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ABSTRACT

BUSINESS POINT OF INTEREST RECOMMENDATION WITH
REINFORCEMENT LEARNING

ATRA ZEYNEP BAHÇECI

DATA SCIENCE M.S. THESIS, DECEMBER 2025

Thesis Supervisor: Prof. Dr. Selim Saffet Balcısoy

Keywords: business location selection, reinforcement learning, deep q-learning,
location intelligence

The importance of location for business success cannot be overstated. Existing ap-
proaches to the business location selection problem often involve creating extensively
tuned models specific to the geographical and economic climate being analyzed, and
thus suffer from limited generalization across diverse scenarios. This thesis proposes
a novel Deep Q-Learning framework for business location recommendation that can
be trained in one geographic area and applied to another without requiring further
training or tuning. Comprehensive experiments on real-world data demonstrate the
superior generalizability of the proposed recommendation framework, outperforming
the well-established Huff gravity model by 15.33% in profits, with an average profit
realization of 78.02% compared to the best-case scenario. Empirical results indicate
that variation in training data must be as high as the variation in the test data
for the framework to be successfully applied to other locations despite discrepancies
between the characteristics of the cities. The proposed approach offers a highly gen-
eralizable and easily applicable solution to the business location selection problem,
providing a strong alternative to gravity-based models.

iv



ÖZET

PEKIŞTIRMELI ÖĞRENME ILE İŞ YERI KONUM ÖNERILERI

ATRA ZEYNEP BAHÇECI

VERİ BİLİMİ YÜKSEK LİSANS TEZİ, ARALIK 2025

Tez Danışmanı: Prof. Dr. Selim Saffet Balcısoy

Anahtar Kelimeler: iş yeri konum problemi, pekiştirmeli öğrenme, derin
q-öğrenme, lokasyon zekası

Bir iş yerinin başarısında konumun önemi yadsınamaz. Mevcut iş yeri konum seçimi
yaklaşımları genellikle analiz edilen coğrafi ve ekonomik iklime özel oluşturulmuş ve
ince ayarlanmış modellere dayanmaktadır, ve bu sebepten çeşitli senaryolar arasında
sınırlı genellemeye sahiptir. Bu tez, bir coğrafi alanda eğitilebilen ve başka bir
alana ek eğitim veya ince ayar gerektirmeden uygulanabilen yenilikçi bir Derin Q-
Öğrenme modeli önermektedir. Gerçek dünya verileri üzerinde yapılan kapsamlı
deneyler, önerilen modelin üstün genellenebilirliğini ortaya koymaktadır. Önerilen
Derin Q-Öğrenme modeli seçtiği iş yeri konumları ile Huff yerçekimi modelinden
%15,33 daha fazla kar elde etmekte; en iyi durum senaryosuna kıyasla ise ortalama
%78,02 kar elde etmektedir. Ampirik sonuçlar, bir coğrafi alanda eğitilen modelin
başka bir coğrafi alanda başarılı bir şekilde uygulanabilmesi için eğitim verilerindeki
değişintinin test verilerindeki değişinti kadar yüksek olması gerektiğini göstermek-
tedir. Modelin eğitildiği ve uygulandığı şehirlerin çeşitli özellikleri arasındaki fark-
lılıklara rağmen, eğitildiği şehir verisindeki değişinti uygulandığı şehir verisindeki
değişintiden yüksek olduğu sürece Derin Q-Öğrenme modeli uygun iş yeri konum
önerileri çıkarabilmektedir. Önerilen yaklaşım, iş yeri konum seçimi sorununa son
derece genellenebilir ve kolayca uygulanabilir bir çözüm sunmakta, yerçekimi tabanlı
modellere güçlü bir alternatif sağlamaktadır.
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1. INTRODUCTION

Retail trade plays a significant role in national economies. In the United States, it
accounts for over 20% of the Gross Domestic Product (GDP) and creates 15% of
jobs [49]. In India, it contributes 8% to employment and 10% to GDP [20], while in
the United Kingdom, it generates 9% of jobs and accounts for 5% of GDP [19, 45].
Surely, the success of retail businesses depends on a multitude of factors that are to
be carefully considered by the business owner. These factors include proximity to
the target customer demographics, competition, labor availability, operational costs,
brand awareness and image, and regional regulations. One crucial decision that
encompasses all these factors is the selection of the business location. The selection
of a business location is inevitably a critical determinant of its success [31,37]. This
importance has given rise to a problem studied by economists, mathematicians, and
engineers: the business site selection problem.

The business site selection problem is an algorithmic approach to selecting a location
among alternatives that will maximize the success of the business. This problem is
inherently complex due to two main reasons. First, the interplay between elements
of a business is ever-changing and at times ambiguous. These elements, such as
socioeconomic demographics, customer mobility patterns, spending habits, and ge-
ographical constraints, all interact with and affect one another. More importantly,
the pattern of this interaction is neither static nor deterministic, making it difficult
to analyze or foresee. Secondly, the location selection is a long-term decision [18].
This not only makes it difficult to study the outcome of the decision but also adds
to the complexity of the problem by increasing the possibility of shifts in interaction
patterns over time.

In this thesis, a two-step deep Q-learning (DQL) framework for the business site
selection problem is proposed. In the first step, a deep-Q network (DQN) that
generates a Q-value for each candidate location is trained. Daily mobility, spending,
and annual census data of various locations within a city are fed into the network,
which in turn returns the location with the highest Q-value as the recommended site,
rewarding the agent with the consequential profits. In the second step, the trained
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DQN produces Q-values for each candidate location through a forward pass of the
data. After processing all the data, the Q-values for each location are accumulated
and a final list of ranked recommendations based on these Q-values is generated.

Existing approaches to the business site selection problem, ranging from gravity-
based models to metaheuristics, focus on understanding the relationship between
the elements of a business and its success. However, since these factors exert varying
degrees of influence on business success depending on the specific location, business
type, and economic climate [38], it remains challenging to develop an approach that
can effectively address the shifting dynamics over time, across cities, and sectors.
Moreover, this ever-changing nature requires the site selection problem to be studied
separately for each geographical location [38, 55], making it difficult to create an
approach that can be universally applied across different geographical regions. In
this thesis, it is argued that a Reinforcement Learning (RL) based approach can
overcome the complexity of the problem and provide a generalizable approach for
several reasons.

First, the most important distinction of RL in this context is that its direct aim is
not to model the relationship between the input and output with maximum accu-
racy, but that it aims to maximize a pre-defined goal via its actions over the inputs.
Unlike well-established models, such as the Huff gravity model, RL is tailored to ful-
fill the objective of business success with a focus on the respective decision-making
process, not primarily on prediction. In this regard, it does not tackle modeling the
relationship between the input and output, the relationship between information
on candidate locations and business success. As it does not tackle modeling this
relationship, which is dependent on a plethora of quantifiable and unquantifiable
parameters, it is hypothesized that the proposed RL-based approach will have su-
perior performance. Moreover, by eliminating the modeling of said relationships the
proposed model will be more generalizable compared to existing methods. The rela-
tionships among the elements that affect the success of a business vary in temporal
dimensions, geographical levels, locations, business sectors, etc., making a univer-
sally applicable method based on prediction elusive. The DQL model learns the
actions and their consequences, which seem to not differ as much as the relationship
between fore mentioned complex parameters, allowing a singular RL framework to
navigate these complicated settings efficiently. Secondly, the DQL does not require
any predetermined notion or guide, such as the notion that certain parameters are
relevant or not (like feature subset selection), or that certain parameters follow a
specific function (like the store visits in the Huff gravity model). This eliminates the
need for expert opinions, a detailed preliminary analysis, or assumptions. Again,
the omission of such assumptions or set structures that vary from one setting to

2



another contributes to the generalizability of the proposed approach.

The contributions of this thesis are the following:

1.1 At the time of this study, this thesis is the first to utilize an RL based approach
for the business site selection problem.

1.2 At the time of this study, this thesis is the first to perform training and testing
in cities from different states for the business site selection problem.

1.3 A DQL framework for business location recommendation that can be trained
with data from one city and can be used for recommendation generation in
another is proposed.

1.4 Experiments demonstrate that (a) the proposed framework outperforms the
Huff gravity model benchmark, (b) the framework requires the variance of
the training dataset to be at least as high as the test dataset for profitable
recommendations, and (c) the framework requires no hyper-parameter tuning
or feature subset selection.

In Chapter 2, a literature review is conducted on approaches to the business site
selection problem with a focus on the limitations of existing research. In Chapter
3, the fundamentals of RL and Q-learning are introduced. In Chapter 4, the data
and the proposed recommendation framework are explained in detail. Chapter 5
introduces the experimental setup and benchmark model, presents experimental
results, and discusses the findings. Lastly, in Chapter 6, the thesis is summarized,
the concluding remarks are presented, and the potential directions for future research
are explored.
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2. RELATED WORKS

The business site selection problem has been extensively studied since the early
1900s [26]. Over the years, the problem has been studied through various research
domains and formulations (besides business site selection), including market share
prediction [16,38,55], business performance prediction [64,66], and footfall prediction
[17,40]. This section will discuss the research on the business site selection problem,
aiming to identify the scientific progress, the current state of research, and explore
its limitations.

2.1 Huff Gravity Model

In 1963, David L. Huff created the Huff gravity model to determine the "retail trade
area", the geographical area that contains the prospective consumers for a shopping
center [29]. He argued that the probability of a consumer visiting a shopping center
is related to the "utility" of the center, which is made up of the square footage of
the store and the travel times of customers to get to the store; and quantified the
probability of a customer from region i visiting shopping center j as the following:

P (Cij) = Sj

T λ
ij

/
J∑

j=1

Sj

T λ
ij

(2.1)

where S denotes the store sizes, T denotes the travel times, and λ denotes the
empirical parameter that estimates the weight of the travel times. Over time, the
Huff gravity model slightly evolved with the square footage replaced by a more
general term store attractiveness (A) with an added parameter to reflect its weight.
With the up-to-date notation, the Huff gravity model calculates the probability of
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consumer from area i visiting store j as follows:

Pij =
Aα

j

Dβ
ij

/
n∑

k=1

Aα
k

Dβ
ik

(2.2)

where D denotes the distance between the customers’ homes and the store, α denotes
the weight of the attractiveness, and β denotes the weight of the distances.

Through the decades, the Huff gravity model has remained one of the most well-
established and widely used models for business site selection [16, 34, 50, 55]. Its
simplicity, computational efficiency, and interpretability compared to other methods
have made it a popular choice [12]. Nevertheless, recent research suggests that
the interpretability and efficiency of the Huff gravity model may come at a cost
[15,38,40,54,55].

Dock et. al demonstrated the importance of variable selection and how the attrac-
tiveness (A) is constructed affects the performance of the Huff gravity model [15].
While they managed to improve predictive accuracy by creating a carefully con-
structed attractiveness measure, their approach relied heavily on domain-specific
knowledge and was validated for only a single county and a specific business cate-
gory.

Suarez et. al focused on the parameter calibration of the Huff gravity model [54].
They hypothesized that certain parameters exhibit spatial nonstationarity and
therefore require careful calibration using localized data. Their experiments val-
idated this hypothesis, demonstrating the need for location-specific adjustments;
while also suggesting that the Huff gravity model could not be effectively general-
ized across different geographical regions.

Researchers have analyzed the robustness of the Huff gravity model. Lu et. al
examined how the model’s performance varies with different sampling locations [40].
They discovered special locations within the large dataset that significantly enhance
predictive accuracy. However, they found no specific social characteristics that could
help identify these special locations across different applications or datasets; again
hinting that the Huff gravity model requires additional analysis or domain-specific
knowledge for the best results.

Another issue that researchers have focused on is the efficacy of the traditional Huff
gravity model in capturing critical temporal relationships in the business setting.
Liang et al. argued that the conventional Huff gravity Model is static and intro-
duced the Time Aware Dynamic Huff (T-Huff) model [38]. They claimed that the
original Huff gravity model treats mobility data as any time series where the pattern
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in the data is solely sequential (see Equation 2.2). In contrast, the T-Huff model was
developed to also account for daily patterns and re-formulated to predict visit prob-
abilities over a time window. Their experiments showed that the T-Huff significantly
improves the accuracy of market share predictions compared to the traditional Huff
gravity model, but was limited to only the top three chain-store brands.

In 2021, Suhara et al. were the first to validate the Huff gravity model for market
share prediction using real-world transactional data [55]. They divided one city
into 17 regions and developed a separate model for each region. Although they
demonstrated a significant predictive performance across all regions, they showed
that the model must be trained specifically for each region, even within the same
city, hinting that the model cannot transfer its learnings from one region to another
and is locally bound.

In summary, despite its performance and simplicity, the adaptability of the Huff
gravity model across different geographic regions, time frames, and contexts remains
limited [15,50,54,55]. Moreover, the Huff gravity model requires considerable domain
knowledge [15, 40] and extensive pre-processing [40, 54]. It can be concluded that
the Huff gravity model lacks generalizability for the business site selection problem.

2.2 Multiple Criteria Decision Making

Multiple criteria decision making is a methodology that facilitates the selection of
an optimal decision among various alternatives based on specific criteria [3]. In the
context of business site selection, researchers have applied methods such as Analytic
Hiearchy Process (AHP) [2, 41, 53, 63], the Technique for Order of Preference by
Similarity to Ideal Solution (TOPSIS) [2, 53], and the Delphi method [41] to select
business locations across various sectors.

AHP is a structured method that involves a hierarchy of a main objective, sub-
objectives, and alternatives. Through matrix-wise operations, AHP enables the
selection of the best alternative by evaluating each against the defined objectives [3].
Yap et al. employed AHP to determine the optimal location for utility payment
branches [63]. Their criteria, determined by experts and validated by sales data, were
based on the accessibility, distances, and convenciences of the alternative locations.
Despite the performance of their method, their study was limited to selecting among
only four sites.
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Several studies have integrated AHP with TOPSIS. Similar to AHP, TOPSIS uses a
matrix of criteria and alternatives, and uses matrix-wise opeartions to determine the
optimal decision [3]. Shaik et al. developed a hybrid AHP-TOPSIS model to select
a gas station location among 20 alternatives [53]. The criteria for their study; traffic
patterns, vehicle ownership, site popularity, and competition; were based on expert
judgments. Al et. al followed a similar methodology of a AHP-TOPSIS model to
determine the hospital location among four alternatives, with the decision criteria
defined by a committee of decision-makers [2].

There are also studies that utilize other multiple criteria decision making methods.
In a 2013 study, researches have utilized step-wise weight assessment ratio analy-
sis and weighted aggregated sum product assessment to determine the location of
a shopping mall among five alternatives [67]. They first determined the decision
criteria based on expert opinions, employed step-wise weight assessment ratio anal-
ysis to calculate the criteria weights, and applied weighted aggregated sum product
assessment for ranking the alternatives based on these weighted criteria.

Despite the experimental success of the aforementioned studies, multiple criteria
decision making for business site selection faces several limitations. Firstly, it often
restricts the number of candidate locations that can be analyzed [2,53,63,67]. Sec-
ondly, the candidate locations are forced to be close in proximity, as the decision
criteria vary across location alternatives in different regions [2, 53, 63, 67]. Thirdly,
multiple criteria decision making methodologies heavily rely on expert knowledge,
which can be both challenging and costly to acquire [2, 41, 53, 63, 67]. Lastly, these
methods lack generalizability across sectors and geographic regions. The expert-
defined criteria tailored to a specific sector and region change across different con-
texts [32], making it difficult to re-apply these methodologies in new settings.

2.3 Influence Maximization Methods

In the field of Influence Maximization (IM), real-world scenarios are modeled using
social networks represented as graphs. Each edge in the graph is associated with
a probability of activation during the propagation process. The goal of IM is to
identify a seed set of pre-defined size that maximizes the number of activated nodes,
thereby maximizing the overall influence spread. In the context of business site
selection, candidate locations and prospective customers are modeled in the graph.
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The influence of each candidate location is measured by the number of customers it
attracts, and the IM algorithm aims to identify a seed set from the social network
that maximizes this influence. In essence, IM focuses on identifying a smaller subset
of nodes that maximize the expected influence of customers [14].

Given that IM is a Nondeterministic Polynomial-time (NP) hard problem, it is
addressed using various metaheuristic methods. As social networks grow in size,
driven by the increasing availability of (mostly check-in) data, researchers focused
heavily on developing efficient algorithms. Prominent metaheuristic methods for
business site selection include pruning algorithms [28], which iteratively narrow down
the potential set of optimal seed sets. These algorithms work by eliminating solutions
in the search space that are branching out from non-optimal seed sets, reducing the
computational complexity. There are also various other metaheuristic approaches
such as the nearest location circle, and Voronoi diagrams [27].

While these methods are proven to be efficient, they often overlook the spatial
relationships within social networks. These spatial relationships can provide critical
insights into influence spread, and thus the success of a business. Ignoring such
factors may lead to suboptimal solutions in real-world applications, particularly in
the business setting where geographical proximity plays a key role in determining
influence.

2.3.1 Location-aware influence maximization

To address the limitation of overlooking spatial relationships in IM, Location-Aware
Influence Maximization (LAIM) was created by Li et al. [35]. With LAIM, the
probability of activation for every edge is dependent on its region. Unlike IM,
the influence spread is not modeled between nodes (node-node), but it is modeled
between nodes and regions (node-region).

Similar to the original IM formulation, LAIM is NP-hard, necessitating the use of
metaheuristic approaches. These approaches, ranging from pruning algorithms to
randomized influence strategies, have been proven to be both efficient and effective
[35,39,65].

Despite the predictive performance and scalability of the IM and LAIM methods,
they only focus on addressing a singular problem: determining the optimal location
for a business in a specific, isolated setting [27, 28, 35, 39, 65]. Since these methods
model real-world scenarios through a graph-based approach, the learning and thus

8



the decision-making are inherently confined to that specific graph. Consequently,
with IM or LAIM, insights gained from one particular setting, specific to a single
business category, geographical location, and time period, cannot be generalized or
transferred to other contexts.

2.4 Machine Learning

In the context of business site selection, machine learning methods have been utilized
as predictive methods. Most research identifies an indicator for business success,
predicts it for various candidate locations, and selects the location with the highest
predictions as the recommended site. Over the years, both traditional machine
learning methods [7, 32, 36, 57, 59, 61, 64] and deep learning models [23, 62, 66] have
been studied.

Among the traditional machine learning approaches, regression models are among
the most studied methods [7, 32, 59]. In a 2016 study, Wang et al. employed ridge
regression, support vector regression, and boosted regression trees to predict store
visits and recommend site locations based on the predicted number of visits [59]. De-
spite their outstanding experimental results, it can be argued that visit counts alone
do not equate to business success in all sectors. Furthermore, the relationship be-
tween predictor variables and visit counts can vastly change across settings; making
it highly unlikely that such a model can be generalized to other contexts. Cer-
tain studies have integrated regression-based methods into more complex decision-
making frameworks [7, 24, 32]. Karamshuk et al. developed a model that uses
separate regression models to predict eight different features that signal business
success and then ranks locations based on these predictions [32]. Similarly, Bilen
et al. created a methodology that predicts 17 features individually and clusters
the predictions to identify potential regions for business sites [7]. While such ap-
proaches demonstrate how embedding regression methods within larger frameworks
increases model performance, they introduce the challenge of deciding which fea-
tures to predict and, by extension, what criteria to base site selection on. Given
that indicators of business success vary over time, across locations, and between
sectors, these methods are also difficult to generalize and re-apply in other contexts.

In addition to regression-based approaches, various traditional machine learning
methods have also been applied to the business site selection problem such as learn-
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ing to rank algorithms and boosting models [36,57,61,64].

2.4.1 Deep learning models

The deep learning methods applied to business site selection significantly vary in
their approaches and focus. For instance, in 2020, Xu et al. introduced AR2Net,
a framework that analyzes satellite images and road trajectories, learning the rela-
tionship between these analyses and business success to predict the popularity of
candidate locations [62]. They argued that AR2Net is capable of providing store
recommendations across all sectors, making it more generalizable. Similarly, Zhao
et al. developed a deep learning framework incorporating deep multi-task learn-
ing with relational attention [66]. Their model consists of a store embedding layer,
a task-specific layer, a relation learning module, and a prediction layer. The task
relationships are not predefined, instead, they are learned from data, making the ap-
proach more generalizable. Han et al. developed a two-step framework that applies
spatial co-location pattern mining to identify candidate locations for restaurants,
followed by a novel graph convolutional network, locationGCN, to select from these
candidates based on specific restaurant types [23]. By designing the model to be
adaptable to different sorts of restaurants, they created a methodology that can be
generalized within the restaurant sector.

The previously mentioned deep learning approaches certainly enhance the general-
izability of methods for business site selection. However, their experiments demon-
strate this generalization only within a single city or a specific sector. Furthermore,
as demonstrated in Figure 2.1, these methods are complex, time-consuming, and
computationally expensive. In summary, while deep learning methods offer greater
yet limited generalization compared to other approaches, they come at the cost of
increased complexity and resource demands.
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(a) Architecture of the proposed methodology by [62]

(b) Architecture of the proposed methodology by [66]

(c) Architecture of locationGCN, step 2 of 2 from the
proposed methodology by [23]

Figure 2.1 Architectures of various deep learning approaches to the business site
selection problem
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3. REINFORCEMENT LEARNING

In this thesis, the business location selection problem is studied via a RL framework.
In this section, the definitions, notations, and mathematical equations of RL that
will be referenced in the subsequent chapters are detailed.

Sutton and Barto define RL as: “a machine learning technique the learns how to
act in order to maximize a quantitative reward", and list its main features as the
following [56]:

2.1 “It has a closed loop structure”. The model calculates possible rewards and
actions by observing the environment. When action is taken, the environment
changes. The environment is re-observed to determine a new action and a
cycle occurs. In summary, the output of each period creates the input of the
next period.

2.2 “Actions are not determined by direct instructions”. Actions are learned en-
tirely by trials and experience. There are no instructions specifying which
actions to take in which situations.

2.3 “The consequences of actions continue to affect the model over a long period
of time”. Given the cyclical nature of RL, every action indirectly or directly
leads to the next action, creating both a long-term and a short-term effect
for each action. The aftermath of the actions can and will be observed in the
future periods.

In line with these three features, RL’s place among other machine learning techniques
is visualized in Figure 3.1 (figure adapted from [47]).
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Figure 3.1 Machine learning methods according to problem type

In contrast to classic machine learning and deep learning, RL is not focused on
learning a set of equations that apply to every system. Instead, RL is a flexible
method that adapts to the data and the environment to create the optimal strategy.

3.1 Terms and Notation

The main components of RL are agent, environment, action, state, reward, and
policy. Sutton and Barto define these terms as follows [56]:

Definition 3.1: The element that learns to achieve and take actions towards the
reward is called an agent.

Definition 3.2: All the items that the agent interacts with and that are outside the
agent are called the environment. Although the environment-agent boundary may
seem flexible in some settings, it is generally accepted that all the elements that the
agent cannot arbitrarily change are taken as the environment.

Definition 3.3: All possible decisions the agent can make are called actions.

Definition 3.4: All the elements that may change or affect the action in any way are
called state.

Definition 3.5: As the agent takes action, it receives scalar signals from the envi-
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ronment. These signals are called rewards. Each reward is a real number.

Definition 3.6: The policy is the rules by which the agent selects its actions based
on the state. These rules are stochastic due to the nature of RL.

Table 3.1 summarizes the key RL notations used in this thesis.

Table 3.1 Key RL notations

Notations Meanings
a Action
A Set of all Actions
α Learning Rate
ϵ Exploration Rate
γ Discount Parameter
M Number of Eepochs
Q(s,a) Action-value Function
QPred Predicted Q-value
QTarget Target Q-value
r Reward
s State
S Set of all State Values
Θ Network Parameters
Θ′ Target Network Parameters
π Policy
V Value Function
w Network Weights

Figure 3.2 Simplified RL structure

The agent observes the environment via the state st, takes action at, and receives the
consequent reward rt. Then, the system transitions to the next state st+1, thereby
creating the closed loop structure.

The following mathematical representations and explanations of RL are taken from
Sutton and Barto [56].

The RL process can be expressed through the Markov Decision Process (MDP).
MDP is a tuple denoted by (S,A,Pa, ra), where Pa(st, st+1) is the probability that
action a causes the transition from st to st+1, and ra(st, st+1) is the reward at time t
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achieved by action a and the transition from st to st+1. The objective of the model
is to find the policy that provides the maximum reward. The objective function is
as follows:

argmax
π

E
[ ∞∑

t=0
γtrπ(st, st+1)

]
(3.1)

where rπ is denotes the reward the policy earned when. The discount factor γ

prevents the policy from postponing its actions over the analysis period.

Definition 3.7: During the training process, the algorithm learns through multiple
policies and compares their rewards. The policy that brings the highest reward is
called the optimal policy.

3.2 Model Based and Model Free Learning

RL is divided into 2 categories: model-based and model-free.

The aim of model-based learning is to ensure that every action taken, regardless of
the situation, is optimal and will grant the maximum reward in the future [30]. The
agent creates a model of the environment using the state and creates a policy based
on the model of the environment. In other words, the policy is shaped solely by the
data [42].

On the other hand, with model-free learning, learning is done over the maximization
of the value function; and the objective is to find the optimal value function

V ⋆(s) = max
π

Vπ(s) s.t. Vπ(s) = E [rt+1 +γrt+2 +γrt+3 + . . . ] (3.2)

where r(s) is the short-term reward, Vπ(s) is the long-term reward of policy π.

In Equation 3.2, discount factor γ determines the model’s tendency to explore. A
discount factor closer to 0 pushes the model to prefer instant rewards over long-
term rewards, and consequently inhibits the model from exploring. A discount
factor closer to 1 encourages the model prefer long-term rewards and explore.
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3.3 Q-Learning

Mathematical representations and explanations of Q-learning are adapted from
Carta et al. [13].

Q-learning is distinguished by the rest of the model-free learning methods with its
action-value function, Q(s,a), that replaces the traditional value function, V (s).

Q(s,a) =
∑
s′

pss′(a) · [∇(s,s′,a)+γ ·max
a′

Q(s′,a′)] (3.3)

where s′ is the state observed after performing an action, pss′(a) is the probability
of going from state s to state s′ by performing action a, r(s,s′,a) is the immediate
award of action a that lead the transition from s to s′.

The Q-values are updated by the Bellman Equation given below:

Q(s,a)new←Q(s,a)+α
[
r(s,s′,a)+γ max

a′
Q(s′,a′)−Q(s,a)

]
(3.4)

where Q(s,a) is the old Q-value at state s, and maxa′ Q(s′,a′) is the maximum
Q-value of the destination state s′.

The agent selects action according to the Q-values. The optimum action, a⋆ is
selected as the following:

a⋆ = argmax
a

Q(s,a) (3.5)

The learning starts with all Q-values Q(s,a) initialized as 0. At every step t, the
agent selects action at via Equation 3.5, receives reward rt, and consequently tran-
sitions to state st+1. With the transition, the Q-values are updated via the Bellman
Equation 3.4.

Definition 3.8: The agent begins learning with high exploration, with a high prob-
ability to take random actions. This probability is denoted with ϵ and called the
exploration rate.

Definition 3.9: Through the iterations, the exploration rate ϵ decays, and hence the
agent acts more and more based on what it has learned. This behavior is called the
greedy strategy.
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3.3.1 Deep Q-learning

In systems where the environment is observed by a multitude of state values, it
becomes inefficient and time-consuming to update the Q-values every iteration. To
address this, Mnih et al. developed an approach wherein the Q-values are not
updated by the Bellman Equation but approximated by a neural network called
Deep Q-Network (DQN), and named this architecture Deep Q-learning (DQL) [43].

In DQL, there are two identical networks called the target network and the prediction
network. Both networks take the state as the input, and output Q-values for each
action. The difference between the two networks is that the prediction network’s
outputs are the values that actually determine the action, and the target network’s
outputs are used to train the prediction network. The prediction network is trained
with the following loss function:

L(θ) = (QTarget−QPred)2 = (rt +γ max
a

QT (st+1,a;θ′)−Q(st,a;θ))2 (3.6)

The predicted Q-value is calculated as the following:

QPred = Q(st,a;θ) (3.7)

and is simply the output of the prediction network.

The target Q-value is calculated as the following:

QTarget = rt +γ max
a

QT (st+1,a;θ′) (3.8)

The prediction network is initialized with random weights, and the target network is
initialized by directly copying the prediction network. The weights of the prediction
network are updated following the equation:

wt+1 = wt−αE[L(θ)] = wt−αE[(QTarget−QPred)2] (3.9)

Periodically, the target network is updated by directly copying the parameters from
the prediction network. Without backpropagation on the target network, the com-
putational overhead of having an additional neural network is insignificant. The
update frequency of the target network can be pre-determined or adjusted dynami-
cally during training.

In some DQL applications, the learning is supported with experience replay. That is,
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the (s,a,r) tuples encountered are stored in a memory, and the prediction network
is optimized using the batch of random samples obtained from the memory. The
purpose of this approach is to eliminate potential correlations between consecutive
states by basing updates not on sequential states but on randomly selected ones [43].
In this thesis, a memory replay mechanism is not utilized for the reasons discussed
in Subsection 4.2.3.
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4. METHODOLOGY

This section provides a comprehensive overview of the data and recommendation
framework. First, the datasets and their enhancements through feature engineering
are described. Following this, the parameter configuration and model architecture
are thoroughly explained. The section concludes with a discussion of the measures
taken to ensure training stability and the challenges addressed in developing the
framework.

The following Table 4.1 summarizes the notations used for the recommendation
framework.

Table 4.1 Notations for the recommendation framework

Notations Meanings
c Business Category Index
C Competition
D (Average) Distance Between Business and Visitors’ Residents
E Expenditure (in USD)
GT Ground Truth
H Business Diversity
i Neighborhood Index
I Set of all Neighborhoods
I∗ Set of Recommended Neighborhoods
MA Median Age
DW Median Dwell at Business (in minutes)
MHV Median Home Value
MI Median Income
MR Median Rent
NF Number of Families
P Population
PRS Profit Realization Score
PTA Public Transportation Accessibility
V Visits (count)
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4.1 Data

4.1.1 Datasets

Mobility Data: Mobility data is acquired from the SafeGraph Data Consortium
[52]. The data encompasses information regarding the weekly frequency of visits to
businesses (V ), the median time they spent at the businesses (DW ), the residential
origins of these visitors, the distances between their residences and businesses (D),
and the North American Industry Classification System (NAICS) codes relevant to
these workplaces.

Spending Data: Spending data is again sourced from the SafeGraph Data Consor-
tium [51]. This dataset includes transactions conducted at businesses, both weekly
and capturing a blend of physical and online spending.

The mobility and spending data is taken from January 2019 to March 2020, effec-
tively preventing the model to be distorted by the effects of the Covid-19 pandemic.
Furthermore, the data is sub-sampled to only include the weekdays (Monday to
Friday).

American Community Surveys: To investigate the socio-demographic charac-
teristics differentiating the neighborhoods, data is sourced from the Amer-
ican Population Surveys conducted by the United States Census Bu-
reau [9]. CensusData library is used to collect 1-year estimates for
2019, for the variables population (P ), median age (MA) and income
(MI), median rent (MR), median home value (MHV ), and the number
of families (NF ) via tags ’B01001_001E’: ’Population’, ’B01002_001E’:
’Median Age’, ’B19013_001E’: ’Median Income’, ’B25064_001E’: ’Median
Rent’, ’B25077_001E’: ’Median Home Value’, and ’B11016_001E’: ’Number
of Families’, respectively. This library enables the retrieval of American Commu-
nity Surveys data through the U.S. Census Bureau’s API.

A methodological change was made to resolve the observed mismatch between mo-
bility and spending, where mobility data was collected more frequently, leading to a
false representation of customer behavior. For a considerable amount of neighbor-
hoods, it appeared that businesses that had lots of visitors had nearly no revenue,
indicating a sampling bias for the spending data. The data was harmonized by cal-
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culating the expenditure (E) metric via Equation 4.1, which distributed the total
spend proportionately over the number of visitors.

E = Total Spend
Number of Spenders ·Number of Visitors (4.1)

4.1.2 Feature engineering

In addition to the features readily available within the datasets, three variables are
constructed to enrich the agent’s capability to distinguish among neighborhoods.
These variables are public transportation accessibility (PTA), business diversity
(H), and competition (C).

Public transportation accessibility: Public transportation accessibility, PTAi
t for

neighborhood i at time t, is added as an indicator of a neighborhood’s urban
quality, a proxy for a business’s potential integration within mobility networks.
This variable is intended to reflect the ease with which individuals can reach or
depart from a given location, thereby influencing the location’s attractiveness
for both businesses and their prospective customers. The total number of public
transportation access points in each neighborhood is used as a measure of its
accessibility. These access points are retrieved from the OSMnx library using the
following tags: ’public_transport’:’station’, ’highway’:’bus_stop’,
’railway’:’tram_stop’, ’railway’:’subway_entrance’,
’amenity’:’ferry_terminal’, ’public_transport’:’stop_position’.

Business Diversity: The concept of business diversity is added to hint at a neigh-
borhood’s heterogeneity in terms of various business categories and sectors. The
informative aspect of this variable is that the diversity of a neighborhood’s business
environment potentially influences its appeal as a location, either by positioning it
within existing patterns of mobility and consumer behavior or by situating it out-
side these established flows. Shannon’s Entropy was used to calculate the business
diversities in neighborhood i at time t via the following formula outlined by Bahrami
et al. [5]:

Hi
t =−

∑
c

pc log2(pc) (4.2)

where pc denotes the proportion of businesses belonging to the c-th category. To
ensure the accuracy of the business diversity metric, calculations were performed
on a monthly basis rather than daily or weekly intervals. This mitigates potential
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distortions resulting from intermittent data collection and reduces the possibility of
false interpretations of business closures.

Competition: The competition feature, Ci
t for neighborhood i at time t, is developed

to provide a quantitative assessment of the competitive landscape prevailing within
each neighborhood. This measure, inspired by Tian et al. [57], was derived by
calculating the ratio of the number of unique businesses within the selected business
category to the total number of unique businesses within each neighborhood with
the following formula:

Ci
t = (Bc)i

t∑
c (Bc)i

t

(4.3)

where (Bc)i
t denotes the number of businesses in category c in neighborhood i at

time t.

4.2 Recommendation Framework

The proposed framework employs a DQL-based approach to recommend optimal
neighborhoods for establishing businesses within specific categories. The framework
treats the city under analysis as the environment, and the recommendation of a
business location as the action. The environment (city), is observed via the data, an
action (location recommendation) is taken, and the validity of the action is assessed
via the dataset.

4.2.1 Parameter configuration

State. The state of the model st is defined as:

st = [s1
t , s2

t , s3
t , ..., sn

t ] (4.4)

where the state is actually a flattened vector of data from all neighborhoods. Data
from each neighborhood, or the state vector si

t for neighborhood i, is expressed as:

si
t = [Ci

t,Dt−1,Ei
t−1,DWi

t,Hi
t,MAi

t,MHVi
t,MIi

t,NFi
t,Pi

t,PTAi
t,Vi

t−1] (4.5)
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Reward. The reward of the model is constructed as the following:

ri
t = Ei

t−MRi
t (4.6)

The reward aims to measure the profit of a business over the available data. It
essentially is an approximation of the difference between the revenue (E) and the
expenses (MR). Incorporating a term for the expenses allows the model to reflect
the real-world setup, as it was observed that the locations with the most revenue
often have the largest expenses, and thus the revenue alone would be a false indicator
of business success.

4.2.2 Model training and recommendation generation

The developed framework consists of two main steps; model training and recom-
mendation generation. The 2-step framework is summarized in Figure 4.1.

Step 1: Model Training. The training process includes a prediction network and a
target network, with the goal of training the prediction network.

The architecture of the prediction and the target network is detailed in table 4.2.
Rectified Linear Unit (ReLU) activations are employed for the first two layers, to
capture the non-linear relationships inherent in the dataset, reflecting the complex-
ities of the real-world environment. For the third layer, however, ReLU is replaced
with a linear activation function allowing the network to output negative values.
This adjustment allows the model to output negative values, which is crucial given
the nature of business setting. The ability to generate both positive and negative Q-
values is especially important as it enables the model to fully represent the range of
outcomes in the system, where incorrect actions can have significant consequences,
and correct actions can yield substantial benefits. This capacity to express a wide
range of values through the Q-values gives the framework the flexibility needed to
capture the dynamic characteristics of the business setting.
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Table 4.2 Network architecture

Layer # Nodes Activation Function

Input Layer 720 Linear
Hidden Layer 1 128 ReLU
Hidden Layer 2 64 ReLU
Output Layer 60 Linear

The training process is carried out through the following steps:
Algorithm 1: Model Training

Initialize prediction network with random weights Θ;
Initialize target network with weights Θ′ = Θ;
for epoch = 1 to M do

for t = 1 to T do
Observe state st;
if With probability ϵ then

select a random action at;
else

select at = maxa QPred(st,a;Θ);
end
Receive reward rt;
Observe next state st+1;
Calculate loss L(θ) = MSE(QTarget,QPred);
Update prediction network wt+1 = wt−αE[L(θ)];
Decay exploration ϵ←max(ϵ · ϵdecay, ϵmin);
if target network update condition is met then

Update target network Θ′←Θ;
end

end
end

Step 2: Recommendation Generation. The model generates recommendations of
k locations to open a business in for the test period with the following steps:
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Algorithm 2: Recommendation Generation
for epoch = 1 to M do

for t = 1 to T do
Observe state st;
Calculate Qi

t(st,a;Θ);
end
Recommend k neighborhoods I⋆ = argmaxk

i∈I

∑
t Qi

t;

end

For both of the steps, data exclusively from the preceding time step is fed to the
model. Specifically, the action at time step t is determined based on observations
from time step t−1, thereby avoiding look-ahead bias and creating a setup in line
with the real world.

4.2.3 Considerations for training stability and model performance

Real-world applications of DQL are often highly sensitive and prone to diver-
gence [25]. Divergence in DQL typically arises from Q-value updates [1], specifically
from overestimation [44]. Overestimation occurs when small changes in the value
function lead to significant variations in the policy (refer to Equation 3.4) [22]. To
prevent divergence and ensure performance, the framework incorporates three key
considerations.

3.1 Parameter Scaling: All variables in the state undergo min-max scaling,
whereas the reward is scaled by percentage. Given that the DQN is initial-
ized with random weights between 0 and 1, the initial Q-values typically are
very small numbers. If any of the other variables, especially the reward, is
significantly larger or smaller than these initial Q-values, the model is prone
to divergence (refer to Equation 3.8). Both min-max scaling and percentage
scaling produce values within the range of (0,1), aligning with the scale of
the initial Q-values and thus avoiding divergence. For the reward, the proper
scaling is important for the additional reason of reflecting a difference between
the possible actions. If the rewards for different actions are not sufficiently dif-
ferentiated, it becomes challenging for the model to learn. Through percentile
scaling, this necessary differentiation is achieved, enabling the model to learn
within the complex system of business success and location.
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Figure 4.1 Flowchart of the recommendation framework

In Step 1, data from the first city is used to train the prediction network. In
Step 2, the trained prediction network from Step 1 is used to generate the set of
recommended neighborhoods, I∗, in the second city. The trained network is used as
is and no further processing for the second city is done.
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3.2 Target Network: A target network is embedded in the framework to prevent di-
vergence [46]. Some researchers have developed various Q-learning frameworks
that render the target network unnecessary for preventing divergence [1,33,48],
however, such methodologies were proven efficient primarily with very large
datasets. In this thesis, the dataset is much shorter than the datasets in typical
RL studies. Hence, a target network is chosen over these alternative methods.

3.3 Memory Replay: A memory replay mechanism in DQL, where the agent ran-
domly samples from its prior experiences during the learning process, creates
off-policy learning. In off-policy learning, the agent utilizes data from earlier
states of the policy. Sutton and Barto identify off-policy learning as one of
the "three deadly triads" of DQL [56]. This is because of extrapolation er-
rors (a phenomenon that occurs when the data sampled from the memory
has a different distribution than the current state) and consequently the agent
making inaccurate predictions [21], possibly leading to overestimation. In the
business setting, the agent is especially susceptible to extrapolation errors.
For instance, if the agent is processing data from April but randomly samples
past data from the Christmas season, it will inherently disrupt the policy be-
ing learned. For this recommendation framework, employing a memory replay
mechanism slightly decreases model performance. Overall, it can be concluded
that memory replay should be approached with caution in settings where data
exhibit seasonal patterns, such as in business contexts. In this thesis, a mem-
ory replay mechanism is omitted to improve recommendation performance and
to ensure training stability.

These three considerations have successfully ensured the stability of training through
consistent Q-value updates (see Figures B.1 and B.2), and the mitigation of extrap-
olation errors (see Figures B.3 and B.4).

4.3 Challenges in Learning and Configurational Experiments

During the model development phase of this thesis, a challenge was encountered
where the model failed to learn effectively. Specifically, monitoring the loss through-
out training showed that it did not exhibit the expected gradual decrease. This
behavior contrasts with the loss reduction observed in the final framework, as illus-
trated in Figures B.3 and B.4. Consequently, the model was unable to learn and
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generate valid location recommendations.

Suspecting that the model was underfitting, several adjustments were explored to
enhance its performance:

4.1 Increasing the learning rate and the maximum number of epochs.

4.2 Incorporating a learning rate scheduler.

4.3 Deepening the DQN via two additional hidden layers with ReLU activation
functions.

4.4 Introducing a drop-out layer to the DQN.

4.5 Reducing the state space by excluding features PTA, C, and H.

None of these approaches significantly affected model performance, leading to the
investigation of more substantial changes to the framework, including:

5.1 Removing the target network from the framework. As recent research suggests,
having a target network is not always necessary for a successful DQL frame-
work [1, 33, 48]. Although these research are in vastly different domains than
the business setting, this approach was tested in light of these studies.

5.2 Adding a memory replay mechanism. As discussed in Subsection 4.2.3, mem-
ory replay mechanisms can lead to extrapolation errors and thus potentially
cause divergence. Nonetheless, this modification was explored in an attempt
to maximize the learning capacity of the agent by enabling it to store and
directly utilize past experiences.

Unlike the initial modifications, these changes affected the model’s behavior by re-
ducing recommendation performance. Double DQN [58] and Dueling DQN [60]
frameworks were also experimented with, hypothesizing that more complex archi-
tectures might better capture the intricacies of the business site selection problem.
However, these approaches also failed to produce satisfactory results.

Lastly, outliers were removed from the dataset. Surprisingly, this led to a significant
decline in recommendation performance. Further analysis revealed that exposing
the agent to a diverse range of scenarios was crucial for effective learning, as later
discussed in Subsection 5.4.4. Examining the variation in other parameters, it was
discovered that the reward values were overly concentrated due to the use of min-max
scaling. By switching to percentile scaling, the reward values became differentiated,
allowing the model to experience a broader range of scenarios. This diversity in the
agent’s experiences enabled the model to generate successful recommendations, and
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the final configuration of the framework detailed in Section 4.2 was formed.
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5. EXPERIMENTS

Experiments are performed on the 13 most populated U.S. cities of 2019 for the busi-
ness categories restaurants and other eating places and grocery stores from January
2019 to March 2020. The cities are as follows:

• Atlanta, Georgia

• Austin, Texas

• Boston, Massachusetts

• Chicago, Illinois

• Cleveland, Ohio

• Dallas, Texas

• Houston, Texas

• Los Angeles, California

• Manhattan, New York

• Philadelphia, Pennsylvania

• Phoenix, Arizona

• Sacramento, California

• Tampa, Florida

For New York City, the experiments are conducted exclusively in the Manhattan
borough to ensure that the results are more comparable to other studies that focus
mostly on Manhattan rather than the entire city [8].

The cities are studied at the neighborhood level, meaning every neighborhood is an-
alyzed as a candidate location. The visit counts and spending per neighborhood are
aggregated into a single scalar value, representing the total sum of visit counts and
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spending across all businesses within the specified category in each neighborhood.
Census data is also utilized at the neighborhood level.

5.1 Experimental Protocol

As a model-free method, DQL does not simulate the analyzed environments. In-
stead, it relies solely on observations of the environment. In other words, the cities
studied are not simulated but are observed through the available data. The model
operates under the following assumptions:

• If and when the agent decides to open a business, it is presupposed that the
requisite resources and opportunities are available.

• The model’s decision to open a business does not have a consequential impact
on the surrounding environment.

Sixty neighborhoods with available data are selected randomly from each city with
the following considerations:

• Selected neighborhoods should not include military bases and international
airports. To determine the location of military bases and international air-
ports, the OSMnx library is utilized via the tags ’landuse’: ’military’
and ’aeroway’: ’aerodrome’. This exclusion mimics the real-world setup
by confining the model to realistic candidate locations.

• The selected neighborhoods should have more than 250 days of data. This
minimum length criteria ensures that the model will have enough data for it
to properly learn.

Additionally, to ensure consistency in the model’s input, the same number of neigh-
borhoods is sampled from each city. This approach guarantees that the state, which
is fed as input into the DQN, maintains a uniform shape across all cities. A stan-
dardized state shape allows the DQN trained in one city to be applied to generate
recommendations in another, without the need for additional preprocessing to adapt
the input size. The number of sampled neighborhoods, set at 60, is determined based
on data availability. Specifically, 60 is the maximum number of neighborhoods that
could be selected while ensuring at least three months of available data for all cities.
Three months is determined as the threshold here as any data length below it does
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not allow the agent to properly explore and learn.

For the business category of restaurants and other eating places, a model is trained
on data from one of the 13 cities and then tested on the remaining 12. For the
business category of grocery stores, the lack of available data has limited the experi-
ments to 10 cities; with the exclusion of Atlanta, Boston, and Cleveland. The setup
of training and testing the model in different cities evaluates the framework’s gener-
alization capability and assesses whether an RL approach can transfer its learning
across different socio-demographic attributes, geographical patterns, and consumer
habits.

5.1.1 Recommendation performance measurement

Profit Indicators. The profit indicators of businesses are calculated by subtracting
the median rent of their neighborhood from their total revenue. The median rent
here is used as a proxy for costs concerning geographical considerations.

Ground Truth Locations. The model recommendations are evaluated by comparing
them to the locations that have the highest profit indicators and noted by GT for
ground truth locations. The ground truth neighborhoods, IGT, are the k neighbor-
hoods with the highest total profit indicators through the analysis timeframe.

Performance Metric. The recommendation performance is measured by the percent-
age of rewards (profit indicators) that the agent earned with its recommendations
compared to the highest possible rewards, created for this study and named the
Profit Realization Score (PRS). Through our analysis, we measured the PRS over
the top 1, 2, 3, 4, and 5 recommendations. PRS is calculated as follows:

PRS@k =
∑

i∈I⋆
∑

t ri
t∑

i∈IGT
∑

t ri
t

(5.1)

PRS is chosen as the performance metric over more established metrics like Preci-
sion@k and Recall@k, as it better aligns with the primary objective of the model:
maximizing potential business success. While Precision@k and Recall@k allow for
the comparison of the model’s ranking of neighborhoods against the actual rank-
ings based on profit indicators, these metrics fail to fully capture the model’s pur-
pose. The limitation of these metrics arises from the narrow profit differentials
often observed among top-ranked neighborhoods. For instance, consider three top
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neighborhoods (A, B, and C) with actual profit indicators of 1015, 1010, and 1000,
respectively. If the model recommends neighborhoods D, E, and F with profit in-
dicators of 995, 990, and 985, both Recall@3 and Precision@3 would yield a score
of 0. This outcome suggests extremely poor model performance, even though the
model successfully identified neighborhoods with high profit indicators. In contrast,
PRS@3 would yield a score of 97.129%, reflecting that the model’s recommendations
are still valid and near-optimal in terms of profit potential. This example highlights
how PRS provides a more accurate assessment of the model’s performance relative to
its objective. By quantifying the extent to which the model’s recommendations ap-
proach the maximum achievable profit, PRS effectively evaluates the model’s ability
to maximize business success, making it the preferred metric for this study.

5.1.2 Hyperparameter selection

Overfitting vs Underfitting. The model is trained under Adaptive Moment Estima-
tion (ADAM) optimization, with Mean Squared Error (MSE) loss between QTarget

and QPred following Equation 3.6. The learning rate (α) is set to 0.01, and maxi-
mum number of epochs (M) to 500. The high learning rate and the low number of
epochs are chosen to prevent overfitting and to ensure that the model trained in one
city can be generalized to another, while still allowing the model to properly learn
and not underfit.

Myopic vs. Far-Sighted Decision Making. The discount factor (γ) is set to the high
value of 0.9, prohibiting the model from being myopic as per Equation 3.8. Since
iterations are performed daily, it is of utmost importance that the model prioritizes
long-term gains over immediate rewards. The recommendation framework aligns
these long-term gains with the actual objective in the real-world setup, which is to
maximize profits over several months.

Exploration vs Exploitation. The initial exploration rate (ϵ) is set to 0.9, exploration
rate decay (ϵdecay) to 0.9, the minimum exploration rate (ϵmin) to 0.1. The high
exploration rate of 0.9 allows the model to initially learn by studying random actions
and their consequences. However, due to the limited length of the data, the low
exploration rate decay of 0.9 allows the model to quickly shift from exploration to
exploitation. Lastly, the high minimum exploration rate of 0.1 ensures that the
model continues to explore, regardless of its progress in the learning process. This is
crucial as the business environment does not offer a deterministic setup where every
outcome roughly replicates previous patterns. At each step, the model can identify
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and learn new strategies.

Target Network Updates. The target network is updated every step to allow the
Q-values to adapt to the rapidly changing patterns in the data. Additionally, in a
setting with a relatively small dataset (compared to typical experimental RL setups),
frequent updates improve model performance [46] and fasten model training [48].
The chosen update frequency ensures proper alignment between predicted and target
Q-values (see Figures B.1 and B.2).

The hyper-parameters mentioned above are not tuned for every city or business
category, they are kept the same. This ensures that the framework can be easily
generalized by:

6.1 Having the exact same structure provide valid recommendations for a wide
range of different cities and sectors.

6.2 Having a very efficient framework to re-apply both in terms of computation
and time.

5.2 Benchmark Model

The Huff gravity model is selected as the benchmark given its proven effectiveness
in business site selection in the current research [5, 38, 55]. The following Table 5.1
summarizes the notations used for the benchmark Huff gravity model.

Table 5.1 Notations for the Huff gravity model

Notations Meanings
α Weight of the Attractiveness
β Weight of the Distance
A Attractiveness
D Distance Between Business and Visitor’s Resident
e Weight of Attractiveness Indicator
i Attractiveness Indicator Index
I Attractiveness Indicator
n Number of Attractiveness Indicators

Using the same dataset and experimental protocol as the DQL framework, the Huff
gravity model is used to predict the probability of visits to businesses. This probabil-
ity is calculated using the distance between the business and the visitors’ residents,
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and the business’s attractiveness as detailed in Equation 2.2. Conventionally, the
attractiveness of a candidate location is modeled by its store area. However, in this
thesis, attractiveness is modeled as an interaction of different indicators to reflect
not only the characteristics of a particular point of interest but also its home area.
The indicators used, which are also the same variables incorporated in the DQL
framework as part of the state, are: Competition (C), Median Dwell (DW ), Ex-
penditure (E), Business Diversity (H), Median Age (MA), Median Income (MI),
Number of Families (NF ), Population (P ), and Public Transportation Accessibility
(PTA).

The attractiveness of a location is defined as the multiplication of these indicators I

with their exponents e controlling their weights and is calculated via the following
equation:

A =
∏
n

Ie
i (5.2)

The distance (D) is used as is since it is readily available in the dataset. To optimize
the exponents, particle swarm optimization technique is used which is an iterative
optimization method in which a number of particles collectively search for the best
parameter set within the search space. For this thesis, the search is performed in a 2-
dimensional feature space (distance and store area) in 10 iterations with 20 particles.
Cognitive and social parameters are both set to 1.5 while the inertia parameter is
set to 0.9.

A Huff gravity model is trained using data from each city, and the exponents α

and β are learned. The model is then tested on the remaining cities, where the
probabilities of visits are estimated. These probabilities are multiplied by the actual
visit counts to calculate the expected visits. Recommendations are made based on
the candidate locations with the highest total expected visits. The effectiveness of
these recommendations is evaluated using the same metric as the DQL framework,
the PRS as detailed in Equation 5.1.

The benchmark model is developed by Hasan Alp Boz and further details can be
found in [4].
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5.3 Sample Experimental Case

For this thesis, a total of 246 experimental test cases were conducted. In each case,
a model trained on data from one city and business category was utilized to generate
location recommendations for another city, resulting in 246 distinct combinations.
This section focuses on the specific case where the model was trained using data
from Philadelphia, with recommendations generated in Houston for businesses in
the restaurants and other eating places category. This example provides a clear
illustration of the experimental process and is detailed in three steps: model training,
recommendation generation, and performance measurement.

Step 1: Model Training

A total of 60 neighborhoods are randomly selected from the training city, Philadel-
phia. The main considerations for neighborhood selection are:

7.1 Exclusion of Airports and Military Bases: The neighborhoods containing
Philadelphia International Airport and Northeast Philadelphia Airport are
excluded to eliminate unrealistic candidate locations, as discussed in Section
5.1.

7.2 Data Availability: Each of the selected neighborhoods must have data available
for every timestep within the analysis period. This consistency ensures that
the state fed into the network is consistent in dimensions. The DQN requires
a 1-dimensional state vector with 720 elements, comprising 12 features from
each of the 60 neighborhoods, flattened into a single vector (see Equations 4.5
and 4.4).

The selected neighborhoods used for model training are illustrated in Figure 5.1.
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Figure 5.1 Selected neighborhoods from Philadelphia for model training

Selected neighborhoods, colored in yellow, excluding airports and military bases.
The data from these neighborhoods will be used for Model Training.

The model is trained using the data from selected Philadephia neighborhoods, fol-
lowing Algorithm 1. The hyper-parameters are selected as; α = 0.01, M = 500,
γ = 0.9, ϵ = 0.9, ϵmin = 0.1, ϵdecay = 0.9, and Target Network Update = 1. These
hyper-parameters are not tuned, and their selection is discussed in detail in Subsec-
tion 5.1.2.

The training is stable, as shown in Figure 5.2, demonstrating that the considerations
for training stability detailed in Subsection 4.2.3 were effective.

The trained DQN is saved to be used later for recommendation generation.
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(a) Estimated and target Q-values (b) Training loss

Figure 5.2 Training stability of Philadelphia for business category restaurants and
other eating places

Over-estimation of Q-values or divergence is not present during training. Estimated
Q-values match target Q-values, with increased precision as training progresses as
observed in (a). The MSE loss decreases steadily without any unexpected spikes, as
shown in (b).

Step 2: Recommendation Generation

A total of 60 neighborhoods are randomly selected from the training city, Hous-
ton. Similar to the neighborhood selection for model training, the neighborhoods
containing George Bush Intercontinental Airport-Houston and William P. Hobby
Airport are excluded, and the selected neighborhoods all have available data for
every timestep of the analysis period.

The selected neighborhoods for recommendation generation are illustrated in Figure
5.3.
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Figure 5.3 Selected neighborhoods from Houston for recommendation generation

Selected neighborhoods, colored in yellow, excluding airports and military bases.
Location recommendations will be generated among these neighborhoods.

Recommended neighborhoods are selected among the selected Houston neighbor-
hoods, using the trained DQN from Step 1: Model Training. The DQN is used
as-is, no tuning or further learning is performed. The same hyper-parameters from
the previous step are used. The recommended neighborhoods are selected following
Algorithm 2, and are shown in Figure 5.4.
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Figure 5.4 Model recommendations for Houston for the business category restaurants
and other eating places from the model trained on Philadelphia

The neighborhoods outlined in yellow show the candidate locations, with neighbor-
hoods colored in red showing the model’s recommendations.

Step 3: Recommendation Performance Measurement

Recommendation performance is measured in comparison to GT locations (the lo-
cations that yield the highest aggregated profit indicators over the analysis period)
using the PRS metric as detailed in Subsection 5.1.1. The model yields a 97.30%
PRS@1, 97.54% PRS@2, 95.55% PRS@3, 96.37% PRS@4, and 95.98% PRS@5
with its recommendations compared to GT profit indicators depicted in 5.5. This
essentially means that the top neighborhood recommended by the model would have
earned 97.30% of the profits, the top two 97.54%, the top three 95.55%, the top four
96.37%, and the top five 95.98% compared to the best possible locations assuming
that businesses were established in the recommended locations.
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Figure 5.5 Profit indicators for Houston for the business category restaurants and
other eating places

Purple denotes the profit indicators with a darker purple indicating higher profits.

The flowchart of the DQL framework from Figure 4.1 is extended for this run in
Figure 5.6. In Step 1 of Figure 5.6, data from the selected Philadelphia neighbor-
hoods are used to train the prediction network. In Step 2 of the figure, the trained
prediction network from Step 1 is used to generate the set of recommended neigh-
borhoods, I∗, in Houston. In Step 3, the performance of the recommendations is
measured in comparison to GT locations via PRS.

5.4 Results

In this section, recommendation performance is investigated using the top three
recommendations (PRS@3), for clarity purposes. Performance metrics PRS@1,
PRS@2, PRS@4, and PRS@5 are also reported in Appendix A. Across both busi-
ness categories, the metrics are consistent, with an expected average improvement
of 1.5% in PRS@k as k increases.
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Figure 5.6 Flowchart of the sample experimental run

42



5.4.1 Recommendation performance

Experimental results demonstrate the generalization capacity of the proposed DQL
framework, achieving an average PRS@3 of 81.28% for restaurants and other eating
places businesses and 72.37% for grocery stores. The benchmark Huff gravity model
significantly underperforms with an average PRS@3 of 63.99% for restaurant and
other eating places businesses and 60.44% for grocery stores. The recommendation
performances are summarized in tables 5.2 and 5.3 for business categories restaurant
and other eating places and grocery stores, respectively (see Appendix A for detailed
results).

Table 5.2 Average PRS@3 according to training cities for business category restau-
rants and other eating places

City DQL Framework Huff Gravity Model

Atlanta 0.815865 0.591196
Austin 0.786978 0.685410
Boston 0.834806 0.687403
Chicago 0.857097 0.670576
Cleveland 0.793917 0.629739
Dallas 0.831589 0.535682
Houston 0.788485 0.665810
Los Angeles 0.799311 0.590428
Manhattan 0.795311 0.683671
Philadelphia 0.805368 0.619000
Phoenix 0.804590 0.654019
Sacramento 0.820437 0.660319
Tampa 0.832082 0.645476
Average 0.812757 0.639902

5.4.2 Recommendation consistency

In addition to its performance, the DQL framework offers consistent recommenda-
tions, as shown in Figure 5.7. While the performance of the DQL framework slightly
varies across different test cases, it reliably delivers valid and profitable recommenda-
tions in contrast to the Huff gravity model. The Huff gravity model shows greater
inconsistency and its performance is greatly affected by the city pairs, the cities
that the model is trained and tested on. Moreover, the generalization capacity of
the DQL framework remains consistent across both business categories. Overall, the
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Table 5.3 Average PRS@3 according to training cities for business category crocery
stores

City DQL Framework Huff Gravity Model

Austin 0.751357 0.628454
Chicago 0.728124 0.611001
Dallas 0.684461 0.620690
Houston 0.723346 0.585236
Los Angeles 0.692142 0.616801
Manhattan 0.731577 0.603258
Philadelphia 0.727550 0.546023
Phoenix 0.748932 0.605991
Sacramento 0.764139 0.626143
Tampa 0.685346 0.600353
Average 0.723697 0.604396

analysis of recommendation consistencies demonstrates the generalization strength
of the DQL framework across cities and sectors over the Huff gravity model.

Figure 5.7 Violin plots of recommendation performances

The Huff gravity model generates recommendations with significant variability in
profitability. In contrast, the DQL framework consistently delivers profitable rec-
ommendations across all test cases, demonstrating its adaptability across different
cities.
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5.4.3 Recommendation performance and spatial characteristics

To investigate the relationship between recommendation performance and the spatial
characteristics of the city pairs (i.e.. the cities in which the model has been trained
and tested), two metrics are utilized to quantify similarity: flow hierarchy [6], and
orientation order indicator [8]. The analysis revealed no significant correlation be-
tween the model’s performance and either the flow hierarchy or orientation order
indicator of the city pairs, as shown in Table 5.4.

Table 5.4 Correlation between recommendation performance and spatial order

Business Category Orientation Order Indicator Flow Hierarchy

Restaurants and other eating places -0.14 0.29
Grocery stores -0.21 0.23

All business categories -0.15 -0.29
Pearson’s correlation coefficients between PRS and the city pairs’ absolute difference
of orientation order indicator and flow hierarchy

Additionally, when the top-performing test cases were analyzed separately, no corre-
lation was found between the model’s performance and the spatial characteristics of
the city pairs. As depicted in Figure 5.8, the correlation between recommendation
performance and city similarities is insignificant and does not represent a pattern,
indicating that the spatial similarity between city pairs is irrelevant to model per-
formance.

5.4.4 Recommendation performance and variation in data

Analysis of the results reveals a single consideration that directly affects recommen-
dation performance: The variance of the data. The variance of data influences the
model performance in the following ways:

8.1 Recommendation performance improves as the variance of the training dataset
increases. A training dataset with a large variance allows the model to en-
counter a diverse subset of (s,a,r) values, enabling it to make correct decisions
based on training experiences when encountering similar scenarios in the test
data.
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(a) Flow hiearchy - restaurants (b) Flow hiearchy - grocery stores

(c) Orientation order indicator - restau-
rants

(d) Orientation order indicator - grocery
stores

Figure 5.8 Pearson’s correlation coefficients between PRS and the city pairs’ absolute
difference of orientation order indicator and flow hierarchy.

8.2 The model also provides profitable recommendations when the variance of the
training dataset is small, provided that the variance of the test dataset is also
small. In high-performing test cases with a training dataset exhibiting a rela-
tively small coefficient of variation, the test dataset has a low variance as well.
This similarity in variance once again allows the model to accurately predict
the outcome of its decisions based on similar sequences it has experienced.

8.3 The low variance of certain features in the model’s state, whether in the train-
ing or test datasets, does not affect the recommendation performance at all.
This is due to the fact that like any neural network, the DQN is robust to
irrelevant features. Surely, this robustness minimizes the need for business do-
main knowledge or extensive pre-processing by eliminating the need to filter
out irrelevant features via prior knowledge or feature subset selection.

Feature Importance. Based on the hypothesis that the model performance is depen-
dent on the variance of data, the coefficient of variance for features of the model’s
state for top and bottom-performing three training cities are studied. For restau-
rants and other eating places, the coefficient of variance for the features of distance
to visitors’ home, median income, and median dwell exhibits the most significant
differences between the top and bottom training cities, with an average difference of
0.4597, 0.1434, and 0.1233, respectively. For grocery stores, the coefficient of vari-
ance for the features of public transportation accessibility and competition shows
the greatest differences between the top and bottom training cities, with an aver-
age difference of 0.5650, and 0.1258, respectively. These findings indicate that for
both business categories, geographical accessibility of the businesses significantly
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enhances their attractiveness.

Performance Difference between Business Categories. Lastly, the analysis of exper-
imental results indicates that the model does not perform well if trained with less
than four months of data. With experience-based learning, a data length of less
than 4 months does not allow the model to explore and correct its actions properly.
For the business category of grocery stores, the data is significantly more limited
compared to the category of restaurants and other eating places, resulting in a per-
formance gap between the two categories.
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6. CONCLUSION

This thesis proposes a DQL framework to address the complex problem of business
site selection. The main objective is to develop a generalizable framework that
can be adapted to various contexts, enabling the transfer of insights across time,
regional regulations, and spatial and social characteristics in the domain of business
site selection.

6.1 Summary of Work

The proposed approach is a two-step framework. In step 1, named Model Training,
a DQN is trained. The state (S) is defined as the business diversity, competition,
expenditure, transportation accessibility, visits, and socio-demographic data of all
candidate locations. The reward (R) is formulated as the differential between total
revenue and median rent, where the latter serves as a proxy for operational costs
and thus the reward mimics the profitability of a location. In each iteration, the
state passes through the DQN, and Q-values of candidate locations are produced.
The action (A) or namely the location with the highest Q-value is selected and the
corresponding reward is received. In this step, the learning starts by taking random
actions and learning from the consequences, a process called exploration in RL. Over
the iterations, the agent explores less and emphasizes what it has already learned
via exploitation. Overall, in this step the agent aims to create the optimum strategy
for business site selection by studying the experiences, (s,a,r) tuples, it encounters.
This step includes a target network and excludes a memory replay mechanism to
ensure training stability. In Step 2, named Recommendation Generation, the trained
network is used to generate Q-values for candidate locations. Each iteration, the
state, consisting of data from each candidate location, is fed into the network to
produce corresponding Q-values. At the end of the analysis period, the Q-values
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for each candidate location are summed, and the top k locations with the highest
aggregated Q-values are returned as the model’s recommendations. In this step, no
learning is done, and the DQN is not backpropagated.

The experiments are performed on the 13 most populous US cities (Atlanta, Austin,
Boston, Chicago, Cleveland, Dallas, Houston, Los Angeles, Manhattan, Philadel-
phia, Phoenix, Sacramento, Tampa), for business categories restaurants and other
eating places and grocery stores, between dates January 2019 to March 2020 on the
neighborhood level. For each business category, a model is trained using data from
one city and then utilized to generate location recommendations in another. The
framework and all its components, including hyper-parameters, input data features,
and parameter formulations, remain the same throughout both the Model Training
and Recommendation Generation phases. This experimental setup is designed to
evaluate the framework’s generalizability and transferability across varying environ-
ments. The Huff gravity model is employed as the benchmark. Using the same data
as the DQL model, the Huff gravity model is calibrated using data from each city
and then used to predict foot traffic at candidate locations in other cities. Locations
are then recommended based on the highest predicted footfall. The performance of
the recommendations is assessed using the Profit Realization Score PRS@k, a met-
ric developed for this thesis. The PRS quantifies the percentage of profits generated
by the top k recommendations relative to the maximum ground truth profits of the
top k neighborhoods.

The proposed DQL framework achieved an average PRS@3 of 81.28% for restau-
rants and other eating establishments, and 72.37% for grocery stores. This perfor-
mance surpassed that of the Huff gravity model by 17.29% and 11.93%, respectively.
Moreover, the DQL framework consistently generated valid recommendations across
all experimental cases, while the performance of the Huff gravity model exhibited
considerable variability and inconsistency. In this thesis, it is hypothesized that the
recommendation performance of the DQL framework is not influenced by the de-
mographic, spatial, or proximity similarities between the city pairs used for training
and testing. Instead, the performance is determined by a single factor: the varia-
tion in the data. Experimental results indicate that the performance of the proposed
method’s recommendations is contingent upon the variance of the distributions of
state (S), action (A), and reward (R) in the training data being at least as high as in
the test data. Since the model’s learning is based on the (s,a,r) tuples encountered
during training, it provides appropriate recommendations in testing as long as it
is presented with (s,a,r) tuples similar to what it has already experienced during
training.
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Overall, this thesis demonstrates that RL-based models offer generalizable and read-
ily reapplicable solutions to the business site selection problem. Furthermore, it is
shown that an RL model developed in a specific context can generate valid recom-
mendations in new settings without the need for additional processing or calibra-
tion. This thesis hypothesizes that the generalization capacity of the proposed DQL
framework compared to other techniques stems from the very nature of RL. Unlike
the Huff gravity model or other supervised machine learning methods, RL does not
directly learn the relationships between model inputs (candidate location charac-
teristics) and outputs (location profitability). In a business context, where these
relationships are complex and continually changing, direct adaptation to different
settings is extremely difficult, and at times even illogical. Instead, RL learns the
optimal decision (A) to make in each situation (S) based on the resulting conse-
quences (R), rather than directly learning the complex relationship between inputs
and outputs. The strategies the model acquires, determining appropriate actions
in varying contexts, appear to remain relatively consistent across different settings,
thereby allowing generalization and reapplication.

6.2 Future Research

In future work, the existing model-free recommendation framework can be extended
to a model-based approach. The current framework solely relies on observational
data, without modeling or simulating cities. Consequently, location selections are
hypothetical, and the assumption is made that opening a new business in a given
location has no significant impact on the broader urban environment. A more so-
phisticated model-based RL framework can be developed to simulate cities, enabling
the observation of the effects of business openings.

In a model-based framework, each component of the system would be represented by
an agent. First, an agent to represent customers would be developed. This customer
agent would have socio-demographic attributes, such as income, age, education level,
gender, and ethnicity. Based on these attributes, the agent would visit and spend at
various businesses over the designated analysis period. Secondly, a business agent
would be implemented to represent enterprises within the system. The business
agent would have attributes that represent operating costs, workforce characteristics,
transportation accessibility, competition, and business diversity. The business agent
would attract customers and generate revenue based on these attributes. Lastly, a
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regulatory agent would be developed to simulate the role of governance, enforcing
regulations, imposing taxes, and supervising business operations.

Attributes for customer and business agents could be derived from real-world data
sources. Specifically, the data on demographics (publicly available in American
Community Surveys [10]) and the businesses (publicly available in Statistics of U.S.
Businesses [11]) enables the creation of realistic attribute distributions, allowing
agents to draw from these distributions to simulate real-world conditions.

The proposed agents would engage in interactions with one another, enabling a
dynamic simulation of the city’s retail business ecosystem. The nature of agent in-
teractions could be determined either by learning from empirical data or by setting
predefined rules. The interactions between customer and business agents, which
are typically non-deterministic and volatile in the real world, would benefit from
data-driven modeling, to better capture the stochastic nature of consumer behav-
ior. Such modeling would, however, necessitate access to long-term, high-quality
datasets, such as those available through the SafeGraph Data Consortium [51, 52].
The interactions involving regulatory agents would likely be more deterministic and
structured. These interactions could be effectively captured by a predefined set
of rules that involve tax regulations, labor law, business hours, and accessibility
features of the physical business. This combination of learned and rule-based inter-
actions would allow for an effective representation of urban business dynamics.

Overall, a model-based RL framework offers significant extensions to this thesis
for addressing business site selection by simulating an urban environment in which
decisions about business establishment can be tested. In this simulated environment,
decisions to establish a new business could be made by virtually placing a business
in a candidate location and observing the revenue it generates. In addition to
location selection, a model-based framework would facilitate analysis of how a new
business integrates with the existing urban dynamics, attracts foot traffic, influences
neighboring businesses, and contributes to broader economic outcomes. This thesis
demonstrates that RL-based approaches are well-suited for the business site selection
problem. The proposed model-based extension could enhance existing research by
incorporating long-term effects and improving interpretability via the comparison
of simulated outcomes of various candidate locations.
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APPENDIX A RECOMMENDATION
PERFORMANCE RECOMMENDATION PERFORMANCE

Detailed Recommendation Performance

The recommendation performance in PRS@3, as calculated in Equation 5.1 of the
thesis for all test cases are detailed in this section, where the "Training City" refers
to the city whose data was utilized during the Model Training phase, and the "Test
City" indicates the city whose data was used for the Recommendation Generation
phase of the framework. In Tables A.1, A.3, and A.5, the lack of data availability
has limited the experiments to only the restaurants and other eating places category.
The recommendation performances by training cities are given in Tables A.1, A.3,
A.4, A.5, A.6, A.7, A.8, A.9, A.10, A.11, A.12, and A.13 below.

Table A.1 PRS@3 for training city Atlanta and business category restaurants and
other eating places

Test City Restaurants Grocery Stores
DQL Huff Gravity DQL Huff Gravity

Framework Model Framework Model
Austin 0.6723 0.6684 - -
Boston 0.6149 0.4391 - -
Chicago 0.9064 0.7269 - -
Cleveland 0.7717 0.3669 - -
Dallas 0.8395 0.8462 - -
Houston 0.9301 0.5613 - -
Los Angeles 0.9069 0.6131 - -
Manhattan 0.9076 0.2603 - -
Philadelphia 0.8517 0.7080 - -
Phoenix 0.8698 0.2970 - -
Sacramento 0.7891 0.7886 - -
Tampa 0.7304 0.8188 - -
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Table A.2 PRS@3 for training city Austin

Test City Restaurants Grocery Stores
DQL Huff Gravity DQL Huff Gravity

Framework Model Framework Model

Atlanta 0.7222 0.5575 - -
Boston 0.6788 0.6802 - -
Chicago 0.8816 0.7312 0.7967 0.5414
Cleveland 0.6691 0.6017 - -
Dallas 0.8064 0.8077 0.7551 0.5886
Houston 0.8684 0.5256 0.7843 0.6011
Los Angeles 0.8346 0.9097 0.8168 0.7071
Manhattan 0.8591 0.6328 0.8975 0.6793
Philadelphia 0.7657 0.8833 0.6213 0.7566
Phoenix 0.9252 0.2878 0.6753 0.4881
Sacramento 0.7377 0.7886 0.7531 0.4381
Tampa 0.6951 0.8188 0.6622 0.8557

Table A.3 PRS@3 for training city Boston and business category restaurants and
other eating places

Test City Restaurants Grocery Stores
DQL Huff Gravity DQL Huff Gravity

Framework Model Framework Model
Atlanta 0.8441 0.7758 - -
Austin 0.7873 0.7675 - -
Chicago 0.8911 0.8502 - -
Cleveland 0.7207 0.3375 - -
Dallas 0.7784 0.8462 - -
Houston 0.9150 0.6157 - -
Los Angeles 0.8376 0.8961 - -
Manhattan 0.8946 0.2603 - -
Philadelphia 0.9006 0.9632 - -
Phoenix 0.8893 0.3596 - -
Sacramento 0.7245 0.7581 - -
Tampa 0.8345 0.8188 - -
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Table A.4 PRS@3 for training city Chicago

Test City Restaurants Grocery Stores
DQL Huff Gravity DQL Huff Gravity

Framework Model Framework Model

Atlanta 0.8757 0.7168 - -
Austin 0.7150 0.6615 0.7002 0.6761
Boston 0.7399 0.6168 - -
Cleveland 0.7532 0.5241 - -
Dallas 0.8867 0.8415 0.7589 0.5676
Houston 0.8858 0.5182 0.8096 0.5228
Los Angeles 0.9069 0.8961 0.7038 0.6147
Manhattan 0.9322 0.5655 0.7628 0.5778
Philadelphia 0.8796 0.8833 0.7915 0.7252
Phoenix 0.9057 0.2878 0.7364 0.5886
Sacramento 0.9266 0.7581 0.6660 0.5581
Tampa 0.8778 0.7773 0.6239 0.6682

Table A.5 PRS@3 for training city Cleveland and business category restaurants and
Other eating places

Test City Restaurants Grocery Stores
DQL Huff Gravity DQL Huff Gravity

Framework Model Framework Model

Atlanta 0.7056 0.6519 - -
Austin 0.7553 0.7675 - -
Boston 0.5344 0.5431 - -
Chicago 0.8481 0.8257 - -
Dallas 0.7874 0.8462 - -
Houston 0.9295 0.5208 - -
Los Angeles 0.8914 0.5102 - -
Manhattan 0.8755 0.2603 - -
Philadelphia 0.7631 0.7080 - -
Phoenix 0.8466 0.3170 - -
Sacramento 0.8299 0.7505 - -
Tampa 0.7602 0.8557 - -
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Table A.6 PRS@3 for training city Dallas

Test City Restaurants Grocery Stores
DQL Huff Gravity DQL Huff Gravity

Framework Model Framework Model

Atlanta 0.7115 0.5428 - -
Austin 0.7934 0.7983 0.5414 0.6761
Boston 0.6553 0.7234 - -
Chicago 0.9265 0.5217 0.7119 0.5378
Cleveland 0.7838 0.3669 - -
Houston 0.9073 0.5427 0.6451 0.6011
Los Angeles 0.8351 0.4570 0.7607 0.7071
Manhattan 0.8921 0.2603 0.5973 0.5391
Philadelphia 0.8149 0.7080 0.8422 0.7566
Phoenix 0.9042 0.5032 0.8101 0.3898
Sacramento 0.9056 0.3638 0.6666 0.5229
Tampa 0.8492 0.6402 0.5848 0.8557

Table A.7 PRS@3 for training city Houston

Test City Restaurants Grocery Stores
DQL Huff Gravity DQL Huff Gravity

Framework Model Framework Model

Atlanta 0.6892 0.8348 - -
Austin 0.6746 0.7983 0.7843 0.6011
Boston 0.7957 0.4391 - -
Chicago 0.8939 0.8257 0.8096 0.5228
Cleveland 0.6070 0.3669 - -
Dallas 0.7053 0.8462 0.6451 0.6011
Los Angeles 0.8883 0.6346 0.6758 0.6011
Manhattan 0.9059 0.2603 0.8327 0.3792
Philadelphia 0.9295 0.9114 0.7075 0.6011
Phoenix 0.8274 0.5032 0.7968 0.6011
Sacramento 0.7413 0.7505 0.8298 0.6011
Tampa 0.8039 0.8188 0.8309 0.5359
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Table A.8 PRS@3 for training city Los Angeles

Test City Restaurants Grocery Stores
DQL Huff Gravity DQL Huff Gravity

Framework Model Framework Model

Atlanta 0.7169 0.4926 - -
Austin 0.7964 0.7282 0.8168 0.7071
Boston 0.6563 0.7335 - -
Chicago 0.8445 0.6604 0.7038 0.6147
Cleveland 0.7452 0.5157 - -
Dallas 0.7843 0.8019 0.7607 0.7071
Houston 0.8808 0.5772 0.6758 0.7207
Manhattan 0.8989 0.2603 0.7437 0.5339
Philadelphia 0.8481 0.7080 0.6738 0.6262
Phoenix 0.8269 0.3596 0.8091 0.5596
Sacramento 0.8137 0.6743 0.6916 0.4945
Tampa 0.7797 0.5735 0.6552 0.6404

Table A.9 PRS@3 for training city Manhattan

Test City Restaurants Grocery Stores
DQL Huff Gravity DQL Huff Gravity

Framework Model Framework Model

Atlanta 0.6530 0.6903 - -
Austin 0.7200 0.5231 0.7693 0.6761
Boston 0.7374 0.7995 - -
Chicago 0.8650 0.6359 0.7686 0.7115
Cleveland 0.6778 0.5367 - -
Dallas 0.7384 0.8415 0.6983 0.7319
Houston 0.9369 0.7308 0.8327 0.3792
Los Angeles 0.9259 0.8961 0.7437 0.5339
Philadelphia 0.8788 0.8833 0.9059 0.5864
Phoenix 0.8112 0.3132 0.7837 0.6212
Sacramento 0.7979 0.6343 0.7495 0.5778
Tampa 0.8014 0.7196 0.6730 0.3153
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Table A.10 PRS@3 for training city Philadelphia

Test City Restaurants Grocery Stores
DQL Huff Gravity DQL Huff Gravity

Framework Model Framework Model

Atlanta 0.7506 0.6431 - -
Austin 0.7230 0.8103 0.6213 0.7566
Boston 0.7163 0.5203 - -
Chicago 0.9222 0.8257 0.7915 0.7252
Cleveland 0.7677 0.3669 - -
Dallas 0.7293 0.9138 0.8422 0.7566
Houston 0.9551 0.5208 0.8171 0.7566
Los Angeles 0.8575 0.6362 0.6115 0.7566
Manhattan 0.9100 0.2603 0.7335 0.7566
Phoenix 0.8916 0.6091 0.7081 0.7566
Sacramento 0.7324 0.6743 0.6220 0.7566
Tampa 0.7087 0.6474 0.7179 0.7566

Table A.11 PRS@3 for training city Phoenix

Test City Restaurants Grocery Stores
DQL Huff Gravity DQL Huff Gravity

Framework Model Framework Model

Atlanta 0.6386 0.7758 - -
Austin 0.8050 0.7675 0.6753 0.4881
Boston 0.7022 0.6168 - -
Chicago 0.9240 0.7926 0.7364 0.5886
Cleveland 0.7282 0.3375 - -
Dallas 0.7761 0.8462 0.8101 0.3898
Houston 0.8739 0.5812 0.6279 0.4266
Los Angeles 0.8393 0.6346 0.8756 0.4266
Manhattan 0.9002 0.2603 0.7110 0.6793
Philadelphia 0.7945 0.7080 0.6942 0.3121
Sacramento 0.7988 0.7505 0.6590 0.5886
Tampa 0.8742 0.7773 0.7076 0.6425
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Table A.12 PRS@3 for training city Sacramento

Test City Restaurants Grocery Stores
DQL Huff Gravity DQL Huff Gravity

Framework Model Framework Model

Atlanta 0.5677 0.6903 - -
Austin 0.7548 0.6684 0.7007 0.6761
Boston 0.6916 0.6168 - -
Chicago 0.8726 0.7398 0.8954 0.5378
Cleveland 0.7622 0.5367 - -
Dallas 0.8570 0.8462 0.8558 0.5886
Houston 0.8786 0.6142 0.8298 0.6011
Los Angeles 0.9438 0.8961 0.6916 0.4945
Manhattan 0.9138 0.2618 0.7495 0.5778
Philadelphia 0.8155 0.9632 0.6220 0.7566
Phoenix 0.9055 0.3132 0.6590 0.3610
Tampa 0.8820 0.7773 0.4999 0.3962

Table A.13 PRS@3 for training city Tampa

Test City Restaurants Grocery Stores
DQL Huff Gravity DQL Huff Gravity

Framework Model Framework Model

Atlanta 0.7607 0.5605 - -
Austin 0.6959 0.6684 0.6622 0.8557
Boston 0.6726 0.6168 - -
Chicago 0.9220 0.7269 0.6239 0.6682
Cleveland 0.7248 0.5241 - -
Dallas 0.8072 0.8462 0.5848 0.8557
Houston 0.8468 0.5256 0.6418 0.7295
Los Angeles 0.9453 0.9097 0.6340 0.8557
Manhattan 0.9694 0.2610 0.6854 0.5933
Philadelphia 0.9209 0.9632 0.8026 0.8557
Phoenix 0.8476 0.3548 0.8079 0.7295
Sacramento 0.8720 0.7886 0.8736 0.8142
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Alternative Performance Metrics

Experimental results with respective to alternative performance metrics PRS@1,
PRS@2, PRS@4, and PRS@5, as calculated in Equation 5.1 of the thesis, are
detailed in in this section. The metrics are consistent, as increasing k increases
the PRS by about 1.5%. The alternative metrics do not highlight any pattern not
observable by the chosen performance metric, PRS@3, and are therefore excluded
from the main chapters of this thesis. For training cities of Atlanta, Boston and
Cleveland; the lack of available data has limited the experiments to only the restau-
rants and other eating places category. The alternative performance metrics by
training cities are given in Tables A.14, A.16, A.17, A.18, A.19, A.20, A.21, A.22,
A.23, A.24, A.25, and A.26 below.

Table A.14 Alternative performance metrics for training city Atlanta

Test City Restaurants Grocery Stores
PRS@1 PRS@2 PRS@4 PRS@5 PRS@1 PRS@2 PRS@4 PRS@5

Austin 0.7420 0.7013 0.6853 0.7183 - - - -
Boston 0.3742 0.5730 0.6909 0.7414 - - - -
Chicago 0.8587 0.9161 0.9278 0.9333 - - - -
Cleveland 0.7907 0.7277 0.7498 0.7828 - - - -
Dallas 0.9313 0.8175 0.8015 0.8464 - - - -
Houston 0.8696 0.9230 0.9256 0.9480 - - - -
Los Angeles 0.8112 0.8912 0.8872 0.9052 - - - -
Manhattan 0.8538 0.8746 0.8962 0.8912 - - - -
Philadelphia 0.7379 0.8159 0.7986 0.8125 - - - -
Phoenix 0.7951 0.8506 0.8655 0.8650 - - - -
Sacramento 0.5945 0.6889 0.7954 0.8141 - - - -
Tampa 0.5945 0.6761 0.8028 0.7667 - - - -
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Table A.15 Alternative performance metrics for training city Austin

Test City Restaurants Grocery Stores
PRS@1 PRS@2 PRS@4 PRS@5 PRS@1 PRS@2 PRS@4 PRS@5

Atlanta 0.4921 0.6766 0.7068 0.6642 - - - -
Boston 0.7730 0.7677 0.7409 0.6965 - - - -
Chicago 0.8129 0.8495 0.8964 0.8963 0.7699 0.7761 0.7682 0.8105
Cleveland 0.4394 0.5484 0.6471 0.7005 - - - -
Dallas 0.7267 0.8471 0.8233 0.8579 0.5808 0.6684 0.7638 0.8268
Houston 0.7798 0.8118 0.8868 0.9031 0.7902 0.8119 0.7806 0.7751
Los Angeles 0.7938 0.8382 0.8529 0.8499 0.8456 0.8265 0.7624 0.7391
Manhattan 0.8444 0.8543 0.8627 0.8668 0.7714 0.8316 0.8699 0.8256
Philadelphia 0.7086 0.7410 0.8124 0.8203 0.5919 0.6247 0.6527 0.6325
Phoenix 0.8840 0.9479 0.9067 0.9178 0.6160 0.5561 0.6229 0.6568
Sacramento 0.8114 0.8134 0.7221 0.7431 0.6272 0.7031 0.7122 0.7529
Tampa 0.7135 0.7594 0.7060 0.7133 0.8510 0.7712 0.7400 0.7779

Table A.16 Alternative performance metrics for training city Boston

Test City Restaurants Grocery Stores
PRS@1 PRS@2 PRS@4 PRS@5 PRS@1 PRS@2 PRS@4 PRS@5

Atlanta 0.7838 0.8811 0.8478 0.8705 - - - -
Austin 0.8527 0.8273 0.7863 0.7623 - - - -
Chicago 0.9508 0.9338 0.9135 0.8992 - - - -
Cleveland 0.5960 0.7143 0.7003 0.7586 - - - -
Dallas 0.6813 0.8456 0.8141 0.8206 - - - -
Houston 0.8157 0.8965 0.9012 0.9125 - - - -
Los Angeles 0.8310 0.8302 0.8660 0.8763 - - - -
Manhattan 0.8460 0.8451 0.9020 0.9236 - - - -
Philadelphia 0.9047 0.8728 0.9265 0.9362 - - - -
Phoenix 0.8961 0.9080 0.8520 0.8697 - - - -
Sacramento 0.6130 0.7205 0.7698 0.8052 - - - -
Tampa 0.9485 0.8649 0.8230 0.8208 - - - -
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Table A.17 Alternative performance metrics for training city Chicago

Test City Restaurants Grocery Stores
PRS@1 PRS@2 PRS@4 PRS@5 PRS@1 PRS@2 PRS@4 PRS@5

Atlanta 0.7478 0.8060 0.8433 0.8342 - - - -
Austin 0.7127 0.7643 0.7377 0.7619 0.6316 0.7843 0.7474 0.6951
Boston 0.5692 0.6643 0.7693 0.7905 - - - -
Cleveland 0.7293 0.7008 0.7580 0.7626 - - - -
Dallas 0.8074 0.8877 0.8655 0.7934 0.7924 0.7775 0.8030 0.8311
Houston 0.8687 0.8569 0.8833 0.8709 0.7028 0.7682 0.7908 0.7448
Los Angeles 0.8794 0.8813 0.9262 0.9040 0.7541 0.7806 0.7278 0.7757
Manhattan 0.9584 0.9114 0.9453 0.9432 0.8054 0.8487 0.8312 0.8443
Philadelphia 0.9394 0.8575 0.9064 0.8968 0.8260 0.7429 0.7506 0.7813
Phoenix 0.7970 0.9041 0.8554 0.8759 0.8619 0.6791 0.7838 0.7496
Sacramento 0.9654 0.8918 0.9156 0.8643 0.5067 0.6419 0.7155 0.7547
Tampa 0.9872 0.8964 0.8447 0.8345 0.7036 0.6963 0.5802 0.6346

Table A.18 Alternative performance metrics for training city Cleveland

Test City Restaurants Grocery Stores
PRS@1 PRS@2 PRS@4 PRS@5 PRS@1 PRS@2 PRS@4 PRS@5

Atlanta 0.6480 0.6624 0.7272 0.7799 - - - -
Austin 0.6824 0.7484 0.7807 0.7905 - - - -
Boston 0.3838 0.4367 0.6350 0.6915 - - - -
Chicago 0.9061 0.8514 0.8517 0.8819 - - - -
Dallas 0.7121 0.7503 0.7801 0.7795 - - - -
Houston 0.9173 0.9201 0.9307 0.9314 - - - -
Los Angeles 0.9343 0.9203 0.8926 0.9013 - - - -
Manhattan 0.8877 0.8796 0.8818 0.8959 - - - -
Philadelphia 0.6378 0.7318 0.7909 0.8245 - - - -
Phoenix 0.7665 0.8239 0.8621 0.8738 - - - -
Sacramento 0.6382 0.7840 0.7754 0.7755 - - - -
Tampa 0.7608 0.8076 0.7524 0.7684 - - - -
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Table A.19 Alternative performance metrics for training city Dallas

Test City Restaurants Grocery Stores
PRS@1 PRS@2 PRS@4 PRS@5 PRS@1 PRS@2 PRS@4 PRS@5

Atlanta 0.6139 0.5621 0.7186 0.7430 - - - -
Austin 0.9900 0.8802 0.7970 0.8169 0.5445 0.5779 0.5362 0.5965
Boston 0.4454 0.5396 0.7048 0.6494 - - - -
Chicago 0.8931 0.9463 0.9310 0.9083 0.6419 0.6855 0.7586 0.7261
Cleveland 0.7667 0.7453 0.7815 0.8220 - - - -
Houston 0.9331 0.8889 0.8995 0.9212 0.5643 0.6271 0.6903 0.7039
Los Angeles 0.8083 0.7739 0.8721 0.8934 0.3693 0.6871 0.6861 0.7209
Manhattan 0.8704 0.8515 0.9152 0.8991 0.8025 0.6384 0.6700 0.6778
Philadelphia 0.8213 0.7610 0.8578 0.8530 0.6785 0.7932 0.8685 0.7854
Phoenix 0.8997 0.9018 0.8542 0.8526 0.9101 0.8857 0.7133 0.7529
Sacramento 0.7673 0.8608 0.8997 0.8898 0.5105 0.5246 0.6563 0.6659
Tampa 0.7055 0.8537 0.8231 0.8425 0.7143 0.5959 0.6675 0.7026

Table A.20 Alternative performance metrics for training city Houston

Test City Restaurants Grocery Stores
PRS@1 PRS@2 PRS@4 PRS@5 PRS@1 PRS@2 PRS@4 PRS@5

Atlanta 0.4727 0.6510 0.7544 0.7842 - - - -
Austin 0.5994 0.6609 0.6894 0.7216 0.9472 0.7225 0.8262 0.7925
Boston 0.8440 0.7888 0.8061 0.8350 - - - -
Chicago 0.8817 0.9380 0.8752 0.8912 0.5942 0.7424 0.7666 0.7637
Cleveland 0.4996 0.5487 0.6764 0.7230 - - - -
Dallas 0.5806 0.7366 0.6843 0.7522 0.5518 0.6478 0.7357 0.7372
Los Angeles 0.9178 0.9060 0.8773 0.8697 0.8597 0.6573 0.7124 0.7783
Manhattan 0.8342 0.8621 0.9248 0.9140 0.7800 0.8189 0.8847 0.8107
Philadelphia 0.8587 0.9160 0.9224 0.9119 0.6461 0.7823 0.8447 0.8636
Phoenix 0.8496 0.8158 0.8466 0.8497 0.6779 0.5378 0.6035 0.6645
Sacramento 0.6165 0.7453 0.7158 0.7499 0.5125 0.5209 0.6022 0.6080
Tampa 0.7906 0.8191 0.7912 0.7573 0.6344 0.7683 0.7338 0.6860
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Table A.21 Alternative performance metrics for training city Los Angeles

Test City Restaurants Grocery Stores
PRS@1 PRS@2 PRS@4 PRS@5 PRS@1 PRS@2 PRS@4 PRS@5

Atlanta 0.6170 0.6972 0.6802 0.7120 - - - -
Austin 0.8929 0.8158 0.7449 0.7747 0.5717 0.6403 0.7282 0.6989
Boston 0.3896 0.5496 0.7226 0.6639 - - - -
Chicago 0.8232 0.8323 0.8480 0.8418 0.9278 0.8544 0.8028 0.8306
Cleveland 0.7372 0.7426 0.6910 0.7483 - - - -
Dallas 0.7516 0.8005 0.8030 0.8001 0.8989 0.8557 0.8501 0.8729
Houston 0.8768 0.9113 0.8813 0.9066 0.5854 0.6237 0.6803 0.7007
Manhattan 0.8996 0.8828 0.8963 0.8840 0.8239 0.7732 0.6979 0.7380
Philadelphia 0.8673 0.8452 0.8581 0.8532 0.5287 0.4590 0.6272 0.6058
Phoenix 0.8050 0.8412 0.8393 0.8406 0.8879 0.8696 0.8688 0.8845
Sacramento 0.8385 0.8667 0.7645 0.7808 0.4277 0.4576 0.5341 0.5977
Tampa 0.8375 0.7476 0.7653 0.7959 0.6973 0.7116 0.6198 0.6274

Table A.22 Alternative performance metrics for training city Manhattan

Test City Restaurants Grocery Stores
PRS@1 PRS@2 PRS@4 PRS@5 PRS@1 PRS@2 PRS@4 PRS@5

Atlanta 0.6611 0.7301 0.7142 0.6994 - - - -
Austin 0.8070 0.7621 0.7525 0.7635 0.4694 0.6603 0.7372 0.7105
Boston 0.4773 0.6601 0.7575 0.7851 - - - -
Chicago 0.7964 0.8565 0.8704 0.8871 0.8723 0.8546 0.8286 0.8531
Cleveland 0.6678 0.7243 0.6890 0.7085 - - - -
Dallas 0.7797 0.8078 0.7995 0.8074 0.5805 0.7477 0.6903 0.7153
Houston 0.8981 0.9102 0.9164 0.9273 0.7685 0.7425 0.7959 0.7613
Los Angeles 0.8955 0.9233 0.9176 0.9266 0.5698 0.6795 0.7450 0.7685
Philadelphia 0.8113 0.8782 0.8538 0.8687 0.9218 0.7649 0.6776 0.7310
Phoenix 0.8711 0.7801 0.8689 0.8911 0.5397 0.7166 0.6454 0.7126
Sacramento 0.9026 0.8631 0.8094 0.8213 0.5592 0.6546 0.6527 0.6370
Tampa 0.8526 0.8017 0.8073 0.8152 0.9511 0.6987 0.7212 0.6762
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Table A.23 Alternative performance metrics for training city Philadelphia

Test City Restaurants Grocery Stores
PRS@1 PRS@2 PRS@4 PRS@5 PRS@1 PRS@2 PRS@4 PRS@5

Atlanta 0.7066 0.6616 0.6833 0.7511 - - - -
Austin 0.7747 0.7178 0.7510 0.8078 0.3903 0.6721 0.6789 0.7183
Boston 0.5727 0.6737 0.8021 0.7867 - - - -
Chicago 0.9743 0.9739 0.9209 0.9055 0.8169 0.7900 0.7516 0.7480
Cleveland 0.7775 0.7207 0.7080 0.7599 - - - -
Dallas 0.8628 0.7830 0.7354 0.7957 0.6527 0.7902 0.7277 0.7327
Houston 0.9730 0.9754 0.9637 0.9598 0.5850 0.6709 0.7550 0.7489
Los Angeles 0.7644 0.8677 0.8527 0.8794 0.7079 0.7206 0.7468 0.7721
Manhattan 0.8592 0.8773 0.8953 0.8835 0.9494 0.8353 0.8995 0.8566
Phoenix 0.8777 0.8922 0.8898 0.9059 0.7073 0.7608 0.7277 0.7774
Sacramento 0.7710 0.7787 0.7769 0.7947 0.5905 0.5623 0.6055 0.6011
Tampa 0.5925 0.6923 0.7313 0.7433 0.8538 0.7124 0.8394 0.8420

Table A.24 Alternative performance metrics for training city Phoenix

Test City Restaurants Grocery Stores
PRS@1 PRS@2 PRS@4 PRS@5 PRS@1 PRS@2 PRS@4 PRS@5

Atlanta 0.7035 0.6965 0.7257 0.7110 - - - -
Austin 0.8236 0.8061 0.8184 0.8011 0.5717 0.7851 0.7301 0.7044
Boston 0.5520 0.7225 0.7678 0.7845 - - - -
Chicago 0.8858 0.8863 0.9393 0.9467 0.9278 0.8496 0.7493 0.7596
Cleveland 0.6843 0.7178 0.7017 0.7059 - - - -
Dallas 0.7733 0.8049 0.7938 0.7801 0.8989 0.7636 0.7470 0.7332
Houston 0.8203 0.8881 0.8855 0.9058 0.5854 0.6882 0.7217 0.6610
Los Angeles 0.8115 0.8882 0.8340 0.8657 0.6731 0.7621 0.8258 0.8189
Manhattan 0.8941 0.9334 0.9118 0.9105 0.8239 0.8046 0.7709 0.7603
Philadelphia 0.7940 0.8396 0.8040 0.8251 0.5287 0.5659 0.7021 0.7711
Sacramento 0.6833 0.7078 0.7775 0.7861 0.4277 0.5358 0.5580 0.5725
Tampa 0.6973 0.8057 0.8550 0.8508 0.6973 0.7869 0.7610 0.7266
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Table A.25 Alternative performance metrics for training city Sacramento

Test City Restaurants Grocery Stores
PRS@1 PRS@2 PRS@4 PRS@5 PRS@1 PRS@2 PRS@4 PRS@5

Atlanta 0.4639 0.5593 0.5984 0.6664 - - - -
Austin 0.8218 0.7641 0.7464 0.7412 0.5144 0.5721 0.6925 0.7003
Boston 0.7532 0.7860 0.6289 0.6146 - - - -
Chicago 1.0000 0.8870 0.8812 0.9049 0.9643 0.9595 0.9244 0.9371
Cleveland 0.6869 0.6539 0.8637 0.8683 - - - -
Dallas 0.7458 0.8463 0.8264 0.8157 0.7911 0.9243 0.8562 0.8430
Houston 0.8103 0.8611 0.8969 0.8856 0.9242 0.8258 0.8028 0.7789
Los Angeles 0.9125 0.9509 0.9467 0.9504 0.6423 0.6281 0.7109 0.7199
Manhattan 0.9435 0.9448 0.9099 0.9308 0.7442 0.6738 0.7754 0.7749
Philadelphia 0.7316 0.8197 0.7754 0.8181 0.4265 0.4785 0.6822 0.6547
Phoenix 0.9710 0.9510 0.8806 0.8817 0.7024 0.7251 0.7174 0.6934
Tampa 0.8500 0.8887 0.8573 0.8847 0.7160 0.8097 0.8408 0.8084

Table A.26 Alternative performance metrics for training city Tampa

Test City Restaurants Grocery Stores
PRS@1 PRS@2 PRS@4 PRS@5 PRS@1 PRS@2 PRS@4 PRS@5

Atlanta 0.6046 0.7509 0.7675 0.7230 - - - -
Austin 0.6859 0.6696 0.6980 0.7259 0.6813 0.6058 0.6678 0.7061
Boston 0.9002 0.7038 0.7131 0.7109 - - - -
Chicago 0.7731 0.8850 0.8930 0.9149 0.6725 0.7334 0.6823 0.6849
Cleveland 0.5498 0.6719 0.7342 0.7454 - - - -
Dallas 0.8432 0.7962 0.7665 0.7589 0.7125 0.7367 0.7429 0.7528
Houston 0.8165 0.8234 0.8749 0.8705 0.9754 0.9586 0.8479 0.8341
Los Angeles 1.0000 0.9716 0.9240 0.8912 0.5089 0.4850 0.7328 0.7102
Manhattan 0.9403 0.9722 0.9770 0.9501 0.6983 0.7290 0.7232 0.7376
Philadelphia 0.8265 0.9002 0.9299 0.8869 0.6713 0.5940 0.6988 0.7092
Phoenix 0.8833 0.8606 0.8521 0.8722 0.6370 0.5659 0.7379 0.6870
Sacramento 0.6309 0.7949 0.8385 0.8699 0.4255 0.4358 0.5331 0.5406
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APPENDIX B TRAINING STABILITY TRAINING STABILITY

To ensure the stability of training, particularly given the novelty of the work and the
vulnerability of RL algorithms to divergence, the Q-value updates are analyzed and
visualized in Figures B.1 and B.2. It is observed that the proposed DQL framework
does not suffer from divergence or overestimation of Q-values.
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(a) Atlanta (b) Austin (c) Boston

(d) Chicago (e) Cleveland (f) Dallas

(g) Houston (h) Los Angeles (i) Manhattan

(j) Philadelphia (k) Phoenix (l) Sacramento

(m) Tampa

Figure B.1 Estimated and target Q-values throughout model training for business
category restaurants and other eating places
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(a) Austin (b) Chicago (c) Dallas

(d) Houston (e) Los Angeles (f) Manhattan

(g) Philadelphia (h) Phoenix (i) Sacramento

(j) Tampa

Figure B.2 Estimated and target Q-values throughout model training for business
category grocery stores

In addition to monitoring the Q-values, the training loss is also observed to ensure
stability. As illustrated in Figures B.3 and B.4, no divergence was detected during
the training in any of the cities or business categories.
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(a) Atlanta (b) Austin (c) Boston

(d) Chicago (e) Cleveland (f) Dallas

(g) Houston (h) Los Angeles (i) Manhattan

(j) Philadelphia (k) Phoenix (l) Sacramento

(m) Tampa

Figure B.3 Training loss for business category restaurants and other eating places
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(a) Austin (b) Chicago (c) Dallas

(d) Houston (e) Los Angeles (f) Manhattan

(g) Philadelphia (h) Phoenix (i) Sacramento

(j) Tampa

Figure B.4 Training loss for business category grocery stores
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