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Abstract

The vehicle mass and road grade have significant influences on the longitudinal
dynamics of commercial vehicles for passenger transportation, such as buses and
shuttles. Therefore, estimating these factors plays an important role in both con-
trolling the vehicle’s motion and estimating its total energy consumption. The
road grade varies as the vehicle moves, and the gross weight of a shuttle changes
during a trip due to the number of passengers on board, which requires an online
estimation that can track these changes during the operation. The challenge of
making accurate online estimations has usually been overcome by placing addi-

tional sensors on the vehicle and incorporating sensor fusion techniques.

This study investigates the efficacy of conventional online parameter estimation
approaches, specifically Gradient Descent and Recursive Least Squares in esti-
mating the road grade and vehicle mass without utilizing any sensors except the
ones typically included in standard commercial vehicles. A commercially available
electric drive shuttle was converted into a test bed, and the performance of the
proposed methods was evaluated under actual road conditions with varying gross
weights. The results indicated that the estimation performance is highly sensitive
to model accuracy, warranting further study on identifying prominent factors that

affect the longitudinal dynamics of the vehicle.



Elektrikli Bir Servis Aracinin Yokusg Egimi ve Briit Agirhiginin

Boylamasima Arag¢ Dinamiklerine Dayali Cevrimi¢i Tahmini
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Tez Danmigmani: Asst. Prof. Dr. Melih Tiirkseven

Anahtar kelimeler: Arag agirlik tahmini, yol egimi tahmini, ¢evrimici tahmini,
gradyan azalma, 6zyinelemeli/indirgemeli/ardigik en kiiglik kareler, gergek

zamanl tahmin, boylamasina ara¢ dinamigi, ticari elektrikli arag

ézet

Arag kiitlesi ve yol egimi, yolcu tagimaciligi igin kullanilan otobiisler ve servis
araclar1 gibi ticari araclarin boyuna dinamikleri lizerinde onemli bir etkiye sahip-
tir. Bu nedenle, bu faktorlerin tahmin edilmesi, hem aracin hareketinin kontrol
edilmesinde hem de toplam enerji tiiketiminin tahmin edilmesinde onemli bir rol
oynamaktadir. Yol egimi, arac hareket ettikce degismekte, servisin briit agirhig ise
yolculuk sirasinda tagidigi yolcu sayisina bagli olarak farklilik gostermektedir. Bu
durum, operasyon sirasinda bu degisiklikleri takip edebilecek ¢evrimigi bir tahmin
sistemi gerektirmektedir. Dogru c¢evrimici tahminler yapmak genellikle araca ek

sensorler yerlestirilmesi ve sensor fiizyon tekniklerinin kullanilmasiyla saglanmigtir.

Bu caligma, yol egimi ve arag kiitlesini tahmin etmek igin, standart ticari araclarda
genellikle bulunan sensorler diginda baska sensorler kullanmaksizin, geleneksel
¢evrimici parametre tahmin yaklagimlarinin, ozellikle gradyan azalma ve 6zyinelemeli
/ indirgemeli / ardigik en kiigiik kareler yontemlerinin etkinligini aragtirmaktadir.
Temin edilen ticari elektrikli bir servis araci, test aracina dontistiiriilmiis ve incele-
nen yontemlerin performansi, degisen briit agirliklarla gercek yol kogullarinda test
edilmistir. Sonugclar, tahmin performansinin model dogruluguna oldukca duyarh
oldugunu gostermis ve aracin boyuna dinamiklerini etkileyen onemli faktorlerin

belirlenmesi iizerine daha fazla ¢aligmanin gerekliligini ortaya koymustur.
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Chapter 1

Introduction

1.1 Context and Motivation

In 2022, transportation activities accounted for 31% of the EU total energy con-
sumption [6] and, 74% of all energy consumption is associated with road transport.
In addition to that, over 25% of greenhouse gas emissions from road transport in
the EU are attributed to the heavy-duty vehicle (HDV) sector. Based on the reg-
ulation 2024/1610 of the European Parliament and council, from 2025 all HDV
manufacturers must comply with fleet-wide CO2 emissions standards for approval
of new HDVs. The purpose of this regulation is to reduce emissions in order to

meet the 2030 objectives and achieve climate neutrality for Europe by 2050.

Battery electric (BEV) and hybrid electric vehicles (HEV) with enhanced energy
storage system (ESS) and propulsion system efficiency, these domains on which
we can concentrate and observe enhancement especially, consumption and range

estimation, during the period of transition time.

The inertia of the vehicle including vehicle mass is affecting both the prediction

of energy consumption and the model of the vehicle dynamics. So, getting it right

would improve both planning the energy-saving motion and control of the vehicle.

In [7], the research examines energy requirements for various vehicle categories, in-

cluding the Nissan Micra (Category B), Audi A2 and Peugeot 106, along commuter
1



routes between Bristol and Bath, utilizing both empirical data and simulations.
Substantial assumptions were established for comparisons, including route charac-
teristics, traffic circumstances, and vehicle tonnage. The energy demands of rolling
resistance, aerodynamic drag, inertial acceleration, gravitational losses, and cor-
nering forces were determined by a parametric model. The results indicated that
the energy demand of the B class vehicle decreases by 6-8% when the mass of the
vehicle is reduced by 10%. Road gradient also significantly affected efficiency, with
hilly routes such as the Upper Bristol Road causing higher gravity and cornering
losses, while flatter routes provided the advantage of lower aerodynamic losses at

higher speeds.

Road grades are even more influential (compared to mass) on energy cost. A 1%
change in the road grade results in a 15% increase in the energy required for main-
taining the speed of the vehicle. A 6% road grade doubles the consumption [7].
Therefore, a motion planner that can take road grade into account could reduce
the energy consumption by modulating the target speed of the vehicle online. For
example, in [§], cruise controlling with and without taking road grade into ac-
count resulted in a 5% saving in energy and 42% reduction in gear shift. In order
to optimize fuel efficiency, the investigation concentrates on a Scania heavy-duty
diesel vehicle that has been assessed through simulations and real-world highway
tests. It utilizes a dynamic programming (DP) technique within a look-ahead
control (LC) framework, including GPS and on-board road slope data to optimize
the truck’s velocity trajectory. This predictive controller dynamically modifies
speed according to road conditions, resulting in considerable fuel savings. The
traditional cruise control (CC), which sustains a steady pace without adjusting
for road inclines, acts as a standard for comparison. In contrast to CC, LC in-
corporates the DP technique to predict and change speed, surpassing CC in fuel
efficiency and trip optimization by utilizing road geometry data in both simulated

and actual environments.



1.2 An Overview of Estimation Techniques

1.2.1 Recursive Least Squares (RLS)

The Recursive Least Squares algorithm is a well-established method in vehicle
dynamics that allows for the real-time estimation of critical parameters, includ-
ing vehicle mass and road grade. The studies that were reviewed demonstrate
the application and advancements of RLS, with a particular emphasis on its in-
tegration with longitudinal and lateral vehicle dynamics to improve the accuracy
of estimation. Longitudinal dynamics encompass aspects like aerodynamic drag,
rolling resistance, and road gradient effects, whereas involve tire forces, slip angles,
and steering behavior examples of lateral dynamics. This comprehensive approach
ensures robust parameter estimation across diverse operational conditions. Kim
et al. [9] employed Recursive Least Squares to estimate vehicle mass during both
straight-line and lateral maneuvers with single forgetting factor, applied for both
gradient and mass analyses. Their research utilized simulations to develop and
evaluate estimation algorithms, achieving error margins of less than 5% in dy-
namic conditions. Additionally, the study verified torque-based and sensor-based
approaches for estimating road grade on a Hyundai-Kia YF Sonata Hybrid. Per-

formance was precise across grades of up to 20%, as indicated by the results.

Mclntyre et al. [I0] present a significant two-stage estimation algorithm for de-
termining vehicle mass and road grade, specifically targeting heavy-duty vehicles
(2009). Initially, an adaptive least-squares algorithm devoid of a forgetting factor
determines the vehicle’s weight. Assuming the mass estimate is precise, a nonlin-
ear estimator accounts for the time-varying road gradient in the subsequent step.
The method attained an error of under 5% in mass estimation within 20 seconds
and accurately monitored road grade fluctuations with a root-mean square error

of about 0.55.

The research confirmed the method via simulations and empirical testing on heavy-

duty trucks. Vehicles with varied payloads and specified mass configurations were



employed in scientific experiments along multiple routes, while simulations incor-
porated sinusoidal and step fluctuations in road grade. This dual-phase system
showed significant efficiency in use scenarios, tackling issues such as inconsistent
acceleration data and fluctuating vehicle conditions. Vahidi et al. [I1] proposed a
Recursive Least Squares approach using several forgetting factors for the real-time
estimation of vehicle mass and road gradient. By devoting distinct forgetting fac-
tors to mass (fixed) and grade (time-varying), the algorithm overcame the difficulty
of estimating parameters with inconsistent rates of variation. The test was per-
formed on a Freightliner heavy-duty truck with a mass of roughly 20 tons (21,250
kg) and the methodology was corroborated using simulations and real-world test
environment. Simulations featured step and sinusoidal fluctuations in road grade,
while empirical tests were performed on a 12 km segment of Interstate 15 in San

Diego, characterized by varied road gradients and payload conditions.

The test conditions included driving with constant and varying loads, throttle
pulsations, and scenarios both with and without gear shifts. To avoid instability
during the real-world tests, the estimator was silenced while gear shifting was hap-
pening to overcome rapid changes in dynamics. In resulted, the mass estimation
achieved a maximum error of 2.8% and a root-mean-square (RMS) error of 350
kg. , reducing the RMS error to 310 kg for mass estimation and 0.24 degrees for
grade estimation. This study highlighted the effectiveness of RLS with multiple
forgetting factors in providing accurate and robust mass and grade estimations

under dynamic driving conditions.

Lin et al. [12] introduced a mass estimation technique for heavy-duty vehicles
(HDVs) with RLS algorithm that at the same time estimates vehicle mass and
system error in longitudinal dynamics. The research conducted in real-world sce-
narios on highways and through simulations a diesel-engine heavy-duty vehicle
equipped with a 12-speed transmission is used. Three load conditions were im-
plemented in the real-world tests: a completely loaded trailer (48 tons), an empty
trailer (23.2 tons), and a trailer that was not present (9.5 tons). These condi-
tions were designed to simulate typical driving scenarios, including acceleration,

cruising, and stopping.



The system error, referred to as correlated noise, resulted in consistent variances
due to factors such as sensor drift and external disturbances. The accuracy is op-
timized by 8.8% as a result of the mass estimation error being reduced from 16%
to 7.2% through the integration of this system error into the model. The tests
demonstrated optimal performance under maximum load conditions, exhibiting
an average absolute inaccuracy of merely 4% of the entire load. This method il-
lustrates the efficacy of integrating system error factors with RLS algorithms to
improve mass estimate precision, rendering it particularly suitable for sophisti-
cated vehicle control systems such as automated gear shifting and fuel-efficient

cruise control.



1.2.2 Kalman Filters

Focusing on the accuracy and robustness of real-time applications, Lingman and
Schmidtbauer [13] proposed a Kalman Filtering-based technique for the simulta-
neous estimation of vehicle mass and road slope in heavy-duty vehicles(trucks).
Evaluation was performed on two different configurations: one that utilized speed
measurements in conjunction with propulsion force data, and another that incor-
porated an accelerometer for the purpose of measuring specific forces. By uti-
lizing multiple sensors, the second configuration enabled the separation of mass
and slope estimation into independent filters, thereby eradicating the necessity for
propulsion force models in slope estimation and enhancing performance. The re-
sults indicated that the use of multiple sensors substantially improved the accuracy
and robustness of the system, particularly under varying road and noise conditions.
Consequently, it was rendered suitable for real-time heavy-duty vehicle operations.
Winstead and Kolmanovsky [14] introduced a technique for the simultaneous es-
timation of vehicle mass and road gradient utilizing an Extended Kalman Filter
(EKF) in conjunction with Model Predictive Control (MPC). The EKF assessed
road gradient and mass in real time, while MPC dynamically regulated engine
torque to enhance parameter identifiability. The research concentrated on a mid-
sized passenger vehicle (1500 kg) and verified the methodology using simulations,

accounting for engine torque errors, road gradient fluctuations, and system noise.

The strategy tackled noisy situations resulting from uncertainties in engine torque
output, road surface abnormalities, and sensor inaccuracies. It limited vehicle
speed to 18.67-21.33 m/s and implemented probabilistic limitations to address
these uncertainties. The results indicated a road grade estimation error of 0.5
degrees and a vehicle mass estimation error within 5%, illustrating the approach’s

durability and efficacy under severe dynamic settings.

A dynamic joint estimation technique for vehicle mass and road slope was intro-
duced by Zhao et al. [I]. This technique is capable of managing the intricacies of

braking and turning functions in real-world driving and typical traffic conditions.



The methodology employs an EKF for road slope estimate, utilizing a RLS algo-
rithm with a forgetting factor for mass estimation. A nested loop framework is
employed to accomplish this, which decouples the strong interdependence between
mass and road slope. This ensures precise and independent estimations of the two

parameters while minimizing error propagation between the two parameters. The
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FIGURE 1.1: Small amount of brakes and turns, [1]

dynamic model’s impacts of braking and turning are mitigated /eliminated by the
integration of state maintenance and segment estimation in the approach in Fig.
and [1.2] eliminated Real-world experiments were conducted on a 2015 Ford
Edge model vehicle in Chongqging, China, on flat terrain, including uphill and
downhill periods. The vehicle was operated by passenger groups 3 and 5, with
total weights of 2121 kg and 2211 kg, respectively. Mass estimation errors ranging
from 25.17 to 40.51 kg, or 1.18% to 1.83% error, were observed in the results, in-
dicating the algorithm’s durability, precision, and adaptability to intricate driving

scenarios.

Zhang et al. [I5] proposed an alternative method for the real-time estimation
of vehicle mass and road grade, which was evaluated on a 4WD electric mini-
car. The methodology developed by integrating data from many sensors relies
on a Kalman Filter to calculate the road gradient, including data from wheel-

based speed sensors, GPS, and INS to mitigate noise and drift. This approach



Mass estimation

. Brake conditione true:1/false:0e

S ol —— ——— o — 3000

()]

@ . -

& D 2000

: = —— N

@ 05f . .

= =

= ® 1000 Mass estimation
é 0 - 0 . . Actual mass

g 0 20 40 60 80 100 20 40 60 80 100
. Driving timee se

° Steering wheel angel condition Slope estimation

2 - T T T 10 T T . .
L, 200¢ g Slope estimation
& 100} . K] Actual Slope

E i i . N

e Of N AN o Of g
< i Il Q

= 1000\ L ] AWATTERY 1 o)

2 200t ‘ ' 1 @

oy L L I L _10 1 1 1 r

@ 0 20 40 60 80 100 20 40 60 80 100
w Driving timee s Driving timee s*

FIGURE 1.2: Lots of brakes and turns, [I]

yielded precise and accurate grade estimates. The RLS method was employed
to improve accuracy and reduce variability in the prediction of vehicle mass. The
mass estimation and road grade inaccuracies were within 5%, and the performance
remained robust under dynamic conditions during real-world testing on diverse

grades, validated using Hardware-in-Loop (Vector tool called CANoe).

1.2.3 Other Techniques

Mahyuddin et al. [2] suggested a sliding-mode term-based adaptive observer-based
vehicle mass estimation technique for robustness and finite-time convergence. The
approach included additional filtered parameters, a forgetting factor, and relied
on Lyapunov Theory to ensure the stability and convergence of estimate errors.
In order to replicate real-world conditions, tests were conducted on a small-scale
vehicle (10 kg nominal mass) with step changes in mass (e.g., adding or eliminating
weights of 1.85 kg). Noise and velocity variations were also applied. In Fig. [1.3
the algorithm’s performance at a velocity demand of 0.14 m/s with introduced
noise, wherein mass estimate precisely followed the actual values. Simulations
additionally confirmed the algorithm’s robustness. The research exhibited precise

and swift mass estimate with negligible mistakes in dynamic and noisy conditions,



underscoring its applicability for real-time use in commercial vehicles such as buses

functioning under diverse loads.
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FIGURE 1.3: Mass estimation, m kg, [2]

DeBruyne et al. [16] introduced a novel algorithm for the online estimation of
vehicle inertial parameters, such as mass, center of gravity (COG) position in
the horizontal plane, and moments of inertia, with the objective of enhancing
chassis control systems. The algorithm calculates total vehicle mass by analyzing
suspension displacement signals and stiffness attributes, then allocates payload
mass (passengers and luggage) across designated spots with a Monte Carlo method,
which incorporates uncertainties via probabilistic modeling. Validation studies
utilizing Kinematics and Compliance (K&C) data demonstrated good precision,
with estimation errors for mass and other parameters often ranging from 1% to 2%.
This work emphasizes the significance of dynamic mass and parameter estimation

in improving the safety and control performance of vehicles.

Torabi et al. [I7] and Korayem et al. [I§] proposed sophisticated approaches
for mass estimate in heavy-duty vehicles, applying machine learning and dynamic
modeling techniques. A Feed Forward Neural Network (FFNN) was developed by
Torabi et al. [I7] to estimate vehicle mass and road grade by utilizing standard
onboard signals, including speed, acceleration, and engine torque. The collection

comprised six synthetic road segments, each measuring 10 kilometers, alongside
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actual highway data from Sweden, with mass values ranging from 20 to 34 metric
tons under various driving situations. The FFNN attained a 1% RMS error in mass
estimate and 0.10-0.14 degrees in road grade, markedly surpassing conventional
model-based approaches. Conventional methods, including recursive least squares
and Kalman filtering, generally provide mass estimation inaccuracies of 2-7% and

road grade inaccuracies of 0.2-0.77 degrees RMS.

Korayem et al. [I8] suggested two methodologies for estimating trailer mass in
tractor-trailer systems: a system model-based approach, which resulted in a max-
imum error of 12%, and a Deep Neural Network (DNN)-based technique, which
attained a maximum error of 10%. The dataset included 50 simulated maneu-
vers and experimental data gathered from an electric Chevrolet Equinox towing a
trailer, including diverse payloads, geometry, and road conditions. DNN demon-
strated adaptability and cost-efficiency by generalizing effectively across various

configurations without retraining.

Both investigations underscore the importance of machine learning in the creation
of precise and resilient mass estimations. These technologies improve vehicle safety,
stability, and control performance, providing effective solutions for commercial

vehicles such as buses.

1.2.4 Contributions

Commercial passenger vehicles have to operate at different body weight condi-
tions, since the number of passengers carried in these vehicles change frequently.
Such mid-operation changes in the inertia of the vehicle affect the fuel efficiency
significantly, making online gross-weight estimation necessary. Our survey on the
relevant literature indicates the existence of various methods with different levels
of computational power and sensing hardware requirements. Some of the most
advanced methods involve the use of neural networks that need to run contin-
uously, or additional sensors that would not be otherwise needed in commercial

vehicles. While the accuracy of such algorithms are exceptionally high, they are
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not cost-efficient. This is an important concern for commercial vehicles that are

usually planned for mass production.

Classical prediction-error-based online estimation methods, on the other hand,
offer a cost-effective alternative; since they do not require specialized equipment
capable of running complex computations, or additional sensors just for mass es-
timation. In return, making accurate and reliable predictions require an accurate
system model, including the road conditions such as the inclination angle. These
methods have been tested in many different vehicle types, road conditions and
driving configurations. Our survey indicates that the success of these methods de-
pend largely on these conditions, and there is no clear indication for the superiority

of a particular approach.

This study investigates the efficacy of four different estimation-error-based vehicle
mass estimators under the road and driving conditions typical for electric commer-
cial passenger vehicles that are driven in city traffic. Our analysis reveals whether
the use of classical and cost effective approaches in our particular application sce-
nario yield an acceptable estimation accuracy, and if so the conditions that enable
the satisfactory performance. The outcomes of this study are expected to illumi-
nate key modeling aspects that could affect the estimation accuracy significantly,
and the driving conditions under which the investigated methods are prone to

fail.



Chapter 2

Experimental Setup

2.1 Development of the Test Vehicle

This study utilized the JEST Electric Vehicle, a 12-passenger electric commer-
cial vehicle developed and manufactured by KARSAN Automotive [I9] in Bursa.
The vehicle is primarily distributed in the North American, Japanese and EU
markets. An outdated test vehicle was revitalized to advance autonomous vehicle
research. The electronic and mechanical systems of the vehicle were significantly
upgraded during this process, resulting in a configuration that closely resembles
a newly manufactured model. Initially designed for the North American market,

the vehicle was modified to meet the requirements of the EU market.

The physical dimensions of the test vehicle are 5845 mm in length, 2520 mm in
width, and 2850 mm in height. A maximum range of 210 km is possible per
charge, as it is endowed with a usable battery capacity of 75.8 kWh. For this
study, only the conventional systems of the JEST EV model were utilized, without
incorporating additional components, despite the vehicle’s capability of supporting
advanced sensors and processors for autonomous operation. This approach was

adopted to ensure the generalization of the results to analogous vehicle models.

12
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The JEST EV has a lightweight chassis engineered for energy economy and an
advanced battery management system designed to monitor and control power con-
sumption. Furthermore, regenerative braking technology improves the range of the
vehicle by converting kinetic energy into stored energy during deceleration. The
following sections provide a detailed analysis of the vehicle and the components

employed in this research.

FIGURE 2.1: Jest EV Lansman Photo, 2019
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FIGURE 2.2: Vertical Forces on The Vehicle are in Equilibrium

TABLE 2.1: Tire Based Weight Distribution and Wheelbase

Definition | Value | Unit
P&P, 1860 kg
P& Py 1840 kg
L 3750 | mm
Piotar 3700 kg

2.1.1 Renewal Process

The vehicle, which was delivered in November 2023, underwent a comprehensive
renovation as part of the project. The vehicle was prepared for testing over a
period of approximately five months. During this process, all existing wiring was
removed and replaced with around 3000 meters of new wiring to accommodate

the upgraded components and systems. The vehicle underwent a comprehensive
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transformation during this period, resulting in the fully equipped condition shown

in Fig. [2.3] tailored to meet the specific requirements of our experiments.

2.1.1.1 Reception and Initial Assessment of Vehicles

A preliminary evaluation was conducted upon the vehicle’s arrival to assess its

existing condition and suitability for the project requirements.

Existing Wiring Evaluation: An assessment was conducted in collaboration
with the prototype workshop and the engineering department to ascertain the
effect of the antiquated wiring system on the vehicle’s safety and performance. An
examination was conducted to determine the necessity of replacing the obsolete
and deteriorated wiring, which was incompatible with modern software and vehicle
systems. Electrical systems required to meet the specifications of the current

vehicle model were subsequently identified and procured.

Evaluation of Electronic Control Units (ECUs): The control specifications
of the existing electronic control units were analyzed. The vehicle, having been
inactive prior to the project, had most of its components removed for use in other
vehicles and was delivered without any electronic control equipment. This neces-
sitated the acquisition and integration of new ECUs to meet the project’s require-

ments.

Trim and Door Components: As depicted in Fig. [2.3] unlike the wiring and
control units, the vehicle was delivered with most interior components missing,
except for the exterior trim elements. Critical components, including the dash-
board, steering wheel, command /control systems, and the Human-Machine Inter-
face (HMI) such as the touch screen, were absent. These components had to be
replaced and installed to ensure the vehicle’s functionality and alignment with the

experimental objectives.
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2.1.1.2 Replacement of Obsolete Wiring and Transformation of Vehicle

Platforms

The vehicle’s reliability and safety were improved by replacing its original wiring
with robust layout. During this process, the vehicle, which was initially de-
signed for an alternative market, was modified to comply with European stan-
dards through chassis modifications, thereby enhancing its compatibility with au-

tonomous driving infrastructure.

Furthermore, the charging system and its components, which were initially situ-
ated at the front of the vehicle to comply with North American standards, were
relocated and redesigned to satisfy the requirements of the European market. The
body and chassis were restructured to support a 22 kW AC charging system, re-
placing the previous 7 kW AC system, thereby enhancing charging efficiency and

market suitability.

2.1.1.3 Installation of New Wiring

Approximately 3 kilometers of new wiring were placed throughout the car. In ac-
cordance with modifications to the high-voltage management system, cable types
and connection points were redefined to guarantee the safety of the electrical cir-
cuits and fulfill the criteria of the autonomous project. To improve safety, the
electrical layout strategically positions cables at a safe distance away from critical
components. Additionally, the risk of short circuits was mitigated by maintaining

a minimum distance between power and data cables.

Tests were carried out on the connections pin-to-pin technic to guarantee their
structural integrity and current-carrying capacity following the installation. Fur-
thermore, the vehicle’s The Controller Area Network (CAN) connections were

meticulously assessed to ensure that the data exchange was uninterrupted
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2.1.1.4 Renewal of Control Units

Selection and Installation of Control Units: The vehicle body was modified
to comply with the requirements of the EU region, and electronic components
that were specifically designed for this market were selected and installed. This
phase guaranteed that the configuration was compatible with the most recent

modification and that it complied with the regional norms.

Calibration and System Integration: Calibration procedures and software
updates for each control unit were performed individually to activate the ECUs
and bring the vehicle into operational state. Following this, functional tests were
implemented to confirm the integrity of the system. During this process, necessary
optimizations were implemented to enhance data collection sensitivity. In addition,
the compliance of the pre-test control units with the project requirements was

thoroughly evaluated and confirmed.

2.1.1.5 Final Inspections and Tests

Deployment Tests: The compatibility between the control units and the new in-
stallation has been tested. During these tests, the accuracy and timing of the data
collected through each control unit were evaluated by checking the communication

lines. In addition, 1,000 km road and function tests have also been conducted.

Data Collection and Monitoring Tests: The tool has undergone data col-
lection tests under conditions close to real test scenarios. Especially, it has been
confirmed that the transactions were carried out without any interruption or de-

viation in the data flow.
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FIGURE 2.3: Vehicle Before and After Renewal Process

2.1.2 Vehicle Communication and High Voltage Network

The Controller Area Network (CAN) bus is a communication protocol that facil-
itates the transmission of data between ECUs in vehicles. The CAN bus, char-
acterized by its cost-effectiveness and durability, facilitates real-time data sharing
among many components, including the engine, gearbox, brake system, and air
conditioning within the vehicle. Rather than relying on a central control unit,
each ECU transmits its information across the network and acquires the necessary
data. This system enhances vehicle efficiency and facilitates fault identification.
In contemporary automobiles, there are numerous applications, with system-based
or regional CAN BUS lines being the most prevalent. Data was gathered only from
two of the five CAN Bus lines in our experiment vehicle while we were performing

tasks on it. The visual representation of the general structure is depicted in Fig.

24

CANBUS SAE J1939

FI1GURE 2.4: Vehicle Communication Topology
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In electric vehicles, high-voltage (due to regulations and standards, high-voltage
cables are manufactured in orange to ensure visibility and compliance with safety
requirements) cables deliver electricity to the primary system, generally between
400V and 800V. These wires provide energy transfer from the battery to the elec-
tric motor, inverter, charging system, and other high-power subsystems, while also
receiving energy during charging and braking. High-voltage systems are contin-
uously monitored with specialized sensors and a High Voltage Interlock (HVIL)
system, which can shut the system upon detecting a warning to ensure operational

safety.

The secure and efficient transmission of high voltage is crucial for the operation and
safety of electric cars. Figure [2.5]illustrates the appropriate energy distribution of
the system. Electrical energy is converted into mechanical energy, which generates

the traction force necessary to propel the vehicle.

m— Electrical Power

Wheels .
(2WD) Transmissio Motor Inverter Battery

S Mechanical Power

FI1GURE 2.5: Vehicle High Voltage Topology

2.1.3 Related Electronic Systems

2.1.3.1 Electric Vehicle Control Unit

The Electrical Vehicle Control Unit (EVCU) is a software-based system that is
primarily responsible for the control and supervision of the high-voltage (HV)
systems of electric vehicles (component may be referred to by different names
by other OEMs), unit and developed in the SIMULINK framework, is intended

to enhance vehicle performance and ensure safe transportation. Its function is
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especially crucial, as it supervises and regulates essential processes including motor

control, regenerative braking, battery management, and power distribution.

Future research could involve the integration of the proposed algorithms into the
EVCU, which would facilitate the real-time calculation of vehicle weight and road

grade information for all vehicles that are to be manufactured.

2.1.3.2 E-Motor and Inverter

The traction management of electric vehicles are profoundly influenced by the
integration of motors with inverters. The inverter plays a pivotal role by converting
the direct current (DC) from the battery into alternating current (AC), enabling
the motor to operate in Fig. This conversion allows precise regulation of
the motor’s speed and torque, optimizing energy utilization and ensuring optimal

driving performance under predefined limits at desired values.

Moreover, the inverter exchange critical data with the EVCU, including motor
RPM, motor voltage, current, available torque, instantaneous torque, required
torque and other parameters, via the CAN Bus at variable cycle intervals. This
exchange of data provides real-time monitoring and control, which enhances the

efficiency and safety of the electric vehicle during operation.
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TABLE 2.2: E-Motor Specifications, [3]

Parameters Value
Maximum Peak Output Power: 42.2 kWh
Maximal Torque: 37,9 kWh (90 %)
Continuous Power 352V
Battery weight: 278 kg
Battery energy density: 152 Wh/kg
Speed range: 96 (96s1p)

FIGURE 2.6: E-Motor and Inverter, [3]

2.1.3.3 Battery

Electric Vehicle battery refers to high-capacity energy storage systems (ESS) which
are utilized as only power sources for electric vehicles. Nickel (Ni), Manganese
(Mn), and Cobalt (Co) are the three elements that make the NMC-type lithium-
ion batteries that are being utilized in the battery of our test vehicle. Nevertheless,
electric vehicles employ a variety of battery chemistries, including Lithium Iron

Phosphate (LFP) and Lithium Nickel Cobalt Aluminum Oxide (NCA).

Battery Management System (BMS) is technology in battery systems to supervise

critical metrics, including temperature, current and voltage, throughout every
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TABLE 2.3: Battery Specifications, [4]

Parameters Value
Total battery capacity: 42.2 kWh
Usable battery capacity: 37,9 kWh (90 %)
Nominal Voltage: 352V
Battery weight: 278 kg
Battery energy density: 152 Wh/kg
Cells: 96 (96slp)
Samsung SDI
Cell: 120Ah prismatic NCM 622

200Wh /kg

Active refrigerant cooling

battery pack, module and cells. This monitoring improves safety and maximizes

the battery’s longevity by ensuring the system functions within secure and efficient

parameters. Furthermore, it manages charge, discharge and fail-safe functions.

The BMS processes battery data to enhance the efficient use of multiple battery

configurations.

Each BMW NMC battery has a capacity of 42.2 kWh, and the test vehicle in this

study is equipped with two of these batteries. The comprehensive specs of these

batteries are presented in Tab. [2.3] for reference.

FIGURE 2.7: BMW I3 Battery Pack, [4]
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2.1.3.4 Brake System

The braking system of a vehicle is a critical component for decelerating, stopping,
or controlling the vehicle’s speed by reducing its kinetic energy during motion.
It ensures safe and controlled operation with the driver’s commands. However,
advancement on modern technology, it possible for advanced driver assistance

systems (ADAS) to partially or entirely can be manage braking systems.

The regenerative and service brakes are simultaneously activated by the brake
pedal in the test vehicle, which initiates the braking system. Notably, the re-
generative braking system is rendered unavailable at velocities below 5 km/h.
Additionally, the vehicle can decelerate without engaging the service brake by
activating regenerative braking upon the release of the accelerator lever. This
procedure recharges the battery during deceleration, which not only reduces the

vehicle’s speed but also helps in energy recovery.

Regenerative Brake: Electric and hybrid vehicles utilize regenerative braking,
an electronic system that converts the vehicle’s kinetic energy (AC) into electri-
cal energy during deceleration, subsequently charging the battery (DC) via an
inverter. As the vehicle slows down, the electric motor operates as a generator,
converting the wheels’ kinetic energy into electrical energy. The battery accumu-

lates energy, hence extending the vehicle’s range.

Regenerative braking improves energy efficiency and reduces stress on the braking
system, therefore extending the longevity of the brake pads. We employed this

feature for deceleration during our study, enabling us to reduce our vehicle’s speed.

Hydraulic/Service Brake System: The hydraulic brake system utilizes hy-
draulic pressure to execute the braking operation in cars. The master cylinder
produces hydraulic fluid pressure upon depressing the brake pedal, which then
travels to the brake calipers or wheel cylinders through the brake lines. Brake

pads or brake shoes decelerate or halt the vehicle by engaging with the disc or
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drum surface. The sensors positioned on each wheel refresh the wheel speeds ev-
ery 20 milliseconds and transmit them to the CAN bus. Furthermore, it supplies

the vertical and lateral acceleration data that are crucial for our research.

2.1.3.5 Additional Systems

Cluster: The vehicle cluster functions on the dashboard, allowing the driver to
monitor essential information regarding the vehicle. These are speed, RPM, bat-
tery level, and engine temperature, as well as warning lights and indications related
to electrical systems. It can be either digital or analog and may also have other
capabilities, like navigation and entertainment, in modern vehicles. The cluster
enhances safety by allowing the driver to rapidly access critical information/warn-

ings while driving.

DC-DC Converter: The DC-DC converter is a power electronics device that is
intended to facilitate the conversion of energy between with varying voltage levels
in electric vehicles. It enables the transmission of electricity from a high-voltage
source (nominal battery voltage level 350V) to low-voltage systems(12-24V), in-
cluding automobile electronics and auxiliary accessories. Before the activation of
the DC-DC converter and the HV system, certain components are powered di-
rectly by the 12V battery in our case. Once the DC-DC converter is operative, it
provides power to the 12V battery and the low-voltage systems, thereby supports
the electronic components and accessories of the vehicle to operate consistently

and uninterrupted.

2.2  Vehicle Longitudinal Dynamics

Longitudinal vehicle dynamics is a field that analyzes the forces governing and
affecting a vehicle’s motion in both forward and reverse orientations. Vehicle
performance includes acceleration, breaking and traction. In this study, based on

Newton’s second law of motion, equations are derived Eqn. [2.1] the variables Fy, 4,
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Fiero, Fron, and Fyqq. denote the traction force, aerodynamic drag force, rolling

friction force, and the uphill driving force, respectively [20].

v =
/ Faero
\ /
| / ___ \\‘\ > »_ Ferac
w\ F
| A / = —

F1GURE 2.8: Forces acting on the vehicle

P;Sraction — M - Az = Lyoll + Fgrade + Faero (21)

m: Vehicle Mass

a,: Longitudinal acceleration
Foero: Aerodynamic Drag Force
F.on: Rolling resistance

Fyrade: Road grade

Firaction: Longitudinal force acting on the vehicle

2.2.1 Rolling Resistance

Rolling resistance is the frictional force resulting from the relationship between

the road surface and wheels [20].

Froll:fr'm'g (22)

fr+ Rolling resistance coefficient (Considered as a linear function of speed), [21]

m: Vehicle mass g: Gravitational acceleration (9.81 m/s?)
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2.2.2 Aerodynamic Drag, Air Resistance

(2.3)

Aerodynamic drag is the resistance generated by a moving vehicle when it interacts

with the air. The factors influencing this resistance include aerodynamic design,

velocity, vehicle surface area, and air density [20].

1
Faero:§'p'Af'Cd'V;"2el

p: Air density
Ay: Vehicle frontal area
Cy4: Dimensionless drag coefficient

V.- Vehicle relative speed to the air

FIGURE 2.9: Front View of Jest EV

(2.4)
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2.2.3 Grade Resistance

Grade resistance refers to the gravitational force experienced by a vehicle when
driving inclines or declines. During ascension, gravity hinders movement, requiring
increased power output from the engine. Conversely, during descent, gravitational
forces accelerate the vehicle, requiring increased braking efforts. This force varies

according to the angle of inclination and the mass of the vehicle [20].

Fyrage = m - g.sin(0) (2.5)

f: Road grade

a_t

FIGURE 2.10: Grade Resistance Acting on The Vehicle

2.3 Measured Signals

The structured communication format of the CAN Bus SAE (Society of Automo-
tive Engineers) J1939 protocol, developed by Bosch in 1986 [22], which is specifi-
cally designed for data transmission in heavy-duty vehicles such as trucks, buses,
and agricultural equipment, consists of a multitude of messages. These messages
are classified according to the information and metrics transmitted from various
vehicle components, including engine speed, ambient air temperature, battery volt-

age, and current, as denoted by a Parameter Group Number (PGN), using a 29-bit
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identifier. In addition, the priority field of the 29-bit identifier is included to es-
tablish the urgency of each message. Messages with higher priority are prioritized
on the network. Followed by the actual information, raw data encapsulated in
an 8-byte section. In total, with other sections, a standard CAN message and an

extended CAN message consist of 96 bits and 114 bits, respectively.

Interpreting these communications can be difficult, since the data is typically
presented in raw form. To address this, CAN Database Container (DBC) files are
used as decoders , enabling the structured interpretation of the 8-byte data section.
These files facilitate a comprehensive understanding of the meaning, relevance and
structure of the data embedded within the J1939 messages, significantly enhancing
the analysis and usability of vehicle data. For this study, we developed our own
DBC file in Fig. [2.12], which allowed us to filter hundreds of messages and access
the raw data efficiently.

TABLE 2.4: Message List

List of Messages Cycle Time of The Messages
Wheel Based Speed km/h 20 ms
Motor Torque N 10 ms
Requested Torque N 100 ms
Vehicle Speed km/h 100 ms
Steer Angle rad 100 ms
Lateral Acceleration m /s? 100 ms
Longitudinal Accelerations | m/s? 100 ms
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2.3.1 Data Extraction from Vehicle Communication

Network

Vehicle

?

OBD Il Port
Vector VN1630a

MATLAB
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xslx File Graphics Raw Data

FiGURE 2.11: Data Extraction Process

The performance data of the electric vehicle used in the experimental studies was
collected via the vehicle’s CAN Bus. In this study, parameters such as motor
torque, speed, acceleration, high voltage data, and energy consumption from the
critical systems of the test vehicle were obtained through CAN Bus. To record
data, a Vector VN1630a data logging device compatible with the vehicle’s CAN
bus was connected to the OBD2 port, enabling access to the vehicle’s commu-
nication network. This device records messages on the CAN Bus at designated
intervals, providing the necessary infrastructure for data analysis. The logging
device connects directly to the CAN Bus, collecting each message and parameter
in real time, and transfers this data to the CANoe program on a computer. During
testing, we can monitor the data live and visually track parameters such as torque,
speed, and acceleration through a graphical interface. This was particularly useful
for observing changes in these parameters on inclined sections. Subsequently, the
raw data collected was interpreted using a customs dbc file specifically prepared
for our study. Through the same program, the data was categorized in milliseconds

and exported in .csv format for the analysis.
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FIGURE 2.12: Interface of DBC File

2.4 Configurations of the Test Tracks and Driv-

ing Settings

The experiments were conducted on two distinct tracks in Bursa, involving a total
of five cases performed under varying scenarios. Track 1, a controlled and relatively
low traffic area parallel to the highway in Fig. 2.14] while Track 2 was on a road

with significantly higher traffic levels compared to the first track in Fig. [2.19]

2.4.1 Description of Track 1

Track 1 is approximately 5 km long with an ascent and descent of 47 meters
depicted in Fig. [2.13] During the tests, the route was completed by returning in
the same direction to end parallel to the starting point Fig. [2.15| Throughout the
tests, the average maximum air temperature was around 28°C, and the humidity

level was approximately 40%.
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TABLE 2.5: Path Specifications of Track 1

Parameters | Value Unit
Distance 5108 m
Lowest Point 61 | m (at 3.69km)
Highest Point | 108 | m (at 2.25km)
Uphill 29221 | km (35.2%)
Downbhill 29221 | km (35.2%)
Flat 16072 | km (28.2%)
Height Gain 47 m

DISTANCE IN KM

FIGURE 2.13: Track 1 Route Elevation Profile [5]
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FIGURE 2.14: Track 1 Route on the Map, [5]
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FI1GURE 2.15: The Starting Point for All Tests Conducted in Case 1

General Characteristics of the Track

e Length and Surface Types: The section of the road where data was collected
is 5,108 meters long. It is a divided, dual-lane asphalt road primarily used by
trucks heading to the Bursa Fruit and Vegetable Market, leading to occasional
depressions in the road surface.

e Inclined Sections: Certain parts of the track have specific inclines in Fig.
These inclined sections allowed for the analysis of key parameters such as
motor power-torque, braking performance (regeneration), acceleration and road
grade effect in various uphill and downhill scenarios.

e Road Curves: The track’s sharp and wide turns on the track, in Fig.
and , allowed us to observe the impact of these maneuvers on the vehicle’s
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dynamics, particularly on torque and vehicle inertia.

e For the Live Map: [23]

2.4.1.1 Casel

The test scenarios, in Case 1, were carried out with four different total vehicle
weights and carried out by the same driver. The total vehicle masses were mea-
sured with a precision scale and adjusted according to the predetermined weight.
In Test 1, the vehicle’s curb weight of 3700 kg, without any additional mass. The

base and additional weight information for the other tests are provided in Table

2.6
TABLE 2.6: The tests and vehicle weights for Case 1.
Weight of Additional Weight | Total Weigt of
Case | Test
The Vehicle | Driver/Co-pilot etc. | The Vehicle
1 3700 kg 210 kg 3910 kg
2 4200 kg 115 kg 4315 kg
! 3 4600 kg 210 kg 4810 kg
4 5000 kg 210 kg 5210 kg

Note: Driving was performed with consideration for factors such as acceleration,
break distance, and skidding relative to vehicle weight. Although all drives were
performed by the same individual, the vehicle data exhibited variations due to

dynamic and environmental factors.

e Test 1: Conducted using the vehicle’s baseline weight, defined as the unloaded
curb weight.

e Tests 2, 3 and 4: The vehicle weight gradually increased, and the tests were
carried out according to the specified weights, as shown in Tab. [2.6] including the
driver. In addition tools and, in some cases, the added weight of an additional
colleague who participated in the tests (Tests 1, 3, and 4).

o Weight Adjustment: Before each test scenario, the vehicle’s weight was ad-

justed to match the predetermined target weights by loading sandbags, measured
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using a scale.
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FIGURE 2.16: Case 1, Drive Profiles
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FIGURE 2.17: Track 1 in 3D view. Section 1: U-Turn, Section 2&4: Curve,
Section 3: High-inclination, Section 5: Start-Finish Point

Speed profiles of the case 1’s test over time at certain vehicle mass are shown
in Fig. [2.17] which provides important information about how these variables
interact during testing. The data indicates that the heaviest vehicle does not
invariably correlate with the longest track completion time, nor does the lightest
vehicle constantly attain the maximum speed. The complexity of the factors that
influence vehicle performance is underscored, as weight alone is not enough to

predict outcomes such as speed or completion time.
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Although the tests were administered by the same driver to ensure consistency,
environmental influences seem to significantly influence the outcomes. Vehicle dy-
namics and driver performance may be influenced by factors such as resistance
forces, road conditions and temperature. Moreover, fluctuations in vehicle weight,
maybe resulting from load distribution or payload modifications, may affect han-
dling and acceleration attributes. The driver’s psychological condition, encompass-
ing weariness, concentration, and decision-making in test scenarios, is identified

as a crucial determinant.

As illustrated in Fig. 2.16 which gives critical information. The data indicates the
heaviest vehicle does not always correspond with the longest test completion time,
nor does the lightest vehicle always achieve the highest speed. The intricacy of
the elements affecting vehicle performance is emphasized, as weight alone cannot

adequately forecast variables such as velocity or duration of completion.

2.4.1.2 Case 2

Case 2 is a driving scenario in which the start and end points of the Casel are
chanced in the same track. It starts and ends at B point in Fig. This case
is conducted to evaluate the vehicle’s limits in inclined and curvy sections and to
enable us comparison estimation algorithms performance with Case 1. The vehicle

weight information is provided in Tab. 2.7

TABLE 2.7: The test and vehicle weight for Case 2.

Weight of Additional Weight | Total Weigt of
The Vehicle | Driver/Co-pilot etc. | The Vehicle
2 5 3700 kg 210 kg 3910 kg

Case | Test
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FIGURE 2.18: Case 2 Route on the Map, [5

2.4.2 Description of Track 2

A nearly flat route, 10 kilometers in length, was chosen to conduct Case 3, 4
and 5 under three distinct scenarios based on route length, road conditions and
driving style. In the first scenario, data were collected during normal driving

within flowing traffic, which included navigating a route with traffic lights.

e Length and surface types: The section of the road where data were collected
is 10.287 km (case 3) and 2.362 km (case 4-5) km meters long. It is a divided,
dual-lane road and connects a residential area, a heavy industrial zone, and cen-
tral hospital in Bursa. Case 4 and 5 are part of this route from the same starting
point, as shown in Fig. 2.19 with a length of 2.362 km long, without any U-turn
and traffic lights.

e Inclined sections: A nearly flat road with an elevation difference of 6 meters

for all three cases.
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TABLE 2.8: Path Specifications of Track 2
Parameters | Value Unit
Distance 10287 m

Lowest Point 62 | m (at 0.54km)

Highest Point | 68 | m (at 0.00km)

Uphill 3.42 km (33.2%)
Downbhill 3.33 km (32.4%)
Flat 3.51 km (34.1%)
Height Gain 6 m

e Road curves and traffic lights: The route, which can be characterized largely

as predominantly flat, involves a U-turn at a junction mid-way, with the recording

concluding parallel to the starting point. Furthermore, the route includes four

traffic lights, introducing acceleration, deceleration and interruptions to the driving

flow only for case 3.

e For the Live Map: [24]
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2.4.2.1 Case 3

The driving profile for Case 3, Test 6, conducted in normal traffic with a vehicle
weight of 3700 kg. As shown in Fig. [2.20] the vehicle came to a complete stop at
three of the four traffic lights along the route, with the vehicle speed dropping to

0 km/h. This case allowed us to test a scenario with minimal-grade effects.

TABLE 2.9: The test and vehicle weight for Case 3.

Weight of Additional Weight | Total Weigt of
Case | Test
The Vehicle | Driver/Co-pilot etc. | The Vehicle
3 6 3700 kg 210 kg 3910 kg
I A «Wx 2 /MM /\\1 \ﬁl\ [ “V} =
| W\\ ’/ /N | - \
21 b | | L | .
¢l . | \n/ | | |
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FIGURE 2.20: Case 3, Drive Profile

2.4.2.2 Case4 & 5

The vehicle weight for Case 4 and Case 5 was 3700 kg, and both tests were con-
ducted on Track 2. Similarly to Case 3, the tests started at the same point and
ended at the target point after 2.362 meters, without encountering any traffic
lights or decelerations apart from the final stop. Test 7 utilized an aggressive driv-
ing technique, while Test 8 adopted a pleasant driving method. Consequently, as
demonstrated in Fig. [2.21] Case 5 required an additional 13 seconds to complete

compared to Case 4.
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TABLE 2.10: The tests and vehicle weights for Case 4 & 5.

Weight of Additional Weight | Total Weigt of
Case | Test
The Vehicle | Driver/Co-pilot etc. | The Vehicle
4 7 3700 kg 210 kg 3910 kg
5 8 3700 kg 210 kg 3910 kg
0 20 40 60 80 Time (see) 100 120 140 160 180
FI1GURE 2.21: Case 4 & 5, Drive Profiles



Chapter 3

Methods for Model Identification

and Online Estimation

3.1 Pre-Processing the Measured Data

3.1.1 Filtering Techniques and Their Implementation

In this study, we applied a low-pass filter to the measured signals as the time
derivatives of the signals were calculated. The actual signal is first passed through
the filter, and then the derivative is taken.

When taking the derivative of a signal in the discrete domain, high-frequency noise
tends to amplify. That’s why we observed an increase in spikes when applying an
unfiltered derivative to the recorded data. Low pass filters helped us reduce the
high-frequency noise induced by taking the derivative of the signals.

We experimented with low-pass filters of the 1st, 2nd, and 5th order. In Fig. [3.1],
The red, yellow, purple, and blue lines represent the first-order filter, second-order

filter, fifth-order filter, and original signal, respectively.

41
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Fi1GURE 3.1: Comparison of The Different Order Filter on Vehicle Speed

Between the 1st and 2nd-order filters, there are minimal delays, the 2nd-order
filter effectively reduces spikes without introducing significant delay. The 5th-order
filter, while providing a smoother signal and further reducing spikes, introduces a

noticeable delay interval.

Ideally, we aim to prevent spikes, particularly those arising from sudden noise,
while still capturing meaningful signal changes. As observed, the 5th-order filter
sacrifices responsiveness to change. Therefore, we selected the 2nd-order filter as

it offers a balance between spike reduction and delay.

Acceleration is calculated from the speed data obtained from the EVCU by ap-
plying a second-order filter and a first-order derivative. We have selected a cutoff
frequency of 4 Hz because our data is sampled at 100 ms (0.1 s) intervals, i.e. at
10 Hz which sets the Nyquist frequency to 5 Hz. We chose a 4 Hz cutoff to retain

frequencies below 5 Hz and filter out those above.

Additionally, acceleration data from the Brake ECU was passed through the pre-
defined second-order low-pass filter to obtain smoother data, as shown in Fig. |3.2,
An added benefit of this filter is its suitability for real-time applications due to its

causal nature.
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F1GURE 3.2: Filtered Longitudinal Acceleration

3.1.2 Obtaining the Longitudinal Speed

In our test vehicle, multiple sources of vehicle speed data are available on the
CAN BUS. One of the method utilized for determining vehicle speed is managed
by the EVCU, which calculates the vehicle speed based on motor speed (RPM)

and converts it using the Eqn. 3.1

v — N, - pi-1y

30 - gearratio

(3.1)

where 1, is tire radius, G is the gear ratio, and n, is motor rpm [21].

3.1.3 Obtaining the Vehicle Acceleration

We obtain acceleration data from two different ECUs in the vehicle. One is from
the Brake ECU, which provides longitudinal acceleration calculated from the lat-
eral acceleration and yaw sensor. The other one is obtained by taking the time

derivative of the longitudinal speed that is calculated using the motor RPM.
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FIGURE 3.3: Acceleration Differences between Speed-Derived and Longitudinal
Acceleration

The data obtained from the EVCU does not get affected by grade changes, while
the data from Brake ECU, which utilizes in-house accelerometers, does. To analyze
this effect, we compared the differences between the two data sets, as seen in the
blue plot in Fig. (3.3 In the straight sections of the track, where we expect
the data from both ECUs to align, we observed a deviation in the Brake ECU
data compared to the EVCU. We primarily attribute this discrepancy to the road
grade. Some other factors such as road conditions, braking, and cornering effects
would also introduce a gap. Furthermore, the Brake ECU data-sheet does not list
longitudinal acceleration as a directly measured parameter, suggesting that the
Brake ECU relies on individual wheel sensors and assumptions in its calculations,
which can introduce inaccuracies. For example, as shown by a red ellipse in Fig.

.4 a discrepancy emerges as the vehicle makes a U-turn.
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FIGURE 3.4: U-Turn Effect on the Accelerations

3.1.4 Road Grade

The road grade induces a difference between the accelerometer readings and nu-
merically obtained longitudinal acceleration. Therefore, that difference could be

used for obtaining the inclination angle of the road as follows [9]:

Qsensor = Quehicle T g sin 6 (32)

Asensor — Quehicle (3 3)
g

sinf =

where 6 is the road grade, agensor i the acceleration signal from the on-board

sensor, and a,.nice 1S the calculated longitudinal acceleration of the vehicle.

The resistive force due to road grade, then, becomes:

Fgrade = m-<asensor - avehicle) (34)
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3.1.5 Obtaining the Traction Torque

In this study, two different torque data sources are utilized. The first was the
instantaneous torque obtained directly from the motor, while the second was cal-

culated using the Eqn. [3.5

Tnotor = Firae - gearratio -, (3.5)

where T}t is the motor torque, and Fj,.,. represents the sum of the resistive forces
applied to the wheels in the longitudinal direction. Fj,,. calculation is presented

in equation (2.6) [21].

3.1.6 Estimation of the Motor Torque using the Traction

Force

A comparative analysis was conducted between two distinct sources of torque
information: the first derived from calculated resistive forces based on vehicle pa-
rameters and driveline data, and the second obtained directly from the e-motor
controller or inverter. The total resistive forces acting on the vehicle were cal-
culated using Eqn. 2.1} and [3.5 excluding the grade effect, with adjustments
made for vehicle-specific parameters. This analysis highlighted key discrepancies

between the modeled resistive forces and the directly measured torque data.
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FiGURE 3.5: Torque Differences between Sum of Know Resistive Torque and
Motor Torque

As illustrated in Fig. [3.5], the differences, hereafter referred to as "residual torque,”
between the sum of resistive torques and motor torque exhibit significant variation
in specific regions. These discrepancies are particularly evident on inclines and
declines, during braking, and in sharp turns. In Fig. [2.17] these variations are
highlighted at specific points corresponding to sharp turns (1, 2 and 4) and the
uphill and downhill sections (3) of the route.

3.1.7 Correlation Between the Residual Torque and Resid-

ual Acceleration

During the analysis of the differences between the two acceleration data sets, it was
hypothesized that these discrepancies might indicate the presence of grade effects.
A similar trend was observed in the torque data, which led to the application
of normalization techniques to explore the potential correlation between these

variables.

In Fig. the blue line represents the normalized residual torque, while the red
line illustrates the normalized acceleration differences. The analysis reveals that

decreases in residual torque correspond to decreases in acceleration differences.
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Although certain anomalies, such as unexpected drops and rises, are present, the

overall patterns of the two plots exhibit a strong alignment.

These findings suggest a relationship between the unexplained residual torque and
acceleration differences, indicating a correlation with the resistance force associ-
ated to road grade. In Fig. both variables exhibit similar responses during
the 100-150 and 210-270 second intervals. These intervals correspond to segments
of the test track in which the vehicle was ascending and descending slopes. The

road grade is then calculated accordingly [9].

1 Normilized Torque & Acceleration Difference vs Time
T T T

Normalized

Resudual Torque
Acceleration Difference
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F1cURE 3.6: Normalized Residual Torque and Acceleration Differences

3.1.8 Motor Torque Estimation with the Effects of Road
Grade Included

The resistive torque was recalculated by integrating the calculated grade effect.
In Fig. presents a comparative analysis, where the yellow line represents the
torque calculation excluding the grade effect, while the red line incorporates it.
Additionally, the blue line depicts the motor torque data obtained directly from

the inverter.

A detailed comparison between the red and yellow lines demonstrates a substan-

tial improvement in torque estimation accuracy when the grade effect introduced,
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reflecting the influence of the vehicle’s weight on resistive force. The red line shows
a significantly closer alignment with the actual motor torque (blue line). Although
minor discrepancies are observed during the first half of the route—potentially due
to limitations in the vehicle modeling or not modeled factors—the convergence of
the red and blue lines in the second half indicates a marked enhancement in torque

estimation accuracy following the incorporation of the grade effect.

Online estimation methods are designed to improve the accuracy of torque calcula-
tions. Given that the primary objective of this study is to enhance mass estimation
alongside torque estimation, therefore the precise calculation of the grade effect is

essential to achieving reliable results.
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FiGure 3.7: Road Grade Effect on Torque

3.2 Mass Estimation Algorithms

In this study, four different online estimation methods were analyzed to investi-
gate the suitability of classical prediction-error-based online parameter estimation
algorithms in the actual operation of the vehicle of interest. These methods are

briefly explained as follows:



50

Gradient-Descent Estimator for the Vehicle Mass: Using the longitudinal

vehicle dynamics model, the torque load on the motor can be estimated as follows:

Tmotor = m'(avehicle + (asensor - avehicl(i)'ctorque) + Fdrag-ctorque + Froll-ctorque (36)

where ciorque is the coefficient that converts force into torque as shown in equation
(3.4). Since the torque due to road grade and the inertial force both depend on

the mass, the regressor of the vehicle mass is comprised of the associated factors.

The error in the torque estimation is:

Tmotor - m((avehicle + (asensor - avehicle)ctorque)) (37)

where m denotes the error in the parameter. The error in the torque estimation
is obtained by comparing the estimated torque to the measured torque obtained

using the drivers of the motor.

The estimation law is, then [25]:

ﬁl - pO((avehicle + (asensor - avehicle)ctorque))Tmotor (38)

where pg is the gain of the estimator.

Recursive Least Squares (RLS) Method for Estimating the Vehicle
Mass: Suppose P is the estimator gain matrix. The parameter update rule is

derived via RLS as follows [25]: Let k be the parameter update gain:

_ P'(avehicle + (asensor - avehicle)ctorque))
1+ P(avehicle + (asensor - avehicle>ctorque))2

(3.9)

m = k.Totor (3.10)

where

P - _k~((avehicle + (asensor - avehicle)ctorque>)~P (311)
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and P(O) = 1000.

Recursive Least Squares (RLS) with Forgetting Factor for Estimating
the Vehicle Mass: Suppose P is the estimator gain matrix. In this method,
the RLS algorithm involves a forgetting factor. The resulting estimation model

becomes as follows [25]:

m = k. Thotor (3.12)

where

P = _k-((avehicle + (asensor — avehicle)ctorque))-P/)\ (313>
and A is the forgetting factor that was set to 0.995.

Recursive Least Squares (RLS) with Multiple Forgetting Factors for
Estimating both the Vehicle Mass and Road Grade: This time the road
grade is also assumed as unknown and estimated along with the vehicle mass
simultaneously. Since the road grade may change more rapidly, the forgetting
factor associated with the road grade is lower (A\; = 0.95) than the vehicle mass

(Ag = 0.999).



Chapter 4

Results

The study was organized around five distinct cases that are intended to evaluate
the performance and accuracy of mass estimation algorithms under a variety of

conditions, as outlined in Section [2.4]

This section presents an in-depth examination of the driving data collected across
all five cases, accompanied by the estimated torque and vehicle weight values
derived during the tests with their true values. These results are analyzed on a
per-algorithm basis, utilizing the data retrieved from the vehicle’s communication

network throughout the driving sessions.

The mass estimation algorithms were applied under carefully defined conditions
to ensure consistency and repeatability. These are: Gradient Descent, RLS, RLS
with a Single Forgetting Factor, and RLS with Multiple Forgetting Factors. The
use of these 4 algorithms allowed for a comparative analysis of their performance
across various vehicle mass, road conditions, and driving style while the selection
criteria of intervals for algorithm execution remained same across all cases and

tests to ensure fairness in the evaluation.

Data input into the algorithms commenced as green zones in this section, when the
vehicle’s speed exceeded 40 km /h, and continued until either the brake pedal was
applied or the speed dropped below 40 km/h showed as a red zone. This segmen-
tation of the driving data was critical to standardizing the conditions under which

52
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the algorithms were tested, and specifically for the comparison. The segmented
data, represented as green zones in all mass estimation plots for the tests, were
subsequently analyzed using the Absolute Mean Error (AME). A detailed table

summarizing the results is provided in Section

Although the same path was utilized in certain instances, there were substantial
variations in the recorded data and driving characteristics as a result of differences
in external and dynamic factors. For example, Case 1 and Case 2 were conducted
on the same route but exhibited differences in driving style, external conditions
and switching the start and end points of the case, which impacted the results. In
contrast, Case 3 was performed on Track 2, providing a fresh perspective on the
influence of route characteristics on algorithms mass and grade estimation perfor-
mance. Additionally, Case 4 and Case 5 were derived as part of Track 2, which
enhanced the diversity of the data set and allowed a more detailed examination of

the algorithm’s adaptability to diverse scenarios.

The Cases present the data with estimated torque and mass graphs for the tests.
The mass estimations were evaluated and classified based on the AME metric for

the comparison of scenarios/cases and algorithms.

4.1 Case 1

4.1.1 Test 1 - Vehicle at 3700 kg

The data from the first experiment of our cases are presented in Fig. [{.1] The
first plot illustrates vehicle speed, the second plot displays steering angle sensor

data, and the third plot shows brake information.

As observed, no braking occurs until the U-turn. Between 74 and 78 s, a sud-
den drop in the speed graph indicates a slight release of the acceleration pedal,

triggered by regenerative brake. Approaching the U-turn, a positive change in
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steering angle is observed, accompanied by a reduction in vehicle speed. This

behavior suggests the vehicle entering the curve in Fig. at 2.

A similar pattern is observed after the U-turn, where the steering angle shifts
again, and the vehicle adjusts the speed naturally. The test was completed without

applying the brakes again, all the way to the end of the track.

CASE1-3700
80 T T T T T T
geo— - — N\ —\ T T —7;,,\"//ﬁv \w—’\\ —
E //‘ AN y
S 40 N\ Gindin \ .
E / \\\ \
@l /7 \ \,‘ -
/ v/ \
oL | | 1 | | | |
0 50 100 150 200 250 300 350 400
» T T T T T T
0
gror N B
3 A
o [ 7
f [ |
8 —_ e )\ P - A
o S S—— — e R e e -
5 | | 1 | | I |
0 50 100 150 200 250 300 350 400
1 T T T T T T T
08— -
=
=06 —
s
2
© 04— —
o
02— -
o I | 1 | | I I
0 50 100 150 200 250 300 350 400
Time (sec)
FIGURE 4.1: Speed, Steering Angle and Brake Profile of Test 1
8 Percentage of Road ination vs Time
T T T T T T
g
< N
o
g
c
]
g N
5
o
10 | I | | | | |

0 50 100 150 200 250 300 350 400
Time (sec)

FIGURE 4.2: Track 1 Calculated Road Elevation Profile

In Fig. [£.2] the road grade was calculated using the Eqn. in Section [3.1.4
and is illustrated accordingly. The uphill climb observed between 100-150 seconds
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and the downhill descent along the same road between 220-270 seconds are clearly

depicted in the figure.

4.1.1.1 Gradient Descent

In Fig. [4.3] the blue line represents the torque estimate updated online by dynami-
cally adjusting the estimated mass. The yellow line indicates the torque estimation
if the correct mass had been known, serving as a reference for the performance of
the ideal model in this test. The purple line shows the scenario where the initial
mass (set to 2000 kg) was used without updating; this demonstrates the impact
of proceeding with an incorrect mass estimation on torque calculations. Finally,
the red line represents the actual torque data obtained from the vehicle’s ECU,

reflecting the torque calculated by the motor.
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FiGURE 4.3: Torque Estimation Based on Gradient Descent Algorithm &
Torque Error, Test 1

As seen in this Fig. [£.4], the estimated mass calculated using the Gradient Descent
algorithm is displayed. The red-shaded region between 0 and 20 s highlights the
vehicle’s acceleration phase, where vehicle reaches a speed of 40 km/h. Following
this, the unshaded region represents a segment where the driver does not apply
the brakes and the vehicle maintains a speed above 40 km/h. This segment is

identified as suitable for AME calculations.
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The number and duration of suitable segments vary across cases, influenced by
factors such as road conditions, vehicle speed (represented by the data length in
seconds), traffic density, and the presence of traffic lights. In Case 1, the mass
estimation plots are divided into five distinct segments: three red-shaded regions,
one unshaded region, and one green-shaded segment used for error calculations.
Due to certain limitations, as discussed in Section [f] only the green-shaded region
in the second half of the test (divided into pre- and post-U-turn phases) was
selected for AME calculations.

The second red-shaded region in the middle of the figure corresponds to the U-turn
segment (referred in Fig. for the red path illustrating the U-turn as Section 1).
Following the U-turn, the vehicle resumes cruising until the driver either reduces
the speed below 40 km /h or applies the brakes. The final, red-shaded region marks
the deceleration phase, where the driver applies the brakes to bring the vehicle to

a complete stop.
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FIGURE 4.4: Mass Estimation Based on Gradient Descent Algorithm, Test 1

In Fig. with a vehicle weight of 3700 kg, it is observed that the estimated
mass remains within the 5% reference error margins in the green-shaded region,

despite appearing somewhat fluctuating at times.
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4.1.1.2 Recursive Least Squares
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In the second half of the mass estimation using the RLS algorithm, a stable esti-

mation is observed, as shown in Fig. there is also less fluctuation in the torque

error in this segment. However, the estimated vehicle mass falls outside the 5%

error margin.

4.1.1.3 Recursive Least Squares with a Single Forgetting Factor
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FIGURE 4.6: Mass Estimation Based on RLS with a Single Forgetting Factor

Algorithm, Test 1
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In the first segment of the mass estimation using the RLS algorithm with a forget-
ting factor, the estimated mass appears to have shifted into an unrealistic negative
and positive range, as shown in Fig. However, in the second segment, the

estimation stays closer to the 5% range.

4.1.1.4 Recursive Least Squares with a Multiple Forgetting Factor
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FIGURE 4.7: Mass Estimation Based on RLS with a Multiple Forgetting Factor
Algorithm, Test 1

Similar to a single forgetting factor of RLS, the mass estimation in this scenario
also shows unrealistic values in the first half in Fig. [4.7 However, unlike the
previous estimations, it remains mostly below the upper bound of the 5% error

margin. In the second half, the data show significant fluctuations, ranging between

5% and 10% errors.
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4.1.2 Test 2 - Vehicle at 4200 kg
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FIGURE 4.8: Speed, Steering Angle and Brake Profile of Test 2

With an additional 500 kg loaded on the curb weight of the vehicle, the driving
data for Case 1, Test 2 is illustrated in Fig. [4.8 At points where the vehicle
speed remains stable, the vehicle reaches its maximum allowable limit of 70 km/h
as specified in the vehicle manual. However, due to regulatory constraints, the
actual maximum speed is lower than seen on the cluster. Consequently, the plot

has a consistent and flat regions, in contrast to the typical driving conditions.
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4.1.2.1 Gradient Descent
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FIGURE 4.9: Mass Estimation Based on Gradient Descent Algorithm, Test 2

At the beginning of both the first and second segments in Fig. [£.9] the estimation
hovers around the 5% error margin. However, it suddenly spikes, reaching up
to 14% error, and in the second segment, it stabilizes at this level, continuing
consistently until the end of the green segment. At the starting point of the test,
corresponding to the first red segment, we observed that the limited range (narrow
window) resulted from the vehicle quickly surpassing the 40 km/h threshold with

fully pressing the accelerator pedal.
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4.1.2.2 Recursive Least Squares
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FIGURE 4.10: Mass Estimation Based on RLS Algorithm, Test 2

Although the mass estimation in the first half remained within the 5% error mar-
gin, the second half, which produced worse results in the graph, was evaluated for

AME to ensure a more accurate comparison of the case and the study shown in

Fig. .10

4.1.2.3 Recursive Least Squares with a Single Forgetting Factor
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FIGURE 4.11: Mass Estimation Based on RLS with a Single Forgetting Factor
Algorithm, Test 2
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As seen in Fig. [£.6] in the 3700 kg test using the RLS algorithm with a single
forgetting factor, the estimation plot dips into negative values in the first segment;
similarly in the 4200 kg test, the mass estimation in the second half also reaches
negative values in Fig. [£.11] Although it initially shows promising results after

the U-turn, it begins to exhibit fluctuations after 180 seconds.

4.1.2.4 Recursive Least Squares with a Multiple Forgetting Factor
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FIGURE 4.12: Mass Estimation Based on RLS with a Multiple Forgetting Factor
Algorithm, Test 2

At the beginning of both the first and second half in Fig. [£.12] the estimations
remain stable within the error margin 5%. However, they exhibit significant devi-
ations as the test progresses. In particular, in the second half, negative estimation

values are observed, resulting in around 40% AME.
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4.1.3 Test 3 - Vehicle at 4600 kg
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FIGURE 4.13: Speed, Steering Angle and Brake Profile of Test 3
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Test 3, conducted with a total vehicle weight of 4810 kg, resulted in the longest

track completion time among Case 1. The increased weight led to significant

differences in both acceleration and deceleration dynamics compared to previous

tests. Specifically, the U-turn deceleration and subsequent acceleration phase in

Fig. between 170 and 250 s, defined by the 40 km/h threshold, required more

than twice the duration observed under similar conditions during previous tests.
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4.1.3.1 Gradient Descent
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FIGURE 4.14: Mass Estimation Based on Gradient Descent Algorithm, Test 3

In the green-shaded region, the estimation begins with prediction of around 4100
kg vehicle mass and, after the 275th second, stabilizes within a 1- 3% error margin,
closely aligning with the true mass. In this test, the red-shaded regions, where
AME could not be performed, account for more than one-third of the total duration

of the test in Fig. [4.14]

4.1.3.2 Recursive Least Squares
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FIGURE 4.15: Mass Estimation Based on RLS Algorithm, Test 3
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In the second half of Fig. [£.15] the estimation algorithm consistently predicts a
vehicle weight of approximately 3900 kg. However, the RLS algorithm appears
to struggle with recovery after the U-turn, at this value stabilized but with an

unacceptable error margin.

4.1.3.3 Recursive Least Squares with a Single Forgetting Factor

Online Estimated Mass vs Time
10000 T T T T

8000 [~ -1

6000

4000

2000

Estimated Mass (kg)

-2000 |~

4000 1 1 | | 1 I |
0 50 100 150 200 250 300 350 400 450
Time (sec)

FIGURE 4.16: Mass Estimation Based on RLS with a Single Forgetting Factor
Algorithm, Test 3

In this test, we observe the appearance of unrealistic and negative values in mass
estimations in Fig. 4.16| similar to the patterns previously identified in the RLS

algorithms with a forgetting factor.
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4.1.3.4 Recursive Least Squares with a Multiple
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FIGURE 4.17: Mass Estimation Based on RLS with a Multiple Forgetting Factor

Algorithm, Test 3

In the first segment, the estimation starts with a poor performance not observed in

other tests, entering the 5% error margin range only briefly in a very small portion

of the green-shaded region in Fig. [£.17 Besides this, continuous fluctuations are

observed throughout the test.

4.1.4 Test 4 - Vehicle at 5000 kg
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This experiment, the final test of Case 1, was conducted with a total vehicle
weight of 5810 kg. A significant increase in the time required to reach top speed
can be observed by comparing in Figures and Notably, in the segment
following the U-turn, it took approximately 1.3 minutes to reach a speed of 60
km/h. Although the first half of the route was more conducive to acceleration,
allowing the vehicle to reach its top speed, the second half did not exceed 60
km/h. This limitation was primarily due to the driver’s perception and caution,
rather than the vehicle’s capabilities, considering the increased weight and safety

concerns.

4.1.4.1 Gradient Descent
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FIGURE 4.19: Torque Estimation Based on Gradient Descent Algorithm &
Torque Error, Test 4

In Fig. the effect of the increased mass is clearly observed. The purple line
represents the calculation assuming a constant vehicle weight of 2000 kg, and it
shows significant differences compared to the other lines in the plot, particularly
during uphill and downhill segments which are before and after U-turn under

increased total weight.
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FIGURE 4.20: Mass Estimation Based on Gradient Descent Algorithm, Test 4

The estimation algorithm exhibited suboptimal performance at the beginning of

the green-shaded region but stabilized within the 5% error margin after around 45

seconds. Compared to Test 3, conducted with a vehicle curb weight of 4600 kg,

the red-shaded areas occupy a smaller portion of the test data. However, these

regions are considerably more extensive than those observed in Test 1 and Test 2.

4.1.4.2 Recursive Least Squares
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In the first half of the test, a significant portion of the data remain within the 5%
error margin, indicating a relatively accurate estimation of mass during this phase,
as seen in Fig. [£.21] In contrast, in the second half of the test, the estimation
deviates slightly, stabilizing at a higher error level of approximately 7%. Despite
this increased error margin, the plot exhibits remarkable consistency, suggesting
that while the accuracy decreased, the algorithm managed to maintain stability

in its predictions.

4.1.4.3 Recursive Least Squares with a Single Forgetting Factor
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FIGURE 4.22: Mass Estimation Based on RLS with a Single Forgetting Factor
Algorithm, Test 4

In Fig. [4.22] the plot begins in the green-shaded region and approaches nearly zero
error within the first 20 seconds, maintaining this accuracy for approximately 50
seconds. However, following this stable period, the estimation suddenly diverges,
resulting in an unrealistic negative mass value of -6000 kg. A similar phenomenon
of negative estimation is observed in other Case 1 tests using the RLS algorithm

with a forgetting factor.
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4.1.4.4 Recursive Least Squares with a Multiple Forgetting Factor
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FIGURE 4.23: Mass Estimation Based on RLS with a Multiple Forgetting Factor
Algorithm, Test 4

For all Case 1, a similar phenomenon is observed across RLS algorithms with for-
getting factors. In single forgetting factor implementations, the estimation results
range between +8000 kg and -6000 kg. In contrast, multi-forgetting factor imple-
mentations generally limited these unrealistic values to around -2000 kg for the

lower sections of the multiple forgetting factor graphs.

In Fig. |4.23] the green-shaded region indicates estimation values around -3000
kg. Apart from a small section in the initial part with a relatively stable error of
approximately 30%, no segment exhibits stability in any other parts that could be

considered reliable in the error margin.
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4.2 Case 2

4.2.1 Test 5 - Vehicle at 3700 kg
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FIGURE 4.24: Speed, Steering Angle and Brake Profile of Test 5

In the Case 1, the beginning of the second segment (post-U-turn) shown in Fig.
demonstrates similar vehicle speed increments similar to the first segment of
this case, observed within the 0-100-second range in Fig. [4.24] This similarity is
further supported by the fact that both tests were conducted by the same driver
and with identical vehicle weights, reinforcing this observation. In addition, it
should be noted that the vehicle occasionally reaches its top speed during this

test.



72

4.2.1.1 Gradient Descent
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FIGURE 4.25: Torque Estimation Based on Gradient Descent Algorithm &

Torque Error, Test
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In Fig. |4.25] it can be seen that the estimated torque and the actual torque plots

align almost perfectly, with only a few exceptional regions showing divergence.

The reason for the occasional deviation of the purple line from the others is that

the vehicle weight during the estimation process remains fixed at the predefined

initial value of 2000 kg. In areas where the vehicle encounters ascents and descents,

the real torque deviates from the estimated torque due to the grade effects, causing

the purple line to diverge from the others.
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FIGURE 4.26: Mass Estimation Based on Gradient Descent Algorithm, Test 5
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In Fig. [4.26] the mass estimation fluctuates within the error margin 5%, excluding
the red-shaded regions. To more accurately compare Case 1 and Case 2 under
varying scenario conditions, we have selected the downhill segment, corresponding
to the first region in this case, for the AME calculations. Similarly to Case 1,
where the downhill segment was shaded in green, this region has been selected to

ensure consistency in the analysis.

4.2.1.2 Recursive Least Squares
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FIGURE 4.27: Mass Estimation Based on RLS Algorithm, Test 5

As seen in Fig. [£.27, the RLS estimation algorithm performs exceptionally well
in the first segment, closely aligning with the true mass throughout this phase.
However, a sudden drop in the estimation is observed after the brake is applied,
corresponding to the red-shaded region. In the second half, while the mass esti-
mation does not perform as well as in the first segment, it fluctuates within a 6-7%
error margin. In particular, the excellent performance of the algorithm in the first

segment is reflected in an AME score of 0.8%.
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4.2.1.3 Recursive Least Squares with a Single Forgetting Factor
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FIGURE 4.28: Mass Estimation Based on RLS with a Single Forgetting Factor
Algorithm, Test 5

Although mass estimation begins accurately within the green-shaded region, a
spike is observed later, as illustrated in Fig. [£.28 In the second segment, the
mass estimations deviate significantly, reaching unrealistic values of approximately
-4000 kg, similar to the behavior observed in Case 1 when using RLS algorithms
with forgetting factors. Within the first red-shaded region, it is notable that the
estimates align closely with the true value even before the vehicle reaches a speed

of 40 km/h.
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4.2.1.4 Recursive Least Squares with a Multiple Forgetting Factor
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FIGURE 4.29: Mass Estimation Based on RLS with a Multiple Forgetting Factor
Algorithm, Test 5

The RLS with a multiple forgetting factor estimate, as shown in Fig. [4.12] remains
within the error margin 5% in the first region, although minor spikes are noticeable
even in this segment. In general, the mass estimation based on multiple forgetting

factors has not performed effectively.
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4.3 Case 3

4.3.1 Test 6 - Vehicle at 3700 kg
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FI1GURE 4.30: Speed, Steering Angle and Brake Profile of Test 6

As described in the beginning of Section Case 3 was carried out under normal
traffic conditions on a road with four traffic lights. An analysis of Fig. [4.30|reveals
that the vehicle came to a complete stop at two traffic lights between 500 and 700
seconds. Additionally, during the 200-300 second interval, the vehicle decelerated

to approximately 2-3 km/h before accelerating again.

Between 100 and 200 seconds, the vehicle approached a traffic light and decelerated
using regenerative braking without applying the brakes. Upon the light turning
green, the vehicle resumed acceleration and continued along the route. Between
350 and 400 seconds, a wide U-turn was executed, after which the vehicle proceeded
along the opposite lane of the same road. The test was completed in approximately

800 seconds (13 minutes), concluding parallel to the starting point.

In general, the vehicle traversed the 10.3 km route with intermittent stops. As
indicated by the steering angle plot and in Fig. [2.19) minor steering adjustments

were made, reflecting a smooth and comfortable driving style throughout the test.
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4.3.1.1 Gradient Descent
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As depicted in Fig. the frequent accelerations and decelerations observed

during the test result in numerous spikes within the torque plots.

In particu-

lar, during the intervals between 540 and 550 seconds and 620 and 640 seconds,

a considerable divergence is observed between the estimated torque and the ac-

tual torque. Besides, these specific intervals indicate that the estimated torque

consistently struggles to align with the actual torque during rapid variations, un-

derscoring the difficulty of accurately capturing such dynamic changes.

4500

4000

3500

2500

Estimated Mass (kg)

2000

1500

1000
0

Online

Mass vs Time

3000 f!

Online Estimated Mass

- - - True Mass

- -~ - 5%Eror

100

200

300

400

Time (sec)

500

600 700

800

900

FIGURE 4.32: Mass Estimation Based on Gradient Descent Algorithm, Test 6
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In this case, due to the frequent stop-and-go traffic conditions, 7 red-shaded sec-
tions appeared, resulted by below 40 km/h five times and braking was applied
once, on the Gradient Descent plot, as shown in Fig. The first red-shaded
section corresponds to the initial period before the vehicle reached 40 km/h and
was excluded from the evaluation. The green-shaded region was used as the ref-

erence range for AME calculations throughout all mass estimations in Case 3.

Overall, during normal driving conditions, the mass estimation remains around the
5% error margin. However, whenever the vehicle decelerates due to regenerative
braking, the estimation experiences a negative impact, even before entering the
red-shaded regions. This emphasizes the vulnerability of the estimation algorithm

to deceleration events that are typically associated with regenerative braking.

4.3.1.2 Recursive Least Squares
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The divergence points between the real and estimated torques are clearly observ-
able in the torque error in Fig. [£.33] Although the fluctuations are less pronounced
compared to those seen in the Gradient Descent algorithm, the intervals of diver-
gence identified in the previous analysis are also prominently reflected in the RLS

algorithm’s performance.
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FIGURE 4.34: Mass Estimation Based on RLS Algorithm, Test 6

Mass estimations are observed to quickly reach a steady state in all non-red-
shaded regions in Fig. [£.34, However, within the first 100 seconds, the estimation
remains within the 5% error margin, while in the green-shaded region, it stabilizes

at approximately 7% error.

4.3.1.3 Recursive Least Squares with a Single Forgetting Factor
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As observed in Case 1, the estimation profiles with forgetting factors exhibit similar
behavior in the stop-and-go test, as shown in Fig. and [4.35] Both the torque
and mass estimations display highly fluctuating outputs without any steady-state
region. Additionally, the estimated vehicle weight occasionally drops below 1000
kg, with one instance approaching the -3000 kg range.

4.3.1.4 Recursive Least Squares with a Multiple Forgetting Factor
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FIGURE 4.36: Mass Estimation Based on RLS with a Multiple Forgetting Factor
Algorithm, Test 6

The same pattern observed in RLS with a single forgetting factor is also seen
in Fig. for the estimation of the mass of RLS multiple forgetting factors.
Although the algorithm briefly converges within the 5% error margin after exiting
each red-shaded region, it soon produces spiked results in the general range of
5-25 seconds. However, this duration, in the green-shaded region, extends up to

45 seconds, and spiked results begin to appear.



81

4.4 Case 4

4.4.1 Test 7 - Vehicle at 3700 kg
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FIGURE 4.37: Speed, Steering Angle and Brake Profile of Test 7

In Case 4, an aggressive driving style was employed from the beginning, reaching
the limited top speed in 12 seconds in Fig. The vehicle then maintained
a steady cruise for 118 seconds without deceleration. Subsequently, for approxi-
mately 17 seconds, the vehicle decelerated using regenerative braking, followed by
brake application to complete the scenario defined in the same figure. During this
test, the steering wheel was used in a range of +0.4 radians to the right and -0.65

radians to the left.
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4.4.1.1 Gradient Descent
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FIGURE 4.38: Mass Estimation Based on Gradient Descent Algorithm, Test 7

The estimation plot is characterized by a singular region that can be highlighted
in green, as illustrated in Fig. 4.9, as there are no stop and go events or brake
applications. The estimated mass is still outside the 5% error margin, despite
the absence of abrupt turns or significant changes in acceleration. Between 120
and 140 seconds, the effect of regenerative braking on the algorithm is notably

pronounced, as it substantially affects the estimation results.
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4.4.1.2 Recursive Least Squares
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FIGURE 4.39: Mass Estimation Based on RLS Algorithm, Test 7

However, the estimation with RLS remains within the defined error margin, with
an error of approximately 3.2%, as shown in Fig. 4.39, Compared to the Gradient

Descent estimation in Case 4, the RLS algorithm demonstrates better performance.

4.4.1.3 Recursive Least Squares with a Single Forgetting Factor
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Algorithm, Test 7
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The RLS algorithm with a single forgetting factor initially operates within the 5%
error margin but begins to produce unrealistic and inaccurate estimations after
33 seconds, as illustrated in Fig. |4.40, The design of Case 4 does not include
any braking events or abrupt turns, which underscores the algorithm’s inability to

maintain accuracy under steady driving conditions.

4.4.1.4 Recursive Least Squares with a Multiple Forgetting Factor

Online Esti Mass vs Time

4500

4000 =

3500
3000 -\ / -

2500 M -

Estimated Mass (kg)

)
8
=3

|

1500 [~

Online EstimatedMass
- - - - True Mass

- - - - 5% Error
1000 [~ [ e

500 Il 1 1 | | |
0 20 40 60 80 100 120 140 160
Time (sec)

FIGURE 4.41: Mass Estimation Based on RLS with a Multiple Forgetting Factor
Algorithm, Test 7

Similarly to the single one, multiple forgetting factor in Case 4, spikes begin to
appear at 42 seconds, as shown in Fig. and However, a key difference
between the RLS with a multiple forgetting factor and the single forgetting factor is
that the error between the actual and estimated torque values is significantly lower
in this case, indicating a better torque estimation. Nevertheless, this improvement

in torque estimation does not guarantee an accurate mass estimation.
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4.5 Case 5

4.5.1 Test 8 - Vehicle at 3700 kg

CASES5-3700
60 T S R — —T T T

Speed (km/h)

20~ / \ .

o
n

Steer Angel (rad)
& = S
S

Brake (1/0)

0 20 40 60 80 100 120 140 160 180
Time (sec)

FIGURE 4.42: Speed, Steering Angle and Brake Profile of Test 8

The same track as in Case 4 was used; however, the driving style was different.
As can be seen from the speed graph in Fig. the driving style was designed
to be more comfortable and oriented toward pleasure. Observed that the vehicle
reaches a speed of 60 km /h between 35 and 37 seconds, whereas in Case 4, this was
achieved in approximately 12 seconds. This indicates that the acceleration was
more gradual, without fully depressing the accelerator pedal, ensuring a smoother
experience for the passenger (copilot in certain cases) and the vehicle itself. Ad-
ditionally, in Case 5, the vehicle completes the test at approximately 60 km/h,
without reaching its maximum speed limit. The first-time brake was applied to
slow the vehicle in the 16th second, whereas in Case 4, the vehicle had already

come to a complete stop within the same time frame.
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4.5.1.1 Gradient Descent
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FIGURE 4.43: Torque Estimation Based on Gradient Descent Algorithm &
Torque Error, Test 8
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FIGURE 4.44: Mass Estimation Based on Gradient Descent Algorithm, Test 8

As shown in Fig. [£.44] the Gradient Descent algorithm in Case 5 performs excep-
tionally well, closely tracking the true mass with its estimations. In fact, within
the green-shaded region, approximately 90% of the mass error remains within 1%.
Furthermore, the algorithm quickly converges within the desired range, entering
the error margin 5% even before reaching 60 km/h. However, toward the end of the

green-shaded region, the influence of regenerative braking causes the estimations
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to deviate, exceeding the defined error margin. This deviation is accompanied by
a slight fluctuation in the torque error, as observed in Fig. [4.43] around the same

time intervals.

4.5.1.2 Recursive Least Squares
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FIGURE 4.45: Mass Estimation Based on RLS Algorithm, Test 8

In the RLS algorithm, the mass estimation converges to the true mass much faster,
reaching a steady-state condition even within the red-shaded region, as shown in
Fig. [£.45] However, in the green-shaded region, the estimated mass remains at
a noticeable distance from the true mass reference point compared to the same

case’s Gradient Descent performance.
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4.5.1.3 Recursive Least Squares with a Single Forgetting Factor

Online Esti Mass vs Time
8000 T T T T

6000 |- : -

4000 F=2S2 ;;;Ef:i’::;?::::::‘::::Eiii:::1:::‘:::::::::::::::i:‘:l::“:::::::::: -

- M | T\

-2000 |~

Estimated Mass (kg)

Online Estimated Mass |
=== True Mass
5% Error

4000 | {i e

6000 1 1 1 1 Il 1 1 1
0 20 40 60 80 100 120 140 160 180
Time (sec)

FIGURE 4.46: Mass Estimation Based on RLS with a Single Forgetting Factor
Algorithm, Test 8

In a manner similar to the conventional RLS algorithm in Fig. the mass
estimation converges rapidly, preserving precise values until the 32th second, as
illustrated in Fig. .46, Subsequently, it generates inconsistent estimations, re-
sulting in implausible vehicle weight values. Significantly, at 140 seconds, the
estimation falls below -4000 kg. In general, this indicates an overall insufficient

estimation ability.
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4.5.1.4 Recursive Least Squares with a Multiple Forgetting Factor
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FIGURE 4.47: Mass Estimation Based on RLS with a Multiple Forgetting Factor
Algorithm, Test 8

In Fig. [£.47 the estimated mass initially appears to converge toward the true
mass in the 20-40 second interval at the beginning of the green-shaded region.
Subsequently, it experiences a significant increase and fluctuations, with the esti-
mated mass falling below 2500 kg. Despite some observed recovery attempts, the

estimated mass does not converge with the true mass within the test duration.



Chapter 5

Discussion

Accurately predicting the consumption and range of electric vehicles is essential for
extending their operational efficiency and addressing biases against their adoption.
Improved range predictions can increase public interest in electric vehicles and play

a critical role in meeting the EU Parliament’s 2030 and 2050 sustainability goals.

Every vehicle is manufactured with a fixed weight when it leaves the factory,
however, its weight can vary during use depending on the user’s usage patterns,
especially in commercial buses. In our study, assuming the full seating capacity of

13 passengers (driver included) is utilized and calculating the average weight of a

Mass Estimation Mass+.I nclipation
Estimation
RLS w
Case | KG 1D Gradient RLS | 2 Single | RLS w a Multiple
Descent Forgetting | Forgetting Factor
Factor
3700 | Test 1 2,1 6,1 8,4 5,7
1 4200 | Test 2 10,8 7,2 41,1 40,2
4600 | Test 3 SR 19,4 26 28
5000 | Test 4 3,8 6,8 35,3 31,8
2 3700 | Test 5 2,6 0,8 10,2 9,1
3 3700 | Test 6 29 7 16,6 20,4
4 3700 | Test 7 7.4 3. 22,5 21,6
5 3700 | Test 8 0,6 1,4 224 10,6

TABLE 5.1: Absolute Mean Errors for All Cases
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person as 70 kg, an additional weight of 840 kg. This additional weight accounts
for approximately 25% of the shuttle’s curb weight of 3700 kg, as used in the tests.
Furthermore, if standing passengers are considered, this percentage increases sig-
nificantly. Unlike private cars, the weight of a bus fluctuates continuously along its
route. Additionally, monitoring vehicle weight is critical for autonomous vehicles,

as it directly impacts cornering, braking distances, and overall driving dynamics.

Grade effects are another significant factor influencing energy consumption pre-
dictions. As reported in [7], a 1% increase in road grade can result in up to a 15%
rise in energy consumption. Previous studies, as discussed in Section 1.2, highlight
the direct impact of grade variations on battery usage and range, emphasizing the
importance of accurate grade estimation. Achieving accurate consumption and
range predictions requires a robust understanding of vehicle and road dynamics
to optimize control of vehicle parameters such as limiting the torque while incli-
nation. This study evaluates the performance of four different algorithms, such as
Gradient Descent, RLS, RLS with a Single Forgetting Factor, and RLS with mul-
tiple forgetting factors, in five scenarios/cases. These scenarios were specifically
designed to examine the effects of traffic conditions, cornering, inclines, declines,
and driving styles, as well as the influence of vehicle limitations on estimation

accuracy.

AME values were calculated for all cases and tests based on the common intervals
identified within each case across all algorithms. The results are presented in Tab.
5.1, where green highlights represent errors within the 5% margin, yellow indicates
errors within the 5-10% range, and red denotes high AME values exceeding 10%.
The Gradient Descent algorithm demonstrated the best overall performance, with
AME values ranging from 0.6% to 3.8%, excluding Test 2 and Test 7. Its perfor-
mance in Case 5, in particular, aligns closely with state-of-the-art studies. RLS
ranked second, achieving an AME of 0.8% in Case 2, which was conducted on the
original map in a scenario distinct from Case 1. Furthermore, RLS consistently

outperformed Gradient Descent in torque estimation across nearly all cases.
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In contrast, RLS with Single Forgetting Factor and RLS with Multiple Forgetting
Factors produced less reliable results. The AME values for the single forgetting
factor ranged between 8.4% and 41.1%, while the multiple forgetting factor pro-
duced values between 5.7% and 40.2%. Interestingly, the minimum and maximum
AME values for both methods were observed in Test 1 and Test 2. Both algo-

rithms frequently observed a tendency to drift toward unrealistic values in mass

estimation, that can be seen in Sections 4.1.1] and [4.1.2]

Test 8 yielded the most accurate mass estimation results, while Test 2, produced
the least accurate outcomes. The flat road and smooth driving style in Case 5
significantly contributed to its superior performance. The only difference between
Cases 4 and 5 was the driving style, with the aggressive driving in Case 4 negatively
impacting both torque and mass estimation. The software ensures that the vehicle
does not exceed the specified limit when it reaches its maximum speed during
aggressive driving. In this scenario, when the accelerator pedal is continuously
pressed, the vehicle maintains its maximum speed by regulating motor torque and
RPM accordingly. This situation applies to all scenarios where the maximum speed
is reached, no matter whether the vehicle is ascending or descending. In the Case
1, it was observed that the uphill and downhill sections of the road caused torque
and mass estimations to deviate significantly from the true values. The primary
motivation for including Case 2 was to address the limitations observed in Case 1.
In downhill segments, the estimations made in Case 2, particularly using the RLS
algorithm, achieved results that can be described as state-of-the-art. In contrast,
for the same downhill segment in Case 1, the lowest RLS AME value was 6.1%.
A comparison between Case 1 and Case 2 reveals noticeable improvements across

nearly all metrics.

For the grade estimation, open-source map data was used to obtain the reference
values, which are deemed to be accurate, percentage plot of the grade gradient for
the route in Case 1 is illustrated as in Fig. [2.13] Using two distinct sources of
acceleration data—one derived from the brake ECU and the other calculated from
the speed data obtained via motor RPM-—we determined the percentage grade

values, as shown in Fig. [£.2] We observed a correlation between the calculated
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grade values and the open-source reference data. However, the numerical values

did not fully align.

The study was conducted during the data collection procedure without using any
extra sensors beyond the vehicle’s standard configuration. Although the perfor-
mance of the current sensors utilized in the study was satisfactory under specific
situations, the integration of supplementary sensors like GNSS and IMU could
significantly improve estimation accuracy, aligning the results with state-of-the-
art references. Moreover, adding limitations on lateral dynamics and enhancing
the estimate techniques could further reduce mistakes and elevate overall perfor-
mance. Another potential area of study involves conducting a detailed analysis
of the conditions under which the algorithm struggles to maintain stability and
accuracy. This could include investigating the impact of vehicle dynamics and
the limitations of the Master ECU on the algorithm’s performance. By gaining
a deeper understanding of the vehicle’s behavior, we can achieve a more effective

and reliable optimization of the system.



Chapter 6

Conclusion

Online gross-weight and road grade estimation for commercial passenger vehicles
is an important step towards improving the fuel efficiency by the use of model-
predictive control methods. This study investigated the performance of prediction-
error-based estimation methods that do not require specialized computational and
sensing hardware. The studied methods were compared by the estimation accu-
racy they achieved in the steady-state under various driving conditions typical for
commercial vehicles. Our findings indicated that the recursive least square error
methods with forgetting factors fail to provide reliable estimations in general. On
the other hand, estimation error gradient based parameter updates or recursive
least squares with no forgetting factor achieved an acceptable performance in most
of the cases investigated. These promising methods assumed a measurement model
for the road grade. Therefore, obtaining the road grade accurately appeared to be

crucial in the success of these methods.

Additionally, the results indicated that the studied approaches are under perform-
ing when the vehicle decelerates rapidly or makes sharp and significant turns.
This is primarily due to the fact that the estimation model utilized in this study
was limited to the longitudinal dynamics of the vehicle. Incorporating the lateral
dynamics to the estimation model could lift this performance barrier and enable

appropriate performance in such driving conditions.
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Apart from the possible improvements for the estimation methods, a crucial future
work for this study would be the investigation of the impact of online estimation
in electric commercial passenger vehicles such as the one used in this study. The
sensitivity of fuel efficiency to the estimation performance under the conditions
of city traffic can reveal the key performance qualifiers for estimation as well as

model-based control of these vehicles.
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