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ABSTRACT

LEARNING TO RELAX NONCONVEX QUADRATICALLY CONSTRAINED
QUADRATIC PROGRAMS

M. BUKET ÖZEN

INDUSTRIAL ENGINEERING M.S. THESIS, JULY 2024

Thesis Supervisor: Dr. Burak Kocuk

Keywords: quadratically constrained quadratic program, linear programming
relaxations, semidefinite programming relaxations, global optimization, machine

learning, classification, regression

Quadratically constrained quadratic programs (QCQPs) are commonly encountered
in diverse disciplines like operations research, machine learning, power systems, and
portfolio optimization. The solution of these non-convex problems is difficult since
they are characterized by their NP-hard nature. Conventional methods employ ei-
ther Semidefinite Programming (SDP) or Linear Programming (LP) relaxations;
each of these methods is highly effective for certain subsets of problems and exhibits
poor performance for others. However, there is a lack of comprehensive understand-
ing. This thesis seeks to create a relaxation selection procedure for QCQPs that
takes into account the structure of the problem. It intends to determine if an SDP-
or LP-based strategy is more beneficial based on the instance structure.

We explore the spectral properties and sparsity patterns of data matrices to unravel
the structural properties of a QCQP instance. Our study is based on the generation
of QCQP samples, along with an exploratory analysis of the dataset, and applying
machine learning to classify the obtained instances by the most favorable relaxation
technique.

The main contribution of this work is to develop machine learning models that can
accurately predict ex-ante whether an SDP or LP relaxation will yield a tighter
bound on new QCQP instances. These models are trained on features created from
the spectral properties and sparsity patterns of the data matrices. This predic-
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tive capability increases the efficiency of solving non-convex QCQPs by guiding the
selection of the most suitable relaxation method.
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ÖZET
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GEVŞETMEYİ ÖĞRENMEK
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regresyon

Kuadratik kısıtlı kuadratik programlar (QCQP), yöneylem araştırması, makine
öğrenimi, güç sistemleri ve portföy optimizasyonu gibi çeşitli alanlarda sıkça
karşımıza çıkar. Bu dışbükey olmayan problemlerin çözülmesi, NP-zor doğaları
nedeniyle oldukça zordur. Geleneksel yaklaşımlar ya Yarı Tanımlı Programlama
(SDP) ya da Doğrusal Programlama (LP) gevşetmeleri kullanır; her biri belirli
problem türleri için güçlü yönler sergiler ancak çeşitli örnekler arasında kapsamlı
bir anlayıştan yoksundur. Bu çalışmada, dışbükey olmayan QCQP’ler için problem
örneğinin yapısını göz önünde bulundurarak SDP veya LP tabanlı yaklaşımlardan
hangisinin daha başarılı olacağını tahmin eden yapıya duyarlı bir gevşetme seçim
yöntemi üretmeyi amaçlıyoruz.

QCQP örneklerindeki veri matrislerinin negatif özdeğerlerinin sayısı, özdeğerlerinin
büyüklükleri, bu matrislerin seyreklik örüntüsü gibi bir takım özniteliklerini inceley-
erek yapısal özelliklerini ortaya çıkarıyoruz. Araştırmamız, QCQP örnekleri oluş-
turmayı, keşifsel veri analizleri yapmayı ve bu örnekleri SDP-lehine veya LP-lehine
olarak sınıflandırmak için makine öğrenimi tekniklerini uygulamayı içerir.

Bu tezin katkıları arasında, yeni QCQP örnekleri için SDP veya LP gevşetmesinin
daha güçlü bir sınır sağlayacağını doğru bir şekilde tahmin eden makine öğrenimi
modellerinin geliştirilmesi bulunmaktadır. Bu modeller, veri matrislerinin spektral
özellikleri ve seyreklik örüntülerinden türetilen özniteliklerle eğitilmiştir. Bu tahmin
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yeteneği, en uygun gevşetme yönteminin seçimini yönlendirerek dışbükey olmayan
QCQP’lerin çözüm verimliliğini artırmaktadır.
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1. INTRODUCTION

Quadratically constrained quadratic programs (QCQPs) are frequently encountered
in optimization, appearing in fields such as operations research, engineering, and
computer science. Comprehensive theoretical and computational research on QC-
QPs in the literature in recent years has greatly raised the efficiency and robustness
of developed algorithms designed to address these problems. Also, there have been
some recent advances in solvers, especially with Gurobi (Gurobi Optimization, 2021)
and CPLEX (IBM Corp., 2022), involving substantial efficiencies in the solution of
QCQP problems. Furthermore, Mosek (MOSEK ApS, 2020) has shown itself to
be a dependable solver for general SDP problems crucial for effectively adressing
QCQPs.

To formalize our approach, we consider the general formulation of a QCQP used
throughout this study. Let Ai be real symmetric n× n matrices, bi be real n-
dimensional vectors, and ci be real scalars for i = 1, . . . ,m. Additionally, let l and
u be real n-dimensional vectors with l ≤ u, where l and u can take values from the
extended real numbers (R∪{±∞}). Consider the following QCQP:

z = inf
x

xT A0x+2bT
0 x+ c0(1.1a)

s.t. xT Akx+2bT
k x+ ck ≤ 0 k = 1, . . . ,m(1.1b)

l ≤ x≤ u.(1.1c)

Despite their flexibility in modeling real-world problems, non-convex QCQPs are dif-
ficult to solve in practice due to their NP-hard nature (Anstreicher, 2009). Current
literature has typically relied on either Semidefinite Programming (SDP) (Vanden-
berghe & Boyd, 1996) or Linear Programming (LP) relaxations (McCormick, 1976).
Significant findings have shown that, under certain assumptions about the data or
parameters in a random data model, the QCQP formulation of these problems has
a tight SDP relaxation (Beck & Eldar, 2003; Wang & Kılınç-Karzan, 2022; Ye &
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Zhang, 2003; Zhang, 2000), with further examples of exactness results available in
Luo, Ma, So, Ye & Zhang (2010). As well as these SDP results, a number of recent
papers also investigate conditions under which LP relaxations can be exact. More
precisely, Qiu & Yıldırım (2023) recently established a necessary and sufficient condi-
tion on instances of QP that admit an exact Reformulation-Linearization Technique
(RLT), showcasing the potential of LP relaxations in solving QCQPs under certain
conditions.

For a user seeking the best relaxation technique for a QCQP instance that does not
fit into a specific subclass, choosing between SDP and LP can be quite ambiguous.
Because, each relaxation method works well for specific subproblems but often fails
to address others effectively, without a complete understanding. For example, the
SDP relaxation is particularly well-suited for problems such as the continuous relax-
ations of the Stable Set and MAXCUT problems in graph theory (Gaar & Rendl,
2020; Goemans & Williamson, 1995), Optimal Power Flow (Bai, Wei, Fujisawa &
Wang, 2008; Kocuk, Dey & Sun, 2016), and Optimal Transmission Switching prob-
lems in electric power systems, as well as various problems in signal processing.
On the other hand, problems that tend to favor LP relaxation include the Pooling
Problem in chemical engineering (Marandi, Dahl & de Klerk, 2018), Circle Pack-
ing, and Layout problems (Khajavirad, 2024). This lack of understanding makes
“structure-blind” general-purpose methods less effective than problem-specific solu-
tion approaches.

The goal of this research is to provide a “structure-aware” relaxation selection pro-
cess for non-convex QCQPs that can determine whether an SDP- or LP-based ap-
proach is more advantageous based on the instance structure. Our approach is
inspired by several studies that aim to predict the best optimization strategy for
a given problem instance. For instance, Ghaddar, Gómez-Casares, González-Díaz,
González-Rodríguez, Pateiro-López & Rodríguez-Ballesteros (2022) utilize learning
techniques for spatial branching to increase the performance of a RLT for poly-
nomial optimization problems (PO). Similarly, González-Rodríguez, Alvite-Pazó,
Alvite-Pazó, Ghaddar & Díaz (2022) present a machine learning approach to pre-
dict the best performing conic constraints for strengthening RLT relaxations of a
PO problem. The selection of input variables in these studies closely resembles our
feature design approach, using number of variables, number of constraints, and fea-
tures related to the graph representations of PO. Furthermore, Weiner, Ernst, Li &
Sun (2023) explores the role of machine learning (ML) prediction quality of mixed
integer programming (MIP) decompositions created via constraint relaxation. In
line with these efforts, Kruber, Lübbecke & Parmentier (2017) propose a supervised
learning approach to decide whether or not a reformulation should be applied to a
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MIP, and which decomposition to choose when several are possible. All these ef-
forts exemplify the promising synergy between optimization and machine learning,
which has become a vibrant area of research. However, the studies most closely
related to our work are the initial study by Bonami, Lodi & Zarpellon (2017) and
its subsequent revision by Bonami, Lodi & Zarpellon (2022). These studies address
the question of whether to linearize or not for convex mixed-integer quadratic pro-
gramming problems. The machine learning models they employ, the exploitation
of spectral properties of data matrices in the feature design phase, and the defini-
tion of custom performance metrics share similarities with our study and have been
enlightening.

Before proceeding further, we establish some notations that will be used throughout
this work.

Notation 1. To denote a symmetric n×n matrix X, where n ∈ Z+, as positive
semidefinite, we use X ⪰ 0. Similarly, X ≻ 0 indicates that the n×n matrix X is
positive definite.

Notation 2. The Frobenius inner product of two n×n matrices X and Y is repre-
sented by X •Y and is calculated as ∑n

i,j=1 XijYij where n ∈ Z+.

Notation 3. The standard basis vector in Rn, where n ∈ Z+, with 1 in the i-th
position and 0 elsewhere is denoted by ei.

To illustrate the main relaxations, we consider the lifted reformulation of the QCQP
introduced earlier in (1.1) which is a technique used to handle the non-convexity
of the original problem (1.1). It introduces additional variables and constraints,
resulting in a problem that is easier to relax.

In the lifted reformulation, we introduce a new matrix variable X which is intended
to represent the outer product xxT . This reformulation transforms the original non-
convex quadratic constraints into linear constraints in terms of the new variables x

and X. The resulting problem is as follows:

z = inf
x,X

A0 •X +2bT
0 x+ c0(1.2a)

s.t. Ak •X +2bT
k x+ ck ≤ 0 k = 1, . . . ,m(1.2b)

X = xxT(1.2c)

(1.1c).
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The constraint X = xxT ensures that X is a rank-one matrix, preserving the non-
convex nature of the original problem, and we can derive various convex relaxations
of the QCQP (1.2) by relaxing this constraint.

The LP relaxation of of the lifted QCQP (1.2), replaces the non-convex constraint
X = xxT with a set of linear inequalities known as McCormick envelopes, which are
used to approximate the bilinear terms xixj :

zLP = inf
x,X

A0 •X +2bT
0 x+ c0(1.3a)

s.t. (1.2b)

Xij− ljxi− lixj + lilj ≥ 0 1≤i≤ j ≤ n(1.3b)

Xij−ujxi− lixj + liuj ≤ 0 1≤i≤ j ≤ n(1.3c)

Xij− ljxi−uixj +uilj ≤ 0 1≤i≤ j ≤ n(1.3d)

Xij−ujxi−uixj +uiuj ≥ 0 1≤i≤ j ≤ n.(1.3e)

Similarly, the SDP relaxation of the lifted reformulation (1.2) replaces the non-
convex constraint X = xxT with a positive semidefinite constraint on an augmented
matrix Y :

zSDP = inf
x,X,Y

A0 •X +2bT
0 x+ c0(1.4a)

s.t. (1.1c),(1.2b)

Y :=
 X x

xT 1

⪰ 0(1.4b)

If A0, . . . ,Am are all positive semidefinite, then the problem is convex because both
the objective function and the constraints are convex functions. Nevertheless, when
these matrices are neither positive nor negative semidefinite, the problem remains
non-convex, leading to considerable difficulties in finding global optima.

These relaxations transform the original non-convex QCQP (1.1) into convex opti-
mization problems that can be solved very effectively and reliably using standard
optimization techniques.

The SDP relaxation provided in (1.4) does not utilize the variable bounds effectively.
We propose adding additional constraints to create an enhanced SDP relaxation,
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denoted as SDP’. Specifically, we introduce constraints that relate to the graph of
Xii = x2

i (see Figure 1.1).

Figure 1.1 The plot of Xii = x2
i along with the line passing through the points (li, l2i )

and (ui,u
2
i ).
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(li, l2i )

(ui,u
2
i )

xi

Xii
Xii = x2

i

The area under the line passing through the bounds li and ui intersects the points
l2i and u2

i . Given these two points, the equation of the line can be determined and
used to define the additional constraints. These constraints can be expressed as:

Xii ≤ (ui + li)xi−uili for i = 1, . . . ,n.

The general formulation of SDP’, the tighter SDP relaxation created by incorporat-
ing these additional constraints, is as follows:

zSDP = inf
x,X,Y

A0 •X +2bT
0 x+ c0(1.5a)

s.t. (1.1c),(1.2b),(1.4b)

Xii ≤ (ui + li)xi−uili i = 1, . . . ,n.(1.5b)

This research aims to explore the theoretical underpinnings of these relaxations by
examining the spectral properties and sparsity patterns of the data matrices. The
ultimate goal is to develop a classification model that can accurately predict whether
a given QCQP instance is SDP-favoring or LP-favoring.

We state the research question as follows: How can one unravel the structure of an
unknown QCQP instance to be either SDP-favoring or LP-favoring, i.e., whether the
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SDP or the LP relaxation would produce the stronger bound without solving them?
Our approach relies on theoretical exploration of the instances by analyzing the effect
of the spectral properties and sparsity pattern of the data matrices to the feasible
regions of the aforementioned relaxations. This approach also utilizes a classification
model that correctly predicts the category of a new instance (either SDP-favoring
or LP-favoring). We handle all aspects of the learning process, including dataset
generation, feature design, and labeling procedures.

Our findings indicate significant differences in the performance of SDP and LP re-
laxations based on the structural properties of the QCQP instances. Notably, SDP
relaxations tend to perform better in instances with convex constraints, while LP
relaxations are more effective in reverse convex scenarios. We also observe that in
instances with hollow matrices, SDP relaxations often become unbounded, high-
lighting their inadequacy in handling certain structures.

The remainder of this thesis is structured as follows. Chapter 2 details the process
of generating the QCQP instances analyzed in this study. In Chapter 3, we describe
our methodology, beginning with an exploratory data analysis and progressing to
three distinct feature engineering approaches for the machine learning models. Sub-
sequently, we introduce classification and regression models to categorize QCQP
instances according to their relations to LP and SDP relaxations. Chapter 4 con-
tains the empirical results of the learning experiments conducted in this research.
Finally, in Chapter 5 we present the conclusions of the study.
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2. INSTANCE GENERATION

In this chapter, we describe the process of generating QCQP instances, which is
pivotal for our subsequent analyses. Our primary objective is to generate diverse
dataset to study how different properties of the instance structure affect the success
of relaxations. We hypothesize that specific instance structures, such as the number
of variables (n), the number of constraints (m) (Ghaddar et al., 2022; González-
Rodríguez et al., 2022), matrix rank, and the existence of finite variable bounds,
are important factors to consider. Additionally, the effect of the convex-concave
nature of the problem has been discussed in previous works by Fu, Luo & Ye (1998),
Nemirovskii, Roos & Terlaky (1999), and Nesterov (2000), and the presence of a
single reverse convex constraint (Hillestad & Jacobsen, 1980).

Furthermore, the success of relaxations may be influenced by various factors, in-
cluding the spectral properties, as discussed in Bonami, Lodi & Zarpellon (2022).
Other factors include the presence of bilinear constraints (McCormick, 1976; Torres,
1990) and sparsity patterns (such as complete, bipartite, tree, forest, cycle, chordal,
and planar graphs), as well as the diagonal nature of matrices (Burer & Ye, 2018;
Kim & Kojima, 2003). We aim to create a sufficiently diverse dataset so that we
can systematically observe the effects of these instance structures. Section 2.1 fo-
cuses on matrices that exhibit various sparsity patterns. In this section, we use the
Python NetworkX package (Hagberg, Schult & Swart, 2008) to create and manipu-
late graphs, including operations such as adding or removing nodes and edges. In
Section 2.2, we discuss the generation of n×n random symmetric matrices with con-
trolled properties. Additionally, Section 2.3 covers QCQPs that do not have finite
variable bounds. Throughout our matrix generation process, we often use random
numbers chosen from specific distributions.

Notation 4. The symbol U (a,b) denotes a uniform distribution with bounds a and
b. For instance, a random variable X that is uniformly distributed between -2 and
2 is written as:

X ∼ U (−2,2)
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2.1 Matrices with Different Sparsity Patterns

In this section, we describe the generation of various types of n×n matrices used in
our study. These matrices include symmetric hollow, bipartite, tree, planar, chordal,
and diagonal forms.

2.1.1 Hollow Matrices

To generate n×n symmetric hollow matrices, we set the diagonal elements to zero
and fill the off-diagonal elements with random values from a uniform distribution.
The resulting matrix M is produced using Algorithm 1.

Algorithm 1 Hollow Matrix Generation.
Input: n

Output: M : Symmetric n×n hollow matrix
1: Generate a symmetric n×n matrix M with elements sampled from U (−2,2)
2: Set all diagonal elements of M to 0
3: return M

2.1.2 Bipartite Graph Matrices

We use the bipartite module of the networkx package to generate random bipartite
graphs. First, we construct a bipartite graph G with k nodes in one partition and
n−k nodes in the other partition. The adjacency matrix A of graph G is computed.
Afterwards, A is converted into a distance matrix D, in which each edge (with a
value of 1) is substituted with a random integer, indicating the distance between
nodes. The latter two procedures are applicable to all subsequent graph types.
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Algorithm 2 Bipartite Matrix Generation.
Input: n

Output: D: An n×n bipartite distance matrix
1: Randomly choose k such that 2≤ k ≤ n−2
2: Randomly choose e such that 2≤ e≤ k× (n−k)
3: Generate a bipartite graph G with k and n−k nodes and e edges
4: Compute the adjacency matrix A of graph G ▷ Common Step 1
5: Convert adjacency matrix A into distance matrix D with random weights ▷

Common Step 2
6: return D

2.1.3 Random Spanning Tree Matrices

Tree matrices are generated from random spanning trees. Similar to the bipartite
matrix, the adjacency matrix is converted into a distance matrix with randomly
assigned weights. The steps are as follows:

Algorithm 3 Random Tree Matrix Generation.
Input: n

Output: D: An n×n random tree distance matrix
1: Generate a random tree T with n nodes
2: Call Algorithm 2, Steps 4 and 5 respectively with input T

3: return D

2.1.4 Planar Graph Matrices

To generate a planar matrix, we first create a complete graph G with n nodes.
Then, with a brute force technique, we remove random edges until we obtain a
planar structure. We check whether the graph we produce is connected, if not, we
add a random edge. In the last stage, we perform the common steps, which are
producing the adjacency matrix and distance matrix respectively from G.
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Algorithm 4 Generate Planar Matrix.
Input: n

Output: D: An n×n planar distance matrix
1: Generate a complete graph G with n nodes
2: Shuffle the edges of G

3: Set is_planar← False
4: while not is_planar do
5: Remove an edge from G

6: Check if G is planar
7: end while
8: if G is not connected then
9: Add an edge between two random nodes in G

10: end if
11: Call Algorithm 2, Steps 4 and 5 respectively with input G

12: return D

2.1.5 Chordal Graph Matrices

First, we generate a random tree T consisting of n nodes. In order to guarantee that
the graph is chordal, we iterate over each node in T. For any node that has at least
two neighboring nodes, we randomly choose two neighbors, denoted as v and w, and
add an edge between v and w to form a chord. These methods guaranteed that
the graph retained its chordal property. The latter steps consist of transforming
the adjacency matrix into a distance matrix, a process that applies to all types of
matrices previously mentioned.
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Algorithm 5 Generate Chordal Matrix.
Input: n

Output: D: An n×n chordal distance matrix
1: Generate a random tree T

2: for each node in T do
3: Get the list of neighbors of the current node
4: if the number of neighbors is at least 2 then
5: Randomly select two neighbors v and w from neighbors

6: Add an edge between v and w to create a chord
7: end if
8: end for
9: Call Algorithm 2, Steps 4 and 5 respectively with input T

10: return D

2.1.6 Conversion of Adjacency to Distance Matrices

For bipartite, tree, planar, and chordal matrices, the adjacency matrices are con-
verted to distance matrices. Each edge in the adjacency matrix is replaced with
a random integer, ensuring symmetry and adding variability to the weights. The
method is as follows:

D[i, j] =

Rij , if A[i, j] = 1

0, otherwise,

where Rij is a randomly selected integer ∼ U (−10,10). To illustrate matrices with
different sparsity patterns, we present examples below.

4 0 0 −10
0 7 4 −9
0 4 6 0
−10 −9 0 8


(a) A bipartite matrix.


0 4.94 −0.32 2.31

4.94 0 1.04 −4.16
−0.32 1.04 0 0.47
2.31 −4.16 0.47 0


(b) A hollow matrix.

Next, we describe the generation of various types of n×n diagonal matrices used in
our study. These matrices include those with ordered and randomly placed 1s and
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−1s, as well as diagonal matrices with random values. In all cases, the resulting
matrix D is a diagonal matrix formed as D = diag(v), where v is a vector defined
according to the specific method.

2.1.7 Diagonal Matrices

In this section, we produce diagonal matrices that vary in order and magnitude of
their eigenvalues. The number of negative eigenvalues for these matrices, n′, can
be specified or randomly determined. First, we create ordered diagonal matrices
with eigenvalues −1 and 1, , where n′ values are −1 followed by n−n′ values of
1. In the second method, we give a random order to −1s and 1s. And finally, we
produce diagonal matrices with eigenvalues containing random numbers in random
positions, provided that (n′) of them are negative. The aim here is to enhance the
diversity of the matrices used in our tests.
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Algorithm 6 Diagonal Matrix Generation.
Input: n, type (one of {‘ordered_ones’, ‘random_ones’, ‘random_randnums’}), n′

(number of negative eigenvalues, optional)
Output: D: An n×n diagonal matrix based on the specified type

1: if n′ is not specified then
2: Set n′ to a random integer between 0 and n (inclusive)
3: end if
4: Initialize vector v of length n

5: if type is ‘ordered_ones’ then
6: Set the first n′ elements of v to -1, and the remaining (n−n′) elements to 1
7: else if type is ‘random_ones’ then
8: Set all elements of v to 1
9: Select n′ random positions from the range 0 to n− 1 and store them in

neg_list

10: for each index idx in neg_list do
11: Set the element of the vector v at position idx to -1
12: end for
13: else if type is ‘random_randnums’ then
14: Generate n random values from the range 1 to 10 and store them in v

15: Select n′ random positions from the range 0 to n− 1 and store them in
neg_list

16: for each index idx in neg_list do
17: Set the element of the vector v at position idx to the negative of its

current value
18: end for
19: end if
20: Form a diagonal matrix D from vector v

21: return D

These three methods allowed us to create a diverse set of diagonal matrices, each
with unique structural properties. Below, we provide two examples:

1 0 0
0 −1 0
0 0 −1


(c) A diagonal matrix with ±1

eigenvalues.


3 0 0
0 −6 0
0 0 −7


(d) A diagonal matrix with random

eigenvalues.
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2.2 Random Matrices

This part of the study describes the generation of various types of n×n random
matrices used in our study. These include random symmetric matrices, matrices with
specific eigenvalue properties, and random symmetric positive definite matrices.

2.2.1 Random Symmetric Matrix

To generate random symmetric matrices, we began by creating a matrix A with
elements drawn randomly ∼ U (−5,5).

Algorithm 7 Random Symmetric Matrix Generation.
Input: n

Output: M : An n×n random symmetric matrix
1: Generate a random symmetric n× n matrix M with elements sampled from

U (−5,5)
2: return M

2.2.2 Random Matrices with Specified Eigenvalues

Random matrices with specified eigenvalues are generated using a procedure in-
volving QR decomposition. For matrices with eigenvalues of ±1, first we generate
random matrix, and perform its QR decomposition to obtain an orthogonal matrix
Q. Then, we form a diagonal matrix Λ with entries of 1 and −1, and the final matrix
M is constructed as M = QΛQT , representing its eigendecomposition. In the case of
matrices with random eigenvalues, the process follows the same initial steps, but the
diagonal matrix Λ is composed of random numbers selected from a specified range
rather than fixed entries of 1 and −1.
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Algorithm 8 Random Matrix with Specified Eigenvalues.
Input: n, type (either ‘ones’ or ‘random’), n′ (optional)
Output: M : Random n×n matrix with specified eigenvalues

1: if n′ is not specified then
2: Randomly select n′ from 0 to n

3: end if
4: Generate a random n×n matrix rand_mtrx with entries as continuous random

numbers ∼ U (0,9)
5: Generate an orthogonal matrix Q

6: Initialize vector v of length n

7: if type is ‘ones’ then
8: Fill v with ones
9: Randomly select n′ positions in v and set them to -1

10: else if type is ‘random’ then
11: Generate v with random integers between 1 and 10
12: Randomly select n′ positions in v and set them to -1
13: end if
14: Form a diagonal matrix Λ using the vector v

15: Construct the matrix M from Λ and Q

16: return M

These methods ensure the desired eigenvalue constraints or diversity.

2.2.3 Random Symmetric Positive Definite Matrix

Random symmetric n× n positive definite matrices are generated using a stan-
dard procedure that ensures positive definiteness. The scikit-learn library (Pe-
dregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer,
Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot & Duches-
nay, 2011), a powerful tool for machine learning in Python, provides the function
make_spd_matrix to generate symmetric positive definite (SPD) matrices.

These four methods allowed us to generate diverse sets of data, some reflecting
unique structural properties. Below are some illustrative examples for n = 3 to
demonstrate the random data matrix generation process:
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0.526 −0.145 0.837
−0.145 0.955 0.257
0.837 0.257 −0.481


(e) A random matrix with

eigenvalues of ±1.


0.722 0.506 −0.498
0.506 1.856 −1.496
−0.498 −1.496 1.554


(f) A random symmetric,
positive-definite matrix.

2.3 QCQPs without Finite Variable Bounds

In addition to the examples presented above, we seek to examine problem types
where no finite variable bounds are imposed in the original problem formulation.
Nevertheless, for these examples, variable limits are still necessary to construct the
LP Relaxation. To address this, we generate examples featuring at least one strictly
convex constraint. We derive artificial boundaries, by determining the smallest axis-
parallel bounding box that encloses the ellipsoid defined by this constraint. We em-
ploy Lagrangian multipliers to derive the closed-form solution for the Quadratically
Constrained Program (QCP) described in problem (2.1).

zQCP = min\max
x

eT
i x(2.1a)

s.t. 1
2xT Ax+ bT x+ c≤ 0 (where A≻ 0).(2.1b)

The optimal solution x∗ is given by:

(2.2) x∗ =−A−1
(ei

λ
+b

)

where λ is the Lagrange multiplier. By substituting x∗ into the objective function,
we obtain the optimal value:

zQCLP = e⊤
i x∗(2.3)

= e⊤
i

(
−A−1

(ei

λ
+b

))
(2.4)

=−e⊤
i A−1

(ei

λ
+b

)
.(2.5)
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To calculate the values of λ, we define:

p =−1
2b⊤A−1b+ c,(2.6)

r = 1
2(e⊤

i A−1b−b⊤A−1ei),(2.7)

s = 1
2e⊤

i A−1ei.(2.8)

The discriminant ∆ is given by:

(2.9) ∆ = r2−4ps.

The roots λmin and λmax are:

λmin = −r−
√

∆
2p

,(2.10)

λmax = −r +
√

∆
2p

.(2.11)

The bounds for xi are obtained by evaluating the objective function at λmin and
λmax. Specifically, substituting λmin yields the lower bound, min(zQCLP), and sub-
stituting λmax yields the upper bound, max(zQCLP).
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3. RESEARCH METHODOLOGY

This chapter summarizes the systematic approaches and techniques used for com-
parative analysis of the two main relaxations of QCQP. Initially, in Section 3.1, we
use various optimization modeling languages to solve QCQP problems and related
relaxations, which lays a foundation for our subsequent analyses. Next, we examine
QCQP instances to derive conjectures and insights from the exploratory analysis in
Section 3.2. We conduct an empirical analysis by applying machine learning tech-
niques with various feature generation methods in Section 3.3. We generate features
through three distinct methods, each demonstrating a unique relationship between
the number of features and the dimensionality of the problem.

3.1 Optimization Modeling Languages and Related Solvers

Within the scope of this project, the first step toward evaluating the relative efficacy
of QCQP relaxations is to attain the lower bounds provided by these relaxations.
As depicted in the Table 3.1, it is noteworthy that not every type of problem, such
as Linear Programming (LP), Quadratic Programming (QP), Second-Order Cone
Programming (SOCP), Exponential Programming (EXP), Semidefinite Program-
ming (SDP), and Mixed-Integer Programming (MIP), may be supported by every
modeling language and associated solver. To address this, we obtain exact solutions
of QCQP problems using Gurobi Optimizer (Gurobi Optimization, 2021), while em-
ploying Python software packages such as CVXPY (Diamond & Boyd, 2016) and
Mosek (MOSEK ApS, 2020) for SDP and LP relaxations.
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Table 3.1 Supported Problem Types by Various Optimization Software Packages.

LP QP SOCP EXP SDP POW MIP
CPLEX ✓ ✓ ✓ ✓

CVXPY ✓ ✓ ✓ ✓ ✓ ✓

Gurobi ✓ ✓ ✓ ✓

MOSEK ✓ ✓ ✓ ✓ ✓ ✓ ✓*
(*) Except mixed-integer SDP.

3.2 Exploratory Data Analysis

Exploratory Data Analysis (EDA) is the cornerstone of the learning-based approach
in Section 3.3. Herein, we seek to understand the key features underlying the data
that may affect the predictive outcome. In this section, we use EDA and data-driven
methods to examine relationships between the structural properties of the QCQP
instances and related relaxations.

Table 3.2 Distribution of Data: LP-favoring vs. SDP-favoring for Different Number
of Decision Variables and Constraints.

n m LP-favoring SDP-favoring Total
5 1 32454 17546 50000
5 2 31657 18343 50000
10 1 33151 16849 50000
10 2 32846 17154 50000

Table 3.2 presents the distribution of LP-favoring and SDP-favoring instances for
different number of decision variables (n = 5 and n = 10) and numbers of constraints
(m = 1 and m = 2). The data indicates that for every type of data configuration,
whether n = 5 or n = 10, and whether m = 1 or m = 2, the distributions of LP-
favoring and SDP-favoring instances are reasonably balanced.
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Table 3.3 Percentages of Different Metrics for A1 and A2.

Constraint Type A1 A2

% of Convex Constraints 49.80% 9.56%
% of Reverse Convex Constraints 0.56% 10.58%
% of Diagonal Constraints 14.91% 24.44%
% of Hollow Constraints 4.10% 9.13%
% of Bipartite Constraints 6.70% 6.52%
% of Tree Constraints 6.83% 6.47%
% of Chordal Constraints 6.39% 7.01%
% of Planar Constraints 6.05% 7.48%

Table 3.3 provides a summary of the distribution of different instance types for the
initial constraint (A1) and the subsequent constraint (A2). In this study, we shall
refer to a problem as “reverse convex” if all data matrices are negative-definite. The
primary constraint is predominantly based on convex constraints, as the data is
produced in a way that the more convex constraints come before the less convex
constraints. The second constraint has a substantially greater percentage of diag-
onal constraints (24.44%) compared to the first constraint (14.91%). The sparsity
patterns, such as bipartite, planar, chordal, and tree, have nearly identical distri-
butions in both A1 and A2, with minor discrepancies that have negligible effects
on the overall structural comparison. The contrasts between the first and second
constraints are highlighted by their differing structural properties.

Figure 3.1 displays an evaluation of the effectiveness of LP and SDP relaxations
when the artificial bounds are introduced. As described in Section 2.3, this approach
includes incorporating bounds generated from convex constraints into the original
QCQP problem, which does not have intrinsic finite variable bounds. The empirical
data shows that the LP relaxation is superior to the SDP relaxation in just 0.96%
of cases, whereas the SDP relaxation is considerably superior in 99.04% of cases.
The significant disparity indicates that the LP relaxation is significantly insufficient
in this context, yielding a considerably lower optimal value and therefore, the LP
relaxation fails to offer a meaningful bound.
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Figure 3.1 Performance Comparison with Derived Artificial Bounds
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As a result of these observations, we propose the following conjecture:

Conjecture 1. If the original problem does not have any finite variable bounds,
artificial bounds are introduced, then with high probability zLP ≤ zSDP.

Figure 3.2 illustrates the performance of SDP relaxation in a scenario where the
data matrices in the QCQP are hollow matrices (zero diagonal). The analysis re-
veals that in all observed instances, the SDP relaxation becomes unbounded. This
finding indicates that the SDP relaxation fails completely under these conditions,
highlighting its inadequacy in handling instances with zero diagonal data matrices.

Based on these observations, we propose another conjecture:

Conjecture 2. If Ai matrices are hollow, then zSDP ≤ zLP.
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Figure 3.2 SDP Relaxation Performance in Instances with Hollow Matrices.
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Table 3.4 offers an overview of the LP and SDP relaxations’ performance with respect
to various problem types and objectives. The data shows the superiority of SDP
relaxation by a wide margin for convex problems and objectives compared to LP
relaxation. Conversely, LP relaxation is shown to be more effective for reverse convex
problems. This general trend underscores the importance of choosing the suitable
relaxation method based on the specific characteristics of the problem at hand to
achieve optimal performance.

Table 3.4 Comparison of LP and SDP Relaxations for Convex and Reverse Convex
Problems.

Problem Type Outperforming Relaxation

LP SDP

Convex Problem 0.19% 99.80%
Reverse Convex Problem 100% 0%
Convex Objective 12.55% 87.43%
Concave Objective 93.03% 6.96%

From the results shown in Table 3.4, we may formulate two conjectures about the
performance of LP and SDP relaxations in relation to the spectral properties of
A0, which impact the convexity or concavity of the objective function. The table
demonstrates a distinct trend in which SDP relaxations exhibit outstanding perfor-
mance in scenarios involving convex problems, but LP relaxations are more effective
for reverse convex problems. Based on these observations, the following conjectures
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can be formulated:

Conjecture 3. If A0 is positive semi-definite, i.e. the objective function is convex,
then with high probability zLP ≤ zSDP.

Conjecture 4. If A0 is negative semi-definite, i.e. the objective function is concave,
then with high probability zSDP ≤ zLP.

Although we have not yet been able to prove our conjectures, we are actively work-
ing on creating a family of counterexamples and our efforts to develop a suitable
probabilistic model for our conjectures continue.

3.3 Learning Experiments

This section outlines the supervised learning techniques utilized in this study. We
develop classification and regression models to analyze how QCQP instances relate
to LP and SDP relaxations, but a QCQP sample cannot be given as input to machine
learning as in the form 1.1. Therefore, we turn QCQP instances into a meaningful
set of input in Section 3.3.1, and we tag the data so that the machine can learn in
Section 3.3.2. Finally, Section 3.3.3 gives provides information about the training
and testing process.

3.3.1 Feature Design

After generating QCQP instances and conducting exploratory analysis, the last step
of our data-driven technique is feature extraction for our machine learning models.
These features cover a range of properties of the data matrices that are expected to
have a substantial impact on the performance of the studied relaxations, including
the negative eigenvalues and the sparsity patterns in the data matrices. At first, our
method of feature engineering in Section 3.3.1.1 largely depended on features that
were highly dependent on m and n. Nevertheless, we then identified the potential
limitations of our method, particularly its lack of generalizability and its tendency
to become explode when dealing with larger matrix sizes and instances that involve
a significant number of constraints. In order to tackle these difficulties, we modified
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our approach to ensure that the number of features remained unaffected, first by the
decision variables (as explained in Section 3.3.1.2), and then by the total instance
size (as discussed in Section 3.3.1.3).

3.3.1.1 Fully Dimension-Dependent Setup

At this stage of the study, the feature set is directly linked to the dimensionality of
the decision variables and the number of constraints. For instance, each eigenvalue
is represented as a distinct feature, and the number of negative eigenvalues or rank
can be quantified as an integer ranging from 0 to n.

Notation 5. Let A be a n×n square matrix, where n ∈ Z+. The eigenvalues of A

are denoted by λ(A), which is a vector of eigenvalues sorted from the largest to the
smallest.

Definition 1. Let x ∈Rn be a vector, where n ∈ Z+. We define η(x) as the number
of negative values in x:

η(x) =
n∑

i=1
1{xi<0},

where 1{xi<0} is an indicator function that equals 1 if xi < 0 and 0 otherwise.

By applying this function, η(λ(Ai)) specifically yields the number of negative eigen-
values for the corresponding matrix Ai.

Definition 2. Let A be a n×n square matrix, where n ∈ Z+ and Ps(A) : Rn×n→
{0,1} be a function defined as follows:

Ps(A) =

1 if the sparsity pattern of A is s

0 otherwise,

where s ∈ S = {Diagonal, Hollow, Bipartite, Tree, Chordal, Planar}.

As an example, defining this function allows PD(Ai) to return 1 if Ai is a diagonal
matrix and 0 otherwise.

Table 3.5 provides a detailed description of the features generated for the fully
dimension-dependent setup. This approach generates features that are highly de-
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pendent on both the dimensionality of the decision variables (n) and the number
of constraints (m). The spectral properties section includes features such as the
number of negative eigenvalues (η(λ(Ai))), the jth largest eigenvalue (λj(Ai)), and
the rank (ρ(Ai)) of each constraint matrix Ai. Additionally, the sparsity pattern
section includes the feature Ps(Ai), which indicates whether a constraint matrix Ai

has a specific sparsity pattern s ∈ S. The BoundsExist? feature indicates whether
the original problem has finite variable bounds or if the artificial bounds method
are derived as described in Section 2.3. The total number of features is a function
of both n and m, calculated as below.

Table 3.5 Description of Fully Dimension-Dependent Setup.

Notation Description

Spectral properties

η(λ(Ai)) Number of negative eigenvalues of Ai, i = 1, . . . ,m.
λj(Ai) jth largest eigenvalue of Ai, j = 1, . . . ,n and i =

1, . . . ,m.
ρ(Ai) Rank of Ai, i = 1, . . . ,m

Sparsity pattern

Ps(Ai) 1 if Ai has a sparsity pattern of s ∈ S, 0 otherwise, i =
1, . . . ,m

BoundsExist? 1 if the original problem has finite variable bounds, 0 if
artificial bounds method is used

Total Number of Fea-
tures

(n+ |S|+2)(m+1)+1

3.3.1.2 Semi Dimension-Dependent Setup

In this approach, the feature set is designed to be independent of n. Nevertheless, the
number of features increases with the number of constraints m. This design strategy
allows the features to encapsulate the essential characteristics of the constraints
without being directly influenced by the size of the decision variable vector. Instead
of providing all the eigenvalues, we define a ratio to represent the essential spectral
properties of the constraints.

Definition 3. The ratio of the sum of the absolute values of negative elements to
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the 1-norm of x in a nonzero vector x ∈ Rn is denoted by θ (x). Mathematically, it
is defined as

θ (x) =
∑n

i=1 |xi|1{xi<0}
∥x∥1

,

where xi represents the elements of the vector x, 1{xi<0} is the indicator function
that equals 1 if xi < 0 and 0 otherwise, and ∥x∥1 is the 1-norm of x, given by
∥x∥1 = ∑n

i=1 |xi|.

Table 3.6 Description of Semi Dimension-Dependent Setup.

Notation Description

Spectral properties

η(λ(Ai))/n Number of negative eigenvalues of Ai over n, i =
1, . . . ,m.

θ (λ(Ai)) Negative eigenvalue ratio of Ai, i = 1, . . . ,m

λmin (Ai) Smallest eigenvalue of Ai, i = 1, . . . ,m.
λmax (Ai) Largest eigenvalue of Ai, i = 1, . . . ,m.
ρ(Ai)/n Rank of Ai over n, i = 1, . . . ,m.

Sparsity pattern

Ps(Ai) 1 if Ai has a sparsity pattern of s ∈ S, 0 otherwise, i =
1, . . . ,m

BoundsExist? 1 if the original problem has finite variable bounds, 0 if
artificial bounds are derived

Total Number of Fea-
tures

(|S|+5)(m+1)+1

3.3.1.3 Dimension-Independent Setup

Our final approach to feature engineering involves generating features whose number
is constant, irrespective of the problem size. This method is particularly advanta-
geous for large-scale problems with a substantial number of variables and constraints.
The main idea of this approach is that rather than providing individual information
for each constraint, we introduce aggregate statistics of all constraints.

Notation 6. Let Ξ,Θ,Λmin,Λmax,ϱ,Φs be vectors of size m, where m ∈ Z+, defined
as follows:
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Ξ =
[
η(λ(A1))/n η(λ(A2))/n . . . η(λ(Am))/n

]T
.

Here, η(λ(Ai)) denotes the number of negative eigenvalues of the matrix Ai, and n

represents normalization by n, the size of the decision variable. This vector thus
captures the proportion of negative eigenvalues for each constraint matrix Ai.

Θ =
[
θ (λ(A1)) θ (λ(A2)) . . . θ (λ(Am))

]T
.

Here, θ (λ(Ai)) denotes the ratio of the sum of the absolute values of negative eigen-
values to the sum of the absolute values of all eigenvalues for the matrix Ai. This
vector captures the negative eigenvalue ratios for each constraint matrix Ai.

Λmin =
[
λmin (A1) λmin (A2) . . . λmin (Am)

]T
.

This Λmin vector captures the smallest eigenvalues for each constraint matrix Ai.

Λmax =
[
λmax (A1) λmax (A2) . . . λmax (Am)

]T
.

Similarly, the vector Λmax is defined as the vector of the largest eigenvalues for all
constraints.

ϱ =
[
ρ(A1) ρ(A2) . . . ρ(Am)

]T
.

This vector captures the ranks for each constraint matrix Ai.

Φs =
[
Ps(A1) Ps(A2) . . . Ps(Am)

]T
.

This vector captures the sparsity pattern for each constraint matrix Ai for s ∈ S.

These vectors provide specific information about all constraints, enabling us to create
features that reflect their distributions. To further enhance our feature design, we
define several statistical functions.

Notation 7. We define the following statistics for a given vector x:

• min(x): The minimum value of the elements in the vector x.

• max(x): The maximum value of the elements in the vector x.
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• avg(x): The average (mean) value of the elements in the vector x, calculated
as:

avg(x) = 1
n

n∑
i=1

xi,

where n is the number of elements in the vector x.

• µ3 (x): Third moment, calculated as 1
n

∑n
i=1(xi−µ)3, where µ is the mean of

x.

• IQR(x): Interquartile Range (IQR), calculated as Q3−Q1, where Q3 is the
third quartile and Q1 is the first quartile of x.

• Pout (x): Proportion of outliers. Outliers are typically defined based on a spe-
cific rule, such as values more than 1.5 times the IQR above the third quartile
or below the first quartile.

• CV(x): Coefficient of Variance (CV), calculated as σ
µ , where σ is the standard

deviation and µ is the mean of x.

As an example, the function min(x) will help us determine the minimum of all the
minimum eigenvalues of each constraint by evaluating min(Λmin).

Definition 4. Let x∈Rm and hq(x) :Rm→R be a function representing the statistic
q of x.

hq(x) =



min(x) if q = min

max(x) if q = max

avg(x) if q = avg

µ3 (x) if q = thirdmoment

IQR(x) if q = IQR

Pout (x) if q = outliers

CV(x) if q = CV.

Figure 3.3 shows how the property p of matrices A1 to Am is analyzed through var-
ious statistical measures (Q), resulting in a specific statistic q. For example, hq(Θ)
provides various statistics about the negative eigenvalue ratios of the constraints.

Definition 5. Let gα(x) be a function Rm→ R defined as follows:

gα(x) = 1
m

m∑
i=1

1{xi=α},
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Figure 3.3 Diagram illustrating the calculation of statistic q for property p of matrices
A1 to Am.

property p of A1

property p of A2

property p of A3

...

property p of Am

Q =
{min,max,avg,
skewness,CV,
IQR,outliers}

statistic q of
property p

where x ∈ Rm and 1{xi=α} is the indicator function that equals 1 if xi = α and 0
otherwise.

This function counts the occurrences of α in the vector x and normalizes the count
by dividing by the number of constraints. For example, g0(Θ) essentially represents
the proportion of convex constraints by counting the zeros in the negative eigenvalue
ratios and dividing by m.

Table 3.7 provides an overview of the notations and descriptions for the dimension-
independent setup employed in our study. Different from Section 3.3.1.2, the spec-
tral properties section includes statistical measures of vectors representing different
eigenvalue characteristics and proportion of convex and concave constraints. In the
sparsity pattern section, new ratios are defined to reflect the prevalence of diagonal,
hollow, bipartite, tree, chordal and planar matrices among the constraints. As in
Sections 3.3.1.1 and 3.3.1.2, this table also includes a feature that indicates whether
the original problem has inherent finite variable bounds or if artificial bounds were
used. What sets this approach apart is the development of dimension-independent
features by offering comprehensive information about all constraints.

Table 3.7 Description of Dimension-Independent Setup.

Notation Description

Spectral properties

η(λ(A0))/n Number of negative eigenvalues of A0 over n
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θ (λ(A0)) Negative eigenvalue ratio of A0

λmin (A0) Smallest eigenvalue of A0 over n

λmax (A0) Largest eigenvalue of A0 over n

ρ(A0)/n Rank of A0 over n

g0(Θ) Proportion of convex constraints
g1(Θ) Proportion of concave constraints
hq(Θ) Statistic q of Θ, q ∈Q
hq(Λmin) Statistic q of Λmin, q ∈Q
hq(Λmax) Statistic q of Λmax, q ∈Q
hq(ϱ) Statistic q of ϱ, q ∈Q

Sparsity pattern

Ps(A0) 1 if A0 has a sparsity pattern of s ∈ S, 0 otherwise
gs(Φs) The ratio of matrices with sparsity pattern of s to the

total number of constraints

BoundsExist? 1 if the original problem has finite variable bounds, 0 if
artificial bounds method are derived

Total Number of Fea-
tures

(|Π|× |Q|)+2×|S|+8 = 55

Definition 6. In the context of this calculation, Π is a set of properties defined as:

Π = {Ξ,Θ,Λmin,Λmax,ϱ}.

Table 3.8 presents a detailed comparative analysis of three methodologies for fea-
ture construction of QCQP instances with n = 3 and m = 2. The column labeled
fully_dep includes features whose number significantly depends on both the dimen-
sionality of the decision variable and the number of constraints (see Section 3.3.1.1).
In contrast, the semi_dep column encompasses a method where the number of fea-
tures is independent of n, yet remains dependent on m (see Section 3.3.1.2). Finally,
the dim_indep column represents a feature extraction approach that is independent
of both n and m (see Section 3.3.1.3).
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Table 3.8 Example features with n = 3,m = 2.

fully_dep semi_dep dim_indep
λ1(A0) θ (A0)
λ2(A0) λmin (A0)
λ3(A0) λmax (A0)
λ1(A1) θ (A1) hq(Θ), q ∈Q
λ2(A1) λmin (A1) g0(Θ)
λ3(A1) λmax (A1) g1(Θ)
λ1(A2) θ (A2) hq(Λmin), q ∈Q
λ2(A2) λmin (A2)

hq(Λmax), q ∈Q
λ3(A2) λmax (A2)

η(λ(A0)) η(λ(A0))/n

η(λ(A1)) η(λ(A1))/n
hq(N ), q ∈Q

η(λ(A2)) η(λ(A2))/n

ρ(A0) ρ(A0)/n

ρ(A1) ρ(A1)/n
hq(ϱ), q ∈Q

ρ(A2) ρ(A2)/n

PD(A0)
PH(A0)
PB(A0)
PT (A0)
PC(A0)
PP (A0)

PD(A1)
gD(ΦD)

PD(A2)
PH(A1)

gH(ΦH)
PH(A2)
PB(A1)

gB(ΦB)
PB(A2)
PT (A1)

gT (ΦT )
PT (A2)
PC(A1)

gC(ΦC)
PC(A2)
PP (A1)

gP (ΦP )
PP (A2)

BoundsExist?
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3.3.2 Data Labeling Workflow

In this section, we present the data labeling workflow used in our study. We create
target labels using the optimal values of two different relaxation methods. In the
context of our learning experiments, every data point has been labeled in two differ-
ent ways: binary for classification and continuous for regression. With respect to the
binary labels, data points were classified into either LP-favoring or SDP-favoring.
In the regression model, continuous labels were applied to data points. These labels
were represented as scaled ratios of the differences between the two relaxations. The
process for computing these labels is outlined below.

Definition 7. Let us define the normalized difference between the optimal values of
two relaxations as:

relative difference = zrelaxation1− zrelaxation2
|zrelaxation1|+ |zrelaxation2|

.

The resulting continuous value is used as the label for regression. However, to assign
a target label for classification, we compare this relative difference with a predefined
threshold:

label =

0 if normalized_diff <−tolerance (relaxation2-favoring)

1 otherwise (relaxation1-favoring).

Here, tolerance is an important parameter, which allows for small differences be-
tween the lower bounds given by the two relaxations. Setting it to 10−2, we ensure
precision in the calculations. Our labeling strategy puts more emphasis on relative
performances of the two relaxation methods, avoiding scale differences. Therefore,
the tolerance threshold makes the classification flexible; which takes into account
the fact that small changes may not actually mean a true preference of one method
over another. In this context, the LP relaxation is chosen for relaxation1, while
the second relaxation can be either SDP or SDP’. The objective is to establish a
time-efficient target by selecting LP when the bounds provided by LP and SDP are
approximately equivalent, given that SDP typically requires more runtime.

3.3.3 Training and Testing
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Upon completing the data preprocessing and feature engineering processes, raw data
is organized and is suitable for machine learning. First, we use the classification
model to categorize QCQP instances as LP-favoring or SDP-favoring. In addition,
we use a regression model to estimate the difference between the lower bounds offered
by these two relaxations. This approach allowed us to understand their comparative
effectiveness more comprehensively.

We employed supervised learning techniques for both classification and regression
tasks. For the classification tasks, we used RandomForestClassifier (RFC), Sup-
port Vector Classifier (SVC), XGBClassifier, GradientBoostingClassifier (GBC), and
Neural Network (NN). For the regression tasks, we utilized Random Forest Regres-
sor (RFR), Gradient Boosting Regressor (GBR), Support Vector Regressor (SVR).
We tuned those models to find the best performance using a grid search method
where we specify a range of values for key hyper-parameters. It permitted spotting
the best hyper-parameters combination of every model. The dataset was randomly
divided into training and test sets with an 80%–20% ratio. The learning experi-
ments were implemented using Python 3.11.5 and Scikit-learn version 1.3.0. The
experiments were executed on a system equipped with an Intel(R) Xeon(R) W-2145
CPU @ 3.70 GHz and 64 GB of RAM.
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4. RESULTS

In this chapter, we present the performance evaluations of our learning experiments.
First, all experiments conducted in this study are enumerated. A total of 68 exper-
iments were performed for both the LP vs. SDP benchmark and the LP vs. SDP’
benchmark, encompassing classification and regression experiments, on 17 datasets
that differed in terms of n, m, number of QCQP instances, and feature design ap-
proach. Numerous machine learning models, as discussed in Section 3.3.3, were
evaluated in these experiments. In the majority of experiments, Gradient Boosting
and Random Forest emerged as the top-performing models for both classification
and regression. In Section 4.1, we describe the performance metrics and results of
the classification models. In Section 4.2, we provide detailed computational results
and analysis for the regression models.

Table 4.1 summarizes the experiments carried out in this study, detailing data iden-
tifiers, the approaches used for feature engineering, and the size of various datasets
used for training and testing.

The columns are explained as follows:

• Data Identifier: A unique label for each experiment.

• Features: Specifies the feature engineering approach applied, which can be
one of the following:

– fully_dep: Problem dimensionality dependent features (see Section
3.3.1.1).

– semi_dep: Variable dimensionality independent features (see Section
3.3.1.2).

– dim_indep: Problem dimensionality independent features (see Section
3.3.1.3).

• Train and Test: Each represented by three columns: n, m, and data_size as
the number of QCQP instances.
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The experiments vary by the number of decision variables, the number of constraints,
and the size of the datasets. For example, the experiment D-5-1 uses dependent
features with n = 5, single constraint, and a training dataset of 50,000 instances,
using the same configuration for testing.

Special cases are highlighted, such as S-5,10-2’ and I-10-2’, where the training and
testing dataset configurations differ. These cases involve a specific training dataset
and a differently configured testing dataset, indicated in the Test column.

For more details on the feature engineering approaches (fully_dep, semi_dep,
dim_indep), refer to Section 3.3.1.

Table 4.1 List of Experiments.

Data Identifier Features Train Test

n m size n m size

D-5-1 fully_dep 5 1 50K 5 1 50K
D-5-2 fully_dep 5 2 50K 5 2 50K
D-10-1 fully_dep 10 1 50K 10 1 50K
D-10-2 fully_dep 10 2 50K 10 2 50K
S-5-1 semi_dep 5 1 50K 5 1 50K
S-5-2 semi_dep 5 2 50K 5 2 50K
S-5-3 semi_dep 5 3 5K 5 3 5K
S-5-10 semi_dep 5 10 10K 5 10 10K
S-10-1 semi_dep 10 1 50K 10 1 50K
S-10-2 semi_dep 10 2 50K 10 2 50K
S-5,10-1 semi_dep 5&10 1 100K 5&10 1 100K
S-5,10-2 semi_dep 5&10 2 100K 5&10 2 100K
S-5,10-2’ semi_dep 5&10 2 100K 20 2 10K
I-5-10 dim_indep 5 10 10K 5 10 10K
I-5-2 dim_indep 5 2 50K 5 2 50K
I-10-2 dim_indep 10 2 50K 10 2 50K
I-10-2’ dim_indep 10 2 50K 5 10 10K

4.1 Classification Model Performance
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Table 4.2 presents classification performance metrics for different experiments, in-
cluding accuracy, F1 score, precision, and recall. The general trend is that with
increasing n, performance metrics are improving, while the increase in the number
of constraints has a negative effect on the success of prediction. The effect of m

can be observed from the gradual decrease in the performance of experiments S-
5-1, S-5-2, S-5-3, S-5-10. The results show that experiments D-10-1 and S-10-1
achieved the highest performance across all metrics; this can perhaps be explained
by the advantage of dealing with a single-constraint problem. In contrast, experi-
ments I-10-2’ and S-5,10-2’ show the lowest performance and show difficulties due
to the possible complexity of training and testing on different data. In summary, the
results show that changes in problem size and data configuration can significantly
affect classification metrics.

Table 4.2 Best Classification Metrics for Different Experiments (LP vs. SDP).

Data Identifier Best Model Accuracy F1 Score Precision Recall

D-5-1 GBC 0.952 0.952 0.953 0.952
D-5-2 GBC 0.935 0.934 0.934 0.935
D-10-1 GBC 0.972 0.972 0.972 0.972
D-10-2 RFC 0.970 0.970 0.970 0.970
S-5-1 GBC 0.950 0.949 0.950 0.950
S-5-2 GBC 0.934 0.934 0.934 0.934
S-5-3 RFC 0.896 0.895 0.896 0.896
S-5-10 GBC 0.846 0.846 0.847 0.846
S-10-1 GBC 0.972 0.972 0.973 0.972
S-10-2 GBC 0.967 0.967 0.967 0.967
S-5,10-1 GBC 0.961 0.961 0.961 0.961
S-5,10-2 GBC 0.949 0.948 0.949 0.949
S-5,10-2’ GBC 0.899 0.901 0.910 0.899
I-5-2 NN 0.933 0.933 0.933 0.933
I-5-10 GBC 0.846 0.846 0.846 0.846
I-10-2 GBC 0.967 0.967 0.967 0.967
I-10-2’ NN 0.807 0.806 0.824 0.807

Figure 4.1 presents confusion matrices for different feature configurations:
dimension-dependent (a), semi-dependent setup (b), and fully independent features
(c).

Figure 4.1(a) shows the confusion matrix associated with experiment D-5-1. Here,
performance is rather balanced between the instances favoring LP and those favor-
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ing SDP, with high true positive and true negative rates. Nonetheless, the number
of false positives and false negatives indicates an area for improvement in classifi-
cation accuracy. Figure 4.1(b) demonstrates the confusion matrix of S-5-1 showing
significantly high true positives and true negatives along the diagonal. This indi-
cates that our generalization attempts have been successful. The last figure 4.1(c)
presents the confusion matrix for the experiment I-5-10, indicating a proportional
increase in false positives and false negatives, which may be due to the additional
complexity introduced by the feature design. Overall, the high values along the
diagonals of these matrices demonstrate the effectiveness of our models, although
the dimension-independent setup introduce complexity that may hinder accuracy.
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(a) Confusion Matrix for fully_dep (n = 5, m = 1)

(b) Confusion Matrix for semi_dep (n = 5, m = 1)

(c) Confusion Matrix for dim_indep (n = 5, m = 10)

Figure 4.1 Confusion Matrices for Different Feature Designs.

The feature importance chart for S-5-1 in Figure 4.2 demonstrates that bounds_exist
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is the most critical feature, with importance around 0.30. The classification result
is very seriously influenced by the presence of bounds. Also significant are the mini-
mum eigenvalue of matrix A1 (A1_min_eigenval), around 0.15, and the eigenvalue
ratio of A1 (A1_eigenval_ratio), around 0.10.

The maximum eigenvalue of A1 (A1_max_eigenval), also important in understand-
ing the convexity of the constraint, has a large influence, with an importance of
about 0.06. Other relevant features include the minimum eigenvalue and number of
negative eigenvalues of A0 (A0_min_eigenval and A0_num_neg_eig), each with
importance around 0.10 and 0.05, respectively.

Among the less influential features are ranks and diagonals of matrices and some
sparsity properties, with importances near 0.01. We can summarize that the metrics
related to eigenvalues and the existence of bounds are the most influential features
by a large difference.

Figure 4.2 Feature Importances for semi_dep (n = 5& m = 1).
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Up to this point, we have meticulously analyzed the classification results of LP
versus SDP. We now present the comparative results of LP versus SDP’. The most
notable changes in Table 4.3 across the experiments are observed with the increase in
dimensions and the complexity of constraints. For fully dependent features, metrics
improve significantly when moving from 5 to 10 dimensions, with accuracy and F1
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scores rising from around 0.85 in D-5-1 and D-5-2 to approximately 0.90 in D-10-
1 and D-10-2. In semi_dep feature design, S-5-10, with ten constraints, shows a
drop in performance (accuracy around 0.81) compared to S-5-1 and S-5-2 (around
0.84 to 0.85). However, when n is equal to 10, the performance metrics rebound
to around 0.90 in S-10-1 and S-10-2. For independent features, the experiments
I-5-2 and I-10-2 demonstrate surprisingly very high metrics (around 0.93 to 0.96),
indicating that higher dimensions and independent features significantly enhance
model performance. As expected, I-10-2’ shows a dip in metrics (around 0.80),
highlighting challenges with specific feature and constraint configurations.

Table 4.3 Best Classification Metrics for Different Experiments (LP vs. SDP’).

Data Identifier Best Model Accuracy F1 Score Precision Recall

D-5-1 GBC 0.859 0.859 0.859 0.859
D-5-2 GBC 0.853 0.852 0.852 0.853
D-10-1 GBC 0.903 0.902 0.902 0.903
D-10-2 GBC 0.892 0.891 0.890 0.892
S-5-1 GBC 0.846 0.846 0.845 0.846
S-5-2 GBC 0.852 0.851 0.851 0.852
S-5-3 GBC 0.846 0.845 0.844 0.846
S-5-10 GBC 0.816 0.806 0.805 0.816
S-10-1 GBC 0.903 0.902 0.902 0.903
S-10-2 XGB 0.889 0.888 0.887 0.889
S-5,10-1 GBC 0.874 0.873 0.873 0.874
S-5,10-2 GBC 0.875 0.874 0.873 0.875
S-5,10-2’ XGB 0.864 0.845 0.846 0.864
I-5-2 GBC 0.934 0.934 0.934 0.934
I-5-10 GBC 0.846 0.846 0.846 0.846
I-10-2 GBC 0.890 0.889 0.888 0.890
I-10-2’ NN 0.807 0.798 0.796 0.807

4.2 Regression Model Performance

Table 4.4 provides the regression performance metrics for various experiments, in-
cluding Mean Squared Error (MSE), Root Mean Squared Error (RMSE), R2 score,
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and lastly r_accuracy, which is not a standard regression metric but is specifically
designed for the purposes of our analysis.

For a vector of true labels y and a vector of predicted labels ŷ, we define the per-
formance metric r_accuracy as follows:

(4.1) r_accuracy(y, ŷ) = 1
K

K∑
k=1

1{sign(yk) = sign(ŷk)or (−ϵ < yk < 0and ŷk > 0)}

where K is the size of the test set, 1{·} is the indicator function, and ϵ is a predefined
threshold for near-zero values. Our purpose in developing this performance metric
is to consider predictions with the same sign as the actual relative difference as cor-
rectly categorized, regardless of their magnitude, and to also accept LP predictions
in cases where SDP is tighter than LP by ϵ difference. This metric also provides
the advantage of making comparisons with classification accuracy. In this study, ϵ

is determined as 10−1.

Table 4.4 Best Regression Metrics for Different Experiments (LP vs. SDP).

Data Identifier Best Model MAE MSE RMSE R2 r_accuracy

D-5-1 RFR 0.072 0.024 0.155 0.956 0.958
D-5-2 GBR 0.135 0.047 0.216 0.917 0.951
D-10-1 RFR 0.038 0.009 0.096 0.985 0.981
D-10-2 RFR 0.058 0.016 0.126 0.975 0.981
S-5-1 GBR 0.081 0.024 0.156 0.956 0.955
S-5-2 GBR 0.131 0.046 0.215 0.918 0.951
S-5-3 RFR 0.155 0.061 0.246 0.886 0.931
S-5-10 GBR 0.129 0.036 0.190 0.898 0.918
S-10-1 RFR 0.038 0.009 0.095 0.986 0.980
S-10-2 RFR 0.056 0.015 0.124 0.976 0.981
S-5,10-1 RFR 0.056 0.016 0.126 0.973 0.969
S-5,10-2 RFR 0.088 0.031 0.175 0.949 0.965
S-5,10-2’ GBR 0.271 0.126 0.355 0.821 0.981
I-5-2 GBR 0.132 0.047 0.216 0.917 0.952
I-5-10 GBR 0.132 0.038 0.195 0.893 0.916
I-10-2 RFR 0.057 0.016 0.125 0.976 0.981
I-10-2’ GBR 0.386 0.265 0.515 0.215 0.887
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Table 4.4 shows significant performance variations between experiments with dif-
ferent configurations. Increasing n from 5 to 10 in the fully dimension dependent
setup greatly improves performance, as seen by MAE decreasing from 0.135 to 0.038
and R2 from 0.917 to 0.985. However, adding more constraints increases errors and
reduces R2, indicating a complexity penalty. For non-independent features, exper-
iments with smaller datasets or more constraints show higher errors and lower R2,
particularly in S-5-3 and S-5,10-2. Independent features generally yield high per-
formance, but complex configurations like I-10-2’ cause significant drops in metrics,
with MAE rising to 0.386 and R2 dropping to 0.215, demonstrating the challenges
of high-dimensional, independent feature setups.

In addition, the r_accuracy metric, which tracks how accurately the predicted signs
match the actual signs, typically reflects the trends seen in other metrics. Models
operating in high-dimensional and less constrained environments tend to show higher
r_accuracy values. This indicates that the model is more frequently correct in
predicting the sign of the output in simpler setups. For example, r_accuracy is
notably high, around 0.981, in the D-10-1 and D-10-2 experiments, consistent with
their strong performance in regression tasks. On the other hand, in more complex
setups, especially those with independent features and higher dimensions such as
I-10-2’, there is a noticeable drop in r_accuracy to about 0.887. This decrease
underscores the model’s difficulty in consistently predicting the correct sign under
more challenging conditions.
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Table 4.5 Best Regression Metrics for Different Experiments (LP vs. SDP’).

Data Identifier Best Model MAE MSE RMSE R2 r_accuracy

D-5-1 RFR 0.065 0.011 0.106 0.885 0.759
D-5-2 GBR 0.074 0.013 0.115 0.888 0.807
D-10-1 RFR 0.058 0.008 0.089 0.930 0.860
D-10-2 GBR 0.067 0.010 0.099 0.921 0.886
S-5-1 GBR 0.063 0.010 0.101 0.896 0.758
S-5-2 GBR 0.074 0.013 0.114 0.890 0.806
S-5-3 GBR 0.077 0.014 0.119 0.888 0.841
S-5-10 GBR 0.064 0.010 0.101 0.937 0.863
S-10-1 GBR 0.060 0.008 0.089 0.930 0.856
S-10-2 RFR 0.067 0.010 0.100 0.919 0.889
S-5,10-1 GBR 0.064 0.010 0.098 0.911 0.800
S-5,10-2 RFR 0.071 0.012 0.109 0.902 0.851
S-5,10-2’ RFR 0.149 0.045 0.213 0.647 0.926
I-5-2 GBR 0.074 0.013 0.114 0.890 0.806
I-5-10 GBR 0.132 0.038 0.195 0.892 0.916
I-10-2 GBR 0.068 0.010 0.100 0.920 0.888
I-10-2’ GBR 0.150 0.040 0.201 0.745 0.842

Having thoroughly examined the regression outcomes of LP compared to SDP, we
now shift our focus to the comparative analysis of LP and SDP’. Comparing the
tables 4.4 and 4.5, the most drastic changes are seen in the D-5-1 and D-10-1
experiments. For D-5-1, while MAE decreased from 0.072 to 0.065 and MSE from
0.024 to 0.011, indicating better performance with LP vs. SDP’, the R2 value
dropped significantly from 0.956 to 0.885, and r_accuracy from 0.958 to 0.759,
highlighting a decrease in overall predictive power despite lower error metrics. In D-
10-1, MAE increased from 0.038 to 0.058 and R2 dropped from 0.985 to 0.930, with
r_accuracy also decreasing from 0.981 to 0.860, suggesting LP vs. SDP’ struggled
more with higher dimensions compared to LP vs. SDP. Additionally, in S-5,10-2’,
the MAE decreased from 0.271 to 0.1493, and MSE from 0.126 to 0.0454, with R2

improving from 0.821 to 0.6470, but r_accuracy dropping from 0.981 to 0.9262,
indicating that while LP vs. SDP’ resulted in better error metrics, its predictive
consistency was slightly lower in terms of sign accuracy. However, compared to
SDP, SDP’ relaxation is a much stronger competitor for LP relaxation and can
give much tighter bounds than SDP by making good use of variable bounds. For
this reason, the high performance of these two relaxations can make it difficult to
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distinguish significant differences between them. Nevertheless, we observe that it is
still successful in predicting the relaxation type, which has superior performance.
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5. CONCLUSION

This thesis focuses on analyzing and comparing the performance of two primary
relaxations used in QCQP problems. By examining the structural properties of
QCQP instances, we formulate conjectures and classify the instances as favoring
either SDP or LP relaxations prior to solving them. Our assumptions closely match
the data findings, and the machine learning model strongly confirms these results.
Three distinct feature generation approaches successfully classify QCQP instances
into SDP-favoring or LP-favoring categories. Notably, whether the original problem
has finite variable bounds is a primary distinguishing feature. Spectral properties of
the data matrices are also critical indicators, ranking as the second most important
feature category, followed by other spectral properties.

The developed models provide a significant advantage by predicting the most benefi-
cial relaxation type for a new QCQP instance without requiring users to test various
relaxation methods. This prediction capability is independent of the instance size,
offering an efficient approach to selecting relaxation techniques, thereby saving time
and computational resources.

A significant constraint that arose and was particularly noticeable during this re-
search was the prolonged execution time for regression, especially when the number
of features is substantial. This issue highlights the need for optimization in the
feature selection and model training process.

Future study should focus on these several promising directions. Firstly, incorpo-
rating the relaxation runtimes into the prediction model may offer a more com-
prehensive evaluation of the efficiency of the relaxation techniques. Secondly, the
practicality of the model could be improved by investigating the use of alternative
features that are easier to get, including eigenvalue estimates rather than precise
calculations. Third, the accuracy of the classification could be improved by looking
into various sparsity patterns for the set S and a different set of statistics Q that go
along with it. The final goal is to confirm the model’s efficacy in real-world circum-
stances by testing these concepts on MINLPLib instances (Koch, Berthold, Pfetsch
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& Wolter, 2021). This will offer a thorough assessment of the model’s capacity to
predict outcomes and its usefulness in a variety of QCQP scenarios. As a result, this
thesis opens the door for more focused and successful relaxation method selection
in subsequent studies and applications.
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APPENDIX A

Classification Metrics for LP vs. SDP

Table A.1 Classification Metrics for D-5-1 (LP vs. SDP)

Model Accuracy F1 Score Precision Recall

RandomForestClassifier 0.949 0.949 0.949 0.949
SVC 0.861 0.859 0.860 0.861
XGBClassifier 0.949 0.948 0.948 0.949
GradientBoostingClassifier 0.952 0.952 0.953 0.952
NeuralNetwork 0.745 0.698 0.793 0.745

Table A.2 Classification Metrics for D-5-2 (LP vs. SDP)

Model Accuracy F1 Score Precision Recall

RandomForestClassifier 0.932 0.931 0.931 0.932
SVC 0.831 0.829 0.830 0.831
XGBClassifier 0.931 0.930 0.930 0.931
GradientBoostingClassifier 0.935 0.934 0.934 0.935
NeuralNetwork 0.865 0.866 0.867 0.865

Table A.3 Classification Metrics for D-10-1 (LP vs. SDP)

Model Accuracy F1 Score Precision Recall

RandomForestClassifier 0.971 0.971 0.971 0.971
SVC 0.867 0.865 0.865 0.867
XGBClassifier 0.969 0.969 0.969 0.969
GradientBoostingClassifier 0.972 0.972 0.972 0.972
NeuralNetwork 0.916 0.917 0.922 0.916
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Table A.4 Classification Metrics for D-10-2 (LP vs. SDP)

Model Accuracy F1 Score Precision Recall

RandomForestClassifier 0.970 0.970 0.970 0.970
SVC 0.855 0.853 0.854 0.855
XGBClassifier 0.969 0.969 0.969 0.969
GradientBoostingClassifier 0.967 0.967 0.967 0.967
NeuralNetwork 0.740 0.688 0.803 0.740

Table A.5 Classification Metrics for N-5-1 (LP vs. SDP)

Model Accuracy F1 Score Precision Recall

RandomForestClassifier 0.945 0.945 0.945 0.945
SVC 0.856 0.854 0.855 0.856
XGBClassifier 0.949 0.949 0.949 0.949
GradientBoostingClassifier 0.950 0.949 0.950 0.950
NeuralNetwork 0.913 0.912 0.914 0.913

Table A.6 Classification Metrics for N-5-2 (LP vs. SDP)

Model Accuracy F1 Score Precision Recall

RandomForestClassifier 0.929 0.929 0.929 0.929
SVC 0.831 0.829 0.830 0.831
XGBClassifier 0.928 0.928 0.928 0.928
GradientBoostingClassifier 0.934 0.934 0.934 0.934
NeuralNetwork 0.881 0.879 0.882 0.881

Table A.7 Classification Metrics for N-5-3 (LP vs. SDP)

Model Accuracy F1 Score Precision Recall

RandomForestClassifier 0.896 0.895 0.896 0.896
SVC 0.760 0.758 0.758 0.760
XGBClassifier 0.882 0.881 0.882 0.882
GradientBoostingClassifier 0.885 0.884 0.886 0.885
NeuralNetwork 0.865 0.862 0.870 0.865
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Table A.8 Classification Metrics for N-5-10 (LP vs. SDP)

Model Accuracy F1 Score Precision Recall

RandomForestClassifier 0.838 0.838 0.839 0.838
SVC 0.687 0.686 0.693 0.687
XGBClassifier 0.829 0.829 0.829 0.829
GradientBoostingClassifier 0.846 0.846 0.847 0.846
NeuralNetwork 0.701 0.685 0.768 0.701

Table A.9 Classification Metrics for N-10-1 (LP vs. SDP)

Model Accuracy F1 Score Precision Recall

RandomForestClassifier 0.969 0.969 0.970 0.969
SVC 0.867 0.866 0.866 0.867
XGBClassifier 0.970 0.970 0.970 0.970
GradientBoostingClassifier 0.972 0.972 0.973 0.972
NeuralNetwork 0.928 0.926 0.930 0.928

Table A.10 Classification Metrics for N-10-2 (LP vs. SDP)

Model Accuracy F1 Score Precision Recall

RandomForestClassifier 0.967 0.967 0.967 0.967
SVC 0.854 0.852 0.853 0.854
XGBClassifier 0.965 0.965 0.965 0.965
GradientBoostingClassifier 0.967 0.967 0.967 0.967
NeuralNetwork 0.675 0.571 0.748 0.675

Table A.11 Classification Metrics for N-5,10-1 (LP vs. SDP)

Model Accuracy F1 Score Precision Recall

RandomForestClassifier 0.958 0.958 0.958 0.958
SVC 0.866 0.863 0.865 0.866
XGBClassifier 0.960 0.960 0.960 0.960
GradientBoostingClassifier 0.961 0.961 0.961 0.961
NeuralNetwork 0.783 0.752 0.824 0.783
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Table A.12 Classification Metrics for N-5,10-2 (LP vs. SDP)

Model Accuracy F1 Score Precision Recall

RandomForestClassifier 0.949 0.948 0.948 0.949
SVC 0.850 0.847 0.849 0.850
XGBClassifier 0.948 0.947 0.947 0.948
GradientBoostingClassifier 0.949 0.948 0.949 0.949
NeuralNetwork 0.864 0.866 0.870 0.864

Table A.13 Classification Metrics for N-5,10-2’ (LP vs. SDP)

Model Accuracy F1 Score Precision Recall

RandomForestClassifier 0.907 0.908 0.910 0.907
SVC 0.652 0.515 0.425 0.652
XGBClassifier 0.852 0.855 0.876 0.852
GradientBoostingClassifier 0.899 0.901 0.910 0.899
NeuralNetwork 0.731 0.737 0.796 0.731

Table A.14 Classification Metrics for I-5-2 (LP vs. SDP)

Model Accuracy F1 Score Precision Recall

RandomForestClassifier 0.928 0.928 0.928 0.928
SVC 0.633 0.490 0.400 0.633
XGBClassifier 0.931 0.931 0.931 0.931
GradientBoostingClassifier 0.934 0.934 0.934 0.934
NeuralNetwork 0.933 0.933 0.933 0.933

Table A.15 Classification Metrics for I-5-10 (LP vs. SDP)

Model Accuracy F1 Score Precision Recall

RandomForestClassifier 0.837 0.837 0.838 0.837
SVC 0.521 0.358 0.751 0.521
XGBClassifier 0.831 0.831 0.831 0.831
GradientBoostingClassifier 0.846 0.846 0.846 0.846
NeuralNetwork 0.836 0.836 0.839 0.836
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Table A.16 Classification Metrics for I-10-2 (LP vs. SDP)

Model Accuracy F1 Score Precision Recall

RandomForestClassifier 0.967 0.967 0.967 0.967
SVC 0.650 0.513 0.423 0.650
XGBClassifier 0.967 0.966 0.966 0.967
GradientBoostingClassifier 0.967 0.967 0.967 0.967
NeuralNetwork 0.964 0.963 0.963 0.964

Table A.17 Classification Metrics for I-10-2’ (LP vs. SDP)

Model Accuracy F1 Score Precision Recall

RandomForestClassifier 0.763 0.758 0.798 0.763
SVC 0.479 0.311 0.230 0.479
XGBClassifier 0.799 0.797 0.822 0.799
GradientBoostingClassifier 0.799 0.798 0.815 0.799
NeuralNetwork 0.807 0.806 0.824 0.807

Classification Metrics for LP vs. SDP’

Table A.18 Classification Metrics for D-5-1 (LP vs. SDP’)

Model Accuracy F1 Score Precision Recall

RandomForestClassifier 0.851 0.850 0.850 0.851
SVC 0.636 0.560 0.607 0.636
XGBClassifier 0.853 0.853 0.853 0.853
GradientBoostingClassifier 0.859 0.859 0.859 0.859
NeuralNetwork 0.556 0.526 0.754 0.556
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Table A.19 Classification Metrics for D-5-2 (LP vs. SDP’)

Model Accuracy F1 Score Precision Recall

RandomForestClassifier 0.845 0.843 0.843 0.845
SVC 0.668 0.535 0.447 0.668
XGBClassifier 0.849 0.848 0.848 0.849
GradientBoostingClassifier 0.853 0.852 0.852 0.853
NeuralNetwork 0.739 0.683 0.784 0.739

Table A.20 Classification Metrics for D-10-1 (LP vs. SDP’)

Model Accuracy F1 Score Precision Recall

RandomForestClassifier 0.894 0.892 0.892 0.894
SVC 0.707 0.586 0.500 0.707
XGBClassifier 0.900 0.898 0.898 0.900
GradientBoostingClassifier 0.903 0.902 0.902 0.903
NeuralNetwork 0.770 0.780 0.838 0.770

Table A.21 Classification Metrics for D-10-2 (LP vs. SDP’)

Model Accuracy F1 Score Precision Recall

RandomForestClassifier 0.888 0.886 0.885 0.888
SVC 0.761 0.657 0.579 0.761
XGBClassifier 0.886 0.885 0.884 0.886
GradientBoostingClassifier 0.892 0.891 0.890 0.892
NeuralNetwork 0.621 0.644 0.834 0.621

Table A.22 Classification Metrics for N-5-1 (LP vs. SDP’)

Model Accuracy F1 Score Precision Recall

RandomForestClassifier 0.834 0.833 0.833 0.834
SVC 0.626 0.547 0.582 0.626
XGBClassifier 0.841 0.841 0.840 0.841
GradientBoostingClassifier 0.846 0.846 0.845 0.846
NeuralNetwork 0.681 0.601 0.749 0.681
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Table A.23 Classification Metrics for N52 (LP vs. SDP’)

Model Accuracy F1 Score Precision Recall

RandomForestClassifier 0.842 0.839 0.839 0.842
SVC 0.668 0.535 0.446 0.668
XGBClassifier 0.847 0.845 0.845 0.847
GradientBoostingClassifier 0.852 0.851 0.851 0.852
NeuralNetwork 0.752 0.706 0.789 0.752

Table A.24 Classification Metrics for N-5-3 (LP vs. SDP’)

Model Accuracy F1 Score Precision Recall

RandomForestClassifier 0.835 0.829 0.829 0.835
SVC 0.721 0.604 0.520 0.721
XGBClassifier 0.828 0.826 0.824 0.828
GradientBoostingClassifier 0.846 0.845 0.844 0.846
NeuralNetwork 0.779 0.726 0.812 0.779

Table A.25 Classification Metrics for N-5-10 (LP vs. SDP’)

Model Accuracy F1 Score Precision Recall

RandomForestClassifier 0.808 0.788 0.795 0.808
SVC 0.747 0.638 0.557 0.747
XGBClassifier 0.806 0.797 0.795 0.806
GradientBoostingClassifier 0.816 0.806 0.805 0.816
NeuralNetwork 0.807 0.798 0.796 0.807

Table A.26 Classification Metrics for N-10-1 (LP vs. SDP’)

Model Accuracy F1 Score Precision Recall

RandomForestClassifier 0.892 0.891 0.891 0.892
SVC 0.707 0.586 0.500 0.707
XGBClassifier 0.899 0.897 0.897 0.899
GradientBoostingClassifier 0.903 0.902 0.902 0.903
NeuralNetwork 0.823 0.829 0.851 0.823
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Table A.27 Classification Metrics for N-10-2 (LP vs. SDP’)

Model Accuracy F1 Score Precision Recall

RandomForestClassifier 0.885 0.883 0.882 0.885
SVC 0.761 0.657 0.579 0.761
XGBClassifier 0.889 0.888 0.887 0.889
GradientBoostingClassifier 0.890 0.886 0.887 0.890
NeuralNetwork 0.817 0.776 0.832 0.817

Table A.28 Classification Metrics for N-5,10-1 (LP vs. SDP’)

Model Accuracy F1 Score Precision Recall

RandomForestClassifier 0.865 0.864 0.864 0.865
SVC 0.666 0.532 0.443 0.665
XGBClassifier 0.873 0.872 0.872 0.873
GradientBoostingClassifier 0.874 0.873 0.873 0.8742
NeuralNetwork 0.849 0.848 0.847 0.849

Table A.29 Classification Metrics for N-5,10-2 (LP vs. SDP’)

Model Accuracy F1 Score Precision Recall

RandomForestClassifier 0.869 0.867 0.866 0.869
SVC 0.715 0.596 0.511 0.715
XGBClassifier 0.873 0.871 0.871 0.873
GradientBoostingClassifier 0.875 0.874 0.873 0.875
NeuralNetwork 0.793 0.754 0.813 0.793

Table A.30 Classification Metrics for N-5,10-2’ (LP vs. SDP’)

Model Accuracy F1 Score Precision Recall

RandomForestClassifier 0.861 0.831 0.842 0.861
SVC 0.839 0.766 0.704 0.839
XGBClassifier 0.864 0.845 0.846 0.864
GradientBoostingClassifier 0.858 0.842 0.839 0.858
NeuralNetwork 0.823 0.821 0.819 0.823
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Table A.31 Classification Metrics for I-5-2 (LP vs.SDP’)

Model Accuracy F1 Score Precision Recall

RandomForestClassifier 0.680 0.676 0.681 0.680
SVC 0.550 0.540 0.544 0.550
XGBClassifier 0.710 0.709 0.709 0.710
GradientBoostingClassifier 0.790 0.790 0.792 0.790
NeuralNetwork 0.740 0.739 0.740 0.740

Table A.32 Classification Metrics for I-5-10 (LP vs. SDP’)

Model Accuracy F1 Score Precision Recall

RandomForestClassifier 0.845 0.845 0.845 0.845
SVC 0.521 0.358 0.751 0.521
XGBClassifier 0.831 0.831 0.831 0.831
GradientBoostingClassifier 0.846 0.846 0.846 0.846
NeuralNetwork 0.836 0.836 0.839 0.836

Table A.33 Classification Metrics for I-10-2 (LP vs. SDP’)

Model Accuracy F1 Score Precision Recall

RandomForestClassifier 0.885 0.883 0.882 0.885
SVC 0.762 0.667 0.721 0.762
XGBClassifier 0.886 0.884 0.884 0.886
GradientBoostingClassifier 0.890 0.889 0.888 0.890
NeuralNetwork 0.884 0.883 0.882 0.884

Table A.34 Classification Metrics for I-10-2’ (LP vs. SDP’)

Model Accuracy F1 Score Precision Recall

RandomForestClassifier 0.799 0.795 0.793 0.799
SVC 0.753 0.648 0.783 0.753
XGBClassifier 0.779 0.784 0.793 0.779
GradientBoostingClassifier 0.804 0.796 0.793 0.804
NeuralNetwork 0.807 0.798 0.796 0.807
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Regression Metrics for LP vs. SDP

Table A.35 Regression Metrics for D-5-1 (LP vs. SDP)

Model MAE MSE RMSE R2 r_accuracy

SVR 0.652 0.497 0.705 0.087 0.698
RandomForestRegressor 0.072 0.024 0.155 0.956 0.958
GradientBoostingRegressor 0.082 0.025 0.159 0.954 0.961

Table A.36 Regression Metrics for D-5-2 (LP vs. SDP)

Model MAE MSE RMSE R2 r_accuracy

SVR 0.680 0.560 0.749 0.007 0.671
RandomForestRegressor 0.121 0.047 0.216 0.918 0.948
GradientBoostingRegressor 0.135 0.047 0.216 0.917 0.951

Table A.37 Regression Metrics for D-10-1 (LP vs. SDP)

Model MAE MSE RMSE R2 r_accuracy

SVR 0.715 0.589 0.767 0.057 0.709
RandomForestRegressor 0.038 0.009 0.096 0.985 0.981
GradientBoostingRegressor 0.045 0.010 0.098 0.985 0.979

Table A.38 Regression Metrics D-10-2 (LP vs. SDP)

Model MAE MSE RMSE R2 r_accuracy

SVR 0.744 0.641 0.801 0.001 0.688
RandomForestRegressor 0.058 0.016 0.126 0.975 0.981
GradientBoostingRegressor 0.067 0.017 0.131 0.973 0.978

Table A.39 Regression Metrics for N-5-1 (LP vs. SDP)

Model MAE MSE RMSE R2 r_accuracy

SVR 0.444 0.257 0.507 0.530 0.894
RandomForestRegressor 0.074 0.025 0.157 0.955 0.955
GradientBoostingRegressor 0.081 0.024 0.156 0.956 0.955
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Table A.40 Regression Metrics for N-5-2 (LP vs. SDP)

Model MAE MSE RMSE R2 r_accuracy

SVR 0.535 0.349 0.591 0.382 0.845
RandomForestRegressor 0.119 0.046 0.215 0.918 0.948
GradientBoostingRegressor 0.131 0.046 0.215 0.918 0.951

Table A.41 Regression Metrics for N-5-3 (LP vs. SDP)

Model MAE MSE RMSE R2 r_accuracy

SVR 0.559 0.391 0.625 0.262 0.806
RandomForestRegressor 0.155 0.061 0.246 0.886 0.931
GradientBoostingRegressor 0.167 0.062 0.250 0.882 0.927

Table A.42 Regression Metrics for N-5-10 (LP vs. SDP)

Model MAE MSE RMSE R2 r_accuracy

SVR 0.472 0.341 0.584 0.034 0.570
RandomForestRegressor 0.124 0.035 0.188 0.900 0.911
GradientBoostingRegressor 0.129 0.036 0.190 0.898 0.918

Table A.43 Regression Metrics for N-10-1 (LP vs. SDP)

Model MAE MSE RMSE R2 r_accuracy

SVR 0.405 0.246 0.496 0.606 0.920
RandomForestRegressor 0.038 0.009 0.095 0.986 0.980
GradientBoostingRegressor 0.044 0.010 0.099 0.984 0.978

Table A.44 Regression Metrics for N-10-2 (LP vs. SDP)

Model MAE MSE RMSE R2 r_accuracy

SVR 0.482 0.306 0.553 0.523 0.894
RandomForestRegressor 0.056 0.015 0.124 0.976 0.981
GradientBoostingRegressor 0.066 0.017 0.130 0.974 0.976

60



Table A.45 Regression Metrics for N-5,10-1 (LP vs. SDP)

Model MAE MSE RMSE R2 r_accuracy

SVR 0.357 0.201 0.448 0.658 0.913
RandomForestRegressor 0.056 0.016 0.126 0.973 0.969
GradientBoostingRegressor 0.064 0.017 0.129 0.971 0.967

Table A.46 Regression Metrics for N-5,10-2 (LP vs. SDP)

Model MAE MSE RMSE R2 r_accuracy

SVR 0.437 0.265 0.514 0.563 0.889
RandomForestRegressor 0.088 0.031 0.175 0.949 0.965
GradientBoostingRegressor 0.104 0.034 0.184 0.944 0.963

Table A.47 Regression Metrics for N-5,10-2’ (LP vs. SDP)

Model MAE MSE RMSE R2 r_accuracy

SVR 0.712 0.665 0.815 0.057 0.662
RandomForestRegressor 0.296 0.148 0.385 0.790 0.981
GradientBoostingRegressor 0.271 0.126 0.355 0.821 0.981

Table A.48 Regression Metrics for I-5-2 (LP vs. SDP)

Model MAE MSE RMSE R2 r_accuracy

SVR 2.540 728.711 26.995 -1290.870 0.933
RandomForestRegressor 0.119 0.046 0.213 0.919 0.950
GradientBoostingRegressor 0.132 0.047 0.216 0.917 0.952

Table A.49 Regression Metrics for I-5-10 (LP vs. SDP)

Model MAE MSE RMSE R2 r_accuracy

SVR 0.273 0.142 0.377 0.598 0.797
RandomForestRegressor 0.129 0.038 0.195 0.892 0.914
GradientBoostingRegressor 0.132 0.038 0.195 0.893 0.916
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Table A.50 Regression Metrics for I-10-2 (LP vs. SDP)

Model MAE MSE RMSE R2 r_accuracy

SVR 1.837 1349.157 36.731 -2099.320 0.975
RandomForestRegressor 0.057 0.016 0.125 0.976 0.981
GradientBoostingRegressor 0.067 0.017 0.131 0.973 0.976

Table A.51 Regression Metrics for I-10-2’ (LP vs. SDP)

Model MAE MSE RMSE R2 r_accuracy

SVR 0.471 1.101 1.049 -2.258 0.721
RandomForestRegressor 0.372 0.254 0.504 0.249 0.878
GradientBoostingRegressor 0.386 0.265 0.515 0.215 0.887

Regression Metrics for LP vs. SDP’

Table A.52 Regression Metrics for D-5-1 (LP vs. SDP’)

Model MAE MSE RMSE R2 r_accuracy

SVR 0.256 0.091 0.302 0.064 0.706
RandomForestRegressor 0.065 0.011 0.106 0.885 0.759
GradientBoostingRegressor 0.066 0.011 0.105 0.886 0.746

Table A.53 Regression Metrics for D-5-2 (LP vs. SDP’)

Model MAE MSE RMSE R2 r_accuracy

SVR 0.301 0.119 0.346 -0.003 0.758
RandomForestRegressor 0.074 0.014 0.117 0.886 0.808
GradientBoostingRegressor 0.074 0.013 0.115 0.888 0.807
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Table A.54 Regression Metrics for D-10-1 (LP vs. SDP’)

Model MAE MSE RMSE R2 r_accuracy

SVR 0.291 0.109 0.330 0.043 0.799
RandomForestRegressor 0.058 0.008 0.089 0.930 0.860
GradientBoostingRegressor 0.060 0.008 0.089 0.930 0.854

Table A.55 Regression Metrics for D-10-2 (LP vs. SDP’)

Model MAE MSE RMSE R2 r_accuracy

SVR 0.314 0.125 0.354 -0.006 0.841
RandomForestRegressor 0.067 0.010 0.100 0.920 0.888
GradientBoostingRegressor 0.067 0.010 0.099 0.921 0.886

Table A.56 Regression Metrics for N-5-1 (LP vs. SDP’)

Model MAE MSE RMSE R2 r_accuracy

SVR 0.176 0.046 0.213 0.540 0.728
RandomForestRegressor 0.064 0.011 0.104 0.890 0.759
GradientBoostingRegressor 0.063 0.010 0.101 0.896 0.758

Table A.57 Regression Metrics for N-5-2 (LP vs. SDP’)

Model MAE MSE RMSE R2 r_accuracy

SVR 0.223 0.069 0.262 0.423 0.758
RandomForestRegressor 0.074 0.014 0.117 0.885 0.808
GradientBoostingRegressor 0.074 0.013 0.114 0.890 0.806

Table A.58 Regression Metrics for N-5-3 (LP vs. SDP’)

Model MAE MSE RMSE R2 r_accuracy

SVR 0.252 0.085 0.292 0.328 0.810
RandomForestRegressor 0.077 0.015 0.123 0.880 0.842
GradientBoostingRegressor 0.077 0.014 0.119 0.888 0.841
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Table A.59 Regression Metrics for N-5-10 (LP vs. SDP’)

Model MAE MSE RMSE R2 r_accuracy

SVR 0.352 0.155 0.393 0.043 0.828
RandomForestRegressor 0.064 0.010 0.101 0.937 0.867
GradientBoostingRegressor 0.064 0.010 0.101 0.937 0.863

Table A.60 Regression Metrics for N-10-1 (LP vs. SDP’)

Model MAE MSE RMSE R2 r_accuracy

SVR 0.173 0.045 0.212 0.604 0.799
RandomForestRegressor 0.059 0.008 0.091 0.928 0.861
GradientBoostingRegressor 0.060 0.008 0.089 0.930 0.856

Table A.61 Regression Metrics for N-10-2 (LP vs. SDP’)

Model MAE MSE RMSE R2 r_accuracy

SVR 0.202 0.058 0.240 0.536 0.841
RandomForestRegressor 0.067 0.010 0.100 0.919 0.889
GradientBoostingRegressor 0.068 0.010 0.100 0.920 0.885

Table A.62 Regression Metrics for N-5,10-1 (LP vs. SDP’)

Model MAE MSE RMSE R2 r_accuracy

SVR 0.154 0.037 0.193 0.654 0.760
RandomForestRegressor 0.062 0.010 0.098 0.910 0.804
GradientBoostingRegressor 0.064 0.010 0.098 0.911 0.800

Table A.63 Regression Metrics for N-5,10-2 (LP vs. SDP’)

Model MAE MSE RMSE R2 r_accuracy

SVR 0.184 0.050 0.224 0.586 0.801
RandomForestRegressor 0.071 0.012 0.109 0.902 0.851
GradientBoostingRegressor 0.073 0.012 0.109 0.902 0.844
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Table A.64 Regression Metrics for N-5,10-2’ (LP vs. SDP’)

Model MAE MSE RMSE R2 r_accuracy

SVR 0.285 0.135 0.367 -0.049 0.923
RandomForestRegressor 0.149 0.045 0.213 0.647 0.926
GradientBoostingRegressor 0.1478 0.0472 0.2174 0.6324 0.9259

Table A.65 Regression Metrics for I-5-2 (LP vs. SDP’)

Model MAE MSE RMSE R2 r_accuracy

SVR 1.387 276.174 16.618 -2317.090 0.799
RandomForestRegressor 0.074 0.014 0.118 0.884 0.809
GradientBoostingRegressor 0.074 0.013 0.114 0.890 0.806

Table A.66 Regression Metrics for I-5-10 (LP vs. SDP’)

Model MAE MSE RMSE R2 r_accuracy

SVR 0.273 0.142 0.377 0.598 0.797
RandomForestRegressor 0.129 0.038 0.195 0.892 0.914
GradientBoostingRegressor 0.132 0.038 0.195 0.892 0.916

Table A.67 Regression Metrics for I-10-2 (LP vs. SDP’)

Model MAE MSE RMSE R2 r_accuracy

SVR 1.458 961.248 31.004 -7721.770 0.878
RandomForestRegressor 0.067 0.010 0.101 0.918 0.888
GradientBoostingRegressor 0.068 0.010 0.100 0.920 0.888

Table A.68 Regression Metrics for I-10-2’ (LP vs. SDP’)

Model MAE MSE RMSE R2 r_accuracy

SVR 3.662 20.380 4.514 -127.379 0.474
RandomForestRegressor 0.165 0.049 0.222 0.689 0.842
GradientBoostingRegressor 0.150 0.040 0.201 0.745 0.842
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Counterexample

This counterexample presents a QCQP instance that challenges Conjecture 1. It
demonstrates that although SDP relaxation typically provides a tighter bound than
LP relaxation with high probability, this condition does not universally hold when
artificial bounds are applied.

A0 =



−1 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 1


A1 =



1.61 1.18 −0.36 1.47 −1.04
1.18 1.18 −0.31 1.29 −0.98
−0.36 −0.31 0.21 −0.41 0.53
1.47 1.29 −0.41 1.56 −1.25
−1.04 −0.98 0.53 −1.25 1.49


bT
0 =

(
4.89 3.85 −4.09 1.78 −3.28

)
bT
1 =

(
−0.40 −4.49 2.30 2.91 2.97

)
c0 =−7, c1 =−8

lT =
(
−50.12 −10.49 −436.03 −326.22 −144.39

)
uT =

(
132.51 222.56 231.09 28.34 161.36

)
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