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ABSTRACT

BAYESIAN METHODS FOR TACKLING COMPLEX INFERENTIAL
PROBLEMS IN DATA SCIENCE

SONER AYDIN

INDUSTRIAL ENGINEERING Ph.D DISSERTATION, DECEMBER 2024

Dissertation Supervisor: DR SİNAN YILDIRIM

Keywords: hyperparameter tuning, posterior sampling, differential privacy, local
differential privacy, adaptive online frequency estimation, robust regression

Bayesian methods encompass a principled way of modeling, solving and analyzing
various estimation and inference problems in data science. In this dissertation, we
utilize a variety of Bayesian methods, such as posterior sampling, EM algorithm for
mixture models, subsampling for prior probability estimation, to tackle a wide range
of inferential problems. These problems include hyperparameter tuning in regular-
ized linear models in supervised learning, robust regression, frequency estimation
for dynamic/online datasets under global and local differential privacy frameworks.
For each of these problems, we propose new algorithms that can compete with the
existing approaches in terms of estimation accuracy, while performing these tasks
in a computationally more efficient way via utilizing sampling and subsampling.
Along with each algorithm, we also provide both theoretical analyses and numerical
experiments that demonstrate their estimation performance.
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ÖZET

VERİ BİLİMİNDEKİ KARMAŞIK ÇIKARIMSAL SORUNLARI ÇÖZMEK İÇİN
BAYES YÖNTEMLERİ

SONER AYDIN

ENDÜSTRİ MÜHENDİSLİĞİ DOKTORA TEZİ, ARALIK 2024

Tez Danışmanı: Dr. SİNAN YILDIRIM

Anahtar Kelimeler: hiperparametre ayarı, arka örnekleme, diferansiyel
mahremiyet, yerel diferansiyel mahremiyet, uyarlanabilir çevrimiçi frekans

tahmini, gürbüz regresyon

Bayes yöntemleri, veri bilimindeki çeşitli tahmin ve çıkarım problemlerini mod-
elleme, çözme ve analiz etmede ilkeli bir yolu kapsar. Bu tezde, çok çeşitli çıkarımsal
problemleri ele almak için, arka örnekleme, karışım modelleri için EM algoritması,
ön olasılık tahmini için alt örnekleme gibi çeşitli Bayes yöntemlerini kullanıyoruz.
Bu problemler arasında, denetlenen öğrenmede düzenlenmiş doğrusal modellerde
hiperparametre ayarlama, gürbüz regresyon, küresel ve yerel diferansiyel mahremiyet
çerçeveleri altında dinamik/çevrimiçi veri kümeleri için frekans tahmini yer alır. Bu
problemlerin her biri için, örnekleme ve alt örneklemeyi kullanarak bu görevleri
hesaplama açısından daha verimli bir şekilde gerçekleştirirken, tahmin doğruluğu
açısından mevcut yaklaşımlarla rekabet edebilen yeni algoritmalar öneriyoruz. Her
algoritmayla birlikte, tahmin performanslarını gösteren hem teorik analizler hem de
sayısal deneyler sağlıyoruz.
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1. INTRODUCTION

1.1 Overview

Bayesian statistical paradigm offers a unified framework for modeling and solving
a vast number of different problems in data science, by encouraging researchers
and practitioners alike to treat a given problem in terms of probabilistic models.
This general approach allows developing computationally efficient algorithms for a
given task, without sacrificing the accuracy and interpretability of the results. It
also allows quantifying the uncertainty of parameters and hyperparameters in these
models in a principled way. In this dissertation, we take advantage of this general
framework to develop such models for a wide variety of tasks. Additionally, Bayesian
models naturally lend themselves to implementation of sampling and subsampling-
based methods which we use heavily throughout this dissertation. This is the main
aspect that makes these methods computationally efficient in application areas that
involve large-scale datasets.

In this dissertation, we propose various Bayesian methods for tackling estimation
problems and inferential tasks in a diverse range of data science problems, includ-
ing hyperparameter tuning in regularized supervised learning methods, robust es-
timation of regression parameters, online frequency estimation in global and local
differential privacy settings.

For each of these tasks, having their own dedicated chapters, we provide theoretical
justifications/proofs, numerical experiments to demonstrate their accuracy, compare
them with the existing approaches, discuss their potential applications in real-life
scenarios, state our contributions, and make suggestions for future directions of
research.
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1.2 Technical Literature Review

First of all, let us introduce the basic terminology and some of the existing methods
that are related to the research topics that we cover in this dissertation. More
detailed treatment of these elements are provided in each chapter.

Hyperparameter tuning: In the general sense, hyperparameter tuning refers to
fine-tuning of hyperparameters for a given machine learning model. However, in the
scope of this research, we focus on the tuning of regularization hyperparameters.
Regularization was first introduced in 1970 as a solution to the multicollinearity
problem in regression models (Hoerl & Kennard, 1970). In its most basic form, it is
based on adding a penalty term that penalizes the norm of model parameters, as in
the following ridge regression problem

min
β∈Rd×1

(Y −Xβ)2 +λ||β||22,

where λ is the hyperparameter to be tuned. Later on, it has grown into a general
methodology for controlling model complexity in other machine learning models
by introducing sparsity into model parameters (Hastie, Tibshirani & Wainwright,
2015). In real-life applications, the most popular way of tuning this hyperparameter
is based on grid-search along with cross-validation (CV), i. e., trying different λ
values from a specified range and computing their CV error, and choosing the one
that yields the smallest CV error. However, CV is not the only method that is used
in this field.

Methods that are based on CV (k-fold CV, leave-one-out CV, nested CV) can be
efficient only when the goal is to find a single or a few number of hyperparame-
ters. However, in real applications, there can be multiple hyperparameters which
penalize more than one penalty terms, or they can be in vector form in which each
element of the vector penalizes a different component of β. In these cases, CV-
based methods become intractable. Another way of casting this problem is to think
of these hyperparameters as precision terms (reciprocal of variance) for the prior
distribution of β. When the hyperparameter tuning problem is cast as a probabilis-
tic model like this, Bayesian methods are a natural choice to tackle this problem.
For example, approaches like Markov chain Monte Carlo (MCMC) sampling (Xi-
ang, 2020), (Chaari, Batatia, Dobigeon & Tourneret, 2014), Bayesian Optimization,
(Kochenderfer & Wheeler, 2019), Expectation-Maximization Lin & Lee (2006), sim-
ulated annealing (Kuhn & Silge, 2022) have been proposed to address this problem
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in Bayesian framework. Even though these approaches have provided significant
improvements for simultaneous estimation of multiple hyperparameters, they are
still based on using the whole training dataset for a given model, and this still poses
computational challenges while using large datasets. We address this problem by
proposing a subsampling-based algorithm to tune multivariate hyperparameters for
linear models in supervised learning. Our algorithm is based on obtaining a quick
estimate of prior mean and covariance hyperparameters of β by utilizing subsamples
from a given training data. The details of this approach are given in Chapter 2.

Robust regression: Standard linear regression model assumes that the residuals
are distributed according to normal distribution and their variance is constant for
all data points for a given dataset. Howeveri in many real-life applications, practi-
tioners often come across datasets that have unusual noise patterns that are ridden
with outliers and high skewness. When one fits ordinary least-squares (OLS) to
such a dataset, it causes a drastic ddterioration in the predictive performance of
linear regression. A common way of remedying this issue is to replace the quadratic
loss function (MSE) of OLS with another one which is more resilient to outliers
and skewness. In the literature, there is a large family of estimators, called m-
estimators, which contain mean-squared error, least absolute deviation, Huber loss
and many other symmetric, positive and continuous loss functions as its special
cases (De Menezes, Prata, Secchi & Pinto, 2021). Even though MSE is also an
m-estimator, we will focus on its robust members.

The term robust regression denotes a family of regression methods that are not too
sensitive to outliers and skewness in residuals. It is also deeply connected to the
regularized regression problem that we address in Chapter 2. When one applies a
regularization method on regression parameters, one implicitly makes them more
robust against outliers by reducing the variance of these parameters. Regularization
is achieved by penalizing the irrelevant features (columns) of the predictor matrix,
whereas robustness is achieved by penalizing the observations (rows) which have less
predictive power. As we will see in Chapter 3, fitting an m-estimator is achieved by
finding optimal weights to penalize these “peculiar” observations.

For a single m-estimator, finding the optimal weights for observations is often han-
dled by using iteratively reweighted least squares (IRLS) procedure (Susanti, Pratiwi,
Sulistijowati, Liana & others, 2014), but in the case of a mixture of m-estimators
it requires more complicated methods. Additionally, using a single m-estimator
may not always be sufficient to capture the characteristics of the stochastic pro-
cess that generates a given dataset. In the literature, there are some other uses
of mixture models (mixture of m-estimators) to fit robust regression Bai, Yao &
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Boyer (2012), Tak, Ellis & Ghosh (2019). However, the methods that we have ob-
served are either not flexible enough or not efficient enough to incorporate more than
two m-estimators to the mixture model. For these reasons, we propose an efficient
Expectation-Maximization algorithm to fit a mixture of m-estimators for a given
dataset.

Differentially Private Sketches: Differential privacy (DP) is a general frame-
work that allows answering queries about a given dataset while preserving the pri-
vacy of the individuals whose personal information is in that dataset Dwork (2006a).
Via randomly perturbing the answer of a query, or via perturbing each individuals’
data, it provides “plausible deniability” for the individuals when a malevolent an-
alyst is trying to recover their personal information from the answers to specific
queries about the population statistics. We say that A is (ϵ,δ)-differentially private
if, for any pair of neighboring data sets X,X ′ ∈ X from an input set and any subset
of output values S ⊆ S, it satisfies

P [A(X) ∈ S]≤ eϵP
[
A(X ′) ∈ S

]
+ δ.

According to the above inequality, a randomized algorithm is differentially private if
the probability distributions for the output obtained from two neighboring databases
are ‘similar’. The parameters ϵ and δ determine the privacy budget, or privacy loss.
Those parameters are desired to be as small as possible as far as privacy is con-
cerned. In the DP framework, the trade-off between accuracy in responses and pri-
vacy guarantees is often balanced by finding an optimal randomization mechanism
that is crafted according to the sensitivity of the query responses. In the applications
that involve data streams, sketches are often used as inherently randomized data
structures that can provide approximate population statistics within mathematically
proven error bounds, while using much less memory than traditional data-keeping
approaches. Their inherently randomized structure makes them well-suited for im-
plementations that require DP guarantees. For this reason, utilizing DP for data
sketches have been a popular approach in the literature in the last decades Cormode,
Procopiuc, Srivastava & Tran (2012); Dwork, Naor, Pitassi, Rothblum & Yekhanin
(2010); Melis, Danezis & Cristofaro (2016); Mir, Muthukrishnan, Nikolov & Wright
(2011); Mishra & Sandler (2006); Sparka, Tschorsch & Scheuermann (2018); von
Voigt & Tschorsch (2019). Our study is confined to only the Count and Count-
Min Sketches Charikar, Chen & Farach-Colton (2002); Cormode & Muthukrishnan
(2005). The Count Sketch is proposed in Charikar et al. (2002) as a useful tool
for answering frequency queries, by producing unbiased estimators. Similarly, the
Count-Min Sketch Cormode & Muthukrishnan (2005) is proposed for the same task.
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In Chapter 4, we tackle the problem of responding to intermittent frequency queries
about the information contained in a data stream while providing DP guarantees and
keeping the utility of the responses at a reasonable level, i.e., reducing the potential
deterioration of accuracy that is caused by accumulation of random noise. The
thing that is significant about the setting of “intermittent queries” is the possibility
that even between two consecutive identical queries, the true answer may have
differed due to the addition of new individuals’ data. The challenge related to data
privacy is that the answers to the queries should continually protect the privacy of
individuals’ data that are included in the data stream at any time of the streaming
process. Hence, the setting being investigated in this work can be considered as a
generalization of the setting which focuses on one-time queries.

Adaptive Online Bayesian Frequency Estimation Under Local Differential
Privacy: Now, we will introduce a slightly different notion of differential privacy
than the previous one, namely local differential privacy (LDP).
Definition 1 (Local differential privacy). A randomized mechanism M : X 7→ Y
satisfies ϵ-LDP if the following inequality holds for any pairs of inputs x,x′ ∈ X ,
and for any output (response) y ∈ Y:

e−ϵ ≤ P(M(x) = y)
P(M(x′) = y) ≤ e

ϵ.

This definition of ϵ-LDP is almost the same as that of global ϵ-DP. The main dif-
ference is that, in the global DP, inputs x,x′ are two datasets that differ in only
one individual’s record, whereas in LDP, x,x′ are two different data points from X .
In Definition 4, ϵ≥ 0 is the privacy parameter. A smaller ϵ value provides stronger
privacy.

Suppose a type of sensitive information is represented as a random variable X with
a categorical distribution denoted by Cat(θ), where θ is a K-dimensional probability
vector. Our goal is to estimate this parameter as accurately as possible, while sat-
isfying the LDP constraint. For this purpose, in Chapter 5, we propose an adaptive
and online algorithm to estimate θ in a Local Differential Privacy (LDP) framework
where X is unobserved and instead, we have access to a randomized response Y
derived from X. In the LDP framework, a central aggregator receives each user’s
randomized (privatized) data to be used for inferential tasks. In that sense, LDP
differs from global DP (Dwork, 2006b) where the aggregator privatizes operations
on the sensitive dataset after it collects the sensitive data without noise. Hence
LDP can be said to provide a stricter form of privacy and is used in cases where the
aggregator may not be trustable (Kasiviswanathan, Lee, Nissim, Raskhodnikova &
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Smith, 2011).

The main challenge in most differential privacy settings is to decide how to select a
randomized mechanism. In the case of LDP, this is cast as how an individual data
point X should be randomized. On top of that, in many cases, individuals’ data
points are collected sequentially. A basic example is opinion polling, where data is
collected typically in time intervals of lengths in the order of hours or days. While
sequential collection of individual data may make the estimation task under the
LDP constraint harder, it may also offer an opportunity to adapt the randomized
mechanism in time to improve the estimation quality. Motivated by that, in Chapter
5, we address the problem of online Bayesian estimation of a categorical distribution
(θ) under ϵ-LDP, while at the same time choosing the randomization mechanism
adaptively so that the utility is improved continually in time.

Our proposed algorithm, AdOBEst-LDP employs a new randomization mechanism,
randomly restricted randomized response (RRRR). RRRR is a modified version of the
Standard Randomized Response mechanism (SRR). This is a well-studied mechanism
in the DP literature, and the statistical properties of its basic version (such as its
estimation variance) can be found in the works by (Wang, Blocki, Li & Jha, 2017)
and (Wang, Lopuhaä-Zwakenberg, Li, Skoric & Li, 2020). When the number of
categories K in a dataset is large, the utility of SRR can be too low. RRRR in
AdOBEst-LDP is designed to circumvent this problem by constraining its output to
a subset of categories. Unlike SRR, the perturbation probability of responses in our
algorithm changes adaptively, depending on the cardinality of the selected subset of
categories for the privatization of X, and the cardinality of its complementary set.
At each step of the algorithm, we select the subset of these categories with respect
to a given utility function that measures the informativeness of the subset, given the
posterior sample from the current estimate of the categorical density parameter θ̂.
In other words, we choose the subset that maximizes the given utility function whose
input is the posterior sample of the population parameter estimate. After adapting
the randomized mechanism, we use it to privatize the newly arrived data. Next, this
new data is used for updating the posterior sampling procedure of θ̂. To put it simply,
both randomization and parameter estimation steps of the algorithm guide each
other adaptively and continually. To quantify the utility of a given subset, we explore
various well-known information metrics, including the Fisher information matrix,
total variation distance, and information entropy. For the Bayesian estimation of
parameter θ̂, we utilize posterior sampling through stochastic gradient Langevin
dynamics (SGLD) which is a computationally efficient, approximate Markov chain
Monte Carlo (MCMC) method.
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1.3 Outline

The main material of this dissertation is organized in four chapters and a Conclu-
sion chapter, while some of the technical details (additional proofs) of these chapters
are deferred to Appendices. Here is a brief outline of the four main chapters:

Chapter 2: Hyperparameter Tuning in Linear Models
In this chapter, we propose a subsampling-based algorithm to handle hyperparam-
eter tuning for regularized linear models in supervised learning. We compare the
proposed algorithm with grid-search-based tuning of hyperparameters with cross-
validation and unregularized solution of each linear model.

Chapter 3: A Bayesian Approach for Solving Robust Regression Prob-
lems
In this chapter, we tackle a subclass of regression problems where the response vari-
able violates the basic assumptions of ordinary least-squares; namely, these response
variables have outliers and non-normally distributed noise. For this purpose, we
model the given problem as a mixture of m-estimators and propose an Expectation-
Maximization algorithm to solve them.

Chapter 4: Differentially Private Frequency Sketches for Intermittent
Queries on Large Data Streams
This chapter is a replication of a conference paper that we wrote in 2020, with minor
editing. The author of this dissertation is also one of the co-authors of that paper1.
In this chapter, we did not use a Bayesian method, but it is still an important part
of this dissertation, in that, it contains our earlier excursions into the field of online
frequency estimation under differential privacy (DP), and is partially related to the
topic of the next chapter.

Chapter 5: Bayesian Frequency Estimation Under LDP With an Adap-
tive Randomized Response Mechanism
This chapter is a replication of an article that we wrote in 2024, with minor addi-
tions and editing. Again, the author of this dissertation is also one of the co-authors
of that paper2. Here, differently from the previous chapter, we tackle the frequency
estimation problem under local differential privacy, as opposed to global DP, and we
directly make use of Bayesian methods, such as posterior sampling.

1The conference paper can be accessed via this link: https://ieeexplore.ieee.org/document/9377786

2The article can be accessed via this link: https://dl.acm.org/doi/10.1145/3706584
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2. HYPERPARAMETER TUNING IN LINEAR MODELS

We propose a new subsampling-based algorithm for tuning hyperparameters in ℓ2-
norm regularized learning models. Our algorithm draws random subsets from the
training dataset and fits the unregularized version of a given model on each one
of these subsets. The solutions obtained from those subsets are used to construct
a regularization term which, in a Bayesian context, corresponds to a multivariate
Gaussian prior for the model parameter vector. This regularization term is then
applied to the whole dataset. We applied our algorithm to several well-known su-
pervised learning models and tested it on real datasets. Our experiments show that
the test set accuracy of our algorithm is on par with that of the famous k-fold
cross-validation while its computation time is significantly shorter.

Most of the research in this chapter was conducted by the author of this disser-
tation. Supplementary derivations in Appendix A.1 were made by Sinan Yıldırım.
Additionally, İlker Birbil provided useful suggestions during our meetings on this
topic.

2.1 Introduction

In this chapter, our focus is on the computationally efficient tuning of regularization
hyperparameters in linear models 1 for supervised learning. First, we will explain
and demonstrate our method for ridge regularization in linear regression. Later, we
will show that our method for tuning these hyperparameters can be extended to
other generalized linear models used for regression and classification.

Regularization hyperparameters are widely used for controlling the complexity of

1The method that we propose is also applicable to nonlinear models, but for convenience, we will focus on
its application to linear models here.

8



regression models (and other supervised learning models), in order to prevent the
overfitting problem and to maximize the generalization performance of these meth-
ods. These parameters are often tuned by brute-force search, using cross-validation
(CV) in practice; in other words, many of the possible hyperparameter values in a
predetermined range are exhaustively tested with CV (Hastie, Tibshirani & Wain-
wright, 2019). However, CV can be computationally expensive when there are mul-
tiple hyperparameters and even more so when these hyperparameters are vectors
rather than scalars. Our motivation is to develop a method that can tune these
multidimensional hyperparameters efficiently, approximating their optimal values in
a short time.

Our method is primarily designed to regularize the ℓ2-norm of the parameters of
generalized linear models (GLM), such as linear regression, logistic regression, and
Poisson regression. Here is the general form of the ℓ2-norm regularization problem.
Given the collections of response values Y = (y1, . . . ,yN ), and the predictor matrix
X = (x1, . . . ,xN ) of sizes N , where for each observation i we have yi ∈ Y ⊆ R and
row vector xi ∈ X ⊆ Rd, the optimization task in a generalized linear model with
ℓ2-norm regularization problem can be stated as

(2.1) min
β∈Rd×1

N∑
i=1
L(yi,g(xiβ))+λ||β||22,

where L : Y2 7→ R is a loss function such that L(y, ŷ) measures the discrepancy be-
tween the response variable y and its ‘fitted’ value ŷ. The second term in (2.1) is the
regularization term that penalizes the irrelevant components of the model parame-
ters. In the case of GLMs, for a pair (x,y), the response variable y is approximated
by a link function g : R 7→ Y that takes the linear combination xiβ as input, and ap-
plies some transformation on this input, depending on the probabilistic model that
relates y and x (Dobson & Barnett, 2018). The simplest example of a regularized
GLM is the ridge regression problem where the optimization task is

min
β

N∑
i=1

(yi−xiβ)2 +λ||β||22.

Here, the hyperparameter λ is to be tuned to approximate the optimal generaliza-
tion performance (i.e., the fitted parameter will yield high prediction accuracy on
any unseen test datasets). CV is the most popular way of tuning this hyperparam-
eter. Other alternatives are based on randomized search methods (such as Bayesian
Optimization) that walk through the search space of λ’s in a more principled way
than grid search (Bischl, Binder, Lang, Pielok, Richter, Coors, Thomas, Ullmann,
Becker, Boulesteix & others, 2023), and approximate the optimal solution faster
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than CV. In any case, optimization of the exact generalization performance func-
tion is computationally intractable because it is based on averaging the performance
functions of all possible combinations of train-test splits of the available dataset. We
will cover the details of this problem in Section 2.3.

Since the regularization problem that we have just introduced is equivalent to the es-
timation of maximum a posteriori (MAP), we can restate the regularization problem
as finding a reasonable prior that can reduce the variance of β without introduc-
ing too much bias. We tackle this problem by drawing small subsamples from the
training set, fitting an unregularized linear model to each of these subsamples, and
obtaining separate β estimates from each of them. After that, we use the mean vec-
tor and covariance matrix of these subsampled βs as the prior mean and covariance
of the given regularized linear model. We will elaborate on the details of how we
used these priors as hyperparameters in Section 2.3. Due to our use of small sub-
samples to estimate the hyperparameters, our approach yields a fast approximation
of the optimal hyperparameters, even when the number of hyperparameters is in
the order of the square of the number of features.

2.2 Related Work

Hyperparameter tuning has been an active research topic since the 1970s after (Hoerl
& Kennard, 1970) proposed a procedure to approximate the optimal penalty hyper-
parameter of the ridge regression problem. From then on, numerous approaches to
tackle this problem have been developed for both Generalized Linear Models and
more complicated machine learning (ML) methods. Due to the use of large-scale
datasets in recent applications of ML methods and due to the computational in-
tractability of finding their exact generalization performance, all of the proposed
methods seek to find nearly optimal hyperparameters in a short time. We can clas-
sify these methods in mainly two categories: i) optimization-based methods and ii)
sampling- and resampling-based methods.

Some of the existing optimization-based heuristics for tuning a single hyperparam-
eter are surveyed in the work of (Qian, 2017) which are often based on striking
a balance between the bias and variance components of the mean squared error.
Methods based on CV (k-fold CV, leave-one-out CV, nested CV) are among the
most popular methods in the category of resampling-based approaches, but these
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methods can be efficient only when the goal is to find a few number of hyperparame-
ters. When the hyperparameter tuning problem is cast as a hierarchical probability
model, it naturally lends itself to various Bayesian approaches. For example, (Xi-
ang, 2020) developed an MCMC method (which also falls under the category of
sampling-based approaches) to estimate the hyperparameter of Bridge regression
problem (which corresponds to penalizing the ℓp-norm of the regression parameter,
where 1< p < 2) by sampling from the posterior distribution of both regression pa-
rameters and hyperparameters in a cyclic fashion. Similarly, (Chaari et al., 2014)
developed a Gibbs sampler to tune the hyperparameters that penalize ℓ0, ℓ1-, and
ℓ2- norms of the regression parameter. Other well-known Bayesian methods used for
solving this problem fall under the category of optimization-based approaches; such
as Bayesian Optimization which is also known as surrogate optimization (Kochen-
derfer & Wheeler, 2019), and expectation-maximization algorithm as in the work
of Lin & Lee (2006). The first of these is based on approximating the surface of
the unknown objective function by a surrogate function and updating this surrogate
function at each iteration by taking new samples from the search space. The second
one is composed of two steps at each iteration: computing the expected values of the
hyperparameters for a fixed regression parameter β (E-step), and maximizing the β
for fixed hyperparameters (M-step). Another popular approach to optimize hyper-
parameters is to use simulated annealing algorithm (Kuhn & Silge, 2022) which falls
under the categories of both optimization-based and sampling-based approaches.
This is a generic randomized optimization method that is used for approximating
the global optimal solution in a wide variety of nonconvex problems; but at the same
time, it can also be classified as a subset of MCMC methods, since its implemen-
tation is very similar to Metropolis-Hastings algorithm (Robert, Casella & Casella,
2010).

In our work, we introduce a subsampling-based algorithm to tune multivariate hy-
perparameters, that is applicable not only for ridge regression but also for other
linear models in supervised learning as well. In our computational experiments, this
algorithm yields comparable results to the popular approaches (such as 10-fold CV)
in a shorter time. In all of the existing approaches that we have encountered in
the literature so far, the search space of hyperparameters grows exponentially with
the dimension of the hyperparameter vector λ, thus demanding more computational
time. Given this fact, our subsampling-based method provides a quick shortcut
to estimate all of the hyperparameters simultaneously, even when Λ (multivariate
analogue of λ) is an d×d matrix where d is the number of columns in X.
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2.3 Methodology

As we briefly mentioned in Section 2.1, finding the exact generalization performance
of a given regularized model is computationally intractable. Cross-validation is a
widely used technique to estimate the generalization error for a given hyperparam-
eter setting from the given data. The technique is based on splitting the available
data into training and validation parts. Given some training data (X,y), and a
hyperparameter λ, the ideal approximation of the theoretical generalization error
by cross-validation based on this data can be given as

(2.2)
(
N

Ns

)−1 ∑
(Xr,Yr)
(Xs,Ys)

∑
(x,y)∈(Xs,Ys)

L(y,g(xβ̂(Xr,yr,λ))).

That is, one would like to consider all possible combinations of training-test par-
titions (Xr,yr)-(Xs,ys) of the available data (X,y), where for each partition the
model is trained with (Xr,yr) and tested against Xs,ys. In (2.2), N , Nr, and Ns are
the sizes of the whole dataset, training set, and test set, respectively, hence the term(

N
Ns

)
for the number of all possible partitions. The typically large number of terms

in this summation in (2.2) makes its exact computation intractable. Minimization of
this function is also challenging because it does not attain an exact analytical solu-
tion. For this reason, all of the existing hyperparameter tuning methods (including
k-fold cross-validation) are essentially based on approximating this function (or its
minimum point) in one way or another. Our proposed method to find approximately
optimal hyperparameters is based on drawing random subsamples from the training
set. The proposed method is displayed in Algorithm 1.

In Algorithm 1, we sample (without replacement) m subsamples of size n from the
training set (X,y) of size N , where n≪ N , 2 and fit a given unregularized linear
model to each of these subsamples 3 to estimate β0 and Ŝ which are the prior
mean and covariance, respectively. Finally, we use these prior hyperparameters by
appending them as an ellipsoidal penalty term to the loss function which uses the
whole training set as input, and solve it to obtain the MAP estimator β̂.

2This assumption is important especially when N is large, so that using relatively small subsamples is more
favorable in terms of computation time.

3We implemented this part of the method in a sequential manner, but the same part can be parallelized as
well.
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Algorithm 1 Training via subsampling for hyperparameter tuning
Input: Dataset: X,y, m: number of subsamples, n: subsample size
Output: Posterior mean parameter β̂
for i= 1 . . . ,m do

Sample n rows from the dataset (X,y), to form Xsub and ysub.
β(i) = argminβ

∑
(x,y)∈(Xsub,ysub)L(y,g(xβ))

Set β0← 1
m

∑m
i=1β

(i)

Set Ŝ← 1
m−1

∑m
i=1(β(i)−β0)(β(i)−β0)T

Find the final estimate

β̂← argmin
β

N∑
i=1
L(yi,g(xiβ))+(β−β0)T Ŝ−1(β−β0)

return β̂

2.3.1 Applications to Different Linear Models

In order to better explain how our algorithm works in practice, we will first discuss
its application to linear regression. Later on, we will talk about other linear models
that do not have analytical solutions (such as SVM, logistic regression, and Poisson
regression) that we used in our paper. After that, we will provide a transformation
method that facilitates the implementation of our method on models that are fitted
by using the existing libraries which do not take multivariate hyperparameters as
input.

2.3.1.1 Implemented Models

Linear Regression. In the standard form of ridge regression, it is assumed that
the prior mean of β is a zero vector and the prior variance is unknown. When we
use the sum of squared residuals as a special case of the loss function L(y,Xβ), as
in linear regression, we have the following form:

min
β
f(β) = ||y−Xβ||22 +(β−β0)T Ŝ−1(β−β0),

where β0 is the sample mean of the β’s obtained from subsamples and Ŝ is a positive
definite matrix that is constructed from the sample covariance of β’s obtained from
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the subsamples. The solution to the minimization problem above is given by

β̂ = (XTX+ Ŝ−1)−1(XT y+ Ŝ−1β0),

which is the MAP solution when the prior for β is N (β0,S). This formula can
be interpreted as a weighted combination of the full-sample ordinary least squares
(OLS) estimator and the prior β0, where the contribution of β0 to the overall estimate
is proportional to the inverse of Ŝ. As a special case, when Ŝ−1 = λI and β0 = 0, this
expression boils down to the solution of standard ridge regression. But in the general
case, Ŝ can be any positive definite matrix, and β0 can also have nonzero entries.
For Ŝ, we used the full covariance matrix of the β’s obtained from subsamples, but
for simplicity and interpretability, one can also use the diagonal entries (variances)
of that covariance matrix. This way, one can easily interpret which components of
β are shrunken towards β0 by which amount.

Support Vector Machines. The second model that we used is support vector
machines (SVM) for classification. The primal optimization model of the soft-margin
SVM is given as:

minimize
β,b,ξ

1
2 ||β||

2
2 +C

∑N
i=1 ξi

subject to yi(βTxi + b)≥ 1− ξi, i= 1, . . . ,N,
ξi ≥ 0, i= 1, . . . ,N.

Instead, we solve this:

minimize
β,b,ξ

1
2 ||L

T (β−β0)||22 +∑N
i=1 ξi

subject to yi(β ·xi + b)≥ 1− ξi, i= 1, . . . ,N,
ξi ≥ 0, i= 1, . . . ,N.

Let β′ = LT (β−β0). Hence, β = L−Tβ′ +β0

minimize
β,b,ξ

1
2 ||β

′||22 +∑N
i=1 ξi

subject to yi((L−Tβ′ +β0) ·xi + b)≥ 1− ξi, i= 1, . . . ,N,
ξi ≥ 0, i= 1, . . . ,N.

minimize
β,b,ξ

1
2 ||β

′||22 +∑N
i=1 ξi

subject to yi(β′ · (L−1xi)+β0 ·xi + b)≥ 1− ξi, i= 1, . . . ,N,
ξi ≥ 0, i= 1, . . . ,N.
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yi(
[
β′ 1

]
·
[
L−1xi β0xi

]
+ b)≥ 1− ξi

Regularization in SVM problems is a bit different from regularization in other su-
pervised learning methods. In the soft-margin SVM problem, the objective function
is composed of both 1

2 ||β||
2
2 term which is related to the reciprocal of the margin be-

tween classes (in binary classification setting) and the penalty term C
∑N

i=1 ξi which
penalizes the slack variable ξi if a given observation i violates the margin of its class.
So, the penalty hyperparameter C can be thought of as 1/λ with respect to the other
regularization problems that we mentioned before. For large datasets, using CV to
tune C can be computationally very time-consuming, as we will see in Section 2.4.
However, our approach does not explicitly tune this hyperparameter; it just obtains
prior estimates of the mean (β0) and covariance matrix (Ŝ) of β by using subsam-
ples from the training dataset, and incorporates these estimates into the full training
dataset indirectly, by applying a simple affine transformation on predictor matrix of
the training set Xr (scaling it by a matrix L−T where LLT = Ŝ−1, and adding a new
vector, Xrβ0). We will provide a detailed explanation of this affine transformation
in Section 2.3.1.2, as it is applicable to other linear models. This transformation is
not an essential component of our algorithm; we just suggest this transformation to
make it easier to implement our algorithm by using the existing ML libraries, instead
of directly casting it as a new optimization model. Alternatively, users can also im-
plement our algorithm by explicitly re-writing the optimization model (adding the
penalty term to the loss function) and solve it by one of the existing optimization
solvers.

Logistic Regression. Logistic regression is one of the members of the GLM’s and
it is used for classification tasks. In a nutshell, for binary classification, (binomial)
logistic regression takes Xβ as input and returns the class membership probabilities
(Ŷ ) as output by using sigmoid function. For multiclass classification, similarly,
(multinomial) logistic regression takes a linear combination of feature matrix and
returns the class membership probabilities for each class by using softmax function.
This linearity between X and β allows us to use the same subsampling-based method
for logistic regression as well. In order to apply our subsampling-based regularization
method, we use the same affine transformation trick that we used for SVM, to
incorporate prior mean and prior covariance information into the model indirectly.

Poisson Regression. Poisson regression is often used to predict count data, such
as the number of events that occured in a certain time interval. We also applied the
subsampling-based regularization approach on Poisson regression, since it is another
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member of the GLM’s. For the implementation of both subsampling and CV, we
used glmnet library. This library does not take multivariate λ vector (λj per each
feature j) as input, but we circumvented that problem via applying the same affine
transformation trick again, by using the prior mean and covariance estimates for β
to scale and shift X matrix to implicitly regularize each of the parameters.

2.3.1.2 Implementation Details

When a user wants to implement our algorithm, we offer two alternative approaches.
The first approach is to append the penalty term (β−β0)T Ŝ−1(β−β0) directly into
the loss function manually, and solve it as a convex optimization problem. The
only time this approach can be easy is when the loss function is in the form of
linear (ridge) regression, since linear regression attains an analytical solution when
the hyperparameters are fixed. However, the other models that we implemented
(SVM, logistic regression, Poisson regression) do not have analytical solution; and
in practice, these models are often fitted by using existing libraries which do not
take multivariate hyperparameters as input. In that case, the second approach that
we offer is to apply an affine transformation on the feature matrix X.

Now we will explain the details of the affine transformation on SVM problem, but
this approach can be applied to other linear models by following the same steps. We
would like to write (β−β0)T Ŝ−1(β−β0) in the form of β̂T β̂. Define β̂ =LT (β−β0),
where L is such that LLT = Ŝ−1, as mentioned earlier. Rearranging the terms, we
have β = L−T β̂+β0. Thus, Xβ = XL−T β̂+Xβ0. From this, we can obtain a new
feature matrix X ′ = [XL−T ,Xβ0], which is the transformed version of X. After
this transformation, we can fit the SVM with the new X ′, y, C = 1. After solving
this problem, there are two alternative ways to use the estimate β̂ for prediction.
One can either use β̂ to recover β by reversing the above transformation, or one can
apply the same affine transformation on the test feature data. The second approach
is easier to implement with the R packages that do not take a user-defined β as
input at the prediction stage, so we used that one.

2.3.2 Theoretical Arguments
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If the m different parameter estimators β(1),β(2), . . . ,β(m) obtained from m different
subsamples were independent and identically distributed, we could argue that the
distribution of their sample mean β0 is approximately N(β, 1

mΣ) (where Σ is the
unknown covariance matrix of the parameter), by the central limit theorem (CLT).
But those estimators are not independent from each other, because they are com-
puted by sampling observations from the same training set. Still, we can use the
CLT for weakly dependent random variables, by carefully selecting the subsample
size n and the number of subsamples m. For each observation, xi, the total number
of times that it is selected in all subsamples is distributed according to a binomial
distribution with m trials and the success probability of n

N . If we set m≈ N
n , then

the expected number of times the observation xi is sampled across all m subsamples
will be m n

N ≈m
1
m = 1. By using this setting, on average, β(i)’s obtained from dif-

ferent subsamples will be weakly dependent on each other, thus allowing the CLT
to hold 4. In practical applications, we recommend using this particular setting,
whenever the dimensions of a given dataset and the specific convergence conditions
of a given model allow it.

At this point, the asymptotic normality property of maximum likelihood estimator
(MLE) is also worth mentioning (Murphy, 2023). According to this property, if θ̂n

is the ML estimate of the true parameter θ of a probabilistic model that generates
a certain sample of size n, then the sampling distribution of

√
nθ̂n converges to

N(θ,I(θ)−1) when n goes to infinity, where I(θ) is the Fisher information matrix
for the given model, and for multivariate Gaussian distribution, I(θ) is also inverse
of the unknown true covariance matrix. From this point of view, the prior covariance
matrix Ŝ that we obtain via subsampling can be seen as a computationally cheap
approximation of I(β)−1 for a given linear model whose unknown parameter is β,
when the regularity conditions of MLE hold for that model.

Additionally, we also derived a closed-form solution for the ridge regression prob-
lem with a single hyperparameter, λ, for comparison with subsampling. Given an
estimator, the expectation of the test error (MSE) for this can be written as

σ2 +(β̂λ−β)TS(β̂λ−β)

where S = E(xxT ), σ2 is the unknown variance of residuals, and β is the unknown
true parameter for regression.

One can show that in ridge regression, the expectation of this error, with respect to
the distribution of the dataset (X,y), is minimized when the hyperparameter λ is

4See, for example, Zou, Li, Liang & Wang (2021, Theorem 2(i)) for a more precise statement on estimators
like β0.
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chosen as follows
λ̂≈ trS−1

1
ntrS−2 + 1

σ2βTS−1β
.

The derivation of this result is included in Appendix A.1. This solution is compu-
tationally more efficient than using grid search along with CV, but it is applicable
to only ridge regression with a single (scalar) hyperparameter. In the asymptotic
case, this formula is somewhat similar to the Hoerl-Kannard-Baldwin formula (Ho-
erl, Kannard & Baldwin, 1975), but in the finite-sample case, it is different. In our
experiments, we used this formula by plugging in OLS estimates of β̂ and σ̂2, since
their real values are unknown.

2.4 Numerical Experiments

In our experiments, we tested our methods against k-fold cross-validation (CV)
(where k = 10) in terms of average test set accuracy (for different training set -
testing set partitions) and computation time.

Our results are averaged over 50 training-testing partitions of the data set, where
the training set is 75% of the whole dataset. For comparison, we also implemented
the diagonal version of the subsampling algorithm (denoted as subs.diag in our
tables) which uses only the diagonal elements of the prior covariance matrix; and
also implemented the subsample-size-adjusted version of the algorithm (denoted
as subs.adj in our tables) where we scaled the prior covariance matrix by n, the
number of observations in a single subsample. We added these two variants of our
subsampling-based method to check whether the standard version of our algorithm
yields significantly different results from these two apparently refined versions.

We defer some of the additional experimental results, such as the ones that are
related to closed-form approximate solution of ridge regression from Section 2.3.2,
to Appendix A.2.

2.4.1 Experiments with Linear Regression
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In Table 2.1, we compare the test set performance of OLS, CV-based grid-search
tuning, closed-form approximate solution and our subsampling-based method for
ridge regression, on 6 real datasets.

Dataset MSE Time (s)
OLS CV Closed subs subs.diag subs.adj CV Closed subs

housing Avg. 0.2647 0.2647 0.2643 0.273 0.2692 0.2679 0.2066 0.0034 0.0266
(506 × 13) Std. 0.0538 0.0538 0.0546 0.0622 0.0613 0.0581 0.0608 0.02 0.0177

ccpp Avg. 0.2647 0.2647 0.2643 0.273 0.2692 0.2679 0.2066 0.0034 0.0266
(9568 × 4) Std. 0.0538 0.0538 0.0546 0.0622 0.0613 0.0581 0.0608 0.02 0.0177

cadata Avg. 0.3633 0.3633 0.3633 0.3633 0.3633 0.3633 0.4488 0.0076 0.0514
(20640 × 8) Std. 0.0114 0.0114 0.0114 0.0114 0.0114 0.0114 0.1072 0.0104 0.0199

superconduct Avg. 0.2659 0.2659 0.2659 0.266 0.2659 0.2659 1.2174 0.3388 1.3152
(21263 × 81) Std. 0.0051 0.0051 0.0051 0.0051 0.0051 0.0051 0.291 0.1032 0.2736

abalone Avg. 0.4771 0.4771 0.4771 0.4771 0.4772 0.4771 0.159 0.0018 0.0214
(4177 × 7) Std. 0.0341 0.0341 0.0341 0.0341 0.0341 0.0341 0.0498 0.0063 0.012

airfoil Avg. 0.4879 0.4879 0.488 0.4879 0.4879 0.4879 0.0894 0.0018 0.0144
(1503 × 5) Std. 0.0363 0.0363 0.0362 0.0363 0.0363 0.0363 0.0339 0.006 0.0095

Table 2.1 Linear Regression Results

2.4.2 Experiments with SVM

In this subsection, we compare our approach with unregularized SVM, subagging
(subsample aggregation), and CV-based grid-search tuning, in terms of accuracy
and computation time, on 6 real datasets. For convenience, the CV-based method
was parallelized by using seven cores on a laptop with with 16 GB RAM and Intel
Core i7-10510U CPU with clock rate 1.80 GHz 5. Comparisons in terms of accuracy
(percentage misclassification error, i.e. the percentage of the observations that are
classified incorrectly) and timing (in seconds) are given in Table 2.2.

2.4.3 Experiments with Logistic Regression

We tested our method on six real datasets, and compared it with both CV-based
grid-search tuning and the version without tuning. These datasets are the same
ones that we used for SVM, since their y variables are binary class labels. For
convenience, again, CV-based method was parallelized by using seven cores. The
results are summarized in Table 2.3.

5Without this parallelization, running the CV on these datasets with 50 replications on the same laptop
took more than 1 day.
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Dataset Misclassification Error (%) Time (s)
Not Tuned CV subs subagg subs.adj CV subs subagg

spambase Avg. 12.3113 7.1583 7.3617 9.8504 7.2557 225.955 0.4702 0.2314
(4601 × 57) Std. 2.4037 0.6377 0.7018 0.9792 0.6999 25.8729 0.1358 0.0464

abalone Avg. 27.682 17.431 17.41 17.6916 17.8889 94.3186 2.187 1.8304
(4177 × 8) Std. 9.7732 1.2351 1.2506 1.0229 1.1902 10.5735 0.6558 0.6084
banknote Avg. 1.7726 0.8863 1.0146 4.8455 0.9796 11.102 0.1786 0.156

(1372 × 4) Std. 1.4522 0.4997 0.5595 3.0583 0.4776 0.9162 0.0387 0.0346
liver Avg. 40.6047 30.7209 32.2791 40.5581 31.1628 9.3368 0.1096 0.1038

(345 × 6) Std. 6.4157 4.2161 4.8348 6.3673 4.0074 1.0348 0.0237 0.0237
wdbc Avg. 4.8028 2.3099 2.3662 14.2394 2.3099 7.137 0.105 0.0994

(569 × 31) Std. 1.7114 1.3723 1.3021 4.0699 1.3274 0.9705 0.0152 0.0181
fico Avg. 40.4613 27.2023 27.2088 27.6895 30.6137 683.1602 6.6982 4.8478

(9781 × 23) Std. 6.2338 0.8118 0.8117 0.8559 3.591 38.7412 0.7629 0.7349

Table 2.2 SVM Results

Dataset Misclassification Error (%) Time (s)
Not Tuned CV subs subagg subs.adj CV subs subagg

spambase Avg. 7.5322 7.553 7.9391 10.0696 7.9722 14.6958 0.2414 0.1492
(4601 × 57) Std. 0.7047 0.7101 0.7102 1.0094 0.7508 1.3492 0.0482 0.0274

abalone Avg. 17.6743 17.7146 17.5977 17.3659 17.636 1.2878 0.1106 0.101
(4177 × 8) Std. 0.867 0.8728 0.8417 0.8917 0.839 0.2109 0.024 0.0192
banknote Avg. 1.0496 1.4519 1.8717 6.3848 2.7172 0.3912 0.08 0.0806

(1372 × 4) Std. 0.4963 0.6981 0.6922 3.6851 0.7912 0.1055 0.027 0.0222
liver Avg. 31.186 31.5814 31.3721 42.186 31.3023 0.1526 0.0628 0.0632

(345 × 6) Std. 3.9984 4.1118 4.1461 6.0945 3.9856 0.0336 0.0235 0.0185
wdbc Avg. 3.1268 2.0423 2.2676 9.4085 2.2676 0.3754 0.089 0.0928

(569 × 31) Std. 1.166 1.0085 1.0189 3.0705 1.0579 0.0733 0.0211 0.0269
fico Avg. 27.0312 26.9704 27.0361 27.2906 27.0361 12.261 0.1796 0.1526

(9781 × 23) Std. 0.7608 0.8056 0.7716 0.8892 0.7819 0.8207 0.0478 0.0323

Table 2.3 Logistic Regression Results

2.4.4 Experiments with Poisson Regression

This time we used 20 subsamples for each dataset and used 5% of the training data
as subsample size (instead of 1%) because, if we had used less number of data points,
it would have severely affected the convergence of the optimization algorithm that
glmnet uses to fit Poisson regression. We used deviance as the error measure to
fit and test the algorithm, rather than MSE, because it is much less sensitive to
extremely large values in y for the Poisson regression setting than MSE. The results
are summarized in Table 2.4.

2.4.5 Overall Comparison via Ranking
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Dataset Deviance Time (s)
Unregularized CV subs subs.diag subs.adj CV subs

phdpublications Avg. 1.8233 1.8236 1.822 1.822 1.822 0.1506 0.0609
(915 × 7) Std. 0.1423 0.1443 0.1461 0.1472 0.1461 0.0136 0.0109

NMES1988 Avg 5.2242 5.2135 5.2394 5.2076 5.2409 1.6186 0.3166
(4406 × 30) Std. 0.3476 0.3261 0.3897 0.3435 0.3919 0.4689 0.2221

Medicaid1986 Avg. 3.1233 3.1132 3.105 3.1061 3.1047 0.215 0.083
(996 × 18) Std. 0.4104 0.4256 0.4193 0.4339 0.419 0.0441 0.0296
bikeshare Avg. 8.5747 10.0315 8.637 8.5918 8.6432 5.467 1.0084

(8645 × 51) Std. 0.2664 0.2356 0.2664 0.2597 0.267 1.52 0.3081
recreationdemand Avg. 6.6554 3.897 4.1585 3.8284 4.1585 0.2666 0.3462

(659 × 9) Std. 5.3766 1.136 1.5761 1.0999 1.576 0.0588 0.1198

Table 2.4 Poisson Regression Results

In order to make sure about the performance of our algorithm, we also applied
Friedman and Nemenyi tests on the rankings of the methods (in terms of mean
test-set accuracy results in the aforementioned tables) that were obtained from our
experiments. The results of these tests are summarized in the Figure 2.1. These
test results further reinforce our conclusion that the accuracy of the subsampling-
based method is comparable to that of CV-based grid-search tuning. At first look,
the difference between rankings in SVM and logistic regression results may seem a
little bit odd, but this difference is caused by the role of regularization term in these
methods. More specifically, regularization term in SVM is a crucial component of
the loss function (this loss function can not be written without that term in the
primal SVM), whereas the classical loss function of logistic regression does not need
this term. For this reason, the effect of hyperparameter tuning turned out to be
more visible in the ranking of SVM results than that of logistic regression.

2.5 Conclusion and Discussion

In this chapter of the dissertation, we proposed a computationally efficient algo-
rithm to tune regularization hyperparameters for linear models. We implemented
our algorithm on various types of linear models that are used in supervised learn-
ing, and tested each of them on real datasets. Our experimental results show that
our algorithm yields accurate results that are comparable to CV-based grid-search
tuning, but in a much shorter time.

One possible future direction of research on our approach can be the “optimal" selec-
tion of subsample size and number of subsamples that guarantee better performance
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(a) Linear regression (b) SVM

(c) Logistic regression (d) Poisson regression

Figure 2.1 Friedman and Nemenyi rank test results for the test set accuracies of the
models
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than the one that we have suggested as a rule-of-thumb.

Another possible direction of future research would be to facilitate the application
of subsampling-based algorithm to nonlinear models (such as neural networks). In
that case, the affine transformation trick that we had suggested would not be ap-
plicable, but one can still apply our method to a given nonlinear model by directly
adding the multivariate penalty term (obtained from subsampling) to the objective
function. This would require writing the optimization model manually (instead of
using an existing ML library), and optimizing it by using a solver. However, a po-
tential research along these lines might be able to find a more user-friendly way of
incorporating this multivariate penalty term to a given nonlinear model.

Using a subsample of the dataset inherently introduces a noise in the estimation of
a given parameter β. One can take advantage of this inherent noise in a differen-
tially private (DP) parameter estimation setting for linear models, i.e., by using the
relation between the subsample size and the variance of the parameter estimate, one
can adjust the subsample size to make the estimation of β satisfy DP constraints.

Discussion: Connections Between Subsampling and Delete-d Jackknife
Estimator

Jackknife estimator is one of the classical and popular methods for computing the
variance of a sample statistic θ̂ = s(X) obtained from a given statistical procedure
s(·). For a given sample X1, . . . ,XN , it is essentially based on computing the given
statistical procedure s(·) N times while leaving out one data point at each compu-
tation and obtaining the estimates θ̂1, . . . , θ̂N . Then, one can compute the variance
of the θ̂ by using the standard (leave-one-out) jackknife formula

V ar(θ̂)jack = N −1
N

N∑
i=1

(θ̂i− θ̂(·))2

where

θ̂(·) = 1
N

N∑
i=1

θ̂i.

For nonsmooth statistics (like median), standard jackknife method can yield highly
biased estimates. To overcome this limitation, a more general version of jackknife
(namely, delete-d jackknife) was proposed (Shao & Wu, 1989), which is based on
leaving out d data points (2< d < N) at each iteration, instead of 1. Its formula is

V ar(θ̂)dd−jack = N −d
d
(

N
d

) (N
d )∑

i=1
(θ̂i− θ̂(·))2
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where

θ̂(·) = 1(
N
d

) (N
d )∑

i=1
θ̂i.

When d= 1, this formula boils down to the standard jackknife formula. In practice,
d is chosen as

√
N < d < N . For a large sample size N and d ≥ 2, computation of

the exact delete-d jackknife estimator is often intractable, due to the requirement of
using

(
N
d

)
different combinations of subsets from the given data. For a large dataset

and a complex learning algorithm, one can avoid this computational challenge by
using a much smaller number of subsamples t≪

(
N
d

)
, each having the sample size

m = N −d. In that case, the delete-d jackknife formula would be simply modified
as

V ar(θ̂)sub−jack = m

(N −m)t

t∑
i=1

(θ̂i− θ̂(·))2

where
θ̂(·) = 1

t

t∑
i=1

θ̂i.

From this perspective, our subsampling-based algorithm can be viewed as a Monte
Carlo approximation of the exact delete-d jackknife estimator of variance, but it
requires to be multiplied by the correction term m(t−1)

(N−m)t for a better approximation
of the exact delete-d jackknife.

For another potential direction of future work, this relation can be further investi-
gated and implemented as a modified version of our algorithm.

New Experiments

As an extension of our work, we also compared our subsampling-based approach
with two other Bayesian hyperparameter tuning methods, namely (i) Bayesian Op-
timization, and (ii) Automatic Relevance Determination.

Bayesian Optimization, as we mentioned in 5.2, is based on approximating the sur-
face of the unknown objective function (generalization error function) by a surrogate
function obtained from a Gaussian process and updating this surrogate function at
each iteration by taking new samples from the search space. In our experiments, we
used rBayesianOptimization library in R.

Automatic Relevance Determination is another Bayesian method for finding opti-
mal hyperparameters for regularization. It was originally developed by (MacKay,
1995) and (Neal, 1995) for regularized fitting of neural networks. Later on, modified
versions of this method were also applied to regularize linear regression and SVM’s
under different names, such as Sparse Bayesian Learning and Relevance Vector Ma-
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chines, respectively (Tipping, 2001). This method is based on using a Gaussian
prior for β, as in p(β) = N(β|0,Λ−1), where Λ = diag([λ1, . . . ,λm]), and directly
maximizing the marginal likelihood function. In this approach, since each feature
is associated with a different precision hyperparameter (λj), redundant features are
sparsified by having larger λj values. So, it yields similar solutions to LASSO reg-
ularization method. To our knowledge, R programming language does not have a
dedicated library that implements ARD for GLMs, so we manually implemented an
iterative algorithm that updates β and Λ in a cyclic fashion, which was proposed by
(Wipf & Nagarajan, 2010).

Each of these new methods were compared against unregularized models, CV-based
regularization, and our subsampling-based method. Each of these experiments were
run 50 times for each dataset. The averages and standard deviations of the test-set
accuracy results are given in Tables 2.5-2.7. In these new experiments, we used the
correction term that relates our method to delete-d jackknife estimator. It seems
that this correction term has provided some improvements in the performance of
our method.

Dataset Accuracy (MSE) Time (s)
OLS CV Subs ARD BayesOpt CV Subs ARD BayesOpt

housing Avg. 23.5195 23.4643 23.5132 25.9136 23.5539 0.0606 0.0058 11.4430 17.0842
(506×13) Std. 4.4905 4.8876 4.5086 6.1010 4.6254 0.0299 0.0085 3.0044 1.2934

airfoil Avg. 23.2368 23.3602 23.2381 23.9707 23.2481 0.0694 0.0038 57.1512 21.2120
(1503×5) Std. 1.9117 1.8666 1.9122 1.8407 1.9190 0.0222 0.0069 8.7735 4.2071
generated Avg. 4.3028 12.0065 4.3297 4.3418 4.2304 0.0888 0.0074 42.5000 25.0592
(1000×10) Std. 0.4102 1.0950 0.4770 0.6044 0.3724 0.0321 0.0087 8.9193 6.0379

Table 2.5 Linear Regression Results

Dataset Misclassification (%) Time (s)
Unregularized CV Subs ARD BayesOpt CV Subs ARD BayesOpt

banknote Avg. 0.9854 0.9795 1.0903 0.9795 27.2186 0.3982 0.0172 108.7200 19.7154
(1372×4) Std. 0.4323 0.4628 0.4705 0.4628 12.9516 0.0792 0.0121 13.0367 2.7522

liver Avg. 31.7674 31.7906 31.7906 31.7906 40.3488 0.1588 0.0158 23.4136 17.0388
(345×6) Std. 4.3281 4.2843 4.6784 4.2843 4.8841 0.0279 0.0097 3.1638 1.9817
wdbc Avg. 7.8732 7.9014 7.1408 7.9014 9.7042 0.5398 0.0272 44.6262 19.2664

(569×31) Std. 2.0255 2.0827 2.4312 2.0827 5.9607 0.1733 0.0092 7.6393 4.7868

Table 2.6 Logistic Regression Results

Dataset Deviance Time (s)
Unregularized CV Subs ARD BayesOpt CV Subs ARD BayesOpt

Medicaid1986 Avg. 3.0292 3.0245 3.0149 3.0292 3.0853 0.2632 0.1106 29.1596 20.5720
(996×18) Std. 0.4690 0.4944 0.5004 0.4690 0.5526 0.0658 0.0329 4.5420 2.6470

phdpublications Avg. 1.7998 1.8027 1.8018 1.7998 1.8411 0.1884 0.0932 12.4072 19.1148
(915×7) Std. 0.1492 0.1531 0.1550 0.1492 0.1827 0.0651 0.0411 2.9877 3.5762

recreationdemand Avg. 6.6141 4.0019 3.9055 6.6258 4.0723 0.1464 0.2782 10.6616 23.2950
(659×9) Std. 6.1798 1.5058 1.4482 6.1859 1.5019 0.0245 0.1159 2.6995 2.4716

Table 2.7 Poisson Regression Results
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3. A BAYESIAN APPROACH FOR SOLVING ROBUST

REGRESSION PROBLEMS

In this chapter, we propose an Expectation-Maximization (EM) algorithm for fitting
a mixture of m-estimators, specifically crafted for robust regression problems. In
contrast to standard linear regression, robust regression is often utilized when the
residuals in a regression problem have non-normal distribution; for example, it may
have heavy tails, outliers, non-constant variance and high skewness. In these cases,
standard linear regression becomes too sensitive to deviations from the normality
assumptions of the residuals. For example, some outliers may drastically change the
slope of the hyperplane that is fitted by ordinary least-square (OLS); also some data
points with a high leverage score can cause a significant shift in the fitted hyperplane
(James, 2013). We address these issues by using a mixture of m-estimators whose
loss functions are associated with heavy-tailed distributions (such as Laplace and
Cauchy distributions), thus they are less sensitive to peculiarities in residuals. Our
EM-based algorithm handles this fitting procedure by learning the location and scale
parameters of these distributions, and mixture weights that associate each data point
with each m-estimator. In our experiments, we demonstrate the estimation of this
mixture model over each m-estimator and standard OLS.

The work in this chapter was conducted mostly by the author of this dissertation.
Sinan Yıldırım and İlker Birbil also guided the author by their useful suggestions
throughout our meetings on this work.

3.1 Introduction

Robust regression refers to a variety of regression methods that are not too sensitive
to outliers and skewness in residuals. It is also implicitly connected to the regularized
regression problem that we tackled in the previous chapter of this dissertation. When
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we apply regularization on regression parameters, we implicitly make them more
robust against outliers, because regularization causes shrinkage in the variance of
these parameters. Regularization is achieved by penalizing the irrelevant features
(columns) of the predictor matrix, whereas robustness is achieved by penalizing
the observations (rows) which have less predictive power. Therefore, regularization
and robustness problems are in some sense “dual” to each other; one can formulate
these two problems together as a multi-objective optimization problem, in which the
goal would be to find the optimal weights for penalizing observations and features,
simultaneously.

3.2 Related Literature

In real-life applications of regression, one often comes across datasets that have pecu-
liar noise patterns that have outliers and high skewness. Standard linear regression
assumes that the residuals have normal distribution, but when we fit ordinary least-
squares (OLS) to a dataset which violates this assumption, it reduces the predictive
performance of linear regression. One way of remedying this problem is to replace
the quadratic loss function (MSE) of OLS with another one which is less sensitive to
outliers and skewness. In the literature, there is a large family of estimators, called
m-estimators, which contain mean-squared error, least absolute deviation, Huber
loss and many other symmetric, positive and continuous loss functions as its special
cases (De Menezes et al., 2021). Even though MSE is also an m-estimator, we will
focus on its robust members.

Most of the methods that we have seen in the literature focus on fitting only a single
m-estimator to data [Arslan & Billor (2000), Noor-Ul-Amin, Asghar, Sanaullah &
Shehzad (2018), Huang, Wang & Zheng (2014), De Menezes et al. (2021)]. For a
single m-estimator, finding the optimal weights for observations is often handled by
using iteratively reweighted least squares (IRLS) procedure (Susanti et al., 2014),
but in the case of a mixture of m-estimators it requires more complicated methods.
Additionally, using a single m-estimator may not always be sufficient to capture
the characteristics of the stochastic process that generates a given dataset. In the
literature, there are some other uses of mixture models (mixture of m-estimators)
to fit robust regression. For example, (Tak et al., 2019) proposes a Gibbs sampler
to fit a mixture of Gaussian and Student’s t-distribution to distinguish outliers from
“normal” observations. (Bai et al., 2012) and (Doğru & Arslan, 2021) use an EM
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algorithm to fit a mixture of linear models, but for each linear model they use the
same m-estimator. These methods are either not flexible enough or not efficient
enough to incorporate more than two m-estimators to the mixture model. For these
reasons, we propose an efficient Expectation-Maximization algorithm to fit a mixture
of m-estimators for a given dataset. In our experiments, we use a mixture of three
m-estimators, but our method is flexible enough to incorporate as many of these
estimators as one may want.

3.3 Methodology

In regression setting, for a given loss function ρ(yi, ŷi) that measures the discrepancy
between a continuous observation yi and its estimate ŷi, let ri = yi−f(θ;xi), where
ri’s be the residuals for each observation. The objective function can be parametrized
in terms of residuals as follows:

min
θ

n∑
i=1

ρ(ri(θ)) = min
θ
− log

n∏
i=1

p(ri(θ)) = max
θ

n∏
i=1

p(ri(θ))

where p(ri) = exp(−ρ(ri)).

In the presence of different ρj ’s (loss functions), consider the mixture of error dis-
tributions

pm(ri) =
J∑

j=1
aj .exp(−ρj(ri))︸ ︷︷ ︸

pj(ri)

,

where ∑J
j=1aj = 1. Let ρm(ri) =− logpm(ri). Then the M -estimator for the mixture

is formulated as

min
θ

n∑
i=1

ρm(ri) = min
θ

n∑
i=1
− log

 J∑
j=1

aj .exp(−ρj(ri(θ)))
 .

This objective function does not attain an analytical solution. In order to optimize
it, one needs to use iterative algorithms to update the parameters of regression
(θ), and the mixture weights (aj) separately. For each iteration, when the mixture
weights are fixed, regression parameters can be computed via iteratively reweighted
least squares (IRLS) method. Here, the actual complicated part is how to determine
the mixture weights.

28



In order to derive updating rules for these parameters, let us first work on the partial
derivatives of the objective function. During this derivation, we will also use the
notions of influence function and weight function that are used for measuring the
sensitivity of regression parameters to each observation (Zhang, 1997).

First, we can write the gradient with respect to θ (while keeping aj ’s constant) and
set it equal to zero, as follows:

∇θNLL=−
n∑

i=1

−
∑J

j=1aj .
∂ρj(ri(θ))

∂ri(θ) .∂ri(θ)
∂θ .exp(−ρj(ri(θ)))∑J

j=1aj .exp(−ρj(ri(θ)))

= 0.

The influence function ψj(ri(θ)) of an m-estimator j is defined as

ψj(ri(θ)) = ∂ρj(ri(θ))
∂ri(θ)

.

Using this definition, we can rewrite the gradient of NLL as follows:

∇θNLL=
n∑

i=1

∑J
j=1aj .ψj(ri(θ)).∂ri(θ)

∂θ .exp(−ρj(ri(θ)))∑J
j=1aj .exp(−ρj(ri(θ)))

Similarly, the weight function wj(ri(θ)) of an m-estimator j is defined as

wj(ri(θ)) = ψj(ri(θ))
ri(θ)

→ ψj(ri(θ)) = wj(ri(θ)).ri(θ).

Using this relation, we can again rewrite the gradient of NLL as follows:

∇θNLL=
n∑

i=1

∑J
j=1aj .wj(ri(θ)).ri(θ).∂ri(θ)

∂θ .exp(−ρj(ri(θ)))∑J
j=1aj .exp(−ρj(ri(θ)))

.

At this point, we can rewrite some of the terms above as an auxiliary variable
zij , which denotes the posterior probability that observation i is related to jth m-
estimator, via the following relation:

zij = aj .exp(−ρj(ri(θ)))∑J
j=1aj .exp(−ρj(ri(θ)))

.

Here, zij ’s are analogous to “cluster membership” posterior probabilities (for each
observation i and cluster j) that are used in some soft-clustering algorithms and
some Bayesian methods for mixture density estimation (Deisenroth, Faisal & Ong,
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2020).

If we substitute zij instead of the corresponding term inside the gradient of NLL
function, we have the following succinct form:

∇θNLL=
n∑

i=1

J∑
j=1

zij .wj(ri(θ)).ri(θ).
∂ri(θ)
∂θ

= 0.

This last form of the gradient is equivalent to first order optimality condition of the
following weighted least-squares problem:

min
θ

1
2

n∑
i=1

J∑
j=1

z
(t−1)
ij .wj(ri(θ(t−1))).ri(θ(t))2.

Here, for a particular iteration t, the terms z(t−1)
ij .wj(ri(θ(t−1))) are fixed weights

that were obtained by using ri(θ(t−1))’s from the previous iteration (t−1). For these
fixed terms, the overall problem can be solved as a weighted least squares problem,
as we intuited before. After solving it for θ, we again update these weights by using
new ri(θ)’s and continue in cyclic fashion between weights and θ until their values do
not change significantly in consecutive iterations (in other words, until they converge
to a local minimum).

Now we can take the derivative of the NLL with respect to aj to see how we can
update these mixture weights while keeping θ constant. Before that, we need to
augment the constraint ∑J

j=1aj = 1 into the NLL objective function, by using a
Lagrange multiplier (λ) as follows:

min
a

n∑
i=1
− log

 J∑
j=1

aj .exp(−ρj(ri(θ)))
+λ(

J∑
j=1

aj−1).

Now we can proceed with the derivative with respect to aj .

∂NLL

∂aj
=−

n∑
i=1

exp(−ρj(ri(θ)))∑J
j=1aj .exp(−ρj(ri(θ)))

+λ

=−
n∑

i=1

1
aj
.

aj .exp(−ρj(ri(θ)))∑J
j=1aj .exp(−ρj(ri(θ)))

+λ= 0

Some terms above seem familiar, from the part that we defined zij ’s. We can now
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substitute zij to simplify the expression above, as follows:

∂NLL

∂aj
=−

n∑
i=1

1
aj
.zij +λ= 0→ aj =

∑n
i=1 zij

λ
= nj

λ
,

where nj is the sum of mixture weights over all n observations (analogous to number
of members assigned to cluster j, in clustering methods) for the jth m-estimator.

For further simplification, we also need to determine λ by taking the derivative of
augmented NLL with respect to λ:

∂NLL

∂λ
=

J∑
j=1

aj−1 = 0→
J∑

j=1
aj = 1

So,

1 =
J∑

j=1
aj =

J∑
j=1

nj

λ
= n

λ
→ n= λ.

Finally,
aj = nj

λ
= nj

n
.

Algorithm 2 EM algorithm for fitting mixture of m-estimators
Input: Dataset: X,Y , initial weight matrices: Wj = In×n for each m-estimator

j, termination condition number: ϵ, initial prior probability vector: a =
1
j ∗11×j , initial posterior probability matrix: Z = 1

j ∗1N×j

Output: Regression parameter: β, final weight matrices: Wj , final posterior prob-
abilities: Z, final prior probabilities: a

while |βt−βt−1|> ϵ do
Compute βt using X,Y,W t−1

Compute residuals Rt using X,Y,βt

Update posterior probability matrix Zt using at−1,Rt

Update prior probability vector at using Zt

Compute W t
j using Zt,W t−1

j for each j

Set W t =∑J
j=1W

t−1
j

return β, Wj ’s, Z, and a

3.4 Experimental Results
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The derivatives that we obtained in previous part directly give us updating rules that
can be used in Expectation-Maximization (EM) algorithm (or other coordinate-based
algorithms). We implemented an EM algorithm by using these update rules, and its
steps are summarized as pseudocode in Algorithm 2. In our implementation, we used
a mixture of Laplace m-estimator (least absolute deviation), Gaussian m-estimator
(which is not robust on its own) and Cauchy m-estimator (whose distribution has
heavy tails).

The weight function for Laplace estimator is in the form of 1
|ri| . For small residual

(ri) values, this form can cause potential problems, like over-inflated weights, and
division by zero. In order to tame the over-inflated values in the weight matrices,
we used normalization (dividing the entries of each weight matrix by the sum of
all weights in that matrix). Also, in order to avoid division by zero in the weight
function of Laplace m-estimator, we used 1

max{δ,|r|)} where δ is a small constant like
0.0001. Here are the scenarios for our experiments: (i) No outlier, (ii) Randomly
selected 10 percent of the Ytr were added noise from intervals [-4sd, -2sd] and [2sd,
4sd], (iii) Randomly selected 10 percent of the Ytr were added noise from intervals
[-6sd, -3sd] and [3sd, 6sd], (iv) Randomly selected 10 percent of the Ytr were added
noise from intervals [-10sd, -5sd] and [5sd, 10sd], where sd denotes the standard
deviation of Ytr. We ran the algorithm and its competitors (Gaussian, Laplace,
Cauchy m-estimators) for 100 times for different training set - testing set partitions
(where the training set is the 75% of the whole dataset) to compare its test MSE
with that of OLS. For these experiments, we used three real datasets, namely boston
(housing), airfoil self-noise and abalone datasets. The first one has 506 observations
and 13 predictors, the second one has 1503 observations and 5 predictors, and the
third one has 4177 observations and 7 predictors. Each of them were standardized
before running the algorithm. Our results (averages and standard deviations of MSE
values) are summarized in tables 3.1, 3.2 and 3.3.

Setting MSEols MSEmixture MSElaplace MSEcauchy

No outliers 0.2759 0.2787 0.2927 0.2860
0.0571 0.0673 0.0781 0.0768

Outliers from [-4sd, -2sd] and [2sd, 4sd] 0.4268 0.2963 0.3030 0.2966
0.1026 0.0789 0.0823 0.0804

Outliers from [-6sd, -3sd] and [3sd, 6sd] 0.6029 0.2963 0.3048 0.2978
0.1959 0.0683 0.0732 0.0693

Outliers from [-10sd, -5sd] and [5sd, 10sd] 1.1686 0.2975 0.3076 0.3006
0.4016 0.0855 0.0914 0.0879

Table 3.1 Comparison of mixture model with 3 single m-estimators in boston (hous-
ing) dataset

32



Setting MSEols MSEmixture MSElaplace MSEcauchy

No outliers 0.4934 0.4935 0.5100 0.5041
0.0358 0.0358 0.0415 0.0401

Outliers from [-4sd, -2sd] and [2sd, 4sd] 0.4935 0.4915 0.5066 0.5004
0.0346 0.0353 0.0413 0.0395

Outliers from [-6sd, -3sd] and [3sd, 6sd] 0.5003 0.4934 0.5075 0.5016
0.0408 0.0402 0.0425 0.0413

Outliers from [-10sd, -5sd] and [5sd, 10sd] 0.5207 0.4872 0.5009 0.4950
0.0451 0.0364 0.0400 0.0385

Table 3.2 Comparison of mixture model with 3 single m-estimators in airfoil dataset

Setting MSEols MSEmixture MSElaplace MSEcauchy

No outliers 0.4839 0.4811 0.4990 0.4913
0.0356 0.0356 0.0372 0.0363

Outliers from [-4sd, -2sd] and [2sd, 4sd] 0.4808 0.4834 0.4939 0.4864
0.0308 0.0336 0.0342 0.0331

Outliers from [-6sd, -3sd] and [3sd, 6sd] 0.4939 0.4955 0.5078 0.4997
0.0366 0.0366 0.0375 0.0373

Outliers from [-10sd, -5sd] and [5sd, 10sd] 0.5042 0.4901 0.5071 0.4986
0.0437 0.0347 0.0373 0.0354

Table 3.3 Comparison of mixture model with 3 single m-estimators in abalone
dataset

According to these results, the mixture model performed better than its competitors
most of the time. The differences between the results can be seen more clearly in
boston dataset which has the lowest ratio of observations-to-predictors ( n

m) among
them. This ratio is higher for airfoil dataset, and abalone dataset has the highest
ratio. When this ratio gets higher, the significance of the difference between robust
and non-robust methods diminishes; because, when a dataset has a higher ratio of
observations for each predictor, variance of the regression parameters gets smaller,
thus the fitted model becomes less sensitive to outliers - even when the fitted model
is non-robust on its own.

In order to further refine our model, we also derived an updating rule for the scale pa-
rameters of m-estimators (such as the variance parameter of Gaussian m-estimator),
by taking the derivative of the NLL with respect to each of the j scale parameters.
Let us now re-write our NLL:
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NLL :=
n∑

i=1
− log

 J∑
j=1

aj .exp(−ρj(ri(θ,sj)))


If we denote the scale parameter of m-estimator j by sj , here is the derivative of
NLL with respect to sj :

∂NLL

∂sj
=−

n∑
i=1

−aj .
∂ρj(ri(θ,sj))

∂sj
.exp(−ρj(ri(θ,sj)))∑J

j=1aj .exp(−ρj(ri(θ,sj)))

= 0

Similar to what we did before, we can use the auxiliary variable zij again, which
denotes the posterior probability that observation i is related to jth m-estimator,
via the following relation:

zij = aj .exp(−ρj(ri(θ,sj)))∑J
j=1aj .exp(−ρj(ri(θ,sj)))

Again, if we substitute zij instead of the corresponding term inside the gradient of
NLL function, we have the following succinct form:

∂NLL

∂sj
=

n∑
i=1

zij .
∂ρj(ri(θ,sj))

∂sj
= 0

So, this derivation gives us an updating rule for optimizing the scale parameter of
each m-estimator at the M-step of our EM algorithm. We can now provide special
cases of the term above, for each of the m-estimators (Gaussian, Laplace, Cauchy)
that we use in our mixture model.

For the Gaussian m-estimator, we have the following log-likelihood (as part of the
overall mixture model):

LLGaussian =
n∑

i=1
zij .

[
− log(2π)

2 − log(σ2)
2 − ri(θ)2

2σ2

]

Taking its derivative w.r.t. σ2, we have:

∂LLGaussian

∂σ2 = 1
2

n∑
i=1

zij .

[
− 1
σ2 + ri(θ)2

σ4

]
= 0
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After rearranging these terms, we have:

σ2 =
∑n

i=1 zij .ri(θ)2∑n
i=1 zij

Now, we can do the same operations for Laplace m-estimator:

LLLaplace =
n∑

i=1
zij .

[
− log(2b)− |ri(θ)|

b

]

Its derivative w.r.t. b is as follows:

∂LLLaplace

∂b
=

n∑
i=1

zij .

[
−1
b

+ |ri(θ)|
b2

]
= 0

Rearranging the terms, we have:

b=
∑n

i=1 zij .|ri(θ)|∑n
i=1 zij

We can now try to do the same operations for Cauchy m-estimator.

LLCauchy =
n∑

i=1
zij .

− log(γπ)− log
1+

(
ri(θ)
γ

)2

Taking its derivative w.r.t. γ, we have:

∂LLCauchy

∂γ
=

n∑
i=1

zij .

[
−1
γ

+ 2.ri(θ)2

γ(γ2 + ri(θ)2)

]
= 0

Or,

∂LLCauchy

∂γ
=

n∑
i=1

zij .

[
2.ri(θ)2

γ2 + ri(θ)2 −1
]

= 0

The last expression above does not attain an analytical solution, but one can handle
this step with a basic univariate optimization solver. For this purpose, we used
R programming language’s built-in optimize() function which efficiently handles the
optimization of γ parameter. After this improvement we ran the algorithm on boston,
airfoil and abalone datasets again, with the same experimental settings as before.
Additionally, for comparison, we also developed a naive method which clusters the
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observations as “outlier” or “non-outlier”, and fits OLS by using the observations
that were clustered as non-outliers. This method cycles between updating the cluster
labels and updating the regression parameters until the mean absolute value of the
residuals converge to a constant value. Here, the clustering rule is to label the
observations whose absolute residuals are at least 3 times higher than the mean
absolute error as “outliers”. Our results (averages and standard deviations of MSE
values) are summarized in tables 3.4, 3.5 and 3.6.

Setting MSEols MSEmixture MSElaplace MSEcauchy MSEnaive

No outliers 0.2833 0.3228 0.3111 0.3064 0.3302
0.0658 0.0885 0.0849 0.0830 0.0907

Outliers from [-4sd, -2sd] and [2sd, 4sd] 0.4304 0.2926 0.3022 0.2945 0.2897
0.0977 0.0682 0.0707 0.0716 0.0581

Outliers from [-6sd, -3sd] and [3sd, 6sd] 0.6381 0.3194 0.3289 0.3215 0.3077
0.1800 0.0827 0.0904 0.0895 0.0769

Outliers from [-10sd, -5sd] and [5sd, 10sd] 1.1907 0.2992 0.3052 0.2967 0.2824
0.5181 0.0707 0.0741 0.0731 0.0576

Table 3.4 Comparison of mixture model with its competitors in boston (housing)
dataset

Setting MSEols MSEmixture MSElaplace MSEcauchy MSEnaive

No outliers 0.4842 0.4854 0.4990 0.4936 0.4929
0.0332 0.0345 0.0407 0.0390 0.0400

Outliers from [-4sd, -2sd] and [2sd, 4sd] 0.4929 0.5160 0.5058 0.5002 0.4905
0.0339 0.0426 0.0400 0.0383 0.0338

Outliers from [-6sd, -3sd] and [3sd, 6sd] 0.5054 0.5009 0.5101 0.5046 0.4953
0.0394 0.0399 0.0436 0.0418 0.0364

Outliers from [-10sd, -5sd] and [5sd, 10sd] 0.5150 0.4882 0.5029 0.4964 0.4867
0.0342 0.0316 0.0373 0.0357 0.0306

Table 3.5 Comparison of mixture model with its competitors in airfoil dataset

Setting MSEols MSEmixture MSElaplace MSEcauchy MSEnaive

No outliers 0.4813 0.5212 0.4990 0.4910 0.5021
0.0275 0.0323 0.0296 0.0287 0.0305

Outliers from [-4sd, -2sd] and [2sd, 4sd] 0.4804 0.5183 0.4950 0.4872 0.4777
0.0324 0.0386 0.0365 0.0347 0.0328

Outliers from [-6sd, -3sd] and [3sd, 6sd] 0.4955 0.4956 0.5050 0.4968 0.4884
0.0410 0.0408 0.0417 0.0410 0.0394

Outliers from [-10sd, -5sd] and [5sd, 10sd] 0.5023 0.4929 0.5050 0.4961 0.4831
0.0392 0.0318 0.0326 0.0320 0.0312

Table 3.6 Comparison of mixture model with its competitors in abalone dataset
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Surprisingly, the naive method yielded the best results in the settings which con-
tain artificial outliers. This may imply that the estimation of scale parameters
in the modified mixture model might be unnecessary and it may lead to over-
parametrization. However, our modified approach still performs well in terms of
accuracy and it is more useful in terms of making inference about the distribution
of outliers.

For completeness, we also include the mixture weights of the m-estimators (found by
our method) in Tables 3.7, 3.8, 3.9 for our latest experiments. One can check these
weights to make inference about the underlying stochastic process that produced
the real data, and about the effect of the added artificial noise on top of that.

Setting aLaplace aGaussian aCauchy

No outliers 0.4197 0.5466 0.0336
Outliers from [-4sd, -2sd] and [2sd, 4sd] 0.2790 0.5511 0.1697
Outliers from [-6sd, -3sd] and [3sd, 6sd] 0.4444 0.4207 0.1348

Outliers from [-10sd, -5sd] and [5sd, 10sd] 0.4447 0.4345 0.1207

Table 3.7 Mixture weights of the mixture model in fitting boston (housing) dataset
under different settings

Setting aLaplace aGaussian aCauchy

No outliers 0.2958 0.6926 0.0115
Outliers from [-4sd, -2sd] and [2sd, 4sd] 0.4349 0.5092 0.0558
Outliers from [-6sd, -3sd] and [3sd, 6sd] 0.1507 0.5299 0.3193

Outliers from [-10sd, -5sd] and [5sd, 10sd] 0.1845 0.6515 0.1638

Table 3.8 Mixture weights of the mixture model in fitting airfoil dataset under
different settings

Setting aLaplace aGaussian aCauchy

No outliers 0.4623 0.5124 0.0252
Outliers from [-4sd, -2sd] and [2sd, 4sd] 0.4015 0.5343 0.0641
Outliers from [-6sd, -3sd] and [3sd, 6sd] 0.0994 0.5598 0.3406

Outliers from [-10sd, -5sd] and [5sd, 10sd] 0.2669 0.5030 0.2299

Table 3.9 Mixture weights of the mixture model in fitting abalone dataset under
different settings
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3.5 Conclusion and Discussion

In this chapter, we derived a flexible method for fitting a mixture of m-estimators for
robust regression task, as a unique version of the general EM algorithm. We demon-
strated its estimation accuracy by comparing it with OLS, and some other popular
m-estimators, under different scenarios of added outliers on real datasets. We also
pointed out the potential use of these approach for making about the underlying
nature of a given data as well.

We also proposed a modified mixture model which updates the scale parameters of
the m-estimators along with the other parameters that are covered by its simpler
version. This model is also solved by almost the same EM-based algorithm; the
only difference is that, on top of the existing update rules for the parameters in the
simpler model, we added update rules for scale parameters as well. According to
our experiments, we observed that, even though this model is more flexible than
the other ones, its performance is slightly worse than the “naive approach” which is
based on detecting the outliers and removing them 1. Therefore, we concluded that
the fitting of scale parameters may lead to an overparameterization problem in cases
where simpler models would be sufficient to estimate the underlying distribution
of residuals. As a potential direction of research, one can investigate the ways
of penalizing the effects of unnecessary parameters that are fitted by this modified
model. For now, in real-life practices, we suggest tackling robust regression problems
as follows: First, one can fit a standard OLS to the data and observe if there are any
peculiarities (outliers, skewness, heteroscedasticity etc.) in the residuals. If so, one
should incrementally add some robust m-estimators to the existing model by using
our proposed method and measure its test-set performance (or CV error) at each
incremental increase in its complexity. Then, one can stop adding new m-estimators
when the test-set performance of the mixture model does not improve any further.

As we briefly mentioned before, robust regression and regularized regression prob-
lems are deeply connected to each other. As a possible line of research, one can
consider developing an algorithm for handling these two problems simultaneously.

1This approach may seem appealing at first, in terms of improving predictive accuracy, but the observations
with outliers may still contain useful information about the underlying structure of the process that
generated the given data.
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More precisely, these problems can be modeled together as a multi-objective opti-
mization problem as in

min
β,W,Λ

(Y −Xβ)TW (Y −Xβ)+βT Λβ

where W and Λ are diagonal matrices that contain penalty weights for observations
and features, respectively. To facilitate the unified solution of this problem, we can

define a new feature matrix X̂ =
 X

Im×m

, a new response vector Ŷ =
 Y

0m×1

,

and a new weight matrix Ŵ = diag([w1, . . . ,wn,λ1, . . . ,λm]). So, the re-modeled
regression problem would be

min
β,Ŵ

(Ŷ − X̂β)T Ŵ (Ŷ − X̂β)

.

After this re-modeling, one can consider solving this optimization problem for β
and Ŵ by combining the methods that we proposed in Chapter 2 and the current
chapter, as future work. By considering this combination, one can also develop a
differentially private (DP) extension of this method. As we mentioned before in
Chapter 2, the use of subsamples for these estimation tasks brings some inherent
noise which can be controlled in a way to make these tasks satisfy DP constraints.
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4. DIFFERENTIALLY PRIVATE FREQUENCY SKETCHES FOR

INTERMITTENT QUERIES ON LARGE DATA STREAMS

We propose novel and differentially private versions of Count Sketch, particularly
suited for dynamic, intermittent queries for observed frequencies of elements in a
universal set. Our algorithms are designed for scenarios where the queries are made
intermittently, that is, at different times during the course of the data stream. We
explore several approaches, all based on the Laplace mechanism, and ultimately pro-
pose an algorithm that is robust and efficiently handles multiple queries at multiple
times while keeping its utility at reasonable levels. We demonstrate the performance
of the proposed algorithm in various scenarios with a numerical example.

As we mentioned before, this chapter is based on a conference paper in which the
author of this dissertation is a co-author. The author of this dissertation (partially)
contributed to Sections 4.1 , 4.2, 4.5, and to a lesser extent, Section 4.6. The rest of
the research was conducted by the other co-authors (Sinan Yıldırım, Kamer Kaya,
Hakan Buğra Erentuğ). For completeness, we present the material of the whole
paper here.

4.1 Introduction

Sketches are probabilistic data structures that can provide approximate results
within mathematically proven error bounds while using orders of magnitude less
memory than traditional approaches. They are tailored for streaming data analy-
sis on architectures even with limited memory such as single-board computers that
are widely exploited for IoT and edge computing. With the emergence of massive-
scale data streams in various fields, the concern of extracting useful information
from these data streams while preserving the privacy of individual data becomes
an important problem. Differential privacy (DP) provides a framework as a solu-
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tion in which information about a data set is revealed while, at the same time, the
privacy of the individuals that have contributed to the dataset is preserved Dwork
(2006a). This is why leveraging DP for data sketches have been popular in the
literature in the last decade Cormode et al. (2012); Dwork et al. (2010); Melis et al.
(2016); Mir et al. (2011); Mishra & Sandler (2006); Sparka et al. (2018); von Voigt
& Tschorsch (2019). In this chapter, we focus on developing differentially private
sketches for count queries. We confine our study to the Count and Count-Min
Sketches Charikar et al. (2002); Cormode & Muthukrishnan (2005). The Count
Sketch is proposed in Charikar et al. (2002) as a useful tool for answering frequency
queries, by producing unbiased estimators. Similarly, the Count-Min Sketch Cor-
mode & Muthukrishnan (2005) is proposed for the same task. In the literature, there
have been many studies on incorporating either Count Sketch, Count-Min Sketch,
or both in a privacy-preserving setting.

In this chapter, we tackle the problem of answering intermittent frequency queries
regarding the information contained in a data stream while providing DP and keep-
ing the utility of the responses at a reasonable level. What is significant about the
setting of “intermittent queries” is the possibility that even between two consecutive
identical queries, the true answer may have differed due to addition of new individ-
uals’ data. The challenge related to data privacy is that the answers to the queries
should continually protect the privacy of individuals’ data that are included in the
data stream at any time of the streaming process. Hence, the setting being investi-
gated in this work can be considered as a generalization of the setting which focuses
on one-time queries. Overall, the contributions can be summarized as follows:

• We discuss various methods for differentially private counting sketches for
intermittent queries that can be considered as reasonable approaches under
certain circumstances. However, as our ultimate choice, we propose a single
method that we show to be most suitable.

• The algorithms we discuss and propose are based on two different competing
approaches. The first approach considers randomly perturbing the cells in the
sketch table, while the second group consider perturbing the answer returned
from the sketch. We discuss the pros and cons of those approaches in terms of
accuracy. We show that while both approaches can compete in a setting where
a batch of queries are to be answered at the same time, the first approach is
more suited to intermittent queries.

• Despite the algorithms in this chapter are presented with the Count Sketch,
they can easily be adapted to the Count-Min Sketch, following almost identical
steps.
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The organization of this chapter is as follows: In Section 4.2, we review the defini-
tion and basic properties of DP and present the Count and Count-Min Sketches as
event-oriented dynamic processes. The main tools and approaches for developing a
differentially private Count Sketch are presented in Section 4.3. In Section 4.4, we
present our differentially private sketch tailored for intermittent queries. Section 4.5
discusses the related work on sketches providing DP guarantees. In Section 4.6, we
present an experimental study and subsequently comment on its results. In Sec-
tion 5.8, we give conclusive remarks and mention some possible extensions of the
methodology.

4.2 Background and Notation

In this section, we provide some background, along with some basic notation, for
differential privacy and the count and count-min sketches.

4.2.1 Differential privacy

In recent years, differential privacy (DP) has become a popular framework for achiev-
ing privacy-preserving estimates of basic statistics in data sets. We call two data
sets X,X ′ ∈ X neighbors if X ′ is obtained by the addition or deletion of a single
entry to or from X. We call A a randomized algorithm whose output upon taking
an input X is a random variable A(X) taking values from some S.
Definition 2. We say that A is (ϵ,δ)-differentially private if, for any pair of neigh-
boring data sets X,X ′ ∈ X from an input set and any subset of output values S ⊆S,
it satisfies Dwork (2006a)

P [A(X) ∈ S]≤ eϵP
[
A(X ′) ∈ S

]
+ δ.

According to the above inequality, a randomized algorithm is differentially private if
the probability distributions for the output obtained from two neighboring databases
are ‘similar’. The parameters ϵ and δ determine the privacy budget, or privacy loss.
Those parameters are desired to be as small as possible as far as privacy is concerned.
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Assume that a privacy preserving algorithm is required to return the value of a
function φ : X 7→ R evaluated at the sensitive data set X in a private fashion. One
basic way of achieving this is via the Laplace mechanism (Dwork, 2008, Theorem
1), which relies on the sensitivity of this function.
Definition 3. The sensitivity of φ : X : R is given by

∇φ = sup
X,X ′∈X

|φ(X)−φ(X ′)|.

Theorem 1 (Laplace mechanism). Let A be an algorithm that returns φ̂=φ(X)+v

on an input X ∈ X, where v ∼ Laplace(∇φ/ϵ). Then A is ϵ-DP.

One property of differential privacy is the composition property, which quantifies
the privacy loss of multiple uses of a differentially private mechanism.
Theorem 2 (Composition). Let S be the output space and X be the input space. Let
A1, . . . ,Am are ϵ-DP algorithms that take X ∈X as input and return random outputs
in S as outputs. Then, let the composition of those algorithms, A = (A1, . . . ,Am)
return outputs (S1, . . . ,Sm) is mϵ-DP. Moreover, this result does not change when
(A1, . . . ,Am) is applied sequentially and each algorithm’s output is generated condi-
tional on the outputs of the previous algorithms.

Another property of differential privacy relevant to our work is that no further
privacy loss is suffered by transforming the output through a deterministic algorithm.
Theorem 3 (Post-processing). Let A1 be an (ϵ,δ)-DP algorithm with inputs from
X and outputs from S1, and let A2 : S1 7→ S be deterministic algorithm that does not
depend on X. Then, the algorithm A= (A2oA1) is (ϵ,δ)-DP.

4.2.2 Count and Count-Min Sketches

Suppose we have a data stream from a universal set X and its i’th element is xi.
Count and Count-Min Sketches are developed in order to answer queries regarding
the count of an element x ∈ X , i.e., its frequency, in such a data set. That is those
sketches answer questions in the form of “How many times has a certain element
occurred so far in the data stream?”. The sketching algorithms summarize a large
amount of data into a small table by the help of hash functions. Both Count and
Count-Min Sketch use similar type of sketch tables.

Count-Min Sketch This sketch uses a table/matrix C with w columns and d rows
where row i of the sketch table is governed by a hash function hi : X → {1, . . . ,w}
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which is chosen independently for each row. Let C(i, j) be the value in the ith
row and jth column. The table is initialized with all zeroes, i.e., C(i, j) = 0 for all
1≤ i≤ d and 1≤ j ≤ w. Every time an element x from the stream is received, the
sketch is updated according to the procedure given in Cormode & Muthukrishnan
(2005):

C(i,hi(x))← C(i,hi(x))+1, i= 1, . . . ,d.

When an element x is queried, the sketch returns the estimation of x’s frequency,
i.e., fx, as

f̂x = min{C(1,h1(x)), . . . ,C(d,hd(x))}.

Count Sketch The difference of Count Sketch from Count-Min Sketch is that the
contribution of each element to C is given as either +1 or −1 with equal probability,
and the sign of increment is determined by using another hash function, shown as
si :X 7→ {−1,1}. Accordingly, the estimate of fx for an item x is given as the median
of the values corresponding to x in C, instead of their minimum Charikar, Chen &
Farach-Colton (2004).

The initialization of the table for Count Sketch is the same, that is, C(i, j) = 0 for
each 1 ≤ i ≤ d, 1 ≤ j ≤ w. Upon receipt of an element x, the sketch updates the
table as

C(i,hi(x))← C(i,hi(x))+ si(x), i= 1, . . . ,d.

When queried, the frequency fx of any x ∈ X is estimated by

f̂x = median{s1(x)C(1,h1(x)), . . . , sd(x)C(d,hd(x))}.

Although our differentially private sketching algorithms can be implemented with
both sketches, we will only focus on the Count Sketch to avoid repetitions.

Dynamic system view with intermittent queries In this chapter, we are
interested in a dynamic system, where queries can be made while the sketch is still
being updated by the stream. Moreover, we assume that queries can be made in
arbitrary times and for arbitrary subsets of X of arbitrary size. That is why we
prefer to present a sketching algorithm as an event-oriented dynamic system that
has two types of events: (i) arrival of an element from the stream, and (ii) a query
set Q ⊆ X whose elements are queried for their frequencies. Algorithm 3 models
such a dynamic system and employs a Count Sketch to answer intermittent query
sets.

In this chapter, we investigate the ways to modify Algorithm 3 so that it would
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Algorithm 3 Count Sketch in a dynamic system
{Initialization of the table}
for i= 1, . . . ,d do

for j = 1, . . . ,w do
Set C(i, j)← 0

{Events start}
repeat

if stream element x arrives then
for i= 1, . . . ,d do

C(i,hi(x))← C(i,hi(x))+ si(x)

else if a set Q of queries are made then
for x ∈Q do

Set S←∅
for i= 1, . . . ,d do

Append S with si(x)C(i,hi(x))
return f̂x = median S

until end of events;

provide DP while keeping the accuracy at a reasonable rate. In the following section,
we present a detailed discussion and results on several approaches.

4.3 Privacy-preserving count sketch

A privacy preserving algorithm protects privacy generally by adding noise to its
calculations. When multiple queries are made about sensitive data, as the case
in our setting, usually more noise is required not to exceed a privacy budget, see
Theorem 2. As a result, the algorithm’s utility inevitably deteriorates. Our main
concern is to use noise adding mechanisms in an intelligent way so that the utility
of the privacy preserving algorithm deteriorates as slowly as possible.

4.3.1 Setting
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Here, we provide a setting that places the privacy issue in a certain context. For
that, it is firstly necessary to define the neighborhood relations between streams.
We assume that the stream elements which are processed by the Count Sketch corre-
spond to distinct individuals, and the sketch is constructed to return the frequency
values of individuals who are placed in a certain category with respect to a certain
feature. For example, when the data stream is composed of individuals with their
residence addresses (so X is a set of certain type of addresses, such as postal codes),
the queries are in form of “How many people reside in address x?”. We assume in
this work that the hash functions used by the sketch are publicly known.

In this setting, two ordered data sets are neighbors if they have all the same el-
ements in the same order, except for the presence or absence of a single element.
X = {x1, . . . ,xn} and X ′ = {x1, . . . ,xk−1,xk+1, . . . ,xn} can be given as an example
of such sets. The regular Count Sketch does not provide differential privacy for two
neighboring data sets, because when a new data point arrives, the cells in C which
correspond to this data point are increased or decreased by exactly 1. An ‘unfortu-
nate’ query will make this difference reflect on the median calculation, hence violate
the privacy.

4.3.1.1 Single query and Laplace mechanism

Notice that the sensitivity of the sketch estimate f̂x for any element x∈X is 1, since
absence or presence of a single individual in the stream can change the estimate by
at most 1. Therefore, when a single query for the frequency of an element x ∈ X is
made, a simple distortion of the output by using a random value from Laplace(1/ϵ),
yielding the noisy output

(4.1) f̂x +v, v ∼ Laplace(1/ϵ),

is sufficient for providing ϵ-differential privacy.

4.3.2 Multiple queries

Assume a set of queries Q⊆X is received and the frequency estimations for all the
items in Q are requested. Such multiple queries can be quite relevant to practical
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implementations. For example, a single user may want to know frequencies of a set
of elements, which constitute a range or whom the user thinks are heavy-hitters, i.e.,
items that frequently appear in data streams. Alternatively, Q may be the union of
different query sets made by different users, i.e.,

Q=
⋃
i

Q(i)

where Q(i) is the set of elements whose frequencies are queried by user i. If the
actual timestamps of those query sets are sufficiently close to each other, they can
be considered as simultaneous. For example, the dynamic system may perform
batching to answer queries and consider successive periods of a buffer time, ∆,
where all the queries made within the same period are considered simultaneous.

4.3.2.1 Median perturbation

Let nQ denote the size of the set Q. A straightforward application of the composition
theorem for DP, Theorem 2, yields a query response for each element in Q that
satisfies ϵ/nQ-DP. This can be achieved by

f̂x = fx +vx, vx ∼ Laplace(nQ/ϵ), x ∈Q,

where vx is sampled independently for each x ∈Q. While this basic approach is rea-
sonable when nQ is small, the estimates get unreliable quickly as nQ increases. How-
ever, Laplace(nQ/ϵ) may be an (unnecessarily) conservative choice for the amount
of noise to be added. We explain why so in the following.

Let X,X ′ be neighbour data sets with the different element denoted by x∗. We will
call {(1,h1(x∗)), . . . ,(d,hd(x∗))} the set of sensitive cells for this pair X,X ′. One
can argue that it is possible that not all queries in Q require a sensitive cell. Given
Q, we should instead add noise based on the maximum possible number of sensitive
queries, i.e., queries for which at least one sensitive cell is to be used for the median
calculation. Let this number be mQ. Then, each query in Q can be responded by

(4.2) f̂x = fx +vx, vx ∼ Laplace(mQ/ϵ), x ∈Q.

providing ϵ-DP by the composition theorem, Theorem 2.

We provide a proposition below that characterizes mQ. Let jx
1:d = (jx

1 , . . . , j
x
d ) be the
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vector of column indices of the table C’s cells for x, i.e., the hash functions on x

yield reads from cells (1, jx
1 ), . . . ,(d,jx

d ) in C. The number mQ can be written as1

(4.3) mQ = max
j1:d∈{1,...,w}d

∑
x∈Q

[(j1 = jx
1 )∨ . . .∨ (jd = jx

d )]

The problem of finding mQ in (4.3) can be shown to be a generalized version of
maximum satisfiability (MAXSAT) problem, where the variables are non-binary
but integers, and therefore, it is NP-hard. For moderate values of nQ, one can
compute mQ with a brute-force grid search over a maximum of (nQ)d combinations
for j1:d in (4.3). However, for large nQ, we should resort to an approximation to
find mQ, which has to be an upper bound in order to satisfy ϵ-DP. An upper bound
can be computed as in Algorithm 4.

Algorithm 4 An upper bound estimate for mQ

Input: Query set Q
Output: Estimate of mQ, m̂Q

{Initialize an auxiliary d×w table N}
N(i, j) = 0 for all 1≤ i≤ d, 1≤ j ≤ w.
for i= 1, . . . ,d do

Compute the maximum frequency for the i’th row: for x ∈Q do
Increment N(i,hi(x)) =N(i,hi(x))+1.

Calculate mi = maxj=1,...,wN(i, j).
return m̂Q =∑d

i=1mi.

Proposition 1. We have mQ ≤ m̂Q, where m̂Q is computed in Algorithm 4. Fur-
thermore, if nQ ≤ d we have mQ = nQ.

Proof. Let j∗
i = argmaxj=1,...,wN(i, j), where N(i, j) is calculated in Algorithm 4.

The worst case scenario, that is the scenario where a maximum number of the ele-
ments in Q touch a sensitive cell, is realized when (1, j∗

1), . . . ,(d,j∗
d) are the sensitive

cells, there are mi queries in Q that touch the cell (i, j∗
i ), for i= 1, . . . ,d, and those

queries are all distinct (that is, no query touches more than one sensitive cell). This
leads to mQ = m̂Q. In the case of nQ ≤ d, it is trivial by definition that we have
mQ ≤ nQ. For the equality itself, letting x1, . . . ,xnQ be the elements in Q, note that
one can always select j1, . . . , jd such that ji coincides with hi(xi) for i= 1, . . . ,nQ≤ d,
making mQ = nQ.

The expected value of m̂Q in Algorithm 4 can be computed exactly by using the
method in Freeman (1979), upon observing that mi in Algorithm 4 is the highest

1Strictly speaking, (4.3) is an upper bound, with equality holding if for all j1:d satisfying the condition in
(4.3), there is an x ∈ X such that jx

1:d = j1:d.
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Figure 4.1 E(mi) = E(m̂Q/d) vs query size nQ, where mi is given in Algorithm 4.
Observe the sub-linear increase.

frequency for a multinomial sample with size nQ and w bins. From the properties
of mi, mQ can be claimed to be much less than nQ when nQ is large. This is
demonstrated in Figure 4.1 which shows E(m̂Q) computed by using the recursion in
Ramakrishna (1988).

4.3.2.2 Cell perturbation

While mQ can be significantly smaller than nQ, by Proposition 1, when nQ ≥ d, the
parameter of the Laplace noise is d/ϵ at best.

An effective alternative to the median perturbation approach is observed in Melis
et al. (2016). This approach is based on adding noise to the C’s cells once and for
all. Observe that there are only d cells in C that are affected by a presence/absence
of an item in the stream. Namely, construct the noisy sketch

(4.4) C̃(i, j) = C(i, j)+vi,j , vi,j
i.i.d.∼ Laplace(d/ϵ).

and answer all the queries by using the noisy sketch C̃. That is, for all the elements
x ∈Q, we return

(4.5) f̂x = median{C̃(1,h1(x))s1(x), . . . , C̃(d,hd(x))sd(x)}

In C̃, each of those sensitive cells are corrupted by a Laplace(d/ϵ) noise, which
preserves ϵ/d privacy. By the composition theorem, the privacy level of constructing
C̃ as such is ϵ. Moreover, by the post-processing theorem for DP, returning any
number of query responses calculated from C̃ as in (4.5), which is a deterministic
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Figure 4.2 A comparison between the mean absolute values of noise added median
of the cell values (median perturbation) and the median of noisy cell values (cell
perturbation).

operation given C̃, is also ϵ-DP. In fact, it suffices to add noise to the cells that are
relevant to the queries in Q. C(i, j) is added noise if there is an x ∈ Q such that
hi(x) = j. While this is a straightforward observation, it plays an important role in
case of intermittent queries.

4.3.2.3 A comparison

A natural question is which method is better over the other one; the median pertur-
bation in (4.2), or cell perturbation in (4.4) followed by (4.5)? Some probabilistic
error bounds are available for both approaches; see Theorem 10 regarding cell per-
turbation and the theorems in Appendix B.1.2 for median perturbation. Since those
bounds only enable a qualitative elaboration, we instead resort to a numerical com-
parison and show that one method is not uniformly better than the other, and the
outcome of the comparison depends on d, mQ, and the variability among the true
frequency values in the d cells to be used for the median calculation.

Figure 4.2 compares both methods for a hypothetical query set Q of size nQ ≥ d
(so that it is not too small) and assumes the best scenario mQ = d for the median
perturbation method. We made this assumption so that the same amount of noise,
drawn from Laplace(d/ϵ), is added to the median in the output perturbation method
and to each of the cells in the cell perturbation method. Under this setting, we
compare the performances of f̂x in (4.2) and f̂x in (4.5), when both provide ϵ-DP.
The non-noisy values that are subject to the median calculation are designed as
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(0, . . . ,0,u, . . . ,u) where there are (d+ 1)/2 zeroes and (d− 1)/2 u’s, so that the
median is always 0 and u resembles the amount of variation among the cell values.

The plots suggest that one method is not uniformly better than the other; and the
first method can be more advantageous when the variation is higher. However, note
that the assumption mQ = d may be a big favor for the first method and may not
be even close to the truth when nQ is large; see Figure 4.2.

While the approach of adding noise to C once and for all, or shortly the cell per-
turbation approach, is quite efficient when multiple queries are made at the same
time, it is not tailored for a dynamic system where different query sets have to be
handled at different times. This latter challenge, by which this work is motivated,
is tackled in the next section.

4.4 Queries at different times

Suppose we have a stream of data and query sets are made at different times, while
the sketch is still being updated by the stream. Suppose query sets Q1,Q2, . . . are
made at times t1 < t2 < .. .. Crucially, new elements from the stream may arrive
between successive query times. That is why the sketch and/or the noisy outputs of
the previous time are not up-to-date. Here, we will analyze two classes of methods;
use-and-forget and use-and-keep.

4.4.1 Use-and-forget methods

We first describe two methods, in both of which the sketch is carried on exactly and
fresh noise is added to the medians or the cells themselves at each time tk.

4.4.1.1 Median perturbation
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The first method is based on median perturbation. As the total number of times a
query is made is unknown beforehand, we can preserve ϵ-DP by preserving ϵk-DP
for query time tk, where ϵk is the k’th member of a geometric series,

(4.6) ϵk = ϵ(1−η)ηk−1, k = 1,2, . . . .

for some η < 1. Therefore, one way to preserve ϵk-DP privacy for the k’th set of
queries, Qk is made at time tk. However, this scheme is hardly useful since the
geometric increase in the amount of noise will soon destroy the accuracy in the
responses.

4.4.1.2 Cell perturbation

An alternative method can be built up on an extension of the method for adding
noise to the cells themselves, which allows a noisy cell value to be used more than
one queries made at the same time. Since there are d sensitive cells, each has to be
protected with ϵ/d-DP. For this, we need to keep track on the number of times each
cell is used in median calculation. Let that information be kept in a d×w matrix
U . Specifically, assume that x is queried and

(1, jx
1 ),(2, jx

2 ), . . . ,(d,jx
d )

are the indices of the cells of the sketch table x is hashed. The numbers of times
the those cells have been used is given by

U(1, jx
1 ),U(2, jx

2 ), . . . ,U(d,jx
d ).

Then, the algorithm uses noisy cell values C̃(i, jx
i ) = C(i, jx

i ) + Vi, where Vi
i.i.d.∼

Laplace(d/ϵ′i) is adjusted to preserve ϵ′i-DP, which be chosen as

ϵ′i = ϵ

d
(1−η)ηU(i,jx

i ), i= 1, . . . ,d.

The noisy counts are then used to produce the final answer as

median{C̃(1, jx
1 )s1(x), . . . , C̃(d,jx

d )sd(x)}.

Again, the reason for division by d is due to the existence of d sensitive cells. This
algorithm guarantees that at the k’th use of the cell, we provide ϵk-DP. In total,
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each sensitive cell’s information is protected with ∑k ϵk = ϵ/d-DP, yielding ϵ-DP in
total.

This approach can be implemented as in Algorithm 5. Note that any noise added
to the cells of C is thrown away after being used in the median calculation. When a
next set of queries is received at a future time, a fresh noise has to be added to the
relevant cells. Because of that, we call this approach the use-and-forget approach.

Algorithm 5 Use-and-forget DP Count Sketch
{Initialization of the table}
for i= 1, . . . ,d do

for j = 1, . . . ,w do
Set C(i, j)← 0 and U(i, j)← 0.

{Events start}
repeat

if stream element x arrives then
for i= 1, . . . ,d do

C(i,hi(x))← C(i,hi(x))+ si(x).

else if a set Q of queries are made then
Set E = ∅.
for x ∈Q do

Set S←∅.
for i= 1, . . . ,w do

Set j = hi(x).
if (i, j) /∈ E then

ϵ′ = ϵ

d
(1−η)ηU(i,j)

v ∼ Laplace(1/ϵ′)
C̃(i, j) = C(i, j)+v,

U(i, j)← U(i, j)+1
E← E∪{(i, j)}

Append S with {C̃(i, j)si(x)}.
return f̂x = median(S).

until end of events;

4.4.2 Use-and-keep methods

The use-and-forget approach is designed to accommodate the requirement that the
exact sketch be kept without corruption; observe that the non-noisy sketch table C
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is carried on in Algorithm 5. Since each noisy value leaks information about the true
value, the algorithm has to apply a noise schedule with a geometrically increasing
variance, from which it will eventually suffer.

When the sketch table need not be kept as exact, an alternative scheme is possible
with superior statistical properties. This alternative scheme is based on the obser-
vation that the different item between X and X ′ can appear only in one of the
intervals (0, t1],(t1, t2], . . ., where we recall that ti is the time of the query set Qi is
made. Before explaining our new scheme, we will present a lemma on the DP of a
very simple counting algorithm; a proof is given in Appendix B.1.
Lemma 1. Suppose we have a simple counter, c, that counts the number of occur-
rences of a certain value, x, in a stream. Let the times of queries about c be t1, t2, . . ..
Also, assume a noisy counter, c̃, which is incremented by 1 on every occurrence of x,
just like c, however with the difference that at the time ti of each query it is updated
as

c̃← c̃+vi, vi
i.i.d.∼ Laplace(1/ϵ).

A mechanism that returns c̃ at each query time t1, t2, . . . immediately after the noise
adding step is ϵ-DP.

The theorem can easily be applied to the cells of the sketch table. Namely, one can
keep the noise in the cells and carry on sketching the stream with the noisy sketch
table. When a cell that has been used before (and hence it is noisy) is to be used for
the next time, an independent Laplace(d/ϵ) noise is added to the current value of
the cell. The new noisy value goes in the calculations needed to estimate the count,
and it is kept as the current value of the cell.

With the new scheme, the total noise on each cell is the sum of k independent
Laplace(d/ϵ) noises, where k is the number of times the value of that cell is used.
Therefore, the accumulation of noise on a cell value is much less severe than the noise
in Algorithm 5 whose variance geometrically increases in k. With this motivation,
we present Algorithm 6. Furthermore, Algorithm 6 does not need to know how
many times a cell is used before, therefore does not need to keep a matrix such as U
in Algorithm 5. At each query x, each cell which x is hashed is used after its value
is updated with the addition of an independent Laplace(d/ϵ) noise.

Differential privacy property of Algorithm 6 is indicated in the following theorem.
Theorem 4. Algorithm 6 provides ϵ-differential privacy.

Proof. First, note that, for queries made at the same time, a cell is added noise at
most once. Secondly, for queries made at multiple times, we update the noisy val-
ues by merely adding an independent noise to the noisy count, therefore imitating
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Algorithm 6 Use-and-keep DP count sketch
{Initialization of the table}
for i= 1, . . . ,d do

for j = 1, . . . ,w do
Set C(i, j)← 0.

{Events start}
repeat

if stream element x arrives then
for i= 1, . . . ,d do

C(i,hi(x))← C(i,hi(x))+ si(x).

else if a set Q of queries are made then
Initialize E = ∅
for x ∈Q do

Set S = ∅.
for i= 1, . . . ,d do

Set j = hi(x).
if (i, j) /∈ E then

v ∼ Laplace(d/ϵ)
C(i, j)← C(i, j)+v

E← E∪{(i, j)}

Append S with {C(i, j)si(x)}.
return f̂x = median(S).

until end of events;

the counting process in Lemma 1. This ensures that the value of each used cell in
the sketch table C(i, j) is protected with ϵ/d privacy throughout the whole process.
Next, observe that there are only d sensitive cells: Letting X and X ′ be two neigh-
boring data sets, and the differing element be x, the indices of C where X and X ′

differ after using the same hash functions are

Ix = {(1,h1(x)), . . . ,(d,hd(x))}.

Therefore, the total privacy is dϵ/d= ϵ, by the composition theorem, Theorem 2.

4.4.2.1 Error analysis for the use-and-keep algorithm

We can quantify the error in the responses of Algorithm 6 with the following theorem.
A proof is given in the Appendix.
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Theorem 5. Assume that Algorithm 6 is run with d rows and w columns and the
required privacy level is ϵ. Suppose that a query is made for an element x, and for
1≤ i≤ d, the cell that it is hashed to in the i’th row has been used ui−1 times prior
to the query. Then, for any κ2 > 2maxi=1,...,d

(
||f ||22

w + d2

ϵ2 ui

)
, we have

P(|f̂x−fx|> κ)≤ e− d
2 (1−2λ)[2(1−λ)]d/2

where λ= ||f ||22
κ2w

+ d
κ2ϵ2

∑d
i=1ui, and ||f ||22 =∑

x f
2
x .

Theorem 5 has two important implications.

• Fix x, the element to be queried. Fix a small probability ρ and let λρ be such
that e− d

2 (1−2λ∗)[2(1−λ∗)]d/2 = ρ. Then, the absolute error which is exceeded

with probability ρ is
(

||f ||22
λρw + d

λρϵ2
∑d

i=1ui

)1/2
. This grows sub-linearly with∑d

i=1ui, the sum of the total number of uses of the cells that x is hashed to.
This suggests that, if x is queried as frequently as its occurrence in the data
stream (and similarly for the other elements that are also hashed in the same
cells as x), we expect the relative error f̂x to decrease in time.

• The error bound in the theorem indicates the two sided effect, in terms of
performance, of the number of rows d in the sketch table. Observe that the
error probability may not be monotonic in d; instead, increasing d up to a
certain value may improve the error bound until worsening it beyond that
value. This can be explained as follows: while a larger d helps the accuracy
of the median, it also corrupts the cell values with more noise. Therefore,
the optimum value d in terms of performance is in general somewhere in the
middle.

4.5 Related Work

The related research in the literature can be grouped into three categories: (i) those
that modify the standard count-based sketches to make them privacy-preserving,
(ii) those that combine count based sketches and privacy-preserving mechanisms as
separate steps of a master algorithm, (iii) those that argue that the inherent noise
of the count-based sketches provides privacy under certain special conditions. These
works are generally based on using the Laplace mechanism or its variations. As an
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example of (i), Count Sketch and Count-Min Sketch are used for the succinct repre-
sentation of user data in several different settings (such as recommendation systems,
user location prediction, etc.) and Laplace noise is used to enhance the privacy of
estimates obtained from these sketches Melis et al. (2016). There exist examples
for (ii) which utilize Count (or Count-Min) Sketches and privacy-preserving mech-
anisms as distinct sub-procedures of a master algorithm, without modifying these
sketches Monreale, Wang, Pratesi, Rinzivillo, Pedreschi, Andrienko & Andrienko
(2013). Similarly, Cormode et al. (2012) use the Geometric mechanism (a discrete
analog of the Laplace mechanism) to perturb the inputs that are later passed into
Count Sketch (or alternatively, other summarisation methods which are based on
sampling and filtering) . Hence, they do not incorporate this mechanism directly
into the sketch; they use it in the preliminary steps of their main algorithms. Aside
from these, Balu & Furon (2016) and Li, Liu, Sekar & Smith (2019), which are in
category (iii), the Count Sketch is argued to be inherently providing DP in a special
setting, where the inputs of the sketch are the gradient updates of an optimization
problem. Under some strict assumptions given in those studies, such as the inputs
of sketches being Gaussian distribution and their norms being bounded with high
probability; Count Sketch satisfies DP by itself. But the authors still use output
perturbation (by either adding Laplace noise to gradient updates or clipping the log-
likelihood function of the optimization problem) when the inherent noise of sketch is
not sufficient to provide ϵ-DP. Also, the assumptions that are used in these studies
are not applicable when the input is frequency data which is discrete, nonnegative,
and in the case of data streams, where the distribution is generally observed to be
a power-law distribution.

All of these existing approaches mentioned above can be thought of as addressing the
problem of answering one or multiple queries at a single time in a privacy preserving
way. Our primary focus is protecting privacy when the data in question are in the
form of a data stream that is formed by sensitive information from individuals,
and queries are made dynamically and intermittently. The concept of providing
privacy under continual observation was originally laid out in Dwork, Naor, Pitassi &
Rothblum (2010) where several algorithms were proposed for that objective as well.
Although counters, or, more generally, statistics monotonic in time, are considered
in Dwork et al. (2010), their methods can be adopted for the cells of the Count
Sketch. However, those methods require additional memory.

4.6 Experiments
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In this section, we focus on the performance of Algorithm 6. We generated a data
stream of size 227 where each item is a random draw from the Zipfian distribution
with domain {1, . . . ,229} and parameter α, so that p(X = k)∝ k−α for k = 1, . . . ,229.
We tested Algorithm 6 under several scenarios constructed by the combination of
several parameters. These parameters are as follows:

• privacy level ϵ ∈ {0.01,0.05,1};

• α = 1 of the Zipfian;

• the number of rows d ∈ {3,9,15};

• the number of columns w = 5000;

• query set size nQ ∈ {1,103,104,105,106};

• user type parameter u∈ {50,5000,500000} which denotes that the query items
are coming from the top u most frequent items.

For each combination of (ϵ,α,d,w,nQ,u) with the components taking values in their
ranges stated above, we simulated the dynamic system in Algorithm 6. In each
simulation, the data stream is generated gradually with the arrival of an element with
regular time intervals. Along with the arrivals, queries are scheduled periodically at
evenly spaced times. The periods for queries are arranged in such a way that the
total number of queried elements is the same and equal to 106 for all the scenarios.
That is, the period for queries when nQ = 10 is 10 times the period for queries when
nQ = 1. This is ensured for fair comparison of scenarios in terms of accuracy. For
each scenario, the queries start after 5×105 items arrive. Finally, all the scenarios
are simulated 20 times with the same data stream but independent random seeds
to generate the hash functions, query sets, and the Laplace noises. The average
errors over those independent simulations are reported. Figure 4.3 shows the plots
for the cumulative mean relative error vs time for combinations of ϵ,nQ. For each
combination, error plots for different values of d are superimposed. All the other
parameters are averaged out.

Comparing the plots in Figure 4.3 along each parameter is informative: First, as
expected, the error increases with decreasing ϵ. Second, we have smaller errors as
nQ increases. This is because answering a set queries at the same time is more
beneficial than answering parts of them at separate times, since the former has the
advantage of using the same cell noise for more queries.

A further deduction from Figure 4.3 is that the best value of d, among the ones
compared, decreases as the scenario becomes more challenging. Observe, e.g., the
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last column, where ϵ = 0.01. As nQ decreases, which necessitates more frequent
noise adding, the value of d that gives the minimum error also decreases: it changes
from d= 15 to d= 9 (at nQ = 10000) and then to d= 3 as nQ further decreases. This
may be explained as follows: Smaller nQ implies more frequent use of a single cell.
Recall that we add a Laplace(d/ϵ) noise to a cell value each time the cell is required,
making the cells noisier. There is a certain value of d beyond which the effect of
taking the median over d rows is overwhelmed by the error due to the amount of
noise added to the cells. This value of d is smaller when the cells are noisier (nQ is
smaller). This transition of the best d towards small values occurs earlier for smaller
ϵ, since smaller ϵ means a more noisy sketch table.

Figure 4.4 shows plots for cumulative mean relative errors vs time for combinations
of ϵ,u and with plots for different values of d superimposed. All the other parameters
are averaged out. Observe that the relative error is larger as the queries are made
from a larger pool of top elements. This behavior is also typical of the regular Count
Sketch. Besides that, similar conclusions can be drawn about the behavior of the
error curves as d changes. Once again, smaller values d is preferred as the cells get
more noisy.

In both Figure 4.3 and Figure 4.4, we observe the cumulative relative error (left)
grows sub-linearly. This supports our claim that in Section 4.4.2.1 stemming from
Theorem 5 that the absolute error is expected to grow if queries are made as fre-
quently as the arrival of new elements to the stream.

4.7 Conclusion

In this chapter, we proposed differentially private versions of the count sketch for
frequency estimation. We both discussed median perturbation and cell perturbation
methods. While in the static case, where all queries are made at the same time, it is
not certain which method will prevail, for the dynamic case we propose using the cell
perturbation technique as it is able to produce less noisy estimates. The ultimate
algorithm proposed for the dynamic case was Algorithm 6, where the noise is used
and kept in the cell value so that the DP noise variance increases only linearly, as
opposed to geometrically which would happen with a naive implementation of the
composition theorem for differential privacy.

Possible extensions to the proposed approach are as follows:
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Figure 4.3 Cumulative mean relative error of Algorithm 6 for different combinations
of ϵ,nQ and d.
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Subsampling It is possible to increase the privacy level of the algorithms by
deciding to process each element in the stream with a certain probability 0< ρ < 1
Balle, Barthe & Gaboardi (2018). This increases the privacy level by reducing ϵ to
roughly an order of ρϵ for small ρ, see Balle et al. (2018) for the exact expression.
The final estimates are then to be rescaled by 1/ρ to preserve unbiasedness. This
comes, of course, with the expense of reducing the accuracy by means of multiplying
the variance of the estimates by 1/ρ2.

Algorithms for Count-Min Sketch Just like Count Sketch, Count-Min Sketch
can be modified in a similar fashion to provide privacy. Note that like the Count
Sketch, the sensitivity of each cell and the minimum of those cells is 1. In our
implementations, we used only Count Sketch, since it provides an unbiased estimator
of the true frequency values, unlike Count-Min Sketch which overestimates the true
counts.

Pan-privacy One direction for future research can be to modify the use-and-keep
approach so as to satisfy pan-privacy Dwork et al. (2010). It is not difficult to satisfy
pan-privacy against a single intrusion (into the state of the algorithm, which is the
sketch C) followed by a set of queries made at a single time. This is achieved by
simply starting C with C(i, j) i.i.d.∼ Laplace(d/ϵ). However, providing pan-privacy
against multiple intrusions seems difficult and needs more investigation.

Alternatives to the Laplace mechanism More advanced techniques than the
Laplace mechanism for preserving the same amount of privacy were offered in Cor-
mode, Kulkarni & Srivastava (2017). We remark that the choice for the probability
distribution of the DP noise is not the main focus of our algorithm. Any noise
adding technique is equally applicable and can substitute the Laplace mechanism as
long as providing the same level of privacy. Moreover, light-tailed noise mechanisms
such as the Gaussian mechanism can be considered instead of Laplace mechanism
if one is willing to weaken the privacy requirements (and welcome δ > 0).

Bayesian extension Differentially private estimation and randomized answer-
ing of frequency queries can also be handled by using nonparametric Bayesian ap-
proaches as well. For this purpose, a Dirichlet process is a natural candidate; be-
cause, in our case, the number of categories is not known beforehand and it often has
a highly skewed distribution in real applications. One can use the Count Sketch’s
hash table for estimating the “pseudocount” hyperparameter (α) of a Dirichlet pro-
cess, and then draw a sample of categorical probability vector (θ) from this process to
use it as a parameter for multinomial distribution for answering frequency queries.
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Since this approach involves a sampling step, the variance of the sample can be
preadjusted in order to satisfy differential privacy constraint.

63



5. BAYESIAN FREQUENCY ESTIMATION UNDER LDP WITH

AN ADAPTIVE RANDOMIZED RESPONSE MECHANISM

Frequency estimation plays a critical role in many applications involving personal
and private categorical data. Such data are often collected sequentially over time,
making it valuable to estimate their distribution online while preserving privacy. We
propose AdOBEst-LDP, a new algorithm for adaptive, online Bayesian estimation
of categorical distributions under local differential privacy (LDP). The key idea be-
hind AdOBEst-LDP is to enhance the utility of future privatized categorical data
by leveraging inference from previously collected privatized data. To achieve this,
AdOBEst-LDP uses a new adaptive LDP mechanism to collect privatized data. This
LDP mechanism constrains its output to a subset of categories that ‘predicts’ the
next user’s data. By adapting the subset selection process to the past privatized
data via Bayesian estimation, the algorithm improves the utility of future privatized
data. To quantify utility, we explore various well-known information metrics, in-
cluding (but not limited to) the Fisher information matrix, total variation distance,
and information entropy. For Bayesian estimation, we utilize posterior sampling
through stochastic gradient Langevin dynamics, a computationally efficient approx-
imate Markov chain Monte Carlo (MCMC) method.

We provide a theoretical analysis showing that (i) the posterior distribution of the
category probabilities targeted with Bayesian estimation converges to the true prob-
abilities even for approximate posterior sampling, and (ii) AdOBEst-LDP eventually
selects the optimal subset for its LDP mechanism with high probability if posterior
sampling is performed exactly. We also present numerical results to validate the
estimation accuracy of AdOBEst-LDP. Our comparisons show its superior perfor-
mance against non-adaptive and semi-adaptive competitors across different privacy
levels and distributional parameters.

As we mentioned before, this chapter is based on a published paper in which the
author of this dissertation is one of the co-authors (along with Sinan Yıldırım). The
proofs in the Appendix of this chapter were done by Sinan Yıldırım. The other parts
of this work were made by the combined efforts of both co-authors.
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5.1 Introduction

Frequency estimation is the focus of many applications that involve personal and
private categorical data. Suppose a type of sensitive information is represented
as a random variable X with a categorical distribution denoted by Cat(θ), where
θ is a K-dimensional probability vector. As real-life examples, this could be the
distribution of the types of a product bought by the customers of an online shopping
company, responses to a poll question like “Which party will you vote for in the
next elections?”, occupational affiliations of the people who visit the website of a
governmental agency, and so on.

In this chapter, we propose an adaptive and online algorithm to estimate θ in a
Local Differential Privacy (LDP) framework where X is unobserved and instead, we
have access to a randomized response Y derived from X. In the LDP framework,
a central aggregator receives each user’s randomized (privatized) data to be used
for inferential tasks. In that sense, LDP differs from global DP (Dwork, 2006b)
where the aggregator privatizes operations on the sensitive dataset after it collects
the sensitive data without noise. Hence LDP can be said to provide a stricter
form of privacy and is used in cases where the aggregator may not be trustable
(Kasiviswanathan et al., 2011). Below, we give a more formal definition of ϵ-LDP
as a property that concerns a randomized mechanism.
Definition 4 (Local differential privacy). A randomized mechanism M : X 7→ Y
satisfies ϵ-LDP if the following inequality holds for any pairs of inputs x,x′ ∈ X ,
and for any output (response) y ∈ Y:

e−ϵ ≤ P(M(x) = y)
P(M(x′) = y) ≤ e

ϵ.

The definition of LDP is almost the same as that of global DP. The main difference is
that, in the global DP, inputs x,x′ are two datasets that differ in only one individual’s
record, whereas in LDP, x,x′ are two different data points from X .

In Definition 4, ϵ≥ 0 is the privacy parameter. A smaller ϵ value provides stronger
privacy. One main challenge in most differential privacy settings is to decide on the
randomized mechanism. In the case of LDP, this is how an individual data point X
should be randomized. For a given randomized algorithm, too little randomization
may not guarantee the privacy of individuals, whereas too severe randomization de-
teriorates the utility of the output of the randomized algorithm. Balancing these
conflicting objectives (privacy vs utility) is the main goal of the research on estima-
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tion under privacy constraints.

In many cases, individuals’ data points are collected sequentially. A basic example
is opinion polling, where data is collected typically in time intervals of lengths in
the order of hours or days. Personal data entered during registration is another
example. For example, a hospital can collect patients’ categorical data as they visit
the hospital for the first time.

While sequential collection of individual data may make the estimation task under
the LDP constraint harder, it may also offer an opportunity to adapt the random-
ized mechanism in time to improve the estimation quality. Motivated by that, in
this chapter, we address the problem of online Bayesian estimation of a categorical
distribution (θ) under ϵ-LDP, while at the same time choosing the randomization
mechanism adaptively so that the utility is improved continually in time.

sensitive
information of a

new indivual
population 
(of individuals)

Database

RRRR 
for 
LDP

randomized
response

        posterior 
      sample

subset 
selection

posterior
sampling

privacy level

AdOBEst-LDP
subset 

Figure 5.1 AdOBEst-LDP: A framework for Adaptive and Online Bayesian Estima-
tion of categorical distributions with Local Differential Privacy.

Contribution: This chapter presents AdOBEst-LDP: a new methodological
framework for Adaptive Online Bayesian Frequency Estimation with LDP. A
flowchart diagram of AdOBEst-LDP is given in Figure 5.1 to expose the reader
to the main idea of the framework. The main idea of AdOBEst-LDP is to collect
future privatized categorical data with high estimation utility based on the knowl-
edge extracted from the previously collected privatized categorical data. To achieve
this goal, AdOBEst-LDP continually adapts its randomized response mechanism to
the estimation of θ.

The development of AdOBEst-LDP offers three main contributions to the LDP
literature.

• A new randomized response mechanism: AdOBEst-LDP uses a new
adaptive Randomly Restricted Randomized Response mechanism (RRRR) to
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produce randomized responses under ϵ-LDP. RRRR is a generalization of the
standard randomized response mechanism in that it restricts the response to a
subset of categories. This subset is selected such that the sensitive information
X of the next individual is likely contained in that subset. To ensure this, the
subset selection step uses two inputs: (i) a sample for θ drawn from the poste-
rior distribution of θ conditional on the past data, (ii) a utility function that
scores the informativeness of the randomized response obtained from RRRR
when it is run with a given subset. To that end, we propose several utility
functions to score the informativeness of the randomized response. The util-
ity functions are based on well-known tools and metrics from probability and
statistics, such as Fisher information (Alparslan & Yıldırım, 2022; Lopuhaä-
Zwakenberg, Škorić & Li, 2022; Steinberger, 2024; Yıldırım, 2024), entropy,
total variation distance, expected squared error, and probability of honest re-
sponse, i.e., Y =X. We provide some insight into those utility functions both
theoretically and numerically. Moreover, we also provide a computational
complexity analysis for the proposed utility functions.

• Posterior sampling: We equip AdOBEst-LDP with a scalable posterior sam-
pling method for parameter estimation. Bayesian estimation is a natural choice
for inference when the data is corrupted or censored (Kim, Jung & Chung,
2011; Liu, Zhang, Jin & Pan, 2022; Lone, Panahi, Anwar & Shahab, 2024)
and such modification can be statistically modeled. In differential privacy set-
tings, too, Bayesian inference is widely employed (Alparslan & Yıldırım, 2022;
Foulds, Geumlek & an Kamalika Chaudhuri, 2016; Karwa, Slavković & Kriv-
itsky, 2014; Williams & Mcsherry, 2010) when the input data is shared with
privacy-preserving noise. Standard MCMC methods, such as Gibbs sampling,
have a computation complexity quadratic in the number of individuals whose
data have been collected. As a remedy to this, similar to Mazumdar, Pacchi-
ano, Ma, Bartlett & Jordan (2020), we propose a stochastic gradient Langevin
dynamics (SGLD)-based algorithm to obtain approximate posterior samples
(Welling & Teh, 2011a). By working on subsets of data, SGLD scales in time.

The numerical experiments show that AdOBEst-LDP outperforms its non-
adaptive counterpart when run with SGLD for posterior sampling. The results
also suggest that the utility functions considered in this chapter are robust
and perform well. The MATLAB code at https://github.com/soneraydin/
AdOBEst_LDP can be used to reproduce the results obtained in this chapter.

• Convergence results: Finally, we provide a theoretical analysis of AdOBEst-
LDP. We prove two main results:
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(i) The targeted posterior distribution conditional on the generated obser-
vations by the adaptive scheme converges to the true parameter in prob-
ability in the number of observations, n. This convergence result owes
mainly to the smoothness and a special form of concavity of the marginal
log-likelihood function of the randomized responses. Another key factor
is that the second moment of the sum up to time n of the gradient of this
log-marginal likelihood is O(n).

(ii) If posterior sampling is performed exactly, the expected frequency of the
algorithm choosing the best subset (according to the utility function)
tends to 1 as n goes to ∞.

The theoretical results require fairly weak, realistic, and verifiable assump-
tions.

Outline: In Section 5.2, we discuss the earlier work related to ours. Section 5.3
presents LDP and the frequency estimation problem and introduces AdOBEst-LDP
as a general framework. In Section 5.4, we delve deeper into the details of AdOBEst-
LDP by first presenting RRRR, the proposed randomized response mechanism, then
explaining how it chooses an ‘optimal’ subset of categories adaptively at each itera-
tion. Section 5.4 also presents the utility metrics considered for choosing these sub-
sets in this chapter. In Section 5.5, we provide the details of the posterior sampling
methods considered in this chapter, particularly SGLD. The theoretical analysis of
AdOBEst-LDP is provided in Section 5.6. Section 5.7 contains the numerical ex-
periments. Finally, Section 5.8 provides some concluding remarks. All the proofs of
the theoretical results are given in the appendices.

5.2 Related Literature

Frequency estimation under the LDP setting has been an increasingly popular re-
search area in recent years. Along with its basic application (estimation of discrete
probabilities from locally privatized data), it is also used for a wide range of other
estimation and learning purposes such as estimation of confidence intervals and
confidence sets for a population mean (Waudby-Smith, Wu & Ramdas, 2023), es-
timation or identification of heavy hitters (Zhu, Cao, Xue, Wu & Zhang, 2024)
(Wang, Li, Zhong, Chen, Wang, Zhou, Peng, Qian, Du & Yang, 2024) (Jia & Gong,
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2019), estimation of quantiles (Cormode & Bharadwaj, 2022), frequent itemset min-
ing (Zhao, Zhao, Chen, Liu, Li & Zhang, 2023), estimation of degree distribution in
social networks (Wang, Jiang, Peng & Li, 2024), distributed training of graph neural
networks with categorical features and labels (Bhaila, Huang, Wu & Wu, 2024). The
methods that are proposed for ϵ-LDP frequency estimation also form the basis of
more complex inferential tasks (with some modifications on these methods), such as
the release of ‘marginals’ (contingency tables) between multiple categorical features
and their correlations, as in the work of Cormode, Kulkarni & Srivastava (2018).

AdOBEst-LDP employs RRRR as its randomized mechanism to produce random-
ized responses. RRRR is a modified version of the Standard Randomized Response
mechanism (SRR) (also known as generalized randomized response, k-randomized
response, and direct encoding in the literature.) Given X as its input, SRR outputs
X with probability eϵ

eϵ+K−1 , otherwise outputs one of the other categories at random.
This is a well-studied mechanism in the DP literature, and the statistical properties
of its basic version (such as its estimation variance) can be found in the works by
(Wang et al., 2017) and (Wang et al., 2020). When K is large, the utility of SRR
can be too low. RRRR in AdOBEst-LDP is designed to circumvent this problem
by constraining its output to a subset of categories. Unlike SRR, the perturbation
probability of responses in our algorithm changes adaptively, depending on the car-
dinality of the selected subset of categories (which we explain in detail in Section
5.4) for the privatization of X, and the cardinality of its complementary set.

The use of information metrics as utility functions in LDP protocols has been an
active line of research in recent years. In the work of Kairouz, Oh & Viswanath
(2016), information metrics like f -divergence and mutual information are used for
selecting optimal LDP protocols. In the same vein, Steinberger (2024) uses Fisher
Information as the utility metric for finding a nearly optimal LDP protocol for the
frequency estimation problem, and Lopuhaä-Zwakenberg et al. (2022) uses it for
comparing the utility of various LDP protocols for frequency estimation and finding
the optimal one. In these works, the mentioned information metrics are used stat-
ically, i.e., to choose a protocol once and for all, for a given estimation task. The
approaches in these works suffer from computational complexity for large values of
K because the search space for optimal protocols there grows in the order of 2K . In
some other works, such as Wang, Huang, Wang, Nie, Xu, Yang, Li & Qiao (2016),
a randomly sampled subset of size k ≤ K is used to improve the efficiency of this
task, where the optimal k is determined by maximizing the mutual information be-
tween real data and the privatized data. However, this approach is also static as the
optimal subset size k is selected only once, and the optimization procedure only de-
termines k and not the subset itself. Unlike those static approaches, AdOBEst-LDP
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dynamically uses the information metric (such as the Fisher Information matrix and
the other alternatives in Section 5.4.3) to select the optimal subset at each time step.
In addition, in the subset selection step of AdOBEst-LDP, only K candidate subsets
are compared in terms of their utilities at each iteration, enabling computational
tractability. This way of tackling the problem requires computing the given infor-
mation metric for only K times at each iteration. We will provide further details of
this approach in Section 5.4.3 and provide a computational complexity analysis in
Section 5.4.4.

Another use of the Fisher Information in the LDP literature is for bounding the
estimation error for a given LDP protocol. For example, Barnes, Chen & Özgür
(2020) uses Fisher Information inside van Trees inequality, the Bayesian version
of the Cramér-Rao bound (Gill & Levit, 1995), for bounding the estimation error
of various LDP protocols for Gaussian mean estimation and frequency estimation.
Again, their work provides rules for choosing optimal protocols for a given ϵ in a
static way. As a similar example, Acharya, Canonne, Sun & Tyagi (2023) derives
a general information contraction bound for parameter estimation problems under
LDP and shows its relation to van Trees inequality as its special case. To our
knowledge, our approach is the first one that adaptively uses a utility metric to
dynamically update the inner workings of an LDP protocol for estimating categorical
distributions.

The idea of building adaptive mechanisms for improved estimation under the LDP
has been studied in the literature, although the focus and methodology of those
works differ from ours. For example, Joseph, Kulkarni, Mao & Wu (2019) proposed
a two-step adaptive method to estimate the unknown mean parameter of data from
Gaussian distribution. In this method, the users are split into two groups, an initial
mean estimate is obtained from the perturbed data of the first group, and the data
from the second group is transformed adaptively according to that initial estimate.
Similarly, Wei, Bao, Xiao, Yang & Ding (2024) proposed another two-step adaptive
method for the mean estimation problem, in which the aggregator first computes a
rough distribution estimate from the noisy data of a small sample of users, which
is then used for adjusting the amount of perturbation for the data of remaining
users. While Joseph et al. (2019); Wei et al. (2024) consider a two-stage method,
AdOBEst-LDP seeks to adapt continually by updating its LDP mechanism each
time an individual’s information is collected. Similar to our work, Yıldırım (2024)
has recently proposed an adaptive LDP mechanism for online parameter estimation
for continuous distributions. The LDP mechanism of Yıldırım (2024) contains a
truncation step with boundaries adapted to the estimate from the past data ac-
cording to a utility function based on the Fisher information. Unfortunately, the
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parameter estimation step of Yıldırım (2024) does not scale in time. Differently
from Yıldırım (2024), AdOBEst-LDP focuses on categorical distributions, consid-
ers several other utility functions to update its LDP mechanism, employs a scalable
parameter estimation step, and its performance is backed up with theoretical results.

5.3 Problem definition and general framework

Suppose we are interested in a discrete probability distribution P of a certain form of
sensitive categorical informationX ∈ [K] := {1, . . . ,K} of individuals in a population.
Hence, P is a categorical distribution Cat(θ∗) with a probability vector

θ∗ := (θ∗
1, . . . , θ

∗
K) ∈∆,

where ∆ is the (K−1)-dimensional probability simplex,

∆ :=

θ ∈ RK :
K∑

k=1
θk = 1 and θk ≥ 0 for k ∈ [K]

 .
We assume a setting where individuals’ sensitive data are collected privately and
sequentially in time. The privatization is performed via a randomized algorithm
that, upon taking a category index in [K] as an input, returns a random category
index in [K] such that the whole data collection process is ϵ-LDP. (See Definition 4.)
Let Xt and Yt be the private information and randomized responses of individual
t, respectively. According to Definition 4 for LDP, the following inequality must be
satisfied for all triples (x,x′,y) ∈ [K]3 for the randomized mechanism to be ϵ-LDP.

(5.1) P(Yt = y|Xt = x)≤ eϵP(Yt = y|Xt = x′).

The inferential goal is to estimate θ∗ sequentially based on the responses Y1,Y2, . . .,
and the mechanismsM1,M2, . . . that are used to generate those responses. Specif-
ically, Bayesian estimation is considered, whereby the target is the posterior distri-
bution, denoted by Π(dθ|Y1:n,M1:n), given a prior probability distribution with pdf
η(θ) on ∆.

This chapter concerns the Bayesian estimation of θ while adapting the randomized
mechanism to improve the estimation utility continually. We propose a general
framework called AdOBEst-LDP, in which the randomized mechanism at time t
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Algorithm 7 AdOBEst-LDP: Adaptive Online Bayesian Estimation with LDP
Initialization: Start with an initial estimator Θ0 = θinit.
for t= 1,2, . . . do

Step 1: Adapting the LDP mechanism: Based on Θt−1, determine the
ϵ-LDP mechanism Mt for the next individual according to a utility metric.
Step 2: LDP response generation The sensitive information Xt of individual
t is shared as Yt using the ϵ-LDP mechanism Mt.
Step 3: Draw a sample (approximately) from the posterior distribution

Θt ∼ Π(·|Y1:t,M1:t).

is adapted to the data collected until time t− 1. AdOBEst-LDP is outlined in
Algorithm 7.

Algorithm 7 is fairly general, and it does not describe how to choose the ϵ-LDP
mechanism Mt at time t, nor does it provide the details of the posterior sampling.
However, it is still worth making some critical observations about the nature of the
algorithm. Firstly, at time t the selection of the ϵ-LDP mechanism in Step 1 relies
on the posterior sample Θt−1, which serves as an estimator of the true parameter θ∗

based on the past observations. As we shall see in Section 5.4, at Step 1 the ‘best’
ϵ-LDP mechanism is chosen from a set of candidate LDP mechanisms according to
a utility function. This step is relevant only when Θt−1 is a reliable estimator of
θ∗. In other words, Step 1 ‘exploits’ the estimator Θt−1. Moreover, the random
nature of posterior sampling prevents having too much confidence in the current
estimator Θt−1 and enables a certain degree of ‘exploration.’ In conclusion, Algo-
rithm 7 utilizes an ‘exploration-exploitation’ approach reminiscent of reinforcement
learning. In particular, posterior sampling in Step 3 suggests a strong parallelism be-
tween AdOBEst-LDP and the well-known exploration-exploitation approach called
Thompson sampling (Russo, Roy, Kazerouni, Osband & Wen, 2018).

The details of Steps 1-2 and Step 3 of Algorithm 7 are given in Sections 5.4 and 5.5,
respectively.

5.4 Constructing informative randomized response mechanisms

In this section, we describe Steps 1-2 of AdOBEst-LDP in Algorithm 7 where the
ϵ-LDP mechanism Mt is selected at time t based on the posterior sample Θt and
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a randomized response is generated using Mt. For ease of exposition, we will drop
the time index t throughout the section and let Θt−1 = θ.

Recall from Definition 4 that an ϵ-LDP randomized mechanism is associated with
a conditional probability distribution that satisfies (5.1). An ϵ-LDP mechanism
is not unique. One such mechanism is the standard randomized response mecha-
nism (SRR). For subsequent use, it is convenient to define SRR generally: We let
SRR(X;Ω, ϵ) the output of SRR which operates on the set Ω with LDP parameter ϵ
when the input is X ∈ Ω. Then, we have

(5.2) Y = SRR(X;Ω, ϵ) =

X w.p. eϵ/(eϵ + |Ω|−1)

∼ Uniform(Ω/{X}) else
.

We aim to develop an alternative randomized mechanism whose response Y is more
informative about θ∗ than the one generated as Y = SRR(X; [K], ϵ). The main
idea is as follows. Supposing that the posterior sample Θt−1 = θ is an accurate
estimate of θ∗, it is reasonable to aim for the ‘best’ ϵ-LDP mechanism (among a
range of candidates) which would maximize the (estimation) utility of Y if the true
parameter were θ∗ = θ. We follow this main idea to develop the proposed ϵ-LDP
mechanism.

5.4.1 The randomly restricted randomized response (RRRR) mechanism

Given Θt−1 = θ ∈ ∆, an informative randomized response mechanism can be con-
structed by considering a high-probability set S ⊂ [K] and a low-probability set
Sc = [K]/S for X (according to θ). Then, a sensible alternative to SRR(X; [K], ϵ)
would be to confine the randomized response to the set S (unioned by a random
element from Sc to remain LDP). The expected benefit of this approach is due to
(i) using less amount of randomization since |S|<K, and thus (ii) having an infor-
mative response when X ∈ S, which happens with a high probability. Based on this
approach, we propose RRRR, whose precise steps are given in Algorithm 8.

RRRR has three algorithmic parameters: a subset S of [K] and two privacy pa-
rameters ϵ1 and ϵ2 which operates on S and Sc, respectively. Theorem 6 states the
necessary conditions for ϵ1 and ϵ2 for RRRR to be ϵ-LDP. A proof of Theorem 6 is
given in Appendix C.1.1.
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Algorithm 8 RRRR
Input: Sample space size K, a subset S ⊂ [K], privacy parameters ϵ1, ϵ2 > 0, input

X ∈ [K]
Output: Randomized response Y ∈ [K]
if X ∈ S then

Draw R∼ Uniform(Sc).
Set Y = SRR(X;S∪{R}, ϵ1) as in (5.2).

else
Set R = SRR(X;Sc, ϵ2) as in (5.2).
Set Y = SRR(R;S∪{R}, ϵ1) as in (5.2).

return Y

Theorem 6. RRRR is ϵ-DP if ϵ1 ≤ ϵ and

(5.3) ϵ2 =


min

{
ϵ, ln |Sc|−1

eϵ1−ϵ|Sc|−1

}
for ϵ− ϵ1 < ln |Sc| and |S|> 0

ϵ else
.

Note that when S = ∅ and ϵ2 = ϵ, RRRR reduces to SRR.

5.4.2 Choosing the privacy parameters ϵ1, ϵ2

We elaborate on the choice of ϵ1 and ϵ2 in the light of Theorem 6. In RRRR, the
probability of an honest response, i.e., X = Y , given X ∈ S, is

P(Y =X|X ∈ S) = eϵ1

eϵ1 + |S| ,

which should be contrasted to eϵ/(eϵ +K − 1), which would be the probability if
Y = SRR(X; [K], ϵ). Anticipating that {X ∈ S} is likely, one should at least aim for
ϵ1 that satisfies P(X = Y |X ∈ S) ≥ eϵ/(eϵ +K− 1) for RRRR to be relevant. This
is equivalent to

(5.4) ϵ1 ≥ ϵ+ln |S|− ln(K−1).

Taking into account also the constraint that ϵ1 ≤ ϵ (by Theorem 6), we suggest
ϵ1 = κϵ, where κ ∈ (0,1) is a number close to 1, such as 0.9, to ensure (5.4) with a
significant margin. (It is possible to choose κ = 1; however, again by Theorem 6,
this requires that ϵ2 = 0, which renders Y completely uninformative when X /∈ S.)
In Section 5.7, we discuss the choice of κ in more detail.
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For the next section, we assume a fixed κ ∈ (0,1), and set ϵ1 = κϵ; and we focus on
the selection of S.

5.4.3 Subset selection for RRRR

Let RRRR(X;S,ϵ) be the random output of RRRR that achieves ϵ-LDP by using
the subset S and the privacy parameters ϵ1 = κϵ and ϵ2 as in (5.3) when the input
is X. Furthermore, let U(θ,S,ϵ) be the (inferential) ‘utility’ of Y = RRRR(X;S,ϵ)
when X ∼ Cat(θ). One would like to choose S that maximizes U(θ,S,ϵ). (One
could also seek to optimize κ in ϵ1 = κϵ, too, however with the expense of additional
computation.)

However, since there are 2K −1 feasible choices for S, one must confine the search
space for S in practice. As discussed above, RRRR becomes most relevant when
the set S is a high-probability set. Therefore, for a given θ, we confine the choices
for S to

(5.5) Sk,θ := {σθ(1),σθ(2), . . . ,σθ(k)}, k = 1, . . . ,K.

where σθ := (σθ(1), . . . ,σθ(K)) be the permutation vector for θ so that θσθ(1) ≥ . . .≥
θσθ(K).

Then the subset selection problem can be formulated as finding

(5.6) k∗ = arg max
k∈{0,...,K−1}

U(θ,Sk,θ, ϵ).

The alternatives in (5.5) can be justified. Since Sk,θ contains the indices of the k
highest-valued components of θ∗, it is expected to cover a large portion of the total
probability for X. This can be the case even for a small value of k relative to K

when the components of θ∗ are not evenly distributed. Also, the alternatives cover
the basic SRR, which is obtained with k = 0 (leading to S = ∅ and ϵ2 = ϵ).

In the subsequent sections, we present six different utility functions U(θ,S,ϵ) and
justify their relevance to estimation; the usefulness of the proposed functions is also
demonstrated in the numerical experiments.

5.4.3.1 Fisher information matrix
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The first utility function under consideration is based on the Fisher information
matrix at θ according to the distribution of Y given θ. It is well-known that the
inverse of the Fisher information matrix sets the Cramer-Rao lower bound for the
variance of an unbiased estimator. Hence, the Fisher information can be regarded
as a reasonable metric to quantify the information contained in Y about θ. This ap-
proach is adopted in Lopuhaä-Zwakenberg et al. (2022); Steinberger (2024) for LDP
applications for estimating discrete distributions, and Alparslan & Yıldırım (2022);
Yıldırım (2024) in similar problems involving parametric continuous distributions.

For a given θ ∈ ∆, let F (θ;S,ϵ) be the Fisher information matrix evaluated at θ
when X ∼ Cat(θ) and Y = RRRR(X;S,ϵ). Let

gS,ϵ(y|x) := P(Y = y|X = x)

when Y = RRRR(X;S,ϵ). The following result states F (θ;S,ϵ) in terms of gS,ϵ and
θ. The result is derived in Lopuhaä-Zwakenberg et al. (2022); we also give a simple
proof in Appendix C.1.2. Note that F (θ;S,ϵ) is (K−1)× (K−1) since θ has K−1
free components and θK = 1−∑K−1

i=1 θi.
Proposition 2. The Fisher information matrix for RRRR is given by

(5.7) F (θ;S,ϵ) = A⊤
S,ϵD

−1
θ AS,ϵ,

where AS,ϵ is a K×(K−1) matrix whose entries are AS,ϵ(i, j) := gS,ϵ(i|j)−gS,ϵ(i|K)
and Dθ is a K×K diagonal matrix with elements Dθ(i, i) :=∑K

j=1 gS,ϵ(i|j)θj.

We define the following utility function based on the Fisher information

(5.8) U1(θ,S,ϵ) :=−Tr
[
F−1(θ;S,ϵ)

]
.

This utility function depends on the Fisher information differently from Lopuhaä-
Zwakenberg et al. (2022); Steinberger (2024), who considered the determinant of the
FIM as the utility function. The rationale behind (5.8) is that the for an unbiased
estimator θ̂(Y ) of θ∗ based on Y = RRRR(X;S,ϵ), the expected mean squared error is
bounded by Eθ∗ [∥θ̂(Y )−θ∗∥2]≤Tr

[
F−1(θ∗;S,ϵ)

]
. For the utility function in (5.8) to

be well-defined, the FIM needs to be invertible. Proposition 3, proven in Appendix
C.1.2, states that this is indeed the case.
Proposition 3. F (θ;S,ϵ) in (5.7) is invertible for all θ ∈∆, S ⊂ [K], and ϵ1, ϵ2 > 0.

5.4.3.2 Entropy of randomized response
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For discrete distributions, entropy measures uniformity. Hence, in the LDP frame-
work, a lower entropy for the randomized response Y implies a more informative Y .
Based on that observation, a utility function can be defined as the negative entropy
of the marginal distribution of Y ,

U2(θ,S,ϵ) :=
K∑

y=1
lnhS,ϵ(y|θ)hS,ϵ(y|θ),

where hS,ϵ(y|θ) is the marginal probability of Y = y given θ,

hS,ϵ(y|θ) :=
K∑

x=1
gS,ϵ(y|x)θx.

5.4.3.3 Total variation distance

The TV distance between two discrete probability distributions µ,ν on [K] is given
by

TV(µ,ν) := 1
2

K∑
k=1
|µ(x)−ν(x)|.

We consider two utility functions based on TV distance. The first function arises
from the observation that a more informative response Y generally leads to a larger
change in the posterior distribution of X given Y,θ,

(5.9) pS,ϵ(x|y,θ) := θx ·gS,ϵ(y|x)
hS,ϵ(y|θ)

, x= 1, . . . ,K,

relative to its prior Cat(θ). The expected amount of change can be formulated as
the expectation of the TV distance between the prior and posterior distributions
with respect to the marginal distribution of Y given θ. Then, a utility function can
be defined as

U3(θ,S,ϵ) := Eθ

[
TV(pS,ϵ(·|Y,θ),Cat(θ))

]
= 1

2

K∑
x=1

K∑
y=1

∣∣∣gS,ϵ(y|x)θx−hS,ϵ(y|θ)θx

∣∣∣ .

Another utility function is related to the TV distance between the marginal proba-
bility distributions of X given θ and Y given θ. Since X is more informative about
θ than the randomized response Y , the mentioned TV distance is desired to be as
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small as possible. Hence, a utility function may be formulated as

U4(θ,S,ϵ) :=−TV(hS,ϵ(·|θ),Cat(θ))

=−1
2

K∑
i=1
|hS,ϵ(i|θ)− θi|.

5.4.3.4 Expected mean squared error

One can also wish to choose S such that the Bayesian estimator of X given Y has
the lowest expected squared error. Specifically, given k ∈ [K] let ek be a K×1 vector
of 0s except that ek = 1. A utility function can be defined based on that as

(5.10) U5(θ,S,ϵ) :=−argmin
êX

Eθ

[
∥eX − êX(Y )∥2

]
,

where Eθ

[
∥eX − êX(Y )∥2

]
is the mean squared error for the estimator êX of eX

given Y when X ∼ Cat(θ) and Y = RRRR(X;S,ϵ), which is known to be minimized
when êX is the Bayesian estimator of eX . Proposition 4 provides an explicit formula
for this utility function. A proof is given in Appendix C.1.2.
Proposition 4. For the utility function in (5.10), we have

U5(θ,S,ϵ) =
K∑

y=1

K∑
x=1

gS,ϵ(y|x)2θ2
x

hS,ϵ(y|θ)
−1.

5.4.3.5 Probability of honest response

Our last alternative for the utility function is a simple yet intuitive one, which is
the probability of an honest response, i.e.,

(5.11) U6(θ,S,ϵ) := Pθ(Y =X|S).
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This probability is explicitly given by

Pθ(Y =X|S) = P(Y =X|X ∈ S)Pθ(X ∈ S)+P(Y =X|X /∈ S)Pθ(X /∈ S)

= eϵ1

eϵ1 + |S|

∑
i∈S

θi + eϵ2

eϵ2 +K−|S|−1
∑
i/∈S

θi

 .
Recall that, for computational tractability, we confined the possible sets for S to the
subsets {σθ(1), . . . ,σθ(k)}, k = 0, . . . ,K−1 and select S by solving the maximization
problem in (5.6). Remarkably, if U6(θ,S,ϵ) is used for the utility function, the
restricted maximization (5.6) is equivalent to global maximization, i.e., finding the
best S among all the 2K possible subsets S. We state this as a theorem and prove
it in Appendix C.1.2.
Theorem 7. For the utility function U6(θ,S,ϵ) in (5.11) and Sk,θs in (5.5), we have

max
k=0,...,K−1

U6(θ,Sk,θ, ϵ) = max
S⊂[K]

U6(θ,S,ϵ).

5.4.3.6 Semi-adaptive approach

We also consider a semi-adaptive approach which uses a fixed parameter α ∈ (0,1)
to select the smallest Sk,θ in (5.5) such that Pθ(X ∈ Sk,θ) ≥ α, that is, S =
{σθ(1), . . . ,σθ(k∗)} is taken such that

Pθ(X ∈ {σθ(1), . . . ,σθ(k∗−1)})< α and Pθ(X ∈ {σθ(1), . . . ,σθ(k∗)})≥ α.

Again, the idea is to randomize the most likely values of X with a high accuracy.
The approach forms the subset S by including values for X in descending order of
their probabilities (given by θ) until the cumulative probability exceeds α. In that
way, it is expected to have set S that is small-sized (especially when θ is unbalanced)
and captures the most likely values of X. The resulting S has varying cardinality
depending on the sampled θ at the current time step.

We call this approach “semi-adaptive” because, while it still adapts to θ, it uses the
fixed parameter α. As we will see in Section 5.7, the best α depends on various
parameters such as ϵ, K, and the degree of evenness in θ.
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Fisher Entropy TV1 TV2 MSE Pθ(Y =X) Semi-adaptive
Computing utility O(K3) O(K2) O(K2) O(K2) O(K2) O(K) NA

Choosing S O(K4) O(K3) O(K3) O(K3) O(K3) O(K) O(K)

Table 5.1 Computational complexity of utility functions and choosing S

5.4.4 Computational complexity of utility functions

We now provide the computational complexity analysis of the utility metrics pre-
sented in Section 5.4.3.1-5.4.3.5, and that of the semi-adaptive approach in Section
5.4.3.6, as a function of K. The first row of Table 5.1 shows the computational com-
plexities of calculating the utility function for a fixed S, and the second row shows
the complexities of choosing the best S according to (5.6). To find (5.6), the utility
function generally needs to be calculated K times, which explains the additional K
factor in the computational complexities in the second row.

The least demanding utility function is U6, that is based on Pθ(Y = X), whose
complexity is O(K). Moreover, finding the best S can also be done in O(K) time
because one can compute this utility metric for all k = 0, . . . ,K−1 by starting with
S = ∅ and expanding it incrementally. Also note that the semi-adaptive approach
does not use a utility metric and finding k∗ can be done in O(K) time by summing
the components of θ from largest to smallest until the cumulative sum exceeds the
given α parameter. So, its complexity is O(K).

For all these approaches, it is additionally required to sort θ beforehand, which is
an O(K lnK) operation with an efficient sorting algorithm like merge sort.

In practice, one can choose among these utility functions depending on the nature of
the application. When the number of categoriesK or the arrival rate of sensitive data
is large, we suggest using U6 or a semi-adaptive approach. When K and the arrival
rate of the personal data are both small, the more computationally demanding utility
functions can also be used.
Example 1 (Numerical illustration). We close this section with an example that
shows the benefit of RRRR and the role of S. We consider θ values such that θi/θi+1

is constant for i = 1, . . . ,K− 1. The ratio θi/θi+1 controls the degree of ‘evenness’
in θ: The smaller ratio indicates a more evenly distributed θ. Note that θ is already
ordered in this example; hence, we consider using S = {1, . . . ,k} which has the k

most likely values for X according to θ. Also, for a given ϵ, we fix ϵ1 = 0.9ϵ and set
ϵ2 according to (5.3).

Figure 5.2 shows, for a fixed ϵ and K = 20, and various values of k, the probability
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of the randomized response being equal to the sensitive information, i.e., Pθ(Y =X)
vs θi/θi+1 when S = {1, . . . ,k} in RRRR. (Recall that this probability corresponds to
U6(θ,S,ϵ).) Comparing this probability with eϵ/(eϵ +K−1), the probability obtained
with Y = SRR(X; [K], ϵ), it can be observed that RRRR can do significantly better
than SRR if k can be chosen suitably. The plots demonstrate that the “suitable” k
depends on θ: While the best k tends to be larger for more even θ, small k becomes
the better choice for non-even θ (large θi/θi+1). This is because, when θi/θi+1 is
large, the probability is concentrated on just a few components, and S with a small
k captures most of the probability. Moreover, the plots for ϵ= 1 and ϵ= 5 also show
the effect of the level of privacy. In more challenging scenarios where ϵ is smaller,
the gain obtained by RRRR compared to SRR is bigger.
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Figure 5.2 Pθ(Y = X) vs θi/θi+1 for all i = 1, . . . ,K− 1 with K = 20. Left: ϵ = 1,
Right: ϵ= 5.

5.5 Posterior sampling

Steps 1-2 of AdOBEst-LDP in Algorithm 7 were detailed in the previous section. In
this section, we provide the details of Step 3.

Step 3 of AdOBEst-LDP requires sampling from the posterior distribution
Π(·|Y1:n,S1:n) of θ given Y1:n and S1:n for n≥ 1, where St is the subset selected at
time t to generate Yt from Xt. Let π(θ|Y1:n,S1:n) denote the pdf of Π(·|Y1:n,S1:n).
Given Y1:n = y1:n and S1:n = s1:n, the posterior density can be written as

π(θ|y1:n, s1:n)∝ η(θ)
n∏

t=1
hst,ϵ(yt|θ).(5.12)

Note that the right-hand side does not include a transition probability for St’s
because the sampling procedure of St given Y1:t−1 and S1:t−1 does not depend on θ∗.
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Furthermore, we assume that the prior distribution η(θ) is a Dirichlet distribution
θ ∼Dir(ρ1, . . . ,ρK) with prior hyperparameters ρk > 0, for k = 1, . . . ,K.

Unfortunately, the posterior distribution in (5.12) is intractable. Therefore, we
resort to approximate sampling approaches using MCMC. Below, we present two
MCMC methods, namely SGLD and Gibbs sampling.

5.5.1 Stochastic gradient Langevin dynamics

SGLD is an asymptotically exact gradient-based MCMC sampling approach that
enables the use of subsamples of size m≪ t. A direct application of SGLD to
generate samples for θ from the posterior distribution in (5.12) is difficult. This
is because θ lives in the probability simplex ∆, which makes the task of keeping
the iterates for θ inside ∆ challenging. We overcome this problem by defining the
surrogate variables ϕ1, . . . ,ϕK with

ϕk
ind.∼ Gamma(ρk,1), k = 1, . . . ,K,

and the mapping from ϕ to θ as

(5.13) θ(ϕ)k := ϕk∑K
j=1ϕj

, k = 1, . . . ,K.

It is well-known that the resulting (θ1, . . . , θK) has a Dirichlet distribution
Dir(ρ1, . . . ,ρK), which is exactly the prior distribution η(θ). Therefore, this change
of variables preserves the originally constructed probabilistic model. Moreover, since
ϕ= (ϕ1, . . . ,ϕK) takes values in [0,∞)K , we run SGLD for ϕ, where the j’th update
is

ϕ(j) =
∣∣∣∣∣ϕ(j−1) + γn

2

(
∇ϕ lnp(ϕ(j−1))+ n

m

m∑
i=1
∇ϕ lnpsui ,ϵ(yui|ϕ

(j−1))
)

+γnWj

∣∣∣∣∣ ,
Wj ∼N (0, IK).

(5.14)
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where u = (u1, . . . ,um) is a random subsample of {1, . . . ,n}. In (5.14), the ‘new’
prior and likelihood functions are

(5.15) p(ϕ) :=
K∏

k=1
Gamma(ϕk;αi,1), ps,ϵ(y|ϕ) := hs,ϵ(y|θ(ϕ)).

The reflection in (5.14) via taking the component-wise absolute value is necessary
because each ϕ

(j)
k must be positive. Step 3 of Algorithm 7 can be approximated by

running SGLD for some M > 0 iterations. To exploit the SGLD updates from the
previous time, one should start the updates at time n by setting the initial value for
ϕ to the last SGLD iterate at time n−1.

The next proposition provides the explicit formulae for the gradients of the log-prior
and the log-likelihood of ϕ in (5.14). A proof is given in Appendix C.2.
Proposition 5. For p(ϕ) and in p(y|ϕ) in (5.15), we have

[∇ϕ lnp(ϕ)]i = αi−1
ϕi
−1, [∇ϕ lnp(y|ϕ)]i =

K−1∑
k=1

J(i,k)gS,ϵ(y|k)−gS,ϵ(y|K)
hS,ϵ(y|θ(ϕ)) ,

where J is a K× (K−1) Jacobian matrix whose (i, j)th element is

J(i, j) = I(i= j) 1∑K
k=1ϕk

− ϕj(∑K
k=1ϕk

)2 .

5.5.2 Gibbs sampling

An alternative to SGLD is the Gibbs sampler, which operates on the joint posterior
distribution of θ and X1:n given Y1:n = y1:n and S1:n = s1:n,

p(θ,x1:n|y1:n, s1:n)∝ η(θ)
[

n∏
t=1

θxtgst,ϵ(yt|xt)
]
.

The full conditional distributions of X1:n and θ are tractable. Specifically, for X1:n,
we have

(5.16) p(x1:n|y1:n, s1:n, θ) =
n∏

t=1
pst,ϵ(xt|yt, θ),

where pst,ϵ(xt|yt, θ) is defined in (5.9). Therefore, (5.16) is a product of n categorical
distributions, each with support [K]. Furthermore, the full conditional distribution
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of θ is a Dirichlet distribution due to the conjugacy between the categorical and the
Dirichlet distributions. Specifically,

p(θ|x1:n,y1:n, s1:n) = Dir(θ|ρpost
1 , . . . ,ρpost

K ),

where the hyperparameters of the posterior distribution are given by ρpost
k := ρk +∑n

t=1 I(xt = k) for k = 1, . . . ,K.

Computational load at time t of sampling from t distributions in (5.16), is pro-
portional to tK, which renders the computational complexity of Gibbs sampling
O(n2K) after n time steps. This can be computationally prohibitive when n gets
large.

5.6 Theoretical analysis

We address two questions concerning AdOBEst-LDP in Algorithm 7 when it is run
with RRRR whose subset is selected as described in Section 5.4.3. (i) Does the
targeted posterior distribution based on the observations generated by Algorithm 7
converge to the true value θ∗? (ii) How frequently does Algorithm 7 with RRRR
select the optimum subset S according to the chosen utility function?

5.6.1 Convergence of the posterior distribution

We begin by developing the joint probability distribution of the random variables
involved in AdOBEst-LDP.

• Given Y1:n and S1:n, the posterior distribution Π(·|Y1:n,S1:n) is defined such
that for any measurable set A ⊆ ∆, the posterior probability of {θ ∈ A} is
given by

(5.17) Π(A|Y1:n,S1:n) :=
∫
A η(θ)∏n

t=1hSt,ϵ(Yt|θ)dθ∫
∆ η(θ)∏n

t=1hSt,ϵ(Yt|θ)dθ
.

• Let Q(·|Y1:n,S1:n,Θn−1) be the probability distribution corresponding to the
posterior sampling process for Θn. Note that if exact posterior sampling were
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used, we would have Q(A|Y1:n,S1:n,Θn−1) = Π(A|Y1:n,S1:n); however, when
approximate sampling techniques are used to target Π, such as SGLD or Gibbs
sampling, the equality does not hold in general.

• For θ ∈∆, let

S∗
θ := {σθ(1), . . . ,σθ(k∗

θ)}, with k∗
θ := arg max

k∈{0,...,K−1}
U(θ,Sk,θ, ϵ),

be the best subset according to θ, where Sk,θ = {σθ(1), . . . ,σθ(k)} is defined
in (5.5). Given Θ1:t−1 and Y1:t, St depends only on Θt−1 and it is given by
St = S∗

Θt−1
.

Combining all, the joint law of S1:n,Y1:n can be expressed as
(5.18)

Pθ∗(S1:n,Y1:n) :=
n∏

t=1
hSt,ϵ(Yt|θ∗)

[∫
∆
I(St = Sk∗,θt−1)Q(dθt−1|Y1:t−1,S1:t−1, θt−2)

]
,

where we use the convention that Q(dθ0|Y1:0,S1:0, θ−1) = δθinit(dθ0) for an initial
value θinit ∈∆.

The posterior probability in (5.17) is a random variable with respect to Pθ∗ defined
in (5.18). Theorem 8 establishes that under the fairly mild Assumption 1 on the
prior, the Π(·|Y1:n,S1:n) converges to θ∗ regardless of the choice of Q for posterior
sampling.
Assumption 1. There exist finite positive constants d > 0 and B > 0 such that
η(θ)/η(θ′)<B for all θ,θ′ ∈∆ whenever ∥θ′− θ∗∥< d.
Theorem 8. Under Assumption 1, there exists a constant c > 0 such that, for any
0< a < 1 and the sequence of sets

Ωn = {θ ∈∆ : ∥θ− θ∗∥2 ≤ cn−a},

the sequence of probabilities

lim
n→∞Π(Ωn|Y1:n,S1:n) Pθ∗→ 1,

regardless of the choice of Q.

A proof is given in Appendix C.3.2, where the constant c in the sets Ωn is explicitly
given.
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5.6.2 Selecting the best subset

Let S∗ := S∗
θ∗ be the best subset at θ∗. In this part, we prove that if posterior

sampling is performed exactly, the best subset is chosen with an expected long-run
frequency of 1. Our result relies on some mild assumptions.
Assumption 2. The components of θ∗ are strictly ordered, that is, θσθ∗(1) > .. . >

θσθ∗(K).
Assumption 3. Given any S ⊂ [K] and ϵ > 0, U(θ,S,ϵ) is a continuous function
of θ with respect to the L2-norm.
Assumption 4. The solution of (5.6) is unique at θ∗.

Assumption 2 is required to avoid technical issues regarding the uniqueness of S∗.
Assumptions 3 and 4 impose a certain form of regularity on the utility function.
Theorem 9. Suppose Assumptions 1-4 hold and Θts are generated by exact sam-
pling, that is, Q(A|Y1:t,S1:t) = Π(A|Y1:t,S1:t) for all measurable A⊆∆. Then,

(5.19) lim
n→∞Pθ∗(Sn = S∗)→ 1.

As a corollary, S∗ is selected with an expected long-run frequency of 1, that is,

(5.20) lim
n→∞

1
n

n∑
t=1

Eθ∗ [I(St = S∗)] = 1.

The result in (5.20) can be likened to sublinear regret from the reinforcement learning
theory.

5.7 Numerical results

We tested1 the performance of AdOBEst-LDP when the subset S in RRRR is deter-
mined according to a utility function in Section 5.4.3. We compared AdOBEst-LDP
when combined with each of the utility functions defined in Sections 5.4.3.1-5.4.3.5
with its non-adaptive counterpart when SRR is used to generate Yt at all steps. We
also included the semi-adaptive subset selection method in Section 5.4.3.6 into the
comparison. For the semi-adaptive approach, we obtained results for five different

1The MATLAB code at https://github.com/soneraydin/AdOBEst_LDP can be used to reproduce the re-
sults obtained in this chapter.
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values of its α parameter, namely α ∈ {0.2,0.6,0.8,0.9,0.95}.

We ran each method for 50 Monte Carlo runs. Each run contained T = 500K time
steps. For each run, the sensitive information is generated as Xt

i.i.d.∼ Cat(θ∗) where
θ∗ itself was randomly drawn from Dirichlet(ρ, . . . ,ρ). Here, the parameter ρ was
used to control the unevenness among the components of θ∗. (Smaller ρ leads to
more uneven components in general). At each time step, Step 3 of Algorithm 7
was performed by running M = 20 updates of an SGLD-based MCMC kernel as
described Section 5.5.1. In SGLD, we took the subsample size m= 50 and the step-
size parameter a= 0.5

t at time step t. This type of polynomially decaying step sizes
for SGLD are often suggested in the literature. For example, (Welling & Teh, 2011b)
show that this type of step sizes ensures both that the algorithm can reach high-
probability regions and it converges to the posterior mode. This choice of step size
worked well in our practice, and it did not require any tuning. Prior hyperparameters
for the gamma distribution were taken ρ0 = 1K . The posterior sample Θt was taken
as the last iterate of those SGLD updates. Only for the last time step, t = T , the
number of MCMC iterations was taken 2000 to reliably calculate the final estimate
θ̂ of θ by averaging the last 1000 of those 2000 iterates. (This average is the MCMC
approximation of the posterior mean of θ given Y1:T and S1:T .) We compared the
mean posterior estimate of θ and the true value, and the performance measure was
taken as the TV distance between Cat(θ∗) and Cat(θ̂), that is,

(5.21) 1
2

K∑
i=1
|θ̂i− θi|.

Finally, the comparison among the methods was repeated for all the combinations
(K,ϵ,κ,ρ) of K ∈ {10,20}, ϵ ∈ {0.5,1,5}, κ ∈ {0.8,0.9}, and ρ ∈ {0.01,0.1,1}.

The accuracy results for the methods in comparison are summarized in Figures 5.3
and 5.4 in terms of the error given in (5.21). The box plots are centered at the error
median, and the whiskers stretch from the minimum to the maximum over the 50
MC runs, excluding the outliers. When the medians are compared, the fully adaptive
algorithms, which use a utility function to select St, yield comparable results to the
best semi-adaptive approach in both figures. As one may expect, the non-adaptive
approach yielded the worst results in general, especially in the high-privacy regimes
(smaller ϵ) and uneven θ∗ (smaller ρ). We also observe that, while most utility
metrics are generally robust, the one based on FIM seems sensitive to the choice of
ϵ1 parameter. This can be attributed to the fact that the FIM approaches singularity
when ϵ2 is too small, which is the case if ϵ1 is chosen too close to ϵ. Supporting
this, we see that when ϵ1 = 0.8ϵ, the utility metric based on FIM becomes more
robust. Another remarkable observation is that the utility function based on the

87



0.5 1  5  
0

0.2

0.4

0.6
K = 10, ; = 0.01

0
0.5 1  5  

0

0.2

0.4

0.6
K = 20, ; = 0.01

0

0.5 1  5  
0

0.2

0.4

0.6
K = 10, ; = 0.10

0
0.5 1  5  

0

0.2

0.4

0.6
K = 20, ; = 0.10

0

0.5 1  5  
0

0.2

0.4

0.6
K = 10, ; = 1.00

0
0.5 1  5  

0

0.2

0.4

0.6
K = 20, ; = 1.00

0

0.5 1  5  
0

0.1

0.2

0.3

0.4

0.5

K = 20, ; = 1.00

0

P (X = Y )

MSE

TV2

TV1

Entropy

FIM

, = 0:20

semi adapt , = 0:60

semi adapt , = 0:80

semi adapt , = 0:90

semi adapt , = 0:95

non-adapt (, = 1)

Figure 5.3 TV distance in (5.21) for K ∈ {10,20}, ϵ1 = 0.8ϵ

probability of honest response, U6, has competitive performance despite being the
lightest utility metric in computational complexity. Finally, while the semi-adaptive
approach is computationally less demanding than most fully adaptive versions, the
results show it can dramatically fail if its α hyperparameter is not tuned properly.
In contrast, the fully adaptive approaches adapt well to ϵ or ρ and do not need
additional tuning.

In addition to the error graphs, the heat maps in Figures 5.5 and 5.6 show the effect
of parameters ρ and ϵ on the average cardinality of the subsets S chosen by each
algorithm (again, averaged over 50 Monte Carlo runs). According to these figures,
increasing the value of ρ causes an increase in the cardinalities of subsets chosen by
each algorithm (except the nonadaptive one since it uses all K categories rather than
a smaller subset). This is expected since higher ρ values cause Cat(θ∗) to be closer
to the uniform distribution, thus causing X to be more evenly distributed among
the categories. Moreover, for small ρ, increasing the value of ϵ causes a decrease in
the cardinalities of these subsets, which can be attributed to a higher ϵ, leading to a
more accurate estimation. When we compare the utility functions for the adaptive
approach among themselves, we observe that for ϵ1 = 0.8ϵ, the third utility function
(TV1) uses the subsets with the largest cardinality (on average). However, when we
increase the ϵ1 value to ϵ1 = 0.9ϵ, the second utility function (FIM) uses the subsets
with the largest cardinality. This might be due to the sensitivity of the FIM-based
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utility function to the choice of ϵ1 parameter that we mentioned before, which affects
the invertibility of the Fisher information matrix when ϵ1 is too close to ϵ.

5.8 Conclusion

In this chapter, we proposed a new adaptive framework, AdOBEst-LDP, for on-
line estimation of the distribution of categorical data under the ϵ-LDP constraint.
AdOBEst-LDP, run with RRRR for randomization, encompasses both privatization
of the sensitive data and accurate Bayesian estimation of population parameters
from privatized data in a dynamic way. Our privatization mechanism (RRRR)
is distinguished from the baseline approach (SRR) in a way that it operates on a
smaller subset of the sample space rather than the entire sample space. We employed
an adaptive approach to dynamically adjust the subset at each iteration, based on
the knowledge about θ∗ obtained from the past data. The selection of these subsets
was guided by various alternative utility functions that we used throughout this
chapter. For the posterior sampling of θ at each iteration, we employed an efficient
SGLD-based sampling scheme on a constrained region, namely the K-dimensional
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Figure 5.5 Average cardinalities of the subsets selected by each method, for K ∈
{10,20}, ϵ1 = 0.8ϵ

probability simplex. We distinguished this scheme from Gibbs sampling, which uses
all of the historical data and is not scalable to large datasets.

In the numerical experiments, we demonstrated that AdOBEst-LDP can estimate
the population distribution more accurately than the non-adaptive approach under
experimental settings with various privacy levels ϵ and degrees of evenness among the
components of θ∗. While the performance of AdOBEst-LDP is generally robust for
all the utility functions considered in this chapter, the utility function based on the
probability of honest response can be preferred due to its much lower computational
complexity than the other utility functions. Our experiments also showed that
the accuracy of the adaptive approach is comparable to that of the semi-adaptive
approach. However, the semi-adaptive approach requires adjusting its parameter α
carefully, which makes it challenging to use.

In a theoretical analysis, we showed that, regardless of whether the posterior sam-
pling is conducted exactly or approximately, the posterior distribution targeted in
AdOBEst-LDP converges to the true population parameter θ∗. We also showed that,
under exact posterior sampling, the best subset given utility function is selected with
probability 1 in the long run.
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Figure 5.6 Average cardinalities of the subsets selected by each method, for K ∈
{10,20}, ϵ1 = 0.9ϵ

It is important to note that the observations {Yt}t≥1 generated by AdOBEst-LDP
are dependent. Therefore, the theoretical analysis presented in Section 5.6 can
also be seen as a contribution to the literature on the convergence of posterior
distributions with dependent data. Additionally, we have already highlighted an
analogy between AdOBEst-LDP and Thompson sampling (Russo et al., 2018). Both
methods involve posterior sampling, and the subset selection step in AdOBEst-LDP
can be viewed as analogous to the action selection step in reinforcement learning
schemes. In this regard, we believe that the theoretical results may also inspire
future research on the convergence of dynamic reinforcement learning algorithms,
especially those based on Thompson sampling.

Categorical distributions serve as useful non-parametric discrete approximations of
continuous distributions. As a potential future direction, AdOBEst-LDP could be
adapted for non-parametric density estimation. A key challenge in this context
would be determining how to partition the support domain of the data.

Along similar lines, one can propose fitting a mixture of Gaussians (under LDP) to
approximate a more complex continuous density. In this mixture model, the mixture
weights would correspond to θi’s in our original categorical density estimation prob-
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lem, but now for each category i, one would also need to estimate the location and
scale parameters (µi and Σi, respectively) of the entities in that category. In that
case, the SGLD algorithm that we used for posterior sampling may not be efficient
enough to estimate all these parameters, especially when µi and Σi are multivariate.
For this purpose, variational Bayesian methods could be more efficient to update all
parameters. In other words, one could replace the SGLD step for posterior sampling
with variational updates for each parameter, which may handle convergence of the
parameters to their posterior modes more efficiently in higher dimensions.

RRRR is a practical LDP mechanism with a subset parameter that adapts based on
past data. It has been shown to outperform SRR when leveraging the knowledge of
θ∗. However, in this work, it is not proven that RRRR is the optimal ϵ-LDP mech-
anism with respect to the utility functions considered. While the optimal ϵ-LDP
mechanism could be identified numerically by solving a constrained optimization
problem—where the utility function is maximized under the LDP constraint—it
may not have a closed-form solution for complex utility functions. A promising di-
rection for future research would be to compare the optimal ϵ-LDP mechanism with
the ϵ-LDP RRRR mechanism by analyzing their transition probability matrices and
assessing the suboptimality of RRRR. Additionally, insights from the optimal ϵ-LDP
mechanism could inspire the development of new, tractable, and approximately op-
timal ϵ-LDP mechanisms.

Further Comparison with State-of-the-Art Methods

Let Pxy = P (X = Y ) denote the entries of a stochastic matrix P that is used for
creating the randomized response Y , and θx denote the current probability estimate
of X. Then, the generic form of the optimization model to determine the optimal
mechanism is as follows:

maximize
Pxx

U(Pxx;θx)

subject to Pxy ≤ eϵPx′y, ∀x,x′,y ∈ {1, . . .K}
Pxy ≥ 0∑K

y=1Pxy = 1.

Here, one would determine the optimal mechanism by maximizing a given util-
ity function U(Pxx;θx), subject to ϵ-LDP constraints and probability simplex con-
straints.

To demonstrate empirically that RRRR (while being suboptimal) outperforms
SRR significantly, we conducted some Monte Carlo experiments where we com-
pare RRRR, SRR and the “optimal mechanism” with respect to two objective
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functions: (i) Maximizing the linear objective function ULP (Pxx;θx) = ∑K
x=1 θxPxx

which is based on the probability of honest response as in the utility function U6

that we used before, (ii) Maximizing the (negative) cross-entropy utility function
UCE(Pxx;θx) =∑K

x=1 θx log(Pxx) which is equivalent to minimizing the distance be-
tween true θ and its estimate. We conducted these experiments for the combinations
of ϵ ∈ {0.1,0.5,1}, ρ ∈ {0.5,1,2}, κ ∈ {0.8,0.9}, K = 20 values with 50 MC runs for
each combination. The results are summarized in Figures 5.7 - 5.10. According
to these plots, RRRR outperforms SRR most of the time in high-privacy regimes
(smaller ϵ values), while it is suboptimal in comparison to the optimal mechanism.
Here, each optimal mechanism is found by solving the given constrained optimiza-
tion problem (by using CVXR library in R) whose number of constraints are in the
order of K3; so, for K = 20, the number of constraints are in the order of 8000.
Even for such a small value of K, solution of each of these optimization problems
takes around 40 minutes on a laptop with with 16 GB RAM and Intel Core i7-
10510U CPU with clock rate 1.80 GHz, whereas RRRR yields a good approximate
solution in less than a second. So, our proposed mechanism would be very useful in
applications where the individuals’ data arrives at a quick pace and the frequency
estimations are required to be updated in accordance with that pace.
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Figure 5.7 Comparison of RRRR, SRR, and the optimal mechanism for κ= 0.8 and
the cross-entropy utility function
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Figure 5.8 Comparison of RRRR, SRR, and the optimal mechanism for κ= 0.8 and
the linear utility function
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Figure 5.9 Comparison of RRRR, SRR, and the optimal mechanism for κ= 0.9 and
the cross-entropy utility function
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Figure 5.10 Comparison of RRRR, SRR, and the optimal mechanism for κ = 0.9
and the linear utility function
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6. CONCLUSION

Here, we briefly summarize our main conclusions and discussions for each chapter,
and add some further comments on potential lines of improvement. More detailed
treatments of these points are already included in the conclusion parts of each cor-
responding chapter.

Chapter 2: In this chapter, we proposed a subsampling-based algorithm for hyper-
parameter tuning in regularized linear models. Due to its simplicity, it efficiently
finds a good-enough (suboptimal) solution for this problem. On the one hand, its
performance is comparable to that of grid-search-based cross-validation. On the
other hand there is still a lot of room for improvement for this algorithm. One of
the possible directions for improvement is to find a rule for selecting the subsample
size and the number of subsamples, as we mentioned before. Another possible direc-
tion is to investigate its relation to jackknife estimator further. This might yield a
reliable correction term to better estimate the variance of the model parameters. If
at least one of these potential improvements come to fruition, one can also consider
extending this approach to nonlinear machine learning models.

Chapter 3: In this chapter, the EM algorithm that we proposed to fit a mixture of
m-estimators yielded significantly better results than OLS, in terms of test accuracy.
However, its performance over each standalone m-estimator seems to be marginally
better. Its performance might be further improved by finding a method that handles
both robustness and regularization problems simultaneously, by incorporating the
methodology of Chapter 2 into this chapter.

Chapter 4: In this chapter, we proposed noisy versions of count-sketch that sat-
isfy (global) differential privacy for large data streams. After investigating the pros
and cons of median-perturbation and cell-perturbation approaches for static and dy-
namic cases, we concluded that, in the static case both have equivalent performance
guarantees (in terms of the increase of noise variance), whereas in the dynamic case
the Algorithm 6 that uses and keeps the noise in cells is more favorable, since its
noise variance increases only linearly. Additionally, we proposed some possible fu-
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ture directions of research, including the use of subsamples from a given data stream,
applying the same methodology on count-min sketches, extending our methods into
pan-privacy, and trying some other randomization mechanisms that are alternative
to Laplace mechanism (such as Gaussian mechanism).

Chapter 5: In this chapter, we proposed AdOBEst-LDP algorithm which is a new
adaptive framework for online estimation of the distribution parameter of categori-
cal data, while satisfying the ϵ-LDP constraint. Our algorithm, used along with our
proposed randomization mechanism RRRR, handles both privatization of the sensi-
tive data and accurate Bayesian estimation of population parameters from privatized
data in a dynamic way.

We demonstrated that AdOBEst-LDP outperforms non-adaptive mechanism, and
is comparable to semi-adaptive mechanism in terms of accuracy, and argued that it
is computationally more efficient than its semi-adaptive counterpart.

We also proved that, the posterior distribution targeted in AdOBEst-LDP converges
to the true population parameter θ∗, regardless of whether the posterior sampling
is done exactly or approximately. We also proved that our method chooses the best
subset in the long run with probability 1, given any utility function that we used,
under exact posterior sampling.

In a theoretical analysis, we showed that, regardless of whether the posterior sam-
pling is conducted exactly or approximately, the posterior distribution targeted in
AdOBEst-LDP converges to the true population parameter θ∗. We also showed that,
under exact posterior sampling, the best subset given utility function is selected with
probability 1 in the long run.

Our theoretical analyses in this chapter can be regarded as a contribution to the
literature on the convergence of posterior distributions with dependent data, and we
noted the analogies between our approach and some other dynamic algorithms in re-
inforcement learning (especially Thompson sampling) which can motivate potential
new research on the convergence properties of these algorithms.

We also suggested some other potential lines of research related to our algorithm.
For example, AdOBEst-LDP might be modified to tackle non-parametric density
estimation. As another open problem, RRRR could be modified to better approxi-
mate the “optimal mechanism” for a given utility function, without explicitly solving
a constrained optimization problem.
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A. Supplementary Material for Chapter 2

A.1 Derivation of the Analytical Solution for Ridge Regression

Consider the ridge estimate obtained from the training set, β̂ = (XT
RXR +

vI)−1XT
RYR, where I is an identity matrix. The model is Y = Xβ+ e, where the

exact β is unknown e ∼ N (0,σI) and σ is the unknown standard deviation of the
residuals (e). For convenience, we assume that columns of X are standardized and
Y is centered; in this case, the intercept term will be zero, so it is not included in
β, and will not be penalized. For an estimator β̂, the total test error is

∥YS−XS β̂∥2 = Y T
S YS + β̂TXT

SXS β̂−2Y T
S XS β̂.

At the same time, we have

∥YS−XS β̂∥2 = ∥XS(β− β̂)+ e∥2 = (β̂−β)TXT
SXS(β̂−β)− eTXT

SXS(β̂−β)+ eT e

The last term does not depend on β or its estimator. Also, note that β̂ depends on
the training data, therefore independent of XS and YS . Therefore, the expected total
test error with respect to the distribution of XS ,YS is, up to an additive constant,

1
n

(β̂−β)TE[XT
SXS ](β̂−β)

The expectation of XT
SXS is nS where S = E[xxT ] and the random variable xT

represents a row of X. Therefore, we have

MSE(β;X,y) = (β̂−β)TS(β̂−β) = tr((β̂−β)(β̂−β)TS).
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This is the conditional expectation of MSE given the training data XR and YR.
Specifically, β̂ depends on XR and YR. Here, XR and YR are also random variables,
sampled from a population of X and Y . Therefore, for an overall performance
measure, we need to consider the expectation of MSE(β;X,Y ). We can decompose
the MSE into its components, namely, squared bias and variance, as follows.

Call U =XTX and H = U +vI. The bias of β̂ is

E[β̂−β] = (H−1U − I)β,

And the variance of β̂ is
Cov(β̂) = σ2H−1UH−1.

Therefore,

E[(β̂−β)(β̂−β)T ] = (H−1U − I)ββT (H−1U − I)+σ2H−1UH−1.

Some lemmas that can be useful: H−1 = (U+vI)−1 = 1
v (U

v +I)−1 = 1
vvU

−1(vU−1 +
I)−1 = U−1(vU−1 + I)−1 = 1

vU
−1(U−1 + 1

vI)−1. For a small scalar a≪ Q,M , by
Taylor series approximation, we have

(Q+aM)−1 ≈Q−1−aQ−1MQ−1.

Apply this to H = (U + v
n(nI)) to get

H−1 ≈ U−1− v

n
U−1nIU−1 = U−1−vU−2.

With this, we have

H−1U − I = U−1U − v

n
U−1nIU−1U − I ≈−vU−1.

Hence, the bias term is

(H−1U − I)ββT (H−1U − I)≈ v2U−1ββTU−1.

Also, we have

H−1UH−1 ≈ (U−1−vU−2)U(U−1−vU−2) = (I−vU−1)(U−1−vU−2) = (I−vU−1)2U−1

107



Putting everything together,

MSE(β;X,y)≈ tr
{
S
[
σ2(I−vU−1)2U−1 +v2U−1ββTU−1

]}
(A.1)

= tr
{[
σ2(I−vU−1)2U−1S+v2U−1ββTU−1S

]}
.(A.2)

Using the approximation U ≈ nS,

MSE(β) := E[MSE(β;X,y)]≈ 1
n

tr
{[
σ2(I− v

n
S−1)2 + v2

n
S−1ββT

]}

= 1
n

tr
{[
σ2(I+ v2

n2S
−2−2v

n
S−1)+ v2

n
S−1ββT

]}
.(A.3)

The derivative is equal to

dMSE(β)
dv

= 2
n2

[
v

(
σ2trS−2

n
+ trS−1ββT

)
−σ2trS−1

]
.

Optimal v is

vn = trS−1

1
ntrS−2 + 1

σ2 tr(S−1ββT )
= trS−1

1
ntrS−2 + 1

σ2βTS−1β
.

This converges to a constant

lim
n→∞vn = σ2 trS−1

tr(S−1ββT ) = σ2 trS−1

βTS−1β
.

This solution yields a scalar value for λ (denoted as vn above).

A.2 Additional Experiments for Ridge Regression

In table A.1, we compare the closed-form approximate solution that we found for
ridge regression, with CV-based method and subsampling-based method for datasets
which were randomly generated with different settings. Here (N,d) denotes the
number of rows and columns of X, respectively; normal denotes that X was gen-
erated from standard normal distribution, norm-IW denotes that X again comes
from normal distribution, but this time its covariance matrix is drawn from Inverse
Wishart distribution in a way that its features are set to be highly correlated among
themselves. sd(noise) denotes the standard deviation of noise, and Sparsity of (β)
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denotes the ratio of sparse elements in the actual β vector. The results are averaged
over 100 runs with random partitions of training and testing sets.

Table A.1 Closed-form Ridge Results
(N, d) X distr. sd(noise) Sparsity of β MSEOLS MSECV MSESubsampling MSEClosed TimeCV TimeSubsampling TimeClosed

2000, 100 normal 100 0.25 10553.8081 10350.5265 10555.1587 10379.8920 0.3395 0.0485 0.0479
2000, 100 normal 100 0.5 11024.5700 10703.4329 11016.2349 10774.0981 0.3426 0.0489 0.0465
2000, 100 normal 100 0.75 10749.2366 10451.3828 10745.2048 10516.1456 0.3862 0.0543 0.0514
2000, 100 normal 10 0.25 110.3539 111.1651 114.8423 110.3388 0.4324 0.0561 0.0561
2000, 100 normal 10 0.5 100.6333 101.3003 106.1821 100.5961 0.4566 0.0581 0.0566
2000, 100 normal 10 0.75 108.8399 109.5543 115.2301 108.8011 0.6772 0.0867 0.0815
1000, 100 normal 100 0.25 12360.2334 11502.5767 12324.3266 11744.1897 0.5367 0.0518 0.0466
1000, 100 normal 100 0.5 11762.5437 10822.2656 11727.7128 11143.1831 0.6437 0.0636 0.0539
1000, 100 normal 100 0.75 11505.5780 10386.9769 11466.8181 10816.0886 0.4163 1.2343 0.0372
1000, 100 normal 10 0.25 119.6367 120.0197 135.8895 119.3979 0.4705 0.0488 0.0401
1000, 100 normal 10 0.5 114.0341 114.5024 131.4961 113.9083 0.7155 0.0677 0.0538
1000, 100 normal 10 0.75 113.6015 113.9641 128.1552 113.4321 0.7051 0.0656 0.0548
2000, 100 norm-IW 100 0.25 10817.5296 10271.7158 10662.1778 10807.9304 0.6703 0.0748 0.0741
2000, 100 norm-IW 100 0.5 10843.9970 10212.3545 10696.4575 10819.1558 0.7299 0.0779 0.0755
2000, 100 norm-IW 100 0.75 10758.2274 10155.4350 10606.1876 10737.5505 0.7203 0.0717 0.0708
2000, 100 norm-IW 10 0.25 107.2539 118.8977 104.8767 107.0886 0.4125 0.0516 0.0496
2000, 100 norm-IW 10 0.5 106.4656 111.7489 104.4660 106.2962 0.8345 0.0957 0.0905
2000, 100 norm-IW 10 0.75 107.0267 107.1411 104.1973 106.7551 0.6220 0.0685 0.0673
1000, 100 norm-IW 100 0.25 10440.8775 9326.8004 10050.4255 10391.1914 0.6746 0.0527 0.0475
1000, 100 norm-IW 100 0.5 10741.2805 9391.5584 10301.8075 10683.3390 0.7898 0.0634 0.0517
1000, 100 norm-IW 100 0.75 12062.7190 10741.6351 11677.5667 12048.2106 1.0214 0.0623 0.0541
1000, 100 norm-IW 10 0.25 117.6934 117.7080 109.5994 117.3095 0.6992 0.0604 0.0547
1000, 100 norm-IW 10 0.5 115.1880 111.4499 106.1806 115.1547 0.7127 0.0638 0.0527
1000, 100 norm-IW 10 0.75 120.9487 110.0401 110.6490 120.2324 0.3788 0.0370 0.0325

According to these experiments both subsampling-based solution and closed-form
solution yielded good-enough results in a much shorter time, in comparison to CV.
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B. Additional Proofs for Chapter 4

B.1 Proof of Lemma 1

Proof. (Lemma 1) Given a stream, let cXk be the true count for the k’th query at
time tk. Also, let C̃X

0 = 0 and C̃X
k be the reported noisy count for the k’th query

at time tk (capital letter is used to emphasize the randomness in C̃X
k ). Note that

C̃X
k − C̃X

k−1, k ≥ 1, are i.i.d. with C̃X
k − C̃X

k−1− (cXk − cXk−1)∼ Laplace(1/ϵ). For any
n > 0, the joint density of C̃X

0 , . . . , C̃
X
n at the values c̃0, . . . , c̃n is

pX(c̃0, . . . , c̃n) =
n∏

k=1

ϵ

2 exp{−ϵ|(c̃k− c̃k−1)− (cXk − cXk−1)|}

For neighbour X and X ′, (cXk −cXk−1) and (cX ′
k −cX

′
k−1) differ by 1 for only one k≥ 1.

For that k. We have

|(c̃k− c̃k−1)− (cXk − cXk−1)|− |(c̃k− c̃k−1)− (cX
′

k − cX
′

k−1)| ≤ 1

As a result, e−ϵ ≤ pX(c̃0, . . . , c̃n)/pX ′(c̃0, . . . , c̃n)≤ eϵ.

B.1.1 Proof of Theorem 5

Theorem 5 is based on a standard result on the median of probabilistically bounded
random variables, which is restated here with some adaptation to our setting.
Lemma 2. Let X1, . . . ,Xd be random variables satisfying

P(|Xi−µ|> κ)< λi, i= 1, . . . ,d
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and let λ=∑d
i=1λi/d. If λ < 1/2, then,

P(|X̃−µ|> κ)≤ e− d
2 (1−2λ)[2(1−λ)]d/2

≤ exp
{
−d8

(1−2λ)2

1−λ

}
.

where X̃ is the median of X1, . . . ,Xd.

Proof. Let Yi = I(|Xi−µ| < κ) for i = 1, . . . ,d, and Y =∑
iYi. Then E(Yi) > 1−λi

and E(Y ) = d(1−λ). The event |X̃−µ|> κ implies that at least d/2 of X1, . . . ,Xd

are outside (µ−κ,µ+κ), which is equivalent to Y < d/2. Also,

{Y < d/2}⇔
{
Y < E(Y )

[
1−

(
1− d

2E(Y )

)]}

⇒
{
Y < E(Y )

[
1−

(
1− d

2d(1−λ)

)]}
⇔{Y < E(Y )(1− δ)}

where δ = 1−2λ
2(1−λ) . Therefore, by the Chernoff bound, we have

P(|X̃−µ|> κ)≤
(

e−δ

(1− δ)1−δ

)E(Y )

≤
(

e−δ

(1− δ)1−δ

)d(1−λ)

= e− d
2 (1−2λ)[2(1−λ)]d/2

where the first line is by Chernoff, the second line is due to the fact that E(Y ) >
d(1−λ) and the base of the exponentiation is bounded by 1.

We can use Lemma 2 to prove Theorem 5 for the use-and-keep method for dynamic
queries in Algorithm 6.

Proof. (Theorem 5) In Algorithm 6, if the d cells corresponding to the queried
element x are used u1− 1, . . . ,ud− 1 times prior to the query, they will have been
used u1, . . . ,ud just before the response. Therefore, the values in the related cells
can be written as C(i, jx

i ) = C0(i, jx
i ) +Vi for i = 1, . . . ,d, where C0(i, jx

i ) is the cell
value we would have if the regular count sketch were used and Vi =∑ui

k=1Vi,k where
each Vi,j are independent with Vi,j ∼ Laplace(d/ϵ). We have E(C(i, jx

i )) = fx and
σ2

i = var(C(i, jx
i )) is bounded by

σ2
i ≤
||f ||22
w

+ uid
2

ϵ2
.
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where the first term is due to hashing. For κ2 > 2maxiσ
2
i , using the Chebyshev’s

bound, we have

P(|Ĉi−fx|> κ)≤ σ2
i

κ2 , i= 1, . . . ,d.

By Lemma 2, an upper bound on the error of the median f̂k
x =

median(C(1, jx
1 ), . . . ,C(1, jx

d )) is given by

P(|f̂x−fx|> κ)≤ e− d
2 (1−2λ)[2(1−λ)]d/2

where λ= 1
d

∑d
i=1

σ2
i

κ2 = ||f ||22
wκ2 + d

ϵ2κ2
∑d

i=1ui as claimed.

B.1.2 Error bounds for output perturbation

Let f c
x denote the response which is returned by standard count sketch for element

x, and f̂ ϵ
x be the value obtained by adding a Laplace noise to f c

x to preserve ϵ

privacy. Also, define ||f ||22 :=∑
x f

2
x . The first result on the error is a bound for the

probability of a fixed error.
Theorem 10. Let κ > 2||f ||2/w be a constant. Then, we have P(|f̂ ϵ

x−fx|> κ)< λ

where, with λ∗ = ||f−x||2/(wκ∗),

λ= min
2||f ||2

w <κ∗<κ

e− d
2 [(1−2λ∗)−ln(2(1−λ∗))] + e−ϵ(κ−κ∗)

Proof. For any 2||f−x||2/w < κ∗ <κ, the simple triangular inequality for probability
statements can be applied as

P(|f̂ ϵ
x−fx|> κ)< P(|f̂x−fx|> κ−κ∗)+P(|f̂ ϵ

x− f̂x|> κ∗).

While the first probability can be bounded using Lemma 2, the second one can be
calculated exactly using the cdf of the Laplace distribution. This inequality holds
for any κ > κ∗ > 2||f−x||2/w, hence the minimum.

Now, let us fix λ and examine how the amount of error varies with respect to d,
with probability 1−λ.
Corollary 1. For a noisy median response that satisfies ϵ0-DP and λ > (e/2)−d/2,
we have P(|f̂ ϵ

x−fx|> κ)< λ where

κ= max
(e/2)−d/2<λ∗<λ

||f ||2√
wλ0
− 1
ϵ0 ln(λ−λ∗) .
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where λ0 is such that e− d
2 [(1−2λ0)−ln(2(1−λ0)) = λ∗.
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C. Proofs for Chapter 5

C.1 Proofs for the Proposed Mechanism

C.1.1 Proofs for LDP of RRRR

Proof of Theorem 6. Let k = |S|. We can write as

(C.1) gS,ϵ(y|x) =



eϵ1
eϵ1+k x ∈ S,y ∈ S,x= y

1
eϵ1+k x ∈ S,y ∈ S,x ̸= y

1
K−k

1
eϵ1+k x ∈ S,y /∈ S

1
eϵ1+k x /∈ S,y ∈ S

eϵ2
eϵ2+K−k−1

eϵ1
eϵ1+k x /∈ S,y /∈ S,x= y

1
eϵ2+K−k−1

eϵ1
eϵ1+k x /∈ S,y /∈ S,x ̸= y

.

We will show that when ϵ1, ϵ2 are chosen according to the theorem,

(C.2) e−ϵ ≤ gS,ϵ(y|x)
gS,ϵ(y|x′) ≤ e

ϵ

for all possible x,x′,y ∈ [K]. When S = ∅, the proof is trivial; we focus on the
non-trivial case S ̸= ∅. For the non-trivial case, the transition probability gS,ϵ(y|x)
requires checking the ratio in (C.2) in 10 different cases for x,x′,y concerning their
interrelation.
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(C1) x ∈ S, x′ /∈ S, y ∈ S, y = x. We have

gS,ϵ(y|x)
gS,ϵ(y|x′) =

eϵ1
eϵ1+k

1
eϵ1+k

= eϵ1 .

Since ϵ1 ≤ ϵ, (C.2) holds.

(C2) x ∈ S, x′ /∈ S, y ∈ S, y ̸= x. We have

gS,ϵ(y|x)
gS,ϵ(y|x′) =

1
eϵ1+k

1
eϵ1+k

= 1,

which trivially implies (C.2).

(C3) x ∈ S, x′ /∈ S, y /∈ S, y = x′. We need

gS,ϵ(y|x)
gS,ϵ(y|x′) =

1
K−k

1
eϵ1+k

eϵ2
eϵ2+K−k−1

eϵ1
eϵ1+k

= eϵ2 +K−k−1
(K−k)eϵ1+ϵ2

.

We can show that gS,ϵ(y|x)
gS,ϵ(y|x′) ≤ 1≤ eϵ already holds since

eϵ2 +K−k−1
(K−k)eϵ1+ϵ2

= (K−k−1)+ eϵ2

(K−k−1)eϵ1+ϵ2 + eϵ1+ϵ2
,

and the first and the second terms in the numerator are smaller than those in
the denominator, respectively. For the other side of the inequality,

eϵ2 +K−k−1
(K−k)eϵ1+ϵ2

≥ e−ϵ

requires
eϵ2 ≤ K−k−1

eϵ1−ϵ(K−k)−1

whenever eϵ1−ϵ(K−k)−1> 0, which is the condition given in the theorem.

(C4) x ∈ S, x′ /∈ S, y /∈ S, y ̸= x′. We need

gS,ϵ(y|x)
gS,ϵ(y|x′) =

1
K−k

1
eϵ1+k

1
eϵ2+K−k−1

eϵ1
eϵ1+k

= eϵ2 +(K−k)−1
(K−k)eϵ1

.

Since ϵ2 ≤ ϵ, we have

eϵ2 ≤ (K−k)(eϵ+ϵ1−1)+1.
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Hence
gS,ϵ(y|x)
gS,ϵ(y|x′) ≤

(K−k)(eϵ+ϵ1−1)+1+K−k−1
(K−k)eϵ1

≤ eϵ,

Hence, we proved the right-hand side inequality. For the left-hand side, we
have

eϵ2 +K−k−1
(K−k)eϵ1

= (eϵ2−1)+K−k
(K−k)eϵ1

≥ K−k
(K−k)eϵ1

= e−ϵ1 ≥ e−ϵ

since ϵ2 ≥ 0 and ϵ1 ≤ ϵ.

(C5) x,x′ ∈ S, y ∈ S, y = x. We have

gS,ϵ(y|x)
gS,ϵ(y|x′) = eϵ1/(eϵ1 +k)

1/(eϵ1 +k) = eϵ1 .

Since ϵ1 ≤ ϵ, (C.2) holds.

(C6) x,x′ ∈ S, y ∈ S, y ̸= x and y ̸= x′. We have

gS,ϵ(y|x)
gS,ϵ(y|x′) = 1/(eϵ1 +k)

1/(eϵ1 +k) = 1.

So (C.2) trivially holds.

(C7) x,x′ ∈ S, y /∈ S. We have

gS,ϵ(y|x)
gS,ϵ(y|x′) =

1
K−k

1
eϵ1+k

1
K−k

1
eϵ1+k

= 1.

So, (C.2) trivially holds.

(C8) x,x′ /∈ S, y /∈ S, y = x. We have

gS,ϵ(y|x)
gS,ϵ(y|x′) = eϵ2/(eϵ2 +K−k−1)eϵ1/(eϵ1 +k)

1/(eϵ2 +K−k−1)eϵ1/(eϵ1 +k) = eϵ2 .

Since ϵ2 ≤ ϵ, (C.2) holds.

(C9) x,x′ /∈ S, y /∈ S, y ̸= x, y ̸= x′. We have

gS,ϵ(y|x)
gS,ϵ(y|x′) = 1/(eϵ2 +K−k−1)eϵ1/(eϵ1 +k)

1/(eϵ2 +K−k−1)eϵ1/(eϵ1 +k) = 1.

So, (C.2) trivially holds.
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(C10) x,x′ /∈ S, y ∈ S. We have

gS,ϵ(y|x)
gS,ϵ(y|x′) = 1/(eϵ1 + |S|)

1/(eϵ1 + |S|) = 1.

So (C.2) trivially holds.

We conclude the proof by noting that any other case left out is symmetric in (x,x′) to
one of the covered cases and, therefore, does not need to be checked separately.

C.1.2 Proofs about utility functions

Proof of Proposition 2. Given θ ∈ ∆, let ϑ be the (K − 1)× 1 column vector such
that ϑi = θi for i= 1, . . . ,K−1. We can write the Fisher information matrix in terms
of the score vector as follows.

F (θ;S,ϵ) =EY

[
∇ϑ lnhS,ϵ(Y |θ)∇ϑ lnhS,ϵ(Y |θ)⊤

]
=

K∑
y=1

hS,ϵ(y|θ)
[
∇ϑ lnhS,ϵ(y|θ)∇ϑ lnhS,ϵ(y|θ)⊤

]
.

Noting that

hS,ϵ(y|θ) =
K−1∑
k=1

gS,ϵ(y|k)ϑk +gS,ϵ(y|K)
1−

K−1∑
k=1

ϑk

 ,
the score vector can be derived as

(C.3) [∇ϑ lnhS,ϵ(y|θ)]k = gS,ϵ(y|k)−gS,ϵ(y|K)
hS,ϵ(y|θ)

, k = 1, . . . ,K−1.

As the K× (K−1) matrix AS,ϵ defined as A(i, j) = g(i|j)− g(i|K), we can rewrite
(C.3) as [∇ϑ lnhS,ϵ(y|θ)]k =AS,ϵ(y,k)/hS,ϵ(y|θ). Let ay be the y’th row of AS,ϵ, and
recall that Dθ is defined as a diagonal matrix with 1/hS,ϵ(j|θ) being the j’th element
in the diagonal. Then, the Fisher information matrix is

F (θ;S,ϵ) =
K∑

y=1

a⊤
y

hS,ϵ(y|θ)
ay

hS,ϵ(y|θ)
hS,ϵ(y|θ) =

K∑
y=1

a⊤
y

1
hS,ϵ(y|θ)

ay = A⊤
S,ϵDθAS,ϵ,

as claimed.

Next, we prove that F (θ;S,ϵ) is invertible. Let GS,ϵ be the K×K matrix whose
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elements are

(C.4) GS,ϵ(i, j) = gS,ϵ(i|j), i, j = 1, . . . ,K.

To prove that F (θ;S,ϵ) is invertible, we first prove the intermediate result that GS,ϵ

is invertible.
Lemma 3. GS,ϵ is invertible for all S ⊂ [K] and ϵ > 0.

Proof. It suffices to prove that of GS,ϵ is invertible for S = {1,2, . . . ,k} and for all
k ∈ {0, . . . ,K−1}. For other S, GS,ϵ can be obtained by permutation. Fix k and let
S = {1,2, . . . ,k}. It can be verified by inspection that GS,ϵ is a block matrix as

GS,ϵ =
a1Ik +a21k1⊤

k b1k1⊤
K−k

c1K−k1⊤
k d1IK−k +d21K−k1⊤

K−k

 ,
where In is the identity matrix of size n and 1n is the column vector of 1’s of size
n. The constants a1,a2, b, c,d1,d2 are given as

a1 = eϵ1

k+ eϵ1
−a2, a2 = 1

k+ eϵ1
, b= 1

k+ eϵ1
, c= 1

K−k
a2

d1 = eϵ2

eϵ2 +K−k−1
eϵ1

k+ eϵ1
−d2, d2 = 1

eϵ2 +K−k−1
eϵ1

k+ ϵ1
.

Also, note that since ϵ1 > 0 and ϵ2 > 0, a1 and d1 (whenever it is defined) are strictly
positive.

The case k = 0 is trivial since then GS,ϵ = d1IK + d21K1⊤
K is invertible. Hence,

we focus on the case 0 < k < K. For this case, firstly, note that the matrices on
the diagonal are invertible. So, by Weinstein–Aronszajn identity, for GS,ϵ to be
invertible, it suffices to show that the matrix

M = a1Ik +a21k1⊤
k − b1k1⊤

K−k(d1IK−k +d21K−k1⊤
K−k)−1c1K−k1⊤

k

is invertible. Using the Woodbury matrix identity, the matrix M can be expanded
as

M = a1Ik +a21k1⊤
k − b1k1⊤

K−k

(
IK−k

d1
− 1
d1

1K−k

( 1
d2

+1⊤
K−k

1
d1

1K−k

)−1
1⊤

K−k
1
d1

)
c1K−k1⊤

k

= a1Ik +a21k1⊤
k −

bc

d1
1k1⊤

K−k1K−k1⊤
k + bc

d2
1

(
1
d2

+ K−k
d1

)−1
1k1⊤

K−k1K−k1⊤
K−k1K−k1⊤

k

= a1Ik +
a2−

(K−k)bc
d1

+ bc

d2
1

(
1
d2

+ K(K−k)
d1

)−11k1⊤
k .
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Inside the square brackets is a scalar, therefore, M in question is the sum of an
identity matrix and a rank-1 matrix, which is invertible. Hence, GS,ϵ is invertible.

Proof of Proposition 3. Note that AS,ϵ = GS,ϵJ , where the K × (K − 1) matrix J

satisfies J(i, i) = 1 and J(i,K) =−1 for i= 1, . . . ,K, and J(i, j) = 0 otherwise. Since
GS,ϵ is invertible, it is full rank. Also, the columns of AS,ϵ, denoted by cAi , i =
1, . . . ,K−1 are given by

cA1 = cG1 − cGK , . . . , cAK−1 = cGK−1− cGK ,

where cGi is the i’th column of GS,ϵ for i= 1, . . . ,K. Observe that cAi , i= 1, . . . ,K−1
are linearly independent since any linear combination of those columns is in the form
of

K−1∑
i=1

aic
A
i =

K−1∑
i=1

aic
G
i −

K−1∑
i=1

ai

cGK .
Since the columns of GS,ϵ are linearly independent, the linear combination above
becomes 0 only if a1 = . . . = aK−1 = 0. This shows that the columns of AS,ϵ are
also linearly independent. Thus, we conclude that AS,ϵ has rank K − 1. Finally,
since Dθ is diagonal with positive diagonal entries, A⊤

S,ϵDθAS,ϵ =A⊤
S,ϵD

1/2
θ D

1/2
θ AS,ϵ

is positive definite, hence invertible.

The following proof contains a derivation of the utility function based on the MSE
of the Bayesian estimator of X given Y .

Proof of Proposition 4. It is well-known that the expectation in (5.10) is minimized
when êX = ν(Y ) := Eθ[eX |Y ], i.e. the posterior expectation of eX given Y . That is,

min
êX

Eθ

[
∥eX − êX(Y )∥2

]
= Eθ

[
∥eX −ν(Y )∥2

]
.

For the squared norm inside the expectation, we have

∥eX −ν(Y )∥2 = (1−v(Y )X)2 +
∑

k ̸=X

v(Y )2
k

= 1+ν(Y )2
X −2ν(Y )X +

∑
k ̸=X

v(Y )2
k

= 1−2ν(Y )X +
K∑

k=1
v(Y )2

k.(C.5)
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The expectation of the last term in (C.5) is

Eθ

 K∑
k=1

v(Y )2
k

=
∑
y
hS,ϵ(y|θ)

K∑
x=1

pS,ϵ(x|y,θ)2

=
K∑

y=1

K∑
x=1

hS,ϵ(y|θ)pS,ϵ(x|y,θ)2

=
K∑

y=1

K∑
x=1

gS,ϵ(y|x)2θ2
x

hS,ϵ(y|θ)
.(C.6)

For the expectation of the second term in (C.5), we have

Eθ [ν(Y )X ] =
∑
x,y
pS,ϵ(x|y,θ)pS,ϵ(x,y|θ),

where p(x,y|θ) denotes the joint probability of X,Y given θ. Substituting p(x,y|θ) =
pS,ϵ(x|y,θ)hS,ϵ(y|θ) into the equation above, we get

Eθ [ν(Y )X ] =
K∑

x=1

K∑
y=1

hS,ϵ(y|θ)pS,ϵ(x|y,θ)2.

=
K∑

x=1

K∑
y=1

gS,ϵ(y|x)2θ2
x

hS,ϵ(y|θ)
,(C.7)

which is equal to what we get in (C.6). Substituting (C.6) and (C.7) into (C.5), we
obtain

Eθ

[
∥eX −ν(Y )∥2

]
= 1−2

K∑
x=1

K∑
y=1

gS,ϵ(y|x)2θ2
x

hS,ϵ(y|θ)
+

K∑
x=1

K∑
y=1

gS,ϵ(y|x)2θ2
x

hS,ϵ(y|θ)

= 1−
K∑

x=1

K∑
y=1

gS,ϵ(y|x)2θ2
x

hS,ϵ(y|θ)
.

Finally, using the definition U5(θ,S,ϵ) = −minêX
Eθ

[
∥eX − êX(Y )∥2

]
, we conclude

the proof.

Proof of Theorem 7. The global maximization of U6 over the set of all the subsets
S ⊂ [K] can be decomposed as

max
S⊂[K]

U6(θ,S,ϵ) = max
k∈{0,...,K−1}

{
max

S⊂[K]:|S|=k
U6(θ,S,ϵ)

}
.(C.8)

This inner maximization is equivalent to fixing the cardinality of S to k and finding
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the best S with cardinality k. Now, the utility function can be written as

U6(θ,S,ϵ) = eϵ1

eϵ1 +k

∑
i∈S

θi + eϵ2

eϵ2 +K−k−1
∑
i/∈S

θi


=
(

eϵ1

eϵ1 +k

)∑
i∈S

θi +
(

eϵ1

eϵ1 +k

)(
eϵ2

eϵ2 +K−k−1

)∑
i/∈S

θi,

where k appears in the first line since |S| = k. Note that ∑i∈S θi and ∑
i/∈S θi sum

to 1 and the constants in front of the first sum is larger than that of the second.
Hence, we seek to maximize an expression in the form of

ax+ b(1−x)

over a variable x > 0 when a > b > 0. This is maximized when x > 0 is taken as
large as possible. Therefore, U6(θ,S,ϵ) is maximized when ∑i∈S θi is made as large
as possible under the constraint that |S| = k. Under this constraint this sum is
maximized when S has the indices of the k largest components of θ, that is, when
S = Sk,θ = {σθ(1), . . . ,σθ(k)}.

Then, (C.8) reduces to maxk=1,...,K U6(θ,Sk,θ, ϵ). Hence, we conclude.

C.2 Proof for SGLD update

Proof of Proposition 5. For the prior component of the gradient, recall that we have
ϕ= (ϕ1, . . . ,ϕK), where

ϕi
iid∼ Gamma(ρi,1), i= 1, . . . ,K.

Then, the marginal pdf of ϕi satisfies

lnp(ϕi) = (ρi−1) lnϕi− lnΓ(ρi)−ϕi, i= 1, . . . ,K.

Taking the partial derivatives of lnp(ϕi) with respect to ϕi, we have

[∇ϕ lnp(ϕ)]i = ρi−1
ϕi
−1, i= 1, . . . ,K.
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For the likelihood component, given θ ∈ ∆, let the (K − 1)× 1 vector ϑ be the
reparametrization of θ such that ϑi = θi for i = 1, . . . ,K − 1. Then, according to
(5.13),

(C.9) ϑk = ϕk∑K
j=1ϕj

, k = 1, . . . ,K−1.

Using the chain rule, we can write the gradient of the log-likelihood with respect to
ϕ as

∇ϕ lnp(y|ϕ) = J ·∇ϑ lnhS,ϵ(y|θ).

where J is the K× (K−1) Jacobian matrix for the mapping from ϕ to ϑ in (C.9),
whose (i, j)th element can be derived as

J(i, j) = ∂ϑj

∂ϕi
= ∂

∂ϕi

ϕj∑K
k=1ϕk

= I(i= j) 1∑K
k=1ϕk

− ϕj(∑K
k=1ϕk

)2 .

Using (C.3) for ∇ϑ lnhS,ϵ(y|θ), we complete the proof.

C.3 Proofs for convergence and consistency results

C.3.1 Preliminary results

Lemma 4. Given ϵ≥ 0, there exists constants 0< c≤C <∞ such that for all θ ∈∆
and all S ⊂ [K], we have

c≤ gS,ϵ(y|x)≤ C, c≤ hS,ϵ(y|θ)≤ C.

Proof. The bounds for gS,ϵ(y|x) can directly be verified from (C.1). Moreover,

c≤ min
i=1,...,K

gS,ϵ(y|i)≤ hS,ϵ(y|θ) =
K∑

i=1
gS,ϵ(y|i)θi ≤ max

i=1,...,K
gS,ϵ(y|i)≤ C.

122



Hence, we conclude.

Remark 1. For the symbol θ, which is used for K × 1 probability vectors in ∆,
we will associate the symbol ϑ such that ϑ denotes the shortened vector of the first
K−1 elements of θ. Accordingly, we will use ϑ, ϑ′, ϑ∗, etc, to denote the shortened
versions of θ, θ′, θ∗, etc.
Lemma 5. For any θ,θ′ ∈∆, y ∈ [K], and S ⊂ [K], we have

∇ϑ lnhS,ϵ(y|θ)⊤(ϑ−ϑ′) = hS,ϵ(y|θ)−hS,ϵ(y|θ′)
hS,ϵ(y|θ)

.(C.10)

Proof. Recall from (C.3) that

[∇ϑ lnhS,ϵ(y|θ)]i = gS,ϵ(y|i)−gS,ϵ(y|K)
hS,ϵ(y|θ)

, i= 1, . . . ,K−1.

Hence,

∇ϑ lnhS,ϵ(y|θ)⊤ϑ= 1
hS,ϵ(y|θ)

K−1∑
i=1

(gS,ϵ(y|i)−gS,ϵ(y|K))ϑi

= 1
hS,ϵ(y|θ)

K−1∑
i=1

gS,ϵ(y|i)ϑi−gS,ϵ(y|K)
K−1∑
i=1

ϑi


= 1
hS,ϵ(y|θ)

K−1∑
i=1

gS,ϵ(y, i)θi−gS,ϵ(y|K)(1− θK)


= 1
hS,ϵ(y|θ)

[
hS,ϵ(y|θ)−gS,ϵ(y|K)

]
,

and likewise ∇ϑ lnhS,ϵ(y|θ)⊤ϑ′ = 1
hS,ϵ(y|θ)

[
hS,ϵ(y|θ′)−gS,ϵ(y|K)

]
. Taking the differ-

ence between ∇ϑ lnhS,ϵ(y|θ)⊤ϑ and ∇ϑ lnhS,ϵ(y|θ)⊤ϑ′, we arrive at the result.

Concavity of lnhS,ϵ(y|θ): The following lemmas help with proving the concavity
of hS,ϵ(y|θ) as a function of θ.
Lemma 6. For 0< b≤ a≤ 1, we have ln a

b ≥
a−b

a + (a−b)2

2 .

Proof. For z > 0, using the series based on the inverse hyperbolic tangent function,
we can write

lnz = 2
∞∑

k=0

1
2k+1

(
z−1
z+1

)2k+1
.

Apply the expansion to z = a/b when a ≥ b. Noting that (z− 1)/(z+ 1) = (a−
b)/(a+ b),

ln a
b
≥ 2a− b

a+ b
≥ 2(a− b)

2a = a− b
a
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where the difference is

2(a− b)
a+ b

− a− b
a

= 2a2−2ab−a2 + b2

a(a+ b) = (a− b)2

(a+ b)a ≥
(a− b)2

2

since 0< a,b≤ 1.

Lemma 7. Let 0< α≤ 1. For x≥ 1, we have 1
α(xα−1)≤ (x−1).

Proof. Consider f(x) = 1
α(xα−1)−(x−1). We have f(1) = 0 and f ′(x) = xα−1−1≤

0 for x≥ 1. Hence, we conclude.

Lemma 8. Let 0< a≤ b≤ 1 and 0< α≤ 1. Then, bα−aα ≥ α(b−a).

Proof. Fix a and let b = a+x for 0≤ x≤ 1−a. Consider the function f(x) = (a+
x)α−aα−αx. We have f(0) = 0 and f ′(x) =α(a+x)α−1−α≥ 0 over 0≤ x≤ (1−a)
since a+x≤ 1 and α−1≤ 0. Hence, we conclude.

Lemma 9. Given ϵ > 0, there exists m0 > 0 such that, for all S ⊂ [K] and y ∈ [K],
lnhS,ϵ(y|θ) is a concave function of ϑ that satisfies

lnhS,ϵ(y|θ)− lnhS,ϵ(y|θ′)≥∇ϑ lnhS,ϵ(y|θ)⊤(ϑ−ϑ′)+m0(hS,ϵ(y|θ)−hS,ϵ(y|θ′))2

for all θ,θ′ ∈∆.

Proof. We will look at the cases hS,ϵ(y|θ)≥ hS,ϵ(y|θ′) and hS,ϵ(y|θ)≤ hS,ϵ(y|θ′) sep-
arately.

3.1 Assume hS,ϵ(y|θ)≥ hS,ϵ(y|θ′). Using Lemma 6, we have

lnhS,ϵ(y|θ)− lnhS,ϵ(y|θ′)≥ hS,ϵ(y|θ)−hS,ϵ(y|θ′)
hS,ϵ(y|θ)

+ 1
2(hS,ϵ(y|θ)−hS,ϵ(y|θ′))2

=∇ϑ lnhS,ϵ(y|θ)⊤(ϑ−ϑ′)+ 1
2(hS,ϵ(y|θ)−hS,ϵ(y|θ′))2,

where the last line follows from Lemma 5.

3.2 Assume hS,ϵ(y|θ)≤ hS,ϵ(y|θ′). Let a= hS,ϵ(y|θ) and b= hS,ϵ(y|θ′). Let

α = min
{

1, ln2
ln(C/c)

}
,

where c and C are given in Lemma 4. This α ensures that 0 < α ≤ 1 and
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bα/aα ≤ 2, so that we can use Taylor’s expansion of ln bα

aα around 1 and have

ln b
a

= 1
α

ln b
α

aα
= 1
α

 ∞∑
k=1

(−1)k+1 1
k

(
bα

aα
−1

)k
 .

Approximating the expansion up to its third term, we have the following upper
bound on ln b

a as

(C.11) ln b
a
≤ 1
α

(
bα

aα
−1

)
− 1

2α

(
bα

aα
−1

)2
+ 1

3α

(
bα

aα
−1

)3
.

For the third term, we have

1
3α

(
bα

aα
−1

)3
= 1

3α

(
bα

aα
−1

)2(
bα

aα
−1

)
≤ 1

3α

(
bα

aα
−1

)2
,

since 1≤ bα

aα ≤ 2. Substituting this into (C.11), the inequality can be continued
as

ln b
a
≤ 1
α

(
bα

aα
−1

)
− 1

6α

(
bα

aα
−1

)2
.(C.12)

Using Lemma 7 to bound the first term in (C.12), we have

ln b
a
≤
(
b

a
−1

)
− 1

6α

(
bα

aα
−1

)2
.(C.13)

Finally, using Lemma 8 we can lower-bound the second term in (C.12) as

bα

aα
−1 = bα−aα

aα
≥ α(b−a)

aα
≥ α(b−a),

where the last inequality follows from a≤ 1 and α > 0. We end up with

ln b
a
≤
(
b

a
−1

)
− α6 (b−a)2 .

Referring to the definitions of a and b, we have

lnhS,ϵ(y|θ′)− lnhS,ϵ(y|θ)≤
(
hS,ϵ(y|θ′)
hS,ϵ(y|θ)

−1
)
− α6 (hS,ϵ(y|θ)−hS,ϵ(y|θ′))2,
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or, reversing the inequality,

lnhS,ϵ(y|θ)− lnhS,ϵ(y|θ′)≥
(

1− hS,ϵ(y|θ′)
hS,ϵ(y|θ)

)
+ α

6 (hS,ϵ(y|θ)−hS,ϵ(y|θ′))2.

(C.14)

Using (C.10) in Lemma 5, we rewrite (C.14) as

lnhS,ϵ(y|θ)− lnhS,ϵ(y|θ′)≥∇ϑ lnhS,ϵ(y|θ)⊤(ϑ−ϑ′)+ α

6 (hS,ϵ(y|θ)−hS,ϵ(y|θ′))2,

(C.15)

which is the inequality we look for.

To cover both cases, take m0 = min{α
6 ,

1
2}. So, the proof is complete.

Recalling that St is the selected subset at time t, define

(C.16) Vt(θ,θ′) := (hSt,ϵ(Yi|θ)−hSt,ϵ(Yt|θ′))2.

The proof of Theorem 8 requires a probabilistic bound for ∑n
t=1Vt(θ,θ′), which we

provide next.
Lemma 10. For all θ,θ′ ∈∆ and t≥ 0, Vt(θ,θ′)≤ ∥θ− θ′∥2.

Proof. Let the 1×K vector ri be the ith row of GSt,ϵ. Then, we obtain

Vt(θ,θ′) = [hSt,ϵ(y|θ)−hSt,ϵ(y|θ′)]2 = (ri(θ− θ′))2

= (θ− θ′)⊤r⊤
i ri(θ− θ′)

≤ ∥θ− θ′∥2,

since every element of ri is at most 1.

Lemma 11. For all θ,θ′ ∈∆ and t≥ 1, there exists a constant cu > 0 such that

Eθ∗ [Vt(θ,θ′)]≥ cu∥θ− θ′∥2,

where Eθ∗ is the expectation operator with respect to Pθ∗ defined in (5.18), λmin(A)
is the minimum eigenvalue of the square matrix A and the matrix GS,ϵ is defined in
(C.4).

Proof. The overall expectation can be written as

Eθ∗ [Vt(θ,θ′)] =
∑

S⊂[K]
Pθ∗(St = S)Eθ∗ [Vt(θ,θ′)|St = S]
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where the conditional expectation can be bounded as

Eθ∗ [Vt(θ,θ′)|St = S] =
K∑

i=1
(hS,ϵ(i|θ)−hS,ϵ(i|θ′))2hS,ϵ(i|θ∗)

≥
K∑

i=1
(hS,ϵ(i|θ)−hS,ϵ(i|θ′))2c,(C.17)

where the second line is due to Lemma 4. Further, let the 1×K vector ri be the
ith row of GS,ϵ. Then,

K∑
i=1

(hS,ϵ(i|θ)−hS,ϵ(i|θ′))2 =
K∑

i=1
(ri(θ− θ′))2

=
K∑

i=1
(θ− θ′)⊤r⊤

i ri(θ− θ′)

= (θ− θ′)⊤G⊤
S,ϵGS,ϵ(θ− θ′)

= ∥GS,ϵ(θ− θ′)∥2

≥ λmin(G⊤
S,ϵGS,ϵ)∥θ− θ′∥2.(C.18)

Combining (C.17) and (C.18) and letting cu := cminS⊂[K]λmin(G⊤
S,ϵGS,ϵ), we have

(C.19) Eθ∗ [Vt(θ,θ′)|St = S]≥ cu∥θ− θ′∥2.

for all S, which directly implies Eθ∗ [Vt(θ,θ′)]≥ cu∥θ−θ′∥2 for the overall expectation.
Finally, cu > 0 since, by Lemma 3, every GS,ϵ is invertible.

Further, define
Wt(θ,θ′) := 1− Vt(θ,θ′)

∥θ− θ′∥2
.

Lemma 12. For any 0< t1 < .. . < tk, we have Eθ∗
[∏k

i=1Wti(θ,θ′)
]
≤ (1− cu)k.

Proof. For simplicity, we drop (θ,θ′) from the notation and denote the random
variables in question as Wt1 , . . . ,Wtk

. We can write

Eθ∗

 k∏
i=1

Wti

= Eθ∗

Eθ∗

 k∏
i=1

Wti

∣∣∣∣∣∣Wt1 , . . . ,Wtk−1


= Eθ∗

k−1∏
i=1

Wti

Eθ∗
(
Wtk
|Wt1 , . . . ,Wtk−1

) .(C.20)

By construction of Wi(θ,θ′), we have Eθ∗(Wi|Si = S) ≤ 1− cu, which follows from
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(C.19). Using this, the inner conditional expectation can be bounded as

Eθ∗
(
Wtk
|Wt1 , . . . ,Wtk−1

)
=

∑
S⊂[K]

Pθ∗(Stk
= S|Wt1 , . . . ,Wtk−1)Eθ∗(Wtk

|Stk
= S)

≤
∑

S⊂[K]
Pθ∗(Stk

= S|Wt1 , . . . ,Wtk−1)(1− cu)

= (1− cu) .(C.21)

Combining (C.20) and (C.21), we have

(C.22) Eθ∗

 k∏
i=1

Wti

≤ (1− cu)Eθ∗

k−1∏
i=1

Wti

 .
By Lemmas 10 and 11, we have Vt(θ,θ′)≤ ∥θ−θ′∥2 and Eθ∗ [Vt(θ,θ′)]≥ cu∥θ−θ′∥2.
Thus, we necessarily have cu < 1. Therefore, the recursion in (C.22) can be used
until k = 1 to obtain the desired result.

Note that Wt(θ,θ′) is bounded as 0≤Wi(θ,θ′)≤ 1. We now quote a critical theorem
from Pelekis & Ramon (2017, Theorem 3.2) regarding the sum of dependent and
bounded random variables, which will be useful for bounding ∑n

t=1Vt(θ,θ′).
Theorem 11. (Pelekis & Ramon, 2017, Theorem 3.2) Let W1, . . . ,Wn be random
variables, such that 0≤Wt ≤ 1, for t= 1, . . . ,n. Fix a real number τ ∈ (0,n) and let
k be any positive integer, such that 0< k < τ . Then

P
(

n∑
t=1

Wt ≥ τ
)
≤ 1(

τ
k

) ∑
A⊆{1,...,n}:|A|=k

E

∏
i∈A

Wi

 ,(C.23)

where
(

τ
k

)
= τ(τ−1)...(τ−k+1)

k! .

In the following, we apply Theorem 11 for ∑n
t=1Vt(θ,θ′).

Lemma 13. For every θ,θ′ ∈∆ and a ∈ (0,1),

lim
n→∞Pθ∗

(
1
n

n∑
t=1

Vt(θ,θ′)≤ acu∥θ− θ′∥2
)

= 0.
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Proof. For any integer k < n(1−acu)< n, we have

Pθ∗

(
1
n

n∑
t=1

Vt(θ,θ′)≤ acu∥θ− θ′∥2
)

= Pθ∗

(
∥θ− θ′∥2 1

n

n∑
t=1

(1−Wt(θ,θ′))≤ acu∥θ− θ′∥2
)

= Pθ∗

(
1
n

n∑
t=1

(1−Wt(θ,θ′))≤ acu
)

= Pθ∗

(
n∑

t=1
Wt(θ,θ′)≥ n(1−acu)

)

= Pθ∗

(
n∑

t=1
Wt(θ,θ′)≥ n(1−acu)

)

≤ 1(
n(1−acu)

k

) ∑
A⊆{1,...,n}:|A|=k

Eθ∗

∏
i∈A

Wi(θ,θ′)


≤ 1(
n(1−acu)

k

)(n
k

)
(1− cu)k ,

where the last two lines follow from Theorem 11 and Lemma 12, respectively. Select
k = k∗ = ⌈n(1−a)⌉ and note that when n > 1/(a−acu) one always has k∗ < n(1−
acu). Then, for n > 1/(a−acu),

Pθ∗

(
1
n

n∑
t=1

Vt(θ,θ′)≤ acu∥θ− θ′∥2
)
≤ 1(

n(1−acu)
k∗

)( n
k∗

)
(1− cu)k∗

= (1− cu)k∗ k∗∏
i=1

n− i+1
n(1−acu)− i+1 .(C.24)

The right-hand side does not depend on θ,θ′ and converges to 0.

Smoothness of lnhS,ϵ(y|θ): Next, we establish the L-smoothness of hS,ϵ(y|θ) as
a function of θ for any y ∈ [K] and S ⊂ [K]. Some technical lemmas are needed first.
Lemma 14. For x > 0, ln(1+x)≥ x− 1

2x
2.

Proof. The function ln(1+x)−x+0.5x2 is 0 at x= 0 and its derivative 1/(1+x)−
1+x= 1

1+x − (1−x) = 1−(1−x2)
1+x = x2/(1+x)> 0 when x > 0.

Lemma 15. For x > 0, ln(x+1)≤ 1− 1
x+1 + 1

2x
2.

Proof. The function ln(x+1)−1+ 1
x+1 −

1
2x

2 is 0 at x= 0 and its derivative,

1
x+1 −

1
(x+1)2 −x= x−x(x+1)2

(x+1)2 = x(1− (x+1)2)
(x+1)2 ,

is negative for x > 0.
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Lemma 16. There exists an L0 > 0 such that, for all S ⊂ [K] and y ∈ [K], the
function lnhS,ϵ(y|θ) is an L0-smooth function of θ. That is for all θ,θ′ ∈∆, we have

lnhS,ϵ(y|θ)− lnhS,ϵ(y|θ′)≤∇ϑ lnhS,ϵ(y|θ)⊤(ϑ−ϑ′)+L0∥θ− θ′∥2.

Proof. Assume hS,ϵ(y|θ)≥ hS,ϵ(y|θ′). Using Lemma 15 with x= hS,ϵ(y|θ)
hS,ϵ(y|θ′)−1≥ 0, we

have

lnhS,ϵ(y|θ)− lnhS,ϵ(y|θ′)≤ 1− hS,ϵ(y|θ′)
hS,ϵ(y|θ)

+ 1
2

(
hS,ϵ(y|θ)
hS,ϵ(y|θ′) −1

)2

=∇ϑ lnhS,ϵ(y|θ)⊤(ϑ−ϑ′)+ 1
2

(
hS,ϵ(y|θ)−hS,ϵ(y|θ′)

hS,ϵ(y|θ′)

)2

≤∇ϑ lnhS,ϵ(y|θ)⊤(ϑ−ϑ′)+ 1
2c2

(
hS,ϵ(y|θ)−hS,ϵ(y|θ′)

)2
(C.25)

≤∇ϑ lnhS,ϵ(y|θ)⊤(ϑ−ϑ′)+ 1
2c2∥θ− θ

′∥2,

where the first term in the second line follows from Lemma 5, the third line follows
from Lemma 4, and the last line follows from Lemma 10.

Now, assume hS,ϵ(y|θ)≤ hS,ϵ(y|θ′). By Lemma 14 with x= hS,ϵ(y|θ′)
hS,ϵ(y|θ) −1≥ 0,

lnhS,ϵ(y|θ′)− lnhS,ϵ(y|θ)≥
(
hS,ϵ(y|θ′)
hS,ϵ(y|θ)

−1
)
− 1

2

(
hS,ϵ(y|θ′)
hS,ϵ(y|θ)

−1
)2
,

or, reversing the sign of inequality,

lnhS,ϵ(y|θ)− lnhS,ϵ(y|θ′)≤
(

1− hS,ϵ(y|θ′)
hS,ϵ(y|θ)

)
+ 1

2

(
hS,ϵ(y|θ′)
hS,ϵ(y|θ)

−1
)2

≤∇ϑ lnhS,ϵ(y|θ)⊤(ϑ−ϑ′)+ 1
2c2

(
hS,ϵ(y|θ)−hS,ϵ(y|θ′)

)2
,

where the third line follows from Lemma 4. Hence, we have arrived at the same
inequality as (C.25). Hence, Lemma 16 holds with L0 = 1

2c2 .

Second moment of the gradient at θ∗: Let the average log-marginal likelihoods
be defined as

(C.26) Φn(θ) := 1
n

n∑
t=1

lnhSt,ϵ(Yt|θ), n≥ 1.

The following bound on the second moment of this average at θ∗ will be useful.
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Lemma 17. For Φn(θ) defined in (C.26), we have

Eθ∗
[
∥∇ϑΦn(θ∗)∥2

]
≤ 1
n

max
S⊂[K]

Tr [F (θ∗;S,ϵ)] .

Proof. First, we evaluate the mean at θ = θ∗.

Eθ∗ [∇ϑΦn(θ∗)] = 1
n

n∑
t=1

Eθ∗
[
∇ϑ lnhSt,ϵ(Yt|θ∗)

]
.

Focusing on a single term,

Eθ∗
[
∇ϑ lnhSt,ϵ(Yt|θ∗)

]
=

∑
S⊂[K]

Pθ∗(St = S)Eθ∗
[
∇ϑ lnhS,ϵ(Yt|θ∗)|St = S

]
.

Each term in the sum is equal to 0, since

(C.27) Eθ∗
[
∇ϑ lnhS,ϵ(Yt|θ∗)|St = S

]
=

K∑
k=1
∇ϑ lnhS,ϵ(k|θ∗)hS,ϵ(k|θ∗) = 0.

For the second moment at θ = θ∗,

Eθ∗
[
∇ϑΦn(θ∗)∇ϑΦn(θ∗)⊤

]
= 1
n2

n∑
t=1

Eθ∗
[
∇ϑ lnhSt,ϵ(Yt|θ∗)∇ϑ lnhSt,ϵ(Yt|θ∗)⊤

]

+ 2
n2

n∑
t=1

t−1∑
t′=1

Eθ∗
[
∇ϑ lnhSt,ϵ(Yt|θ∗)∇ϑ lnhSt′ (Yt′|θ∗)⊤

]
.

For the diagonal terms, for all t= 1, . . . ,n, we have

Eθ∗
[
∇ϑ lnhSt,ϵ(Yt|θ∗)∇ϑ lnhSt,ϵ(Yt|θ∗)⊤

]
=

∑
S⊂[K]

Pθ∗(St = S)Eθ∗
[
∇ϑ lnhS,ϵ(Yt|θ∗)∇ϑ lnhS,ϵ(Yt|θ∗)⊤|St = S

]
=

∑
S⊂[K]

Pθ∗(St = S)F (θ∗;S,ϵ).

For the cross terms, for 1≤ t′ < t≤ n,

Eθ∗
[
∇ϑ lnhSt,ϵ(Yt|θ∗)∇ϑ lnhSt′ (Yt′|θ∗)⊤

]
= Eθ∗

{
Eθ∗

[
∇ϑ lnhSt,ϵ(Yt|θ∗)∇ϑ lnhSt′ (Yt′ |θ∗)⊤|Yt′ ,St′

]}
= Eθ∗

{
Eθ∗

[
∇ϑ lnhSt,ϵ(Yt|θ∗)|Yt′ ,St′

]
∇ϑ lnhSt,ϵ(Yt′ |θ∗)⊤

}
.

The conditional expectation inside is zero, since, by (C.27),

Eθ∗
[
∇ϑ lnhSt,ϵ(Yt|θ∗)|Yt′ ,At′

]
=

∑
S⊂[K]

Pθ∗(St = S|Yt′ ,St′)Eθ∗
[
∇ϑ lnhS,ϵ(Yt|θ∗)|St = S

]
= 0.
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Therefore, all the cross terms are zero,

Eθ∗
[
∇ϑ lnhSt,ϵ(Yt|θ∗)∇ϑ lnhSt′ (Yt′|θ∗)⊤

]
= 0,

and hence, we arrive at

Eθ∗
[
∇ϑΦn(θ∗)∇ϑΦn(θ∗)⊤

]
= 1
n2

n∑
t=1

∑
S⊂[K]

Pθ∗(St = S) [F (θ∗;S,ϵ)](C.28)

for the second moment of the gradient of Φn(θ∗). Therefore,

Eθ∗
[
∥∇ϑΦn(θ∗)∥2

]
= Eθ∗

[
Tr
(
∇ϑΦn(θ∗)∇ϑΦn(θ∗)⊤

)]
= Tr

(
Eθ∗

[
∇ϑΦn(θ∗)∇ϑΦn(θ∗)⊤

])
= 1
n2

n∑
t=1

∑
S⊂[K]

Pθ∗(St = S)Tr(F (θ∗;S,ϵ))

≤ 1
n

max
S⊂[K]

Tr(F (θ∗;S,ϵ)) ,

which concludes the proof.

C.3.2 Convergence of the posterior distribution

Let µ ∈ (0,1) and, for θ,θ′ ∈∆, define

(C.29) Eµ
n (θ,θ′) := µcu∥θ− θ′∥2− 1

n

n∑
t=1

Vt(θ,θ′),

where Vt(θ,θ′) was defined in (C.16) and cu > 0 was defined in the proof of Lemma
11, respectively. The proof of Theorem 8 requires the following lemma concerning
Eµ

n (θ,θ′).
Lemma 18. There exists µ ∈ (0,1) such that, for any ε > 0, we have

lim
n→∞Pθ∗

(∫
∆
enm0Eµ

n (θ,θ∗)dθ > eε
)

= 0.

Proof. Define the product measure

(C.30) P⊗(d(θ, ·)) := dθ
|∆| ×dPθ∗(·)

for random variables (Θ ∈ ∆,{St ⊂ {1, . . . ,K},Yt ∈ [K]}t≥1), where dθ is the
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Lebesgue measure for ϑ restricted to ∆ and |∆| :=
∫
∆ dθ. We will show that the

parameter µ in (C.29) can be chosen such that the collection of random variables

C := {fn := max{1, enm0Eµ
n (Θ,θ∗)} : n≥ 1}

is uniformly integrable with respect to P⊗. For uniform integrability, we need to
show that for any ε > 0, there exists a K > 0 such that

E⊗[|fn| · I(fn >K)]< ε, ∀n≥ 1.

For any K > 1 and n≥ 1, we have

E⊗[|fn| · I(fn >K)] = E⊗[enm0Eµ
n (Θ,θ∗)I(fn >K)]

≤ sup
θ∈∆

enm0Eµ
n (θ,θ∗)P⊗(fn >K)

= sup
θ∈∆

enm0Eµ
n (θ,θ∗)

∫
∆
Pθ∗

(
Eµ

n (θ,θ∗)> lnK
nm0

)
dθ
|∆|

≤ enµm0cuPθ∗ (Eµ
n (θ,θ∗)> 0) ,

where the last line follows from Eµ
n (θ,θ∗) ≤ µcu∥θ− θ∗∥2 ≤ µcu. Using (C.24), the

last expression can be upper-bounded as

enm0µcuPθ∗ (Eµ
n (θ,θ∗)> 0) = enµm0cuPθ∗

(
1
n

t∑
t=1

Vt(θ,θ∗)< µcu∥θ− θ′∥2
)

≤ enµm0cu (1− cu)⌈n(1−µ)⌉
⌈n(1−µ)⌉∏

i=1

n− i+1
n(1−µcu)− i+1 .(C.31)

The parameter µ can be arranged such that (C.31) converges to 0. For such µ, we
have that for any ε there exists a Nε > 0 such that for all n > Nε, E⊗[|fn| · I(fn >

K)]<ε for anyK > 0. Finally, chooseKε = eNεm0µcu so that E⊗[|fn| ·I(fn >Kε)]<ε
for any n≥ 1. Hence, C is uniformly integrable for a suitable choice of µ.

Next, we show that each fn in C converges in probability to 1. The convergence is
implied by the fact that for every θ ∈∆ and ε > 0, we have

Pθ∗(max{1, enm0Eµ
n (θ,θ∗)}> eε) = Pθ∗(Eµ

n (θ,θ∗)> ε)→ 0.

by Lemma 13. Since C is uniformly integrable, the Vitali convergence theo-
rem ensures that fn converges in distribution (with respect to P⊗) to 1, i.e.,
limn→∞E⊗(fn) = 1. Since P⊗ = dθ

|∆| × dPθ∗(·) is a product measure as defined in
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(C.30), the stated limit implies that

Eθ∗

[∫
∆

max{1, enm0Eµ
n (θ,θ∗)}dθ

]
→ 1,

that is, the sequence
∫
∆ max{1, enm0Eµ

n (θ,θ∗)}dθ converges to 1 in distribution with
respect to Pθ∗ . Since convergence in distribution to a constant implies convergence
in probability, we have

(C.32)
∫

∆
max{1, enm0Eµ

n (θ,θ∗)}dθ Pθ∗→ 1.

Finally, since we have
∫

∆
enm0Eµ

n (θ,θ∗)dθ ≤
∫

∆
max{1, enm0Eµ

n (θ,θ∗)}dθ,

and the right-hand side converges in probability to 1, we conclude.

Proof of Theorem 8. Writing down Lemma 9 with θ∗ and any θ ∈∆ separately for
t= 1, . . . ,n, summing the inequalities and dividing by n, we obtain

Φn(θ∗)−Φn(θ)≥∇ϑΦn(θ∗)⊤(ϑ∗−ϑ)+m0
n∑

t=1
Vt(θ,θ∗)

=∇ϑΦn(θ∗)⊤(ϑ∗−ϑ)+m∥θ− θ∗∥2−m0Eµ
n (θ,θ∗).

where m := µm0cu. Reversing the sign,

Φn(θ)−Φn(θ∗)≤∇ϑΦn(θ∗)⊤(ϑ−ϑ∗)−m∥θ∗− θ∥2 +m0Eµ
n (θ,θ∗).

Using Cauchy-Schwarz inequality for the first term on the right-hand side, we get

Φn(θ)−Φn(θ∗)≤ ∥∇ϑΦn(θ∗)∥∥θ− θ∗∥−m∥θ∗− θ∥2 +m0Eµ
n (θ,θ∗).

Using Young’s inequality uv ≤ u2

2κ + v2κ
2 for the second term with u = ∥∇ϑΦn(θ∗)∥,

v = ∥θ∗− θ∥, and κ=m, we get

(C.33) Φn(θ)−Φn(θ∗)≤ ∥∇ϑΦn(θ∗)∥2
2m −m2 ∥θ

∗− θ∥2 +m0Eµ
n (θ,θ∗).

Similarly, using Lemma 16 with θ∗ and any θ′ ∈ ∆ for t = 1, . . . ,n, summing the
inequalities and dividing by n, we obtain

Φn(θ∗)−Φn(θ′)≤∇ϑΦn(θ∗)⊤(ϑ∗−ϑ′)+L0∥θ∗− θ′∥2.
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Again, using Cauchy-Schwarz inequality and Young’s inequality uv ≤ u2

2κ + v2κ
2 with

u= ∥∇ϑΦn(θ∗)∥, v = ∥θ∗− θ∥, and κ= 2L0, we get

Φn(θ∗)−Φn(θ′)≤ ∥∇ϑΦn(θ∗)∥∥θ∗− θ′∥+L0∥θ∗− θ′∥2

≤ ∥∇ϑΦn(θ∗)∥2
4L0

+2L0∥θ∗− θ′∥2

= ∥∇ϑΦn(θ∗)∥2
2L +L∥θ∗− θ′∥2,(C.34)

where we let L := 2L0. Summing the inequalities in (C.33) and (C.34), we obtain
(C.35)
Φn(θ)−Φn(θ′)≤

( 1
2L + 1

2m

)
∥∇ϑΦn(θ∗)∥2−m2 ∥θ

∗−θ∥2 +L

2 ∥θ
∗−θ′∥2 +m0Eµ

n (θ,θ∗).

Let a ∈ (0,1) be a constant and define the sequences

Ωn := {θ ∈∆ : ∥θ− θ∗∥2 <max{4/m,4/L}n−a}, n≥ 1.

An := {θ ∈∆ : ∥θ− θ∗∥2 >max{4/m,4/L}n−a}, n≥ 1.

Bn := {θ ∈∆ : ∥θ− θ∗∥2 ≤min{2/m,2/L}n−a}, n≥ 1.

For θ ∈ An and θ′ ∈Bn, (C.35) can be used to obtain

Φn(θ)−Φn(θ′)≤
( 1

2L + 1
2m

)
∥∇ϑΦn(θ∗)∥2−n−a

(
max

{
2, 2m

L

}
−min

{
L

m
,1
})

+m0Eµ
n (θ,θ∗).

Noting that max
{
2, 2m

L

}
−min

{
L
m ,1

}
≥ 1, we have

(C.36)
Φn(θ)−Φn(θ′)≤

( 1
2L + 1

2m

)
∥∇ϑΦn(θ∗)∥2−n−a +m0Eµ

n (θ,θ∗), θ ∈ An;θ′ ∈Bn.

Multiplying (C.36) with n, exponentiating, and multiplying the ratio of the priors,
we get

η(θ)exp{nΦn(θ)}
η(θ′)exp{nΦn(θ′)} ≤

η(θ)
η(θ′) exp

[( 1
2L + 1

2m

)
n∥∇ϑΦn(θ∗)∥2−n1−a +nm0Eµ

n (θ,θ∗)
]

≤ Cη,n exp
[
C1n∥∇ϑΦn(θ∗)∥2−n1−a +nm0Eµ

n (θ,θ∗)
]

(C.37)

for all θ ∈An and θ′ ∈Bn, where C1 := 1
2L + 1

2m and Cη,n := supθ∈An,θ′∈Bn

η(θ)
η(θ′) . The

bound in (C.37) can be used to bound the ratio between the posterior probabilities
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Π(An|Y1:n,S1:n) and Π(Bn|Y1:n,S1:n), since

Π(An|Y1:n,S1:n)
Π(Bn|Y1:n,S1:n) =

∫
An
η(θ)exp{nΦn(θ)}dθ∫

Bn
η(θ)exp{nΦn(θ)}dθ

=

∫
An

η(θ)exp{nΦn(θ)}
infθ′∈Bn

η(θ′)exp{nΦn(θ′)}dθ∫
Bn

η(θ)exp{nΦn(θ)}
infθ′∈Bn

η(θ′)exp{nΦn(θ′)}dθ

≤

∫
An

η(θ)exp{nΦn(θ)}
infθ′∈Bn

η(θ′)exp{nΦn(θ′)}dθ∫
Bn

η(θ)exp{nΦn(θ)}
infθ′∈Bn

η(θ′)exp{nΦn(θ′)}dθ

≤
∫
An
Cη,n exp

[
C1n∥∇ϑΦn(θ∗)∥2−n1−a +nm0Eµ

n (θ,θ∗)
]
dθ∫

Bn
1dθ

= 1
Vol(Bn)Cη,n exp

[
C1n∥∇ϑΦn(θ∗)∥2−n1−a

]∫
An

exp[nm0Eµ
n (θ,θ∗)]dθ,

where Vol(Bn) :=
∫
Bn∩∆ dθ. Note that Bn shrinks with n, so there exists a NB such

that for n > NB, the volume Bn can be lower-bounded as

Bn ≥
1

2(K−2)!
(
√
πmin{2/m,2/L}n−a)(K−1)

Γ((K−1)/2+1) ,

where the factor 1
2(K−2)! corresponds to the worst-case situation where θ∗ is on one

of the corners of ∆, such as θ∗ = (1,0, . . . ,0)⊤, and the rest is the volume of a K−1
dimensional sphere with radius min{2/m,2/L}n−α. The lower bound is the volume
of the intersection of a simplex with a sphere centered at one of the sharpest corners
of the simplex. Therefore, for n > NB, ratio can further be bounded as

Π(An|Y1:n,S1:n)
Π(Bn|Y1:n,S1:n) ≤C2Cη,n exp

[
C1n∥∇ϑΦn(θ∗)∥2 +(K−1)a lnn−n1−a

]∫
An

exp[nm0Eµ
n (θ,θ∗)]dθ,

where C2 := Γ((K−1)/2+1)
min{2/m,2/L}K−1π(K−1)/2 does not depend on n.

Next, we prove that the sequence of random variables

Zn := Cη,n exp
[
C1n∥∇ϑΦn(θ∗)∥2 +(K−1)a lnn−n1−a

]∫
An

exp[nm0Eµ
n (θ,θ∗)]dθ

converges to 0 in probability, which in turn proves the convergence of Π(An|Y1:n,S1:n)
Π(Bn|Y1:n,S1:n)

in probability to 0. To do that, we need to prove that for each ε > 0 and δ > 0, there
exists a N > 0 such that for all n > N we have Pθ∗(Zn ≥ 2ε) < 2δ. Fix ε > 0 and
δ > 0.

• Firstly, by Assumption 1, because Bn shrinks towards θ∗, there exists Nη > 0
such that Cη,n <B for all n > Nη.
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• Next, let β := C1 maxS⊂[K] Tr(F (θ∗;S,ϵ))/δ. Using Markov’s inequality for
∥∇ϑΦn(θ∗)∥2 with Lemma 17, we have

Pθ∗

(
∥∇ϑΦn(θ∗)∥2 ≥ 1

n

β

C1

)
≤ 1
n

max
S⊂{1,...,K}

Tr(F (θ;S,ϵ))C1n

β
= δ.

Also, since the n1−a dominates the term lnn, one can choose an integer NΦ > 0
such that

β ≤ ln(ε/B)+n1−a− (K−1)a lnn, ∀n≥NΦ.

• Now we deal with the integral in Zn. We have

Pθ∗

(∫
An

exp[nm0Eµ
n (θ,θ∗)]dθ ≥ 2

)
≤ Pθ∗

(∫
∆

exp[nm0Eµ
n (θ,θ∗)]dθ ≥ 2

)
→ 1,

where the convergence is due to Lemma 18. Hence, there exists a NE such
that for all n > NE ,

Pθ∗

(∫
An

exp[nm0Eµ
n (θ,θ∗)]dθ ≥ 2

)
≤ δ.

Gathering the results, for n >max{Nη,NΦ,NE}, we have

Pθ∗(Zn ≥ ε)≤ Pθ∗

(
eC1n∥∇ϑΦn(θ∗)∥2+(K−1)a lnn−n1−a

≥ ε/B
)

+Pθ∗

(∫
∆

exp[nm0Eµ
n (θ,θ∗)]dθ ≥ 2

)
≤ Pθ∗

(
C1n∥∇ϑΦn(θ∗)∥2 +(K−1)a lnn−n1−a ≥ ln(ε/B)

)
+ δ

= Pθ∗

(
n∥∇ϑΦn(θ∗)∥2 ≥ ln(ε/B)+n1−a− (K−1)a lnn

C1

)
+ δ

≤ Pθ∗

(
∥∇ϑΦn(θ∗)∥2 ≥ β

C1n

)
+ δ

≤ 2δ.

(In the first line, we have used P(XY >pq) = 1−P(XY <pq)≤ 1−P(X <p and Y <

q) = P(X > p or Y > q) ≤ P(X > p) +P(Y > q) for non-negative random variables
X,Y and positive p,q.) Therefore we have proved that Zn→ 0 in probability. Finally,
since Bn ⊂ Ωn, we have

Π(An|Y1:n,S1:n)
Π(Ωn|Y1:n,S1:n) ≤

Π(An|Y1:n,S1:n)
Π(Bn|Y1:n,S1:n) ≤ C2Zn

for all n > NB. This implies that,

Π(An|Y1:n,S1:n)
Π(Ωn|Y1:n,S1:n)

Pθ∗→ 0.
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Since An = ∆/Ωn, as a result we get Π(Ωn|Y1:n,S1:n) Pθ∗→ 1. This concludes the
proof.

C.3.3 Convergence of the expected frequency

Proof of Theorem 9. Assumption 4 ensures that there exists a κ0 > 0 and k∗ ∈
{0, . . . ,K−1} such that for all 0≤ k ̸= k∗ <K,

U(θ∗;S∗, ϵ)−U(θ∗;{σθ∗(1), . . . ,σθ∗(k)}, ϵ)≥ κ0.

By Assumption 3, there exists a δ1 > 0 such that

∥θ− θ′∥ ≤ δ1⇒ |U(θ,S,ϵ)−U(θ′,S,ϵ)|< κ0/2.

Moreover, since the components of θ∗ are strictly ordered,

δ2 := min
k=1,...,K−1

(θ∗(k)− θ∗(k+1))> 0.

Choose δ = min{δ1, δ2/
√

2}. Define the set

Ωδ = {θ ∈∆ : ∥θ− θ∗∥2 ≤ δ2}.

Then, for any θ ∈Ωδ, σθ = σθ∗ and S∗
θ = S∗. This implies that {θn ∈Ωδ} ⊆ {Sn+1 =

S∗}. Since perfect sampling is assumed, we have Q(dθt|Y1:t,S1:t) = Π(dθt|Y1:t,S1:t).
Hence,

(C.38) Pθ∗(Sn+1 = S∗)≥ Eθ∗ [Pθ∗(θn ∈ Ωδ|S1:n,Y1:n)] = Eθ∗ [Π(Ωδ|Y1:n,S1:n)]

Recall the sequence of sets

Ωn = {θ ∈∆ : ∥θ− θ∗∥2 ≤ cn−a}

defined in Theorem 8. There exists an N1 > 0 such that n > N1 we have Ωn ⊆ Ωδ.
For such N1, we have

Eθ∗ [Π(Ωδ|Y1:n,S1:n)]≥ Eθ∗ [Π(Ωn|Y1:n,S1:n)] , n > N1.
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Combining with (C.38), we can write as

(C.39) Pθ∗(Sn+1 = S∗)≥ Eθ∗ [Π(Ωn|Y1:n,S1:n)] , n > N1.

We will show that the right-hand side converges to 1. To do that, fix ε > 0. By
Theorem 8, there exists a N2 > 0 such that

Pθ∗
(
Π(Ωn|Y1:n,S1:n)>

√
1− ε

)
>
√

1− ε.

This implies that, for n > N2,

Eθ∗(Π(Ωn|Y1:n,S1:n))>
√

1− ε
√

1− ε+0(1−
√

1− ε) = 1− ε.

This shows that Eθ∗ [Π(Ωn|Y1:n,S1:n)]→ 1 as n→∞. Since the right-hand side of
(C.39) converges to 1, so does the left-hand side. Therefore, we have proven (5.19).

To prove (5.20), we utilize the convergence of Cesaro means and write

lim
n→∞

1
n

n∑
t=1

Pθ∗(St = S∗) = lim
t→∞

Pθ∗(St = S∗) = 1,

where the last equality is by (5.19). Finally, we replace Pθ∗(St =S) by Eθ(I(St =St))
on the left-hand side and conclude the proof.
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