
INSTRUCTION-BASED FINE-TUNING OF OPEN-SOURCE LLMS FOR
PREDICTING CUSTOMER PURCHASE BEHAVIORS

by
HALIL !BRAHIM ERGÜL

Submitted to the Graduate School of Engineering and Natural Sciences
in partial fulfilment of

the requirements for the degree of Master of Science

Sabancı University
Nov 2024



THESIS AUTHOR 2024 ©

All Rights Reserved



ABSTRACT

INSTRUCTION-BASED FINETUNING OF OPEN-SOURCE LLMS FOR
PREDICTING CUSTOMER PURCHASE BEHAVIORS

HALIL IBRAHIM ERGÜL

Data Science M.S.c THESIS, NOV 2024

Thesis Supervisor: Prof. Selim Sa"et Balcısoy

Keywords: Large Language Models, Instruction Tuning, LoRA, Deep Learning

In this study, the performance of various predictive models, including probabilistic base-
line, CNN, LSTM, and fine-tuned LLMs, in forecasting merchant categories from financial
transaction data have been evaluated. Utilizing datasets from Bank A for training and
Bank B for testing, the superior predictive capabilities of the fine-tuned Mistral Instruct
model, which was trained using customer data converted into natural language format
have been demonstrated. The methodology of this study involves instruction fine-tuning
Mistral via LoRA (Low-Rank Adaptation of Large Language Models) to adapt its vast
pre-trained knowledge to the specific domain of financial transactions. The Mistral model
significantly outperforms traditional sequential models, achieving higher F1 scores in the
three key merchant categories of bank transaction data—grocery, clothing, and gas sta-
tions— that is crucial for targeted marketing campaigns. This performance is attributed
to the model’s enhanced semantic understanding and adaptability which enables it to
better manage minority classes and predict transaction categories with greater accuracy.
These findings highlight the potential of LLMs in predicting human behavior and revo-
lutionizing financial decision-making processes
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ÖZET

AÇIK KAYNAKLI LLM’LERIN MÜ#TERI SATIN ALMA DAVRANI#LARINI
TAHMIN ETMEK !ÇIN TALIMAT BAZLI !NCE AYARI

HALIL !BRAHIM ERGÜL

VER! B!L!M! YÜKSEK L!SANS TEZ!, KASIM 2024

Tez Danı$manı: Prof. Selim Sa"et Balcısoy

Anahtar Kelimeler: Büyük Dil Modelleri, Talimat Tabanlı E%itim, LoRA, Derin
Ö%renme

Bu çalı$mada, finansal i$lem verilerinden tüccar kategorilerini tahmin etmede olasılıklı
temel modeller, CNN, LSTM ve ince ayar yapılmı$ büyük dil modelleri (LLM’ler) dahil
olmak üzere çe$itli tahmin modellerinin performansı de%erlendirilmi$tir. Banka A’dan
alınan veri setleri e%itim için, Banka B’den alınan veri setleri ise test için kullanılarak,
mü$teri verilerinin do%al dil formatına dönü$türülerek e%itildi%i ince ayar yapılmı$ Mis-
tral Instruct modelinin üstün tahmin yetenekleri ortaya konulmu$tur. Bu çalı$manın
metodolojisi, geni$ önceden e%itilmi$ bilgi birikimini finansal i$lemler alanına uyarla-
mak için Mistral’ı LoRA (Büyük Dil Modellerinin Dü$ük Dereceli Adaptasyon Uyarla-
ması) aracılı%ıyla talimat ince ayarı yapmayı içermektedir. Mistral modeli, geleneksel
sıralı modellerin çok ötesine geçerek, banka i$lem verilerindeki üç önemli tüccar kate-
gorisinde—market, giyim ve benzin istasyonları—daha yüksek F1 puanları elde etmi$tir,
ki bu, hedefli pazarlama kampanyaları için kritik öneme sahiptir. Bu performans, mod-
elin geli$tirilmi$ semantik yetene%i ve uyarlanabilirli%ine ba%lanmakta olup, azınlıkta olan
kategorileri daha iyi yönetmesini ve daha yüksek do%rulukla tahmin etmesini sa%lamak-
tadır. Bu bulgular, LLM’lerin insan davranı$ını tahmin etme potansiyelini ve finansal
karar alma süreçlerinde devrim yaratma olasılı%ını vurgulamaktadır.
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1. INTRODUCTION

Large Language Models (LLMs) have demonstrated extraordinary proficiency in generat-
ing text that closely mimics human language, as well as excelling in a wide array of tasks,
such as Natural Language Processing, Information Retrieval, and recommendation [8] [9]
[10] [11]. More importantly, these large models have also proven to be successful in im-
proving techniques commonly used to study and model human behavior [12]. Extensive
research has highlighted their ability to encode rich knowledge and exhibit compositional
generalization, which allows them to apply learned concepts to novel scenarios e"ectively.
When given appropriate instructions, these models can leverage their vast knowledge
bases to solve previously unseen tasks and achieve remarkable levels of performance [13]
[14]. The versatility and depth of understanding that LLMs o"er make them particularly
well-suited to addressing complex challenges that require not only strong generalization
capabilities but also an in-depth grasp of contextual and semantic intricacies. These
capabilities position LLMs as transformative tools with the potential to significantly ad-
vance various domains, especially for human behavior modeling problems that demand
both extensive knowledge and adaptable reasoning.

One such domain that potentially stands to benefit greatly from the advanced capabili-
ties of LLMs is financial prediction. In the context of financial transactions, predicting
user preferences based on historical data is a complex sequential task. This complexity
arises from the diverse and imbalanced nature of transaction categories as well as di"erent
characteristics of customers’ demographic features, which necessitates models that can
accurately capture and interpret subtle patterns in user behavior. Conventional neural
network models that are used for this next category prediction task, such as Convolutional
Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks, have been
employed to deal with this problem with varying degrees of success [15]. Despite signifi-
cant advancements in the field, the domain of sequential prediction of human behavior,
particularly regarding next merchant category prediction using transactional customer
data, remains relatively unexplored. These sequential models, while e"ective in certain
contexts, often struggle with capturing the patterns and semantic nuances inherent in
transaction data, particularly when dealing with real-world imbalanced datasets where
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minority classes are underrepresented.

This study utilizes the broader capability of LLMs to predict human behavior by apply-
ing this to the specific context of financial transactions, where accurate predictions are
particularly valuable. By addressing the complex problem of predicting customer pur-
chase behaviors, it has been demonstrated that LLMs solve this issue e"ectively and with
greater e&ciency and less modeling e"ort compared to deep learning models. This ap-
proach not only highlights the e&cacy of LLMs in understanding and predicting human
behavior but also emphasizes their applicability in critical financial contexts. Specifi-
cally, the aim of this study is to come up with a novel methodology for predicting the
next purchase merchant categories of customers by fine-tuning an open-source LLM and
comparing its performance with deep-learning based sequential models. To the best of
our knowledge, this is the first study to employ a similar methodology for this specific
prediction task with the purpose of human behavior modeling, which distinguishes this
work from existing literature. By using datasets from two di"erent banks (Bank A and
Bank B), models have been trained on data from Bank A and test their generalization
capabilities on previously unseen data from Bank B. The experimental evaluation is de-
signed to illustrate the performance of these models across di"erent sequence lengths of
user preferences within a multi-class classification framework.

The training phase utilizes data from 8,154 unique customers of Bank A, comprising
prediction instructions and task outputs with the next category as the ground truth. Fine-
tuning samples are derived from this dataset to further fine-tune the Mistral 7B Instruct
model. In the testing phase, the model is validated using data from 1,000 randomly chosen
unique customers from Bank B. This data, paired with prediction instructions, is used to
test the inference capabilities of the fine-tuned model, which then outputs predictions for
the next merchant category. The pipeline underscores the importance of fine-tuning and
cross-validation across di"erent datasets to ensure the model’s robustness and predictive
accuracy in varied contexts. Notably, the dataset from Bank A spans a distinct time
period compared to the dataset from Bank B, which ensures temporal independence
between the training and testing phases.

This study addresses several critical research questions that have yet to be thoroughly
explored. Firstly, it has been investigated whether a pre-trained LLM can be e"ectively
fine-tuned on transactional tabular data reformatted into personalized instructions for
merchant category prediction tasks. Secondly, it has been evaluated the performance of
the fine-tuned model against traditional deep-learning-based sequential prediction mod-
els. Lastly, the model’s performance across various sequential lengths that were not
originally part of the training data has been assessed. By answering these questions, this
research aims to provide comprehensive insights into the capabilities and limitations of
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fine-tuned LLMs in the context of financial transaction prediction.

The contributions of this thesis are the following:

• A novel methodology for predicting customers’ next purchase merchant categories
by fine-tuning an open-source Large Language Model (LLM), specifically the Mistral
Instruct 7B model, on financial transaction data reformatted into natural language
instructions. By converting transactional and demographic data into a format suit-
able for LLMs and applying instruction fine-tuning via LoRA, this research utilizes
the enhanced semantic understanding and adaptability of LLMs to capture complex
patterns in customer behavior. This approach enables the model to predict trans-
action categories with greater accuracy, particularly in handling minority classes,
which traditional sequential models like CNNs and LSTMs struggle to represent
e"ectively.

• A comprehensive comparative analysis between the fine-tuned LLM and traditional
deep-learning models across various sequence lengths and merchant categories, uti-
lizing datasets from two di"erent banks to assess generalizability. The fine-tuned
Mistral model significantly outperforms baseline models and achieves higher F1
scores in key merchant categories such as grocery, clothing, and gas stations. These
findings highlight the potential of LLMs to revolutionize predictive tasks in finance
by o"ering enhanced adaptability and accuracy which paves the way for future
applications of LLMs in modeling complex human behaviors in other domains.

3



2. Related Works

The integration of Large Language Models (LLMs) into behavioral modeling systems
signifies a substantial shift in understanding and predicting user preferences. Through
using sophisticated linguistic and contextual capabilities of models such as GPT, PaLM,
and LLaMA, researchers are applying these models directly to the field of recommenda-
tion systems [1]. This section discusses the existing field of sequential human behavior
modeling in four parts. The first part focuses on the taxonomy of LLMs and paradigms
of model tuning. The second provides an overview of fine-tuning and adapting generative
language models for recommendations. The third analyzes studies that utilize language
models in both cross-domain and domain-specific tasks in recommendation and behav-
ioral modeling. Finally, the fourth part focuses on sequential models in behavior modeling
via deep learning.

2.1 Taxonomy of LLMs and Paradigms of Model Tuning

The application of LLMs in recommendation systems can be broadly categorized into
three distinct modeling paradigms [1]. As shown in Figure 2.1, the first paradigm is
the LLM Embeddings and Recommendation Systems (RS) approach, where LLMs act as
feature extractors. In this method, user and item features are fed into the LLMs to ob-
tain embeddings that can be utilized across various recommendation tasks. The second
paradigm, LLM Tokens and RS, extends the first by generating tokens that reflect poten-
tial user preferences through semantic analysis, thereby influencing the recommendation
process. The third paradigm, which this study follows, is LLM as RS. This approach lever-
ages the entire LLM architecture to function as a standalone modeling system, processing
profiles, behavior prompts, and task instructions to output viable recommendations.

LLMs in recommendation systems also diverge based on their tuning strategies: the non-
tuning and tuning paradigms. The non-tuning paradigm exploits the inherent zero-shot

4



or few-shot capabilities of LLMs, where specific prompts are designed to elicit recommen-
dation capabilities without further parameter adjustments. This is often segmented into
prompting techniques and in-context learning, both aimed at utilizing the pre-trained
model’s existing knowledge base without additional training.

In contrast, the tuning paradigm, which this study follows, involves fine-tuning pre-
trained LLMs on domain-specific datasets such as transaction or recommendation data.
This approach not only adapts the LLM to specific recommendation tasks but also en-
hances its ability to understand and predict based on user-item interactions, textual de-
scriptions, and contextual data relevant to the users and items. The fine-tuning process
modifies the model’s parameters to better align with the recommendation task’s unique
requirements, which may di"er significantly from the objectives during the pre-training
phase.

Figure 2.1 An overview of three modeling paradigms [1]
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2.2 Fine-Tuning and Adapting Generative LLMs for Recommendations

Focusing specifically on generative models within the tuning paradigm, a notable subset
is known as Generative LLM4REC. This involves models like GPTRec [16], which, unlike
BERT4Rec [17] that operates on a discriminative basis, employs a generative approach
using techniques like SVD Tokenization for e&ciency and adopts a Next-K generation
strategy for output generation. This model architecture allows for a more flexible adap-
tation to the dynamic needs of recommendation systems, particularly in scenarios that
involve complex user preferences or varied item categories.

Several innovative models have demonstrated varying degrees of success across di"er-
ent scenarios. For example, the FLAN-T5-XXL model has shown promise in zero-shot,
few-shot, and fine-tuned settings, indicating the potential of large-scale fine-tuning in
enhancing model performance across di"erent parameter scales [18]. Another model,
TALLRec [5], undergoes two stages of tuning: initially using self-instruct data for pri-
mary fine-tuning, followed by a recommendation-specific fine-tuning phase that further
refines its predictive accuracy based on user feedback.

Figure 2.2 Large pre-trained language models are well-suited for recommender systems
due to their ability to generate item-specific content (like movie synopses from titles) and
infer user preferences from contextual clues. While traditional sequential recommenders
operate at the item level, their approach reformulates the recommendation process as
a multi-token cloze task using prompts, working at the token level to enable zero-shot
recommendations and improve data e&ciency. [2]
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Further extending the application of LLMs in recommendation systems, Cui et al. in-
troduced M6-Rec, a model that utilizes Alibaba’s pretrained LLM, M6 [19]. This model
incorporates a minimal addition of task-specific parameters (approximately 1%) to the
existing M6 architecture, enabling it to perform a variety of recommendation tasks with-
out altering the foundational model structure. M6-Rec treats recommendation tasks
as either language understanding or generation challenges, e"ectively avoiding the use of
user or item IDs, which facilitates its application in open-domain recommendations. This
approach highlights the versatility of generative pretrained language models in adapting
to diverse domains and tasks which involve unseen items.

Zhang et al. explore the practical implementation and inherent challenges of using LLMs
as recommender systems in their study [2]. They specifically address the transformation
of session-based recommendation tasks into multi-token cloze tasks using personalized
prompts as shown in Figure 2.2. Through MovieLens-1M dataset, the researchers employ
a rule-based system to create prompts that guide the LLM, such as GPT-2, to predict
the next likely item a user might engage with. Their findings indicate that while the
pretrained language model outperforms basic random recommendation baselines in zero-
shot settings, it exhibits linguistic biases and underperforms compared to more traditional
models like GRU4Rec in few-shot scenarios. This highlights the critical need to balance
model training and the design of task-specific adaptations to mitigate biases and enhance
performance in real-world applications.

Wang et al. introduced a novel approach where they utilize a prompting strategy to
perform next-item recommendations in a zero-shot setting [20]. This method primarily
revolves around three operational steps to mitigate the limitations observed in direct
querying of LLMs like GPT-3 for recommendations. Initially, they address the broad
recommendation space issue by generating a focused candidate set through either user-
filtering or item-filtering, which aids in reducing the scope of potential recommendations.
Subsequently, they engage GPT-3 in a structured three-step prompting process that be-
gins with summarizing user preferences, followed by selecting representative movies from
the candidate set, and culminates in generating a recommendation prompt that guides
the model to propose ten closely aligned movies. The final step involves a rule-based
extraction method that parses GPT-3’s output to obtain the final list of recommended
items. This methodology shows an e"ective integration of external filtering mechanisms
and structured LLM prompting to enhance recommendation accuracy in zero-shot sce-
narios.

Gao et al. explore the enhancement of conversational recommender systems through their
study [3] which has a multi staged architecture as shown in 2.3. By incorporating user
profiles, historical interactions, and optional dialogue histories into the recommendation
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Figure 2.3 Architecture of Conversational Recommendation: ChatREC [3]

process, they utilize these inputs to craft personalized prompts that are then processed by
OpenAI’s ChatGPT. This system not only summarizes user preferences but also refines
a large set of candidate items to a tailored recommendation list. The utilization of Chat-
GPT enables interactive and multi-round recommendation capabilities which provides a
platform for dynamic user interaction and improved explainability of recommendations.
Furthermore, they address the challenge of recommending new or less common items by
incorporating an item-to-item similarity approach that leverages external, up-to-date in-
formation sources. The results from their experiments indicate that ChatREC performs
robustly across zero-shot and cross-domain tasks.

Another study introduces a novel approach to news recommendation systems [21]. Con-
ventional methods, which follow the vanilla pre-train and fine-tune paradigm, often fail
to fully leverage the rich semantic information that LLMs acquire during pre-training. To
address this gap, this paper proposes the Prompt Learning for News Recommendation
(Prompt4NR) framework. This framework innovatively applies the pre-train, prompt,
and predict paradigm to the news recommendation domain by treating the task as a cloze-
style mask-prediction task. This allows for the use of various prompt templates—discrete,
continuous, and hybrid—to e"ectively tailor the model’s focus on predicting user clicks on
news articles. Additionally, the use of prompt ensembling to aggregate predictions from
multiple templates demonstrates a strategic application of LLM capabilities to enhance
recommendation accuracy. Extensive experiments on the MIND dataset underscore the
e"ectiveness of Prompt4NR.

Chen and Zhang explore the potential of LLMs to provide explainable recommenda-
tions through advanced prompt learning techniques [22]. Traditional methods utilizing
recurrent neural networks have not fully capitalized on the capabilities of pre-trained
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Transformer models, particularly in integrating user and item IDs, which exist in a dif-
ferent semantic space from the words on which these models were originally trained. This
paper introduces two novel strategies—discrete and continuous prompt learning—to in-
tegrate these IDs into the recommendation process e"ectively. In the continuous prompt
learning strategy, ID vectors are initially randomly initialized but are refined through so-
phisticated training strategies such as sequential tuning and recommendation as regular-
ization. These methods significantly improve the model’s ability to generate explainable
recommendations that are both accurate and user-intelligible.

Hou and Mu shift the focus towards the development of a universal sequence representa-
tion learning (SRL) method, named UniSRec, which addresses the limitations of existing
SRL methods that rely heavily on explicit item IDs [23]. These methods often struggle to
transfer to new recommendation scenarios due to their dependency on item-specific data.
UniSRec overcomes this by using item description texts to develop more transferable item
representations. This is achieved through a novel item encoding architecture that incor-
porates parametric whitening and a mixture-of-experts enhanced adaptor. The approach
also introduces two contrastive pre-training tasks designed to handle multi-domain nega-
tives. The ability of UniSRec to perform under both inductive and transductive settings,
coupled with its strong transferability as evidenced in cross-platform settings, highlights
its potential to redefine the adaptability of sequence representation models in recommen-
dation systems.

2.3 LLM for Sequential Models in Cross- and Domain-Specific Tasks

In a study by Geng et al., the concept of Recommendation as Language Processing (RLP)
is proposed, introducing the Pretrain, Personalized Prompt, and Predict Paradigm (P5)
[4]. This framework integrates various recommendation tasks such as sequential recom-
mendation, rating prediction, explanation generation, review summarization, and direct
recommendation into a unified text-to-text approach as shown in 2.4. The model lever-
ages multitask learning by converting all user and item data into natural language se-
quences, which are then processed through an encoder-decoder Transformer model. This
model is pretrained with instruction-based prompts which allow for e"ective learning of
the semantics necessary for making personalized recommendations. The innovative use
of adaptive personalized prompt templates enables the P5 framework to handle condi-
tional text generation tasks e&ciently which demonstrates significant improvements over
traditional RNN and CNN-based deep learning models in recommendation systems.
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Figure 2.4 An overview of the complete process for di"erent tasks in P5 [4]

Most relevant and similar in terms of training method to the research in this study, Bao
and Zhang propose a dual-stage tuning process that significantly augments the recom-
mendation capabilities of LLMs [5]. The TALLRec framework, as shown in 2.5, initi-
ates with an instruction tuning phase that adapts the LLM to understand and process
recommendation-specific instructions. This is followed by a recommendation-tuning stage
where the model is fine-tuned on actual recommendation data involving user-item inter-
actions in specific domains such as movies and books. Remarkably, even with a limited
dataset of fewer than 100 samples, TALLRec demonstrates substantial improvements
over traditional models like RNNs and CNNs, achieving scores around 0.70 (± 3). Addi-
tionally, the model exhibits strong cross-domain generalization capabilities, underscoring
its potential in broader application scenarios beyond the initial training domains. This
tuning approach aligns closely with the methodology of this study in terms of o"ering
a pertinent example of how structured tuning can enhance the predictive accuracy and
domain adaptability of LLMs in recommendation systems.

Figure 2.5 TALLRec Dual Modeling Architecture [5]
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The novel domain-specific framework PALR illustrates a sophisticated integration of user
interaction data with a fine-tuned LLM to enhance item ranking [24]. Unlike conven-
tional approaches that employ smaller LLMs, PALR utilizes a 7-billion-parameter LLM,
fine-tuned specifically for ranking, allowing it to better harness the model’s reasoning
abilities and leverage rich item side information. The system begins with using user/item
interactions for candidate retrieval, followed by the LLM-based ranking model, which
takes these candidates in a natural language format and uses them to generate per-
sonalized item recommendations. Experimental results demonstrate that this approach
significantly outperforms existing models on sequential recommendation tasks.

Building on the use of LLMs for recommendation in a cross-domain manner, some studies
further explore the capabilities of o"-the-shelf pretrained LLMs in a zero-shot learning
context [25, 26]. These studies propose frameworks where LLMs are used to estimate the
a&nity between users and items based purely on textual prompts derived from user pref-
erences, such as movies liked by the user. By formulating the recommendation problem
as a conditional ranking task, these frameworks utilize the general-purpose task-solving
abilities of LLMs, such as GPT-4, to perform without prior specific training on recom-
mendation data. Despite challenges like the models’ struggles to perceive the order of
historical interactions and biases towards popular items, carefully designed prompting
and bootstrapping strategies significantly mitigate these issues. This enables LLMs to
e"ectively rank items in a zero-shot manner.

Additionally, Ding and Ma introduce the ZESRec algorithm, which uniquely addresses the
challenge of data scarcity in new or early-stage recommendation systems [27]. ZESRec
operates in a zero-shot learning setting where there are no overlapping users or items
between the training and target datasets. By using items’ generic features and sequential
user interaction histories, ZESRec e"ectively generalizes across completely new datasets
that show the potential to circumvent the typical cold-start problem faced by startups in
accumulating su&cient user interaction data to train e"ective recommendation models.
It features four distinct characteristics: cold users (no shared users between training and
testing datasets), cold items (no shared items between training and testing datasets), a
domain gap (training and testing datasets come from di"erent domains), and no access
to target data during training. ZESRec significantly exceeds the performance of zero-
shot embedding-KNN and random baselines, o"ering substantial benefits for startups
and early-stage products with limited data.

Figure 2.6 shows the overall framework for item representation and training for VQ-Rec,
introduced by Hou and He. It presents an innovative approach for enhancing the transfer-
ability of recommender systems through Vector-Quantized item representations [6]. This
method addresses the limitations of previous models that heavily relied on pre-trained
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Figure 2.6 VQ-Rec framework for vector-quantized code-based transferable sequential
recommender [6]

language models (PLMs) to encode item text into representations, which often resulted in
an overemphasis on text features and exaggerated the negative impacts of domain gaps.
VQ-Rec innovatively maps item text into discrete indices (item codes), which are then
used to retrieve item representations from a code embedding table, following a "text-
code-representation" scheme. This novel representation enables the system to mitigate
issues tied to domain-specific biases and enhances its adaptability across di"erent do-
mains. The model also incorporates an enhanced contrastive pre-training strategy using
semi-synthetic and mixed-domain code representations as hard negatives and a novel
cross-domain fine-tuning method employing a di"erentiable permutation-based network.
Extensive testing on six public benchmarks has shown the e"ectiveness of VQ-Rec, par-
ticularly in cross-domain and cross-platform applications. This demonstrates its potential
to set a new standard for transferable sequential recommendation systems.

Together, these studies demonstrate the transformative potential of LLMs in recom-
mender systems. This shows how these models can be adapted to tackle both the nu-
ances of personalization and the challenges of zero-shot recommendation. They highlight
the increasing feasibility of deploying LLMs in scenarios where traditional methods may
falter due to limitations in data availability or the need for extensive retraining. Through
the strategic use of natural language understanding and generation capabilities inherent
in LLMs, recommender systems can achieve higher accuracy, better user satisfaction, and
greater scalability across diverse application domains.

2.4 Sequential Models in Behavior Modeling via Deep Learning
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The main pipeline of this study resonates with sequential human behavior modeling,
focusing on sequences of historical interactions to predict a user’s next interaction type or
item. While Markov chains played an important role in early sequential recommendation
[28, 29, 30], deep learning models have surpassed them in terms of success and ability to
model more complex behavior patterns.

The literature on sequential models in recommender systems demonstrates a rich explo-
ration of deep learning (DL) techniques, addressing both theoretical and practical aspects
to enhance recommendation accuracy and relevance. Fang and Zhang explore the sys-
tematic classification of sequential recommendation tasks based on behavior sequences
such as experience-based, transaction-based, and interaction-based [31]. This taxonomy
facilitates a deeper understanding of the representative DL-based algorithms tailored for
these tasks. The paper emphasizes the crucial factors influencing the performance of
DL models in recommender systems, including aspects of model input, data processing,
structure, and training. Such comprehensive evaluations illuminate the nuanced impacts
these factors have on enhancing recommendation systems.

In the realm of challenges and developments, Wang and Zhang identify and categorize
key issues faced by sequential recommender systems (SRSs) [32]. They highlight several
challenges, such as managing long or noisy user-item interaction sequences, those with
flexible order, heterogeneous relations, and hierarchical structures. This critical analysis
of data characteristics within SRSs paves the way for addressing these complexities with
innovative deep learning approaches.

Cui and Wu introduce a novel approach to handle the item cold-start problem in network
applications [33]. Recognizing the limitations of existing matrix factorization, Markov
chain, and RNN methods in capturing dynamic user interests or incorporating addi-
tional information, they propose a Multi-View Recurrent Neural Network (MV-RNN).
This model integrates visual and textual information through various combinations of
multi-view features at the input stage, such as concatenation and fusion techniques. By
applying a recurrent structure, MV-RNN dynamically captures user interests and explores
di"erent structures in the hidden state to e"ectively utilize multi-view features. Tested
on real-world datasets, MV-RNN demonstrates a significant enhancement in generating
personalized rankings and addressing the cold-start problem by accommodating missing
modalities.

Donkers et al. extend traditional recurrent neural networks to better suit the specific
needs of the recommender systems domain [34]. They emphasize the incorporation of
user-specific characteristics into the model to propose a modified type of Gated Recur-
rent Unit that integrates sequences of consumed items with unique user representations.
This approach significantly improves the personalization of recommendations to o"er
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next-item suggestions that are tailored to individual preferences. The model’s e"ective-
ness is validated through o’ine experiments on two datasets, where it surpasses both
conventional RNNs and other state-of-the-art recommendation methods in performance
metrics.

Focusing on practical implementations with a newly developed model called GRU4REC,
Hidasi and Karatzoglou apply recurrent neural networks (RNNs), specifically using a
gated recurrent unit (GRU), to session-based recommendation scenarios where user data
is limited [35]. This study introduces modifications such as a ranking loss function and
session-parallel mini-batches, which significantly improve the system’s ability to provide
relevant recommendations based on short session data. This approach underlines the
adaptability of RNNs in enhancing session-based recommender systems, demonstrating
marked improvements over conventional methods.

Figure 2.7 SASRec training process. At each time step, the model considers all previous
items, and uses attention to ‘focus on’ items relevant to the next action [7]

Expanding upon the idea of capturing long-term user behaviors, Kang and McAuley
propose the SASRec architecture, which employs a self-attention-based sequential model
to balance the benefits of both Markov Chains (MCs) and Recurrent Neural Networks
(RNNs) [7]. MCs typically predict a user’s next action based on a few immediate past
actions where the data is sparse. Conversely, RNNs are better suited for denser datasets
where uncovering long-term semantics is crucial due to their higher complexity. SASRec
innovatively merges these approaches using an attention mechanism that assesses the
relevance of past actions at each step, selecting pertinent items to predict subsequent
ones as shown in Figure 2.7. This method significantly outperforms various established
sequential models across both sparse and dense datasets and showcases greater e&ciency
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than traditional CNN/RNN-based approaches. The visualization of attention weights in
SASRec also o"ers insights into how the model adapts to di"erent dataset densities and
reveals meaningful activity sequence patterns.

Tang and Wang propose a model called Caser, which presents a unique method of treating
item sequences as "images" in time and latent spaces [36]. This model uses convolutional
filters to learn sequential patterns as local features of these images, providing a unified
and flexible network structure that adeptly captures both general user preferences and
specific sequential patterns. By embedding recent interactions into a sequence and us-
ing convolutional techniques, the Caser model adeptly predicts the top-N items a user is
likely to engage with in the near future. Demonstrated on public datasets, the model con-
sistently outperforms other advanced sequential recommendation methods across various
evaluation metrics.

Yuan et al. make a significant enhancement in the utilization of Convolutional Neural Net-
works (CNNs) for session-based next-item recommendations [37]. Traditionally, CNNs
embedded an ordered collection of past user interactions into a two-dimensional latent
matrix, treating it similarly to an image where convolution and pooling operations are
applied. However, this paper identifies the limitations of such models, particularly in
handling long-range dependencies in the item sequence. To overcome these, the authors
propose a new generative model utilizing a stack of dilated convolutional layers. These
layers increase the receptive field e&ciently without the need for pooling operations. Ad-
ditionally, the integration of a residual block structure aids in optimizing deeper networks.
This new model not only achieves state-of-the-art accuracy in next-item recommendations
but also reduces the training time.

Overall, these studies highlight the evolution of sequential models in behavior modeling
via deep learning by emphasizing the shift from traditional methods like Markov chains
to more advanced architectures such as RNNs, CNNs, and attention mechanisms. They
underscore the importance of capturing complex user behavior patterns and the e"ective-
ness of deep learning techniques in enhancing the predictive capabilities of recommender
systems.
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3. Architecture

3.1 Sequantial Prediction Problem

Sequential prediction is a common problem in various fields such as e-commerce, rec-
ommendation systems, and financial forecasting. The goal is to predict the next action
or event in a sequence based on a user’s historical behavior. This type of problem often
involves time-ordered data where the sequences of events or interactions evolve over time,
making it crucial to capture temporal dependencies to enhance predictive accuracy.

In mathematical terms, the sequential prediction problem can be formulated as follows.
Consider a set of users denoted by U = {u1,u2, . . . ,uN} and a set of items or events denoted
by V = {v1,v2, . . . ,vM }. Users interact with these items through various behaviors, such
as clicking, purchasing, or viewing, which are represented as B = {b1, b2, . . . , bK}. Each
interaction of a user u → U with an item v → V at a specific time t can be associated with
a behavior b → B. Thus, the sequential history of user u can be denoted as:

Su = {(vu
1 , bu

1 , tu
1),(vu

2 , bu
2 , tu

2), . . . ,(vu
T , bu

T , tu
T )}

Here, Su represents the sequence of user u’s historical interactions, where vu
i denotes the

i-th item interacted with, bu
i is the behavior type associated with the i-th interaction, and

tu
i is the timestamp of the interaction. Given this sequence of historical interactions, the

task is to predict what item vu
T +1 user u will interact with next, under a specific behavior

bu
T +1.

The formal task of sequential prediction can be expressed as estimating the probability
distribution over future items and behaviors:
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P (vu
T +1, bu

T +1 | Su)

where P (vu
T +1, bu

T +1 | Su) represents the probability that user u will interact with item
vu

T +1 with behavior bu
T +1 given the historical sequence Su. This formulation captures the

essence of sequential prediction, where the goal is to learn a model that can generalize
from past sequences to accurately predict future interactions [35, 38].

In real-world applications such as e-commerce or financial transactions, sequential predic-
tion models are employed to forecast what a user will buy or where they will make their
next purchase based on past behaviors. For example, in a financial transaction prediction
task, the items V can be di"erent merchant categories (such as groceries or gas stations),
and the task would be to predict, similar to this study, the next category where a user is
likely to make a transaction [5, 39].

Sequential models, particularly Recurrent Neural Networks (RNNs) and their variants
like Long Short-Term Memory (LSTM) networks, are commonly employed to capture the
temporal dependencies in such prediction tasks [40]. However, these models often struggle
with longer sequences and complex behaviors, which has led to the development of more
advanced approaches like Transformer-based architectures, that can better capture long-
term dependencies and context [41].

The flexibility of sequential prediction models allows them to be adapted to various
domains. For instance, in e-commerce, behaviors could include clicking, purchasing,
adding to a shopping cart, or adding to favorites. The task then becomes predicting which
action a user is likely to take next, given their past interactions. Similarly, in financial
contexts, sequential prediction might focus on predicting which merchant category a user
will interact with next, based on their transaction history [35, 40].
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3.2 Research Problem Definition

In this study, the research problem centers around the challenge of accurately predict-
ing the next merchant category in financial transactions using customer behavioral data
through a novel method. This task is inherently complex due to several factors: the
sequential nature of transactions, the imbalanced distribution of merchant categories,
and the varying lengths and patterns of customer purchase histories. Traditional ma-
chine learning and deep learning models, such as Convolutional Neural Networks (CNNs)
and Long Short-Term Memory (LSTM) networks, have been employed in similar tasks,
but they often struggle with generalization, especially when faced with long-term de-
pendencies and minority categories. The problem becomes even more pronounced when
these models are applied across di"erent datasets from distinct institutions, such as using
training data from one bank and testing it on another to measure the generalizability
of the model, where discrepancies in transaction patterns and customer demographics
add further complexity. This study addresses this gap by proposing the use of fine-tuned
open-source Large Language Models (LLMs) to improve the accuracy of next merchant
category predictions. Specifically, the research aims to explore whether LLMs, which have
demonstrated superior generalization and semantic understanding in other domains, can
outperform traditional models in sequential prediction when fine-tuned on transactional
data reformatted into personalized instruction sets, and whether these models can ef-
fectively handle imbalanced datasets and generalize across di"erent financial institutions
and time intervals.

3.3 Framework and Pipeline

Figure 3.1 illustrates the main case study of this study that contains the model training
and testing pipeline designed for predicting the next merchant category based on historical
customer transactions and demographic data. The framework of this study is designed to
fine-tune and evaluate the performance of a Large Language Model (LLM) in predicting
the next merchant category based on customer transaction histories and demographic
data. The pipeline is structured into two primary phases: training and testing. In the
training phase, the study utilizes a dataset from Bank A, comprising transaction data
from 8,154 unique customers. This data includes the transaction history, demographic
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Figure 3.1 An overview of the complete process for fine-tuning and evaluating the Mistral
7B Instruct model on predicting next merchant categories by using distinct datasets from
Bank A for training and Bank B for testing to evaluate generalizability.

details, and the merchant category of each transaction, which serves as the ground truth.
The raw transactional data is preprocessed and transformed into a natural language
instruction format, enabling the Mistral 7B Instruct model to be fine-tuned using this
task-specific data. Fine-tuning is achieved via Low-Rank Adaptation (LoRA), allowing
the model to adapt its pre-trained parameters to the domain-specific context of financial
transactions.

The testing phase involves validating the fine-tuned model on a separate dataset from
Bank B, consisting of 1,000 randomly selected customers. This dataset is not used dur-
ing training to ensure temporal and contextual independence, which helps evaluate the
model’s generalizability. Similar to the training phase, the Bank B data is reformat-
ted into instruction-based tasks to facilitate inference. The fine-tuned model is tasked
with predicting the next merchant category for each customer based on their transaction
history and demographic information. Performance is assessed across various sequence
lengths to examine the model’s ability to predict the next transaction category with
varying transaction histories. Cross-validation using distinct datasets (Bank A for train-
ing and Bank B for testing) ensures the robustness of the model in predicting merchant
categories in diverse contexts.

3.4 Open Source LLMs Model Architectures

In this section, the architectures of open-source large language models (LLMs) that were
part of the training and inference experiments will be explored, with a focus on their
architectures, training methodologies, and performance optimizations. Specifically, the
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LLaMA and Mistral models will be examined to highlight key architectural features
such as pre-normalization, rotary positional embeddings, and attention mechanisms that
enhance e&ciency and task-specific capabilities. Additionally, the fine-tuning processes,
including supervised techniques and human feedback, will be discussed. Comparative
analysis of model performance across various natural language processing tasks will be
conducted to provide a comprehensive understanding of the state-of-the-art in open-
source LLMs.

3.5 LLaMA Models

The LLaMA-2-Chat 7B and LLaMA-3-8B Instruct models, fine-tuned using the Alpaca
method [42, 43], are auto-regressive transformer-based language models developed by
Meta AI. These models have been optimized through Supervised Fine-Tuning (SFT) and
Reinforcement Learning with Human Feedback (RLHF), focusing on enhanced alignment
with human preferences for dialogue and task-specific performance.

LLaMA models are trained on a diverse mixture of publicly available datasets like Com-
monCrawl [42]. These datasets ensure that the models are capable of handling a wide
variety of natural language tasks while relying solely on open-source data.

Architecturally, LLaMA employs several enhancements over the standard transformer
architecture:

• Pre-normalization: RMSNorm is applied to the input of each transformer sub-
layer, following the approach in GPT-3, to improve training stability [42].

• SwiGLU Activation: ReLU is replaced by SwiGLU, which enhances the model’s
performance by increasing its capacity for non-linearity [42].

• Rotary Positional Embeddings (RoPE): Positional information is encoded
using rotary embeddings instead of absolute positional embeddings, enabling the
model to better capture sequence-based patterns [42].

The LLaMA models are trained using the AdamW optimizer and tokenization part was
handled by a Byte Pair Encoding (BPE) tokenizer, allowing the model to e&ciently
process complex and rare words, including multilingual text [42].
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3.6 Mistral Models

The Mistral-7B-Instruct-v0.2 model, developed by Mistral, was the most e"ective model
used in the fine-tuning experiments. It is a fine-tuned version of the Mistral-7B-v0.2
model, optimized through instruction tuning on publicly available datasets from Hugging
Face [44]. Its performance has notably surpassed LLaMA-2 and LLaMA-3 models, as
demonstrated in 1, especially in tasks requiring reasoning, code generation, and mathe-
matics.

Mistral is based on the transformer architecture [45] but incorporates several improve-
ments that make it more e&cient, especially when working with long sequences. One
of the key innovations is the Sliding Window Attention (SWA) mechanism, which lim-
its each token’s attention to a predefined window of previous tokens, reducing both the
computation required and memory usage during inference [46]. This method allows the
model to handle much longer sequences by attending only to a fixed number of tokens
per layer, improving overall throughput. For example, at a window size of 4096 tokens,
the model can theoretically attend to over 131,000 tokens across its layers which makes
it highly e"ective for tasks involving long-context dependencies.

Another notable feature is the Rolling Bu"er Cache, which helps manage memory more
e"ectively during inference. Instead of storing all previous tokens, Mistral limits the cache
size to match the window size, overwriting older tokens when necessary. This reduces
the memory footprint for long sequences without impacting model accuracy, making it
possible to e&ciently process sequences that extend beyond typical cache limits [44]. The
model also uses a pre-fill and chunking technique, which processes lengthy input prompts
by breaking them into smaller chunks and pre-filling the cache for each chunk. This
strategy allows Mistral to process long prompts in a memory-e&cient manner, computing
attention for both the cache and each chunk of input, thereby speeding up inference
without compromising on the model’s ability to capture context.

To further enhance e&ciency, Mistral employs Grouped-Query Attention (GQA), which
reduces the complexity of attention calculations [47]. By grouping queries, GQA enables
faster inference, particularly for tasks requiring attention over longer sequences. This,
combined with SWA, gives Mistral a considerable speed advantage over conventional
transformer models [44].

Mistral uses a Byte-fallback BPE tokenizer, which divides text into subword units, im-
proving its ability to handle both common and rare words across di"erent languages
[48]. This tokenizer enhances the model’s understanding of linguistic diversity, making it
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highly versatile for various NLP tasks [44].

The Mistral-7B model has been benchmarked against other models like LLaMA 2 13B,
demonstrating superior performance across several categories, including code and rea-
soning benchmarks. Despite being a 7B parameter model, Mistral’s performance is com-
parable to larger models, even outperforming some 13B models on certain tasks [44].
Additionally, the Mistral-7B-Instruct model, fine-tuned on instruction datasets, achieves
high scores on benchmarks like MT-Bench.

3.7 Instruction-Tuning Large Language Models

Instruction tuning is a process designed to enhance the capabilities of pre-trained large
language models (LLMs) by fine-tuning them on task-specific instructions which allows
them to follow and respond to user prompts more e"ectively. This method capitalizes
on the extensive pre-trained knowledge of LLMs while aligning them with specific tasks
through instruction-based datasets. Rather than relying solely on supervised learning
from labeled data, instruction tuning provides LLMs with explicit instructions on how to
handle new unseen inputs [39].

3.7.1 LoRA

In this study, the fine-tuning framework deployed leverages the LoRA (Low-Rank Adap-
tation of Large Language Models) technique, as implemented through the Parameter-
E&cient Fine-Tuning (PEFT) library from Hugging Face, alongside the SFFtrainer li-
brary designed for Supervised Fine-Tuning (SFT) [49] [50]. The dataset consists of natu-
ral language representations of customer profiles and their transaction histories, with the
10th merchant category purchase acting as the label for supervised learning.

LoRA is a parameter-e&cient approach to model fine-tuning that preserves the pre-
trained weights while focusing on the task-specific adaptation through low-rank param-
eterization [51]. Instead of directly updating the large pre-trained weights, LoRA intro-
duces a pair of smaller trainable matrices that capture the task-specific knowledge. The
methodology operates on the assumption that weight updates during fine-tuning have low
intrinsic rank, and these updates can be e"ectively modeled as a low-rank decomposition
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of the larger weight matrix.

The main update mechanism involves reparametrizing the weight matrix W0 as follows:

W0 = W +!W,

where W is the pre-trained weight matrix (kept frozen), and !W is the trainable update.
However, !W is further decomposed into two smaller matrices:

!W = ABT ,

where A → Rd→r and B → Rd→r are the low-rank matrices, with r ↑ d. This low-rank
structure drastically reduces the number of parameters that need to be trained, where
r controls the rank and is typically much smaller than the original matrix dimensions.
This decomposition allows LoRA to e"ectively model task-specific updates while using
fewer parameters.

3.7.1.1 Objective Function and Model Update Process

The learning objective, which optimizes the low-rank parameters, is represented by the
following objective function:

max
!

∑

(x,y)↑Z

|y|∑

t=1
log

(
Pω+!(yt | x,y<t)

)
.

Here, the model’s parameters consist of the original, frozen pre-trained parameters ω

and the low-rank updates ”. The goal is to maximize the log-likelihood of the target
sequence y = (y1,y2, ...,yT ) given the input sequence x and the preceding tokens y<t across
all input-output pairs in the dataset Z. Specifically, the log probability of each token yt

is modeled as:

P (yt | x,y<t) = Pω+!(yt | x,y<t),

where Pω+! represents the probability conditioned on both the frozen parameters ω and
the low-rank updates ” = ABT . During training, only the parameters in A and B are
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updated, while ω remains unchanged, preserving the model’s pre-trained knowledge [51].

3.7.1.2 Low-Rank Decomposition in Transformers

In Transformer models, LoRA is primarily applied to the query and value projection
matrices in the self-attention layers. These projection matrices, denoted as WQ and
WV , are typically large, and updating them directly would involve a significant number
of parameters. However, by reparametrizing these matrices as WQ = WQ + AQBT

Q and
WV = WV + AV BT

V , where AQ,BQ,AV ,BV are low-rank matrices, LoRA significantly
reduces the number of parameters needed for fine-tuning.

The number of parameters to be trained is reduced from d2 (for a full-rank matrix) to
2dr, where r is the rank of the low-rank matrices A and B. This low-rank approximation
maintains computational e&ciency while ensuring that the model can still adapt to new
tasks e"ectively [51].

A critical advantage of LoRA is that the original and low-rank matrices can be combined
post-training into a single matrix during inference, ensuring that no additional latency is
introduced. Specifically, during deployment, the reparametrized matrix W0 = W + ABT

is merged, allowing the model to behave as though it had been fully fine-tuned without
the computational overhead of maintaining separate low-rank matrices.

This approach results in an e&cient fine-tuning process that leverages the structure of the
Transformer’s attention mechanism, allowing it to adapt to new tasks using a minimal
number of trainable parameters without sacrificing performance or introducing significant
inference latency.

3.7.1.3 Parameter E!ciency and Practical Impact

By keeping the majority of the pre-trained model’s parameters frozen and updating only
a small number of parameters through the low-rank matrices, LoRA achieves a highly
e&cient fine-tuning process. This process is particularly advantageous in scenarios where
memory and computational resources are limited. Moreover, the method allows for task-
specific knowledge to be incorporated into large pre-trained models without the risk of
overfitting or losing the valuable general knowledge already captured by the original
weights.
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3.7.2 Parameter-E!cient Fine-Tuning Approaches

LoRA falls under a broader category of parameter-e&cient fine-tuning (PEFT) tech-
niques, which are designed to reduce the computational demands associated with adapt-
ing large models to new tasks. These techniques, including Adapters , Prefix Tuning,
and Prompt Tuning, have become popular due to their ability to fine-tune models in a
resource-e&cient manner [52, 53]. Similar to LoRA, these methods typically freeze the
majority of the model’s parameters, updating only a small subset or introducing auxiliary
parameters.

Adapters add small neural network modules between layers of the model that are trained
during fine-tuning, while the original model weights remain unchanged. This method
allows for task-specific fine-tuning with minimal additional computation [52] that are
used in techniques such as Prefix Tuning and Prompt Tuning [53].

Each of these techniques, including LoRA, aims to mitigate the cost of fine-tuning large
models while retaining high performance, making them ideal for scenarios where compu-
tational resources are limited, or the model needs to be rapidly adapted to new domains.

3.8 Dataset

A major financial institution in an OECD country donated two deidentified samplings
of their data (called as Bank A throughout this study) that were collected over the pe-
riod between July 2014 and July 2015 [54]. The dataset presented comprises a range
of attributes that o"er a multifaceted view of customer transactions. Each entry in-
cludes a masked customer identifier to maintain privacy while allowing for the tracking
of individual customer activities.
musteri_id_mask islem_tarihi islem_tutari cinsiyeti medeni_drm_ack egitim_drm_ack is_turu_ack gelir yas category_name

3867546 2014-08-05 460 E EVLI LISE SERBEST MESLEK 12000 54 Erkek ve Kadın Giyim Ma%azaları
12912748 2015-02-11 288 K BEKAR ÜNIVERSITE ÜCRETL! (ÖZEL) 5000 29 Bakkallar ve Süpermarketler
25514011 2015-02-04 830 K EVLI ÜNIVERSITE ÜCRETL! (ÖZEL) 2000 27 Erkek ve Kadın Giyim Ma%azaları
8402718 2014-10-12 479 K BOSANMIS DOKTORA ÜCRETL! (ÖZEL) 40000 59 Servis !stasyonları
4785643 2014-10-12 100 K BEKAR DOKTORA ÜCRETL! (ÖZEL) 40000 59 Bakkallar ve Süpermarketler

Table 3.1 A sample transaction raw data from Bank A, showing how raw data looks like
before preparing it for fine-tuning

The table 3.1 shows a sample of customer transaction data from Bank A, where each row
corresponds to an individual customer’s specific transaction. The features capture various
characteristics of both the transaction and the customer. The musteri_id_mask feature
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serves as a masked customer identifier, ensuring data privacy while allowing tracking
of transactions. The islem_tarihi feature records the date on which the transaction
occurred, while the islem_tutari feature represents the monetary amount involved in the
transaction.

The cinsiyeti feature provides the gender of the customer (denoted by "E" for male and
"K" for female). Medeni_drm_ack, referring to marital status, specifies whether the
customer is married ("EVL!"), single ("BEKAR"), or divorced ("BOSANMIS"). The
egitim_drm_ack feature reflects the education level of the customer, categorized as "Lise"
(high school), "Üniversite" (university), or "Doktora" (Ph.D.), providing insight into the
demographic profile.

The is_turu_ack feature, which refers to the type of employment, di"erentiates customers
by their work status, such as self-employed ("Serbest Meslek") or salaried in private
sectors ("Ücretli Özel"). The gelir feature represents the customer’s income, o"ering a
key financial indicator, while yas denotes the customer’s age. Lastly, the category_name
feature classifies the transaction by the type of establishment, such as supermarkets,
clothing stores, or service stations.

Bank A dataset consists of millions of transactions conducted by 10,000 distinct cus-
tomers, involving 482 di"erent merchants over a time span from July 2014 to June
2015. The majority of these transactions took place in Istanbul, one of Turkey’s ma-
jor metropolitan areas. Each merchant is assigned a specific category, reflecting the type
of business or service they provide. These merchant categories include: Service Stations,
Houseware Shops, Grocery Stores and Supermarkets, Direct Marketing and Insurance
Services, Man and Woman Clothing Shops, Electronics Shops, Other Commercial Ac-
tivities, Public Services, Telecommunication Services, Sports Shops, Insurance Sale, Car
Parks and Garages, Food Places and Restaurants, Airlines, Travel Agents and Tour Op-
erators, Hospitals, Cosmetics Shops, and Bus Routes.

Another dataset from a di"erent financial institution referred to as Bank B in this study,
was utilized exclusively for testing purposes. While the Bank A dataset was employed
in both the training and testing phases, the Bank B dataset was introduced to evaluate
the performance of the models trained on Bank A data in a completely di"erent context.
The Bank B dataset consists of tens of thousands of individual customer accounts, which
represent approximately 10% of the total customer accounts in the data warehouse of a
major financial institution in an OECD country [55].

Each customer account in the Bank B dataset contains detailed data on all credit card
transactions made for purchases over a three-month period in 2013, specifically from April
to June. The dataset includes over 10 million transactions during this time frame and the
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features present in the Bank B dataset are identical to those in the Bank A dataset. This
parallel structure between the two datasets allows for a seamless comparison of model
performance across di"erent banks and timeframes.

3.9 Data Preprocessing

Merchant Category Filtering

The first step in data cleansing involved filtering transactions to include only those
from the three most frequently purchased merchant categories: Grocery Stores, Cloth-
ing Stores, and Gas Stations. This decision was motivated by the need to address class
imbalance, as underrepresented categories such as insurance could introduce bias during
model training. The three categories selected—Grocery Stores, Clothing Stores, and Gas
Stations—represented the most transactionally active sectors within the dataset. To pre-
serve the natural transactional sequence and behaviors, merchant categories outside of
these top three were labeled as “Other” and included in both the training and testing
phases as a distinct category. This approach ensured that the full range of customer
behaviors was captured without overrepresenting any single minor category.

Handling Missing and Incomplete Data

To ensure a high-quality dataset, users with incomplete demographic information, in-
cluding gender, marital status, education level, employment type, income, and age, were
excluded. Specifically, the rows with null values in features of gender, marital status,
education level, employment type, income, age, merchant category, transaction date, and
transaction amount were dropped to maintain the comprehensiveness and reliability of
the data. This ensured that the dataset used for model training was not only represen-
tative of real-world behaviors but also complete and free from missing values that could
potentially lead to skewed outcomes.

Transaction Threshold and Category Diversity

Additionally, users with fewer than ten transactions across at least two distinct categories
were excluded. This filtering was applied to eliminate users with insu&cient transactional
histories, such as truck drivers frequently purchasing from gas stations, which would
introduce noise into the model and bias predictions toward a single merchant category.
By enforcing a minimum threshold for both transaction count and category diversity, the
dataset was refined to focus on users with more robust and varied transactional behaviors.
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Standardization of Merchant Category Names

In further preprocessing, merchant category names were standardized to reduce the num-
ber of unique values. For instance, the dataset originally contained many variants of mer-
chant categories, such as “Erkek ve Kadın Giyim Ma%azaları” (Men’s and Women’s Cloth-
ing Stores) and “Bakkallar ve Süpermarketler” (Grocery Stores), which were mapped to
a common set of three values. Any category not belonging to the main three cate-
gories—Grocery Stores, Clothing Stores, and Gas Stations—was consolidated under the
“Other” category to simplify classification while preserving relevant transaction data for
model fine-tuning.

Demographic Data Processing

To provide additional demographic insight, an income group column was created by
dividing the income variable into three quantiles, representing low, middle, and high-
income groups. This allowed for further analysis of purchasing behaviors across di"erent
socioeconomic segments.

The demographic variables were further processed by standardizing categorical values.
Gender was normalized to “male” and “female,” while marital status was mapped to
values such as “married,” “single,” “divorced,” “widowed,” and “unknown.” Similarly,
education level feature was standardized to categories like “high school,” “university,”
and “graduate,” while employment type was harmonized across di"erent entries, mapping
to values such as “private employee,” “self-employed,” and “retired.”

Dataset Size Reduction and Refinement

Through these preprocessing steps, the dataset was reduced from an initial pool of 10,000
users and 298 categories, encompassing over one million transactions, to a refined cohort
of 8,154 users and four consolidated categories—Grocery, Clothing, Gas Stations, and
Other—comprising 1,123,445 transactions. These measures ensured the data was well-
structured, representative, and ready for the fine-tuning of the language model. This
rigorous preprocessing was critical in ensuring that the model training process would yield
accurate and generalizable predictions based on high-quality, well-defined transactional
data.

Dataset Partitioning for Model Training

To evaluate the performance of the model during training and ensure its generalization to
unseen data, the dataset was partitioned into training, validation, and test sets using an
80-10-10 split. Initially, 80% of the data was designated for training, while the remaining
20% was split equally between validation and test sets. Specifically, the train_test_split
function from the scikit-learn library was employed to divide the data into a training set
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and a temporary set, comprising 20% of the total data. This temporary set was then
further split into validation and test sets, each accounting for 10% of the total dataset.
A random seed of 42 was used to ensure reproducibility. The resulting subsets were
converted into the Hugging Face Dataset format to enable their use in model fine-tuning.
This partitioning strategy ensured that the validation set was used for model tuning,
while the test set remained independent for final performance evaluation.

3.10 Finetune Dataset Preparation

In transforming the customer data from its original tabular format, as seen in Table 3.1
above, into a dataset suitable for instruction-tuning a language model, a systematic and
structured approach was adopted. The goal was to articulate each customer’s data in a
natural language style to facilitate instruction tuning. This involved a four-step process
to prepare the data for model fine-tuning, which aimed to predict a customer’s future
purchase category based on historical transaction data and demographic details [39, 5].

Raw Data Transformation to Natural Language Format and Prompting

The first step in the transformation process involved converting the raw transaction data
into a natural language format, which served as the foundation for creating the fine-
tuning dataset. This transformation was based on an instruction-tuning strategy that
emphasized making the data more relatable by using a first-person narrative style. The
goal was to simulate a scenario where the user was describing their own transaction
history and demographic details, thereby making the input to the language model more
conversational and contextually grounded.

The next step in the data preparation process involved translating demographic attributes
from Turkish to their English equivalents and standardizing the terminology. This trans-
lation was accomplished using a series of custom basic mapping dictionaries that con-
verted Turkish terms for gender, marital status, education level, and employment type
into corresponding English labels. Specifically, the code utilized predefined mappings
to consistently replace Turkish terms with their English counterparts, while accounting
for variations in spelling, case, and formatting. For instance, gender values like "E" and
"K" were mapped to "male" and "female," respectively, and marital status terms such as
"evli" (married) and "bekar" (single) were translated accordingly. Similarly, education
levels like "L!SE" or "ÜN!VERS!TE" were standardized to "high school" and "univer-
sity," while various terms for employment types (e.g., "serbest meslek" as "self employed"
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or "ücretli (özel)" as "private employee") were translated and unified. Additionally, the
mappings accounted for inconsistent cases (uppercase, lowercase) and extra spaces to
ensure uniformity across the dataset. The standardized values were then applied to the
data, replacing the original Turkish entries with their corresponding English translations
to make the dataset more suitable for LLMs that were originally trained on large english
corpus.

In the data preparation process, the mapping of merchant category names aimed to reduce
the number of unique values by consolidating similar categories into three primary groups:
"Grocery," "Clothing," and "Gas Stations." To achieve this, a custom mapping function was
implemented to standardize the original Turkish merchant category names by matching
them against a predefined dictionary. This dictionary mapped various related categories,
such as "Bayan Hazır Giyim Dükkanları" (Women’s Clothing Stores) and "Aile Giyim
Ma%azaları" (Family Clothing Stores), to a unified category, "Erkek ve Kadın Giyim
Ma%azaları" (Men’s and Women’s Clothing Stores). The function also accounted for
inconsistencies like extra spaces, spelling variations, and di"erent cases by normalizing
the category names to lowercase before mapping them. If a category was not found in
the mapping dictionary, it was added to a list of unmapped categories.

Following the mapping, the data was further refined by translating the consolidated
categories into English equivalents for consistency. Categories mapped to "Bakkallar ve
Süpermarketler" (Grocery Stores), "Erkek ve Kadın Giyim Ma%azaları" (Clothing Stores),
and "Servis !stasyonları (Asistans-Yardım Servisi Olan veya Olmayan)" (Service Stations)
were translated to "Grocery," "Clothing," and "Gas Stations," respectively. All other cat-
egories were grouped under "Other" to simplify the dataset while preserving the transac-
tional sequence of customers.

In the construction of the prompt, the narrative style was structured as if the user was
explaining their own profile and purchase history. This approach involved describing the
demographic and historical transaction information using natural language expressions
such as "I am," "I bought," and "I spent." For instance, the prompt included details
like the user’s age, gender, marital status, education level, employment status, income
group, and a summary of recent transactions. The prompting design aimed to provide a
comprehensive contextual representation while maintaining simplicity and relevance.

The following pseudocode illustrates the general process of preparing the input data,
where data points are selected based on certain criteria (e.g., recent transactions, variety
in purchase categories). The data preparation involved calculating aggregates like total
spending and checking for su&cient diversity in purchase categories to ensure informative
instruction tuning examples.
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1 # Pseudo-code for preparing training data for instruction tuning
2 For each customer:

3 Sort transactions by date and select the last "n" transactions.

4 If less than "n" transactions, skip to the next customer.

5 Extract customer details for demographic information:

6 - Age, gender, marital status, education level, employment status

7 - Income group and other relevant features

8 Create strings for purchase categories, dates, and amounts:

9 - List of categories for the "n-1" transactions

10 - Corresponding dates and amounts

11 Compose a natural language input string:

12 - "I am <customer_id>. I am <age> years old, <marital_status> <

gender>,

13 <education_status> graduate, and <employment_status>. In terms of

my income state,

14 I belong to the <income_group> income group. Recently, I made <n

-1> transactions.

15 I bought items from the following categories, chronologically: <

list_of_categories>.

16 I bought from these categories on the following dates,

chronologically: <list_of_dates>.

17 I spent the following amounts, chronologically: <list_of_amounts>.

Total spent: $<total_amount>."

18 Assign the target output as the category for the "n"-th transaction.

19 Store the "Instruction Input" and "Instruction Output" pairs in json.

Listing 3.1 Pseudo-code for preparing data in prompt style for instruction tuning for each
customer

This pseudocode in Listing 3.1 ensures that the prompt format captures essential in-
formation in a natural language style which simulates a personalized description by the
user.

Instruction and Response Formatting

The natural language description is structured into an "Instruction Input" and "Instruc-
tion Output" pair. The process involves four key components:

1.1 Task Instruction: The task is defined through a natural language instruction in
prompting style, such as: "Based on my demographic details and historical trans-
action data provided below, predict my next purchase category." This concise in-
struction encapsulates the nature of the prediction task that this study attempts
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solving.

1.2 Task Input: The input combines the customer’s demographic information and
the details of their last "n-1" transactions, formatted as described in the previous
subsection.

1.3 Task Output: The output represents the expected category of the "n"-th purchase,
providing the target for the model’s prediction.

1.4 Instruction Pair Construction: The "Task Instruction" and "Task Input" are
synthesized to form the "Instruction Input," while the "Task Output" is set as the
"Instruction Output." Together, these form the dataset sample used for tuning.

Data Preparation for Model Training in Mistral Style

After creating the "Instruction Input" and "Instruction Output" personalized pairs for
each customer, further formatting is required to prepare the data for model training.
This step includes adding special tokens and organizing the data in a structure suitable
for the training framework. Below is a pseudocode example illustrating this process:

1 # Pseudo-code for formatting data before model training in Mistral Style
2

3 For each "Instruction Input" and "Instruction Output" pair:

4 Add special tokens:

5 - "<s>[INST]" at the start of the instruction

6 - "[/INST]" at the end of the instruction

7 - "</s>" at the end of the response

8

9 Combine the instruction and response into a single formatted string:

10 - "<s>[INST] <instruction> <task_input> [/INST] <task_output></s>"

11

12 Store the formatted strings in a list for further processing

13

14 Write the formatted data to a text file, separating each entry with a

newline

Listing 3.2 Pseudo-code for formatting data before Mistral model training

This formatting step ensures that the data is in a structure that allows for e"ective fine-
tuning. This type of formatting is highly linked to the way the pretrained instruction
model was trained with a specific prompting for creating chat template. Chat templates
like 3.2 are not compulsory but yet it is critical during training because it provides a good
way to ensure that the chat template matches the tokens the model sees during training.
Hence, these tokens were the ones that were used while scientists behind Mistral model
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was pretraining the model for instruction tuning [56]. They help the model recognize the
boundaries of the instruction and response, which is critical for distinguishing between
the input prompt and the expected output during training.

Data Preparation for Model Training in Alpaca Style for LLaMa Models

The Alpaca-style data preparation follows a distinct approach from the Mistral-style
formatting and it is tailored specifically for fine-tuning LLaMa models. The prepara-
tion steps ensure that the model can e"ectively interpret the relationship between tasks,
inputs, and expected outputs. The pseudocode below demonstrates the process of trans-
forming already processed data in Listing 3.1 into a format suitable for model training of
LLaMa models using Alpaca style instruction:

1 Function format_data(input_file, output_file):

2 Load data from the input JSON file
3 Create an empty list for formatted data

4 For each item in the data:

5 instruction = item[’instruction’]

6 input_text = item[’input’]

7 output_text = item[’output’]

8 # Format using the Alpaca-style template
9 formatted_text = (

10 "Below is an instruction that describes a task, paired with an

input that provides further context. "

11 "Write a response that appropriately completes the request.\n"

12 "### Instruction:\n" + instruction + "\n"

13 "### Input:\n" + input_text + "\n"

14 "### Response:\n" + output_text

15 )

16 Add formatted_text to the formatted data list
17 Write each entry in the formatted data list to the output text file, one

per line

18

19 Function load_and_process_data(file_path):

20 Read all lines from the specified text file
21 Create an empty list for processed data

22 For each line:

23 If the line is not empty:

24 Clean the line

25 Add {’text’: cleaned_line} to the processed data list
26 Convert the processed data list to a DataFrame

27 Transform the DataFrame into a dataset compatible with the training
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framework

28 Return the prepared dataset

Listing 3.3 Pseudo-code for formatting Alpaca-style data for LLaMa models

The data preparation process involves several key steps. It begins with loading raw data
from a JSON file coming from processing step as shown in 3.1, where each text entry
consists of fields such as instruction, input, and output. The code then iterates over each
item in the dataset, extracting these fields and formatting them into a specific prompt
structure. This structure is designed to simulate real-world instruction-following scenar-
ios, where an instruction describes the task, an input provides additional context, and
a response completes the task. The formatted text includes special tokens such as ###
Instruction ### Input and ### Response to clearly distinguish these parts within the
training samples. The prompt "Below is an instruction that describes a task,
paired with an input that provides further context. Write a response
that appropriately completes the request" is used at the beginning of each
instruction-input-output pairs. Each formatted entry is stored in a list, which is later
written to an output text file, ensuring that each line of the file represents an individual
training instance (which are personalized prompts for each customer) in the Alpaca
format.

The dataset is then split into training, validation, and test sets to enable proper evalu-
ation of the model’s performance. A portion of the data is used for validation to tune
hyperparameters, while the remainder is reserved for final testing.

The format used for instructions in Alpaca format follows a specific prompt structure:

1 Below is an instruction that describes a task, paired with an input that

provides further context. Write a response that appropriately completes

the request.

2 ### Instruction:

3 {instruction}

4 ### Input:

5 {input}

6 ### Response:

This structure highlights the separation between the instruction, input, and response,
making it easier for the model to understand the context of each task. Unlike the Mistral-
style formatting, which relies on special tokens to delineate components, the Alpaca-style
format uses explicit headers for each data sample sections of instruction, input, and
output.
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Dataset Preparation for Training Framework

The prepared text data (whether it is Alpaca or Mistral format) is then loaded into a
suitable framework for fine-tuning. In this case, the dataset is converted into a format
compatible with the Hugging Face datasets library, which supports various NLP tasks.
The dataset is split into training, validation, and test sets for model evaluation:

1 # Pseudo-code for dataset preparation
2 Load the formatted data from the text file
3 Split the data into train and test sets (e.g., 80% training, 20% testing)

4 Further split the test set into validation and test sets (50% each)

5

6 Store the dataset splits in a dictionary:

7 - "train": training set
8 - "validation": validation set
9 - "test": test set

Listing 3.4 Pseudo-code for dataset preparation

This procedure enables e&cient organization of the dataset for model fine-tuning while
ensuring that the model’s performance can be assessed on separate validation and test
sets.

Table 3.2 A sample format created from the raw transaction dataset for fine-tuning.

Instruction Input

Task Instruction: Based on my demographic details and historical transaction data
provided below, predict my next purchase category.
Task Input: I am 1695432. I am 48 years old, married male, secondary school grad-
uate, and I am working as a private employee. In terms of my income state, I belong
to the high-income group. Recently, I made 9 transactions. In these transactions, I
have spent a total of $560.61 dollars. I bought items from the following categories,
chronologically: Grocery, Grocery, Grocery, Other, Clothing, Other, Clothing, Cloth-
ing, Clothing. I bought from these categories on the following dates, chronologically:
2015-03-28, 2015-04-01, 2015-04-15, 2015-05-01, 2015-05-27, 2015-06-04, 2015-06-04,
2015-06-04, 2015-06-08. I spent the following money for these items, chronologically:
$39.82, $47.25, $27.81, $124.97, $105.97, $24.95, $49.99, $99.95, $39.90.
Instruction Output

Task Output: Gas stations.

The following Table 3.2 illustrates a single formatted instruction tuning data sample that
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is feed into model during training. This example demonstrates how the raw data in Table
3.1 is transformed into a narrative format, incorporating structured input and response
pairs to facilitate e"ective fine-tuning of the language model.

3.11 Training Steps

The fine-tuning was carried out through a systematic procedure that adapted the model’s
weights to predict customer purchase categories based on historical transaction data
and demographic information. This section details the training process, including data
loading, model configuration, training setup, and monitoring. The steps described here
were implemented for the purpose of this study to fine-tune a pre-trained language model
using the instruction-based input-output pairs prepared in the dataset preparation phase
above.

• Model and Tokenizer Setup

– The model and tokenizer (either LLaMa instruct or Mistral instruct mod-
els) were initialized using pre-trained checkpoints downloaded from hugging-
face model hubs. The models used were causal language models, loaded with
AutoModelForCausalLM.from_pretrained from the transformers library.

– To optimize memory e&ciency, a quantization configuration was applied using
BitsAndBytesConfig, which loaded the model in 4-bit precision with NF4
quantization. This setup reduced memory consumption.

– The tokenizer was configured using AutoTokenizer.from_pretrained, with
the padding token set to match the end-of-sequence token to ensure consistent
input handling.

• Configuration of PEFT (Parameter-E!cient Fine-Tuning)

– The fine-tuning process employed Parameter-E&cient Fine-Tuning (PEFT)
techniques, specifically Low-Rank Adaptation (LoRA), to adjust only a subset
of the model’s parameters.

– The LoRA configuration, defined via LoraConfig, included parameters such as
r, lora_alpha, and lora_dropout, which controlled the rank, scaling factor,
and dropout rate for the adapted layers.
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– Target modules for adaptation were specified, focusing on components such as
q_proj, k_proj, v_proj, and o_proj within the model’s attention mechanism
to allow e"ective fine-tuning with minimal computational cost.

• Training Arguments and Setup

– The training setup was defined using TrainingArguments from the
transformers library, which specified parameters controlling the training pro-
cess.

– Mixed precision training was enabled with the bf16 flag, using bfloat16 preci-
sion to accelerate computations without compromising accuracy.

– The learning rate was managed with a cosine schedule, and a warmup ratio
was applied to increase the learning rate gradually during the initial phase.

– Logging was performed at intervals specified by the logging_steps
parameter, and evaluation was carried out periodically based on the
evaluation_strategy setting. TensorBoard was used for real-time monitor-
ing of the training progress.

• Data Loading

– The dataset, prepared as described in the earlier sections, was split into train-
ing, validation, and test sets to allow for model evaluation during and after
training.

– The datasets library facilitated e&cient handling of NLP datasets, and a
DataLoader from PyTorch was used to create data iterators for training.

– The max_seq_length parameter controlled the maximum sequence length for
input data, ensuring that input sequences were appropriately truncated or
padded.

• Training Procedure Using the SFTTrainer The training was executed using
the SFTTrainer, a custom trainer class designed for fine-tuning language models
with instruction-based tasks. The following steps were performed during training.

– Training: The train() method from PyTorch was used, which set the model
to training mode. It enables activating dropout and using batch statistics in
batch normalization layers to prevent overfitting and facilitate learning.

– Batch Processing: Batches of tokenized data were fed into the model, consist-
ing of instruction-input pairs formatted as previously described.
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– Loss Computation: The model computed the loss between the predicted output
tokens and the target tokens, using cross-entropy loss as the criterion.

– Gradient Accumulation and Backpropagation: Gradients were accumulated
over multiple steps (as defined by gradient_accumulation_steps) before up-
dating the model parameters.

– Parameter Updates: The optimizer used was Paged AdamW, and parameters
were updated according to the learning rate schedule.

– Checkpointing: The model was saved at specified intervals (e.g., at the end of
each epoch) to allow for resuming training or performing inference later.

– Monitoring: Training progress was monitored using TensorBoard, providing
insights into metrics such as loss and learning rate.

• Post-Training and Model Saving

– After training, the fine-tuned model was saved using
trainer.model.save_pretrained(), storing the fine-tuned parameters
and checkpoints for future use.

– The saved model incorporated the knowledge acquired during fine-tuning,
making it suitable for inference tasks as described in the subsequent sections.

The training process described above leveraged e&cient techniques such as PEFT and
mixed precision training, with monitoring enabled through TensorBoard to ensure a scal-
able fine-tuning workflow.

3.12 Loading the Fine-Tuned Model for Inference

Once the fine-tuning process is complete, the next step is to load the fine-tuned model
on top of a pre-trained base model for inference. This approach allows leveraging the
adaptations learned during fine-tuning while utilizing the foundational knowledge of the
pre-trained model. The Parameter-E&cient Fine-Tuning (PEFT) framework is employed
to achieve this and to enable the loading of the fine-tuned model along with the original
base model [49].

The general procedure for loading the model includes the following steps that this study
implemented:
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2.1 Initializing the Base Model: The base language model in its pre-trained form
is loaded. This model serves as the foundation upon which the fine-tuned parame-
ters are applied. The loading process may involve specifying memory management
configurations, such as the data type for weights and device allocation.

2.2 Loading the Fine-Tuned Adapters: Using PEFT’s from_pretrained method
which adds a small number of trained parameters (the adapters) on top of the pre-
trained model [57], loading the fine-tuned model parameters, referred to as adapters,
on top of the pre-trained model is a necessary step. These adapters contain the addi-
tional weights or modified configurations learned during fine-tuning. After loading,
the adapters can be merged into the base model.

2.3 Tokenizer Configuration: The tokenizer corresponding to the base model is
loaded, and any necessary modifications are made (e.g., setting special token iden-
tifiers). This step ensures consistency between the model and the tokenization
process used for input preparation.

2.4 Special Tokens Setup: Define the stopping criteria or special tokens that indicate
the end of the generated output. This configuration helps control the generation
process during inference.

This process ensures that the fine-tuned model is loaded e"ectively, combining the knowl-
edge of the pre-trained base model with the specific tuning performed during fine-tuning.
It allows the model to perform the desired inference tasks based on the learned parame-
ters.

3.13 Inference Using the Fine-Tuned Model

Inference involves generating predictions from the fine-tuned model using natural lan-
guage input prompts structured according to the fine-tuning format. During inference,
the model is provided with instruction-based input, and it generates an output that aligns
with the expected response format. The inference process can be broken down into several
steps:

3.1 Input Preparation:

• The input data consists of an instruction followed by additional contextual
information relevant to the task. The output is not given because it is the
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ground truth, or the expected response that is expected from our trained
model to predict.

• The text input is formatted to match the prompt style used during fine-tuning,
just like in the Table 3.2. In cases where specific markers or delimiters are used
(e.g., special tokens like [INST]), they are appended to the input to maintain
consistency with the training setup.

3.2 Tokenization:

• The formatted input text is tokenized using the tokenizer associated with the
fine-tuned model. This process converts the input text into a sequence of token
identifiers that can be processed by the model.

• The length of the input sequence is recorded to di"erentiate between the
prompt and the generated output during the decoding phase.

3.3 Model Inference:

• The tokenized input is fed into the model, where it undergoes for-
ward processing to generate a sequence of token predictions via using
torch.inference-mode() method from PyTorch that acts as a context man-
ager [58]. The logic behind this manager is to disable several functionalities not
being necessary for generation like gradient tracking to make forward-passes
(data going through the forward() method) faster. The generation process
may involve controlling factors such as the maximum length of the output
sequence and the temperature parameter to influence the randomness of the
output.

• The generated tokens beyond the input length are considered as the output
response, representing the model’s prediction for the given task.

3.4 Post-Processing:

• The generated token sequence is decoded back into natural language text by
skipping any special tokens used during processing.

• The output text is encoded using basic LabelEncoder from scikit learn library
and compared against the expected response (which is encoded similary to
actual response) to evaluate the model’s accuracy and performance.

The inference procedure for models fine-tuned with di"erent styles (e.g., Mistral or Al-
paca) follows the same general framework but involve variations in input formatting steps
as explained in Mistral and Alpaca style data formatting in above pseudo-code. In both

40



cases, the fine-tuned model uses the provided instruction and contextual input to gener-
ate the desired response. Later, the generated responses are compared with the ground
truths to get the final performance results.
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4. Evaluation

The task at hand is to predict user preference among four categories (in which one of them
was labeled as ’Other’), which constitutes a multiclass classification problem. To this
end, a suite of standard evaluation metrics is utilized by following the current literature,
comprising accuracy, precision, recall, and the weighted F1 score. These metrics provide
a holistic view of the model’s performance by not only considering the proportion of
correct predictions (accuracy) but also the models’ ability to correctly identify positive
cases (precision and recall) and a weighted measure of precision and recall (weighted F1
score).

4.1 Performance Metrics

In this study, the selection of evaluation metrics is centered around the need to provide
a balanced and nuanced assessment of model performance, particularly in the context
of imbalanced datasets. While several metrics are employed, the Weighted F1 score
emerges as the most critical metric due to its ability to account for both precision and
recall while adjusting for class imbalances, making it the primary evaluator in determining
model e"ectiveness.

• Overall predictive success, measured by Accuracy, o"ers a high-level indica-
tion of the model’s performance across all classes. However, in datasets with class
imbalances, accuracy alone can be misleading, as it may disproportionately reflect
the performance of majority classes.

• Precision and Recall provide a more granular view of the model’s ability to cor-
rectly identify instances for each class, especially important in imbalanced datasets
where false positives or false negatives can distort the overall picture. Precision
measures the model’s accuracy in predicting a particular class, while recall mea-
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sures the model’s ability to capture all relevant instances of that class.

• The Weighted F1 score, however, serves as the most decisive metric in this study.
By harmonizing precision and recall into a single value and weighting it according
to the distribution of classes, the weighted F1 score ensures a more comprehensive
evaluation. It accounts for the imbalanced representation of classes, ensuring that
the performance in underrepresented categories like Clothing and Gas Stations is
not overshadowed by majority classes such as Grocery. This makes it the most
robust measure for evaluating model e"ectiveness across all categories, especially
when assessing generalization to unseen data.

The emphasis on the weighted F1 score is critical in the context of this research, where
accurately predicting user preferences in all merchant categories—both majority and mi-
nority—is essential. While accuracy provides a broad sense of success, it is the weighted
F1 score that o"ers the most reliable insight into a model’s balanced performance across
the entire dataset. This metric was ultimately the primary decision-maker in evaluating
the success of models experimented in this study. The subsections below provide detailed
definitions and mathematical formulations of these metrics.

4.1.1 Accuracy

Accuracy is one of the simplest and most intuitive performance metrics for classification
problems. It is defined as the ratio of the number of correct predictions to the total
number of predictions.

(4.1) Accuracy = TP +TN

TP +TN +FP +FN

Where:

• TP (True Positives): Correctly predicted positive cases.

• TN (True Negatives): Correctly predicted negative cases.

• FP (False Positives): Incorrectly predicted as positive.

• FN (False Negatives): Incorrectly predicted as negative.

Accuracy works well when the dataset is balanced, but in cases of class imbalance like
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the dataset that this study deals with, it may give a misleading sense of performance.

4.1.2 Precision

Precision focuses on the proportion of true positive predictions relative to the total num-
ber of positive predictions. It tells how many of the predicted positive cases are actually
correct.

(4.2) Precision = TP

TP +FP

High precision indicates that the model returns more relevant results (i.e., fewer false
positives), making it particularly important when the cost of false positives is high.

4.1.3 Recall (Sensitivity)

Recall, also known as sensitivity or true positive rate, measures the model’s ability to
correctly identify all relevant instances in the dataset. It is the ratio of true positives to
the actual total number of positive cases.

(4.3) Recall = TP

TP +FN

High recall is essential in cases where missing a positive case (false negative) is more
costly or harmful, as it captures the model’s ability to detect all true positives.

4.1.4 F1 Score (Weighted)

The F1 score is the harmonic mean of precision and recall. It provides a single measure
that balances the trade-o" between precision and recall, especially in cases where the
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class distribution is uneven.

(4.4) F1 Score = 2↓ Precision↓Recall
Precision+Recall

For multiclass classification, the weighted F1 score is often used to take the class imbalance
into account. The weighted F1 score averages the F1 scores for each class, weighted by
the number of true instances in each class:

(4.5) Weighted F1 =
∑

c wc ·F1c∑
wc

Where wc is the number of true instances in class c.

The weighted F1 score provides a more comprehensive assessment when class imbalance
exists, as it reflects how well the model performs across all classes.

4.2 Experiments

The chosen LLMs are distinguished by their pre-existing instruction tuning on task-
oriented activities, their accessibility as open-source weights, their documentation quality,
their commendable performance in benchmarks pertinent to natural language processing
tasks, and their recognition within the open-source LLM community. Each model was
fine-tuned using a dataset comprising 8154 unique customers, representing 90% of the
total dataset. For this training, a single Nvidia RTX 3090 with 24 GB RAM was used.

The first two models subjected to fine-tuning via the Alpaca method (which is a fine-
tuning dataset formatting method that is a little di"erent than the main fine-tune
dataset formatting explained above) were the LLaMA-2-Chat 7B and LLaMA-3-8B in-
struct, auto-regressive language models utilizing an optimized transformer architecture
[59, 60, 43]. This model has been further refined by Meta through both supervised fine-
tuning (SFT) and reinforcement learning with human feedback (RLHF), with a focus on
alignment with human preferences for helpfulness and safety. The architecture enhance-
ments enable the model to engage in dialogue with improved responsiveness and ethical
awareness.
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The third and the most e&cacious model in the fine-tuning experiments was the Mistral-
7B-Instruct-v0.2 created by Mistral. This model is a fine-tuned iteration of the Mistral-
7B-v0.2 and has been optimized using instruction tuning on publicly available datasets
hosted on the Hugging Face platform [44]. Noteworthy is its superior performance over the
LLaMA 2 and LLaMA 3 models as demonstrated in Table 1 and Table 4.4. The Mistral-
7B-Instruct-v0.2 employs Grouped-query attention (GQA) for accelerated inference and
Sliding Window Attention (SWA) for e&ciently managing longer sequences. Moreover, it
utilizes a Byte-fallback BPE tokenizer to enhance its capability to process and understand
a diverse range of linguistic inputs.

Each model’s architecture and training history contribute to its unique strengths in pro-
cessing and predicting natural language patterns. The fine-tuning exercises conducted as
part of this research were aimed at leveraging these strengths to predict the transactional
behavior of customers. Naturally, this is a task that necessitates a deep understanding of
both language and human purchase behavior. The results from these experiments were
expected to provide insights into the models’ adaptability and performance in the specific
context of merchant category prediction.

In the testing inference phase, various input sequence lengths were employed to rigorously
assess the models’ generalizability and to provide a comprehensive range of performance
scores. Despite being trained on the last nine transactions, the models were tested with
sequences of four, seven, and fourteen transactions.

4.2.1 LLM Training Performance and Hyperparameters

The three figures presented o"er valuable insights into the training and evaluation loss for
the Llama2, Llama3, and Mistral models over a series of training steps which highlights
the convergence behavior and the stability of each model during fine-tuning.
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Figure 4.1 Training vs evaluation loss for the Llama2 model.

Figure 4.2 Training vs evaluation loss for the Llama3 model.
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Figure 4.3 Training vs evaluation loss for the Mistral model

Llama2-7B-chat-hf Loss Analysis (Figure 4.1)

The Llama2 model’s loss curves exhibit a typical pattern of rapid loss reduction during
the initial stages of training. Both the training and evaluation loss decline sharply within
the first 200 steps which indicates that the model quickly adjusts its weights to the
given task. After this point, the training loss stabilizes around 0.4 and remains relatively
constant throughout the remainder of the fine-tuning process.

The evaluation loss follows a similar trend but shows more fluctuation compared to the
training loss. This variability is common when assessing model performance on unseen
data and reflects the model’s ability to generalize. Despite these fluctuations, the evalua-
tion loss does not deviate significantly from the training loss, suggesting that overfitting
is minimal and that the model maintains a reasonable balance between underfitting and
overfitting. The low final loss values indicate that the model is learning e"ectively.

Llama3-8B-Instruct Loss Analysis (Figure 4.2)

The Llama3 model displays a similar loss reduction pattern to Llama2, with both training
and evaluation losses dropping sharply during the first 200 steps. The training loss
stabilizes around 0.4 and remains steady throughout the fine-tuning process. However,
the evaluation loss exhibits slightly more variability than the Llama2 model, which may
suggest that the model’s generalization performance is less stable on unseen data.

Nonetheless, the overall evaluation loss remains close to the training loss, indicating that
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the model is not overfitting significantly. The fluctuations in the evaluation loss may be
attributed to the increased complexity of the Llama3 model.

Mistral Loss Analysis (Figure 4.3)

The Mistral model’s loss curves present a slightly di"erent pattern from the Llama models,
particularly in the early stages of training. Both the training and evaluation loss exhibit
some oscillation during the first 200 steps, indicating a higher degree of variance in the
learning process during these initial stages. However, after this initial phase, the loss
curves stabilize, with both training and evaluation losses converging around a value of
0.4.

The close alignment between training and evaluation loss after 200 steps suggests that the
Mistral model generalizes e"ectively to unseen data. The relatively smooth loss curves
after this point reflect a stable learning process, with minimal overfitting. The Mistral
model’s ability to maintain a low variance in both training and evaluation loss beyond
the initial fluctuations indicates that it is well-tuned for the task at hand and is capable
of consistent performance across datasets.

Comparative Analysis

When comparing the three models, the Llama2 and Llama3 models exhibit relatively
stable loss curves, with low variability in the training loss and moderate fluctuations in
the evaluation loss. In contrast, the Mistral model, despite showing more variance in the
early stages, achieves a closer alignment between training and evaluation loss in the later
stages of training. This suggests a better generalization capability.

Overall, the Mistral model demonstrates greater stability after the initial fluctuations
which makes it a strong candidate for fine-tuning tasks that require consistent general-
ization across datasets. While the Llama2 and Llama3 models also perform well, the
Llama3 model shows slightly more variability in its evaluation loss, indicating potential
areas for further fine-tuning to improve generalization performance.

In summary, these loss curves highlight the importance of stability and alignment between
training and evaluation loss as key indicators of a model’s performance and generalization
capabilities. The Mistral model, in particular, stands out for its strong performance in
these areas, making it a promising choice for tasks requiring balanced performance across
both training and evaluation datasets.
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LLM Train and Inference Hyperparameters

Parameter Parameter Type Value
LoRA r Train 256
LoRA Alpha Train 128
LoRA Dropout Train 0.1
Train Batch Size Per Device Train 2
Optimizer Train Adam
Learning Rate Train 3e-4
bf16 Train True
Number of Training Epochs Train 2
Warmup Ratio Train 0.05
Learning Rate Scheduler Type Train cosine
Maximum New Tokens Inference 25
Temperature Inference 0.7
Quantization Model 4-bit

Table 4.1 Fine-tuning Hyperparameters in Training and Inference Phase

The selected hyperparameters, which are shown in 4.1, for this model fine-tuning and
inference process are critical to ensuring the model performs optimally and e&ciently.
For a meaningful comparison all of the three fine-tuned models were trained with these
hyperparameter values. Starting with LoRA r, set to 256, defines the rank of the low-rank
decomposition used in LoRA layers. Low-Rank Adaptation (LoRA) introduces additional
trainable low-rank matrices, allowing for parameter-e&cient fine-tuning while retaining
high performance [51]. LoRA Alpha, set to 128, is a scaling factor applied to these low-
rank matrices. This helps in controlling the balance between fine-tuning and retaining
the original model’s knowledge.

The LoRA Dropout rate, set to 0.1, provides regularization by randomly deactivating
neurons during training, helping reduce overfitting [61]. The Train Batch Size Per Device,
specified as 2, defines the number of samples processed in each forward and backward
pass per device. A smaller batch size, like 2, trades o" between memory usage and the
stability of gradient updates [62].

The optimizer chosen is Adam (Adaptive Moment Estimation), known for its adaptive
learning rate mechanism, making it ideal for deep learning tasks [63]. The learning rate,
set to 3e-4, controls the size of the update steps in gradient descent. A lower learning
rate like this helps ensure stable training and prevents overshooting the minima during
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optimization.

The bf16, or bfloat16, precision is enabled in this training, which improves memory
e&ciency without a significant loss in computational precision [64]. This is especially
beneficial when working with large models. The number of training epochs is set to
2, meaning the model will pass over the dataset twice. This is typically su&cient for
fine-tuning already pre-trained models because LLMs are few-shot learners [65].

A warmup ratio of 0.05 is applied, meaning 5% of the total training steps gradually
increase the learning rate from zero, preventing large, unstable gradient updates at the
start of training [66]. The learning rate scheduler type is cosine, which smoothly reduces
the learning rate following a cosine function [67].

For inference, the maximum number of new tokens is limited to 25. This parameter
controls the length of text generated during model inference, limiting output verbosity
and maintaining relevance. The temperature, set to 0.7, controls the randomness of
the model’s predictions. This value balances between deterministic outputs and creative
variability, as lower values would make the outputs more focused and deterministic [68].

Finally, the quantization method used is 4-bit, a technique that reduces the size of model
weights while maintaining su&cient model accuracy. This is critical for getting faster
inference and lower memory consumption [69].

Tokenizer, Padding and Special Tokens For Instruction

The tokenizer employed in this study plays a crucial role in how text data is processed for
both model training and inference. The tokenizer, derived from the LlamaTokenizer class
which is a BPE model based on sentencepiece developed by Google, ensures that text
is broken down into manageable units (tokens) that the model can process e&ciently.
Tokenization is particularly important when working with large-scale language models
like Mistral, as it directly a"ects the model’s ability to understand and generate coherent
outputs. The tokenizer’s configuration includes specific special tokens, such as <unk>,
<s>, and </s>, which represent unknown tokens, the start of a sequence, and the end
of a sequence, respectively. These tokens guide the model in structuring input-output
sequences and handling edge cases in natural language processing (e.g., handling out-of-
vocabulary words) [70].

An important aspect of tokenization is padding, which ensures that all input sequences
have uniform length, especially when processing data in batches. In this configuration,
padding is performed on the right side, meaning that the padded tokens are appended
to the end of the sequence, allowing the model to process shorter sequences without
introducing noise at the start. The padding token used in this case is the end-of-sequence
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Model Hyperparameter Value
LSTM Hidden Layer Size 128

LSTM/CNN

Batch Size 64
Optimizer Adam

Learning Rate 0.001
Epochs 40

CNN

Convolutional Layers 2
Channels in Conv1 32
Channels in Conv2 64

Global Pooling Type Adaptive Average Pooling
Table 4.2 Hyperparameters used for training the LSTM and CNN baseline models

token (<eos>), as the tokenizer does not include a dedicated padding token. This method
simplifies the padding process while maintaining semantic consistency, as the end-of-
sequence marker fits logically as a padding token [45]. Right-side padding is commonly
used in transformers due to its ability to preserve the earlier, more informative parts of
a sequence at the beginning of the input [71].

Moreover, the instruction format used in fine-tuning enhances the tokenizer’s role by
introducing the [INST] and [/INST] tokens, which encapsulate specific prompts or tasks
for the model. These tokens create a clear structure that separates user input from the
Mistral model’s responses. By including these instruction tokens, the model can more
e"ectively align its generation with instruction-following behavior, which is crucial in
applications such as conversational agents or task-specific generators. This format also
facilitates the e&cient switching of roles between user and assistant, promoting clearer
interactions [39].

Overall, the choices made in tokenizer configuration, padding strategy, and the use of
instruction format tokens significantly enhance the model’s performance in instruction-
following tasks, ensuring robust and e&cient text processing during both training and
inference stages.

4.2.2 Baseline Hyperparameters

The hyperparameters, shown in 4.2, used in both the LSTM and CNN models play a
crucial role in defining the behavior and performance of the models during training.
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In the LSTM model, the input size represents the dimensionality of each input in the
sequence, which in this case is set to 1. This corresponds to the encoded transaction
category for each transaction made by a customer. The hidden layer size controls the
model’s capacity to capture temporal dependencies. With 128 hidden units, the model can
balance between complexity and computational e&ciency, allowing it to model complex
relationships in sequential data.

For both the LSTM and CNN models, the batch size determines how many samples
are processed before updating the model’s weights. A batch size of 64 strikes a balance
between memory usage and training e&ciency. The optimizer, Adam, is a well-regarded
optimization algorithm that combines momentum with adaptive learning rates, making
it e"ective for training deep learning models. Adam’s learning rate is set to 0.001, a
typical value that allows the model to converge at a controlled pace without making
drastic updates to the weights during each iteration. The models are trained over 40
epochs, giving them enough time to learn meaningful patterns from the data without
risking overfitting.

In the CNN model, additional hyperparameters such as the number of convolutional layers
and channels define the model’s ability to learn local patterns from the input sequences.
The CNN architecture includes two convolutional layers. The first layer has 32 filters,
while the second has 64, allowing the model to progressively learn more complex and
abstract features from the data. The use of global pooling, specifically adaptive average
pooling, helps reduce the dimensionality of the learned feature maps by summarizing
the features into a compact form, which is useful for reducing computational cost and
preventing overfitting.

These hyperparameters together define the behavior of the models during training and
how well they can generalize to new data. The combination of parameters like the learning
rate, batch size, and optimizer ensures stable and e&cient training, while the architecture-
specific parameters like hidden layer size for LSTM and convolutional filters for CNN
define how well each model can capture and learn patterns in the sequential transaction
data.

Anohter baseline method was based on the logic of averaging. This simplest model used
for benchmarking is based on the historical average frequencies of transaction categories
for each client. The prediction of a purchase in a specific category by a client is calculated
using the formula:
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pij = 1
Ki

Ki∑

k=1
I(nijk > 0)(4.6)

Here, pij represents the probability of the i-th client making a purchase in the j-th
category, Ki denotes the total number of time periods considered, nijk is the number of
transactions for the i-th client in the j-th category at the k-th time period, and I is an
indicator function that evaluates to 1 if the client has made one or more transactions in
that category during the period.

The second model that has been trained for performance comparison was a simple LSTM
architecture, with vectors representing encoded transaction categories serving as input.
This LSTM is configured with a hidden state dimensionality of 128 and is trained to
capture temporal transaction patterns using Backpropagation Through Time (BPTT)
and a cross-entropy loss function suited for classification tasks.

Lastly, a Convolutional Neural Network (CNN) model was trained. The network’s in-
put layer accepts concatenated vectors of encoded transaction categories, feeding into
a straightforward CNN model with two 2D convolutional layers followed by a pooling
layer. The network’s architecture is completed with a final output layer that shares the
same loss function as the LSTM, enabling direct performance comparisons between the
recurrent and convolutional network strategies.

4.2.3 Varying Sequence Lenghts

An additional critical aspect of the evaluation process involved sourcing predictions from
the models using diverse input sequence lengths. To elaborate, the models were origi-
nally trained using the last nine transactions from a customer’s history, with the tenth
transaction serving as a target for prediction because this sequence length has proven
itself to be more successful in various experiments (the detailed experiment results table
available in the appendix Table 1). In the testing phase, however, input sequences were
altered to include only the four most recent transactions, the last seven, or an extended
set of fourteen transactions. For illustrative purposes, consider the process of inputting a
customer’s demographic information into the model, along with their transaction history.
Instead of the full sequence the model was trained on (last nine), it received a trun-
cated or extended series of transactions. This meant that the trained models underwent
evaluation with a varying quantity of transactional data.
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The very first reason for employing various sequence lengths in the testing phase, despite
all models being trained on a fixed sequence length, is to rigorously assess their generaliz-
ability. This step is critical because it allows researchers to understand how well a model
trained on a particular pattern of data, such as the last nine transactions from customers
of Bank A, can adapt to and accurately predict outcomes when presented with di"erent
patterns. Generalizability is a cornerstone of model e&cacy in real-world applications
where data patterns are unlikely to remain consistent. For instance, in practical scenar-
ios, models may encounter customers with fewer than nine transactions. If the models
were only trained and tested on the last nine transactions, their performance might over-
estimate their real-world e"ectiveness. By introducing variability in the input sequence
lengths, one can simulate a more realistic environment where data availability fluctuates.

Furthermore, the investigation into robustness against sequence length variability goes
hand in hand with the need for generalizability. The premise here is to explore the stabil-
ity of the models’ performance when the volume of input data deviates from the training
conditions. Should a model exhibit comparable accuracy across various input lengths, it
would be deemed robust, indicating reliability and utility in real-world scenarios where
data sparsity or abundance can occur.

Lastly, the purpose of deriving multiple scores from tests using di"erent sequence lengths
is to delineate the performance boundaries of the models. Instead of a singular score
that provides a limited view, several scores sketch a fuller picture of each model’s perfor-
mance landscape. This comprehensive assessment is akin to a multi-faceted examination
of the models. It allows for a more nuanced understanding of where a model’s predic-
tions can be trusted and where caution should be exercised. This holistic evaluation
is particularly relevant in machine learning applications in finance, where an incomplete
understanding of a model’s capabilities can lead to misguided trust and potentially costly
errors in transaction category predictions. By determining the success bounds through
varied sequence lengths, one ensures that the models are not just theoretically sound but
practically versatile and reliable.
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Model Dataset Sequence Length Accuracy Precision Recall F1 (weighted)

Randomized Prediction NA 0.24 0.47 0.24 0.29

Proportional/Weighted

Prediction

NA 0.39 0.49 0.39 0.43

Mistral Instruct 7b v.2

(Raw Model)

last-9 0.51 0.50 0.50 0.49

last-4 0.43 0.52 0.43 0.43

last-7 0.42 0.50 0.42 0.42

last-9 0.42 0.50 0.42 0.43

Baseline

(Averaging)

last-14 0.43 0.49 0.43 0.44

last-4 0.52 0.52 0.51 0.48

last-7 0.52 0.51 0.52 0.50

last-9 0.51 0.49 0.51 0.50

Hidden Markov Chain

Modeling

last-14 0.49 0.51 0.49 0.44

last-4 0.63 0.60 0.63 0.60

last-7 0.64 0.61 0.64 0.61

last-9 0.65 0.61 0.65 0.62

CNN

(trained on Bank A)

last-14 0.66 0.62 0.66 0.62

last-4 0.63 0.59 0.62 0.58

last-7 0.64 0.61 0.64 0.60

last-9 0.62 0.60 0.62 0.60

LSTM

(trained on Bank A)

last-14 0.63 0.62 0.63 0.61

last-4 0.53 0.61 0.52 0.54

last-7 0.52 0.56 0.54 0.55

last-9 0.58 0.59 0.58 0.58

LLaMA-2-Chat 7B

(trained on Bank A)

last-14 0.54 0.58 0.54 0.55

last-4 0.56 0.64 0.55 0.57

last-7 0.55 0.59 0.57 0.58

last-9 0.61 0.62 0.61 0.61

LLaMA-3-8B

(trained on Bank A)

last-14 0.57 0.61 0.57 0.58

last-4 0.61 0.69 0.60 0.62

last-7 0.60 0.64 0.62 0.63

last-9 0.66 0.67 0.66 0.66

Mistral Instruct 7b v.2

(trained on Bank A)

Bank B

last-14 0.62 0.66 0.62 0.63

Table 4.3 Overall Results for All the Experimented Models
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Model Dataset Sequence Length Clothing Gas Stations Grocery Other

Randomized

Prediction

Bank B

NA 0.04 0.13 0.25 0.34

Proportional/Weighted

Prediction

NA 0.09 0.14 0.29 0.54

Hidden Markov Chain

Modeling

last-4 0.01 0.30 0.51 0.60

last-7 0.07 0.34 0.47 0.61

last-9 0.01 0.32 0.46 0.58

last-14 0.02 0.19 0.32 0.55

CNN

last-4 0.11 0.19 0.42 0.75

last-7 0.02 0.21 0.42 0.76

last-9 0.00 0.22 0.42 0.76

last-14 0.00 0.22 0.41 0.75

LSTM

last-4 0.01 0.20 0.35 0.76

last-7 0.00 0.22 0.45 0.74

last-9 0.00 0.23 0.45 0.75

last-14 0.00 0.24 0.47 0.74

LLaMA-2-Chat 7B

last-4 0.40 0.39 0.48 0.60

last-7 0.04 0.42 0.44 0.62

last-9 0.54 0.32 0.51 0.67

last-14 0.14 0.40 0.47 0.63

LLaMA-3-8B

last-4 0.43 0.42 0.51 0.63

last-7 0.07 0.45 0.47 0.65

last-9 0.57 0.35 0.54 0.70

last-14 0.17 0.43 0.50 0.66

Mistral Instruct

7b v.2

last-4 0.48 0.47 0.56 0.68

last-7 0.12 0.50 0.52 0.70

last-9 0.62 0.40 0.59 0.75

last-14 0.22 0.48 0.55 0.71

Table 4.4 Class-wise F1 scores for all experimented models
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4.3 Results

The results of the experimental evaluation are organized to illustrate the performance of
various models across a series of sequence lengths and to show the ability of each model to
predict user preferences for merchant categories in a multiclass classification framework.
The dataset utilized for training and validation purposes, Bank A, served as the basis
for training several models. Bank B, an entirely separate dataset not used for training,
provided an additional layer of testing to assess the models’ generalization capabilities.

Table 1 shows the results of baseline, neural networks (CNN and LSTM), and the fine-
tuned LLM model. The bold scores were depicted by comparing LSTM and CNN with
Mistral model. The “Dataset” column indicates the specific dataset used for making
predictions or inferences with each model. Sequence length values demonstrate how many
transactions of customers were used as input for the models to get a transaction category
prediction. For instance, “last-7” means that the last seven transactions of customers were
given as input for a model to get an inference regarding their 8th transaction category.
It’s important to note that all models, with the exception of the baseline averaging model
which does not require any training, were trained using the last nine transactions (“last-
9”) from customers in Bank A dataset and the 10th transaction category used as a ground
truth or label.

4.3.1 Overall Results in Generalization to Bank B Data

Non-trained baseline models (like Randomized Prediction or Proportional/Weighted
Prediction which has a simplistic strategy by aligning predictions for Bank B with the
class distribution observed in Bank A given not applicable sequence length because they
are about distributions and not purchases sequences) shows consistently lower perfor-
mance metrics across accuracy, precision, recall, and F1 scores when compared to neural
network approaches and the fine-tuned LLM. Specifically, the model’s accuracy hovers
around 0.42 to 0.43 across di"erent sequence lengths, with precision and recall metrics
similarly ranging between 0.49 to 0.52 and 0.42 to 0.43, respectively. The F1 score, which
considers both precision and recall, remains relatively low, ranging from 0.42 to 0.44. The
Baseline model’s performance, while providing a necessary benchmark for comparison,
highlights its inadequacy for complex predictive tasks such as merchant category fore-
casting. Its lower performance metrics relative to other evaluated models reinforce the
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importance of adopting more sophisticated models that can better capture and analyze
the intricacies of financial transaction data.

The Hidden Markov Model (HMM) demonstrates a modest improvement over baseline
models in overall and class-specific performance. As shown in Table 1, the HMM achieves
an accuracy ranging from 0.49 to 0.52, with an F1 score peaking at 0.50 for the last-7
sequence length. This performance is moderately better than randomized or proportional
prediction. In Table 4.4, the class-specific F1 scores reveal that HMM handles the ’Gro-
cery’ and ’Other’ categories better than ’Clothing’ and ’Gas Stations,’ with the ’Other’
category achieving an F1 score of 0.60 at the last-4 sequence length. However, its limited
ability to handle minority classes like ’Clothing,’ where scores are as low as 0.01, under-
scores its inadequacy for imbalanced datasets compared to neural networks or fine-tuned
models.

The analysis of the Convolutional Neural Network (CNN) and Long Short-Term Memory
(LSTM) models, both trained on Bank A’s data and tested on Bank B, demonstrates their
relative performance metrics in predicting the next merchant categories. The CNN model
exhibits moderate e"ectiveness across various sequence lengths, with the best performance
observed at the last-14 transactions, achieving an accuracy of 0.66, a precision of 0.62,
and a recall of 0.66, resulting in an F1 score of 0.62. When considering shorter sequence
lengths, the performance slightly decreases, with the model demonstrating accuracy and
F1 score around 0.63-0.65 and 0.60-0.62 respectively. These metrics suggest that while the
CNN can handle di"erent contexts, its predictive capabilities are not strongly enhanced
by extending the sequence length.

The LSTM model, known for its ability to capture temporal dependencies, shows a consis-
tent pattern across di"erent transaction sequence lengths. The performance peaks with
a sequence length of the last-14 transactions, where it achieves an accuracy of 0.63, a
precision of 0.62, and a recall of 0.63, yielding an F1 score of 0.61. Similar to the CNN,
the LSTM model does not demonstrate substantial improvement as the sequence length
increases, with metrics revolving around 0.62 for accuracy and 0.60 for the F1 score across
di"erent contexts.

The fine-tuned Mistral Instruct model achieves a weighted F1 score of 0.66 when evalu-
ating the last-9 transactions, which is notably higher than the scores obtained by both
the CNN and LSTM models under the same conditions (0.62 and 0.60 respectively).
These superior F1 scores across all sequence lengths indicate that the fine-tuned Mistral
Instruct model not only predicts more accurately but also maintains a balanced sensi-
tivity and precision, which is crucial in handling class-imbalanced datasets e"ectively.
When compared to the other baseline models, the fine-tuned Mistral Instruct stands out,
particularly in terms of the F1 score, which is crucial for evaluating performance in an
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imbalanced dataset context. The model not only outperforms the CNN and LSTM in
this metric but also exhibits a higher consistency across di"erent sequence lengths. This
highlights its adaptability and overall superior predictive power in this specific task.

4.3.2 Class-Specific Performance

In Table 4.4, a detailed analysis of the classification performance across individual mer-
chant categories for three models that are all trained on Bank A dataset is presented. The
distribution of classes in the training set from Bank A (also similar to Bank B data) was
notably skewed, with the grocery category at 31.3%, 11.9% to gas stations, and 11.2% to
clothing. The remaining 45.5% of transactions pertain to categories di"erent than gro-
cery, clothing, and gas stations. This class imbalance presents a challenge for predictive
models, particularly for minority classes that are underrepresented in the data.

The evaluation of class-specific F1 scores o"ers a comprehensive view of the performance
disparities between the fine-tuned Mistral Instruct 7b v.2 model and traditional sequential
models such as CNNs and LSTMs. This analysis is critical as it illustrates the refined
capability of the Mistral model to handle minority classes with a higher level of accuracy
and e&ciency, compared to the more generic treatment of classes by the other models.

In the ’Clothing’ category, the Mistral Instruct model demonstrates a pronounced supe-
riority with an F1 score of 0.620 when analyzing the last-9 transaction sequences. This
score is significantly higher than those achieved by the CNN and LSTM models, which
reach only 0.107 and 0.006, respectively. Such a stark di"erence underscores the fine-
tuned model’s approach to semantic learning and prediction in categories that represent
a smaller portion of the dataset, specifically the 11.2% comprising clothing transactions
in Bank A’s data.

Similarly, for the “Gas Stations” category, the Mistral model achieves its peak perfor-
mance with an F1 score of 0.500 using the last-7 transactions. This outstrips the CNN
and LSTM models, which max out at F1 scores of 0.222 and 0.244. The improved per-
formance in this category, which constitutes 11.9% of the transactions in the training
dataset, highlights the model’s e"ective adaptation to categories characterized by lower
frequency yet distinct spending patterns.

The “Grocery” category reveals the model’s exceptional ability to manage relatively more
frequent transaction classes but still not the majority, with an impressive F1 score of 0.59
from the last-9 transaction sequences. This compares favorably with the best scores
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from CNN and LSTM, which are 0.422 and 0.474, respectively. Given that grocery
transactions make up 31.3% of Bank A’s data, this result emphasizes the Mistral model’s
robust predictive capabilities to handle dominant classes e"ectively as well.

These findings not only reinforce the e"ectiveness of the Mistral model in dealing with
class imbalances but also highlight its suitability for complex predictive tasks in real-
world financial environments. The model’s ability to excel in predicting minority class
categories, where traditional models struggle, sets a new standard for the usage of LLMs
in the domain of financial transactions. The detailed class-specific performance thus
underlines the transformative impact of fine-tuning large language models on domain-
specific tasks.

The fine-tuned Mistral Instruct 7b v.2 model exhibits remarkable consistency across all
categories. This demonstrates its stability and reliability in performance when compared
to traditional sequential models like CNNs and LSTMs. This consistency is not only
evident in the superior scores it achieves in the minority categories but also in its robust
performance across varying transaction sequences and class distributions. Unlike the
CNN and LSTM models, which show considerable fluctuations in their class-specific F1
scores, the Mistral model maintains a more uniform performance spectrum. For instance,
while the F1 scores for CNN and LSTM vary widely from nearly zero in some categories
to higher values in others, the Mistral model’s scores remain notably higher and more
stable. This shows more stability in reducing the performance variance between the best
and worst-performing categories. This consistent performance is crucial for applications
that require dependable and predictable model behavior across diverse and potentially
imbalanced datasets.
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5. Conclusion

The primary motivation of this study was to explore the potential of LLMs in the do-
main of financial transaction prediction, particularly focusing on the challenging task
of predicting the next purchase merchant category based on historical transaction data.
Traditional deep learning models such as Convolutional Neural Networks (CNNs) and
Long Short-Term Memory (LSTM) networks have shown varying degrees of success in
this domain but often fall short in capturing the contexts inherent in transaction data.
This work aimed to bridge this gap by leveraging the advanced capabilities of fine-tuned
LLMs, demonstrating their superior performance and broader applicability.

The key contribution of this study lies in the innovative application of the Mistral 7B In-
struct model to predict the next purchase merchant categories. The model demonstrated
an enhanced ability to handle the complexities and imbalances of financial transaction
data more e"ectively than traditional models. By fine-tuning the LLM on transactional
tabular data reformatted into personalized instructions, model’s predictive accuracy has
been significantly enhanced. This approach not only highlights the versatility of LLMs
in understanding and modeling human behavior but also sets a new benchmark for pre-
dictive modeling in financial contexts.

Summary of Work

In this study, a novel methodology is proposed for predicting next merchant categories
from financial transaction data by fine-tuning an open-source Large Language Model
(LLM), specifically the Mistral 7B Instruct model. The fine-tuning process leverages the
Low-Rank Adaptation (LoRA) technique, which is shown to enable e&cient and domain-
specific adaptation of the pre-trained model without sacrificing its inherent knowledge.
The unique contribution of this work lies in the reformatting of transactional tabular data
into natural language instructions, allowing the LLM to process and learn from customer
demographic and transactional histories as narrative inputs. This approach provides
the model with a more contextual understanding of the data, as opposed to traditional
deep learning models like Convolutional Neural Networks (CNNs) and Long Short-Term
Memory (LSTM) networks, which often struggle with capturing the semantic nuances in
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financial data.

The fine-tuned LLM is shown to outperform the baseline and deep learning models across
a range of evaluation metrics, particularly in terms of accuracy, precision, recall, and
weighted F1 scores. The performance of the Mistral 7B model is demonstrated through
a rigorous experimental evaluation, utilizing datasets from two distinct banks—Bank A
for training and Bank B for testing. The cross-bank testing, which assesses the model’s
generalization capabilities, is shown to confirm that the fine-tuned LLM maintains robust
predictive power even on unseen data. Moreover, the model is tested across varying
input sequence lengths to simulate real-world variability in customer transaction histories.
This fine-tuned LLM consistently achieves superior results, particularly in key merchant
categories such as grocery, clothing, and gas stations, where traditional models often
underperform, especially when dealing with imbalanced data.

A key advantage of the fine-tuned Mistral model is its ability to e"ectively manage class
imbalances, a frequent issue in real-world financial transaction data where certain cate-
gories are underrepresented. The fine-tuned LLM is shown to handle minority categories,
such as clothing and gas stations, with far greater precision and recall than CNN and
LSTM models, making it particularly valuable for applications that require balanced
performance across a wide range of transaction categories. In contrast to conventional
models, which often overfit to majority classes, the LLM demonstrates a more nuanced
understanding of both majority and minority classes, significantly improving its perfor-
mance in predicting the next merchant category in a sequence.

The findings from this study highlight the transformative potential of LLMs in modeling
complex human behaviors in financial contexts, particularly in tasks that involve sequen-
tial prediction. By fine-tuning the Mistral model on domain-specific data, the study is
shown to o"er a powerful and flexible alternative to traditional deep learning models,
requiring less manual feature engineering while achieving higher accuracy. This research
not only advances the state-of-the-art in predictive modeling within the financial sector
but also illustrates how LLMs can be applied to human behavior modeling tasks more
broadly.

Future Work

Building upon the promising results demonstrated in this study, several avenues for future
research can be explored to further enhance the use of fine-tuned Large Language Models
(LLMs) in financial transaction prediction and human behavior modeling. The current
landscape of LLMs for recommendation systems and behavior modeling is still evolving,
and there are substantial opportunities to extend this work by addressing limitations,
exploring new techniques, and applying these models to broader contexts.
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One potential area of improvement is the incorporation of multi-modal data into LLMs
for transaction prediction tasks. As outlined in the literature, various studies have suc-
cessfully integrated visual, textual, and tabular data to enhance the performance of rec-
ommendation systems. For example, multi-view recurrent neural networks (MV-RNN)
combine visual and textual data for more comprehensive user modeling, and models like
GPTRec have explored sequential recommendations through sophisticated embedding
techniques. Extending the current approach by incorporating multi-modal data, such as
customer interaction logs, geographic information, or even social media activity, could
further enrich the model’s understanding of user preferences. This integration could be
particularly useful in financial contexts because customer behavior is often influenced by
external factors beyond transactional history alone.

Additionally, further exploration into the use of LLMs in cross-domain or zero-shot learn-
ing scenarios would be a valuable extension of this work. The literature on zero-shot
recommendation tasks highlights the potential of LLMs to operate e"ectively without
extensive retraining on specific datasets. This capability could be particularly advanta-
geous in financial sectors, where data privacy concerns often limit access to large datasets
for training. Investigating the e"ectiveness of the fine-tuned Mistral model in zero-shot
settings or adapting it to cross-domain recommendations could enhance its applicabil-
ity across di"erent banks or even entirely di"erent industries. Furthermore, frameworks
such as Prompt4NR and ZESRec have illustrated the potential of prompt learning and
zero-shot strategies in mitigating cold-start problems.

Finally, another promising area for future work involves enhancing the model’s inter-
pretability and explainability. As discussed in several studies, the ability to provide
transparent and understandable predictions is crucial in sensitive domains like finance,
where decision-makers need clear justifications for model outputs. Incorporating explain-
ability techniques, such as personalized prompt learning , into LLM-based systems could
allow users to better understand why certain predictions are made, thus improving trust
and adoption of these models in real-world financial applications. This could also help
address biases that have been observed in LLMs, as noted in various studies where pre-
trained language models exhibited linguistic biases. By focusing on explainability, future
research could contribute to the development of more equitable and accountable predic-
tive models, further enhancing their utility in financial decision-making.

In summary, future research should aim to broaden the scope of LLMs in behavior predic-
tion by incorporating multi-modal data, exploring cross-domain and zero-shot learning,
and improving model transparency. These directions will help refine the models and make
them more versatile, ultimately enabling their application to more complex, real-world
financial and recommendation scenarios.

64



BIBLIOGRAPHY

[1] Likang Wu, Zhi Zheng, Zhaopeng Qiu, Hao Wang, Hongchao Gu, Tingjia Shen, et al.
A survey on large language models for recommendation, 2023.

[2] Yuhui Zhang, Hao Ding, Zeren Shui, Yifei Ma, James Zou, Anoop Deoras, and Hao
Wang. Language models as recommender systems: Evaluations and limitations. In
NeurIPS 2021 Workshop on I (Still) Can’t Believe It’s Not Better, 2021.

[3] Yunfan Gao, Tao Sheng, Youlin Xiang, Yun Xiong, Haofen Wang, and Jiawei Zhang.
Chat-rec: Towards interactive and explainable llms-augmented recommender system,
2023.

[4] Shijie Geng, Shuchang Liu, Zuohui Fu, Yingqiang Ge, and Yongfeng Zhang. Rec-
ommendation as language processing (rlp): A unified pretrain, personalized prompt
and predict paradigm (p5), 2023.

[5] Keqin Bao, Jizhi Zhang, Yang Zhang, Wenjie Wang, Fuli Feng, and Xiangnan He.
Tallrec: An e"ective and e&cient tuning framework to align large language models
with recommendation. In Proceedings of the 17th ACM Conference on Recommender
Systems. ACM, Sep 2023.

[6] Yupeng Hou, Zhankui He, Julian McAuley, and Wayne Xin Zhao. Learning vector-
quantized item representation for transferable sequential recommenders, 2023.

[7] Wang-Cheng Kang and Julian McAuley. Self-attentive sequential recommendation,
2018.

[8] Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou,
Yingqian Min, Beichen Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen Yang,
Yushuo Chen, Zhipeng Chen, Jinhao Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang,
Zikang Liu, Peiyu Liu, Jian-Yun Nie, and Ji-Rong Wen. A survey of large language
models, 2023.

[9] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav
Mishra, Adam Roberts, Paul Barham, et al. Palm: Scaling language modeling
with pathways, 2022.

[10] Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michihiro
Yasunaga, et al. Holistic evaluation of language models, 2023.

[11] Jason Wei, Yi Tay, Rishi Bommasani, Colin Ra"el, Barret Zoph, Sebastian
Borgeaud, et al. Emergent abilities of large language models, 2022.

[12] Christopher A. Bail. Can generative ai improve social science? Proceedings of the
National Academy of Sciences, 121(21), May 2024.

[13] Shengyu Zhang, Linfeng Dong, Xiaoya Li, Sen Zhang, Xiaofei Sun, et al. Instruction
tuning for large language models: A survey, 2024.

65



[14] Jiahao Wang, Bolin Zhang, Qianlong Du, Jiajun Zhang, and Dianhui Chu. A survey
on data selection for llm instruction tuning, 2024.

[15] Egor Shikov and Klavdiya Bochenina. Forecasting purchase categories by transac-
tional data: A comparative study of classification methods. In Lecture Notes in
Computer Science, Lecture Notes in Computer Science, pages 249–262. Springer In-
ternational Publishing, Cham, 2019.

[16] Aleksandr V. Petrov and Craig Macdonald. Generative sequential recommendation
with gptrec, 2023.

[17] Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang.
Bert4rec: Sequential recommendation with bidirectional encoder representations
from transformer, 2019.

[18] Junjie Zhang, Ruobing Xie, Yupeng Hou, Wayne Xin Zhao, Leyu Lin, and Ji-Rong
Wen. Recommendation as instruction following: A large language model empowered
recommendation approach, 2023.

[19] Zeyu Cui, Jianxin Ma, Chang Zhou, Jingren Zhou, and Hongxia Yang. M6-rec:
Generative pretrained language models are open-ended recommender systems, 2022.

[20] Lei Wang and Ee-Peng Lim. Zero-shot next-item recommendation using large pre-
trained language models, 2023.

[21] Zizhuo Zhang and Bang Wang. Prompt learning for news recommendation. In
Proceedings of the 46th International ACM SIGIR Conference on Research and De-
velopment in Information Retrieval, SIGIR ’23. ACM, July 2023.

[22] Lei Li, Yongfeng Zhang, and Li Chen. Personalized prompt learning for explainable
recommendation, 2023.

[23] Yupeng Hou, Shanlei Mu, Wayne Xin Zhao, Yaliang Li, Bolin Ding, and Ji-Rong
Wen. Towards universal sequence representation learning for recommender systems,
2022.

[24] Fan Yang, Zheng Chen, Ziyan Jiang, Eunah Cho, Xiaojiang Huang, and Yanbin Lu.
Palr: Personalization aware llms for recommendation, 2023.

[25] Damien Sileo, Wout Vossen, and Robbe Raymaekers. Zero-shot recommendation as
language modeling, 2021.

[26] Yupeng Hou, Junjie Zhang, Zihan Lin, Hongyu Lu, Ruobing Xie, Julian McAuley,
and Wayne Xin Zhao. Large language models are zero-shot rankers for recommender
systems, 2024.

[27] Hao Ding, Yifei Ma, Anoop Deoras, Yuyang Wang, and Hao Wang. Zero-shot rec-
ommender systems, 2021.

[28] Ruining He and Julian McAuley. Fusing similarity models with markov chains for
sparse sequential recommendation, 2016.

66



[29] Tariq Mahmood and Francesco Ricci. Learning and adaptivity in interactive recom-
mender systems. In Proceedings of the Ninth International Conference on Electronic
Commerce, pages 75–84, New York, NY, USA, 2007. Association for Computing
Machinery.

[30] Ste"en Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. Factorizing
personalized markov chains for next-basket recommendation. In Proceedings of the
19th International Conference on World Wide Web, pages 811–820. Association for
Computing Machinery, 2010.

[31] Hui Fang, Danning Zhang, Yiheng Shu, and Guibing Guo. Deep learning for sequen-
tial recommendation: Algorithms, influential factors, and evaluations, 2020.

[32] Shoujin Wang, Liang Hu, Yan Wang, Longbing Cao, Quan Z. Sheng, and Mehmet
Orgun. Sequential recommender systems: Challenges, progress and prospects. In
Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intel-
ligence. International Joint Conferences on Artificial Intelligence Organization, Aug
2019.

[33] Qiang Cui, Shu Wu, Qiang Liu, Wen Zhong, and Liang Wang. Mv-rnn: A multi-view
recurrent neural network for sequential recommendation, 2018.

[34] Tim Donkers, Benedikt Loepp, and Jürgen Ziegler. Sequential user-based recurrent
neural network recommendations. In Proceedings of the Eleventh ACM Conference
on Recommender Systems, pages 152–160. Association for Computing Machinery,
2017.

[35] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk.
Session-based recommendations with recurrent neural networks, 2016.

[36] Jiaxi Tang and Ke Wang. Personalized top-n sequential recommendation via convo-
lutional sequence embedding, 2018.

[37] Fajie Yuan, Alexandros Karatzoglou, Ioannis Arapakis, Joemon M Jose, and Xiang-
nan He. A simple convolutional generative network for next item recommendation,
2018.

[38] Ruining He and Julian McAuley. Fusing similarity models with markov chains for
sparse sequential recommendation, 2016.

[39] Long Ouyang, Je" Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela
Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schul-
man, Jacob Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell,
Peter Welinder, Paul Christiano, Jan Leike, and Ryan Lowe. Training language
models to follow instructions with human feedback, 2022.

[40] Shoujin Wang, Quan Z Sheng, Tao Liu, Jinpeng Yu, Abbas Sadeghi-Niaraki, and
Wei Emma Zhang. Sequential recommender systems: challenges, progress and
prospects. In Proceedings of the 28th International Joint Conference on Artificial
Intelligence (IJCAI), pages 6332–6338, 2019.

[41] Liyilei Su, Xumin Zuo, Rui Li, Xin Wang, Heng Zhao, and Bingding Huang. A
systematic review for transformer-based long-term series forecasting, 2023.

67



[42] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, and Guillaume Lample.
Llama: Open and e&cient foundation language models, 2023.

[43] Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos
Guestrin, et al. Stanford alpaca: An instruction-following llama model. GitHub
repository, 2023.

[44] Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Deven-
dra Singh Chaplot, et al. Mistral 7b, 2023.

[45] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2023.

[46] Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long se-
quences with sparse transformers, 2019.

[47] Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico
Lebr’on, and Sumit K. Sanghai. Gqa: Training generalized multi-query transformer
models from multi-head checkpoints. ArXiv, abs/2305.13245, 2023.

[48] Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of
rare words with subword units, 2016.

[49] Sourab Mangrulkar, Sylvain Gugger, Lysandre Debut, Younes Belkada, Sayak Paul,
and Benjamin Bossan. Peft: State-of-the-art parameter-e&cient fine-tuning meth-
ods. https://github.com/huggingface/peft, 2022.

[50] Leandro von Werra, Younes Belkada, Lewis Tunstall, Edward Beeching, Tristan
Thrush, and Nathan Lambert. Trl: Transformer reinforcement learning.

[51] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean
Wang, Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language
models, 2021.

[52] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin
de Laroussilhe, Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-
e&cient transfer learning for nlp, 2019.

[53] Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for
generation. In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli, editors,
Proceedings of the 59th Annual Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 4582–4597, Online, August 2021. Association for
Computational Linguistics.

[54] Erdem Kaya, Xiaowen Dong, Yoshihiko Suhara, Selim Balcisoy, Burcin Bozkaya,
and Alex Pentland. Behavioral attributes and financial churn prediction. EPJ Data
Science, 7, October 2018.

[55] Vivek Kumar Singh, Burcin Bozkaya, and Alex Pentland. Money walks: Implicit
mobility behavior and financial well-being. PLOS ONE, 10(8), August 2015.

68

https://github.com/huggingface/peft


[56] Mistral AI Team. Announcing mistral 7b, September 27 2023. Accessed: 2024-10-20.

[57] HuggingFace. Peft, September 27 2023. Accessed: 2024-10-20.

[58] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.
Automatic di"erentiation in pytorch. 2017.

[59] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, et al. Llama: Open and e&cient foundation language
models, 2023.

[60] Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, et al.
Self-instruct: Aligning language models with self-generated instructions, 2023.

[61] Nitish Srivastava, Geo"rey Hinton, et al. Dropout: A simple way to prevent neural
networks from overfitting. Journal of machine learning research, 15(1):1929–1958,
2014.

[62] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy,
and Ping Tak Peter Tang. On large-batch training for deep learning: Generalization
gap and sharp minima, 2017.

[63] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization,
2017.

[64] Daya Kalamkar et al. A study of bfloat16 for deep learning training. In Proceedings of
the International Conference for High Performance Computing, Networking, Storage
and Analysis, pages 1–9, 2019.

[65] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Pra-
fulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell,
Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon
Child, Aditya Ramesh, Daniel M. Ziegler, Je"rey Wu, Clemens Winter, Christo-
pher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and
Dario Amodei. Language models are few-shot learners, 2020.

[66] Martin Popel and Ond(ej Bojar. Training tips for the transformer model. In Proceed-
ings of the third conference on machine translation: Research papers, pages 43–52,
2018.

[67] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm
restarts, 2017.

[68] Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case
of neural text degeneration, 2020.

[69] Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W. Mahoney, and
Kurt Keutzer. A survey of quantization methods for e&cient neural network infer-
ence, 2021.

69



[70] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,
Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Trans-
formers: State-of-the-art natural language processing. In Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing: System Demon-
strations, pages 38–45, 2020.

[71] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. In arXiv
preprint arXiv:1810.04805, 2018.

70



Model Train
Dataset

Test
Dataset Train Sequence Length Test Sequence Length Clothing Gas Stations Grocery Other

LSTM Bank A Bank B

last-4

last-4 0.12 0.39 0.300 0.75
last-7 0.09 0.38 0.410 0.75
last-9 0.08 0.38 0.420 0.77
last-14 0.06 0.36 0.390 0.75

last-7

last-4 0.06 0.36 0.360 0.72
last-7 0.05 0.35 0.400 0.74
last-9 0.04 0.35 0.430 0.75
last-14 0.03 0.35 0.460 0.77

last-9

last-4 0.006 0.200 0.346 0.763
last-7 0.003 0.223 0.448 0.744
last-9 0.001 0.230 0.450 0.750
last-14 0.000 0.244 0.474 0.740

last-14

last-4 0.11 0.38 0.346 0.72
last-7 0.06 0.37 0.420 0.76
last-9 0.06 0.38 0.410 0.76
last-14 0.11 0.57 0.430 0.73

Mistral Bank A Bank B

last-4

last-4 0.330 0.400 0.520 0.630
last-7 0.100 0.450 0.480 0.610
last-9 0.350 0.340 0.550 0.630
last-14 0.220 0.420 0.500 0.650

last-7

last-4 0.450 0.400 0.510 0.680
last-7 0.090 0.550 0.460 0.640
last-9 0.310 0.430 0.530 0.610
last-14 0.190 0.480 0.480 0.630

last-9

last-4 0.480 0.470 0.560 0.680
last-7 0.120 0.500 0.520 0.700
last-9 0.620 0.400 0.590 0.750
last-14 0.220 0.480 0.550 0.710

last-14

last-4 0.380 0.450 0.550 0.640
last-7 0.010 0.440 0.510 0.710
last-9 0.150 0.350 0.550 0.700
last-14 0.230 0.450 0.490 0.680

Table 1 LSTM and Mistral Model Class-wise F1 Scores In Varying Sequence Length
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