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ABSTRACT
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BCI SPELLERS

SONER ÖZGÜN PELVAN

Electronics Engineering, Ph.D. Dissertation, January 2025

Dissertation Supervisor: Assoc. Prof. Dr. Hüseyin Özkan

Keywords: Knowledge transfer, global models, fine tuning, bias-variance tradeoff,
context tree, domain adaptation, anomaly detection, brain computer interface

Fine-tuning is a technique that leverages knowledge from a source domain to enhance
performance in a smaller, more limited target domain. Simple approaches, such as
training separate local models for each domain or creating a single global model using
all available data, often suffer from inherent limitations. Local models are prone to
high variance due to limited data, while global models may exhibit high bias, failing
to capture domain-specific nuances. This thesis aims to strike a balance in the bias-
variance trade-off by carefully fine-tuning a global model to target domains, with
a particular focus on applications in video-based anomaly detection and visually
evoked EEG signals for brain-computer interface (BCI) spellers.

The central idea introduced in this thesis is the transition from global to local
expertise, starting with a low-variance global model trained on all available data
and progressively fine-tuning it to capture domain-specific nuances as local data
becomes available. Furthermore, the thesis examines two distinct types of domain
structures: hierarchical and non-hierarchical. Hierarchical domains exhibit natural
relationships or similarities, allowing structured methods to identify and leverage
related data effectively during fine-tuning. In contrast, non-hierarchical domains
lack inherent structures, necessitating alternative strategies to manage inter-domain
differences and select relevant data for fine-tuning. These strategies aim to optimize
performance by addressing the unique challenges posed by each domain structure.

To exploit hierarchical relationships, this thesis employs context tree partitioning to
group similar domains, enabling more effective fine-tuning of models. As new data
arrives, the transition to local models enhances the localization of anomaly detec-
tion by refining both the anomaly labels and their corresponding spatial locations.
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Applying this approach to anomaly detection, we observe improved performance on
the Street Scene and Shanghai datasets, achieving an Area Under Curve (AUC) of
0.87 with the context tree partitioning method compared to 0.56 when using the en-
tire dataset and 0.80 when using only the smallest partitions. For non-hierarchical
data, such as those involving EEG signals, where constructing a hierarchy is not
feasible,user adaptation is achieved through direct similarity measures to guide the
fine-tuning process. We enhance SSVEP BCI speller performance by adapting a
DNN model for each new user without calibration. Starting with a global model
trained on labeled data from previous users, the adaptation process leverages un-
supervised fine-tuning using pseudolabels generated from the new user’s data. This
iterative approach significantly improves the character identification accuracy on two
publicly available large datasets (BENCH and BETA), particularly at short signal
lengths. On the BENCH dataset, initial global model accuracy ranged from 21.75%
to 71.32% for signal lengths of 0.2 to 1 second, improving after the first adaptation to
28.28%–88.34% and further to 29.85%–91.55% in subsequent iterations. Similarly,
on the BETA dataset, initial accuracy ranged from 19.44% to 51.28%, increasing to
20.66%–66.90% and reaching 19.50%–75.53% after final adaptation. These results
highlight the effectiveness of leveraging silhouette scores, normalized distances, and
local regularity loss to refine pseudolabels and optimize model performance, partic-
ularly for short signals in new user adaptation scenarios.

v



ÖZET

KÜRESEL MODELLERIN İNCE AYARI: VIDEO GÖZETIMI İÇIN ANOMALI
TESPITI YERELLEŞTIRMESI VE BCI YAZIMCILARI İÇIN KULLANICI

UYARLAMASI

SONER ÖZGÜN PELVAN

Elektronik Mühendisliği, Doktora Tezi, Ocak 2025

Tez Danışmanı: Doç. Dr. Hüseyin Özkan

Anahtar Kelimeler: Bilgi transferi, küresel modeller, ince ayar, yanlılık-varyans
dengesi, bağlam ağacı, alan uyarlaması, anormallik tespiti, beyin bilgisayar arayüzü

İnce Ayar, bir kaynak alandaki bilgiyi daha küçük ve sınırlı bir hedef alandaki perfor-
mansı artırmak için kullanan bir tekniktir. Her bir alan için ayrı yerel modeller eğit-
mek veya tüm mevcut verileri kullanarak tek bir küresel model oluşturmak gibi basit
yaklaşımlar genellikle sınırlamalara sahiptir. Yerel modeller, sınırlı veri nedeniyle
yüksek varyansa yatkınken, küresel modeller, alanlara özgü ayrıntıları yakalamakta
başarısız olduklarından yüksek yanlılık sergileyebilirler. Bu tez, özellikle video ta-
banlı anomali tespiti ve beyin-bilgisayar arayüzü (BCI) yazıcıları için görsel olarak
uyarılmış EEG sinyallerine odaklanarak, küresel bir modeli hedef alanlara dikkatlice
ince ayar yaparak yanlılık-varyans dengesini sağlamayı amaçlamaktadır.

Bu tezde tanıtılan ana fikir, tüm mevcut veriler üzerinde eğitilmiş düşük varyanslı
bir küresel modelle başlayıp, daha sonra daha fazla yerel veri kullanılabilir hale
geldikçe, alanlara özgü ayrıntıları yakalamak için, modeli kademeli olarak ince ayar
yaparak küresel uzmanlıktan yerel uzmanlığa geçirmektir. Ayrıca tez, hiyerarşik ve
hiyerarşik olmayan olmak üzere iki farklı alan yapısını inceler. Hiyerarşik alanlar,
doğal ilişkiler veya benzerlikler sergileyerek, ince ayar sırasında ilişkili verileri etkili
bir şekilde tanımlamak ve kullanmak için yapılandırılmış yöntemlere olanak tanır.
Buna karşılık, hiyerarşik olmayan alanlar doğal yapılar içermez ve alanlar arası
farklılıkları yönetmek ve ince ayar için ilgili verileri seçmek için alternatif stratejiler
gerektirir. Bu stratejiler, her alan yapısının getirdiği benzersiz zorlukları ele alarak
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performansı en uyguna getirmeyi amaçlar.

Hiyerarşik ilişkileri kullanmak için bu tez, benzer alanları gruplamak ve model-
lerin daha etkili bir şekilde ince ayarını yapmak için bağlam ağacı bölme yöntem-
ini kullanır. Yeni veriler geldikçe, yerel modellere geçiş, hem anomali etiketlerini
hem de bunların karşılık gelen mekansal konumlarını geliştirerek anomali tespitinin
yerelleştirilmesini sağlar. Bu yaklaşımı anomali tespitine uygulayarak Street Scene
ve Shanghai veri kümelerinde iyileştirilmiş performans gözlemledik. Bağlam ağacı
bölme yöntemiyle Alan Altında Kalan Eğri (AUC) skoru 0.87’ye ulaşırken, tüm veri
kümesi kullanıldığında bu değer 0.56 ve yalnızca en küçük bölümler kullanıldığında
0.80 olarak kaydedilmiştir.

Hiyerarşik olmayan veriler için, örneğin EEG sinyallerinde olduğu gibi, bir hiyerarşi
oluşturmak mümkün olmadığında, kullanıcı uyarlaması, ince ayar sürecine rehber-
lik etmek için doğrudan benzerlik ölçütleri kullanılarak gerçekleştirilir. SSVEP BCI
yazıcısının performansını, her yeni kullanıcı için kalibrasyon gerektirmeden bir DNN
modelini uyarlayarak artırıyoruz. Önceki kullanıcıların etiketli verileri üzerinde eği-
tilmiş bir küresel modelle başlayarak, uyarlama süreci, yeni kullanıcıdan elde edilen
verilerden oluşturulan sözde etiketleri kullanarak denetimsiz ince ayar uygular. Bu
yinelemeli yaklaşım, özellikle kısa sinyallerde, iki halka açık büyük veri kümesinde
(BENCH ve BETA) karakter tanımlama doğruluğunu önemli ölçüde artırır.

BENCH veri kümesinde, küresel modelin başlangıç doğruluğu, 0.2 ila 1 saniyelik
sinyal uzunlukları için %21.75’ten %71.32’ye kadar değişmiştir. İlk uyarlamadan
sonra doğruluk %28.28–88.34’e yükselmiş ve sonraki yinelemelerde %29.85–91.55’e
ulaşmıştır. Benzer şekilde, BETA veri kümesinde başlangıç doğruluğu %19.44 ile
%51.28 arasında değişirken, ilk uyarlamada %20.66–66.90’a, son uyarlamada ise
%19.50–75.53’e yükselmiştir. Bu sonuçlar, sözde etiketleri iyileştirmek ve model per-
formansını optimize etmek için silüet skorları, normalleştirilmiş mesafeler ve yerel
düzenlilik kaybının kullanımının etkinliğini vurgulamaktadır. Özellikle yeni kul-
lanıcı uyarlama senaryolarında kısa sinyaller için etkili bir kişiselleştirilmiş perfor-
mans sağlanmaktadır.
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Figure 3.1. Algorithm flow for generic feature extraction methods includes
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1. Introduction

Fine-tuning is a pivotal machine learning technique that adapts global models to
new domains via knowledge transfer by leveraging prior knowledge from source do-
mains. It is widely applied across tasks such as natural language processing (NLP)
(e.g., sentiment analysis, question answering) and computer vision (e.g., image clas-
sification, anomaly detection) [21; 22]. Compared to training models from scratch,
fine-tuning significantly reduces the need for extensive data and computational re-
sources by reusing general features learned during initial training, allowing models
to focus on domain-specific nuances. This makes fine-tuning particularly effective
for tasks with limited or no labeled data [23].

One of the key strengths of fine-tuning is its ability to balance generalization and
specialization, effectively managing the bias-variance trade-off [24]. Fine-tuning
strategies vary based on the relationship between source and target domains: closely
related domains require minimal adjustments, while unrelated domains may demand
extensive modifications [25]. The process can be further optimized by strategically
selecting related data to enhance training efficiency and improve the bias-variance
trade-off [26].

A common machine learning scenario involves multiple datasets from different do-
mains (e.g., images presented as art, sketches, photographs, or cartoons [27]) with
the goal of developing a robust model effective across all domains, including unseen
ones. Two simplistic yet suboptimal approaches include: (1) training a local model
for each domain independently, which risks high variance due to limited domain-
specific data, and (2) training a single global model with all data, which risks high
bias by ignoring domain-specific variations.

The presented thesis addresses these limitations by fine-tuning global models for
visual signals, focusing on video-based anomaly detection (Chapter 3) and visually
evoked EEG signals in brain-computer interfaces (Chapter 4). The core objective
is to achieve a reasonable bias-variance trade-off through controlled fine-tuning. A
global model, trained on all available data to minimize variance, is carefully fine-
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tuned to reduce bias while maintaining controlled variance. The main challenge
lies in preventing excessive variance relaxation during fine-tuning, which requires
targeted guidance using domain-specific data. Designing this careful fine-tuning
process constitutes the central contribution of this thesis.

Our work begins by demonstrating how dynamically transitioning from global to
local expertise can enhance and accelerate an existing system’s performance. We
study this in the context of video based anomaly detection in Chapter 3. When local
data (i.e. data from the target domain) is sparse, global insights provide valuable
support; as local data accumulates in time, expertise shifts dynamically to local-
ized models that better reflect domain specific conditions. While also addressing
the slow-start problem [28], our approach is particularly relevant in online learning
environments [29], where local data characteristics evolve over time. On the other
hand, the above mentioned transitioning from global to local expertise can benefit
from quantifying the statistical variations across domains. If two domains are suffi-
ciently similar (in terms of statistical properties) then merging is perhaps possible or
at least the corresponding local models can benefit from the other’s data more than
they do when they are less similar. To that end, we propose to use a hierarchy in the
space of domains based on the context tree partitioning that was first used for data
compression [30] and more recently for classification, regression, contextual bandits
and active learning [31–34] and for anomaly detection [35; 36]. In addition, transi-
tioning to local models enables the localization of anomalies, allowing the method to
differentiate decisions across different regions and effectively localize both anomaly
detection outcomes and their spatial locations. If constructing a hierarchy is not
feasible, then we only use a direct similarity measurement without a structure as
in the case of our study with EEG signals in Chapter 4. In this case, fine-tuning
the model with a similarity measure allows it to adapt to specific users, thereby
enhancing its performance.

1.1 Applications of Fine-Tuning Global Models in the Thesis

Visual Signals. To illustrate our approach, in the first part of the thesis (in Chap-
ter 3), we apply it to the challenge of online local anomaly detection, as shown in
Fig. 1.1, in video surveillance—a problem that aligns well with our method’s adap-
tation to local and global data as it accumulates [37]. In video surveillance, traffic
patterns within a scene can vary significantly throughout the day; for example, early
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Normal
Abnormal

Figure 1.1 The diagram above illustrates the typical architecture of an anomaly
detector in video surveillance. In this system, Region Of Interests (ROIs) are ex-
tracted to define normal and abnormal behavior. An anomaly detection algorithm
is applied to classify between normal and abnormal behavior.

mornings generally see less traffic, while daytime brings a marked increase in activ-
ity [38]. Additionally, pedestrian traffic within the same scene fluctuates widely at
different times. Also, a pedestrian on the motorway with normal visuals and kine-
matics, or a red light violation (normal motion at the wrong time) can be anomalous.
This variability highlights the need for adaptive knowledge transfer based on local
characteristics that shift both spatially and temporally. In this regard, we consider
different spatiotemporal regions of the scene (locality) as different domains that can
be statistically similar or dissimilar, and the amount of similarity here can quantify
the degree of possibility of cross-domains knowledge transfer. By accounting for
these spatiotemporal changes, our approach of knowledge transfer with fine tuning
aims to achieve a high anomaly detection performance, effectively adapting to the
evolving nature of the environment. In our method, we hierarchically partition (via
a binary tree) the image space into local regions (domains) sitting at the tree nodes
to observe the local (domain) statistics of the video activity. This allows us to ob-
serve the similarities between neighboring domains, merging towards upper nodes in
the tree, and combining local anomaly detections at the nodes (similar to mixture
of experts [39]). Based on the spatial characteristics in each region, and by also
accounting for temporal changes, we ensure our model to adapt and deliver peak
performance as the data evolves continually. This dynamic approach improves the
system’s ability to detect anomalies, while also accelerating its overall performance
trajectory. Fine-tuning global models to local intermediate models (after possibly
merging the lower level nodes/regions) in our approach seeks to continuously op-
timize the combination of expertise from a set of experts associated with regions.
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We accomplish this by assigning a weight to each expert, calculated during train-
ing by evaluating the change in each model’s expertise and rewarding those with
the observed performances. As data evolves, our method dynamically shifts these
weights toward the most effective local models, enabling us to achieve and main-
tain peak performance more quickly and consistently [40]. In addition, local models
have the ability to respond differently compared to their global counterparts. While
global models lack the inherent ability to localize anomalous events, our approach
introduces the capability to localize both the output labels and the actual event
locations, adding a crucial localization functionality to anomaly detection.

Signal 
Processing

BCI Speller

SSVEP 
Signal

Figure 1.2 The diagram above illustrates the typical architecture of a BCI speller.
In this system, the user observes a character matrix and generates SSVEP signals
in response. These signals are then processed and translated into input for the BCI
speller.

Visually Evoked EEG Signals. In Chapter 4, we focus on an application where it
is not straightforward to construct a hierarchy in the space of domains. For this, we
chose the problem of character recognition in Steady-State Visual Evoked Potential
(SSVEP)-based brain-computer interface (BCI) spellers, as shown in Fig. 1.2.

BCIs enable users to control computer systems using brain signals [41]. Among the
various approaches for measuring these signals, non-invasive methods are generally
preferred, with electroencephalography (EEG) being one of the most widely used
techniques [42]. On the other hand, SSVEPs are brain signals generated when an
individual focuses on visual stimuli oscillating at specific constant frequencies [43].
These signals can be captured using EEG. An SSVEP-based BCI speller typically
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employs a character matrix where each character flickers at a distinct frequency.
By analyzing the SSVEP signals corresponding to the frequency of the focused
character, the system can differentiate between characters, thereby enabling the
task of character recognition [41]. To validate the efficacy of our approach of fine-
tuning, we use the publicly available datasets BENCH [20] and BETA [44]. These
datasets consist of SSVEP data collected from various participants/users during
speller experiments, in which participants are instructed to focus on different char-
acters in a character matrix. While there are differences (particularly regarding the
signal-to-noise ratio level, BETA is noisier as its experiments are outdoor and so
more challenging) between the two datasets, the experimental protocols are simi-
lar. The BENCH dataset consists of 35 participants/users whereas BETA consists
of 70 participants/users. Each and every participant’s EEG signals clearly show
the SSVEP effect due to the visual stimulation (SSVEP EEG signals clearly show
the fundamental stimulation frequency and also the harmonics), hence this allows
knowledge transfer. On the contrary, there exist strong statistical variations across
the participants which complicates the task of knowledge transfer and so it is not
straightforward. In this context, we regard each participant as a different domain.

We consider that this EEG data is non-hierarchical because, unlike video data where
a natural distance metric exists between image space partition regions (e.g., temporal
or spatial relationships), there is no straightforward way to measure the “distance”
between participants/users. Quantifying cross-domain knowledge transfer with fine-
tuning in this context cannot be achieved using a context tree based hierarchy as we
employ in the case of visual video signals. Instead, here we opt for a combination
of correlation-based similarity measures, pseudo-label strategies, and fine-tuning
to achieve knowledge transfer between domains (participants/users). To evaluate
the efficacy of our approach of knowledge transfer with fine tuning, we conduct
experiments on each dataset by selecting one user at a time as the new user, for
whom we assume no labeled data is available. This process is repeated for all users in
each dataset. The remaining users are treated as previous users, and their associated
data is assumed to be fully available. In this setup, the new user is designated as
the target domain, while the previous users constitute the source domains. We start
with a global neural network model trained with all the available data from all the
previous users (source domains), and it is fine tuned to each previous user as well as
the target user (target domain). Adapting to the target user through unsupervised
fine-tuning allows leveraging their unlabeled data to develop a model that integrates
seamlessly into the BCI speller, eliminating the need for calibration.
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1.2 Thesis Organization

This current Chapter 1 begins with a discussion, setting the foundation for the thesis.
We outline our primary idea underlying fine tuning: controlling variance during the
bias reduction phase of knowledge transfer as an effective way of managing the bias-
variance trade-off. Following this, we described the hierarchical and non-hierarchical
applications addressed in the thesis. Chapter 1 concludes in the following section
by presenting the novel contributions and highlights of the thesis.

As we regard fine tuning as a knowledge transfer technique which leverages prior
knowledge from source domains, a comprehensive literature survey on knowledge
transfer is provided in Chapter 2 to highlight the current state of research in the
field from a wide perspective. Note that the prior works related to the specific
applications (anomaly detection and BCIs) the thesis considers are given separately
in their respective chapters.

Chapter 3 focuses on addressing the cross-domains knowledge transfer in the case of
the hierarchical data of visual video signals. In Chapter 3, for supervised setting, we
propose a method that uses Neyman-Pearson (NP) classifiers combined with a con-
text tree to detect anomalies while maintaining the false positive rate below a prede-
fined threshold. This method serves as a proof of concept and forms the groundwork
for our more advanced approach for unsupervised setting. We build upon this ini-
tial work in the supervised setting by introducing a loss function designed to remove
the dependency on the labels for obtaining an unsupervised method. Note that
our preliminary observations for supervised setting were published as a conference
proceeding [45] and our main approach for unsupervised setting was published as a
journal article [46].

Chapter 4 studies fine tuning of global models in the absence of hierarchical struc-
tures, with a focus on SSVEP-based BCI character recognition. We propose the use
of pseudo labels for fine-tuning models as well as coherence scores to assess cross
domain (participant/user) similarities.

The thesis concludes with final remarks in Chapter 5.
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1.3 Novel Contributions and Highlights

In this thesis, we hypothesize that fine-tuning global models can enhance the per-
formance and capabilities of existing methods by incorporating locality and adap-
tation to unlabeled data. The novel contributions and highlights of this thesis are
presented in two parts: anomaly detection in visual video signals (Chapter 3) and
visually evoked EEG signals for BCIs (Chapter 4).

Chapter 3 investigates whether global models can be efficiently fine-tuned by lever-
aging the inherent hierarchy within the data to localize anomalies in real-time, ensur-
ing their practical applicability in real-world scenarios. To achieve this, we propose
using context trees to partition the video space, enabling the computation of the
appropriate partition model. This approach is designed to enhance the performance
of existing anomaly detection algorithms. The specific contributions of this work
are outlined below:

• Our context tree-based image partitioning method for local anomaly detection
effectively balances the bias-variance trade-off by smoothly transitioning from
coarse to finer granularity within a video stream. This adaptive approach
ensures convergence to the best available partitioning model, supported by
the theoretical guarantees established in [47; 48]. As a result, the method
addresses the slow start problem by selecting the best available partition from
the outset, enabling strong performance even with limited initial data.

• Our method effectively detects locational anomalies caused by non-stationary
spatial statistics. For example, it can identify a pedestrian walking on a mo-
torway as an anomaly, while recognizing that the same activity on a sidewalk
is normal.

• Our unsupervised method uses a novel loss function to evaluate partitioning
models in data streams, allowing for a smooth progression to higher com-
plexity. This enables the model to adapt effectively without requiring labeled
data.

• We observe the following AUC results across different datasets. In the UCSD
dataset [9], where there are no local anomalies, our method with CTBAD
achieves an AUC of 0.82, while without CTBAD, the AUC is 0.83. Models
trained on the smallest partitions result in an AUC of 0.80. For other datasets,
including Avenue [10], Shanghai [11], and Street Scene [12], which contain local
anomalies, we observe an improvement in AUC when using CTBAD: Avenue
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reaches 0.71 with CTBAD, compared to 0.60 without it, and 0.70 with the
smallest partitions; Shanghai shows 0.54 with CTBAD, 0.48 without, and
0.59 with the smallest partitions; Street Scene achieves 0.79 with CTBAD,
0.60 without, and 0.69 with the smallest partitions, as expected.

In Chapter 4, we investigate the potential of unsupervised fine-tuning of global
models in SSVEP-based BCI spellers to recognize characters for new users without
requiring labeled data, thus eliminating the need for calibration. This is accom-
plished by generating pseudo-labels using the global model and utilizing data from
similar users, identified through similarity measures. Our goal is to show that the
existing DNN model [49] can be adapted through unsupervised fine-tuning to effec-
tively replace the calibration process. The key contributions and highlights of this
approach are outlined below:

• We introduce a self-regularizing approach for new users that generates pseu-
dolabels, enabling the model to iteratively refine its predictions. To enhance
the accuracy of these pseudolabels, we leverage the silhouette score to align
the new users’ features with those of existing users. This iterative process
progressively improves pseudolabel accuracy, guiding the model toward true
labels and boosting overall performance.

• Our method eliminates the need for a calibration phase in BCI spellers. In-
stead, users can immediately perform character recognition using previously
calibrated data, enabling a seamless and efficient experience.

• The global models initially achieve mean accuracy percentages of 21.75%
38.01%, 51.01%, 63.94%, and 71.32% for character identification with sig-
nal lengths of 0.2, 0.4, 0.6, 0.8, and 1 second, respectively, on the BENCH
dataset. Notably, following the first model adaptation, these accuracy rates
increase substantially to 28.28%, 62.05%, 76.84%, 83.83%, and 88.34%, re-
spectively. Similarly, on the BETA dataset, the global models initially achieve
mean accuracy percentages of 19.44%, 34.28%, 43.78%, and 51.28% for char-
acter identification with signal lengths of 0.2, 0.4, 0.6, and 0.8 seconds, re-
spectively. Remarkably, these performances improve significantly to 20.66%,
46.84%, 59.35%, and 66.90%, respectively at the end of the first model adap-
tation.

• The most recently adapted models reach their best mean identification perfor-
mances with signal lengths of 0.2, 0.4, 0.6, 0.8, and 1 second at the end of the
second and final model adaptation. Specifically, the performances improves to
29.85%, 64.99%, 80.08%, 86.73% and 91.55% on the BENCH dataset and to
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19.50%, 47.12%, 61.29%, 69.80% and 75.53% on the BETA dataset, respec-
tively.

In the next chapter (Chapter 2), we provide a general literature survey.

9



2. Literature Survey: Fine-Tuning Global Models for

Comprehensive Knowledge Transfer

As we regard the fine tuning of global models as a technique from the literature
of knowledge transfer, in this chapter, we present a general literature survey about
knowledge transfer to provide a high level perspective. Note that the prior works
related to the specific applications (anomaly detection and BCIs) the thesis considers
are given separately in their respective chapters.

Common machine learning (ML) processes consist of various tasks, where systems
learn by being trained on a specific set of data tailored for a single task. In such
cases, the system is generally optimized to perform only the specific task at hand,
without the flexibility to adapt to new or different tasks [24]. In contrast, knowledge
transfer in ML refers to the process of leveraging a model trained on one task to
improve performance on a different but related task. This approach utilizes the
knowledge, patterns, or features acquired during the initial task to enhance learning
in the new task, resulting in improved performance, reduced training time, or lower
data requirements [50].

The primary motivation behind knowledge transfer is to overcome the limitations of
resources by leveraging previously acquired knowledge. This concept mirrors pro-
cesses inherent in human cognition, where individuals can transfer problem-solving
skills gained in one domain and apply them effectively in another. Just as hu-
mans use expertise from one area to tackle challenges in a different field, knowledge
transfer in ML allows models to apply learned patterns from one task to enhance
performance on a related task [40].

A common example of knowledge transfer in humans, as illustrated in Fig. 2.1, is
a professional musician learning a new instrument. For instance, a pianist might
learn to play the guitar much faster than someone without any musical background.
Although the two instruments require different technical skills, the pianist’s under-
standing of music theory, rhythm, and coordination provides a solid foundation.
Their mastery of scales, chords, and musical timing can be readily applied, allowing
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Knowledge Transfer in Humans

Different Tasks
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Figure 2.1 In the top left corner, we observe typical ML systems where a separate
model is trained for each individual task. While these systems perform well on their
respective tasks, they tend to lack robustness when exposed to new data. In contrast,
the bottom left illustrates a typical knowledge transfer system. Here, we have a set
of source tasks from which general knowledge is extracted and transferred to a target
task. This transfer enables better performance on the target task than would be
achieved by learning from scratch. An example of effective knowledge transfer can
be seen when a musician learns to play a new instrument or a footballer takes up
tennis (illustrated with the green arrow). However, if a musician attempts to learn
tennis or a footballer tries to learn the guitar (illustrated with the red arrow), these
examples do not demonstrate effective transfer, as the tasks are unrelated and no
useful knowledge can be transferred.

them to learn the guitar more efficiently than a complete beginner.

Another example, also shown in Fig. 2.1, is a professional athlete transitioning to a
different sport. A soccer player learning tennis, despite the two sports being quite
distinct, can leverage their agility, stamina, hand-eye coordination, and strategic
thinking. These transferable skills enable them to pick up tennis faster than someone
with no sports background. This adaptability in applying physical and cognitive
skills across different athletic disciplines mirrors how expertise in one domain can
accelerate learning in another.

As we observe in the examples for human knowledge transfer, knowledge transfer
in ML aims to transfer the expertise of a pre-trained model to a new task where
that knowledge can help address the problem. A key principle in designing such
systems is selecting related knowledge. The transferred knowledge should align
with the target task to be effective. For instance, a professional athlete learning
a new instrument would face the same challenges as a complete beginner because
their expertise in sports does not directly translate to music. Similarly, in ML,
transferring knowledge from unrelated domains may not provide any advantage and
could even hinder performance. Therefore, it is crucial to ensure that the source
and target tasks are sufficiently related for knowledge transfer to be effective [51].
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Figure 2.2 The figure above illustrates various applications of knowledge transfer.
In the first scenario, we face the challenge of insufficient training data for anomaly
detection. Since anomalies are rare and difficult to gather enough data for training,
it makes sense to use a model trained on a different but related task which can
be leveraged to detect anomalies. By transferring the learned knowledge, we can
effectively detect anomalies even with limited data. In the second scenario, the
challenge is limited resources. Here, we aim to detect plant diseases using a mobile
phone, which has restricted computational capacity. To address this, it makes sense
to start with a pre-trained network and leverage its existing knowledge to improve
accuracy in this task, despite the device’s limitations. In the final scenario, we
explore the benefits of applying knowledge across related tasks. For example, as
shown in the figure, a model trained to recognize cars can be adapted to differentiate
between cars and trucks by utilizing its understanding of the similarities between
these vehicle types, thereby improving performance on the new task.

To provide an idea, below are some scenarios, where knowledge transfer is particu-
larly beneficial, as observed in Fig. 2.2:

The first use case for knowledge transfer is when there is not enough data available
for the target task. In this case, transferring knowledge from a related task with
ample data can significantly improve a model’s ability to generalize to the target
task. A typical example of a target task with insufficient data is anomaly detection in
video surveillance [52]. Anomaly detection involves identifying unusual or suspicious
activities—such as theft, accidents, or unauthorized access—against the backdrop of
typical daily behaviors [53]. However, since these anomalies are very rare by nature,
gathering and labeling sufficient data for these events is a major challenge. Training
a robust model from scratch becomes difficult due to the scarcity of labeled anomaly
data, as the majority of surveillance footage features normal activities [54].

In such a case, transferring knowledge from a related task can help the model detect
anomalies more effectively. By leveraging patterns learned from abundant normal
data, the model can better discern what constitutes unusual behavior. This approach
not only reduces the dependency on large amounts of labeled anomaly data but also
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accelerates the learning process and enhances overall detection performance. [53].
For example we can apply knowledge transfer by utilizing a model pre-trained on
a more common tasks like human activity recognition, which has abundant data
available. Large datasets such as UCF101 [55] or Kinetics [56] capture general
features related to human movements and interactions, which can be valuable for
detecting anomalies in surveillance footage. By fine-tuning the pre-trained model
with a smaller set of labeled anomaly data (e.g., thefts, accidents, jaywalking), the
model can adapt to detect subtle deviations from normal behavior thus detecting
anomalies.

This approach works because many anomalies are associated with unusual or unex-
pected human actions or interactions. The pre-trained model already understands
normal behavior patterns, making it easier to recognize irregularities, like someone
loitering in a restricted area or behaving erratically. By transferring this knowl-
edge, the model can effectively generalize and detect anomalies with minimal data,
improving its performance in real-world surveillance applications [57].

Another case for using knowledge transfer is when computational resources available
are limited, and reutilizing an existing model can significantly reduce the need for
training from scratch, thereby saving both time and resources. A clear example of
this is leveraging pre-trained deep learning models for image classification on devices
with constrained processing power, such as smartphones or IoT devices [58].

Consider the case of developing an app for plant disease detection in agriculture,
training a deep learning model from scratch to classify plant diseases would demand
vast amounts of data, computation, and time which is particularly challenging for a
mobile device with limited resources. Instead, we could utilize a pre-trained model
like MobileNet [59], which was trained on the ImageNet dataset [60], a large-scale
dataset for image classification.

The process would involve fine-tuning MobileNet by reusing its lower layers, which
capture general features like edges, shapes, and textures. We would only need to
retrain the upper layers using your specific dataset of plant disease images, greatly
reducing the computational effort required. By using a pre-trained model in this way,
we can create an app that can perform plant disease classification efficiently, even
on devices with constrained hardware, without the need to build a model entirely
from scratch [61].

Knowledge transfer is most effective when there is a degree of similarity between
the source and target tasks, as this facilitates the learning process for the model.
For example, consider the tasks of recognizing cars and trucks, which are both
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categorized under vehicles. They share numerous visual features, such as four wheels,
a rectangular body shape, windows, and common materials like glass, metal, and
rubber. Additionally, both types of vehicles possess distinctive attributes, including
headlights, tail lights, and grilles, that can be recognized by a ML model [58].

When a model is trained to recognize cars, it learns to identify general features
common to both cars and trucks, facilitating knowledge transfer between the two
tasks. This transferability allows the model to leverage the information gained from
car recognition tasks, significantly minimizing the need for extensive truck-specific
training data. By utilizing a pre-trained car recognition model, we can streamline
the training process and enhance performance. In this approach, the lower layers
of the pre-trained model—having learned to detect general vehicle features—are
retained, while the upper layers, which are more specialized for cars, are fine-tuned
using a smaller dataset of truck images. This fine-tuning process enables the model
to focus on capturing truck-specific characteristics, such as larger body size and
more pronounced grilles, rather than relearning basic vehicle features. As a result,
the model becomes more efficient and effective, honing its understanding of the
subtle differences between cars and trucks while saving computational resources and
reducing training time [62].

Research has shown that leveraging similar tasks in transfer learning (TL) not only
improves accuracy but also reduces the amount of labeled data required for new
tasks. By reusing learned features, models can generalize better across related do-
mains, resulting in more efficient and effective training processes [58].

2.1 Fine Tuning of Global Models in Knowledge Transfer Techniques

In this section, we summarize several techniques employed in knowledge transfer,
which enable the transfer of learned knowledge from one task to another. The
fundamental concept is to distill knowledge so it can be effectively moved across
domains.

Knowledge transfer in ML involves applying insights and patterns acquired from
one task or domain to enhance performance on a different, yet related task. This
approach is particularly beneficial when labeled data for the target task is scarce,
while a substantial amount of data exists for related tasks. By leveraging previously
gained knowledge, models can improve their learning efficiency and generalization
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capabilities [63].

Feature extraction, as seen in Fig. 2.3, is a crucial technique in ML and deep
learning that involves identifying and isolating relevant characteristics or patterns
from raw data to improve model performance on specific tasks. In this process, a pre-
trained model—often trained on a large dataset—is utilized to extract features that
capture essential information while ignoring irrelevant details. For example, in image
classification tasks, convolutional neural networks (CNNs) can learn to detect edges,
textures, and shapes that are useful for distinguishing between different classes. The
extracted features can then be fed into another model, significantly reducing the
complexity of the task and enhancing its accuracy, especially when labeled data for
the target task is limited. This approach is widely used in various applications,
including medical image analysis [64], natural language processing (NLP) [58], and
anomaly detection in video surveillance [65].

INPUT DATA

IN

ENC DEC

OUT

FEATURE
CNN

TRANSFORMER

FEATURE

AUTOENCODER

FEATURE GENERATOR

Figure 2.3 The figure above illustrates a typical feature extraction scheme, where
data is input into a feature extraction network. This network processes the data
to identify and extract relevant features, which can then be utilized for various
machine-learning tasks. By effectively isolating key characteristics from the input,
the feature extraction network enables more efficient analysis and improved model
performance in subsequent stages.

A pre-trained model is taken, and the earlier layers, which have learned generic
features such as edges and textures in images are retained whereas later layers,
which may have learned more task-specific features such as object categories, are
either totally replaced or retrained to fit the new task at hand. The earlier layers are
retained by freezing the weights so that the new model can focus on learning task-
specific information in the final layers. This approach reduces the amount of training
time and data needed, as the early layers already capture meaningful features. This
approach is useful when the new task is related to the one the pre-trained model
was trained on, so the features learned can be reused [66].

Fine-tuning is a powerful technique in knowledge transfer that involves taking a
15



pre-trained model and continuing the training process on a new, often related task
or domain. Unlike feature extraction, where the model’s lower layers are retained for
their learned features while only the upper layers are retrained, fine-tuning allows for
all or some of the model’s layers to be updated during this process. This enables the
model to adapt its weights and biases based on the new task, effectively learning to
capture nuances specific to the new data while retaining the generalized knowledge
gained from the original training [67].

In the process of fine-tuning a pre-trained model, we initiate training using data
specific to the new task. Typically, all layers or a selection of layers in the model
are unfrozen, allowing the model to adjust its learned weights based on the new
task data. Fine-tuning usually begins with a low learning rate to mitigate the
risk of catastrophic forgetting, where the model loses useful information acquired
during pre-training. This careful approach ensures that the model retains relevant
knowledge while adapting to the nuances of the new data.

Fine-tuning is more flexible than feature extraction because it permits adjustments
across all layers, enabling the model to learn complex or distinct characteristics of
the new task. As a result, fine-tuning allows a pre-trained model to effectively adapt
to varying tasks while still benefiting from its initial training. This capability makes
fine-tuning a powerful strategy in TL, enhancing performance in scenarios where
labeled data for the target task is limited . [23].

Parameter sharing is a crucial technique in multi-task learning that allows different
tasks to leverage commonalities in their training processes. In this approach, cer-
tain layers or parameters of a model are shared across multiple tasks while other
layers remain task-specific. This sharing facilitates the learning of general represen-
tations that are beneficial across various tasks, enhancing the model’s efficiency and
performance [68].

The shared parameters enable tasks to influence each other’s learning, leading to
improved performance for all involved. For instance, in a model designed for both
sentiment analysis and topic classification, the shared layers can learn fundamental
linguistic features, such as grammar and word semantics, which are applicable to
both tasks. Meanwhile, task-specific layers can fine-tune the model to capture the
unique aspects relevant to each individual task [69].

Parameter sharing also reduces the total number of parameters in the model, making
it more efficient. This efficiency is particularly beneficial in scenarios with limited
data, as the shared knowledge can help improve generalization and reduce the risk
of overfitting. In image classification tasks, models like CNNs often share feature
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extraction layers for related tasks, such as object detection and segmentation, al-
lowing the model to learn common visual features efficiently. Transformer models,
like BERT [70], utilize shared parameters for different language tasks (e.g., text
classification, named entity recognition). By sharing parameters in the encoder lay-
ers, the model can learn general language representations that benefit multiple NLP
tasks simultaneously. Models designed for various languages can share phonetic
features while allowing specific layers to adapt to language-specific characteristics.
This sharing enhances the model’s ability to generalize across languages while still
accommodating unique linguistic traits.[71].

Domain adaptation (DA) focuses on the challenge of transferring knowledge between
different but related domains. The primary hurdle in DA arises from the differences
in data distributions between the source and target domains. For example, a model
trained on images of animals in one environment may struggle to generalize to images
of the same animals in a different setting due to variations in lighting, background,
or perspective [72].

The goal of DA is to minimize the disparity between the data distributions of the
source and target domains, enabling a model trained on the source domain to per-
form well on the target domain. Various techniques can be employed to align the
feature representations learned from the two domains [73]. These include modifying
the feature space of either the source or target domain to make them more similar.
This can involve methods such as domain-invariant feature extraction. Domain-
Adversarial training [74] approach introduces a domain classifier into the model,
allowing it to learn representations that are difficult for the classifier to distinguish
between the source and target domains. The model learns to produce features that
confuse the domain classifier, thereby ensuring that the learned features are domain-
invariant. This adversarial training encourages the model to focus on the common
characteristics of both domains while disregarding domain-specific information. Self-
Training technique [75], involves using the model trained on the source domain to
make predictions on the unlabeled data from the target domain. These predictions
serve as pseudo-labels, allowing the model to fine-tune itself on the target domain’s
data, enhancing its ability to generalize across domains.

By effectively aligning feature representations, DA enables models to generalize bet-
ter in scenarios where labeled data is scarce or unavailable for the target domain.
This is particularly useful in applications where the source and target domains dif-
fer significantly, such as transferring models trained on synthetic data to real-world
data. Research in DA has demonstrates its effectiveness in various fields, including
computer vision, NLP, and speech recognition, where disparities between training
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and deployment environments often pose significant challenge[72].

In computer vision, a variety of techniques leverage the transfer of local data within
images to enhance overall performance and accuracy. Local feature extraction meth-
ods, such as Scale-Invariant Feature Transform (SIFT) and Speeded Up Robust Fea-
tures (SURF), play a crucial role in detecting and describing local features. These
techniques effectively identify key points and local structures, enabling applications
like object recognition and image matching [76; 77]. Additionally, image pyramids,
including Laplacian pyramids, facilitate multi-resolution analysis by constructing
images at different scales. This approach aids in tasks such as texture synthesis and
image blending while preserving essential details [78; 79].

Moreover, techniques such as local contrast normalization enhance visibility by ad-
justing the contrast of specific regions within an image, which leads to improved
segmentation and object detection performance [80; 81]. Patch-based methods
like Non-Local Means (NLM) further enhance image quality by averaging similar
patches, effectively denoising images while preserving critical features like edges
[82; 83]. Region-Based CNN utilize localized regions for object detection, improving
performance in complex scenes by transferring information across patches within
the network [84; 85].

Collectively, these techniques underscore the significance of local knowledge transfer
in optimizing computer vision tasks, showcasing how transferring local data can en-
hance image processing and analysis. By redistributing local statistics across spatial
dimensions, they enhance a model’s ability to generalize from limited data, essen-
tially acting as a localized form of knowledge transfer. This process ensures that
insights and learned representations from specific regions are shared to inform and
improve performance in adjacent areas. Local knowledge transfer is particularly
beneficial in scenarios of data scarcity, allowing models to leverage existing knowl-
edge to fill in gaps. By applying features learned from well-represented local regions
to those with insufficient data, these methods create a comprehensive understand-
ing of the overall dataset, ultimately leading to improved model performance across
various tasks.

In the domain of video surveillance, various studies emphasize the importance of lo-
cal statistics for enhancing anomaly detection. [86] provide a comprehensive survey
that outlines different techniques and highlights the significance of local statistics,
such as pixel intensity distributions and spatial patterns, in identifying unusual be-
haviors. The paper illustrates how models can effectively transfer knowledge from
normal activity patterns to recognize deviations, thus facilitating the identification
of rare events amidst everyday activities. Similarly, [87] focus on extracting localized
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features from video frames, showing that by learning local statistics from normal
frames, models can detect significant deviations indicative of anomalies. This ap-
proach underscores the value of local statistics as a means of knowledge transfer.
[88] contribute by introducing a 3D deep learning framework that captures both
spatial and temporal local statistics, enabling the model to learn patterns from lo-
cal regions and improving the detection of abnormal events across different frames.
Finally, [89] present a method for detecting anomalies in crowded scenes by analyz-
ing local motion features, effectively transferring knowledge from well-represented
normal motion behaviors to identify unusual actions. Collectively, these studies
highlight the critical role of local statistics in anomaly detection, demonstrating
how transferring knowledge derived from spatial patterns, motion behaviors, and
pixel distributions enhances a model’s ability to generalize and identify anomalies
in varied scenarios, particularly in the context of data scarcity and variability.

2.2 Challenges

Knowledge transfer is a powerful technique for enhancing model performance across
a variety of tasks; however, it presents several challenges that must be carefully
addressed to ensure its effectiveness. Key issues include negative transfer, where
knowledge from the source task may hinder performance on the target task due
to dissimilarities between the domains. Other challenges involve overfitting to the
source task, misalignment of feature representations, and the need for substantial
fine-tuning, particularly when the source and target domains are not closely related.
Lastly, it is essential to recognize that local statistics may be lacking in certain areas
of a dataset, while overall statistics can serve to mitigate this data scarcity [50].

Successfully applying knowledge transfer requires practitioners to overcome these
challenges by selecting appropriate source models and carefully balancing adap-
tation and preservation during the fine-tuning process. This involves considering
the similarity of tasks, implementing effective fine-tuning strategies, and employing
techniques such as gradual layer unfreezing and DA. By proactively addressing these
issues, knowledge transfer can lead to significant improvements in model generaliza-
tion and performance across a wide range of applications, ensuring that the transfer
of knowledge genuinely benefits the target task [90].

Negative transfer occurs when knowledge from the source domain or task adversely
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impacts the model’s performance on the target task. This typically arises when
the source and target tasks are too dissimilar, leading the model to apply patterns
or representations learned from the source that are irrelevant or misleading in the
context of the target task [50].

Such negative transfer is especially problematic when the pre-trained model has
learned domain-specific features that fail to generalize. These learned patterns can
introduce confusion into the model’s decision-making process, particularly when
the model’s architecture or feature representations are too rigid. In such cases,
the model may attempt to force irrelevant knowledge onto the target task, thereby
compromising its overall performance [91].

To avoid negative transfer, it’s crucial to carefully assess the similarity between the
source and target tasks or domains and implement strategies—such as DA or fine-
tuning—that can better align the learned knowledge with the specific requirements
of the target task [92].

For example, applying a language model trained on legal texts to perform sentiment
analysis on movie reviews can lead to negative transfer. The formal, domain-specific
language in legal documents may not align with the colloquial, emotionally charged
expressions found in movie reviews. This mismatch in language style and context can
cause the model to apply irrelevant knowledge, ultimately hindering its performance.
Instead of enhancing sentiment analysis, this transfer of knowledge could confuse
the model and degrade its ability to accurately interpret the sentiments in reviews,
leading to sub-optimal outcomes [93]. Additionally, employing multi-task learning
techniques can be beneficial, as these allow the model to be trained on both general
and specialized tasks simultaneously, enabling it to capture valuable knowledge from
both areas. Furthermore, implementing DA strategies can help tailor the model to
the specific distribution and characteristics of the specialized domain [94].

To address the issue of negative transfer, we can take several approaches. First,
we can analyze the data distributions and features of both the source and target
tasks to ensure that they share sufficient similarity. Another strategy is to selectively
transfer only the relevant layers or features from the source model while avoiding the
transfer of task-specific components that may not generalize effectively. Lastly, we
can employ techniques such as feature alignment or adversarial learning to enhance
the generalization of features learned from the source task to the target domain [95].

Another problem in knowledge transfer is choosing the right pre-trained model or
source task, which is crucial for its success. A poor choice can lead to feature mis-
alignment between the source and target tasks, resulting in inefficient training or
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even negative transfer. In contrast, selecting an appropriate source model can sig-
nificantly improve performance on the target task [40]. The pre-trained model must
have learned features that are relevant to the target task, yet determining the most
suitable source task can be challenging. Models trained on highly specific tasks
(e.g., medical image classification) might not generalize well to unrelated domains
(e.g., everyday object classification). Furthermore, the architectures of the source
and target models should be compatible—transferring knowledge between tasks re-
quiring very different model structures (such as from a CNN to an Recurrent Neural
Network (RNN)) can introduce difficulties ([96].

For example, if the target task involves classifying satellite images, a model pre-
trained on general image datasets like ImageNet [60] may be useful for low-level
feature extraction. However, for tasks requiring highly domain-specific knowledge,
such as agricultural analysis, a model pre-trained on similar remote sensing data
would be a better choice. To choose suitable source models, it is essential to assess
task similarity through methods such as comparing data distributions or analyzing
the types of features the models have learned. Models pre-trained on large, diverse
datasets (like BERT [70] for text tasks, and ResNet [97] for image tasks) tend to
capture more general-purpose features, making them valuable for a broad range of
TL applications.

Moreover, fine-tuning a pre-trained model requires balancing how much the model
adapts to the new task versus how much of the original knowledge is retained. If the
model adapts too much, it may suffer from catastrophic forgetting, losing valuable
knowledge from the source task. On the other hand, if it adapts too little, the model
may fail to capture the nuances of the target task [98]. Therefore, finding the right
level of adaptation is key to maximizing the benefits of knowledge transfer.

During fine-tuning, if the model is too flexible (i.e., the learning rate is too high,
or too many layers are unfrozen), it may overwrite important features learned from
the source task [99]. If too few layers are fine-tuned, or the learning rate is too
low, the model may fail to adapt properly to the new task, leading to suboptimal
performance [100].

When fine-tuning a pre-trained language model like BERT [70] on a specific sen-
timent analysis dataset, the model might initially rely on general language under-
standing. However, if the fine-tuning process aggressively updates the model, it
might forget crucial syntactic or semantic patterns learned during pre-training that
are beneficial to the target task .

To address the balance problem, one approach is to gradually unfreeze layers during

21



fine-tuning, beginning with the later layers that are more task-specific and progres-
sively moving to the earlier, more general layers [26]. Another strategy involves
using smaller learning rates during fine-tuning to minimize drastic alterations to
the model’s weights, which helps preserve the pre-trained knowledge. Lastly, we
can implement techniques such as Elastic Weight Consolidation (EWC) to prevent
significant changes to important parameters that were beneficial in the source task
[101].

The availability and quality of data for the target task are crucial to the success
of knowledge transfer. If the target dataset is insufficient, it can pose significant
challenges:

When fine-tuning a pre-trained model on a small dataset, there’s a high risk of over-
fitting. Overfitting happens when the model learns to memorize the small dataset’s
details rather than generalize from it, which reduces performance on unseen data
[23]. Fine-tuning complex models on small datasets is difficult because the model
may not have enough data to learn the target task effectively. With little data, fine-
tuning many layers could cause the model to overwrite useful pre-trained knowledge
(catastrophic forgetting) [24].

In contrast, if you have access to a large dataset for the target task, the model
can more easily adapt to the new task. In such cases, fine-tuning more layers or
training a large model can lead to better results. With sufficient data, TL allows
faster training and higher performance compared to training from scratch, as the
model can build upon its pre-learned representations [102]. For many specialized
tasks, data is scarce because labeling can be time-consuming or costly. For example,
in medical domains, labeling data requires expert knowledge (e.g., radiologists for
medical images). Therefore, TL becomes essential to leverage pre-trained models,
but the challenge is how well the model can perform when only limited labeled data
is available [103]. In situations with limited data, data augmentation techniques (like
generating synthetic data, rotating images, or adding noise) can help by artificially
increasing the size of the dataset and introducing more variety to prevent overfitting
[104]. Another approach is to fine-tune only the last few layers of the model to
prevent overfitting and mitigate the risk of catastrophic forgetting [105].

The size and complexity of the pre-trained model are important considerations.
Large models like BERT [70] have millions or even billions of parameters, which
makes them powerful but also resource-intensive to work with [106]. Fine-tuning
large models requires substantial computational resources. This can be a barrier for
smaller organizations or individuals without access to high-performance GPUs or
cloud computing. The larger the model, the longer it takes to fine-tune it on a new
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task. This increases the cost in terms of both time and computational resources.
For example, fine-tuning a model like BERT [70] on a new task can take days
or weeks, depending on the size of the dataset and available hardware. These large
models require significant memory (RAM or VRAM) for both training and inference.
Running models like BERT [70] or large vision models like Vision Transformers on
edge devices or less powerful systems can be infeasible.

In some cases, smaller models or model distillation techniques are preferred. Model
distillation refers to training a smaller model (a "student" model) to imitate the
behavior of a large, complex model (a "teacher" model), reducing the computational
cost. Smaller models are easier to fine-tune and can often perform surprisingly
well when adapted carefully. To tackle the issue of model complexity, we can con-
sider employing lighter versions of pre-trained models, such as MobileNet [107],
which is specifically designed to be less resource-intensive. Additionally, we can
apply model compression or distillation techniques to minimize the computational
footprint. Lastly, leveraging cloud-based resources or distributed training can help
manage the resource demands of larger models.

Task specificity refers to how specialized the target task is compared to the source
task. TL often works well when the target and source tasks share similarities.
However, when the target task is highly specialized, challenges arise [50].

Pre-trained models (especially those trained on broad, general-purpose datasets like
ImageNet [60] or large language models trained on internet text) can capture general
representations. These models work well for a wide range of tasks that share com-
mon features with the source task. However, for very specialized tasks, such as rare
medical conditions in medical imaging, ecological studies, or character recognition in
electrocardiogram (ECG) systems, the general features learned from broad datasets
may not be sufficient. Specialized tasks often require fine-grained knowledge that
general models do not have. In such cases, the TL process might need to be sig-
nificantly adapted, or the pre-trained model might not provide as much benefit as
expected [23].

There can be significant domain gaps between the pre-trained model’s task and the
target task. For example, a model trained on general news articles might struggle
when applied to a highly specific domain like legal document analysis, where the
language and structure are quite different. In some cases, transferring knowledge
from a general model to a highly specific task requires training more layers of the
model from scratch. This is because the model may need to learn entirely new,
domain-specific features. Task-specific adaptations may involve fine-tuning more
layers or even pre-training the model on a domain-specific dataset (e.g., pre-training
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on medical texts for medical NLP tasks) [108].

An illustrative example of task specificity in TL is ECG character recognition. In
this domain, identifying shared features across different users poses significant chal-
lenges due to the inherent variability in individual ECG signals. Each user’s data can
exhibit unique characteristics influenced by factors such as physiological differences,
noise, and variations in sensor placement. As a result, fine-tuning a pre-trained
model to adapt to a specific user’s data without succumbing to overfitting becomes
a cumbersome process. Moreover, developing a model that effectively accommo-
dates multiple targets—each with its distinct properties—compounds the difficulty.
This complexity underscores the need for tailored approaches that can navigate the
intricacies of user-specific data while leveraging the strengths of pre-trained models
[109].

Local statistics, which capture specific patterns and variations within subsets of the
data, might be more readily available in certain regions but absent in others. In
such cases, leveraging the overall statistics of the dataset can provide a broader
context that informs the relationships and distributions present in the local data.
This approach allows us to transfer insights from regions with rich local statistics to
those that are underrepresented, effectively enriching the analysis and enhancing the
model’s ability to generalize across the entire dataset. By utilizing overall statistics
to compensate for local deficiencies, we can improve the robustness and performance
of our models in areas where data is sparse [110].

2.3 Types of Knowledge Transfer

In this section, we introduce some of the most widely used methods for knowledge
transfer in ML. The categorization is somewhat mixed, as certain methods, like
DA, can be considered a subcategory of TL. However, due to their broad range of
applications, they are often regarded as categories in their own right.

We begin with the most common method, TL, by providing a definition, categorizing
its types, and surveying the various techniques used. We then describe DA in detail
and conclude the section with an overview of domain generalization (DG).
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Figure 2.4 An example of the power of TL is using a model trained on a large
dataset, like ImageNet, to classify a smaller, more specific task, such as distinguish-
ing between horses and donkeys. By leveraging the knowledge gained from the large
dataset and fine-tuning the model on a smaller set of images, the task can be com-
pleted with greater accuracy, even with limited training data.

2.3.1 Transfer Learning

Traditional learning algorithms predict future outcomes using models trained on
previously collected labeled or unlabeled data [66; 111], as seen in Fig. 2.4. Semi-
supervised learning addresses the challenge of limited labeled data by utilizing a
small labeled dataset alongside a larger unlabeled one to improve the classifier’s
performance [112]. TL [50], however, stands out from traditional methods by allow-
ing models to apply knowledge from one domain to another, even when the data
distributions differ.

Unlike traditional techniques that learn each task from scratch, TL leverages knowl-
edge from previous tasks to assist in learning a target task, especially when the target
task has limited high-quality training data [113–115]. TL reuses a pre-trained model
to solve a new, but related problem, allowing the model to generalize knowledge from
one task to another. For example, a classifier trained to recognize fruits in images
can also help identify vegetables, or a model trained to detect a class of object such
as towels can apply that knowledge to recognizing other objects like hangers. By
transferring learned model weights from task 1 to task 2, TL improves performance
on the new task without starting from scratch with a smaller set of training set [92].

The core idea is to use a model trained on a task with abundant labeled data and
apply it to a new task with scarce data. Instead of starting the learning process from
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scratch, the model builds upon patterns learned from solving a related task. TL is
particularly popular in fields like computer vision and NLP, where tasks like senti-
ment analysis require significant computational power. Though TL is not strictly
a ML technique, it is more of a “design methodology” that spans various fields. It
has gained traction, especially when combined with neural networks, which demand
large datasets and computational resources [92].

TL can be categorized using different criteria as seen in Fig. 2.5. One way is
to classify TL into two categories, homogeneous and heterogeneous based on the
similarity of source and target data. Homogeneous TL occurs when the feature
spaces of the source and target domains are identical, denoted as XS = XT . In
contrast, heterogeneous TL takes place when the feature spaces differ, represented
by XS ̸= XT . Additionally, discrepancies in the marginal probability distributions
P (XS) ̸= P (XT ) between the source and target domains can significantly impact
model performance. For example, a dataset of X-ray images could be viewed as
heterogeneous compared to a dataset of tree species photos in an image-only context.
However, it could be seen as homogeneous when compared to the same tree species
photo dataset if the comparison also includes audio and text data, illustrating the
subjective nature of this classification [116].

In their work, [23] investigate the transferability of features learned by deep neu-
ral networks across various tasks, analyzing the impact of different network layers
on this transferability. They provide empirical evidence that features from certain
layers are more transferable than others, thereby contributing to the understanding
of feature reuse in homogeneous TL. Complementing this, [117] explore the use of
CNNs for learning mid-level image representations, demonstrating that transferring
these representations can significantly enhance performance on new image classifica-
tion tasks, which further emphasizes the effectiveness of homogeneous TL in visual
recognition.

In the realm of heterogeneous TL, as seen in Fig. 2.6, [118] propose a selective
TL framework designed to improve cross-domain recommendation systems. Their
approach intelligently selects relevant source domains to transfer knowledge to the
target domain, showing that selective transfer can enhance recommendation accu-
racy in heterogeneous settings. Building on this concept, [119] introduces a novel
framework that accounts for biases in corresponding instances between heteroge-
neous feature spaces in the source and target domains. By employing a deep learn-
ing approach, their method effectively learns feature mapping and enhances feature
representations to mitigate the impact of these biases, thereby improving the TL
process in complex scenarios.

26



Transfer Learning

Problem Solution

Label Space

Homogeneous

Heterogeneous

Transductive

Inductive

Unsupervised

Instance Feature

Parameter Relational

Symmetric

Asymmetric

Figure 2.5 This figure categorizes TL into problem-based and solution-based ap-
proaches. The problem-based category is divided into two dimensions: label proper-
ties, which distinguishes between homogeneous (same label space) and heterogeneous
(different label spaces), and the probability space, which is further subdivided into
inductive (labeled target data), transductive (unlabeled target data with the same la-
bel space), and unsupervised (no labeled data). The solution-based category consists
of instance, feature, relational, and parameter transfer methods. Parameter-based
methods are classified into asymmetric (partial parameter sharing) and symmetric
(complete parameter sharing). This hierarchy provides a comprehensive framework
for understanding various TL techniques.

Another categorization of TL methods is based on how they handle labels. The
methods can be classified as follows: transductive TL, where only the source data is
labeled and the target data remains unlabeled; inductive TL, which involves labeled
data for both the source and target domains; and unsupervised TL, where neither the
source nor the target data are labeled. Each of these categories addresses different
scenarios and challenges in the TL process.

One of the first papers that tackle the problem of transductive TL, [120] introduces
transductive support vector machines (TSVMs) for text classification. Unlike tra-
ditional SVMs, which focus on learning a model for unseen data, TSVMs aim to
optimize the performance on a specific, fixed set of test data. This paper demon-
strates that TSVMs can outperform inductive methods when a specific test set is
available, making the approach particularly useful for tasks like document classifi-
cation. In their nominal work [121], the authors propose a framework that blends
labeled and unlabeled data for semi-supervised learning, which is closely related to
transductive learning. The core idea is that decision boundaries should lie in low-
density regions of the data distribution. Their method leverages unlabeled data to
create more accurate models, which can significantly improve classification perfor-
mance when labeled data is scarce.

For inductive TL, [122] introduces deep adaptation networks (DANs), which are
designed to transfer knowledge between different domains by minimizing the dis-
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crepancy between the source and target domain distributions. It is often cited in
inductive TL research for its innovative approach to combining deep learning with
TL principles. [74] introduced domain-adversarial training, a powerful technique for
inductive TL. The method uses adversarial networks to minimize the discrepancy be-
tween source and target domain distributions, effectively learning domain-invariant
features. It has become a significant reference in both DA and TL for its ability
to improve the performance of ML models on tasks with domain shifts, such as
visual recognition and sentiment analysis. In their survey [123], authors provide an
extensive overview of self-supervised learning techniques and their relationship to
inductive TL, focusing on how self-supervised methods can leverage unlabeled data
to enhance learning performance in various tasks.

For unsupervised TL, in their foundational work [124], authors discuss self-taught
learning, which enables models to learn from both labeled and unlabeled data
through a sparse method, effectively transferring knowledge from a source domain to
improve learning in a target domain without supervision. [74] introduces a method
for unsupervised DA using a domain-adversarial training approach, allowing a model
to learn domain-invariant features by training a classifier alongside a domain dis-
criminator.

Another way to categorize Tls is based on the approaches used, which can be di-
vided into four groups: the first one is instance based approaches where methods use
instances or parts of instances from the source data and apply weighting strategies
for the target data. [25] presents a method for TL that assigns different weights
to instances from the source domain, allowing for more effective knowledge trans-
fer to the target domain. By focusing on the most relevant instances, the authors
demonstrate improved performance in various applications. In their work [125], the
authors explore the application of SVMs within an instance-based TL framework,
proposing a strategy to leverage source instances for better classification in the tar-
get domain. The experimental results show that this approach can significantly
enhance the learning process when labeled data is scarce. [126] investigates the
effectiveness of instance-based TL in knowledge-intensive applications, presenting
novel methodologies for transferring learned instances. The authors provide empir-
ical evidence that their approach enhances model adaptability and performance in
new environments.

Another approach-based category is feature-based (or mapping-based) approaches
where methods map features from the source and target data into more homogeneous
data. This can be further divided into two subtypes: Asymmetric feature-based
transforms source features to match target ones. [127] proposes a deep learning

28



framework for DA in sentiment classification, leveraging asymmetric feature trans-
formation to align feature distributions between source and target domains. [128]
introduces an asymmetric feature mapping approach that transforms the source
domain features to reduce the domain gap while maintaining discriminative infor-
mation for classification tasks. In their influential paper [128], the authors present
DAN, which utilize asymmetric feature transformation techniques to adapt deep
learning models to new domains effectively. The approach focuses on minimizing
domain divergence while maximizing predictive performance.

Symmetric feature-based methods find a common feature space and transforms both
source and target features into this new representation. [127] presents a symmetric
feature-based approach for DA that leverages multiple source domains to improve
classification performance in a target domain. [129]explores the use of deep sym-
metric neural networks that are designed to learn a shared feature representation
across domains, allowing for effective TL in various applications. Model-based (or
parameter-based) approaches: Use knowledge from pre-trained models, with combi-
nations of freezing, fine-tuning, or adding new layers to the network. [130] investi-
gates the effectiveness of fine-tuning deep CNNs that have been pre-trained on large
datasets like ImageNet. The authors show that TL can yield substantial improve-
ments in performance across various image classification tasks. The study presents
empirical results demonstrating improved performance in diverse applications, in-
cluding NLP and computer vision.

Another approach-based method category is relational-based (or adversarial-based)
approaches, where methods extract transferable features through logical relation-
ships or by applying methods like generative adversarial networks (GANs). In this
foundational paper [131], the authors introduce GANs, a novel framework where two
neural networks— a generator and a discriminator— are trained simultaneously in
a game-theoretic setup. This approach has since been widely adopted in various
domains, including TL, for its ability to generate realistic data and improve feature
learning. The authors of [132] present a method for adversarial DA that explicitly
minimizes the domain discrepancy using a domain discriminator. Their framework
enables effective TL by aligning the feature distributions of the source and target
domains. [133] explores adversarial learning techniques for semi-supervised DA,
combining labeled and unlabeled data to improve classification performance. The
proposed method uses adversarial training to align feature distributions, effectively
enhancing the model’s ability to generalize across domains.

In addition to the aforementioned approaches, using local data as a source of transfer
where ample statistics are available can significantly enhance model performance.
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One effective method for this is the utilization of context trees, which serve as a pow-
erful tool in TL, particularly for addressing challenges related to out-of-distribution
(OOD) generalization. For instance, consider a scenario where a model is being
trained to classify images of animals. The training dataset may consist of images
from a specific distribution, such as domestic animals like cats and dogs, while the
test dataset includes images from a different distribution, such as wild animals like
lions and tigers. The primary challenge arises when the model, trained exclusively
on domestic animals, fails to generalize effectively to wild animals due to differences
in features, backgrounds, and poses that were not represented in the training set.
By utilizing context trees, we can create a structured representation of the relevant
features for each classification context, thereby bridging this gap [134].

The process begins with creating a context tree where each node corresponds to a
context relevant to the classification task. For example, the root node may represent
the overall category (animals), with child nodes representing subcategories (domestic
vs. wild). As the model processes the data, it learns to capture distinct features
associated with each context. When presented with an image of a wild animal,
the model leverages the context tree to adjust its predictions based on the specific
characteristics of the new data. This enables contextual adaptation, allowing the
model to utilize previously learned features—such as color patterns or shapes specific
to wild animals—to enhance its classification performance. Overall, by employing
context trees, the model improves its ability to generalize to OOD samples, resulting
in enhanced accuracy and robustness in classification tasks [110].

A significant challenge in contrast to traditional TL techniques is addressing tem-
poral changes in the statistical properties of both the source and target domains.
Unlike standard approaches, which assume static data distributions, the dynamic
nature of these domains necessitates models that can adapt to changes over time.
This temporal evolution can significantly impact performance and must be carefully
managed to ensure accuracy. In [135], the authors tackle this issue by introducing
a framework that enables ML models to dynamically adapt to evolving domains.
Their method leverages both historical data from source domains and new data
from the changing target domain, effectively addressing the challenges posed by
temporal shifts.

Building on this work, [136] proposes a meta-optimizer designed to handle temporal
changes in statistical properties, applied to both domain-aware and domain-agnostic
TL. This approach incorporates dynamic network freezing and domain shift detec-
tion to enhance model adaptability. Additionally, [137] introduces a novel unsu-
pervised continual learning strategy that bridges unsupervised TL and continual
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RUNNING RUNNING RUNNING

Figure 2.6 The above figure presents three images of people running, which should
be classified as the same category in tasks like distinguishing between working and
running, despite their significant pixel-level differences. Since traditional classifiers
may struggle with pixel-level representations, tags are generated by comparing each
image with a set of tagged auxiliary images to identify and aggregate relevant de-
scriptors. Analyzing textual data reveals that these images share latent meanings
through tags like "road," "track," and "gym," emphasizing their semantic similarity
[1].

learning, focusing on adapting to a gradually evolving target domain presented in
sequential batches without labeled data. Their proposed method utilizes episodic
memory replay with buffer management and incorporates a contrastive loss to im-
prove the alignment of buffer samples with the incoming data stream.

2.3.2 Domain Adaptation

TL has emerged as a powerful approach to address the challenge of acquiring large-
scale labeled data by enabling the transfer of knowledge from a labeled source domain
to an unlabeled or sparsely labeled target domain, as seen in Fig. 2.7. However,
many TL methods assume that the training and test data share the same distribu-
tion, an assumption often violated in real-world scenarios due to factors like data
collection from different sources or changes in distribution over time. This results in
a phenomenon known as domain shift, which can significantly degrade model perfor-
mance, necessitating costly retraining or additional data collection. DA specifically
tackles this issue by enabling models to adapt to new, unseen distributions, allowing
them to generalize well to the target domain despite the domain shift [138].

Unsupervised domain adaptation (UDA), a critical subset of DA, focuses on cases
where labeled data is only available in the source domain, with the goal of adapting
the model to perform well on the unlabeled target domain. In the context of deep
learning, UDA has become increasingly important as it addresses the challenges
posed by domain shift while leveraging the powerful hierarchical representations
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Knowlege Learning System

Figure 2.7 The figure above illustrates the straightforward task of learning digit clas-
sification using the well-known MNIST dataset [2] and transferring that knowledge
to classify digits in the SVHN dataset [3]. In this scenario, both the labels and
the tasks are consistent across datasets; however, there is a significant difference
between the source domain (MNIST) and the target domain (SVHN), as depicted
in the figure. This discrepancy highlights the challenges that arise from domain
shift, where the models trained on MNIST may struggle to perform well on SVHN
despite the shared task of digit classification.

provided by deep neural networks. This allows models to reduce dependence on
labeled target data and maintain performance across domains despite distributional
changes [139].

An extension of DA, multi-source domain adaptation (MDA), utilizes labeled data
from multiple sources with differing distributions. MDA has gained significant at-
tention in both academia and industry due to the success of DA methods and the
increasing availability of diverse multi-source datasets, further improving the model’s
robustness and adaptability [140].

However, for DA methods, it is assumed that the tasks are the same, i.e., Tt = Ts.
Generally, these methods are applied to categorization tasks, where both the set of
labels and the conditional distributions are assumed to be shared between the two
domains, i.e., YS = YT and P (Y |XT ) = P (Y |XS). However, this second assumption
is quite strong and often does not hold in real-world applications. As a result, the
definition of D is relaxed to only require the first assumption, i.e., Ys = Yt = Y .

Building on the concept of adversarial training, [141] presents an adversarial feature
alignment approach that further enhances the alignment of source and target feature
distributions. Their proposed method shows considerable improvements in UDAn
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tasks, complementing the findings of [142]. In their work, the authors propose
a framework that utilizes domain discrepancy to facilitate UDA, achieving better
classification accuracy by aligning the feature distributions of the source and target
domains.

In a related context, [143] addresses zero-shot learning using visual semantic embed-
dings to transfer knowledge from seen to unseen classes without requiring labeled
data for the latter. This approach effectively improves classification performance in
scenarios with limited labeled data, which ties into the broader theme of TL.

The authors of [144] propose a robust and efficient approach to DA for image classi-
fication, leveraging a new model architecture that enhances the stability of feature
learning across domains. Their method demonstrates superior performance in chal-
lenging DA scenarios. Complementing this, [145] proposes a DA approach that
matches the source-conditional distributions of the features from the source and
target domains, resulting in substantial improvements in adapting models to new
domains with minimal labeled data

[146] focuses on adaptive TL techniques to enhance performance in SSVEP-based
BCI systems. The authors implement a method that leverages historical data from
previous users, thereby reducing the calibration time required for new users and
enhancing overall system usability. Building on this theme, [147] explores various
DA strategies aimed at improving the performance of SSVEP spellers, specifically
focusing on techniques that utilize unlabeled data from new users. The results
from this study indicate significant enhancements in classification accuracy and user
comfort, showcasing the potential of DA in practical BCI applications.

In a broader context, [148] reviews various DA approaches applied to EEG-based
BCIs, including SSVEP systems. This review discusses the effectiveness of different
techniques in enhancing the transferability of models across users and tasks while
highlighting the challenges and potential solutions in this domain.

Shifting the focus to video surveillance, [149] explores cross-domain learning tech-
niques for detecting anomalies in surveillance videos. The study specifically ad-
dresses the challenge of adapting models trained on synthetic data to real-world
scenarios, demonstrating that DA can significantly improve detection rates in var-
ied environments. Complementing this work, [150] proposes an unsupervised DA
framework that leverages unlabeled data from target domains for anomaly detec-
tion. This method aims to bridge the gap between source and target distributions,
thereby enhancing the performance of anomaly detection systems in different surveil-
lance environments.
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Furthermore, [151] presents a novel framework that integrates DA techniques into
existing anomaly detection systems for video surveillance. The authors demonstrate
that their proposed approach improves detection accuracy by effectively mitigating
the effects of domain shift between training and testing datasets. Collectively, these
studies illustrate the potential of DA in both BCI and video surveillance applications,
highlighting its importance in improving system performance across varying user and
environmental conditions.

2.3.3 Domain Generalization

ML models have achieved remarkable success across a range of applications, in-
cluding computer vision, speech recognition, NLP, and healthcare. However, their
reliance on the assumption that training and testing data are sampled from the
same independent and identical distribution (i.i.d.) often limits their real-world ap-
plicability due to distribution shifts, where the distribution of data in the training
phase differs from that in the test phase [152]. This discrepancy, known as distribu-
tion shift, can significantly degrade model performance, making it crucial to develop
methods that enhance generalization capabilities [153]. To address this challenge,
DG methods, as seen in Fig. 2.8, aim to enable models to perform well on unseen
distributions by identifying stable, invariant features or mechanisms across different
domains [154].

DG differs from related approaches such as DA and TL, where some access to target
domain data is available for model fine-tuning. DG, by contrast, assumes no access
to target data during training, making it particularly valuable in scenarios where
acquiring new data is impractical or costly. First introduced in [155] in the context
of automating cell classification in flow cytometry data, DG addresses cases where
shifts in data distribution between patients impair model generalization. In com-
puter vision, the problem of cross-dataset generalization was highlighted by [156],
who demonstrates that dataset biases could severely reduce the performance of ob-
ject recognition models on unseen datasets. To mitigate this issue, [157] proposes
learning domain-specific and domain-agnostic components to enhance cross-dataset
generalization in classification and detection tasks.

DG methods have been widely applied in various fields, including medical imaging
and computer vision, and are typically categorized based on how and when causality
is incorporated into the model pipeline. These categories include (i) causal data aug-
mentation applied during pre-processing, (ii) causal representation learning during
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Figure 2.8 In tasks like classifying drawings of horses and donkeys, TL can be used
to apply knowledge gained from a large dataset to focus on shape-based features
rather than detailed textures. Since drawings often lack the rich details of real
images, extracting robust geometric and structural characteristics becomes crucial
for accurate classification. This approach helps the model generalize across different
visual styles, improving performance in distinguishing abstract representations like
sketches.

the feature learning stage, and (iii) transferring causal mechanisms at the classi-
fication stage. Causality plays a critical role in capturing invariances, as causal
relationships are more stable across different environments than spurious correla-
tions, thus improving OOD generalization [152].

[158] focuses on learning invariant feature representations across different domains
to improve generalization capabilities for unseen domains. This foundational work
sets the stage for subsequent innovations, such as the approach presented in [159],
which involves training models to solve jigsaw puzzles as a method for learning
features that generalize well across various domains. Building on the idea of feature
extraction, [160] introduces a method that leverages adversarial learning to extract
domain-invariant features, enhancing model robustness across diverse domains.

In the realm of data augmentation, [161] discusses strategies for learning data aug-
mentation techniques that promote DG, emphasizing the importance of diverse
training data. To improve generalization further, [162] presents a conditional GAN
framework that generates aligned samples for unseen domains, effectively bridging
the gap between source and target distributions.

Within the context of few-shot learning, [163] introduces Matching Networks, which
employ a metric learning approach to classify new examples based on a few la-
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beled samples. Their model leverages a novel attention mechanism to match input
instances with a support set, achieving state-of-the-art performance in one-shot
learning tasks. Complementing this work, [164] proposes a few-shot learning frame-
work that learns a metric space in which classification is performed by computing
distances to prototype representations of each class. This method demonstrates
superior performance on few-shot classification tasks by effectively capturing class
relationships and adapting to new tasks with minimal data.
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3. A Hierarchical Approach for Improved Anomaly Detection in

Video Surveillance

Anomaly detection for video surveillance gains more attention as the number of
deployed cameras constantly increases while the state-of-the-art (SOTA) machine
learning methods push the detection performance to its limit. Low complexity meth-
ods are relatively straightforward to train (low variance) but suffer from high bias
(low performance) whereas, the complex ones can achieve high performance (low
bias) with a large sample size to suppress the high variance of estimated parame-
ters. Also, most of the SOTA methods can only detect indigenous anomalies that
are spatially stationary, failing at detecting the locational anomalies that are due
to nonstationary spatial statistics. To solve these issues, we propose an ensemble
technique based on a context tree that generates a hierarchical ensemble of image
plane partitions, which we call context tree-based anomaly detection (CTBAD).
With CTBAD, partitions yield anomaly detection models of varying complexities,
i.e., from coarse to fine details in partitioning with each partition model (which
can be any SOTA method) trained separately to allow the detection of locational
anomalies, and then we combine them linearly in a weighted manner to achieve a
gradual transition from simpler models to more complex ones as more data become
available in a video stream. As a result, CTBAD benefits from a low variance of
low-complexity methods when the data is sparse and exploits high complexity to
achieve low bias when sufficient data is observed. Our experiments show that we
significantly reduce the number of training samples to reach the same accuracy as
a complex model while successfully detecting the locational anomalies.
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3.1 Introduction to Anomaly Detection

With the number of surveillance cameras already reaching 1 billion, real-time manual
video analysis becomes impractical and needs to be automated [165]. An important
task in the video analysis process is anomaly detection, which aims to identify rare
events that do not follow the established normal behavior and so diverge significantly
from the majority of the events or observations [166]. Current research in the field
concentrates on applying deep learning methods to automate the anomaly detection
task mainly in three categories such as generic feature extraction, learning regular
representations of normal data, and end-to-end anomaly score learning [167].

Generic feature extraction establishes itself on the basis of transfer learning. These
methods [6; 168–172] utilize an existing deep network such as AlexNet [60], VGG
[173] and ResNet [174] with the following advantages: i) the availability of existing
SOTA (pre-trained) deep models and already established anomaly detectors, ii)
deep neural networks’ greater strength regarding dimensionality reduction compared
to the popular linear methods such as principal component analysis (PCA) [175]
and random projections [176], as well as iii) their ease of end-to-end feedforward
implementation. Whereas, as a disadvantage, separating anomaly detection from
feature extraction usually causes sub-optimal scores.

A better alternative is to develop methods that connect both feature extraction and
anomaly detection networks such that the end result is a powerful low-dimensional
representation of normal behavior. Instead of employing already trained models,
in the second category, both feature extraction and anomaly detection models are
trained simultaneously with existing datasets [7; 11; 177–180]. Such methods usually
take advantage of AEs/CAEs [181] and GANs to reduce dimensionality, coupled ei-
ther with well-established one-class classification methods such as one-class support
vector machines (SVM) [182], clustering methods such as k-means [183] or distance
based measures such as k-neighbours distance [184]. Another approach for learning
regular expressions for normal data is to learn the features depending on the anomaly
measure. These methods optimize the feature generation task for one particular ex-
isting anomaly measure such as distance-based [185; 186], one class classification
based [187–190], and clustering based methods [191–195]. Such networks can be
introduced to more generalized problems and leveraged but they require abundant
data for training.

The third and last category of methods [196–199] utilize deep networks to learn an
anomaly score with novel loss functions. In [196], authors propose a self-trained deep
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regression model to optimize the anomaly scores for unsupervised video anomaly
detection. A Bayesian inverse reinforcement learning-based method is used in [197]
which assigns abnormal samples low rewards, whereas normal samples receive high
rewards. Another study [198] introduces anomaly score learning from modeling the
event likelihood. In [199], the authors study adversarial one-class classification to
train two different networks, one to differentiate normal samples from anomalies, and
the other to enhance normal samples and generate distorted outliers. To summarize
the advantages of this category of methods over the others, the abnormality scores
can be individually optimized for the task at hand directly however, the exclusivity
of each method to the tasks being considered makes them harder to generalize to
other applications.

As we mainly aim, in this study, to provide contributions on the end of anomaly
detection rather than learning representations, we opt to stay in the first category
to better isolate and demonstrate our technique. The studies in [6; 7; 171], as well
as ours here, are from the first category of methods of generic feature extraction
with transferring a pre-trained network and they follow a similar process which can
be summarized in three steps (cf. Fig. 3.1):

• ROI in the scene are detected by employing an object detection technique such
as YoLo [200].

• Features of the available ROIs are extracted either (i) by matching to the
receptive field of a set of nodes in a deep neural network that operates on the
whole image or (ii) by using a separate network that directly processes the
small ROI images.

• A well-established one-class classifier such as one-class SVMs [201] or a thresh-
olding of the reconstruction error (if an AE is used as the ROI feature extrac-
tor) [11; 177] is applied to distinguish anomalies from normal behavior.

An important aspect of anomaly detection is locality. Decision (step 3 above) in
locational anomaly detection methods takes into account the nonstationary spatial
statistics [10; 177–180; 202; 203]. Each ROI feature is attached to its location and
compared with the learned statistics from only that location, leading to multiple
models corresponding to multiple locations. This locality makes the overall method
powerful (low bias) at the cost of high variance since the data is partitioned, i.e.,
thinned, into locations per model. Hence, overfitting becomes more pronounced as
an issue due to thinning in addressing locality. Conversely, if all the ROI features are
pooled in the same basket (no partition) by assuming that they are drawn from the
same distribution (spatial stationarity) [6; 7; 171], then the method is insensitive to
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the locality. Pooling is obviously suboptimal (high bias) in case of nonstationarity,
but also benefits from low variance since all the available data is used for training a
single model. The suboptimality in this case can be straightforwardly observed. A
local anomaly, for example, is observing a cyclist riding down a sidewalk, whereas
observing the same cyclist on a cycle lane is normal and both can be observed in a
single scene. Such events are hard to detect for most of the SOTA methods, e.g.,
[6; 7; 171], which infer the normal behavior from samples arriving over the whole
frame and do not consider the local statistics.

STEP 3

Single Anomaly 
Detector

STEP 1

ROI Extraction Feature Extraction Distributed 
Anomaly 
Detectors

STEP 3

STEP 2

CAE

CNNINPUT 
LAYER

CONV. 
LAYER

POOL 
LAYER

FC

Figure 3.1 Algorithm flow for generic feature extraction methods includes three main
steps. In the first step, ROI are extracted from the image using various methods,
such as foreground extraction, object detection, motion detection, and optical flow
(OF). In the second step, feature extraction is performed on the extracted ROIs us-
ing methods such as CAE and CNN. Finally, the last step is split into two paths. In
the first path, a single anomaly detector is trained based on the pooling of statistics
from all possible locations, but it is unaware of local statistics. In contrast, the sec-
ond path distributes multiple models to different locations and thus uses distributed
anomaly detectors that are location-aware. To summarize, this generic feature ex-
traction algorithm involves ROI extraction in the first step, feature extraction in the
second step, and anomaly detection in the last step using either a single anomaly
detector or distributed anomaly detectors.

Ensuring a low FPR is crucial for improving the reliability of an anomaly detection
model and avoiding unnecessary measures [204]. One effective approach for achieving
this is to use the Neyman Pearson (NP) formulation (Fig. 3.2), which introduces
asymmetrical class costs to the binary classification problem. The main goal of
the NP formulation is to minimize the type II error rate while keeping the type
I error rate within a predefined bound [205]. There are several approaches to NP
classification in the literature, including thresholding, asymmetric cost learning,
constrained optimization, composite models, and online methods.

The thresholding approach calculates a threshold value for a trained classifier based
on the desired type I error. For example, in one of the earliest examples of this
approach [206], a radial basis function neural network was trained, and various
threshold values were tested to achieve the desired type I error. However, since
the optimal threshold value is not known beforehand, the best result is obtained
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Figure 3.2 NP methods are designed to ensure a pre-specified false positive rate,
which is crucial in applications like anomaly detection. These methods allow for
the control of false alarms by setting thresholds that correspond to different levels
of acceptable false positive rates. In the figure above, we observe that varying the
threshold directly impacts the false positive rate. By adjusting the threshold, we can
achieve different rates of false positives, providing flexibility based on the specific
requirements of the application. For instance, a higher threshold may result in fewer
false positives, whereas a lower threshold could lead to more frequent false alarms
but might help in detecting more subtle anomalies.
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empirically.

In the asymmetric cost learning approach, different costs are assigned to each class
through the SVM formulation. In this approach [207; 208], a classifier that targets
the desired type I error is obtained by assigning asymmetric costs to different classes.
However, the difficulty here is determining the cost values beforehand, as they vary
depending on class dependencies and the desired type I error.

In the constrained optimization approach, the asymmetric class costs in the NP
classification problem are modeled using the Lagrange multiplier. This approach
has both online and holistic implementations [209]. Still, the proposed classifier
can only learn linear decision boundaries. Although the non-linear extensions of
the same algorithm are mentioned in this study, their implementation is left for
future work. Linear and non-linear approaches have been used to tackle online NP
classification problems, with online methods being particularly relevant due to their
ability to adapt to changing data in real time. However, non-linear approaches
have also been proposed to tackle the NP problem. For example, random Fourier
features [210] have been used in conjunction with the perceptron algorithm to enable
the learning of non-linear decision boundaries online [204].

Composite models have also been proposed to address the NP problem. One such
approach is the umbrella algorithm, which creates NP models by combining different
algorithms [211] like naive Bayes, SVMs, and decision trees. Although this approach
can be used by different models, it may not be scalable to large data sets because it
operates as a holistic process. Another composite model presented in the literature is
based on the context tree and is designed for online algorithms [204]. This approach
combines different classifiers using the context tree, enabling the system to adapt to
new data in real-time.

Overall, the literature contains a range of approaches to address the NP classification
problem, and the choice of method depends on the specifics of the problem at hand.
Linear and non-linear approaches have their own advantages and disadvantages,
and composite models can offer additional benefits by combining the strengths of
different algorithms. Online methods are particularly relevant in this context due
to their ability to adapt to changing data.

In unsupervised anomaly detection, where no examples from the anomaly class
(y = 1) are available during the training of the classifier, anomalies are often assumed
to follow a uniform distribution. Under this assumption, the resulting minimum
volume set problem can be addressed effectively [212; 213]. However, this approach
may fail if the anomaly class does not adhere to a uniform distribution [214]. The
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actual distribution of anomalies depends on the context, data type, and the nature
of the anomalies, often deviating significantly from a uniform distribution. In some
cases, anomalies exhibit heavy-tailed distributions, such as power-law or Pareto,
where extreme values are more common [215]. In other scenarios, anomalies may
appear uniformly or randomly distributed [216], form distinct clusters in Gaussian
Mixture Models, or occur in low-density regions of the data’s probability distribution
[217]. Additionally, anomalies in standard distributions are often found in the tail
regions, representing extreme values [218], while in multivariate settings, they may
manifest as unusual correlations or combinations of features [219]. The choice of a
distribution or model for anomalies depends on the characteristics of the data, the
anomaly type, and domain-specific insights, which are critical for effective detection
and interpretation.

In contrast, in the two-class supervised setting, where both normal and anoma-
lous samples are available during training, the Neyman-Pearson formulation can be
employed successfully without assumptions about the underlying anomaly distribu-
tion. Moreover, this setting allows the use of 0-1 loss instead of unsupervised loss,
simplifying the calculation of anomaly detector performance.

Local anomaly detection method introduced in this thesis, addresses the aforemen-
tioned bias-variance trade-off by using a binary tree that partitions the image plane
to generate a hierarchical ensemble of partitions (models) of varying complexities
(local granularity). The ensemble includes the coarsest single global model at the
root of the tree as well as the most powerful model of the finest granularity obtained
at the leaves. Based on the weighting scheme in the context tree of [47; 48], our
method puts more weight on relatively coarse partition models (high bias but low
variance) at the beginning when the data is scarce and gradually switches to more
complex models (low bias and variance can still be kept low) as the data size in-
creases. Moreover, we achieve this weighting in a performance-driven online manner
during a video stream of ROI features in an unsupervised manner. In this respect,
our method also use step 1 and step 2 but replaces step 3 in the above-mentioned
process (Fig. 3.1). We aim to create a framework that can be applied to existing
methods such as [6; 7; 171] and enhance their performance by taking into account
the spatial nonstationarity in the context of bias-variance trade-off. Our proposed
algorithm has the advantage of keeping the existing methods as is and is imple-
mented as an additional step which introduces a minimal computational complexity
that is used to amalgamate results from different partitioning models. This in return
provides the benefits of both local and global models simultaneously.

CTBAD framework possesses remarkable adaptability in accommodating SOTA
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methodologies, encompassing a diverse array of feature types and anomaly detection
techniques. In our investigation, we rigorously examine an array of feature types
from the existing literature, including CAEs, dynamic images, HOF, and motion
statistics. It is imperative to note that the framework remains inherently amenable
to the seamless integration of any method sourced from the corpus of existing knowl-
edge.

Within the context of our study, the integrated SOTA method assumes the founda-
tional role of the root node model within the CTBAD framework. Correspondingly,
the leaf nodes model is built through a piece-wise combination of the aforementioned
SOTA methods, deployed across distinct spatial locations. Notably, our algorithmic
framework offers an asymptotic performance guarantee, progressively approximat-
ing and eventually surpassing the effectiveness of any integrated SOTA method as
the scope of observed video activities expands.

Through meticulous experimentation, we consistently ascertain that our CTBAD
framework attains a marked and sustained superiority over integrated SOTA meth-
ods in terms of performance. This discernible ascendancy is fundamentally rooted
in the inherent detection capabilities for locational anomalies. More precisely, upon
fusing the CTBAD framework with any chosen SOTA method, the resultant per-
formance aligns with the chosen method or, more frequently, outperforms it. This
enhancement hinges on the contextual spatial statistical nonstationarity.

Next, we provide a brief summary of the related work. We continue with the detailed
explanation of our proposed method in Section 3.3 and share our results both from
simulations and available datasets in Section 3.4. We conclude by summarizing our
work and provide how we plan to further expand in the future in Section 3.5.

3.2 Related Work

In our local anomaly detection approach, as in [48], we partition the image plane into
small blocks and organize them hierarchically via a binary tree. Without such a hi-
erarchy, features and normality models are defined in [202] for each block separately
based on local statistical aggregates. In [203], authors build on that by incorporat-
ing the blocks into the histogram of optical flow (HOF) features with local statistics
such as size and orientation. In [10], authors resize each video frame into different
scales and uniformly partition each scaled image to a set of non-overlapping blocks
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of the same size. For a number of consecutive frames, these patches are combined
to calculate the features which are then put through a masking process. That en-
sures a representation for the given training set images from which anomalies are
separated based on a distance threshold. Block features are generated, in [180], on
the deep layers of a CNN, passing them to an auto-encoder (AE) for obtaining low
dimensional local representations. Then, a two-step anomaly detection is employed
with the first step of clustering (normal, suspicious, and abnormal). The second step
finalizes the decision using a distance threshold for only suspicious and abnormal
clusters. In [11] and [177], authors concentrate on using GANs as a pixel-aware
model to predict the expected behavior from the video and check the error between
actual and expected behavior. The main idea here is that GANs store a statistical
model for each input pixel and thus can be thought of as an ensemble abnormality
model for the whole scene. Another study [220] proposes to use a student-teacher
network scheme to learn pixel-wise anomaly models. These generic models allow
the method to detect anomalies with per-pixel statistics. Authors of [221] build
up on this idea by concatenating multi-resolution features from separate layers of
the network. An anomaly model is introduced in [222] by training the network for
different behavioral (motion direction, and motion irregularity) and spatial tasks
(reconstruction of object-specific appearance information), simultaneously to create
generic local features to detect anomalies. All these methods fail to address the
bias-variance trade-off. They tend to utilize atomic abnormality models [202; 203]
or an amalgamation of different network levels such as [180; 220; 221] to build fea-
tures or utilize the whole network as local-aware models [11; 177]. However, all
of these methods require thorough training with ample data to be able to detect
anomalies, whereas our proposed method achieves a comparable performance with
a low number of training samples.

In [47], authors introduce the context tree weighting by applying it to the binary
coding problem. Their main idea consists of weighing coding distributions sequen-
tially to realize effective coding for unknown sources. Context trees can also be
used for piecewise linear prediction [48]. The authors show that the context tree
partitioned predictor achieves the same performance as the best piecewise linear
model for every bounded individual sequence. In [32], authors employ the method
of nonlinear regression by introducing an online algorithm that mitigates, via a bi-
nary context tree, convergence, and lack of training issues of nonlinear regression
methods. In [35], the anomaly detection problem in sequential time series data is
exploited. In this work, the observation space is divided into disjoint regions, and
for each region a new density estimator is trained, and an overall model is built
upon the estimators from the disjoint regions. It is shown in [223] that the context
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tree weighting algorithm computes the prior predictive likelihood to identify a pos-
teriori most likely models and compute their exact posterior probabilities. In [224],
context tree methods are utilized for creating a pattern dictionary for anomaly de-
tection. Others [225; 226] utilize a similar idea, by building up multi-scale features
by learning the optimal weights to create refined features.

Deep learning models have been observed to be beneficial for anomaly detection
as well [227]. The research related to our work concentrates on 1) utilizing pre-
trained networks to generate features either by concatenating the network outputs
with existing hand-crafted descriptors [6; 171; 172] or by using the network outputs
directly [168–170; 178; 228–230], and 2) designing new deep learning networks to
learn normal behavior as in [11; 177; 179; 231–233].

Deep networks are employed in [6; 171] for object [200] and motion [5] detection to
obtain handcrafted features. Authors assemble the statistical properties (such as
skewness and kurtosis [234]) of the motion associated with the object detected and
the outputs from the object detection network such as classification scores and the
bounding box center. The study in [172] proposes to add the mean squared error
between the original and reconstructed image by a GAN for ROI as a new feature
dimension. The features are fed, in the last step, to a few shot learning network [235]
for anomaly detection, which takes advantage of the persistence of abnormal behav-
ior in time. The authors of [236], propose leveraging self-attention architectures, in
particular a spatiotemporal transformer model, for extracting semantic embeddings
from videos. In addition authors of [237] propose a new video anomaly detection
framework, which utilizes a neural network-based feature extraction module to an-
alyze each new frame. This module identifies the location of objects through object
detection, captures appearance information through segmentation, and determines
global motion labels using OF analysis. Additionally, it calculates local motion with
pose estimation and measures the reconstruction error. These extracted features are
then used to create a semantic embedding that represents the detected activity. A
deep neural network is trained with metric learning using this semantic embedding
to generate an anomaly score for each new frame. Whereas in [238], authors pro-
posed to calculate the nearest neighbor distance for anomaly evidence using a fully
connected neural network, which then sequentially decides for anomalous events
with a RNN. In their latest work [239], authors present a novel video anomaly de-
tection framework that not only detects anomalous events in surveillance footage
but also provides interpretable explanations for the detected anomalies by analyz-
ing object interactions. The method utilizes scene graphs to explain the context
of anomalies, offering insights into the root causes while maintaining competitive
performance with SOTA approaches. Additionally, the framework supports cross-
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domain adaptability, enabling transfer learning in new surveillance environments,
and demonstrates strong detection performance both theoretically and empirically
on benchmark datasets.

Authors of [170] train a one-class SVM as the anomaly detection method with fea-
tures from VGG [173] that are fine-tuned to improve the performance. In [168],
an anomaly detector is defined based on binary classifiers which are trained with
incoming video frames, and the most discriminant frame features are kept in each
step of their unmasking process. In the paper, the authors experiment with VGG
features and report effectiveness. The masking network is formulated in [169] as
a two-sample test. In addition, updating the training pool dynamically has been
observed to improve the performance of the framework. The authors in [178] demon-
strate the effectiveness of generating deep learning features by applying AEs [181] to
both ROIs and the motion data associated with the ROIs, which are fed to one-class
SVMs for anomaly detection. A similar method is utilized in [228] but features are
obtained from a deep belief network rather than an AE. Unsupervised classification
approaches are proposed in [230] for detecting anomalies, by first clustering the CAE
[240] features and then regarding each cluster as a class to perform one-vs-rest clas-
sification. Similar approaches are also available in graph anomaly detection [229],
in which unsupervised clustering-based anomaly detection is employed to detect
whether graph vertices or edges are abnormal. The vertices, one-hot encoded, are
represented by minimizing AE-based reconstruction loss and pairwise distances of
neighboring vertices. In [7], the authors build upon the idea of CAEs. In their work,
authors train two CAEs for appearance and motion models, then feed the extracted
features to a k-means clustering-based anomaly detector. In addition, [241] couples
a denoising AE (to extract representations) with a recursive neural network (RNN)
to learn normal patterns from lower dimensional multivariate sequences. A CAE is
applied to model regular behavior in frames which is an improvement on AEs by
taking advantage of spatial image properties [179]. Both [231] and [233] utilize CNN
[242] to learn the spatial properties and combine them with a long short-term mem-
ory’s (LSTM) [243] temporal data modeling to boost the performance from CNN
features. In [244], authors propose to use a sparse coding-based method for feature
detection instead of a CNN and feed to an LSTM. In [245], the authors present a
video anomaly detection system that combines CNNs for spatial feature extraction
and RNNs, such as LSTMs, for temporal sequence modeling to detect anomalies in
video streams. The proposed model leverages the complementary strengths of CNNs
and RNNs, achieving robust performance in detecting unusual events in surveillance
footage.

In [246], authors introduce Anomaly Generative Adversarial Network (AnoGAN)
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network, which searches for the latent representation of any input with the mini-
mum distance to the actual input. With the latent space encompassing the sample
distribution of the original normal space, anomalies are expected to have a larger
distance to their best representation. The problem with this approach is the time it
takes to search for the best latent representation. Networks, such as [247] and [248],
is proposed to overcome the problem by mapping the best latent representation to
the input. In a work similar to [6; 171], authors utilize the mean squared error be-
tween the actual and expected frames generated by a GAN as a part of their feature
set. [249] introduces a two-stream spatiotemporal generative model (TSSTGM)
for real-time abnormal behavior detection in surveillance videos, balancing accu-
racy and speed. The model uses an end-to-end deep learning framework for video
reconstruction and prediction, leveraging reconstruction and prediction errors to de-
tect anomalies, and is designed with a fully convolutional structure to handle input
videos of any size. TSSTGM, trained with adversarial learning, efficiently processes
appearance, temporal, and motion features.

In [185], the authors employ the random neighbor distance-based anomaly measure
to learn low-level representations from high-dimensional data, where the key prop-
erty is that low-level representations for normal data have smaller distances com-
pared to the abnormal instances. A simpler distance metric between low-dimension
representations and randomly projected representations of the same instances is used
in [186]. One-class SVM learns the optimal hyperplane maximizing the margin be-
tween training data instances and the origin. The main ingredient of deep one-class
SVM methods such as [187–189] is to learn the one-class hyperplane from the neural
network-enabled low-dimensional representation space instead of the original input
space. Authors of [190] take advantage of neural networks to map inputs into the
sphere of minimum volume, and then utilize the hinge loss function to guarantee the
margin between the sphere center and the projected instances. In addition, training
can be combined with feature extraction. Another approach is to extract features
tailored for a specific clustering algorithm as in [191–195], developing on this idea
with different clustering algorithms as a means to optimize the latent features from
different deep networks.

In [250], the authors propose three new algorithms that combine unsupervised deep
learning with shallow learning, using Extended Isolation Forest (EIF) for near real-
time network traffic anomaly detection. They demonstrate the effectiveness of com-
bining Memory Autoencoder (MemAE) and EIF using SHapley Additive exPlana-
tions (SHAP) for improved result robustness and performance.

In [251], the authors introduce an attention-based residual AE for video anomaly
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detection. This model effectively captures both spatial and temporal information by
incorporating temporal shifts for efficient temporal modeling and channel attention
to exploit channel dependencies. The authors of [252] present a novel AE architec-
ture for video anomaly detection, separating spatial and temporal representations
to identify abnormal events in videos. They use an efficient motion AE with con-
secutive frames and RGB difference for learning regularity in both feature spaces.
Additionally, they employ a variance attention module to enhance the motion AE’s
performance by assigning importance weights to moving parts of video clips. In
[253], the authors propose an unsupervised anomaly detection method for video
events. They focus on learning temporal correlations by using a dual-stream mem-
ory module, integrating high-level semantic information from appearance and mo-
tion branches. Feature queues capture historical patterns of normal behavior using
momentum-based updates for write operations and OF information for read opera-
tions. In [254], a framework based on vision transformers (ViT) [255] is introduced
for image anomaly detection and localization. This method combines reconstruc-
tion and patch-based learning to effectively detect anomalies in images. Similarly,
in [256], the authors propose an encoder-decoder-based method for image anomaly
detection and localization. The approach utilizes a ViT-based encoder and a con-
volutional layer-based decoder with multi-head self-attention from ViT to capture
relationships between image patches and learn the distribution of normal data for
anomaly detection. In their work [257], the authors introduce a novel video anomaly
detection paradigm based on restoring video events from keyframes. This enables
more effective mining and learning of higher-level visual features and comprehensive
temporal context relationships using ViT.

Further, [257] presents a video anomaly detection system that combines deep CNNs
for spatial feature extraction and RNNs, such as LSTMs, for temporal sequence
modeling to detect anomalies in video streams. The proposed model leverages the
complementary strengths of CNNs and RNNs, achieving robust performance in de-
tecting unusual events in surveillance footage.

[258] addresses the limitations of current anomaly detection approaches in open-
world applications by introducing open-vocabulary video anomaly detection (OV-
VAD). The proposed model decouples OVVAD into two tasks: class-agnostic de-
tection and class-specific classification, using large pre-trained models to detect and
categorize both seen and unseen anomalies. It further enhances the model’s perfor-
mance through a semantic knowledge injection module from large language models
and an anomaly synthesis module to generate pseudo-unseen anomaly videos. In
another approach integrating language models, in [259] the authors introduce Gener-
alist Anomaly Detection (GAD), aiming to train a single detection model that gen-
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eralizes across diverse datasets without further training. The proposed in-context
residual learning (InCTRL) model leverages few-shot normal images and residual
learning to detect anomalies across various domains, significantly outperforming
SOTA methods on multiple anomaly detection benchmarks, including industrial,
medical, and semantic anomalies.

Bayesian methods are widely used in video surveillance for anomaly detection due
to their ability to model uncertainty and incorporate prior knowledge. Dynamic
Bayesian Networks (DBNs) are particularly effective for modeling sequential data,
enabling real-time anomaly detection in activities such as unattended baggage in
public spaces or unusual crowd movements [260]. Additionally, Bayesian nonpara-
metric models, such as Gaussian processes, can identify anomalous events by es-
timating the likelihood of observations given the learned model of normal behav-
ior [261]. These methods also integrate well with deep learning approaches, like
Bayesian convolutional neural networks, which enhance anomaly detection by quan-
tifying prediction uncertainty in complex scenes [262]. The probabilistic nature of
Bayesian methods makes them robust in handling noisy or incomplete video data,
ensuring reliable detection of subtle anomalies in dynamic environments. Another
method utilizes Bayesian nonparametric models to partition videos into temporally
consistent and semantically coherent scenes, facilitating robust anomaly detection in
real-world surveillance videos with noisy and multimodal scenarios [263]. Lastly, a
further approach employs Bayesian feed-forward neural networks to achieve accurate
and early anomaly detection and localization in crowded scenes, thereby enhancing
surveillance systems’ responsiveness to unusual events [264].
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Figure 3.3 Architecture of the proposed anomaly detection framework consists of
three main steps. In the first step, the framework uses YoLoV5 [4] for object detec-
tion and FlowNet2 [5] for OF estimation to analyze each frame of the video sequence.
YoLoV5 identifies objects within each frame, while FlowNet2 estimates the motion
between consecutive frames. In the second step, the results from the first step are
fed into two feature extractors proposed in [6] and [7]. In [6], the authors propose
to extract features related to the object-level appearance and motion, while in [7],
the authors propose to extract features related to the pixel-level appearance and
motion. Finally, in the third step, the extracted features are used in a context tree-
based method to detect anomalies. To summarize, our architecture performs object
detection and OF estimation in the first step, feature extraction in the second step
using two different feature extractors, and anomaly detection in the third step using
a context tree.

3.3 Method

In this section, we first outline our anomaly detection algorithm. This includes a
general algorithmic flow and brief explanations. We next continue with the details
of our computationally efficient implementation such as the features, context tree
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and loss function.

3.3.1 Overview of Our Algorithm

In our algorithm, a video stream is processed frame by frame. We divide each frame
F into N rectangular regions. For each region Ri, where i ∈ [1,2, · · · ,N ], there is
an associated local anomaly detector Mi,t which is trained with only those video
activities that fall inside the region Ri up to and including time t. Video activities
are defined by detecting the ROIs inside each frame F with YoLo [4]. It returns the
coordinates of the bounding box with the center Cbb = {x,y} and confidence level
for the detected ROI/activity. Based on the bounding box coordinates, a feature
vector is extracted for each ROI and assigned to the corresponding region Ri. These
regions of activities are designated as "active" for the frame Ft at time t, and their
indices are kept in the set of active regions Iactive(t). In the process of our algorithm,
we update the local anomaly detectors, Mi,t’s, with all the observed ROIs in time
(for all i ∈ Iactive(t) at each time t).

A partition Pj with j ∈ [1,2, ...,K] is defined as the union of disjoint regions. Let Ij

be the set of region indices for the partition Pj , and Pj ∋ Ri if i ∈ Ij with Rk ∩Rl = ∅
and F = ⋃

i∈Ij
Ri for all k, l ∈ Ij . Note that there are K different partitions. For

each partition Pj , we append the local models from its regions, Mi,t’s where i ∈ Ij ,
to cover the whole frame and, thus, obtain an anomaly detection partition model
M j,t corresponding to the partition Pj .

When the frame Ft is received at time t and YoLo activities are obtained, we calcu-
late/update the current performance of each partition, which is an amalgamation of
the performances of the corresponding local anomaly models Mi,t’s. Then, we assign
a weight (proportional to the performance) to each partition and obtain a weighted
average of the anomaly decisions of partition models. This weighted average is the
final anomaly detection taken by our proposed algorithm. As the number of ob-
served ROIs increases in time, a single partition begins to outperform the others
becoming the optimal partition Poptimal. As time progresses, the performance of
our algorithm approaches Poptimal, thanks to the theoretical guarantees established
in [47; 48].

This flow we described is summarized in Fig. 3.3. There are 3 main steps:

• Objects are detected from the input frame.
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• Features are extracted from the bounding boxes (ROIs) describing the objects
detected. Note that these features define our video activity representations.

• Anomalies are detected using our algorithm: Partitions are generated via a
binary partitioning tree and the weighting scheme is based on context tree
weighting.

In this framework, given a feature vector xt for a detected YoLo activity at time
t, a partition model M j,t(·) ∈ {0,1} performs anomaly detection by accepting the
decision of its corresponding local model Mi,t(·), i.e.,

M j,t(xt) = Mi,t−1(xt),

i ∈ Ij and xt ∈ Ri. Then, the final anomaly detection in our method is a weighted
combination,

f(xt) =
K∑

j=1
wj,t−1M j,t(xt),(3.1)

where the time-varying weights are updated in time proportionally to the partition
model performances, and always nonnegative and sum to 1. One of these weights
converges to 1, which describes the best-performing partition that our algorithm is
asymptotically tuned to.

We describe our method in this order and start with the video activity (or object)
features in the following.

3.3.2 Features

To extract meaningful and processable data from each video frame Ft at time t, the
first step is to extract set of features (xt ∈ Xt) of the scene, which reduces the input
dimensions from the whole frame to mere 1D vectors representing the important
properties of the activity inside. To achieve this dimensionality reduction, we choose
to employ the features utilized in [6] and [7]. However, we want to emphasize here
that, for our algorithm, the choice of features is not critical and we can exchange
the current features with any others.

Both of the feature extraction methods explained in [6] and [7] employ an object
detector as the first step. The object detection method utilized in both of the meth-
ods is YoLo, which we also deploy with the implementation provided in [4]. In both
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Figure 3.4 Above, we observe the objects detected by YoLoV5 [4] over a video frame
from UCSD Pedestrian dataset.

methods, objects1 are extracted from the unprocessed images and the coordinates
of bounding boxes for each detected object are returned, as seen in Fig. 3.4. Fea-
tures of a detected object are assigned to the frame region (Ri) that includes the
center of the bounding box i.e. ROI. Regions of the detected objects become active
and their local anomaly detection models (Mi,t’s) and parameters are updated with
the corresponding features. Next, we provide a summary of each feature extraction
method, [6] and [7], that is applied to the active regions Ri ∈ Iactive(t).

3.3.2.1 Convolutional Autoencoder (CAE) Features

A CAE is utilized in [7] for feature extraction, cf. Fig. 3.5, as summarized in the
following list.

• Based on the detected bounding box coordinates, small snippets from the
frame are extracted, and processed by the CAE. The processing steps include:

– Snippets are resized to fit the input of the CAE.

1In this work, we decided to use a subset of the object types since they are the most interesting to us. The
object types we utilize: {person,bicycle,car,motorcycle,bus, truck,cat,dog}.
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– A batch normalization is applied to the resized snippets. Random Gaus-
sian noise N(0,1) is also added.

• The feature vector is extracted from the bottleneck layer after training the
CAE.

22
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Figure 3.5 The authors of [7] propose the above architecture to extract features from
ROIs. In this network, the ROIs are first resized, and random noise with normal
distribution is added. Then, the bottleneck layer in the middle of the network
provides the feature, and the mean squared error (MSE) between the input and
output is added as an additional dimension to the feature. This approach aims to
capture the most important attributes of the ROIs while preserving the spatial and
temporal information. By including the MSE as an additional dimension, the model
can differentiate between normal and anomalous ROIs more effectively.

To use these features in this thesis, we train two different networks. One of the
two networks is for the detected objects from unprocessed images, and the other is
for dynamic motion images extracted from video. Dynamic motion is obtained via
Laplace transforms as explained in [7] for each frame Ft.

3.3.2.2 Flow Features

In [6], authors build a feature vector using both flow features from [5] and [200].
OF, as seen in Fig. 3.6, is calculated in [5] between frames Ft and Ft−1 for the
generation of flow frame F flow

t . Flow features are then extracted by superimposing
the bounding box coordinates detected by YoLo on the flow frame F flow

t . The final
feature vector includes the following from both frames (Ft and F flow

t ):

• Mean, variance, skewness, and kurtosis for the detected bounding boxes from
the flow frame F flow

t .

• Center point coordinates and total area of detected bounding boxes.
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• Calculated class probabilities from the result of YoLoV5 for each set of classes
that we employ [200].

Figure 3.6 The results of the OF algorithm, specifically from [8], show the computed
motion between two consecutive frames. The figures on the right illustrate the OF,
depicting the direction and magnitude of movement between the frames, as well as
the changes in flow over the observed period. This visual representation highlights
dynamic elements in the scene and provides insight into motion patterns detected
by the algorithm.

In addition to the above, we also utilize the well-known HOF features [265]. The
idea is to model the movement of each detected object with HOFs, instead of certain
statistics (mean, variance, skewness, and kurtosis) from the flow frame F flow

t . For
this purpose, we replace the statistics dimensions of the flow features with the 4-
direction HOF.

3.3.3 Context Tree

In our anomaly detection algorithm, we use the context tree weighting method
[47; 48] to efficiently (i) determine the set of partitions ({Pj}K

j=1) and (ii) weight
and combine them proportionally with respect to their performances. Our use of
the context tree weighting method is similar to the feature dimension partitioning
described in [48]. However, the applications and motivations in that study [48],

56



and in this thesis here are completely different. One particular difference is that,
instead of dividing feature dimensions using the context tree, we apply it to divide
the spatial coordinates of each frame Ft. This allows the context tree to group
observations that are from regions with similar statistical backgrounds and speed
up the learning process, as the grouped observations are used to train a single model
instead of training a different one for each region without checking their statistical
similarities. Whereas observations with dissimilar statistics are not grouped to not
underfit. To this end, our binary context tree stores multiple anomaly detection
models with growing complexity as the depth increases. The increase in complexity
enables the combination of all such models (which we propose as the final detection)
to evolve in time from simpler (the simplest one corresponds to the whole space)
models to more complex ones (the most complex one assigns a different model to
each small space region) to overcome the bias-variance trade-off. For this purpose,
we utilize the well-known binary tree structure (context tree) to partition a given
video coordinate space into non-intersecting regions Ri. By introducing a priori
structure to the partitioning problem [266] instead of a random splitting, we reduce
the computational complexity to find the appropriate partition model.

We begin by introducing the essential terminology related to context tree implemen-
tation. Each member of the context tree is defined as a node, and there are three
types of nodes:

• Parent Node: A predecessor of any node.

• Child Node: A descendant of any node.

• Root Node: The highest node in the tree without a parent. (Level 1 in Fig.
3.7, N1 as the node that has the corresponding region R1 which covers the
whole coordinate space).

• In-Between Nodes: A parent and two children nodes. (Level 2 and level 3 in
Fig. 3.7, Ni for i ∈ [2,3,4,5,6,7]).

• Leaf Nodes: A node with no children nodes. (Level 4 in Fig. 3.7, Ni for
i ∈ [8,9,10,11,12,13,14,15]).

We build a full binary tree for our algorithm with all the parent nodes having both
of the children nodes. Each tree node Ni represents a region Ri from the whole
frame, which is divided into two other equal regions assigned to the corresponding
children nodes. This division, as shown in Fig. 3.7, can be achieved horizontally or
vertically. In our algorithm, we change the division rule at each level, so if a parent
node is divided vertically, its children nodes are divided horizontally. The root node
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R0 covers the whole coordinate space. Within this division scheme, regions of the
leaves of each pruning yield a different partition of the whole video frame. From
now on we use the node Ni interchangeably with the region Ri associated with it.

For a full binary tree with depth D, there are in total Ntotal = 2D − 1 nodes. At
each level ℓ, for which ℓ = 1,2, . . .D, the union of regions of the nodes at the same
level spans the whole space, F = Rall = ∪2ℓ−1

k=1 Rl,k where k = 1,2, · · ·2ℓ−1 is the node
number at level ℓ, and ∅ = Rk ∩ Rl,∀k, l at the same level of the binary tree, as
shown in Fig. 3.7.

The introduced binary partitioning tree allows our algorithm to generate in total
approximately K = c2D different video frame (coordinate space) partitions (prun-
ings), where c = 1.50283801... [48]. We define the partition Pj of a pruned tree as
the collection of the regions of the leaf nodes in that pruning, Pj = {Ri : i ∈ Ij}
where Ij is the set of the leaf nodes. Note that for those leaf nodes, Ri ∩ Rm =
∅ for any i,m ∈ Ij and ∪n

i=1 Ri = Rall and Rall is the whole coordinate space, and
so each pruning provides a partition spanning Rall. The complexity of a partition
can be measured by the number of regions, i.e., leaf nodes, it includes. The simplest
partition contains only the root node, whereas the most complex partition contains
all the leaf nodes of the full tree.

As explained in Section 3.3.1, a partition corresponds to a different piecewise
anomaly detection model M j,t = {Mi,t−1 : i ∈ Ij} each of which is the collec-
tion/union of the local anomaly detection models (Mi,t’s) running in its regions,
i.e., at the leaf nodes in its pruning.

We point out that our method defined in (3.1) requires O(K) doubly exponential
computational complexity for a given arbitrary set of partitions (K = c2D). This
can be significantly reduced to only linear O(D) when a structured set of partitions
is employed as in the case of context tree [48], which we exploit here for anomaly
detection. Although there are K different partitions in the ensemble of pruned
trees, one can have only D << K different decisions since partitions share regions.
Hence, the result f(xt) in (3.1) can be obtained by combining only those D different
decisions as

ft−1(xt) =
∑

k∈Iactive(t)

w̃k,t−1Mk,t−1(xt),(3.2)

where Iactive(t) contains the id of D nodes that the observation xt (feature vector of
the detected YoLo activity) visits (depending on the activity’s position in the frame)
from the root Iactive(t,0) to the leaf Iactive(t,D), i.e., xt ∈ Ri,∀i, where i ∈ Iactive(t).
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Figure 3.7 Our partitioning algorithm is visualized above as a binary tree structure,
where each node corresponds to a video frame that is split into two parts of equal
size either horizontally or vertically at each level of the tree. As we traverse deeper
into the tree, smaller patches are obtained, which serve as inputs for the anomaly
detection model. By partitioning the frames in this manner, the model can be
trained on a more diverse set of training samples, resulting in better precision and
accuracy in anomaly detection. The hierarchical structure of the binary tree allows
the model to learn and detect anomalies at various levels of granularity, from coarse
to fine-grained details.
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On the other hand,

w̃k,t =
K∑

j=1
1{Rk∈Ij}wj,t(3.3)

is the accumulation of the weights of the partitions which include Rk as a leaf. Here,
1{·} is the indicator function which returns 1 if its argument holds, and returns 0
otherwise.

3.3.4 Tree Recursions

The accumulated weights in (3.3) are also computed efficiently based on certain
recursions over the tree and proportionally to the partition model performances. We
next continue with explaining these recursions and then finally provide the utilized
performance metric.

A local performance Φi(t) measurement is first defined for each local anomaly detec-
tion model Mi,t−1 at previous time t−1 after making a prediction for the observation
xt−1. This local performance can be obtained by accumulating (through multipli-
cation after lifting with an exponential) the instantaneous losses over time via

(3.4) Φi(t) = Φi(t−1)× exp(−h×L(xt,Mi,t−1)),

where h is a constant, and L(xt,Mi,t−1) is the instantaneous loss of the model Mi,t−1

after predicting for xt−1. The loss we use in this thesis is explained in Section 3.3.7.

In addition to the local performance, we also define a node performance variable
Pi(t) (illustrated in Fig. 3.8) which can be calculated recursively from leaves to the
root as explained in [48]:

Pi(t) = Φi(t), if node Ni is a leaf,

Pi(t) = β ×Pi,left ×Pi,right

+(1−β)×Φi(t), otherwise,

(3.5)

where i ∈ Iactive(t), Pi,left is the left child’s node performance and Pi,right is the right
child’s node performance. Here, β is a parameter (split probability) that controls
the initial weighting of the partition models concerning their complexities.
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(b) Decision calculated for the new sample xt (i.e. for the white car inside the red
bounding box): ft−1(xt) = ∑

k∈Iactive(t) w̃k,t−1Mk,t−1(xt), where i ∈ Iactive.

Figure 3.8 Whole process for the pruning and obtaining the decision through the
active nodes for sample xt is illustrated above.
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Note that when an observation xt is received, all of the local models (Mi,t−1) first
make their predictions, the instantaneous losses (L(xt,Mi,t−1)) are calculated and
then all of the local models, and local as well as node performances are updated
bottom-up recursively, yielding Mi,t, Φi(t + 1), Pi(t + 1). Once these recursions are
completed, one final (this time top-down) pass over the tree is required to obtain
the accumulated weights in (3.3) as desired. For this purpose, an auxiliary variable
µi,t is recursively defined as explained in [48]:

µi,t = 1−β, if node Ni is the root,

µi,t = β ×Pi,sibling(t)×µp,t, otherwise,

where i ∈ Iactive(t), Pi,sibling is node performance of the sibling node of Ni and Np

is the parent node.

These top-down and bottom-up recursions can be completed with computational
complexity O(D) since the number of nodes visited by xt, i.e., the cardinality of
Iactive(t), is only depth D. With these results, the accumulated weight in (3.3) can
be simply calculated as (cd. [48])

(3.6) w̃i,t = µi,t × (Pi(t)/PN1),

where N1 is the root node.

3.3.5 Computational Complexity

Context tree-based methods, like ours, (as explained in [48]) benefit a computational
efficiency advantage for calculating the performance of each possible binary tree
partition in the context tree. When processing a new feature vector xt, the algorithm
only evaluates the active local anomaly detection models, which are members of
Iactive(t) - the nodes visited by xt. This entails that, the algorithm updates D

different local anomaly detection models in each iteration, where D is the depth of
the context tree, i.e., the cardinality of Iactive(t).

The key advantage of this approach is that it drastically reduces the number of
local models that need to be evaluated when calculating the performance of each
partition. Instead of evaluating all possible context tree partitions, which would
lead to a total of K = 1.50283801...2

D partitions, the algorithm only considers the
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active nodes (D local anomaly detection models) in the context tree. This reduction
in the number of models to evaluate results in significant computational efficiency,
making the method suitable for handling complex models.

As a result, while introducing locational anomaly detection and enhancing the overall
performance of existing anomaly models, we only need to run D different local
anomaly detection models, each corresponding to a node at a different depth in the
context tree. The independence of each model allows us to calculate their results in
parallel, further enhancing the efficiency of the process.

Our proposed local anomaly detection method (introduced in Section 3.3.6) com-
putes the congruency with the anomaly model for each new feature vector and up-
dates the anomaly model parameters using Welford’s online algorithm [267]. Both of
these operations depend solely on the feature dimensionality. Consequently, the com-
putational complexity for each model in our anomaly detection method is O(dim)
per single feature vector.

As emphasized before, we need to calculate the local anomaly model results D times
for each new feature vector. Therefore, the overall complexity of our local anomaly
detection model is O(D × dim) for processing a single feature vector. Considering
N new feature vectors, the overall complexity of our anomaly detection method be-
comes O(N ×D×dim). This linear (w.r.t. the incorporated local model) complexity
allows our anomaly detection algorithm to achieve real-time performance.

Furthermore, it’s worth noting that our algorithm does not introduce any additional
computational complexity for certain phases, such as object and motion detection
networks that run on the whole image and need to be executed only once for the
integrated methods. As mentioned in the computational complexity analysis in
references [171; 172], the integrated approaches, with the use of capable graphical
processing units and real-time motion (Flownet2 [5]) and object detection (YoLo
[4]), can efficiently process data and generate new features in real-time.

By introducing location-aware anomaly detection and utilizing a smaller number of
features, we achieve higher performance while effectively reducing the computational
burden. This allows us to maintain accuracy while running the algorithm more
efficiently.

63



3.3.6 Local Anomaly Detection Model

In this section, we explain our local anomaly detection model Mi,t that we use to
produce (by combining those of an active set of nodes) our final anomaly detection
decision as stated in (3.2).

In the first step, we calculate the Mahalanobis distance [268] of the new sample xt

to the mean θi,t−1 of the previous samples in the node Ni as

(3.7) Di(t) =
√

(xt − θi,t−1)T Σ−1
i,t−1(xt − θi,t−1),

where Σi,t−1 is the covariance and i ∈ Iactive(t). In the second step, we calculate the
corresponding p-value as

(3.8) pvalue,i,t = F(Di(t)2,dim),

where F is the cumulative distribution function of the χ2 (chi-squared) distribution
("dim" stands for the feature dimension). In the last step, the node decision Mi,t(xt)
is calculated as:

Mi,t−1(xt) = 1, if pvalue,i,t > 1− τ,

Mi,t−1(xt) = 0, if pvalue,i,t ≤ τ,

where τ ∈ {0,1} is a desired false alarm rate threshold, and {0,1} are labels for
normal and anomalous samples respectively. Note that this describes an optimal
(in the NP detection sense) anomaly detection model that operates at a given de-
sired false alarm rate τ if the distribution is Gaussian. It can be straightforwardly
extended by using a nonparametric density estimation approach to target more
complex non-Gaussian situations. In addition, one can also make a soft decision by
directly applying the continuous pvalue,i,t as the local decision Mi,t−1(xt). During
our experiments, we observed that soft decisions produce better results. From this
point on, we use Mi,t−1(xt) = pvalue,i,t.

Below, we summarize the execution cycle of our context tree-based anomaly detec-
tion approach for each new incoming sample xt as seen in Fig. 3.8.

• A new sample (YoLo activity) xt = [xt,1, · · · ,xt,dim] arrives on the tree, where
dim is the number of features.

• For each node Ni that the sample visits, i.e., i ∈ Iactive(t) = {1,2,4,9} in Fig.
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3.8, we calculate the local decisions Mi,t−1(xt).

• Then we calculate our overall soft decision ft−1(xt) as given in (3.2). Based
on that, the label prediction can be made after thresholding and checking the
sign, i.e., ŷt = sign(ft−1(xt)−η). Here, η is a threshold used for obtaining the
ROC (receiver operating characteristics) curve in our experiments.

• The local models (means and covariance matrices) are updated online with
the sample xt using Welford’s online algorithm [267]. Then, we calculate our
loss (defined in the section below) for each node i ∈ Iactive(t). The recursive
updates of means and covariances:

θi,t = Ni,t−1 × θi,t−1 +xt

Ni,t−1 +1 ,

x̂t = (xt − θi,t)(xt − θi,t)T ,

where x̂t is a temporary attribute to be used in the covariance update as

Σi,t = Ni,t−1 ×Σi,t−1 + x̂t

Ni,t−1 +1

and
Ni,t = Ni,t−1 +1.

Above, Ni,t−1 is the number of observations made until time t−1.

• In the last step, the tree variables are updated online with the sample xt using
the described recursions in Section 3.3.4.

Note that as there might be multiple YoLo activities in each frame Ft, we observe
a corresponding set Xt of new samples at each time t. Hence, we run our algorithm
for every sample xt ∈ Xt separately.

3.3.7 Local Anomaly Detection Loss

One important aspect of our algorithm is that it is an unsupervised technique since
we do not use label information. Namely, in the training phase, we assume that all
of the samples are normal as anomalies are typically extremely rare. This prevents
the use of 0 − 1 loss for measuring the performance of our local models, which has
a critical importance in our tree recursions and weight assignments. Therefore, we

65



are required to measure the performance in an unsupervised manner without using
any label information.

To that end, we propose a novel loss function for our local anomaly detection models.
Given a sample xt, the loss of any non-leaf node Ni in Iactive(t) is derived from the
bias, i.e., difference, between its (non-leaf) true mean θ̄i and the true mean of the
corresponding leaf node θ̄i1 in Iactive(t). This bias θ̄i − θ̄i1 is unknown but could
be straightforwardly estimated by Bi,t = θi,t − θi1,t ∼ N(θ̄i − θ̄i1 ,Vi,t) for non-leaf
nodes and Vi,t = Σi,t

Ni,t
+ Σi1,t

Nil,t
, if the two sample (data of the non-leaf and leaf) were

independent. However, since the two sample certainly overlap, we need to take care
of the intersection and subtract it from the sample of the non-leaf in the calculations.
Therefore, letting

θ̂i,t = Ni,tθi,t −Nil,tθil,t

Ni,t −Nil,t
,

then Bi,t = θ̂i,t − θi1,t. Similarly, letting

V̂i,t =
Ni,t(Σi,t + θi,tθ

T
i,t)−Nil,t(Σil,t + θil,tθ

T
il,t

)
Ni,t −Nil,t

yields

Vi,t =
V̂i,t − θ̂i,tθ̂

T
i,t

Ni,t −Nil,t
+ Σil,t

Nil,t
.

Based on the above derivations, we define the instantaneous loss L(xt,Mi,t−1) in
(3.4) as

L(xt,Mi,t−1) = F(BT
i,tV

−1
i,t Bi,t)

for a non-leaf node Ni, which computes the Mahalanobis distance between 0 (no
bias) and the observed bias Bi,t under V −1

i,t and normalizes it to [0,1] by using its
quantile through the chi-squared cumulative distribution function F. This distance
is uniformly distributed in the long run if Bi,t → 0. In this case of no bias, Bi,t =
θi,t −θi1,t → 0, we infer that the local statistics of Ni is similar to the corresponding
leaf node, and we desire no loss discrimination between this non-leaf Ni and Ni1 .
To incorporate that, we define a randomized loss for the leaf node as

L(xt,Mi,t−1) = U

for a leaf node Ni and U is uniformly distributed in [0,1].

If we observe non-zero bias, Bi,t ̸= 0 in the long run, the loss is convergent to 1, i.e.,
L(xt,Mi,t−1) → 1 since Bi,t is bounded away from 0 and so we infer that the local
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statistics is different than that of the leaf.

Consequently, if there is non-zero bias, i.e., Bi,t ̸= 0, compared to the leaf (dissimilar
statistics), then the weight w̃i,t of Mi,t in (3.2) will converge to 0 since the loss is con-
vergent to 1. Hence, our final anomaly detection asymptotically benefits more from
the descendent nodes, particularly the leaf Ni1 as it compensates for the bias (by
having no bias) in the ascendant node Ni. The situation is reverse in the transient
phase, meaning our final anomaly detection benefits more from the ascendant node
Ni. This is because, despite the non-zero bias, the ascendant node Ni has higher
precision (lower variance) since it typically observes more samples, i.e., Ni,t > Ni1,t.
This leads to better anomaly localization in the long run while exploiting the global
perspective in the beginning. On the other hand, if the bias is zero, i.e., Bi,t = 0
(similar statistics between the non-leaf Ni and Ni1), then both of the local models
Mi,t and Mi1,t are expected to perform asymptotically equally well. However, the
local model Mi,t of the non-leaf will always have a better precision. Hence our final
anomaly detection benefits more from it since we assign a larger weight to it a priori
with β < 1 (cf. (3.5), in which a typical choice is β = 0.5), grouping regions of sim-
ilar statistics as desired. Finally, by inspecting the weights wj,t’s in (3.1), one can
obtain the best statistical grouping (owing to the theoretical guarantees established
in [47; 48]), i.e., the best context tree partitioning of the scene, as a result of the
introduced loss function here that manages the bias-variance trade-off and measures
the performance in an unsupervised manner.

3.4 Experiments

In the following, we start with our simulations and then continue with the real
data experiments where we also compare two different feature sets, i.e., descriptors
compressed with AE [7] and hand-crafted HOF features as well as motion statistics
[6]. We close this section by presenting results for supervised anomaly detection,
where the local anomaly detection model in CTBAD is replaced with a Neyman-
Pearson (NP) classifier. Since this is a supervised setting, we use a simple 0-1 loss
function instead of the novel loss employed in the unsupervised approach.

In order to demonstrate the effectiveness of CTBAD, we conduct experiments using
both simulated and real datasets. To provide a clear understanding of our experi-
mental approach, we outline a simple flow:
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• For each new feature, whether obtained from real or simulated sce-
nario data, we employ CTBAD with different split probabilities, β ∈
[0.125,0.25,0.375,0.5,0.675,0.75,0.875]. Additionally, we compare the deci-
sion outcomes with those obtained from both the root node model and the
leaf node models.

• To observe the gradual improvement of CTBAD performance, we analyze its
performance with increasing numbers of training samples. We periodically
halt the training process and evaluate the performance of the method at that
particular point in time. To do this, we utilize test samples and calculate the
AUC at each point. This analysis allows us to understand the impact of adjust-
ing split probabilities and observe the progressive performance improvement
of CTBAD over time.

3.4.1 Simulations

We have observed that the datasets used for anomaly detection (UCSD [9],
ShangaiTech [11], Avenue [10], ...) usually cover the trivial case where anoma-
lies are defined as anomalies for the whole scene and normal behavior in one part
of the scene is normal behavior throughout the scene. For this reason, we are not
able to show one of the key features of our algorithm, which is its ability to apply
different models to different locations in the scene, so can be utilized for differenti-
ating between different anomalies at different places, thus labeling the same object
as normal in one part of the scene and an anomaly in the other. This means we
are not able to show the full potential of our algorithm with the current datasets
available. For this purpose, as an initial step as a proof of concept, we decide to
work with simulated data as a proof of concept.

In order to achieve that, we developed a simulation framework, in which we can
define different actors (normal and abnormal) in different locations, in a frame with
different statistics representing them. As this is a proof of concept, and we want to
show the effectiveness of our algorithm, we define a simple test scenario that divides
the scene into two separate parts each representing two main actors, vehicles, and
pedestrians. Before explaining the results, we want to explain some of the rules for
the scenario and its actors in detail:

• The Motorway is out of limits for pedestrians, so any actor with pedestrian
statistics shall not occur in the motorway.
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Figure 3.9 AUC vs number of training samples for the simulation data

• There shall be no vehicles on the sidewalk.

• Cyclists, equestrians, etc.. are modeled as abnormal pedestrians and vehicles
to show that in addition to separate abnormalities, shared abnormalities can
be detected as well.

It is worth noting that while the scenario we created for this proof of concept is rel-
atively simple, real-world data may present additional challenges, such as complex
and dynamic scenes, varying environmental conditions, and unpredictable anoma-
lies. Therefore, our framework can be extended to create more complex scenarios
that better represent real-world anomalies and evaluate the performance of our al-
gorithm in more challenging conditions.

We assumed for our scenario that each actor (pedestrian, vehicle, cyclists, eques-
trians, etc...) in each part of the frame is modeled by using separate multivariate
Gaussian distributions (MGD). By this, we mean that our simulation creates the
result of a feature generation network and feeds them to the abnormality detection
framework. Both a vehicle and a person have been modeled as a feature having a
fixed dimension d sampled from a fixed MGD such as x N(0,σ2).

69



For separate actors in our tests, we have used the following distributions :

x̂ ∼ N(0,σ2I), for normal pedestrians

x̂ ∼ N(0, z2σ2I)

, for abnormal pedestrians (cyclists, equestrians, etc...)

where z ≥ 1

x̂ ∼ N(α,σ2I)

, for normal vehicles

x̂ ∼ N(α,z2σ2I)

, for abnormal vehicles (cyclists, equestrians, etc...)

where z ≥ 1

The reason we select to use different covariance matrices for normal and abnormal
behavior is to put on the real-life behavior expected of feature generation networks.
It will not be possible to have a hundred percent detection rate and we want to
simulate that behavior as well. In the next section, we share the results and explain
them in detail for simulation data.

We compare the results of our algorithm to the two extreme cases. The first one is
where no partitioning to the sample space is applied, which we name the root node
model. The second one is where the sample space is partitioned into the smallest
partition (leave nodes in our case) available, and it is called the leaf node model.
Both these cases provide the basic partitioning options that can be computed and
provide a basis to show the advantages of our algorithm. The reason for comparing
these two cases is to show the advantages of using a root node model that learns
the overall statistics faster since all incoming samples affect the performance, and in
the case of the leaf node model learning precise models as the training continues. In
addition, we want to prove how our algorithm takes advantage of both partitions.

We want to explain the figures we utilize to represent our results in detail. We argued
that using our algorithm decreases the total number of training samples to reach
top performance compared to piece-wise models (instead of using a tree structure,
use the models from the leaf nodes only), and another argument we claim is that
for a small number of training samples, the performance is at least comparable to
model using the whole sample space or as we call it the root node model. To prove
this, we take snapshots during the training process of our models and compare the
effects of increasing the number of training samples on the performance of both
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piece-wise and root node models. At each snapshot, we calculate the ROC [269]
for changing β ∈ {0.125,0.25,0.375,0.5,0.525,0.555,0.875}, for increasing number
of training samples that are a proportion to the total number of training samples
available. From these ROCs, we compute the area under curve (AUC) [269] for each
β for each ROC calculated at each training sample. We illustrate the AUC progress
as the number of training samples increases. As you can see, the aim is to show
that for a smaller number of training samples, the AUC for models except the leaf
node model, shall be higher whereas, for models with a larger number of training
samples, all tree models shall converge to the piece-wise model except the root node
model. One additional observation is that the performance of the root node model
shall deteriorate as the number of training samples increases because the statistics
for the trained model become the added statistics from two different MGD and its
model shall diverge from the actual normal model for both parts of the scene.

In Fig. 3.10, we provide the AUC results of our simulations. As explained, the
tests are executed with different numbers of training samples from the total training
sample set with around 12K samples. As observed in Fig. 3.10, for models with a
lower number of training samples, the tree algorithm performs much better than the
piece-wise model, whereas up from a certain number of training samples the perfor-
mance of the piece-wise model catches up with the tree model and they all converge
to the same performance. This is the expected behavior from our algorithm and
the simulation proves that our algorithm outperforms every simple model with the
correct distribution of actors. However, as explained before the uniform distribution
of expected behavior throughout the scene in the datasets such as UCSD causes us
not to observe the full potential of our algorithm since the root node model already
covers one of the most important aspects of our algorithm, to overcome the slow
start problem for training models since all incoming samples become a part of the
model.

Another important aspect that we want to emphasize is that we ensure enough
training samples are observed for each leaf node throughout the simulation scenario.
With this, we establish a working model for each node and the results from that
node become dependable. However, we need to posit that this sometimes is not the
case in real-life data since no sample can be observed for some parts of the frame.
To overcome no sample problem, as explained we decide to assign a random score
and we can observe the results of this decision for the piece-wise model.

For a detailed look, at the performance of the tree algorithm for different β values,
which controls the rate of tree saturation to the leaf nodes. Here a higher value
for β, means a faster saturation to the leaf, and as expected, this reflects on the
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performance of our algorithm. With a small training sample set, β values smaller
than 0.5 performs better, and for larger training sample sets, the opposite is true as
seen in Fig. 3.10.

We have observed that commonly used datasets for anomaly detection, such as
UCSD [9], ShanghaiTech [11], and Avenue [10], typically focus on detecting anoma-
lies that affect the entire scene uniformly. These datasets do not allow us to showcase
one of the key features of our algorithm, which is its ability to apply different models
to different locations in a scene. Our algorithm can differentiate between different
anomalies at different places, even labeling the same object as normal in one part
of the scene and an anomaly in another.

Unfortunately, the current datasets available have limitations, and we are unable
to demonstrate the full potential of our algorithm. Therefore, as an initial proof
of concept, we decided to generate and work with simulated data. This approach
allows us to create a range of scenarios where anomalies can occur in different
parts of the scene, enabling us to highlight the strengths of our algorithm in a
controlled environment. Simulated data allows us to define various actors, including
both normal and abnormal, at different locations within the scene with different
statistical representations.

As a proof of concept, we define a simple simulation scenario that divides the
scene into two distinct parts, each representing two primary actors/regions, vehi-
cles/motorways and pedestrians/sidewalks. Before presenting the results, we explain
two rules we employ for this scenario and its actors.

• Pedestrians (vehicles) are not allowed on the motorway (sidewalk), hence any
pedestrian (vehicle) on a motorway (sidewalk) is a locational anomaly.

• Any pedestrian (vehicle) whose statistics are deviant regardless of its location
is an indigenous anomaly.

With these rules, we consider a scenario that mimics real-world situations where
anomalies can occur in different parts of a scene, and evaluate our algorithm’s per-
formance in detecting both locational and indigenous anomalies. Each actor (pedes-
trian or vehicle) in the scene is modeled using a separate multivariate Gaussian
distribution (MGD). Specifically, we generate d-dimensional features for each actor
and feed them into our anomaly detection framework. Assumed MGDs for feature
vectors of the normal pedestrians: x ∼ N(0,σ2I), anomalous pedestrians (such as
cyclists): x ∼ N(0, z2σ2I), normal vehicles: x ∼ N(α,σ2I), and anomalous vehi-
cles: x ∼ N(α,z2σ2I), where z > 1. These are indigenous anomalies, and note that
any pedestrian (vehicle) on the motorway (sidewalk) is another type (locational) of
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Figure 3.10 ROCs with increasing number of training samples for the simulation
data

anomaly.

To simulate separate actors in our tests, we used different distributions. We mod-
eled normal pedestrians using x̂ ∼ N(0,σ2I), while abnormal pedestrians, such as
cyclists and equestrians, were modeled using x̂ ∼ N(0, z2σ2I), where z ≥ 1. Simi-
larly, we modeled normal vehicles using x̂ ∼ N(α,σ2I) and abnormal vehicles using
x̂ ∼ N(α,z2σ2I), where z ≥ 1. We used different covariance matrices for normal and
abnormal behaviors to simulate the expected behavior of feature generation net-
works in real-life scenarios. We acknowledge that achieving a 100% detection rate
is not possible, and we aimed to simulate this behavior as well.

In this framework, we compare our CTBAD algorithm (with changing split proba-
bility β values) to two extreme partitioning methods, namely the root node model
and the leaf node model. We aim to highlight the advantages of using a root node
model (observing more samples) for faster learning of overall statistics (higher preci-
sion in the beginning at the cost of a higher bias) and a leaf node model (observing
fewer samples) for better localization and higher performance (lower bias) in the
long run (at the cost of higher variance in the beginning) models as training pro-
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gresses. Fig. 3.9 depicts the AUC results of our simulations, where we observe the
effect of increasing the number of training samples on the performance by using
snapshots taken during the training process and testing repeatedly on the separate
test set. At each snapshot, we calculate the AUC of the ROC for increasing numbers
of training samples as well as for changing β values (split probability) which applies
a priori weighting on the partition models. Note that higher β puts higher weights
on deeper nodes and β = 0 corresponds to the root model whereas β = 1 corresponds
to the leaf node model, cf. (3.5). Fig. 3.9 shows that the root node (β = 0) model
performs well in the beginning but suffers from bias in the long run. The leaf node
model (β = 1) suffers from high variance in the beginning but performs well in the
long run. Whereas our tree algorithm (with varying β’s) outperforms both the root
node and leaf node models in terms of accuracy, demonstrating the efficacy of com-
bining different partitions. We benefit from the root model’s higher precision in the
transient phase and from the leaf node model’s lower bias in the long run. Note
that, as expected, with sufficiently large data, our tree algorithm and the leaf node
model converge to the same performance level, which shows that our algorithm has
no bias and achieves appropriate anomaly localization in the long run. Fig. 3.10
presents the corresponding ROC curves to describe the behavior of detection power
against the false alarm rates. Note the convergence among all the models (except
for the root with β = 0) as data size increases, and also note our superiority in the
course of convergence. Experimentally, β = 0.5 appears to provide the best version
of our algorithm, yielding a highly superior performance in both low and high data
regimes thanks to the introduced bias-variance trade-off.

3.4.2 Datasets

To test the effectiveness of our methods, we utilize four distinct datasets: UCSD
Pedestrian [9], Avenue [10], Shanghai [12], and Street Scene [12].

The UCSD Pedestrian dataset consists of footage from a camera observing a pedes-
trian path where traffic flows both left-to-right and right-to-left. This dataset cap-
tures two types of abnormal behavior: (1) vehicles such as bicycles or small golf
carts on the pedestrian path, and (2) pedestrians running.

The Avenue dataset captures scenes in front of a train station on a campus. In this
dataset, anomalies include unusual activities such as throwing papers, which are
challenging to detect using conventional features.
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Figure 3.11 A cyclist is detected as an anomaly in the UCSD Pedestrian dataset.
This anomaly is not location-specific because there is no designated cycling lane in
the scene.

The Shanghai dataset includes footage from multiple camera angles capturing com-
plex scenes involving pedestrian and vehicle traffic on a campus. The StreetScene
dataset offers a bird’s-eye view of a complex local road scene with both vehicle and
pedestrian traffic. In these datasets, anomalies include activities like jaywalking and
unauthorized vehicle traffic.

We use two types of feature sets for evaluation: (1) descriptors compressed with
an AE [7] and (2) flow features (HOF) [6]. Table 3.1 provides an overview of these
datasets, which can be categorized based on the nature of the anomalies.

The first category consists of datasets like UCSD Pedestrian, as seen in Fig. 3.11,
and Avenue, as seen in Fig. 3.12, where anomalies are spatially stationary. In
these datasets, anomalies can occur anywhere in the scene with similar statistical
characteristics, independent of location. Therefore, anomaly labeling does not rely
on specific locations.

The second category includes datasets like Shanghai, as seen in Fig. 3.13, and
StreetScene , as seen in Fig. 3.14, which exhibit locational anomalies. In these
datasets, anomalies are defined by location-specific statistics. Therefore, an activity
may be labeled as normal or abnormal depending on its location, requiring algo-
rithms to be location-aware for accurate anomaly detection.

As anticipated, utilizing global statistics (root node model, β = 0) for the entire
scene proves to be a viable approach for detecting anomalies in datasets with only
indigenous anomalies, such as UCSD Pedestrian dataset (cf. Fig. 3.15). This
approach yields decent performance without experiencing any issues in the steady
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Figure 3.12 An example from the Avenue dataset depicting a person running in a
train station. This behavior is considered anomalous, as individuals typically walk
or wait in this environment.

Figure 3.13 A cyclist detected on the pedestrian path in the Shanghai dataset. Since
this path is designated for pedestrians, the cyclist’s presence constitutes a locational
anomaly.

phase. Consequently, we can observe that the performance of our context tree
approach is not significantly better than that of the root node model. In fact, as the
parameter β decreases (weight of partitions with higher depth), the performance of
our context tree consistently improves and approaches to that of the root model.
This can be attributed to that generating multiple partition models with varying
complexities and combining them only provides minimal gains, as the simplest root
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Figure 3.14 A jaywalker crossing the road in the StreetScene dataset is considered
a locational anomaly. In contrast, walking on the sidewalk is classified as normal
behavior.

Table 3.1 Number of training and test frames in the datasets

Dataset Train Test Total
UCSD [9] 2,550 2,010 4,560
Avenue [10] 15,324 15,328 30,652
Shanghai [11] 274,515 42,883 317,398
StreetScene [12] 56,893 146,482 203375

model is already suitable due to the non-stationary statistics present in the dataset.
On the other hand, it is clear that the AE features are outperformed by the hand-
crafted flow features (upper row vs bottom row in Fig. 3.15), meaning that the
simple motion attributes (HOF or motion statistics) are sufficient for the detections
and more important compared to texture. This is probably because the UCSD
Pedestrian dataset is one of the earlier datasets and it does not require complex
features. We present an example of an anomaly detected using our algorithm in the
UCSD dataset in Fig. 3.11.

In our experiments with UCSD Pedestrian dataset, our algorithm is generally ob-
served to produce a detection performance that is on par with the steady-state
results reported in the literature. However, here we introduce a novel capability of
bias-variance trade-off that enables us to outperform in the low data regime. We
also emphasize that our proposal is a framework that can operate with any anomaly
detection technique, since we generate a context tree-based hierarchical ensemble
consisting of instances of the same technique at varying complexities and then com-
bine them for superior performance.
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Figure 3.15 AUC vs number of training samples with different feature descriptors
for UCSD Pedestrian dataset [9]

When evaluating the Avenue dataset (Fig. 3.16), we encounter challenges in perfor-
mance for both feature sets, primarily due to the limitations of the employed object
detection methods. Specifically, these methods struggle to detect certain objects
defined in this dataset, such as papers being thrown in the middle of a scene. Con-
sequently, the performance of all features falls below other datasets. Although the
feature extraction methods exhibit sub-optimal performance, we present a successful
example of an anomaly detected in the Avenue dataset in Fig. 3.12.

Remark: One important observation in certain cases of both UCSD Pedestrian and
Avenue datasets stems from the steady state performance of the leaf node model that
is lower than the root node model. This is contradictory to our initial expectations
since the leaf node model is the most complex with the lowest bias and it should
outperform all the others in the long run. When closely investigated, we figure out
that in the training phase, the regions of our tree are not fully populated and some
observe no samples. Thus, some of the local models are not well-trained, and then
in the test, if a sample drops there, the detections turn out poor. If the training
size was large enough, then this certainly would not be the case and results would
meet our expectations. Indeed, in our simulations, every node is populated and the
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Figure 3.16 AUC vs number of training samples with different feature descriptors
for Avenue dataset [10]
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Figure 3.17 AUC vs number of training samples with different feature descriptors
for Shanghai dataset [11]
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Figure 3.18 AUC vs number of training samples with different feature sets for
StreetScene dataset [12]
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leaf node model is the best performing in the long run. This issue can be mitigated
by using the nearest populated node model for samples dropping in unpopulated
nodes, which we leave as a future work. Alternatively, one can just choose a small
enough β that is readily available in our framework.

Particularly, our context tree-based ensemble of partitions always converges, in all
datasets, to the leaf node model. This only reinforces our loss function design which
puts more and more weight on the deeper nodes (hence the leaf node model) as the
corresponding models get more and more precise, explaining this expected behavior.

In our further experiments with Shanghai and StreetScene datasets (Fig. 3.17 and
3.18), we specifically focus on detecting anomalies with nonstationary spatial statis-
tics. For a demonstration, we identify video segments that are aligned with our use
case, e.g., videos containing cyclists (Fig. 3.13) or jaywalkers (Fig. 3.14). Our find-
ings are similar to these datasets, and so we concentrate on the Shanghai dataset in
the following as a showcase.

In the Shanghai dataset (Fig. 3.17), the training set predominantly covers only one
part of the image, with only a few samples observed on other parts. However, during
testing, anomalous activities occur on the less well-covered side. Hence, the above
remark is again in effect and the leaf node model again does not reach its maximum
potential. However, unlike UCSD Pedestrian and Avenue datasets, our algorithm
now fully demonstrates its capability of detecting anomalies even in areas of the
image with limited or no training data. The reason behind this contrast is that the
anomalies in UCSD Pedestrian and Avenue are typically spatially stationary whereas
in Shangai and StreetScene, they are non-stationary. Hence, the leaf node model is
the best performing in the steady state and our algorithm successfully tunes to it
as time progresses. Notice how the leaf node model starts performing poorly and
gradually outperforms the root node model. This highlights the effectiveness of our
tree algorithm (particularly in the cases of locational anomalies) which exploits the
root in the beginning and the leaf in the long run, achieving the best of both.

Our comprehensive partitioning strategy enables robust performance and general-
izability, even in situations where training data is limited in certain areas. By
leveraging the capabilities of the tree algorithm, our approach demonstrates its ef-
fectiveness in handling such challenging scenarios, making it a valuable tool in video
surveillance applications. As depicted in Fig. 3.18, our algorithm showcases signifi-
cant advantages over the root node model, consistently outperforming it even with
a limited number of training samples. One of the notable strengths of our algorithm
lies in its ability to address the challenge of having parts of the frame with no train-
ing samples. By incorporating these untrained parts into models that are connected
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to sampled regions, our algorithm effectively integrates the spatial information and
improves detection performance.

Accordingly, we observe that the performance of the root node model deteriorates
relative to the other models as the number of samples increases. This can be at-
tributed to that the non-stationary spatial statistics introduce biases into the root
node model’s performance. In contrast, the leaf node model demonstrates an in-
herent capability to detect locational anomalies, resulting in improved performance
with each additional sample. Notably, our context tree-based partitioning algorithm
facilitates a gradual transition from more general models to localized models, lead-
ing to substantial gains in the transient phase while remaining competitive with the
leaf node model in the long run.

In Table 3.2, we present the highest achieved AUC scores for each of the models
utilized in our experiments, including our proposed algorithm, root node model,
and leaf node model. The results indicate that our algorithm outperforms the oth-
ers, even in the simplest datasets with unique anomalies. Moreover, our algorithm
demonstrates significant improvements over the leaf node model, particularly in sce-
narios where there are insufficient training samples for certain parts of the scene.
These findings provide strong support for our argument that intelligent partitioning
of the entire sample space can lead to the development of a more robust and capable
video surveillance system.

3.4.3 Supervised Anomaly Detection

Up to this point, we have focused on the problem of unsupervised anomaly detection,
where the training data consists solely of samples representing normal behavior. In
this section, we introduce a new approach for supervised anomaly detection in real-
time video streams. This method employs a NP formulation to balance the trade-
off between false alarms and missed detections in local anomaly detection models
within a context tree, enabling precise control over the FPR while maintaining high
detection power. Similar to CTBAD, the context tree-based NP classifier partitions
the video scene into disjoint regions and trains individual NP classifiers for each
partition, effectively capturing varying levels of scene complexity. The simplest
partition contains a single NP classifier, while the finest partition consists of 2D

NP classifiers, where D is the depth of the context tree. Unlike the unsupervised
approach, the training dataset in this supervised setting includes samples from both
normal and anomalous events, eliminating the need to make assumptions about the
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anomaly distribution for NP optimization. This inclusion also facilitates the use of a
simple 0-1 loss function to compute both the node loss and the overall performance
of the context tree.

Our method for supervised anomaly detection, denoted as ft, calculates the predic-
tion as ft(xt) = 2 × sign(Mi,t−1(xt)) − 1 with probability qi for 1 ≤ i ≤ Nq. Here,
xt ∈ Rd represents the feature extracted from the video stream, Mi,t−1’s are piece-
wise linear NP classifiers (experts) trained on different partitions, Nq is the total
number of experts, and qi is the probability of selecting the prediction of expert i

based on its local performance as the final outcome of ft. In contrast, as stated in
[205], NP classification aims to maximize the detection power while upper bound-
ing the false positive rate by a user-defined value τ . For supervised anomaly de-
tection method, each expert Mi,t−1 is a piece-wise linear NP classifier that solves
f∗ = argmaxMi,t−1 Pd(f) subject to Pfa(Mi,t−1) ≤ τ , where Pd, Pfa, and τ represent
the detection, false alarm, and target FPR, respectively. As explained in [204], we
can use a piece-wise linear perceptron for Mi,t−1 and estimate the no detection rate
(Pnd = 1 − Pd) and the FPR to define the overall NP loss of the classifier with the
Lagrange objective, as follows:

(3.9) L(f,γ) = λ

2 ||w||2 + P̂nd(f)+γ(P̂fa(f)− τ),

Here, λ is the regularization parameter, and γ is the class weight, which ensures
convergence to the target FPR τ . We train the parameters of f using stochastic
gradient descent with the loss function in Eq. (3.9), which yields the following
updates:

wt+1 =wt −ηt

(
λwt +µt∇wl

(
ytft(xt)

))
(3.10)

bt+1 =bt −ηt

(
µt∇bl

(
ytft(xt)

))
(3.11)

γt+1 =γt +βt

(
(1{yt=−1}t/nt−)l

(
ytft(xt)

)
− τ

)
,(3.12)

where η, β are learning rates for perceptron and class weight and nt− is the total
number of negative (normal) samples.

For supervised anomaly detection, we use the UCSD Pedestrian, ShanghaiTech, and
Street Scene datasets in our experiments. To construct training sets containing both
normal and anomalous samples for the supervised anomaly detection model during
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both the training and testing phases, we ensure that the causality between features
collected from consecutive video frames is preserved.

To achieve this, we divide the original training and testing sets at the midpoint in
time, keeping the video frame order intact. The first half of the video sequence is
assigned to the new training set, while the second half is assigned to the new testing
set.

Figure 3.19 In the above figure, we observe the average loss per node in the partition
as a function of the number of training samples. As expected, the graph shows
that the loss decreases as the number of training samples increases, indicating an
improvement in the algorithm’s performance.

Additionally, we analyzed the performance of different partitions of the context
tree for each new sample (x(t)). Fig. 3.19 shows the comparison between the
best-performing pruning model at the end of training and the least complicated
partitioning that spans the whole space (Pleast = froot) and the most complicated
partitioning, (Pmost = ∀fii ∈ Ileaves, where Ileaves is the set of leaf nodes of the
context tree), which is the combination of all the leaf node models of the context
tree.

We observed that as the number of training samples spanned by a model increases
(for a context tree node), the model becomes more performant at detecting local
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anomalies, resulting in an overall increase in performance. This indicates that in
areas with high sample counts (such as sidewalks in pedestrian traffic), the best-
performing node is located closer to the leaf nodes. In contrast, for parts of the
image with a low sample count (such as buildings in the scene), the algorithm
assigns models spanning larger neighborhoods as the best available model, which is
expected.

Figure 3.20 In the above figure, we observe the context tree algorithm and its cor-
responding partitioning. The nodes of the partition are highlighted in red, which
indicates that these nodes contain the most significant information for detecting
anomalies in the data. Overall, the figure demonstrates the effectiveness of the pro-
posed context tree algorithm in achieving appropriate partitioning and improving
the accuracy of anomaly detection in video scenes.

Fig. 3.19 also illustrates that a simple partitioning model (single region covering
the whole scene) has better performance at the beginning of the training process
because global statistics result in a better model since more samples are utilized.
However, as the number of samples increases, more complex partitions (i.e., parti-
tions with lower-level nodes as their members) become more dominant and better
at distinguishing local and global anomalies. The best partitioning model, which
our algorithm approaches, follows the same trend. For parts of the image with fewer
samples (5 in Fig. 3.20 and Fig. 3.21), the node on the upper branches has the
highest performance, whereas, for disjoint or image parts with ample samples, leaf
nodes exhibit the same behavior.

We illustrate the performance of the context tree with a depth of 4 for different false
positive rates set at fpr ∈ 5e−3,1e−2,5e−2,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9 to
calculate the receiver operator characteristics (ROC) for different features and
datasets. For this purpose, we execute experiments for the dynamic motion and im-
age features from CAE bottleneck proposed in [14] for the UCSD Pedestrian dataset
only, and the statistics-based feature defined in detail in [13] for all datasets. At each
fpr, we compute a new tree model based on NP classifiers set at the corresponding
fpr and calculate its achieved false and true positive rates for each feature set. In
Fig. 3.22, we show the overall performance of the system for features and datasets,
and we provide the AUC values in Table 3.3.
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Figure 3.21 Above, we observe the partitioning of the model space for the appropriate
partition at a particular depth. This partitioning allows for the identification of
groups of statistically similar regions, which can be used to train a separate classifier
for each combination of regions. This approach effectively manages the bias-variance
trade-off and can improve generalization performance.

As shown in Fig. 3.22 and Table 3.3, the performance of [13] is superior to [14]
for UCSD Pedestrian, which is also inline with the results in the original papers.
In addition, we observe that by capitalizing on the local statistics, we are able to
achieve higher performance compared to both more complex and simple methods,
as seen in Fig. 3.19. We also perform better for both Shanghai and Street Scene
datasets.

3.5 Discussion

We proposed CTBAD, a method that effectively partitioned video frames with a
context tree for anomaly detection. This approach was particularly effective for
locational anomalies exhibiting spatially nonstationary statistics, even with limited
training samples. By combining models with increasing complexity and locality,
CTBAD detected anomalies in specific regions, surpassing the limitations of rely-
ing solely on global scene statistics. This represented a significant improvement
over existing methods. Moreover, the approach demonstrated robustness across di-
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Figure 3.22 ROC curves for [13] (image and motion) and [14] (statistics) features
for UCSD Pedestrian dataset, [13] features for Shanghai and Street Scene datasets.

verse scenes and actors, emphasizing its potential for real-world video surveillance
applications. CTBAD was also easily integrable with current SOTA techniques.

However, we identified a specific failure mode of the algorithm. This issue arose when
anomalies were spatially stationary (where global statistics were sufficient), and the
training samples were limited such that certain image regions lacked activity during
training but exhibited activity during testing. This situation led to a typical train-
test mismatch. Although this was a common issue for data-driven approaches, it
could be mitigated in our framework by assigning more weight to simpler models
(choosing β ∼ 0). However, this adjustment required additional parameter tuning
for β.

The underlying causes of this failure were threefold:

• The most granular and complex partition model suffered from undertraining.

• No single partitioning scheme provided optimal performance due to spatially
stationary statistics.
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• The loss function was designed to converge to the most granular partition
model, assuming sufficient data was observed over time.

To address this issue, one could switch to the second-most granular model that was
sufficiently trained when statistics were insufficient.

We also conducted experiments for supervised anomaly detection using a context
tree-based NP classifier, which replaced the local anomaly detection models in CT-
BAD with NP classifiers. The results of our experiments demonstrated that the
model consistently converged to the appropriate partition rather than the finest
one, achieving high AUC scores across various feature extraction methods. More-
over, our pipeline was designed to seamlessly integrate with existing or future fea-
ture extraction techniques and online models, making it well-suited for sequential
anomaly detection tasks.
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Table 3.2 AUC Results of different partitioning algorithms for different datasets.

Anomaly Detec-
tion Method

Feature
Type UCSD Avenue Shanghai Street

Scene
CTBAD with
β = 0.875

CAE
(Image) 0.82 0.71 0.54 0.79

CTBAD with
β = 0.875

CAE
(Dy-
namic
Image)

0.85 0.64 0.76 0.83

CTBAD with
β = 0.875

Motion
Statis-
tics

0.93 0.77 0.85 0.85

CTBAD with
β = 0.875 HOF 0.92 0.73 0.87 0.87

Root Node
Model

CAE
(Image) 0.83 0.60 0.48 0.60

Root Node
Model

CAE
(Dy-
namic
Image)

0.87 0.59 0.65 0.63

Root Node
Model

Motion
Statis-
tics

0.93 0.77 0.77 0.48

Root Node
Model HOF 0.91 0.75 0.77 0.56

Leaf Node
Model

CAE
(Image) 0.80 0.70 0.59 0.69

Leaf Node
Model

CAE
(Dy-
namic
Image)

0.84 0.63 0.78 0.80

Leaf Node
Model

Motion
Statis-
tics

0.82 0.44 0.83 0.80

Leaf Node
Model HOF 0.74 0.44 0.86 0.80

Dataset and Feature Set Name AUC
UCSD Pedestrian Image Features 0.853

UCSD Pedestrian Dynamic Features 0.851
UCSD Pedestrian Statistics Features 0.907

Street Scene Statistics 0.953
Shanghai Statistics 0.977

Table 3.3 AUC Values for the ROC curves in Fig. 3.22
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4. SSVEP-based BCI Speller character identification with Domain

Adaptation

SSVEP-based BCI spellers provide a vital communication tool for individuals with
disabilities, allowing them to spell words using electroencephalograph (EEG) signals.
However, the complex process of collecting and calibrating EEG signals for each
new user presents significant practical challenges. To address these challenges, we
propose a novel character identification approach that leverages both labeled data
from previous users and unlabeled data from new users. We treat these data sets
as distinct domains and frame the integration of unlabeled data as a DA problem.
Our method is specifically designed to maximize the utilization of existing user data,
thereby improving accuracy and maximizing the ITR across various signal lengths.
We introduce a self-improving iterative DA system that capitalizes on pseudo labels
generated by the system itself, utilizing the similarity between previous and new
users’ data. This similarity metric enables our model to enhance previous user data
and continuously self-improve over time. This iterative process leads to continuous
improvement, resulting in a more robust and adaptive system for SSVEP-based BCI
spellers.

4.1 Introduction to SSVEP-based BCI Spellers

BCIs are technologies that set-up a direct link between the brain and a computer
through brain signals [41]. Because of its noninvasive nature, EEG is usually pre-
ferred to capture brain signals in BCIs. [42]. SSVEP are generated in the brain in
response to a visual stimulus flickering at a fixed frequency, which provides a high
signal-to-noise ratio [43] when measured with EEG and used as a control signal in
BCIs. SSVEP-based BCI systems have many applications from robotic control to
gaming [270]. One of the prominent applications is the speller system that enables

91



individuals suffering from serious motor neuron diseases to communicate with their
environments [41].

In SSVEP-based BCI speller systems, a character matrix, where each character flick-
ers with a distinct frequency, is presented to the user. The main goal is to correctly
identify the attended character by the user as successfully as possible, solely based
on the measured brain EEG signal (SSVEP). The success of the character identi-
fication is quantified by the information transfer rate (ITR), a combined objective
of accuracy and time [271]. To achieve high ITRs, a separate calibration session
is typically conducted in these systems before a new user starts using the system,
because the EEG signal statistics are known to be highly nonstationary [272]. This
calibration session is a period of supervised data collection and algorithm training
using the collected data [41], which is obviously inconvenient for the new users as
it prevents the product-ready use. Efforts to mitigate this issue include develop-
ing DG-based algorithms [154] that aim to transfer information existing in previous
users’ data to new users with no data/calibration at all. However, the ITR drop
is generally significant when the calibration is removed. In other words, the ITR
difference between the calibration-based algorithms and the DG-based ones remains
to be large [270], leaving rooms for improvement.

Calibration plays a crucial role in SSVEP-based BCI speller systems. It involves
collecting and using calibration data from the user to train the algorithms and
customize them for individual users. Calibration helps establish a reliable mapping
between the user’s brain signals and the corresponding characters, thereby enhancing
accuracy and ITR [270].

The scarcity of published SSVEP data poses another challenge, impeding the
progress of experiments and algorithm development. Collecting reliable and high-
quality SSVEP data is a challenging and time-consuming task, limiting available
resources for research and experimentation. Furthermore, gaining a comprehensive
understanding of SSVEP-based BCIs and their associated challenges requires exper-
tise in the field. The complexity of brain signals, signal processing techniques, and
statistical analysis demands specialized knowledge to effectively address the issues
and develop innovative solutions [41].

Data collection from SSVEP-based BCI speller systems face challenges related to
stimulus design, electrode placement, target identification methods, parameter op-
timization, data scarcity, and the need for expertise for each new user. Overcoming
these challenges requires continuous research, collaboration, and the application of
advanced techniques to improve the field of SSVEP-based BCI spellers [20].
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Data collection from SSVEP-based BCI speller systems, as discussed in [20], is a
challenging and demanding task, especially for new users. This poses a significant
barrier for individuals who are newcomers to these systems and wish to utilize them.
The data collection process for user calibration often requires users to focus on mul-
tiple visual stimuli with different flickering frequencies, which can be mentally and
visually taxing. This can lead to user fatigue and reduced performance during actual
data acquisition. Therefore, it becomes imperative to address these challenges and
devise strategies to alleviate the burden on users, ultimately enhancing the accessi-
bility and user-friendliness of SSVEP-based BCI speller systems by eliminating the
entire calibration process.

The objective of this study is to address the challenges associated with low accuracy
and low ITR in DG methods for character identification algorithms in SSVEP-based
BCI speller systems without any calibration data. The proposed solution leverages
unsupervised calibration data from new users to enhance the significance of exist-
ing user data. This is achieved by employing similarity methods between already
calibrated expert user data and new user data. By incorporating this additional
information from new users, we adopt an alternative approach to DG, which al-
lows us to narrow the character identification margin with incoming new user data
compared to traditional methods. This strategy not only enables us to improve
our results but also facilitates continuous performance enhancement. The influx of
additional data enhances our method’s accuracy and ITR, even when dealing with
low signal rates, thereby ensuring robust and reliable performance over time.

Additionally, we can argue that this brings additional information compared to DG
methods, thus helping us close the margin mentioned earlier. On the other hand,
when using the user system, it already generates this data, therefore suggesting
continuous improvement without causing much difficulty to the user.

Instead, the algorithm is trained on SSVEP-based BCI speller data from already
calibrated data of different users. The key concept in this thesis is to treat each
user as a separate domain, which is part of a general domain shared by all users.
The goal is to discover the common characteristics and patterns within this shared
domain, enabling the algorithm to generalize across users. Successful DG for each
user mitigates calibration issues in the SSVEP-based BCI speller and eliminates the
need for user-specific algorithms. Ultimately, a single global model can be developed,
simplifying the process compared to dealing with multiple user-specific models.

The primary aim of this study is to address the challenges associated with the
target character identification (EEG signal classification) algorithms within SSVEP-
based BCI speller systems, without requiring additional calibration steps for new
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users. Our proposed character identification method is trained using a combination
of SSVEP-based BCI speller data from previous users (such large scale data are
already publicly available in the literature, e.g., [20; 44]) and a new user’s unlabeled
data with pseudo labels created during model training. Note that the new user’s
unlabeled data do naturally accumulate as s/he uses the speller interface. The
central concept of our method revolves around leveraging the similarities between
new and previous users to develop a self-improving iterative system that effectively
utilizes all available data. In essence, our method is a DA technique [72] which
eliminates the necessity for user-specific calibration processes while outperforming
the DG approach. Our strategy also supports continuous performance enhancement.
The influx of unlabeled data from the new user (as s/he uses the system) enhances
the accuracy and ITR, thereby ensuring consistent and dependable performance over
time.

The proposed solution leverages unsupervised labeled data from new users to aug-
ment the significance of previous user data by utilizing models trained on previous
user data. This augmentation is achieved through similarity methods that capitalize
on the data of previous users who exhibit similar characteristics to the new user. By
integrating this additional information from new users, we adopt an alternative ap-
proach that enables us to narrow the character identification margin with incoming
new user data compared to traditional methods. This strategy not only improves
our results but also supports continuous performance enhancement. The influx of
additional data enhances the accuracy and ITR of our method, even when dealing
with low signal rates, thereby ensuring consistent and dependable performance over
time.

Furthermore, it can be argued that this approach provides valuable additional in-
formation compared to DG methods, which solely rely on previous user data to
establish shared domain characteristics among users for enhancing performance for
new users. In contrast, when utilizing the DA system which utilizes new user data,
there is also a continuous improvement without imposing significant difficulties on
the user. This highlights the advantage of our approach in leveraging unsupervised
labeled data from new users, enabling a more nuanced and effective adaptation
process that can lead to improved overall performance.
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Figure 4.1 The proposed SSVEP-based BCI speller system architecture for target
character identification comprises three key steps: global model generation, model
fine tuning, and model adaptation. Initially, a global network (Γglobal) is created
using labeled training data from all previous users, serving as the foundation in
the subsequent steps for adapting to the new user. The model fine tuning step
refines the feature generator (fglobal) while keeping classifiers unchanged, tailoring
feature extraction to each user’s characteristics for improved performance. Model
adaptation enhances the global model’s performance by training the classifier using
fine-tuned features and generating pseudo labels for the new user’s unlabeled data
iteratively, enabling semi-supervised learning and continuous adaptation until sat-
uration is achieved. Overall, this structured approach builds a robust classification
system capable of adapting to varying data characteristics and maximizing informa-
tion utilization.

4.2 Related Work

The target character identification methods of SSVEP BCI speller systems can
be broadly classified into two categories: calibration-based and calibration-free.
Calibration-based methods, [49; 273], require an initial calibration phase where new
users provide labeled training data through a separate EEG session to enable the
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system to recognize characters accurately during subsequent uses. On the other
hand, calibration-free methods, such as [274] and [275], eliminate this calibration
step for new users, allowing them to utilize the system without any prior EEG
experimentation.

Calibration-free methods can further be categorized into three groups: completely
training-free methods [274; 275], DG [18; 19], and DA [276; 277] based methods.
Completely training-free methods provide plug-and-play usability with no training at
all (neither with previous users’ data nor new users’ data), whereas both DG and DA
employ training with labeled data from previous users. DG does not adapt to new
user data, whereas DA adapts by using the unlabeled data of new user accumulated
during the system use. By using this terminology from machine learning, we aim to
provide fresh insights into SSVEP character identification, drawing inspiration from
the concepts of DG and DA found in the literature.

Calibration-based methods consistently outperform calibration-free methods, as ev-
idenced by [49] which showcased deep neural networks (DNNs) achieving superior
performance with calibration data. They demonstrate the effectiveness of their DNN
[49] (which set the SOTA at the time) by utilizing the publicly available large scale
BENCH [20] and BETA [44] datasets. Subsequent studies have delved into CNNs to
address character identification challenges. For instance, [278] introduce task-related
component analysis net (TRCA-Net), a pioneering algorithm merging TRCA’s [279]
spatial filters with CNN models to elevate signal-to-noise ratio and achieve precise
identification. TRCA-Net showcases improved performance and adaptability across
varied CNN architectures with BENCH and BETA datasets. Additionally, [280]
presents the parallel multi-band fusion CNN (PMF-CNN) method, which integrates
spatial and temporal self-attention modules alongside a squeeze-excitation module to
capture correlation information within SSVEP signals, augmenting character iden-
tification accuracy. Employing a dual-stage training regimen and a brain functional
connectivity analysis bolsters algorithm robustness and confirmed the approach’s ef-
ficacy. Furthermore, in their work, [281] introduce EEGformer, a pioneering model
for EEG analysis. This innovative approach combines a depth-wise convolution-
based 1D CNN with an EEGformer encoder featuring temporal, synchronous, and
regional transformers. Notably, EEGformer also includes a decoder component with
a comprehensive architecture tailored for efficient EEG signal processing. Demon-
strating effectiveness across SSVEP-based BCI, emotion analysis, and depression
discrimination tasks (across diverse applications), the model’s performance is vali-
dated on the BENCH and also additional EEG datasets.

In another study [282], they introduce a novel joint frequency-phase modulation
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method and a user-specific decoding algorithm, resulting in an increased ITR of
60 characters per minute. Their approach demonstrates notable improvements in
character identification. Similarly, authors of [283] address the issue of low SNR in
SSVEP data by effectively decoding the SSVEPs within a short data length. They
accomplish this by reducing background EEG activities using TRCA. As a result,
they achieved significantly higher ITRs compared to previously considered levels.

In their paper [19], the authors propose a novel training-free framework for
frequency-phase coding SSVEP BCI spellers, with a focus on target detection. The
framework is centered around transferring SSVEP signals from source users to a
new user (referred to as the target user) to capture critical frequency and phase in-
formation. They introduce the transfer template-based Canonical Correlation Anal-
ysis (tt-CCA) method, which extends upon Canonical Correlation Analysis (CCA)
[284]. CCA is a statistical technique that explores the relationship between two sets
of variables by identifying highly correlated linear combinations known as canonical
variates.

In tt-CCA, the authors generate transferred EEG signal templates for the target
user at the single-channel level using data from the source users. These templates
are derived by grand averaging the corresponding channel’s EEG signal across the
source users. To identify targets, a combination of Pearson correlation coefficient
and CCA is computed to measure the similarity between the SSVEP signals and
transferred templates. Moreover, they propose an online transfer template method
(ott-CCA) that enables real-time adaptation of the templates by gradually updating
them based on the SSVEP signals. By leveraging inter-user information embedded
in the SSVEP signals, these methods provide effective means for target detection.

The effectiveness of the proposed methods is validated through an offline frequency-
phase coding SSVEP BCI speller experiment, where classification accuracy is signif-
icantly improved, highlighting the advantages of exploring and utilizing inter-user
information in SSVEP signals for BCI implementation. The results demonstrate
that incorporating inter-user information into the BCI system enhances classifica-
tion accuracy by up to 7.5% compared to traditional methods. Additionally, the
proposed approach reduces the training time needed to calibrate the BCI system.

The Combined-CCA method is an extension of CCA for target detection in SSVEP
BCI spellers, as proposed in [285]. It integrates reference signals from traditional
CCA with prototype responses obtained from averaged SSVEP training trial signals.
Instead of averaging the SSVEP trial signal solely from the same user’s calibration
session, a pooled transfer approach is introduced where SSVEP trial signals from
other users are also averaged.
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The method involves computing correlation coefficients between projections using
spatial filters derived from the CCA between the test set and the averaged SSVEP
signals. This computation results in a correlation vector. To obtain the SSVEP
detection score, a weighted sum of these correlations is calculated. The template
with the highest weighted correlation value is selected as the SSVEP target.

The Combined-CCA method improves target detection in SSVEP BCI spellers by
incorporating inter-user information through the pooled transfer approach. By com-
bining reference signals from traditional CCA with prototype responses derived from
averaged SSVEP training trials, it enhances the accuracy of target selection. This
approach allows for more robust and reliable SSVEP-based BCI systems.

The Adaptive-C3A method, presented in [18], builds upon the Combined-tCCA
approach to enable unsupervised adaptation of SSVEP templates. It operates in
a simulated online scenario, where trials are classified using Combined-tCCA, and
the resulting predictions are used as pseudo labels. The method identifies high-
confidence trials based on the best vs. second-best (BvSB) confidence ratio and
selects them for template adaptation.

The adaptation process in Adaptive-C3A involves updating the existing SSVEP
templates using a weighted averaging scheme. Eligible trials for adaptation are
determined using a threshold, allowing only high-confidence trials to contribute
to the template update. By incorporating this unsupervised adaptation mecha-
nism, Adaptive-C3A achieves a significant performance improvement compared to
the Combined-tCCA and standard CCA methods.

Experimental results demonstrate that Adaptive-C3A outperforms the Combined-
tCCA method by 20% in terms of classification accuracy. Moreover, it surpasses the
standard CCA method by up to 40% in terms of performance. The ability to adapt
SSVEP templates in an unsupervised manner allows the method to continually
improve its target detection capabilities over time, enhancing the reliability and
effectiveness of SSVEP-based BCI systems.

In their work [17], the authors propose an online adaptive method by combining
and enhancing existing approaches. They first utilize the method introduced in
[276], called Prototype Spatial Filter (PSF). In [276], the authors propose learning a
spatial filter, referred to as the PSF, from multiple Canonical Correlation Analysis
Spatial Filters (CCA-SFs) associated with different stimulus frequencies or users.
The objective is to find a spatial filter that maximizes the similarity to all CCA-SFs.
This is achieved by iteratively updating a covariance matrix with each new CCA-
SF, and the resulting PSF is obtained as the eigenvector of the updated covariance
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matrix.

Another approach employed by the authors of [17] is based on the work presented
in [277]. In that paper, the authors introduce a modified version of conventional
CCA called multi-stimulus CCA (msCCA) for learning a common spatial filter from
a user’s multi-stimulus SSVEP templates. They further extend this approach to an
online learning mode, referred to as online msCCA (OMSCCA). OMSCCA adap-
tively learns an online spatial filter by updating covariance matrices trial by trial,
and the spatial filters for the next trial are computed based on the updated covari-
ance matrices.

In the proposed online adaptive CCA method (OACCA) in [17], the authors incor-
porate the PSF, OMSCCA-SF, and correlation coefficients, which are learned online.
The spatial filters are updated based on previous trials, with zero initialization for
the first trial. Correlation coefficients are computed using CCA and the spatial fil-
ters to measure the similarity between the input data and the stimulus frequencies.
These coefficients are summed to obtain the detection score. The OACCA algorithm
utilizes the filter bank technique to decompose the input data into subband data for
feature extraction, classification, and online adaptation.

Overall, the OACCA method enhances the online performance compared to standard
methods by incorporating the PSF and OMSCCA-SF spatial filters and updating
them adaptively based on previous trials. This online adaptive approach enables the
system to continually improve its performance over time and adapt to changes in
the SSVEP signals, making it a promising method for real-time SSVEP-based BCI
applications. Their offline learning approach achieved an ITR of 158.87 bits/min on
the BENCH dataset and 123.91 bits/min on the BETA dataset. In online learning,
the ITR reached approximately 95.73 bits/min.

To overcome these disadvantages with an acceptable performance researchers pro-
pose to use calibration-free methods. These methods introduced with [19], in which
the authors propose a training-free framework for SSVEP BCI spellers using the tt-
CCA method, which transfers SSVEP signals by averaging EEG signals from source
users to generate transferred templates. The similarity between SSVEP signals and
templates is measured using Pearson correlation coefficient and CCA [284]. They
also introduce the ott-CCA method for real-time template adaptation, demonstrat-
ing improved classification accuracy in offline experiments. The Combined-CCA
method introduced in [285] enhances target detection by integrating traditional CCA
reference signals with prototype responses obtained from averaged SSVEP training
trials. This method uses a pooled transfer approach and computes correlation co-
efficients between projections using spatial filters derived from CCA. By combining
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inter-user information and traditional CCA, the Combined-CCA method improves
target detection and enhances the robustness of SSVEP-based BCI systems.

Combined-tCCA proposed in [18] extends the approach to develop the Adaptive-
C3A method for unsupervised adaptation of SSVEP templates. Predictions from
Combined-tCCA are used as pseudo labels for template adaptation, and high-
confidence trials are selected based on confidence ratios. The existing templates
are updated through weighted averaging, resulting in significantly improved perfor-
mance compared to Combined-tCCA and standard CCA methods. In a different
study, [17] propose the online adaptive CCA (OACCA) method by integrating the
Prototype Spatial Filter (PSF) [276] and online multi-stimulus CCA (OMSCCA-
SF) [17] approaches. OACCA utilizes filter bank decomposition for feature extrac-
tion, classification, and online adaptation. It achieves improved online performance
compared to standard methods, showing promise for real-time SSVEP-based BCI
applications with a high ITR.

Despite their advantages, calibration-based algorithms come with certain limita-
tions. They typically demand a substantial volume of SSVEP data per participant,
as attempts to enhance accuracy through the utilization of SSVEP data from only
other users often result in heightened misclassification rates compared to using an
individual’s own SSVEP data. Moreover, the calibration process necessitates partic-
ipants to dedicate considerable time, potentially inducing fatigue and consequently
impacting the quality of the acquired data. To address these limitations while
maintaining acceptable performance, researchers have proposed calibration-free ap-
proaches (completely training-free, DG and DA).

In [16], the DNN architecture introduced in [49] is initially trained for each source
user. Subsequently, the resulting ensemble of DNNs is transferred to the new user,
utilizing the most representative user DNNs for predicting spelled characters. No-
tably, their ensemble of DNNs demonstrates superior performance compared to other
DG methods [16]. While DG approaches are calibration-free and practical, they also
suffer from not adapting to the new user, resulting in performances that may not
be as satisfactory as those achieved by user-dependent DA approaches.

In a study by [15] on DNN-based SSVEP target identification, a significant step
is the inclusion of a local regularity term in the loss function. This term ensures
that neighboring instances have similar labels, setting their approach apart from
earlier methods. Additionally, their method dynamically adjusts the weights of
various components based on clustering performance, thereby eliminating the need
for predefined parameter settings.
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In this thesis, building on the approach of [15] in applying DA methods to SSVEP
character identification, we additionally draw inspiration from methods such as
SHOT [286]. In SHOT, the classifier module (hypothesis) of the source model is
frozen, while the target-specific feature extraction module is learned by leveraging
both information maximization and self-supervised pseudolabeling. We benefit from
this approach, which implicitly aligns representations from the target domains with
the source hypothesis. Furthermore, unlike the label noise encountered in conven-
tional LLN scenarios [287], we consider that the label noise in utilizing pseudo labels
in our context of DA follows a different distribution assumption. This distinction
renders existing LLN methods, which rely on traditional distribution assumptions,
ineffective in addressing the label noise in pseudo labels within DA contexts. In-
spired by their work [286; 287], we propose the use of pseudo labels to enhance our
method’s performance in a way that is specific to SSVEP signals. In summary, here
we propose a novel DA method for target character identification that not only bet-
ter suits the unique characteristics of SSVEP signals but also maintains practicality
for new users by eliminating the need for calibration. Next, we detail our novel
contributions and highlight the important technical aspects of our method.

We briefly discuss several source-free DA methods from the machine/deep learning
literature. For instance, SHOT, as proposed in [286], adapts a network to the target
domain by freezing the classifier layer and fine-tuning the remaining parts (fea-
ture extractor) through pseudolabeling. In [288], authors introduce neighborhood
reciprocity clustering (NRC), utilizing intrinsic data structure to cluster similar in-
stances. Another study [287] addresses source-free DA from a label noise perspective,
employing a regularizer to mitigate label noise memorization.

4.3 Problem Description

An SSVEP-based BCI speller system is a type of BCI that leverages SSVEP EEG
signals to enable users to spell out characters / words or make selections on a
screen composed of M flickering boxes. To choose one of the available options,
participants position themselves in front of the screen and focus their attention
on the yth ∈ {1,2,3, ...,M} target box. Brain responses (SSVEPs resulting from
flickering stimuli) are measured in the form of multi-channel EEGs, denoted as
x ∈RC×N where C represents the number of channels used to record these brainwave
signals and N represents the number of time samples collected from each channel.
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These SSVEP EEG signals are generated based on the specific frequency and phase
associated with the selected yth target.

The challenge at hand is to establish the relationship, represented as R(x) = ŷ ≃ y,
between the SSVEPs x and the user’s intended target selection y in order to achieve
the highest level of accuracy and speed in recognizing characters. A key metric
for evaluating the effectiveness of this relationship is ITR, which takes into account
both the accuracy of target identification P and the duration T of the stimulation
(interaction period in seconds):

ITR(P,T ) = (log2 M +P log2 P +(1−P ) log2

[ 1−P

M −1

]
)60

T
.

Since ITR reflects the efficiency of the SSVEP-based BCI speller in conveying the
user’s intended selections, the goal of the presented research is to maximize it. From
an analytical perspective, it is evident that a shorter T leads to a higher ITR if the
accuracy P does not degrade, as this relationship is readily observable. Likewise, a
higher level of accuracy P for the same T corresponds to an elevated ITR, as the first
derivative of ITR with respect to P is positive within the interval (0,1). However, the
variables P and T are inherently interdependent, and reducing T adversely affects
P . Therefore, we aim to maximize P for each predetermined T , and pick the (P,T )
pair of the maximum ITR observation.

The process of collecting data from SSVEP-based BCI speller systems, as outlined
in [20; 44], can indeed pose significant challenges. This challenge acts as a barrier for
newcomers to these systems. Finding methods to alleviate this barrier can increase
the overall usability of such systems and facilitate the integration of newcomers into
the BCI speller environment. Traditional DNN architectures tend to tightly adapt
to the specific statistical properties of the training data (previous users or source
domains), and since such properties may not be present in the test set [289; 290] (new
user or target domain), these traditional models often struggle to adapt effectively
to unseen domains. To that end, one must certainly address the distributional
changes (regarding EEG signal statistics) between different users which can actually
be modeled as a domain shift problem [50].

In this context, we tackle the domain shift problem for SSVEP target character
identification, with specific focus on the seamless integration of a new user (target
domain) while leveraging labeled data from previous users (source domains). We
also acknowledge the presence of unlabeled data from the new user generated during
system usage. Consequently, the need for a separate calibration session for labeled
data collection is obviated, thus removing a significant barrier for new users. Our
technical objective is to distill essential and transferable knowledge from the source
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domains, enabling effective adaptation to previously unseen target domains. This
poses a challenging task, as it necessitates models to capture the underlying essence
of the data and adapt across different data statistics. Specifically, we introduce a
method that harnesses previously labeled user data to achieve target identification
with the maximum possible ITR for new users with unlabeled data.

To achieve our goal, we capitalize on similarity scores between new user with unla-
beled data and previous users with existing labeled data. These scores allow us to
rank the k nearest previous users to the new user, facilitating the utilization of mod-
els fine-tuned on their labeled data. Subsequently, we generate pseudo labels from
these models and employ them to fine-tune the developing model of the new user
based on the created pseudo labels. While these pseudo labels may not perfectly
align with the true labels, they provide a robust initial foundation for adapting the
new user model. This methodology also enables continuous adaptation with incom-
ing data of the new user during the system usage, thereby augmenting the overall
performance of the model.

4.4 Proposed Method

In this section, we begin with a summary of our proposed method, providing an
initial understanding and an overview of the workflow. We then delve into each
component, explaining their goals and operational principles. Finally, we conclude
by discussing the nuances of the proposed loss functions and similarity metrics.

Our method aims to enhance SSVEP character identification performance through
a structured approach. We begin with a preprocessing step that filters and samples
the raw EEG data. This involves extracting selected EEG channels and applying
a bandpass filter to isolate relevant signals from each user’s data. Once the data
is preprocessed, it is split into two parts: new user and previous users data. The
goal is to demonstrate the effectiveness of our model by adapting it to and testing
with the new user data, while leveraging the already calibrated and established
data from previous users. This systematic process ensures improved adaptation and
identification performance for new users.

After preprocessing the data, we train a global model based on the DNN architecture
described in [49], using data from previous users to establish a baseline performance.
This training captures shared characteristics from previous users, which is also ben-
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eficial for the new user. The global feature generator (consisting of all layers up to
the fully connected (FC) layer) is then fine-tuned individually for each previous user
using their specific labeled data. This fine-tuning process generates user-specific
feature generators while keeping the global classifier’s (last FC layer’s) weights and
biases fixed. The fine-tuned feature generators are then used to generate features,
which serve as inputs for training the global classifier (last FC layer). By training
the global classifier with these features, it benefits from the combined knowledge of
previous users’ fine-tuned models and better defines the boundaries of each label in
the feature hyperspace. The global classifier replaces the classifiers of the fine-tuned
models, and the fine-tuned feature generators are updated by training them a sec-
ond time (second iteration), keeping the global classifier’s weights and biases fixed.
These updated feature generators are saved for subsequent iterations, integrating the
knowledge acquired from the global classifier. By retraining (second iteration) the
global classifier with these fine-tuned features, the model’s ability to generalize and
adapt to new user is enhanced. This approach leverages the unique characteristics
of previous users’ data to optimize performance for new user, enabling the model
to achieve more accurate predictions and better handle variations across different
users.

Up to this point we described only two iterations; in general, the fined-tuned models
continue improving during many iterations. During the same iterations, we also em-
ploy a separate inner loop of adaptation process for the new user that utilize pseudo
labels. This adaptation process involves two iterative loops: an outer (main) loop
for for the fine-tuning operations described so far, and an inner loop for adapting
the new user’s network with pseudo labels. In essence, the parameters from a pre-
recorded adapted model (from the previous outer loop iteration) are transferred to
a new model that retains the same structure but incorporates the updated global
classifier of the current (outer) iteration. The feature extractor of the transferred
model is then refined recursively (inner loop) in an unsupervised manner, using
pseudo labels generated from the adapted network of previous iteration as targets
for training. This process continues until saturation is reached, where further it-
erations yield minimal performance improvements. For initialization, the last FC
classification layer of the very first global network is updated during model fine-
tuning, then this updated global network is transferred for new user and adapted
(only feature extractor, otherwise the FC is kept fixed) in an unsupervised fashion
with the unlabeled new user’s data (but utilizing pseudo labels). This marks the end
of the first iteration in which, recall that, we also obtained the fined-tuned networks
of previous users that we later use in a separate other adaptation process. In the
next iteration, the adapted network’s FC is first updated, then transferred to new
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user, its feature extractor is updated, and so iterations continue similarly.

Once the aforementioned outer and inner loops are completed, we obtain a set
of fine-tuned networks and one adapted network. Then, we start one more and
final separate other adaptation phase that again works in unsupervised fashion. In
this final unsupervised adaptation phase, a new loss function tailored for SSVEP
signal classification and target identification is also introduced. The introduced
loss function is centered around three concepts: 1) A silhouette score [15] that
measures how well the new user data is finally clustered into classes is used for
parameter selection and for assessing pseudo-label quality (now the pseudo labels
are generated from the nearest users’ fined-tuned networks in addition to the new
user’s self adapted network), 2) a local regularity loss term (leveraging the silhouette
score) that enforces nearby new user instances to be classified similarly, and 3) a
metric that measures user-to-user similarity that picks the most similar previous
users to new user whose responses (in addition to the adapted network’s responses)
to new user data are obtained as pseudo labels (balancing the contributions of
neighboring previous users). We describe these three components of our introduced
loss function in great detail later in this section.

After giving this summary, we next describe the datasets used in this study. After-
wards, we continue with the notations as well as all the details of our method.

4.4.1 Datasets

To evaluate the performance of our method and compare it with the SOTA (SOTA)
approaches later, we focused on two widely used SSVEP-based BCI speller datasets:
BENCH [20] and BETA [44].

The BENCH dataset consists of EEG data from a 40-target BCI speller, including
64-channel recordings obtained from 35 users (8 previous, 27 naive) performing a cue-
guided task. The virtual keyboard consisted of 40 flickers coded with joint frequency
and phase modulation. Stimulation frequencies ranged from 8Hz to 15.8Hz with a
step size of 0.2Hz, and adjacent frequencies had a phase difference of 0.5π. Each
user completed 6 blocks of 40 trials, with randomized flicker presentations and visual
cues. This dataset allows for comparing different methods for stimulus coding and
target identification, conducting offline simulations, designing BCI systems, and
evaluating performance. Additionally, it provides high-quality EEG data suitable
for computational modeling of SSVEPs.
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The BETA dataset comprises EEG data collected from 70 users who have performed
a 40-target cued-spelling task. This dataset is designed and acquired with the aim
of meeting the requirements of real-world applications, making it suitable for testing
in practical scenarios. Thus, EEG signals of BETA are relatively noisier. The study
involved 70 healthy volunteers, with an average age of 25, including 42 males and
28 females. A sinusoidal stimulation method employing joint frequency and phase
modulation was used to present visual flickers on the screen. The frequency and
phase values for the 40 targets were determined using a frequency interval of 0.2Hz

and a phase interval of 0.5π, similar to the BENCH dataset.

4.4.2 Notations

In this subsection, we introduce a set of notations. These notations are designed
to provide the reader with a clearer understanding of the methods that we will
subsequently elaborate on in greater detail. Also, the rest of the article and all of
our explanations will be based on the scenario in which the nth user is the designated
as the new user.
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Nch Number of EEG channels

Fs EEG sampling frequency (in this study Fs = 250 Hz)

t Duration of the (EEG) SSVEP signals in seconds

n New user index

j,k The outer (inner) loop index used in the fine tuning (and first model
adaptation)

X The entire dataset containing SSVEPs

Xi ⊂ X SSVEP signals of the ith user

U Set of all users in the dataset

Un
train Set of previous users in the dataset, except the new user

xn,m ∈ Xn The mth new user instance

xi,m ∈ Xi The mth instance of the ith previous user (i ∈ U such that i ̸= n)

Γglobal Global network

Γi,j Fine-tuned network belongs to the ith user at the beginning of the
jth iteration step

Γj
global Adapted network at the beginning of the jth iteration step (Γ0

global

= Γglobal)

fglobal Feature extractor of the global network: RNch×(Fst)×Nband →
R4×(125t)
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f i,j Feature extractor of the ith fine-tuned network at the beginning of
the jth iteration step: RNch×(Fst)×Nband →R4×(125t) (here, i ∈ U such
that i ̸= n)

f
j
global Feature extractor of the adapted network at the beginning of the jth

iteration step: RNch×(Fst)×Nband → R4×(125t) (f0
global = fglobal)

hglobal Single layer perceptron of the global network: R4×(125t) → RM

hi,j Single layer perceptron of the ith fine-tuned network at the beginning
of the jth iteration step: R4×(125t) → RM , i ∈ U such that i ̸= n

h
j
global Single layer perceptron of the adapted network at the beginning of

the jth iteration step: R4×(125t) → RM

vn,m The mth feature for the new user instance

ln,m The true unknown label of the mth feature of the new user

l̃n,m The predicted label of the mth feature of the new user

L(r)
total(λ) Total loss calculated at the iteration r of the second (separate and

final) adaptation phase. Note that the first adaptation phase has the
outer / inner loop iterations j / k

Γwr

global Adapted network with parameters wr during the second adaptation
phase

Λ Set of self-adaptation loss weights (in this study Λ = {0, 0.2, 0.4,
0.6, 0.8, 1})

λ ∈ Λ Self-adaptation loss weight

wr(λ) The parameters of the adapted network Γwr

global that is trained in
unsupervised fashion with the self-adaptation loss weight λ

l̃n,m(λ) The predicted label for the mth new user feature obtained from the
adapted network of the self-adaptation loss weight λ

sr
m The softmax outcome of Γwr

global for xn,m
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Su
silh, Su

dist, Su
ovr Silhouette, Distance and Overall scores for a given previous user

u ∈ Un
train

4.4.3 Preprocessing and Data Seperation

The primary objective of the preprocessing stage is to enhance the SSVEP data for
character identification by focusing on relevant channels and frequency bands. To
achieve this, data epochs from nine-channel SSVEP signals were extracted around
stimulus onset considering a 140ms visual system latency. To optimize classification
accuracy and reduce computational demands, the epochs were down-sampled to
250Hz as explained in [275]. After this, we apply the bandpass filter to remove any
unwanted noise or interference. This filtering procedure is applied to both new and
previous users in the dataset to improve the quality of the signals and emphasize
the SSVEP responses related to the target characters. This, in turn, facilitates the
subsequent identification and classification algorithms in effectively analyzing and
distinguishing between different characters.

Moreover, the dataset is divided into new user and previous users. This division
is accomplished by selecting one user as the new (test) user and utilizing all the
remaining users in the dataset as the previous (training) users. The purpose of this
separation is to evaluate the effectiveness of the overall solution when faced with a
new user whose SSVEP signal statistics are totally unknown.

4.4.4 Generation of Initial Models

In the initial phase, we begin with training a global model Γglobal, designed to
encompass the data from all previous users Un

train for a new user n. Our primary
objective is to capture the comprehensive, shared characteristics exhibited by the
previous users. Subsequently, we focus on Γglobal, which represents a standardized
DNN architecture.

Within this stage, the global model Γglobal undergoes a meticulous fine-tuning pro-
cess tailored to each individual previous user i ∈ Un

train. By leveraging the unique
characteristics from their respective data, we create individual fine-tuned models
Γi,j=1 (initialization: Γi,0 = Γglobal) for each i ∈ Un

train, with j denoting the outer
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loop iterations. These fine-tuned models, distinguished by their precise adjustments,
exhibit a notable enhancement in accuracy.

Of paramount importance during this fine-tuning phase is our strategic focus on
updates to the feature generator f i,j , which is defined as the layers preceding the FC
layer. This carefully chosen strategy does also ensure that the newly minted models
harmoniously share a common global classifier hglobal with the global network Γglobal.
This approach strikes an elegant balance, in the sense that it reflects all the fine-
tuned models onto the same classification plane that is known to be effective as it
comes from the global model but also maintains the previous user specific features.
Hence, it acts as a strong levelization among the fine-tuned features by removing
the degree of freedom regarding the classification layer. Note that, for example, a
set of features can be translated without changing the classification accuracy by also
correspondingly adjusting the classifier, which (this undesirable ambiguity) is nicely
prevented in our approach.

4.4.5 Model Fine-Tuning

In the fine-tuning phase, we focus on feature extractors f i,j with an effective shared
classifier hj

global. We begin by extracting features vi,m from the fine-tuned feature
extractors at the dropout layer outputs just before the classification layer, of each
previous user in Un

train. These extracted features vi,m serve as valuable inputs for
the subsequent adaptation of the global classifier during training.

To implement our approach, we design a new global classifier hj+1
global, which consists

of a single FC layer that is analogous to the FC layer of the overall network. We
train this newly created global classifier hj+1

global using features vi,m extracted from
the fine-tuned feature extractors f i,j of previous users, along with their correspond-
ing data and labels. This method allows the global classifier to capitalize on the
collective knowledge derived from the fine-tuned models of prior users, enhancing
its performance through the integration of this aggregated expertise.

As the next step in model fine-tuning, we replace the FC layers (individual classi-
fiers) of each fine-tuned model Γi,j with the newly trained global classifier hj+1

global.
Following this, we further train the fine-tuned feature generators f i,j of these models
while keeping the weights and biases of their individual copies of the global classi-
fier hj+1

global frozen. This results in the acquisition of new fine-tuned models Γi,j+1.
Through this meticulous process, we ensure the seamless integration of knowledge
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from the global classifier hj+1
global into the individual fine-tuned models, fostering a

harmonious synergy between collective and individual expertise.

4.4.6 First Model Adaptation (of the outer and inner loops)

In the first model adaptation phase, we refine a feature extractor f
j
global as well as

an adapted network Γj
global belonging to new user instances iteratively (outer loop:

j, and inner loop k but we drop here k for simplicity in notation) for optimal per-
formance. Given the adapted model Γj

global from iteration j, we create a new model
Γj+1

global by replacing its classifier layer hj
global with the freshly generated common

classifier hj+1
global. Concurrently, we freeze the weights and biases of the classification

layer and train the feature extractor with the inner loop iterations (k) in an unsu-
pervised fashion. In this way, the model is prepared to generate a more finely-tuned
adapted version through the same adaptation process, leveraging the shared global
classifier.

Remark: The initially trained global model (at the very beginning) denoted by
Γglobal is global in the sense that it encodes information from all the previous users.
It also roots our adaptation due to the initialization Γj=0

global = Γglobal, which becomes
specific to the new user at the end of the iterations and so Γj=final

global is not global
but rather specific and adapted. We keep the subscript “global" to indicate that it
inherits the structure from the global model acquired at the end of initialization.

For this first unsupervised adaptation, it is necessary to determine the proxy labels
(“pseudo labels") for the new user instances vn,m since the true labels ln,m are not
known for the new user. This issue is handled in our first adaptation phase by
using the predictions (as pseudo labels) l̃n,m of the model Γj+1

global that itself is be-
ing continuously adapted, yielding a self-learning or rather self-adaptation process
which happens in an inner loop with cross-entropy loss. Using one’s own network’s
responses as a loss signal can be viewed as a form of entropy regularization [291].
From another perspective, as our network architecture utilizes dropout regulariza-
tion, the full network generates pseudo labels while the partial networks are only
used for training. This discrepancy between full and partial networks enhances the
performance, reinforcing the use of pseudo labels since the full network responses are
never seen during training. Consequently, we save the newly adapted model Γj+1

global.
These fine-tuning and adaptation processes are iterated until either the classification
performance reaches a satisfactory level or further improvements become marginal.
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In the next section below, we continue with our second and final adaptation phase
and its unsupervised loss function. The introduced loss function is designed to
fully leverage a potent source of information embedded within the data: similarities
between instances across different users.

4.4.7 Second and Final Model Adaptation

After completing the fine-tuning and first adaptation phases, we start our second
and final model adaptation phase. In this second phase, rather than relying solely
on the conventional cross-entropy loss, we consider that if there exist some previous
users who are statistically similar to the new user, then their predictions regarding
the new user instances might be beneficial. Motivated by this, in generating the
pseudo labels, we do not only use the adapted model’s own responses (self adaptation
term) but also incorporate those fine tuned networks whose users are similar to the
new user. This is embodied in our self adaptation (or self learning) loss term Lsl

which is particularly effective in unsupervised and semi-supervised settings, aiding
the network’s ability to learn well-separated classes. Furthermore, we utilize a local
regularity term that enforces that the nearby new user instances are to be classified
similarly, yielding our local regularity loss term Lloc. The resulting complete loss
function is similar to that used in [15], but that is a source free approach whereas
the presented approach here is source-dependent (see also our experiments where
we compare the two methods in terms of their ITR performances). Consequently,
we devise two types of similarities, one is user to user and the other is instance to
instance, and in this study, both of them are based on silhouette scores [292].

We introduce a customized and unsupervised novel loss function that combines self-
adaptation Lsl and local regularity Lloc terms, moving beyond the conventional
cross-entropy loss function as outlined in [15]. After completing the first model
adaptation phase, we further refine (in this second and final phase) the model using
the introduced customized loss to enhance overall performance and better align the
model with the new user’s unlabeled data. The self-adaptation loss impacts the
model by encouraging it to become more confident and consistent with its own
predictions on the unlabeled data. By treating its predictions as pseudo labels and
minimizing this loss, the model adjusts its parameters to reinforce these predictions,
effectively tailoring itself to the target domain despite the absence of labeled data.
The local regularity term is designed to fight the overfitting as detailed later.

The self-adaptation (or self learning) loss at iteration r (note that these iterations
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start after the previous outer j / inner k iterations of the first phase are finished)
in this second and final adaptation phase is given by

L(r)
sl = − 1

N

N∑
m=1

log(sr
m,l̃n,m

),

where sr
m = [∀y : sr

m,y] represents (at iteration r) the adapted network’s soft-max
responses (Γwr

global with wr(λ) denoting the adapted parameters) to xn,m, and l̃n,m

are the predicted labels (so pseudo labels) in the same iteration. Although a better
notation here would be l̃rn,m(λ), we dropped the superscript and the λ argument for
simplicity. Here, λ is the weight of this self adaptation loss in our complete loss
function, which we keep track of for hyper-parameter optimization later.

Since the self-adaptation loss does not account for the relationships between different
new user data instances, we combine it with a local regularity loss in order to ensure
that similar instances receive similar predictions. This local regularity helps to
alleviate overfitting issues and enhances overall adaptation. For this purpose, we
use the correlation coefficient to define closeness (similarity), yielding in the end the
local regularity loss L(t)

loc as

L(r)
loc = − 1

N

N∑
m=1

1
Km

Km∑
q=1

log(sr
m,l̃n,Im(q)

),

where Im is the set of indexes sorted in descending order based on the correlation
coefficient values between the target domain instances {xn,q}N

q=1, q ̸= m, and the
target domain instance xn,m. Specifically, xn,Im(1) is the most correlative (closest)
to xn,m. Km is the number of neighbors considered for the instance xm. The
neighborhood size can vary depending on factors like user behavior or noise levels.
Minimizing this loss ensures that the network provides similar predictions for closely
related instances. Again, a better notation here would be l̃rn,Im(j)(λ), but we dropped
the superscript and the λ argument for simplicity which should be kept in mind for
the exposition continuing below.

Combining self-adaptation with local regularity, the total loss function is expressed
as

L(r)
total(λ) = λL(r)

sl +(1−λ)L(r)
loc +β∥w∥2,

where λ ∈ Λ is the weight of the self adaptation loss, and β is the coefficient of L2
regularization, set to 0.001.
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This second and final model adaptation phase starts by transferring the weights of
the last adapted model Γjend

global into a new model Γw0
global whose aim is to minimize the

combined loss Lr
total(λ) at each iteration r until it converges. We utilize the same

convergence criteria as explained in [15].

The model Γwr−1
global is adapted for the new user by minimizing the total loss Lr−1

total(λ)
using a candidate λ value from the set of Λ. This process generates adapted param-
eters wr(λ) and predictions l̃n,m(λ) for each value of λ. Subsequently, we assess how
effectively each set of adapted network parameters {wr(λ) : λ ∈ Λ} clusters the unla-
beled data from the target domain to determine which adapted network parameters
should be used for the final prediction, either at the end of iterations or as needed
during intermediate stages of adaptation.

4.4.8 Silhouette Score

We utilize the silhouette score [292] as a clustering metric or as a similarity score,
which evaluates not only the accuracy of the adapted model’s predictions for each
new user instance but also the confidence level of the model in these predictions.
This assessment involves measuring the confidence level associated with the assigned
label by comparing the distance of the new user instance to the distances in a given
previous user instances with the same predicted label. The objective is to ensure
that the model’s predictions exhibit both accuracy and a high level of confidence
when clustering new and previous user instances together.

To compute the silhouette score, we provide a two-step calculation aimed at measur-
ing the labeling quality and confidence. In the initial step, for each new user instance
denoted as xn,m, we compute the average distance between this instance and each
other xu,m from a given previous user u ∈ Un

train where the pseudo label assigned to
new user instance is the same as the label of the previous user instance. This can be
represented as (while keeping in mind that the iteration r and the λ argument were
dropped for simplicity: model prediction l̃r(λ) is the assigned pseudo-label) l̃n,m =
lu,z for all m ∈ {1,2, · · · ,N}, z ∈ {1,2, · · · , Iu}, and for a given u ∈ Un

train, where N

and Iu are the total number of instances for new user n and previous user u ∈ Un
train,

respectively. This calculation helps to determine the cohesion within the cluster of
instances sharing the same label. Accordingly, we obtain
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Du
AID(m) = Du

P ID(m)+Du
NID(m)∑Iu

z=1(1{l̃n,m=lu,z})+ ∑N
z=1(1{l̃n,m=l̃n,z})−1

,

Du
P ID(m) =

Iu∑
z=1

√∑
k

(vn,m(k)−vu,z(k))21{l̃n,m=lu,z},

and

Du
NID(m) =

N∑
i=1

√∑
k

(vn,m(k)−vn,z(k))21{l̃n,m=l̃n,z},

where 1 is identity function which returns 1 if its argument is true (0 otherwise).
Note that this is computed for a given pair of new user instance xn,m (its corre-
sponding feature vector vn,m is rather used) and previous user u. We call it as
the Average Instance Distance (AID) denoted as Du

AID which is summation of two
terms, Previous User Instance Distance (PID) as Du

P ID, and New User Instance
Distance (NID) as Du

NID for a given previous user u. Its main purpose is to gauge
the quality of the assigned label concerning previous user instances with the same
label, thereby providing insight into the model’s labeling proficiency.

In the second step of the silhouette score, we calculate the average distance between
the new user instance xn,m and previous user instances with a different label: l̃n,m ̸=
lu,z. This step aims to assess whether the achieved clustering through the model’s
labeling aligns with expectations. Similar to the previous step, the average distance
for each label lu,z ̸= l̃n,m is computed as explained earlier, and sorted in ascending
order. The minimum average distance, denoted as Du

AIDmin
, is then determined to

evaluate the potential for creating a more appropriate label through clustering. The
expectation is that this distance should be larger than Du

AID, signifying Du
AIDmin

>

Du
AID: so the model’s labeling leads to a clustering that is distinctively different

from instances with other labels, reinforcing the accuracy and confidence of the
model’s predictions.

After completing both steps, we proceed to calculate the overall silhouette score for
given new user’s instances xn,m and a previous user u. The Silhouette Score Su

silh is
defined for given new user’s instances xn,m and a previous user u as

Su
silh = 1

N

N∑
m=1

Du
AID(m)−Du

AIDmin
(m)

max(Du
AID(m),Du

AIDmin
(m)) ,
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which falls within the range [−1,1]. A score of −1 indicates the highest confidence
and 1 denotes the least confidence.

As explained above, the silhouette score is typically calculated by incorporating data
from previous users. However, when selecting the initial predictions and comparing
the quality of the adapted model’s predictions with those from fine-tuned models,
we must compute the silhouette score (Sn

silh) for the adapted model under a specific
condition: previous user data should be excluded when calculating the silhouette
score for this model.

This means that, for the adapted model, the silhouette score is computed as
if no previous users’ data were present. Specifically, we set Dn

P ID(m) = 0 and∑Iu
z=11l̃n,m=lu,z

= 0, ensuring that the calculations are based solely on the current
user’s data.

4.4.9 Enhancements

Besides minimizing the mentioned loss L(r)
total(λ), there are three important enhance-

ments we additionally use for the second adaptation phase: Neighbor Selection,
Instance Confidence, and Initialization of Pseudo labels.

4.4.9.1 Neighbor Selection

A critical part of the second adaptation phase is neighbor selection, because the
local regularity loss Lloc heavily depends on the size and selection of neighbors from
previous users Un

train for the new user n. As also explained in [15], to properly deter-
mine the neighbor set for each new user instance, it is assumed that the correlation
coefficients between the new user instance xn,m and its most related neighboring in-
stances from previous users xu,z (which are typically high when the labels are same
l̃n,m = lu,z) are significantly higher compared to other instances (with the same label
l̃n,m = lu,z) that are loosely correlated. Namely, one can expect a significant drop
in terms of the correlation coefficients from the highly correlated neighbor instances
to the loosely correlated ones. When this large drop in correlation coefficients is
observed, the neighbors before the drop are assigned to the neighbor list.
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4.4.9.2 Instance Confidence

As we label the new user instances with different levels of certainty, instance con-
fidence becomes a crucial factor for efficacy. Hence, we decide to dismiss instances
with a positive (with threshold being 0) silhouette score during the adaptation of
the network to enhance the model’s overall confidence in subsequent steps. This
strategy ensures that the adaptation process incorporates instances with confident
labels, leading to an improvement in the model’s overall accuracy. The rationale
for this idea is rooted in the interpretation of silhouette scores: Instances with a
positive silhouette score indicate proximity to a different cluster than the one as-
signed to them, making them more likely to be incorrectly classified. To ensure
the accuracy of updates to the model, we exclusively utilize the pseudo labels of
instances that receive positive silhouette scores. Moreover, to enhance the accuracy
resulting from the λ selection of wr(λ) based on the silhouette score and increase
the overall instance confidence, we consider augmenting the number of samples as
an additional step. This can be achieved by selecting the nearest previous user in-
stances and appending them to the new user instances to be labeled. Subsequently,
the two steps described earlier are executed with double the number of instances.
This augmentation contributes to an increase in the overall confidence of the label-
ing process. As stated in [15], there is a probability that the self adaptation term or
the local regularity term may lose its functionality due to dismissing most instances
(i.e. much more than a desired level) on the positive silhouette score basis. In such
cases, one needs to update the threshold from 0 to a larger value for the adaptation
process to continue.

4.4.9.3 Initialization of Pseudo labels

Recall that in both adaptation phases (first adaptation phase of outer / inner loops,
and the second and final adaptation phase), our method uses the developing adapted
network’s own responses (Γj

global in the first phase and Γwr

global in the second phase)
as pseudo labels and evokes training by treating the pseudo labels as true labels,
which works recursively across the iterations j,k and r. Hence, only initial pseudo
labels are necessary for initialization. Using the responses of the randomly initialized
very first network as the initial pseudo labels would obviously not be a good option.
For the outer / inner loops of first adaptation phase, we use the responses of the
global network trained on all previous users’ data, which we consider is good enough.
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On the other hand, for the performance boost we expect in particularly the second
adaptation phase, initialization is another important issue, since the model typically
yields better results in terms of rectifying misclassified instances with a better initial
start. We would like to have a high quality initialization for the second adaptation
phase as well.

Building on the previous model fine-tuning and adaptation phases, we already have
fine-tuned, global and adapted (from the first adaptation phase) models available
to produce predictions (as pseudo label initialization) at the beginning of the sec-
ond and final adaptation phase for the new user data. For that, we propose an
integrated approach that combines the silhouette score, with a new performance
assessment score which evaluates the distances between features generated by the
adapted model and those produced by each fine-tuned model. By calculating the
average of these distances, we can determine the overall distance between each fine-
tuned model and the adapted model of the new user. In doing so, our idea is
to benefit from the predictions of the fined-tuned models of the previous users who
might be statistically similar to the new user and so whose fined-tuned models might
provide an enhancement. This could potentially help in producing more accurate
pseudo label initialization when combined with the silhouette score. To be more pre-
cise, our approach involves creating a weighted confidence score that incorporates
both the silhouette score and the feature distances. The mathematical formulation
of this approach is as follows.

The distance score Su
dist is calculated by averaging the dot products of features

coming from the most recent adapted feature generator f
jend
global and the features

from the fine-tuned feature generators of a previous user’s fu,jend ,u ∈ Un
train. Here,

jend represents the end of first adaptation phase, so represents the most recent
information at the beginning of the second adaptation phase where psuedo label
initialization takes effect. Mathematically, this can be expressed for a given previous
user u and for each new user instance xn,m as

Su
dist = 1

N

N∑
m=1

f
jend
global(xn,m) ·fu,jend(xn,m).

Then the Overall Score Su
ovr is a weighted combination of the silhouette score Su

silh

and the distance score Su
dist, adjusted by a normalization factor γ, and given by

Su
ovr = Su

silh + 1
γ

Su
dist.

In this formula, γ serves as a normalizing factor that is used to modulate the influ-
ence of Su

dist on Su
ovr for previous user u. When implementing this approach, it is
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critical to ensure that both Su
silh and Su

dist are normalized or scaled appropriately
to prevent scale discrepancies from skewing Su

ovr. Additionally, the choice of γ may
vary depending on the specific characteristics of the data and models involved, and
it may require fine-tuning to achieve optimal performance in different scenarios. In
our experiments with BENCH and BETA datasets, the value of γ is determined
empirically and found to be around 20. This adjustment ensures that Su

silh has a
predominant effect on Su

ovr while still allowing Su
dist to contribute meaningfully to

the final assessment.

By employing this refined method, we aim to enhance the accuracy and reliability
of the model selection process, ultimately leading to the generation of higher-quality
labels and improved model performance. After introducing the score that will be
used as a metric to select networks for initial predictions, Su

ovr can be calculated for
each network.

In this way, we select the top five feature generators from the fine-tuned and most
recent adapted models during the first adaptation phase, based on Su

ovr. The class
probabilities generated by the softmax layers of the selected models are then summed
and averaged. The label with the highest probability is treated as a pseudo-label
for each test instance xn,m, aiming to provide more reliable labels for calculating
L(t)

total(λ).

Similar to the silhouette score calculation for the adapted model, the distance score
Sn

dist cannot be computed in the same way as for models that include previous user
data. This is because the term fu,jend(xn,m) becomes f

jend
global(xn,m) for the adapted

model, effectively making Sn
dist equal to 1. As a result, the contribution of Sn

dist loses
significance in the overall score. To address this, Sn

dist is experimentally set to 0.05.

We propose an integrated approach to enhance model performance for label creation,
combining the silhouette score with a novel method that evaluates the distances
between features generated by a general model and those produced by fine-tuned
models. Su

dist, derived by averaging the dot product of these feature sets, quantifies
the overall dissimilarity between models for a new user. Incorporating this score
into Su

ovr, alongside Su
silh, yields a weighted confidence metric. This formula ensures

that Su
silh maintains prominence while allowing Su

dist to contribute meaningfully,
facilitated by a normalization factor, γ. Implementation considerations include ap-
propriate normalization of both scores and fine-tuning γ. By leveraging this refined
approach, we aim to improve model selection accuracy, leading to higher-quality
labels and enhanced overall performance.

The overall process can be summarized as follows: Initially, a confidence score for
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labeling is calculated by determining the average distance Du
AID(m) for instances

with the same label. This provides an assessment of the confidence in the assigned
label compared to other instances within the same cluster. Subsequently, the same
method is applied to other labels, determining their respective average distances to
assess whether alternative clusters exhibit higher confidence. This step evaluates
the overall quality of clustering across different labels. A Su

silh, which provides a
quantifiable measure of confidence, is assigned to each instance xn,m, calculated
based on the confidence scores obtained earlier, where lower values indicate higher
confidence while ranging between −1 and 1. A Su

ovr is calculated by combining Su
silh

and Su
dist to create the overall performance score. This process ensures that instances

with confident labels contribute more significantly to the overall adaptation of the
network, leading to an improved and more accurate model.

4.4.10 Algorithm

In this section, we present a comprehensive explanation of our algorithm, as seen
in Alg. 1. The primary objective is to acquaint the reader with our algorithm and
provide clear instructions for replicating our results.

4.5 Performance Evaluations

In this section, we present our extensive experiments with the datasets BENCH
[20] and BETA [44]. All the details of these datasets are given in Section 4.4.1.
We employ the metrics ITR and accuracy (along with the standard error bars) to
quantify the proposed method’s target character identification performance on the
new user data. In our setup, for each dataset, users take turns to become new users.
Namely, we separate one user from the others, and the separated user is designated
as the new user, while the remaining users are designated as previous users. This
defines one round for which we compute the ITR and accuracy, hence the mean
ITR and mean accuracy across all rounds (35 rounds for BENCH and 70 for BETA)
yield the final performance. In our experiments, we compare our method with other
prominent calibration-free techniques from the literature, as categorized in the 4.2.
For our comparison, we include DA methods such as Source-Free DA [15], OACCA
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Algorithm 1: SSVEP Classification with DA
Data: xi,m, for each user i ∈ U including the all the previous users and the

new user.
Result: l̃n,m, labels for each signal for the new user n

Train a global model, Γn
global, on X where for each loop n is the new user in

U
for n ∈ U do

Run the first adaptation phase
Initialize Γn,j

global = Γn
global, set iteration count j = 0.

while l̃jn,m ̸= l̃j+1
n,m do

for i ∈ Un
train do

Fine-tune the feature extractor f i,j from Γglobal using previous
user i’s signals, Xi

for i ∈ Utrain do
Extract features vi,m = f i,j(xi,m)

Train a new classifier hj
global using extracted features {vi,m}i∈Utrain

from features generated from the previous loop.
for i ∈ Un

train do
Fine-tuned models Γi,j are fine tuned once more with the
corresponding user’s signals, xi,m after replacing the fine-tune
classifier hj with the global classifier hn,j

global and freezing it.

Initialize the feature generator Γn,j
global by combining f

n,j
global and the

adapted classifier hn,j
global into FC layer.

Produce predictions l̃n,m of new user features vn,m coming from the
feature extractor of Γn,j

global.
The model Γn,j

global is trained using predictions l̃n,m as true labels by
freezing h

n,j
global, while Xn is presented as test data.

Produce new predictions l̃n,m of test features vn,m coming from the
feature extractor of newly adapted Γn,j

global

Run the second adaptation phase
Set iteration count j = 0.
for λ ∈ Λ do

Set the distance score Sn
dist to 0.2 for the new user n.

for i ∈ Utrain do
Calculate the silhouette score Si

silh and distance score Si
dist for

each Γi,j and Γn,j
global

Combine silhouette score and distance score to calculate the
overall score Si

ovr

Optimize each network Γn,j
global
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(a) BENCH [20] Results. On the left is the accuracy vs. signal length and on the
right is ITR vs. signal length
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(b) BETA [44] Results. On the left is the accuracy vs. signal length and on the right
is ITR vs. signal length

Figure 4.2 (a) An assessment of performance across our algorithm, Source Free DA
[15], Ensemble [16], online adaptive CCA (OACCA) [17], adaptive combined-CCA
(Adaptive-C3A) [18], and online transfer template CCA (ott-CCA) [19], depicted
in the left panel, examines their mean accuracy across various signal lengths (sec)
within BENCH [20] Dataset. Meanwhile, the right panel presents a separate per-
formance comparison, focusing on their Information Transfer Rates (ITRs) across
various signal lengths (sec) within the same BENCH [20] Dataset. (b) The same
performance evaluation is replicated using the BETA dataset , as presented in (a).
Error bars in (a) and (b) represent standard error.
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Figure 4.3 In the above figure, we observe the impact of adding new user data blocks
with pseudo labels to the training process on both BENCH and BETA datasets,
specifically in terms of Mean Accuracy and Mean ITR. As expected, as the number
of data blocks from the new user increases—thereby adding more unlabeled user
data—the performance of our method improves accordingly.

[17], and Adaptive-C3A [18], as well as DG methods like the ensemble technique
(Ensemble) [16] and OTT-CCA [19]. Additionally, we consider completely training-
free methods such as those proposed in [274; 275]. This comprehensive comparison
allows us to evaluate the effectiveness of our method relative to these established
calibration-free approaches.

4.5.1 Results

As shown in Fig. 4.2 (upper row) for the dataset BENCH, our findings highlight
the superior performance of our method compared to the existing prominent DA
techniques, as we achieve the highest ITR / accuracy results and strongly outperform
all the others especially for shorter signal durations (i.e., 0.4, 0.6 seconds). For
longer signal durations 0.8 and 1 seconds, our method performs similarly with its
most successful competitor Source Free DA [15] while still outperforming the others
by a significant margin. As for the BETA dataset (Fig. Fig. 4.2 lower row), again
our method and Source Free DA are generally strongly superior over all the others.
Since the dataset BETA is noisier, the performance difference between ours and
Source Free DA seems to be insignificant at the low signal duration 0.2 seconds; and
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it is also insignificant for the longer durations (0.8 and 1 seconds) as both methods
converge and achieve the saturation. However, at 0.4 and 0.6 seconds (considering
the accuracy and ITR together), our method outperforms Source Free DA. When
taking into account all the signal durations, our method is the one that achieves the
highest ITR overall for both datasets. Fig. 4.2 shows the highest ITRs of 207.54
bits/min (BENCH) and 145.05 bits/min (BETA) when utilizing a signal length of 0.6
seconds with our method, surpassing the closest-performing method Source Free DA
with ITRs of 201.15 bits/min (BENCH) and 145.02 bits/min (BETA), respectively.

Of significant note, our method demonstrates its most substantial contribution with
a remarkable 47% increase in ITR when the signal length is reduced to 0.2 seconds
on the BENCH dataset and a 19% increase in ITR when the signal length is set
to 0.4 seconds on the BETA dataset. However, it’s important to highlight that
our method does not maintain its dominance and converges to the performance of
Source Free DA for signal lengths of 0.8 seconds and 1 second (for both datasets
and metrics ITR / accuracy, but Source free DA is slightly better in the case of the
BETA dataset).

BENCH Dataset BETA Dataset
Sig. Len. 1st Step 2nd Step 3rd Step 1st Step 2bd Step 3rd Step

0.2 21.75% 28.28% 29.42% 19.44% 20.66% 22.12%
0.4 38.01% 62.05% 65.72% 34.28% 46.84% 46.64%
0.6 51.01% 76.84% 80.11% 43.78% 59.35% 61.76%
0.8 63.94% 83.83% 87.94% 51.28% 66.90% 69.41%
1.0 71.32% 88.34% 92.34% 60.37% 70.63% 75.87%

Table 4.1 The performance results at the conclusion of the first adaptation phase
are evaluated for different signal lengths, with f ∈ {0.2,0.4,0.6,0.8,1}. These results
are reported at three key stages: at the end of the initial training loop(1st Step),
after the first adaptation loop (2nd Step), and finally, at the end of all adaptation
loops (3rd Step). This progression highlights how performance evolves as the signal
length and adaptation phases advance.

In Table 4.1, we present the results of the adaptations and the performance im-
provements after each iteration. The table highlights significant progress, with the
unadapted network showing substantial improvement even after the first adaptation
loop. By the final stage, we observe that the network has converged in terms of
performance, indicating that further iterations yield minimal gains.

To further demonstrate that adding new user data with pseudo labels during itera-
tive training enhances the model’s overall performance, we conducted an additional
experiment where we systematically increased the amount of new user data by in-
crementally adding more data blocks. This also simulates the actual scenario in real
life, where the new user provides an accumulation of unlabeled data as s/he uses
the BCI speller system. As shown in Fig. 4.3, we observe that with each new block
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added, the overall performance measured on both the BENCH and BETA datasets
consistently improves. However, we also noted that the performance boost dimin-
ishes slightly. For example, in the BENCH dataset, the addition of the second block
results in a performance that is similar to, or slightly lower than, the performance
with one block. This could be due to the second block not contributing new insights
that significantly impact overall performance. Interestingly, when a third block is
added, the performance once again surpasses that of the experiment with a single
block. Importantly, adding new pseudolabeled data does not degrade the model’s
performance; instead, it either maintains or enhances it. This observation supports
our hypothesis that including new user data during training iterations positively
impacts the model’s performance, thereby validating our approach.

BENCH Dataset BETA Dataset
T Mean

Accuracy
ITR

(bits/min)
T Mean

Accuracy
ITR

(bits/min)
ovr 80.11±

4.31
207.54±

13.84
ovr 61.76±3.69 145.05±10.81

silh 78.95±
4.66

204.87±
10.50

silh 60.43±
3.70

140.78±10.68

last 78.08±
4.70

201.67±
10.59

last 52.65±
4.09

120.57±11.43

rand 80.49±
4.28

208.95±
9.76

rand 62.01±
3.53

144.25±10.35

Table 4.2 This table summarizes the results of applying our scoring method. The
outcomes are grouped based on different scoring strategies: users with the highest
overall scores (ovr), users ranked by silhouette scores alone (silh), users with the
lowest overall scores (last), and finally, randomly selected users (rand). These com-
parisons highlight the effectiveness of our scoring system in identifying the most
relevant users.

In the table above, we compare the results of selecting models from which we gen-
erate the initial pseudo labels. In this table, ovr refers to models selected based on
the overall Sovr score, while silh indicates models chosen based solely on the highest
silhouette score. The term last represents models with the lowest Sovr scores, and
rand corresponds to randomly selected models.

The purpose of this comparison is to demonstrate the effectiveness of our scoring
method and its impact on overall performance. As shown, our method consistently
outperforms all other combinations, leading to a noticeable performance boost.

It’s important to note that the lower efficiency of the random model selection may
be influenced by the fact that in the last scenario, different models are selected for
each value of λ, whereas the same models are used across all λ values in the rand
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scenario.

As observed, the use of pseudo labels significantly improves model performance.
This improvement results from leveraging previous user data, specifically selecting
the user with the most similar properties to the new user. Additionally, our overall
score ensures a high level of confidence in generating these pseudo labels, enabling
the method to build an optimal model that excels in the task of character recognition.

This result is expected, as the pseudo labels increasingly resemble actual labels,
approaching the performance limit of training with true labels. By building the
model from confident initial predictions and progressively improving accuracy with
each iteration, our method outperforms both fine-tuned and general models.

An important observation is the performance gap between the highest and lowest
scoring samples. As shown in Table 4.2, the significant difference in scores demon-
strates the effectiveness of our scoring method. By applying this approach, we can
easily differentiate between related and unrelated users. Additionally, we observe
that random selections outperform the lowest-scoring choices, further validating that
our scoring system ranks users from most to least related in a meaningful way.

4.6 Discussion

In this chapter, we introduced a novel SSVEP-based BCI speller classifier designed
to predict on unlabeled new user data by leveraging existing labeled datasets from
prior users. Our approach employed an iterative fine-tuning process to enhance
overall accuracy by generating and incorporating the model’s own predictions as
pseudolabels. This iterative process eliminated the need for new user calibration by
combining prior user calibration data with the unlabeled new user data. The model’s
adaptation was self-regularizing, relying on its own pseudolabels for refinement.
Additionally, we utilized a combination of silhouette and distance scores to fine-tune
the model using data from the most similar prior users and to generate pseudolabels
during the final adaptation cycle. The objective was to adapt the model to deliver
accurate predictions for new users by leveraging both labeled data and pseudolabels.

We conducted extensive experiments using the BETA and BENCH datasets. In
these experiments, we designated one user as the new user (without labels) and
created a separate model for each user to evaluate performance individually. The
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results showed that for both datasets, the classifier achieved remarkable classification
accuracy and SOTA ITR results with shorter signal lengths. However, the rate of
improvement diminished with longer signals, likely due to info saturation.

To address this limitation, we proposed incorporating more effective similarity met-
rics to better classify users and instances more closely related to the new user. Ex-
panding this work could improve classification performance, particularly for longer
signals.
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5. Conclusion

In this thesis, we explored the fine-tuning of global models through two distinct
approaches tailored to the properties of the data. In the first part, we introduced
CTBAD, a method designed for hierarchical datasets that used context trees to
partition video frames for anomaly detection. CTBAD facilitated the fine-tuning of
global models by leveraging these partitions to focus on locational anomalies with
spatially nonstationary statistics, even when the number of training samples was
limited. By combining models of varying complexity and locality, it overcame the
limitations of relying solely on global scene statistics. This method demonstrated
robust performance across diverse scenes and actors, making it highly suitable for
real-world video surveillance and easily integrable with SOTA techniques. How-
ever, CTBAD faced challenges with spatially stationary anomalies and mismatches
between training and testing conditions, such as when certain image regions were
inactive during training but exhibited activity during testing. To address these lim-
itations, future work will focus on automating the tuning of the β parameter to
reduce manual effort and integrating change detection mechanisms to dynamically
select well-trained models during testing. Additional research directions includes
developing adaptive partitioning strategies and refining the loss function to better
handle limited data and stationary statistics.

The second part of this thesis focused on non-hierarchical data, where directly ap-
plying context trees to fine-tune global models was not feasible due to the data’s
non-hierarchical nature. Instead, similarity measures were employed to identify
patterns between previous users and new users for model adaptation through fine-
tuning. This approach was demonstrated in SSVEP-based BCI spellers, which en-
abled communication for individuals with disabilities. By integrating labeled data
from previous users and pseudolabels for new users, the system iteratively fine-tuned
the model to adapt to new users, significantly improving classification accuracy, par-
ticularly for shorter signal lengths. Future research addresses the limitations of this
approach for longer signal lengths, where the benefits of shared information dimin-
ished due to the increased complexity of the signals. A promising direction involves
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incorporating advanced similarity metrics to refine the loss function, potentially en-
hancing classification performance for extended signals. Additionally, techniques
can be developed to optimize the method for scenarios involving longer signal dura-
tions, further improving its effectiveness. These efforts aim to expand the method’s
applicability and ensure robust performance across various signal lengths and do-
mains.
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