Another test used for population or, in other
words, categorical group change comparison is the Chi-square statistic. The test’s
main aim is to calculate deviations from two distributions and calculating the differ-
ences between observed and expected frequencies of two distributions or two inde-
pendent samples. In their study, Serna, Vargas Cardona, Gonzalez, Cardenas-Pena
& Orozco Gutierrez (2020) demonstrates its effectiveness for classifying categorical
data by proposing a method using the Chi-square statistics and t-SNE. Also, in their
study, Boriah, Chandola & Kumar (2008) indicate the effectiveness of Chi-Square
in detecting categorical relationships by evaluating various similarity measures For
Chi-square tests, also the results are nearly perfect in similarity between the main
dataset and related sample datasets. Thus, we could not reach the desired solutions
for those two tests. The reason behind this could be that we have used predeter-
mined thresholds which derived from the literature. Therefore, we have used other

metrics discussed above.

Tyler, Du, Feng, Bai, Xu, Horowitz, Stone & Celi (2018) investigated the Over-
lapping Coefficient in their study. Tyler et al. (2018) state that the Overlapping
Coefficient measures the shared area between two probability distributions. They
investigated this metric’s application in detecting the overlapping of clinical lab val-
ues. The study demonstrated the utility of this metric in medical research. Also,
in another study,Franklin, Rassen, Ackermann, Bartels & Schneeweiss (2014) used
OVL for aiming to evaluate covariate balance in cohort studies. They demonstrated
this metric’s effectiveness in detecting overlapping regions between two distribu-
tions. From Figure 2.8, the result of the overlapping coefficient can be seen. As
can be derived from Figure 2.8, the first four sampling ratios perform well for every
threshold tried. After the sampling ratio reduction to 0.005 of the main dataset, the
similarity still can be considered acceptable levels; however, for small size standard

deviation thresholds, the similarity value decreased sharply. It is also a logical result
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Figure 2.8 OVL by Sample Size and Threshold

for this similarity metric as the sample size decreases dramatically compared to the
main dataset; similar frequencies for each bin or category would be much harder.

As a result it becomes observable to have such reduction in very small thresholds.
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Figure 2.9 Hellinger Distance by Sample Size and Threshold

Another metric used to quantify the similarity between distributions is the Bhat-

tacharyya Distance. A study by Becker & Becker (2023) provides the information

that the metrics effectively detects the shift in data distributions while capturing

the geometric similarity of probability distributions. Furthermore, another research

about distribution similarity conducted by Cuadras, Cuadras & Greenacre (2006),

uses the Hellinger Distance which is defined as a variation of Bhattacharyya Dis-
18



tance. The study explored this metric’s effectiveness in handling complex distribu-
tion similarities. Additionally, Ayeldeen, Mahmood & Hassanien (2015) highlight
its robustness to categorical datasets with high sparsity in the use of classification
problems. Until the small deviations, Hellinger distance behaves similarly to chi-
square and PSI results as in Figure 2.9. This situation is unsurprising because the
Hellinger distance equals the square root of population density differences. Thus it
has very similar logic to PSI and Chi square. However, the difference between those
two metrics is that the Hellinger distance gives more weight to smaller densities
by modifying the effects of all densities more equally. Therefore, as the standard
deviation-based thresholds get smaller, a sharp decrease can be observed. The rea-
son is probably based on the increase in the deviation of categories or bins of features
which have less frequencies. However, despite all of those observations, first three
sampling ratios still have a good performance on the similarity of features. It is
not worth relying on the last threshold, which is based on the smallest standard
deviation of 0.001. The second metric is Jensen Shannon divergence. However, this
time, we derived calculation based on direct densities of categories without estimat-
ing a density function. This approach is also applied to manually binned continuous

features to measure densities. The results are shown in Figure 2.10.
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Figure 2.10 JS Divergence by Sample Size and Threshold

As Figure 2.10 indicates, even in the 0.05 deviation-based thresholds, there is a

decrease starting from the sampling ratio 0.05. This situation is acceptable since,

as we will discuss in the following sections, the model performance acts similarly

to those similarities. The trend could be considered similar to the trend in model

performances. From this perspective, Jensen-Shannon divergence can be classified

as a reliable metric for categorical and binned continuous feature similarities. The
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last metric for the similarity control of all features is the total variance deviation
metric. Total Variation Distance is also a robust metric for categorical dissimilarity.

It is an especially useful metric in shifts in categorical data.
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Figure 2.11 TVD by Sample Size and Threshold

From Figure 2.11, we also got highly similar features of the sample dataset with
corresponding features of the main dataset. However, the results demonstrated in
the figure indicated there is nearly no difference between absolute values of frequen-
cies of categories or bins between the original main dataset and the sample dataset.
However, at least in the smallest sample size, a sharp decrease in similarity score
is expected; this is not the case for the first three standard deviation-based thresh-
olds. Thus, this indicates that deviation from absolute values of categories and bins
do not seem to be a comprehensive method for similarities between main data and

sample data.

To conclude, we have used several similarity tests in order to find the representa-
tiveness of our main data set and its random sample. Moreover, the repetition of
each test twenty times for each sampling ratio of sample datasets. As a result, it
can be concluded that both our main dataset and sample dataset are similar to
cach other until the sampling ratio is 0.005. However, the most robust sampling
ratios of datasets in terms of representativeness are 0.2, 0.1 and 0.05. We have done
experiments for similarity with different aspects by using a wide range of metrics

which focus on different parts of the two datasets’ similarity.
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3. Similarity Based on Feature Transformation

In this section of the study, we have conducted experiments using PCA. Principal
Component Analysis (PCA) is a dimensionality reduction technique that transforms
correlated features into a smaller set of uncorrelated variables or principal compo-
nents, also by capturing the maximum variance with those principal components,
this method becomes an effective tool for feature reduction especially existence of
multicollinearity according to definition derived from the study by Gewers, Ro-
drigues Ferreira, Arruda, Silva, Comin, Amancio & da F. Costa (2018). From the
study conducted by Reid & Spencer (2009), it is demonstrated that PCA could be
regarded as an efficient algorithm in terms of computational time. Thus, this prop-
erty makes this algorithm suitable for the large-scale datasets used in credit scoring
problems. Also, PCA has been used in the study by Maldonado, Perez & Bravo
(2017) to preprocess datasets and handle multicollinearity and reduction in feature
sets while preserving the information derived from maximum variance. In addition
to those studies, Abid, Zhang, Bagaria & Zou (2018) propose different aspects of the
usage of PCA; in the study, they analyzed the variance explained by principal com-
ponents in order to determine whether a sample dataset includes a similar structure

compared to the other one.

We have fitted PCA algorithm to our main dataset by setting different components
of PCA. First of all, in order to satisfy the requirements of PCA, we have applied
some transformations to our main dataset. We have applied imputing, scaling and
encoding algorithms to our main dataset. We have applied target encoding on
our categorical dataset in order to handle categorical variables. The reason behind
using this algorithm is that it does not create additional columns and give higher
values if target ratio of one category is higher than others. Thus, in this way it
sorts the unique values according to target ratios which help learning process for
classification algorithms. For imputing, we impute null values with the median
value of each continuous feature in order to prevent effects outliers. Finally, we have
applied standard scaler to the data in order to effect of high valued feature effect on
PCA algorithm.
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After all transformations, we have fitted PCA algorithm on our transformed main
dataset, for number of component with 10, 20, 30, 40 and 50. Overall, the main
data is fitted with different PCA object having different components five times.
After obtaining 5 different PCA models, we have applied the same procedure to
the sample datasets as well. Thus, for each sampling ratio, we have 10 random
samples each, and we have fitted 5 different PCA models with different number of
components. We have used those PCA models initially for similarity concerns. For
this purpose, we have used explained variance and controlled reconstruction error
after PCA transformation which will be described in detail. We have derived test

results with the following combinations:

o PCA model is trained on main data, and tested on main data. Model fitting

is repeated for 5 different component sizes. (Main Model Main Error)

o PCA model is trained on main data, and tested on sample data. Model fitting
is repeated for 5 different component sizes and 6 sampling ratios. (Main
Model Sample Error)

o PCA model is trained on sample data, and tested on main data. Model fitting
is repeated for 5 different component sizes and 6 sampling ratios. (Sample

Model Main Error)

o PCA model is trained on sample data, and tested on the same sample data.
Model fitting is repeated for 5 different component sizes and 6 sampling ratios.

(Sample Model Sample Error)

One of the metrics we have used is the reconstruction error, which comes from the
mean squared error between inverse transformed data and raw data. Since PCA
gives a transformation of the data from a higher dimension to a lower dimension, its
inverse also exists with some loss of information. We transform the test data with
our PCA model, and inverse transform it, and compare the difference for the loss of

information. The formula of reconstruction error we have used provided below:

1
(3.1) Reconstruction Error = — > ) " (X;; — Xij)2

S

In the formula, X;; represents 4t feature of it row, of raw data X. XU represents
jth feature of i" row, of inverse transformed data X. Then, we used a reconstruction
method for PCA models for each of those transformed datasets with different PCA

algorithms. This method is equal to the transformed dataset’s inverse transform
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with principal components obtained from different PCA algorithms. We have also
repeated the process for 10 different random state samples, taking the average of
those results. In this part, we discuss the results of reconstruction error for PCA

models with 20 components and with 50 components.

As it can be observed from Figure 3.1, we have compared PCA model fitted by main
data and PCA model fitted by sample datasets having different sample sizes. From

Figure 3.1, we have observed that:

o The reconstruction error results for Main Model Main Error did not change
as the sampling ratio decreases as expected, because the result of this part does

not depend on the sampled datasets.

o The reconstruction error results for Sample Model Sample Error decreases
as the sampling ratio decreases. This indicates overfitting for the PCA algo-
rithm, although it seems very successful on the data which is trained, it has a

very poor performance on the main dataset as it can be seen it from Sample
Model Main Error from Figure 3.1.

e Reconstruction error of Main Model Sample Error experiment, increases
most of the time as the sampling ratio decreases. However, the change in this
experiment is very small. The reason behind this behaviour is although the
sampling ratio to be tested changes and gets smaller, the PCA model fitted on
main data does not change as the sampling ratio changes. Thus, those results
just indicate the main model which is trained in main data performance on
sampled datasets with different sampling ratios. Thus there is not so much

information derived from those results in terms of representativeness.

e The reconstruction error results for Sample Model Main Error and Main
Model Sample Error increases steadily as the sampling ratio decreases.
The behaviour of this case fits to our expectations. Because as the sampling
ratio decreases to 0.001 which is a very small sampling ratio, there would be
expected less generalizable PCA model which leads to bigger reconstruction
error on test data. Also, because the main aim in this experiment to test the
representativeness of sample datasets with main data, this case gives the best

chance for comparison those results with Main Model Main Error results.

Thus, observations we have derived from the results of reconstruction error experi-
ments, led us to focusing on Main Model Sample Error and Main Model Main
Error for understanding the meaning of those results. By just investigating those
tow cases, it can be derived the representativeness of sampled datasets for main

dataset. The similar values for reconstruction error of Main Model Main Error
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and Sample Model Main Error means that PCA model trained with sampled
datasets have similar representativeness for main data compared to PCA model
trained with main data. Thus, we can say that if two reconstruction error results
for each sample ratio (Main Model Main Error and Sample Model Main Er-
ror) is very close to each other, the sampled dataset with given sampling ratio is

representative for main dataset. We can say that as
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Figure 3.1 Reconstruction Error on Different Sample Sizes with 20 Components

However, it still can be derived that in terms of reconstruction error, the sample
datasets of sample sizes 0.2,0.1 and 0.05 of the main dataset have representativeness
properties. This means that for those datasets similarity of variance in the whole
data captured by the PCA model with 20 components. However, this is of course
not perfect similarity. Therefore, in order to observe that there is an improvement in
PCA algorithm’s representativeness power on main data, we have provided another
figure below. In Figure 3.2, this we have applied same experiment for PCA model
which has 50 principal components. The expectation of those PCA models have less
reconstruction error on main data and sample datasets by not looking at whether
it is PCA model fitted by main data or PCA model fitted by one of the sample

datasets.

As it can be observed, our expectations have been met by the main model and sample
models. The reconstruction error for Main Model Main Data was around 0.24 by
PCA model with 20 principal components. However, this error decreased sharply in
the reconstruction error results of PCA models with 50 components. Even though,
as a first insight, it can be derived from the figure with 20 components PCA models,

that the reason of similarity for reconstruction error based on having less number
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Figure 3.2 Reconstruction Error on Different Sample Sizes with 50 Components

of components for both of the PCA models, which means having less representative
transformation occurred while applying those. The results with the PCA models
with 50 components actually falsify this insight, because although reconstruction
error sharply decreased in the main dataset by the PCA model fitted using main
data with 50 components, the reconstruction error of PCA model fitted by sample
datasets having sample size of 0.2 of main dataset, also very close reconstruction
error result on main data to one with the main PCA model has. However, there
are still dramatic deviations starting from sample datasets having a sample size of
0.01 of the main dataset. Thus, those two different figures are consistent with each
other.

For the second step, we have reported our different PCA model’s explained variance
of principal components. The explained variance error formula is demonstrated as

follow:

k
: 2
(3.2) Explained Variance Difference = — > (PC’;’/ - PCY )
i=1

| =

In the formula provided above, PCY, ith principal component of data X and pCY ith
principal component of data Y. The symbol £ means number principal components,
the formula means mean squared error between principal components difference of
data X and data Y. In other words, we compare the explained variances of the i"

principal components of models X and Y, and analyze how similar their explanation
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power is. For a given number of components, model X always refers to the model
trained on the main data, and model Y refers to the model trained on the sample,
for the specified sampling ratio. The results have been shown in Figure 3.3. When
the figure is investigated, for the sample dataset with sampling ratio of 0.2 has
very low MSE results. However what is worth to discuss here, when the model
complexity increases, MSE of sample and main models increases as well. Thus, the
more complex models actually have more meaningful results in terms of similarity
of those features. This is an important aspect for us on comparing model scores
as well. Again, the MSE of models does not exceed the 0.1 until the sampling
ratio is decreased to 0.01 as indicated in the figure. This insight is repeated insight
for other metric discussed in the previous sections as well. Therefore, it can be
concluded generally, in terms of similarity of two dataset behaviours, the sampling

ratio of 0.05 is the edge point for acceptable similarity.
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Figure 3.3 Explained Variance Difference MSE of Main Data and Sample Dat
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4. Classification Algorithms Performance Results

4.1 PCA Transformed Data Classification Performance

Due to the similar results of the two datasets, we move on to applying modelling
trails for our main purpose. For this purpose, in addition to the PCA models,
we also use XGBoost to model a credit-scoring problem with a binary classification
structure. The algorithm consists of decision trees that construct an ensemble model
in order to optimize predictive performance by using gradient boosting techniques.
According to Sahin (2020), XGBoost minimizes residual errors by consecutively con-
structing a decision tree ensemble for each iteration. This structure of algorithm
makes it very effective in predictive power of modeling. However, despite its success
in the prediction of the model, its performance is highly dependent on the hyper-
parameter tuning of the algorithm; thus, proper regularization and optimization
techniques become highly vital while using it, as mentioned by Shaik, Jongkitti-
narukorn & Bingi (2024). Moreover, the study conducted by Li, Cao, Li, Zhao &
Sun (2020) demonstrated the effectiveness of XGBoost in credit scoring while de-
tecting non-linear relationships between features and imbalanced target handling.
However, because our dataset size changes a lot as the sample dataset used for mod-
eling changes, the parameters of the model fitted should also be changed. Therefore,
we have applied hyperparameter optimization to datasets transformed by PCA al-
gorithms. After selecting hyper parameters, we have fitted the model accordingly.
Thus, we have fitted a total of 35 models with different optimal parameters. As the
main purpose of this thesis is to reduce computational time for modelling, we have
also calculated computational time for PCA, hyperparameter optimization and final
training time of the model for the main dataset and six different sample datasets.
In our hyperparameter optimization, we have used Bayesian optimization technique

which uses a Gaussian objective function in order to find the best parameters. As
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a result of those experiments, we first report the average precision score versus
the computational time. Average precision score, is a metric that summarizes the
precision-recall curve into a single value according to Su, Yuan & Zhu (2015). It
is especially useful for imbalanced datasets where positive classes are rare. The

formulation stated below from the study:

(4.1) AP = %(Rn—Rnl)Pn

n=1

In the formula, R, The change in recall between the n® and (n— 1) thresholds.
P, is the precision at the n' threshold and N represents number of all thresholds.

The results are shown in Figure 4.1.
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Figure 4.1 Average Precision Score with PCA 20 Components vs Computational
Time

From Figure 4.1, as sample ratios decrease, the computational time also decreases.
However, what is important information derived from this figure is that there is a

sharp decrease in computational time even if using the sampling ratio of 0.2.

Moreover, we have compared the PCA models trained by sample datasets’ per-
formance or similarity score on the main dataset. However, while comparing the
main model score and sample model scores, we compare their performance on a test
dataset, which is independent of the main data set and, as a result, sample datasets.
As it can be seen from Figure 4.1, our experiments show that there is only 1 point

decrease in the sample ratio which is 0.2 of main dataset. There is also another
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important point which is even though the sampling ratio decreases from 0.2 to 0.1,
the model score does not change. However, it cannot derive the same conclusion for
computational time. Computational time sharply decreased from 25 minutes to 4
minutes from main data to 0.2 sampling ratio, this is nearly 1/6 of the main model
computational time. Although model performance does not change moving from
0.2 sample ratio to 0.1 sample ratio, the computational time continues to decrease.
Thus, this situation makes it preferable to choose sample data that has a sample ra-
tio of 0.1. However, as moving to the sample ratio 0.05, the model decreases around
1 point. However, computational time does not decrease by considerable amounts.
For this experiment, it is best to choose the sample dataset with 0.1 of the main

dataset according to the results of it.

We have also obtained the score results of the ROC-AUC score, which is also a
useful metric for the imbalanced targets. In Su et al. (2015), the ROC-AUC score
is described as a performance metric for classification models, particularly binary
classification. It measures the trade-off between true positive rate (TPR) and false

positive rate (FPR) at various threshold settings.

1
(4.2) ROC-AUC = /0 TPR x FPR ™ (z)dz

As the ROC-AUC score increases, the discrimination power of the model also in-
creases. This means that the model is succesful in discriminating positive and neg-
ative labeled target values better in high ROC-AUC score. Also, the ROC-AUC
scores more on the ranking of instances rather than not only focusing on positive
classes. On the other hand, the average precision score tends to be affected by more
number of positives than ROC-AUC score.

Therefore, we have also observed the ROC-AUC score results for better under-
standing the results insight. However, there is a similarity between the results of
those metrics derived from a comparison of 6 different sampled datasets with main
dataset-based models. The one difference between those datasets, the decrease in
ROC-AUC score constantly continues to decrease, thus one can decide which sample

to use according to their concern on performance and computational time.

We have done experiments for all five different component sizes, however in this
section we provide the PCA model results with 50 components in order to have
better comparison with models with 20 components. Thus in Figure 4.3, we have

also examined the results for test dataset with PCA models with 50 components.
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We have also observed an increase in the model performance, and again, there is
around a one-point decrease in the model performance score in the sample dataset
with a 0.2 sample ratio of the main dataset. Although there is a steady decrease
in ROC-AUC score in each deviation from sample ratio, this decrease in the model
performance is less than 1 point until the sample ratio of 0.05. For computational
time concerns, there is a dramatic change from the main model to the sample model
with 0.2 of the main data size. The computational time decreased from 86 minutes to
9 minutes which almost 1/10 decrease which is much higher than experiments with
20 components PCA models. The computation from sample data to sample data
also decreases from 9 minutes to 5 minutes, however again there exists a tradeoff
between computational time and model performance. If the model performance
results are much more important, even a nearly 1 point decrease, then one should
continue with the sample dataset having a sample ratio of 0.2 of the main dataset.
However in the case of computation time much more important, then it should be
chosen sample ratio with 0.1. However the aim of those experiments is to show that
with the huge gain in computational time manner, there does not exist a considerable
amount of decrease in the sample datasets. Also we have provided the results of

average precision score in Figure 4.4.
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Figure 4.4 Average Precision Score with PCA 50 Components vs Computational
Time

The same trend exists in these results. Thus, the average precision score is not

discussed further.
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4.2 Feature Selection Algorithms Applied Data Classification Results

In addition to those model experiments, we have applied experiments on model per-
formance score without PCA transformation. Instead of using PCA transformation,
we have used other techniques for feature reduction. Because we have a huge fea-
ture set, we first used the Shap algorithm to select the first 100 features and then
used the SF'S forward selection algorithm to select 20 features. According to study
Uncu & Turksen (2007) called Sequential Feature Selection (SF'S). This algorithm
is defined as a greedy algorithm where features are added one by one according to
the improvement in the model score defined in the study. Also, there is a version of
this as a backward algorithm in which features are removed from the model feature
set iteratively. The study demonstrates that algorithms are preferable because of
their ability to identify the most predictive features, reducing dimensionality while
maintaining accuracy. These properties make this algorithm advantageous for our
research while using tabular data for credit scoring problems. However, as Nalic,
Martinovié¢ & Zagar (2020) demonstrated in their study, this algorithm can be com-
putationally demanding in cases such as high-dimensional datasets. Also, Stanczyk
(2015) mentioned in his study that the algorithm tends to overfit for small datasets;
the reason behind this situation is the selected features’ inability to generalize well

for unseen data.

In credit scoring, this algorithm is also used in many studies. One of those studies
is the one of Koutanaei, Sajedi & Khanbabaei (2015), in which demonstrated how
well performed this algorithm in selecting repayment-predictive features while using

in hybrid ensemble models.

Thus, for again six different sample ratios, we have done our experiments on Shap
algorithm initially. The results of the Shap algorithm derived from an initial XG-
Boost model select the first most important 100 features for sample datasets and
the main dataset. After getting those most important feature list results, we have
investigated which of those features overlap the main model’s top 100 feature im-
portances. To measure the similarity of feature sets of sample dataset-based models
with main model dataset-based features, we have used Jaccard Similarity Metric.
Jaccard Similarity as explained in Ye (2014), is a statistical measure used to compare
the similarity between two sets. It quantifies the overlap between the sets relative

to their combined size. The formula provided in the study as:
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(4.3) J(A,B)

According to the results based on this similarity metric, we have provided Table 4.1.

Table 4.1 Sample Ratio vs Jaccard Similarity Score on Shap Importance Results

Sample Ratio | Jaccard Similarity Score
0.2 0.63
0.1 0.53
0.05 0.40
0.01 0.34
0.005 0.29
0.001 0.20

According to those results, the similarity of those feature sets does not overlap too
much. The maximum value it took for Jaccard similarity is around 0.6; thus, we will
look deeper into the reason behind this. The first thing we investigated is that the
features that existed in the sample feature list were not in the top 100 main feature
list. The number of those features is 22. Also, 22 features exist not in the top 100
feature list but in the main features. Thus, the first control we conducted was for
comparing those features to check the correlation between those 22 features that
exist only in the sample dataset and 22 features that exist only in the main dataset.
The results obtained for those two feature sets listed, which have the maximum

correlated features in the feature set, do not exist in the main dataset in Table 4.2.

Table 4.2 Correlation with Features after Shap

Feature Name | Correclation
Featurel 0.9784
Feature 2 0.9860
Feature 3 0.9655
Feature 4 0.8657
Feature 8 0.8392
Feature 9 0.7945
Feature 10 0.6496

When we look at the correlation values, the correlated feature list includes highly
correlated features. This situation can potentially change this list with correlated
features for each trial. Our experiment also validated this assumption for the same
sampled dataset with different random states. Even though the same-sized sample

datasets were derived from the main dataset, has low Jaccard Similarity; therefore,
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it is reasonable that those correlated features led to the selecting one of them while

using Shap.

Table 4.3 Feature Names and Their Relative VIF Values

Feature Name | Vif Value
Featurel 576.69
Feature 2 55.00
Feature 3 16.78
Feature 4 12.27
Feature 5 11.29
Feature 6 6.78
Feature 7 6.07
Feature 8 3.63
Feature 9 2.34

Feature 10 1.98
Feature 11 1.95
Feature 12 1.86
Feature 13 1.60
Feature 14 1.40
Feature 15 1.34
Feature 16 1.32
Feature 17 1.23
Feature 18 1.16
Feature 19 1.15
Feature 20 1.01
Feture 21 1.00
Feature 22 1.00
Feature 23 1.00

Moreover, as indicated in Table 4.3, we have calculated VIF for the feature set that
does not exist in the top 100 main feature list with top 100 feature list of main model.
The Variance Inflation Factor(VIF) is a measure used to capture multicollinearity as
stated in Shrestha (2020). From Shrestha (2020), the formula of VIF stated below:

1
(4.4) VIF = T2
From the Table 4.3, it can be derived from at least 7 features with high VIF values,
which means there is a high collinearity of those features with the features of the
main dataset. Thus, it is not surprising that those features are used interchange-
ably with other features in the main dataset. However, until this point, we only
investigated the linear relation. The non-linear relations of features are also worth

investigating. Also the model fitted also has a nonlinear behavior. Therefore, by
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also conducted VIF calculation for non-linear actually XGBoost model. In order
to conduct such a test, we have calculated R-squared of XGBoost Regressor model
which has set of predictors includes top 100 main features and target the each fea-
ture of sets of feature which does not exist in main model but sample model. The
results cover the remaining open parts which linear model VIF is not enough to

explain.

Table 4.4 Feature Names with Related VIF Values Based on Boosting Algorithm

Feature Name | Vif Value
Feature 2 43.64
Feature 12 29.89
Feature 5 24.23
Feature 4 14.53
Feature 1 12.44
Feature 3 12.31
Feature20 12.27
Feature 22 11.71
Feature 6 10.83
Feature 7 9.07
Feature 21 7.04
Feature 10 6.00
Feature & 5.62
Feature 11 5.11
Feature 9 3.66
Feature 14 3.21
Feature 17 3.20
Feature 13 2.78
Feature 15 2.17
Feature 16 2.11
Feature 21 1.74
Feature 18 1.47
Feature 19 1.39

After observing the results of XGBoost VIF, it can be said that almost half of the
features could be predicted by the features of the main dataset model. Moreover,
in VIF results based on linear regression, features not having high VIF values, in
this calculation gets much higher values. As a result, we can conclude that those
features exists in top 100 features of main model dataset can be interchangeably

used for features exist in 100 features of sample model dataset.

By using that information, the results of Shap-based important features of the main
dataset are similar to those used in the sample dataset. Also, the actual repre-
sentativeness in our experiment will be observed in terms of model performance

calculation. In our experiment, we also have used SFS in order to reduce feature
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Figure 4.5 ROC AUC Score Classification Results of Features of SF'S Selected Fea-
ture

datasets of main data and sampled data to 20 features. Those top 100 most im-
portant features selected by the Shap algorithm for the main dataset and sampled
datasets were reduced to 20 feature lists by selecting those features also using the
SFS algorithm.

The final 20 features were selected by the SFS algorithm for the main dataset,
and six different sample datasets were used to fit seven different models. Also, we
have compared those feature main model performances with six different models
of the sampled dataset. After fitting those models with their respective datasets
and features using the XGBoost model, we calculated the model performance of
those models on test datasets. In Figure 4.5, we have demonstrated the ROC-AUC
score on the test dataset, and the computational time for SF'S. The similar trend is
followed as in the PCA transformed models. However, the reduction in model scores
in terms of ROC-AUC score is lower than the models trained with PCA transformed
data. Moreover, computational time reduction is a similar amount also. Therefore,
those insights from the model scores demonstrate that sampled data is more robust
to feature selection algorithms compared to feature transformation such as PCA.
However, the reason also might be based on that PCA is effective in capturing the
linear relations, however nonlinear relation information might be omitted by this
transformation. Also, we have provided the results in terms of average precision

score in Figure 4.6.

Additionally, for the SFS process, as we have mentioned before, we applied the

Shap algorithm, and then according to the Shap importance results, we eliminated
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correlated features before moving towards to the SFS algorithms for all seven models
separately. This means that among the correlated features the one with higher Shap
importance value remains our feature list, the other one is eliminated from our list.
The threshold value for correlation is determined as 0.85. Moreover, there is also

computational time for Shap algorithms also which also provided below in Table

4.5.
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Table 4.5 Computational Times with Features after Shap

Computational Time (minutes)

Main
Sample 0.2
Sample 0.1
Sample 0.05
Sample 0.01

Sample 0.005
Sample 0.001

22

— N

0.5
0.3
0.15
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5. Conclusion and Future Work

To conclude, we have investigated, firstly, the data similarity between our main
dataset with randomly sampled datasets. Our test results demonstrated that until
some selected sample size, the random sampled datasets are actually represent the
main dataset. Some test results show more power for this context, however other
less such as Chi Square tests and PSI. Moreover, we have observed that, also the
explainable variance for sample dataset and main data behave similarly, and PCA
models’, based on those sampled data and main data, reconstruction error of main
data again give very similar results with of sampled data until the sample size
of 0.05 of main data. However, although most of the tests give reliable results,
some tests give more proper results than performance scores of sample datasets on
unknown data called test data in our study. The JS Divergence on both categorical
and continuous data, the Wassertein Distance and KS Statistics behave give very
similar results compared with classification performance results. Moreover, the main
conclusion of our study would be that it is not necessary to use all data to obtain
a high predictive performance. Although models based on the main dataset give
better performance on unknown data, both features with selected feature selection
algorithms and transformed with PCA algorithm, the reduction in performance
results are negligible especially until the sample size of 0.05 of main datasets, however
the reduction in computational time is very high. Therefore, especially for those
studies with time concerns, it is better to move with random stratified sampled data

when the target ratio is imbalanced.

Future work of this study would be to investigate this random sampling method
on unsupervised algorithms performance other than PCA algorithms. The main
focus of this study on classification problem, however as a future work it should
be investigated the results on regression problems, and also algorithms which use
Deep Learning algorithms. Finally, the last future work of this study is to obtain an
optimal sample size selection by using an optimization algorithm by defining proper
cost functions using similarity scores and computational times. Moreover, it can be

extended to also automated sample size selection by using Reinforcement Learning
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algorithms.

Another way for future work would be to investigate effect of various sampling meth-
ods in time series data. The focus of the work could be concentrated on exploring
the effect of sequential sampling, window-based sampling, and stratified sampling
on the prediction performance of time-dependent datasets. The main areas to be
search would be to investigate to performance of different sampling strategies on
reflecting the sequential patterns of main time-based dataset, also those methods’
success on representation of overall trends, seasonality and anomalies which exist in
the time series data. The final aspect of the future work for sampling methods on
time-based data, would be to compare the predictive performance of those sampled
datasets with various sampling methods, by using time series forecasting models
such as ARIMA, LSTM and clustering algorithms as we did for the classification,
and clustering algorithms for data with binary target in this study.
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