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ABSTRACT

VIABILITY-BASED CONTROL FOR ROBUSTNESS IN 6G NETWORKS:
ENSURING EFFICIENT COMMUNICATION UNDER EXTREME

CONDITIONS

İDIL BENSU ÇILBIR

ELECTRONICS ENGINEERING M.S. THESIS, JULY 2024

Thesis Supervisor: Prof. Dr. Özgür ERÇETİN

Keywords: Viability, Control, Optimization, Dynamical Network Systems, Efficient
Communication

The fifth generation of communications, 5G, is presently being deployed in com-
mercial networks worldwide. Novel 6G technologies, which are the next beyond 5G
technology, are investigated, including Key Performance Indicators such as delay,
network capacity, and user terminal motion velocity. A 6G network is conceived to
bring together nomadic, mobile, and stationary extreme edge devices into a single
resource pool, which includes mobile and vehicular user equipments, on-board units,
and automation-guided vehicles.

The network is inherently uncertain, which complicates service management and
decision-making. Extreme edge load has a substantial impact on resource allocation,
and heavy workloads or transmission disruptions can result in service degradation
and safety concerns. In such cases, local decisions must be made by the entities of
the network to guarantee back to safety while achieving the goal.

This thesis proposes a paradigm shift in the design of robust control plane systems,
viewing failure as the norm rather than the exception. It is represented by introduc-
ing a concept called viability theory, which is a less common but theoretically robust
framework that ensures system safety with effective communication and robustness
even during severe overloads or outages. The controller aims to obtain sub-optimal
local decisions and increase availability to achieve viability. The performance of our
proposed method is demonstrated under different network topologies and scenarios,
and its improvement in efficient communication is also shown.
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ÖZET

6G AĞLARINDA DAYANIKLILIK İÇİN UYGUNLUK TEMELLİ KONTROL:
AŞIRI KOŞULLAR ALTINDA VERİMLİ İLETİŞİM SAĞLAMA

İDIL BENSU ÇILBIR

ELEKTRONİK MÜHENDİSLİĞİ YÜKSEK LİSANS TEZİ, TEMMUZ 2024

Tez Danışmanı: Prof. Dr. Özgür ERÇETİN

Anahtar Kelimeler: Canlılık, Kontrol, Optimizasyon, Dinamik Ağ Sistemleri,
Verimli İletişim

Beşinci nesil iletişim, 5G, şu anda dünya çapındaki ticari ağlarda kullanılmaktadır.
Bir sonraki 5G ve ötesi teknolojisi olan yeni 6G teknolojileri, gecikme, ağ kapasitesi
ve kullanıcı terminali hareket hızı gibi Anahtar Performans Göstergeleri ile birlikte
araştırılmaktadır. 6G ağı, göçebe, mobil ve sabit ekstrem uç cihazlarının, araç
kullanıcı cihazları, elektronik cihazlar ve otomasyon güdümlü araçlar içeren tek bir
kaynakta bir araya getirilmesi ile öngörülmektedir.

Ağ doğası gereği belirsizdir ve bu da hizmet yönetimini karmaşık hale getirir. Aşırı
uç yükünün kaynak paylaştırma üzerinde önemli bir etkisi vardır ve ağır iş yükleri ya
da iletim kesintileri servision bozulmasına ve güvenlik kaygılarına neden olabilir. Bu
gibi durumlarda, ağ ortamının birimleri tarafından yerel kararlar alınarak amacına
ulaştırılırken ağı güvenli duruma geri döndürülmesi garantilenmelidir.

Bu tez, hatayı istisnadan ziyade kural olarak gören sağlam bir kontrol sisteminde bir
paradigma değişikliğini önermektedir. Bu paradigma değişikliği Uygunluk Teorisi
adlı yeni bir konsepti tanıtarak temsil edilmiştir ve az yaygın olmasına rağmen teorik
olarak sağlam bir yapı önermektedir. Bu yapı, sistemin güvenliğini, efektif iletişim
ve sağlamlığı ile birlikte, ciddi aşırı yüklemeler veya hatalar altında bile garantiley-
erek sağlamaktadır. Amacı en optimale yakın yerel kararlar elde etmeye çalışarak
uygunluğa ulaşmaktır. Önerilen yöntemimizin performansı farklı ağ topolojileri ve
senaryolar altında gösterilmiştir ve ayrıca verimli iletişimin yükseldiği de göster-
ilmiştir.
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1. INTRODUCTION AND BACKGROUND

1.1 Introduction and Motivation

After more than a decade of research and development, the fifth generation of com-
munications, abbreviated as 5G, is now deployed in commercial networks worldwide.
While manufacturers and operators battle for market dominance, researchers are al-
ready looking beyond 5G to explore new technologies and use them for the next
generation, called 6G. During the early stages of technology development, many
presentations and articles raise expectations for the future. These expectations for
the new communication environment include traditional Key Performance Indica-
tors (KPIs) like delay and network capacity and novel ones like user terminal motion
velocity, network reliability, energy consumption, and resource efficiency [1]. Using
these needs, the many areas of study are motivated as components of a more ex-
tensive 6G system, providing an initial direction for the system. We foresee a 6G
network integrating nomadic, mobile, and stationary extreme edge devices into a
single resource pool. The device types considered range from powerful mobile and
vehicular User Equipments (UEs) and on-board units (OBUs) to stationary cus-
tomer premises equipment (CPEs), manufacturing floor robots, cobots, automated
guided vehicles (AGVs), and unmanned aerial vehicles (UAVs).

This network must be controlled to handle unexpected failures and errors in the sys-
tem. Some researchers examined to achieve this goal by virtualizing the network sys-
tem. For example, [2] used a virtualized base station to analyze the performance and
power consumption of those upon different scenarios and offered a non-parametric
fully-adaptive learning framework for optimizing those base stations. Another pa-
per [3] analyzed the relationship between radio dynamics and computing when the
network system is virtualized and decoupled radio and computing control decisions
by proposing a deep deterministic policy gradient algorithm to manage the high-
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dimensional action space efficiently and to handle the nature of control actions in
the system. Authors in [4] aimed to minimize long-term total network operating
costs while reacting to changing traffic needs and resource availability. Although
these papers provide solutions for the specific purpose of the virtualized network
system, there was no deep examination of the external causes of the network’s un-
safety, resulting in service disruptions.

Particularly, the network is inherently uncertain, posing considerable hurdles to
service management and decision-making. The load at the extreme edge level is
non-stationary, unlike central aggregation nodes like routers, which have significant
consequences for resource allocation. For example, high workload or transmission
disruptions can cause service deterioration, resulting in substantial delays and poten-
tially posing safety issues. Similarly, a far-edge failure in a safety-critical situation
can cause service outages. In such a network environment, since it is impossible to
view the instantaneous global network state from large-scale networks, local deci-
sions must made by making a local observation. In such safety-critical scenarios,
these local decisions are necessary for steering back to the safety of the system while
reaching its aim. The literature contains many papers that focus on a specific goal
and offer optimization methods to achieve it, which will be mentioned in the next
section. However, most of these papers did not consider that these entities may act
differently from each other. In the real-world environment, devices mostly behave
differently, e.g., two smart vehicles move with different speeds and accelerations on
a hill. Although devices can self-adapt to the system given its constraints, the tar-
get of each agent may be different from that of the other. Each entity must make
decisions based on the system constraints to achieve its intended goal, which may
be time-varying. In addition, these papers did not mention much about possible
safety-critical scenarios that will cause leaving out from its aim. These local deci-
sions are primarily needed for keeping the system safe, and thus, the system can
achieve its intended goal with less consideration of system degradations.

While devices try to obtain an optimal path to the target, they should also consider
efficient communication. However, there are very limited papers prioritizing the sig-
nificance of communications decisions in a dynamic environment. Authors in [5] pro-
posed a Bayesian decision framework in which an agent predicts the next triggering
instant based on the resources available in the other agent that can communicate.
The study [6] offers an approach allowing any table-based parallel reinforcement
learning algorithm running reinforcement learning-based applications, keeping the
communication overhead minimum in a distributed environment. Therefore, we will
also consider communication efficiency while proposing the optimal control method
for dynamic environments.

2



Examining the overall communication cost in the system is essential to analyze com-
munication efficiency. In the literature, some areas highlight the cost for safety: 1)
tele-operated driving and 2) high density platooning. The paper [7] studied mo-
bility management to meet the requirements of low latency and high reliability for
a tele-operated driving use case using the Software Defined Networking paradigm.
Another paper [8] also uses Software Defined Networking for their proposed frame-
work, which selects the network and modifies the routing settings to guarantee user
QoS and succession of the network load. Authors in [9] a privacy-aware distributed
learning framework for QoS prediction, which supports heterogeneous nodes and
models, enhancing robustness and generalization capabilities while preserving data
privacy by encoding raw input data. The focus of the prediction of QoS for ad-hoc
communications in high density platooning is emphasized in [10] by designing a pla-
tooning system that drives through different vehicular traffic conditions, collecting
position and transmission data for the analysis of packet inter-reception time to
choose the model features. Authors in [11] consider vehicle-to-vehicle communica-
tion as the critical enabler in high density platooning and present a novel scheduling
mechanism for high density platooning for packet reception development and reduc-
ing scheduling delay. The objective of [12] is presented in terms of quality of service
prediction for high density platooning application, and authors introduce a condi-
tional exponential distribution model for the prediction of the packet inter-reception
time, meeting the requirement of information exchange with high reliability and low
latency. According to the given areas with references, we will investigate the low
communication cost in vehicular communication for safe driving.

As a countermeasure of the failures in a safety-critical scenario, sub-optimal local
decisions may be made, leading to downgraded service accuracy, e.g., reliance on
compressed data, but still ensuring robustness and improved availability even un-
der severe overloads or failures. In this thesis, we aim to propose a method that
represents a paradigm shift in designing robust control plane mechanisms, treating
failure as the norm rather than the exception. It is going to be represented by
a concept called viability theory. It suggests a theoretically robust framework to
assure system safety, although the concept is less common. This framework guaran-
tees system safety with the consideration of effective communication and robustness.
The proposed controller intends to increase availability to make optimal local deci-
sions, providing an optimal path to reach its goal while intending to keep the system
continuously safe.
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1.2 Literature Review

Addressing a system susceptible to failures and errors requires a wide investigation,
and it depends on what it aims to achieve. The authors modeled the system based
on any service performance of the network, referred to as an optimization problem,
and provided methods to solve it. For example, in [13], it is detected that behaviors
of a virtualized base station are non-linear and non-monotonic, and therefore, a
novel cost model representing the virtualizing resource management in the network
is proposed, and then a learning-based orchestration framework is provided such
that it determines whether to maintain the previous network settings or reconfigure
them by reallocating virtualized resources. In literature, virtualized networks are
used to design a model addressing a solution of its services, such as a data-driven
model that optimizes the allocation of computing resources [14], and a model based
on the orchestration of base stations that deviates significantly from the energy
consumption profile and the balance of performance and cost of it [15]. In this thesis,
the network model will be represented according to its behaviors, and its sensitivity
to errors and failures will be expressed by utilizing a novel concept, which will be
defined later.

Such a system needs efficient and effective control to satisfy the requirements of
a real-world network scenario. Most of the proposed controllers in the literature
are learning-based. The paper [16] offers a new machine learning-based radio con-
troller for the virtualized network such that it optimizes the network performance
by pairing it with other components in its open exosystem while considering the
computational resource limitations that are typical in cloud platforms. Some other
authors in [17] introduce a controller that allows horizontal and vertical flexibility of
computer resources in the 5G core of the network. A multi-edge computing orches-
tration problem is studied in [18] where it jointly controls the network functional
splits, the allocated resources and placement locations of computing services, and the
routing for each of its data flow, and then a learning-based controller is constructed
to address the vast and multi-dimensional action space with the linear growth of the
neural network outputs. Another paper [19] presents a primary control approach
for organizing vehicle platoon movement within Connected and Automated Vehicle
(CAV) systems, dramatically improving traffic efficiency and reducing energy usage,
and an attention mechanism-integrated policy network is offered to enhance the per-
formance of CAV communication and decision-making. In a heterogeneous wireless
network, a power control optimization problem for each base station’s utility func-
tion is introduced in [20] while assuring that the utility function of each connected
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user is optimal, given each user’s unique communications characteristics and type.
We will propose a controller for a communication network system that provides an
optimal path to achieve the target while considering possible external conditions
that may lead to unsafety.

On the other hand, the authors stated the fact that the control cost is another
effect of a dynamic communication network system. The paper [21] establishes
a functional relationship between communication performance, estimation squared
error, and control cost in multi-sensor scalar wireless networked control systems with
noisy observations, proposing a sliding window approach for balance. We are going
to provide a dynamic system and relate it to a communication network system by
explaining the information interaction between nodes.

Our proposed controller aims to guarantee minimizing risks defined for the network,
and this will be done by demonstrating the forward invariance of a defined set for
a dynamical network. The forward invariance term was used with many proposed
methods in the literature. Some authors analyzed the forward invariance of sets in
two parts for hybrid dynamical systems. The first part [22] provides a comprehensive
overview of forward invariance in hybrid dynamical systems, stating that it is uni-
versal and nonunique and that sufficient conditions must be met for it to be robustly
forward invariant. The second part [23] discusses the design of controllers for hybrid
systems, utilizing differential and difference inclusions to simulate continuous and
discrete dynamics and constructing robust, continuous state-feedback laws. Another
paper [24] utilizes computational topology principles that measure forward invari-
ance, offering an invariance test, which generates robust forward invariant sets for
n-dimensional Lipschitz continuous nonlinear systems. Authors in [25] introduce the
negative barrier function, enhancing the observability of the reciprocal barrier func-
tion, thereby generating safety criterion and control barrier functions for dynamic
systems.

In this thesis, the control barrier function will ensure the forward invariance, which
will give its background later. Many papers in the literature have used the control
barrier function to ensure the dynamic system’s safety. For instance, the paper [23]
combines control barrier functions with approximate Nonlinear Model Predictive
Control to create an efficient method with continuous-time safety guarantees and
recursive feasibility, demonstrating the importance of accounting for discretization
errors. Another Model Predictive Control was proposed in [26], introducing an incre-
mental discrete sliding model predictive control technique for NCS output tracking,
enhancing robustness, responsiveness, and reducing tracking errors in networked
control systems. The sliding Model Predictive Control technique is also proposed in
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[27], and in there, it is expanded by introducing an adaptive discrete sliding model
predictive control scheme, combining sliding mode control and model predictive con-
trol, to improve real-time control performance in networked multi-agent systems.
The following letter [28] aims to expand on input-to-state safety (ISSf) and develop
ISSf-CBFs for real-time safety-critical controllers in nonlinear systems. It investi-
gates CBFs and ISSf-CBFs and develops a quadratic program-based formulation.
Another paper [29] introduces a barrier function approach for high-order control
barrier functions, allowing for more complex dynamics and enhancing safety set re-
silience, thereby reducing motor control effort. Some other authors in [30] explore
quadratic program (QP)-based control synthesis for multitask situations involving
nonlinear agents, combining robust control barrier function and fixed-time control
Lyapunov function requirements. High-order discrete-time control barrier function
(CBF) and Lyapunov function enhance constraint satisfaction in high-degree sys-
tems, validated through simulations on a three-link manipulator model in the paper
[31]. Another letter [32] explores the forward invariance of safe sets using zero-order-
hold controllers, defining controller and physical margins, enhancing techniques, and
addressing discrete-time CBF requirements through simulations.

In this thesis, we will provide the control barrier function method, and its back-
ground will be given later. The paper [33] addresses the invariance of the desired
center of mass trajectory and robustness of limited model predictive control for hu-
manoid walking, adjusting system state, viability kernel bounds, and cost function.
There are also some papers in the literature that use the viability theory concept.
For instance, the paper [34] uses viability theory to design a conservative algorithm
for robot navigation to handle time-varying constraints, like moving obstacles. Au-
thors in [35] computed an inner and an outer approximation of the viability kernel
with interval analysis tools. Another research [36] got help from the analytical tools
of viability theory, characterizing the largest detectable set of target points, to de-
sign a dynamic coverage for nonlinear mobile sensor networks to handle arbitrary
sensory range, mobility constraints, and collision avoidance, ensuring safety. Au-
thors in [37] satisfied constraints for all future times it is enough to find by defining
recursive viability and using it. The optimal control problem is solved by designing
reward functions in [38], and it is done by examining the issue from the viability
theory perspective. As seen, the viability theory concept was mainly used in the
robotics area. In this thesis, we will introduce the idea of viability theory to the
communications area.

The control barrier function will provide a model predictive controller. While we will
explain the method and show its numerical results, we will also put another controller
to obtain the gain of viability, and this controller will be designed with the neural
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network. A neural network controller design was previously used in the literature. It
contains many techniques for verification of neural network (NN) properties, which
is usually motivated by defending against adversarial instances [39]. Although these
methods are not intended for closed-loop systems, neural network relaxations in
[40] serve as a solid foundation for neural network controllers. Safety verification
is achieved with modern methods, such as Hamiltonian-Jacobi [41] for closed-loop
systems. Authors in [42] inject conservatism by assuming that the neural network
controller can emit extreme values at all states. Another study proposed a neural
network controller [37] to focus on controlling multiple non-identical systems with
varying initial conditions without individual controllers, using a single control signal
to meet input and state constraints, regardless of the number of individual systems.

1.3 Background

This section will provide information about the methods and concepts used in this
thesis to introduce novel techniques for use in the communications area.

1.3.1 Viability Theory

Viability theory is a field that studies the evolution of dynamical systems under
state constraints, known as viability constraints. It aims to determine the largest
initial conditions within a set that ensures at least one system trajectory satisfies
these constraints for all time [43]. This theory is applied in various domains, in-
cluding biological evolution, economics, environmental sciences, financial markets,
control theory, robotics, and cognitive sciences, to investigate adaptation to these
constraints.

The viability theory of mathematical tools aims to directly address the dynamic
adaptation of uncertain evolutionary systems to settings characterized by viability
constraints. Notably, the environment is described by many sorts of viability con-
straints, a term that encompasses polysemous ideas such as stability, confinement,
homeostasis, adaptability, and so on, expressing the idea that some variables must
adhere to limits that can never be breached. A trajectory that meets viability re-
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quirements at all times is considered viable. The viability kernel refers to the set
of beginning circumstances that allow for viable trajectories. To elaborate on the
main concepts of viability theory, some terms will be defined, and these terms will
help introduce the viability kernel definition.

Definition 1.1 (Set-Valued Map [43]). A set-valued map F : X ⇝ Y correlates
with any x ∈ X a subset F (x) ⊂ Y (may be the empty set). It is a (single-valued)
map f := F : X 7→ Y if for any x, F (x) := {y} is decreased to a single element
y. The symbol "⇝" represents set-valued maps, while the symbol "7→" represents
single-valued maps.

The graph Graph(F ) of a set-valued map F is the set of pairs (x,y)∈X×Y satisfy-
ing y ∈ F (x). If f := F : X 7→ Y is a single-values map, it coincides with the typical
graph concept. The inverse of F is the set-valued map from Y to X identified as
follows.

x ∈ F −1(y)⇐⇒ y ∈ F (x)⇐⇒ (x,y) ∈Graph(F ) (1.1)

Parametrized systems specify the main examples of differential inclusions. Their
definitions and block diagram are given below.

Definition 1.2 (Parametrized Systems [43]). Let U := Rc be a space of parameters.
A parametrized system consists of two blocks:

• The "input-output block" associating with any evolution u(·) of the parameter
(input) the evolution governed by the differential equation x′(t) = f(x(t),u(t))
starting from an initial state (open loop)

• The non-deterministic "output-input block," associating with any state a subset
U(x) of parameters (output)

It identifies the set-valued map F related with any x the subset F (x) :=
{f(x,u)}u∈U(x) of velocities parametrized by u ∈ U(x). The associated evolution-
ary system S maps any initial state x to the set S(x) of evolutions x(·) starting
from x (x(0) = x) and governed as follows.

ẋ(t) = f(x(t),u(t)) where u(t) ∈ U(x(t)) (1.2)

or, equivalently, to differential inclusion ẋ(t) ∈ F (x(t))

The input-output and output-input blocks of a parametrized systems are illustrated
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Figure 1.1 Parametrized Systems

in Figure 1.1: The controlled dynamical system at the input-output level, the "cy-
bernetical" map imposing state-dependent constraints on the control at the output-
input level.

The parameters range over a state-dependent "cybernetic" map U : x⇝ U(x), pro-
viding the system opportunities to adapt at each state to viabilities (often, as slowly
as possible) and/or to regulate intertemporal optimal evolutions.

To be more specific, we are going to formally define the concepts of the viability
kernel of an environment.

Definition 1.3 (Viability [43]). If a subset K ⊂Rd is considered as an environment
(defined by viability constraints), an evolution x(·) is said to be viable in the envi-
ronment K ⊂ Rd on an interval [0,T [ (where T ≤ +∞) if for every time t ∈ [0,T [,
x(t) belongs to K.

The viability kernel is defined under an evolutionary system related to a nonlinear
parametrized system.

Definition 1.4 (Viability Kernel [43]). Let K be an environment and S an evolu-
tionary system. The viability kernel of K under the evolutionary system S is the set
V iabS(K) of initial states x∈K from which starts at least one evolution x(·)∈ S(x)
viable in K for all times t≥ 0:

V iabS(K) :=
{
x0 ∈K

∣∣∣ ∃x(·) ∈ S(x0) such that ∀t≥ 0, x(t) ∈K
}

(1.3)

Two extreme situations should be singled out:

• The environment is said to be viable under S if it is equal to its viability kernel:
V iabS(K) = K

• The environment is said to be a repeller under S if its viability kernel is empty:
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V iabS(K) = ∅

It can be said that all evolutions starting from a state belonging to the complement
of viability kernel in K leave the environment in finite time.

Aubin provided this formal description for viability kernels and developed the key
features that distinguish viability kernels. Aubin, in particular, defined necessary
and sufficient requirements that characterize a set’s viability kernel using set invari-
ance principles as above derived from the Nagumo Theorem. Aubin’s theory relies
significantly on nonsmooth analysis. Aubin’s nonsmooth analysis allowed him to
apply a rather broad concept of tangency to his work. In addition to this essential
study of differentiability, Aubin investigated systems characterized by differential
inclusions, which resulted in a highly general theory. Despite this broadness, the
high analytical formality of nonsmooth analysis allowed Aubin to be exceedingly
rigorous in his work.

An illustrative example would be helpful to understand this theory. This example
is taken from [44]. Consider a multi-input, single-output nonlinear system affine in
the control, and a set of state constraints are given, which are also called viability
constraints. These viability constraints define a safe set for the system. The aim
is to regulate the largest subset of the safe set, called the viability kernel, and an
associated control so that the (controlled) system trajectories remain inside the safe
set, beginning from any initial condition in the viability kernel, using the control.
To achieve this, we will ensure the set invariance, requiring all trajectories to remain
inside the safe set.

The following example models the consumption of a renewable resource. Let x1

represent the quantity of the renewable resource and let x2 denote the consumption
level of the resource. The model is given as shown below.


ẋ1 = (r−x2)x1

ẋ2 = u

y = x1

(1.4)

where r > 0 is the (constant) rate of production (or growth) of the resource and
u ∈ [−1,1] is the control input. An interesting problem would be to designate that
the quantity of the renewable resource is maintained above some positive level c > 0.
In other words, the output should satisfy the inequality y = x1 > c to maintain the
system viable. Apparently, one can see that there will be specific initial conditions
for which solutions of (1.4) will violate the constraint, regardless of the control input
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decision (e.g., suppose x1(0) = c and x2(0) > r). On the other hand, some initial
conditions that may threaten safety (i.e., x1(0) > c and x2 > r) exist, but control
also exists such that it will let the system recover before violating the constraint.

There are many approaches to solving viability theory. In this thesis, we are going
to solve it using an analytical method. We will introduce a procedure to evaluate a
specific formula for the viability kernel and a viability control for a particular class
of control systems. A system is considered in a control affine form, with the control
taking values in a compact, convex polyhedron. The safe set took the following
form.

{
x ∈ Rn

∣∣∣ h(x)≥ c
}

(1.5)

where h : Rn → R represents a smooth function. The subset of the state space
for which the system’s viability was in jeopardy — that is, the subset for which
h(x) < 0 — was subsequently identified by taking advantage of the fact that the
system under consideration was a control system. In this thesis, the viability kernel
will be characterized by this smooth function h, which will be called the control
barrier function. The background of the control barrier function will be given later.

On the viability front, several techniques have been offered to approximate the viabil-
ity kernel. For low dimensional systems with nonlinear dynamics, there are discrete
methods such as the viability algorithm [45], those based on the viscosity solutions
for Hamiltonian-Jacobi partial differential equations [46], or most recently, interval
analysis [35]. Invariance sets have proven more efficient for systems with polyno-
mial dynamics [47]. Lagrangian approaches are practical for higher-dimensional
linear systems, as in [48]. Viability Theory has applications in several disciplines,
including mobile robots. In [49], Model Predictive Control was used to handle the
challenge of maintaining balance and assuring passive safety for a bipedal robot. A
discrete technique based on [45] was designed in [50] to ensure safe autonomous rac-
ing, i.e., to drive as fast as possible around a predefined track. The aim in [51] was
to remove unsafe states from the search area and expedite motion planners, while
in [52], it was to improve the safety of systems by preventing them from entering
failure zones. A learning technique can lead to misclassification, which may not be
a concern in some cases but could jeopardize safety assurances in others.

In this thesis, we will provide a controller such that the system’s safe set renders
forward invariance. The background of the proposed controller will be given next.
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1.3.2 Barrier Functions

Nagumo established the necessary and sufficient requirements for set invariance in
the 1940s, paving the way for the study of safety in dynamical systems [53] ([54] gives
more detailed history, and [55] gives modern proof). Remarkably, given a dynamical
system ẋ = f(x) with x ∈ Rn, assuming that the safe set C is the superlevel set of
the smooth function h : Rn→ R, i.e., C = {x ∈ Rn : h(x)≥ 0}, and that ∂h

∂x(x) ̸= 0
for all x such that h(x) = 0, then Nagumo’s Theorem gives necessary and sufficient
conditions for set invariance based upon the derivative of h on the boundary of C.

C is invariant ⇐⇒ ḣ(x)≥ 0 ∀x ∈ ∂C (1.6)

Barrier certificates were established as a convenient method to explicitly show the
safety of nonlinear and hybrid systems [56]. These results, again, appeared to un-
cover Nagumo’s theorem independently. The name "barrier" was chosen based on
its application in optimization literature, where barrier functions are combined with
cost functions to avoid undesired regions. In barrier certificates, one considers an
unsafe set Cu and a set of initial conditions C0 together with a function B : R→ R
where B(x) ≤ 0 for all c ∈ C0 and B(x) > 0 for all x ∈ Cu. Then, B is a barrier
certificate if the following condition is satisfied.

Ḃ(x)≤ 0 ⇒ C is invariant (1.7)

In the notation for C above, by choosing the safe set to be the complement of the
unsafe set C = Cc

u, with B(x) = −h(x) the barrier certificate conditions become:
ḣ(x)≥ 0 which implies that C is invariant. Thus, these conditions are equivalent to
Nagumo’s theorem. Significantly, barrier certificates were explored [57] and extended
to a stochastic situation [58].

Several "Lyapunov-like" procedures have been used to extend the safety assurances
beyond the set’s border. Lyapunov functions produce invariant level sets, and if
these sets are contained in the safe set, one may ensure safety. Importantly, these
requirements may be applied over the whole set rather than simply on the edge. As
described in [59], a "barrier Lyapunov function" B must be positive definite. Enforc-
ing the constraint Ḃ ≤ 0 on the set C assures its invariance and safety. The main
constraint is that while these requirements provide safety, they also need invariance
at all levels. As a result, they are mighty and conservative.

The concept of a barrier certificate was expanded to include a "control" version,
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resulting in the first definition of a "control barrier function" [60], which differs from
the one presented in this work. Particularly, given a control system and a safe set
C defined by function h, the requirements in [60] can be effectively met.

∃u s.t. ḣ(x,u)≥ 0 ⇒ C is invariant (1.8)

These concepts were expanded upon to link control explicitly Lyapunov functions
with barrier functions [61], and this was done concurrently with the development
of the techniques described in this study, which combine Lyapunov and barrier
functions via the use of optimization-based controllers. Specifically, conditions for
establishing "control Lyapunov barrier functions" that jointly provide stability and
safety were provided, as elaborated in [62]. However, in such cases, conditions lead
to enforcing the reduction of ḣ(x,u)≥ 0. Yet, these conditions are required„ which
motivates the "modern" version of control barrier functions.

All of the previously discussed techniques resulted in the creation of the most re-
cent safety certificates, known as control barrier functions, which acknowledge the
previously indicated historical developments. These were introduced firstly in [63]
and then clarified in [64]. Specifically, the objective was to apply the barrier func-
tion conditions (e.g., Nagumo’s discoveries) to the whole safe set. This new class of
control barrier functions is defined by the following condition for a control system
and a safe set C specified by a function h:

∃u s.t. ḣ(x,u)≥−α(h(x)) ⇔ C is invariant (1.9)

where α(·) is a class K function. This requirement is both necessary and sufficient for
compact sets, resulting in minimal restriction. Lastly, as these requirements hold for
the entire set C, they provide a means of synthesizing safe controllers, in this case, by
modifying the desired controller once again in the least intrusive way. This is done
through the application of optimization-based control techniques. Consequently,
this formulation offers a fundamental paradigm for safety-critical control.

This unique approach to regulating barrier functions has proven helpful in various
applications since its development. Automotive systems [65], multi-robot systems
[66], quadrotors [67], and robotic systems including walking robots [68] are some
examples of applications the control barrier function is used. Furthermore, it enables
the unification of stability (via a control Lyapunov function) and safety (via a control
barrier function) in the context of an optimization-based controller; in fact, the
development of this new type of barrier function was inspired by optimization-based
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controllers that employed control Lyapunov functions.

When all of the above explanations focus on closed dynamical systems, i.e., systems
without inputs, the viability theory will expand them to open dynamical systems,
e.g., control systems provided by ẋ = f(x)+g(x)u for u ∈Rm. This required transi-
tioning from invariant sets to controlled invariant sets, which can be made invariant
by implementing an appropriate controller. This is the main aim of this thesis, and
it will be clarified in detail in the following chapters.

1.3.3 Neural Network Controller

Researchers have created a vast and diverse body of literature on neural networks.
Neural network applications fall into two categories: control and signal processing
and classification. Furthermore, two categories of control applications exist: closed-
loop control and open-loop identification. Since they frequently employ the same
algorithms, identification applications are conceptually similar to signal process-
ing and classification applications. However, in closed-loop applications, the neural
network is inside the control loop, therefore extra care needs to be taken by the de-
veloper to guarantee that the weights of the neural network stay confined throughout
the control run [69]. These challenges have hindered the creation of resilient and
adaptable neural network closed-loop control applications.

Neural networks exhibit several key characteristics. For control, the function ap-
proximation property should be concerned. Let f(x) be a smooth function whose
mapping is Rn→ Rm. As long as x is limited to a compact set S ∈ Rn, for some
number of hidden layer neurons Nh, there are weights and thresholds such that the
following equality holds.

f(x) = W T σ(V T x)+ ϵ (1.10)

where W and V are the neural network weights in matrices, σ(·) is the activation
function, and ϵ is the neural network functional approximation error. This applies
to many different activation functions. The above equation indicates that a neural
network may estimate any smooth function on a compact set.

Finding the optimal neural network weights in matrices W and V to approximate a
given nonlinear function f(x) can be challenging. They might not even be unique.
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For control, the reader needs to know that there are optimum approximation neural
network weights for a given value of ϵ.

Neural networks have practical applications due to their key characteristics. A de-
veloper can utilize any neural network activation functions σ(·) with a bounded first
derivative as long as they have a function approximation property, as shown in the
above equation. In dynamical systems, its gain needs to be chosen such that it is
large enough to overbound a specific "bad" nonlinear term defined in the dynamical
system equation; a large positive number will do. Acceleration measurements are not
necessary for the neural network controller, just like in well-designed adaptive con-
trollers. A proof in [69] demonstrates that the signal that should be backpropagated
in closed-loop neural network applications is exactly the filtered error. The neural
network controller guarantees that the constraint of a system is satisfied throughout
time.

The additional robustness qualities provided by the neural network controller are
easily shown. The closed-loop system is robust to more unstructured uncertainties
and disturbances because the tuning algorithms ensure that it satisfies a crucial
state-tight passivity feature. Hidden-layer neural network signals require an addi-
tional persistence of excitation (PE) requirement to behave properly. PE conditions
are ubiquitous in adaptive control and challenging to prove in multi-layer neural
networks.

The neural network controller is comparable to modem adaptive control techniques
regarding implementation difficulty in practical systems. Neural network control
incorporates concepts from robust control in the signal. Neural network control has
two distinct benefits over adaptive control, making it likely to be widely accepted
in the industrial control field in the coming years. Extensive system modeling and
preliminary analysis must be performed to compute a regression matrix to implement
adaptive controllers. Regression matrix computation requires using a model specific
to the system that the user wishes to govern and must be done independently. A
new regression matrix for the system must be produced whenever the neural network
controller is applied to a different system.

The universal approximation property of neural networks leads to the model-free
property of neural network controllers. Even though the model-free condition typ-
ically lacks both proofs and performance guarantees, it also explains why neural
network controller research has succeeded in various scenarios. In other words, neu-
ral network controllers withstand both unmodeled disturbances and subpar technical
design procedures.
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It is easy to understand why neural networks are superior to adaptive control. Adap-
tive control works under the assumption that the linear-in-the-parameters equation
gives the unknown function, which refers to the nonlinearity of the dynamical system.
The approximation of the neural network functional approximation, whose equation
is shown in the former, is guaranteed to hold for every smooth function f(x), and
the activation functions σ(·) are always the same for any system. Therefore, whereas
the linear-in-the-parameters equation offers a basis set solely for particular systems,
neural networks provide a basis set for any smooth function f(x).

Adaptive control significantly lacks another important feature in addition to the
challenges associated with calculating the regression matrix. In actuality, the linear-
in-the-parameters assumption severely limits the kinds of systems that adaptive
control techniques can effectively regulate. It does not hold for all systems. For every
system, if the error dynamics are derived using an appropriate control engineering
formulation, the neural network approximation property is accurate.

Some implementation strategies of the neural network controller are designed in the
literature. In addition, some practical applications, including force control, have
been developed with neural network controllers. Digital control methods are mostly
used, and therefore, the neural network controller is designed with discrete time.
For instance, the neural network controller is simplified with Hebbian weight tuning
[69]. Hebbian tuning is no longer often used in neural networks due to poor perfor-
mance. The controller in the table with updated Hebbian tuning achieves excellent
closed-loop performance. Nonlinear controllers typically use digital signal processors
or microprocessors, making building neural network controllers with discrete-time
weight updating methods crucial. Researchers have written extensively about such
tuning techniques. However, these ad hoc modifications of gradient-based algo-
rithms, like the delta rule, do not ensure stability or tracking in closed-loop control
applications. The discrete-time adaptive control to nonlinear systems with neural
network controller provides the no longer necessary for the following conditions: i)
certainty equivalence assumptions, ii) persistence of excitation, iii) linearity in the
parameters or iv) a regression matrix.

In this thesis, the neural network controller is combined with the control barrier
function. The neural network controller guarantees that the dynamical system can
reach the target by gaining viability. The control barrier function acts as a model
predictive controller to prevent the system from becoming unsafe.
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1.4 Contributions

The main contributions of this thesis are given as follows:

• We propose two different controllers for time-varying multi-agent systems,
which communication network systems are modeled, and then combine these
two controllers to provide a central controller for corresponding agents in the
system. The objective here is to address the system susceptible to errors and
failures and give this central controller to achieve an effective and efficient
performance for such a system.

• The first controller is the Model Predictive Controller, and it aims to steer
the agent toward the closest point to the viability region’s boundaries when
the agent finds itself very near to the boundaries. The proposed method for
the Model Predictive Controller is the Control Barrier Function. It is defined
over a safe set, which in turn achieves viability, and this will be provided with
its solutions. The second controller is the Neural Network Controller, and
the goal of this controller is to use the viability region to check whether the
agent can reach the target region within a finite time. The importance of both
controllers will be explained and shown, especially this will be given for the
Model Predictive Controller.

• A communication protocol is specified for the central controller design, and
we explain how the communication is optimized efficiently. Here, the com-
munication between nodes/agents and the communication between a node/an
agent and its corresponding controller is clarified, and a scheduling policy is
designed to consider some limitations in the communication system.

• Numerical simulations are provided. Firstly, the Model Predictive Controller
results are provided with two different network models. Secondly, one of the
scenario’s results is compared with another method’s results by examining
the communication performance. Finally, the Neural Network Controller is
included with the Model Predictive Controller, and its results are compared
with the only Model Predictive Controller. It will be highlighted that their
collaboration improves efficient decision-making and communication of the
network system.
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1.5 Thesis Outline

The rest of this thesis is organized as follows. Chapter 2 expresses the communica-
tion network system as a multi-agent system model and then defines the viability
kernel, along with the forward invariance term, which is used to make the system
sensitive to failures and errors and guide its safety region. After that, the method
of the Model Predictive Controller is proposed with given concepts, and it is math-
ematically proven with theorems and lemmas. The method we used here is the
control barrier function. It is suggested to achieve viability by defining the function
over a safe set, which in turn guarantees the system in a defined viability kernel.
The Neural Network Controller is also proposed, and its goal is explained. Chapter 3
describes the communication protocol for the system. The communication is divided
into two parts: the communication between nodes and the communication between
the node and its corresponding controller. Then, a scheduling policy is provided
to handle communication limitations, which is also explained in detail. Chapter 4
provides experimental setup by giving three topology scenarios, and then defines
viability kernel, control barrier function and other needed parameters. Chapter 5
gives the numerical results of the simulation using the proposed method and com-
munication protocol, and the results are analyzed to show the accomplishment of
our aim. Chapter 6 presents a brief conclusion and explains what can be done next
in the future.
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2. CONTROL OF THE DYNAMICAL COMMUNICATION

SYSTEM

This chapter will introduce basic definitions of mathematical terms and the funda-
mentals of viability kernels and control barrier functions (CBFs). The CBF is an
effective method to ensure a system’s safety over time. We will modify the CBF
method using Viability Theory to address systems susceptible to failures and errors,
making the proposed method more effective. All notations used in this chapter is
given in Table 2.1.

2.1 Preliminaries

Definition 2.1. A nonlinear autonomous control system is considered as a differ-
ential equation.

ẋ = f(x)+g(x)u+d(t), (2.1)

where x ∈ Rn, u ∈ Rm denotes a state and control input, respectively. Assume that
f : Rn→ Rn, g : Rn→ Rn×m, and d : R>0→ R are continuous. The initial state of
the system is represented by x0 = x(0).

The Lie derivative is a mathematical tool used to describe how a function changes
along the flow of a vector field. In the context of control systems, it provides insights
into the behavior of functions as they evolve over time due to the influence of system
dynamics.

Definition 2.2. Positive and non-negative real numbers are denoted as R>0 and
R≥0 respectively. For a function h : Rn → R, Lie-derivatives with respect to the
mappings f :Rn→Rn and g :Rn→Rn×m, both of which are continuous, are defined
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Notation Meaning
Rn n-Dimensional Vectors of Real Numbers
R>0 Positive Real Numbers
R≥0 Non-Negative Real Numbers
Lf h Lie-derivative of h with respect to f

ḣ Time Derivative of h
ν(·) Control input
X Safe Set
U Input Constraint Set
G Directed Graph
V Node Set
E Edge Set
A Adjacency Matrix
D Degree Matrix
L Laplacian Matrix
Vx Viability Kernel
x Vector

δ(h) Higher-Order Term of h

Wj Weight Matrix for the j-th Layer
b(j) Bias Vector for the j-th Layer

Table 2.1 Notations

as follows:

Lf h(x) = ∂h

∂x
f(x) = lim

t→0

h(Φt
f (x))−h(x)

t
, (2.2a)

Lgh(x) = ∂h

∂x
g(x) = lim

t→0

h(Φt
g(x))−h(x)

t
, (2.2b)

where Φt
f : M→M and Φt

g : M→M , which M is the manifold, describes how points
on the manifold move under the influence of f and g, respectively. The flows Φt

f (x)
and Φt

g(x) represent the position at point x ∈M after time t, as it moves along the
curve generated by f and g, respectively. Lie derivatives describe how the function
h(x) changes along the flows defined by f(x) and g(x), respectively.

Definition 2.3 (An Extended Class K Function). A continuous function α :
(−b,a)→ R for some a,b ∈ R>0 is an extended class K function if it is strictly
increasing and α(0) = 0 [70]. It should be noted that b and a may be infinity.

Definition 2.4 (0-Superlevel Set [71]). The 0-superlevel set C of a smooth function
h : Rn→ R is given as below.

C = {x ∈ Rn | h(x)≥ 0} . (2.3)
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According to the definition of the nonlinear autonomous system (2.1) and with given
the definition of the 0-superlevel set (2.3), we are going to define a safe set as follows.

Definition 2.5 (Safe Set [70]). A safe set X ⊂ Rn is a strict 0-superlevel set of a
continuously differentiable function hx : Rn→ R:

X = {x ∈ Rn|hx(x) > 0} . (2.4)

With this safe set, we are going to provide a theorem for the existence of a contin-
uously differentiable function.

Theorem 2.1. A continuously differentiable function hx : Rn→ R exists if the fol-
lowing conditions are satisfied [70].

• (A1) hx(t) is proper ∀x ∈ X , i.e., for any L ∈ R≥0, the superlevel set
{x|hx(t)≥ L} is compact.

• (A2) For any continuous mapping uh : R→Rm, a locally Lipschitz continuous
extended class K function α(·) exists such that the following inequality is valid:

sup
ν∈Rm

ḣx(x,ν) >−α(h(x)); ∀x ∈ X , (2.5)

where ḣx is the time-derivative of hx. The proof of the Theorem 2.1 is given in [72].

A convex subset U ⊂ Rm stands for input constraints, defined as follows.

U = {ν ∈ Rm | ϱi(ν(u,uh(t)))≤ 0 (i = 1, . . . r)} , (2.6)

where ϱi are continuously differentiable convex functions with respect to u,
ν(u,uh(t)) ∈ U is the control input, defined as a function where u and uh(t) de-
note the controller and a supervisory control respectively.

Note that a mapping uh : R→Uh := {uh ∈ Rm|ν ∈ U} is also continuous. Now that
we have both state constraint x(t)∈X and input constraint ν(u,uh(t))∈U for t≥ 0,
we will introduce the viability kernel, which is a subset of the safe set, i.e., Vx ⊆X .

Definition 2.6 (Forward Invariance [54]). The safe set X ⊂Rn is forward invariant
for the system if for every state x0 ∈ X satisfies x(t) ∈ X for ∀t≥ 0.

The concept of forward invariance, first associated with viability theory in [73],
guarantees the viability kernel’s forward invariance under a control system.
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Figure 2.1 Illustration of Viability Kernel

The presence of input constraints, represented by ν ∈ U , implies the existence of
an initial state x0 ∈ X for which the violation of state constraints is unavoidable.
Therefore, we utilize the viability kernel to characterize the initial states for which
the system remains viable.

Definition 2.7 (Viability Kernel [43]). Given a system and a safe set X ⊂ Rn, a
subset Vx := V iab(X )⊆X is referred to as the viability kernel of X if there exists a
control input ν ∈ U that makes the safe set forward invariant:

Vx = {x ∈ X | ∃ν ∈ U , such that x(t) ∈ X , ∀t≥ 0} . (2.7)

The viability kernel Vx set can be illustrated in Figure 5.9. The difference between
Vx and X is that Vx is satisfied with both state and input constraints, while X is
satisfied with only state constraints.

2.2 System Model

The supervisory control unit acts independently of the internal controllers of each
agent. It is in charge of making control decisions that influence the network’s gen-
eral behavior and coordination. Our method connects with the supervisory control
unit to improve system robustness and communication efficiency. Specifically, our
method assists the supervisory control unit by providing additional viability-based
control mechanisms to guarantee agents remain within safe operational limits. This
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assistance supplements the supervisory control unit’s choices by offering tiered de-
fense against system failures and optimizing communication protocols in dynamic
environments.

We outline the system model with input constraints, and we define it as a control-
affine system to express its dynamics linearly with respect to the control inputs,
simplifying the design and analysis of control strategies for decentralized agent co-
ordination. The definition of the control-affine system with supervisory control uh(t)
is given as follows:

ẋ = f(x)+g(x)ν(u,uh(t))+d(t)
:= f(x)+g(x) [u+uh(t)]+d(t)

, (2.8)

where x ∈ Rn denotes a state, and u ∈ Rm is a controller, respectively. ν is the
control input, which is the summation of the controller and the supervisory control.
In addition, f(x) : Rn→ Rn is a smooth function, g(x) : Rn→ Rn×m is a function
interacted with the control input, and d(t) : R>0→ R is the external disturbance.

Based on (2.8), a heterogeneous nonlinear input-constrained multi-agent system
(MAS) is considered composed of N agents, in which agents are indexed from the
set V = {1, ...,N}. The dynamics of the ith (i ∈ V) agents can be depicted as shown
below:

ẋi,j = fi,j(xi)+gi,j(xi) [u+uh(t)]+di,j(t); j = 1, . . . ,n,

yi = xi,1,
(2.9)

where xi = [xi,1, ...,xi,n] ∈ Rn and yi are the state vector and output of the system,
respectively, and n (n≥ 2) is the system order. Note that n may not be identical, but
it is assumed that it is identical for all agents for simplicity. Furthermore, fi,j(xi) :
Rj→Rj is a smooth function representing the unmodeled dynamics, gi,j(xi) : Rj→
Ri×j is a function interacted with the control input, and di(t) : R>0 → R is the
external disturbance with an unknown bound di,j ∈ R+ satisfying |di,j(t)| ≤ di,j .
The control input is ν(u,uh(t)) = [u+uh(t)], and its constraint set definition (2.6)
is updated to the following control set according to the MAS model.

U = {v ∈ R : ||ν(u,uh(t))|| ≤ amax} , (2.10)

where amax ∈ R>0 is a positive constant.
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Graph Theory

Information transfer between agents can be described using graph theory, which
also helps to relate the multi-agent system (MAS) to the communication system.
Graph theory is commonly employed to represent the interactions and information
exchanges among agents within MAS systems. The system is described by a directed
graph G = (V ,E) consisting of a set of nodes V and a set of edges E ⊆ V ×V , where
V = {1, ...,N} ∈RN . In graph G, each node denotes an agent, and the edge (j, i)∈ E
demonstrates that the information flows from node j to node i. For nodes i, j ∈ V ,
the adjacency matrix A= [aij ]⊆RN×N , which refers to the interconnection between
nodes, is identified by aij = 1 if (j, i) ∈ E , and aij = 0 otherwise, since there is no
allowance of self-loop, aii = 0. The degree of node i is denoted as ϕi = ∑N

j=1 aij ,
and the degree matrix is defined with degree of node D = diag{ϕ1, ...,ϕN} ∈RN×N .
Then, L =D−A is defined as the Laplacian matrix of the graph.

2.3 Problem Statement

In many cases, the state of a nonlinear system may approach infinity in finite time, a
phenomenon known as finite escape time. It means that within a limited period, the
system’s state can become extremely large, theoretically approaching infinity, which
indicates that the system is experiencing an instability or unbounded behavior in a
very short time span. The controller function must ensure the forward invariance of
the viability kernel for all t ∈ I(x0) , including scenarios where I(x0) = [0, t1) and
t1 represents the finite escape time. This controller function is known as the control
barrier function.

Definition 2.8 (Control Barrier Function [71]). Given a system model as defined
in (2.8) and the safe set X (2.4), a continuously differentiable function h : Rn→ R
is a control barrier function (CBF) if there exists an extended class K function α(·)
such that the following inequality holds.

sup
u∈Rm

ḣ(x) >−α(h(x)) ∀x ∈ Rn, (2.11)

CBF is used to ensure safety within a specified safe set by keeping the system viable
over time. The goal is to maintain all node states within the viability kernel.
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Controllers with input constraints (2.10) cannot guarantee the forward invariance
of the safe set X outside the viability kernel. If the system state lies outside the
viability kernel Vx, the closed-loop system will unavoidably exit the safe set X for
any ν(u,uh(t))∈U . In that case, there is no control input u∈U that can prevent the
system from eventually leaving the safe set X . The purpose of a CBF is to guarantee
that the system remains in X by enforcing safety at the boundary of X . If the system
starts outside Vx, any control action will eventually fail for safety because the system
is guaranteed to leave X at some point. As a result, no CBF function can enforce
safety in such conditions. The viability kernel is thus a necessary component when
defining an effective CBF, as it encompasses the set of states from which safety can
actually be enforced.

The definition of the CBF function will be revised and extended to ensure that the
system is viable, and this will be done by formulating CBF with respect to the safe
set. This approach guarantees that the system remains within the viability kernel
Vx.

Definition 2.9 (Control Barrier Function for Viability Kernel [73]). The system
(2.9) and the viability kernel Vx is given. Then, a continuously differentiable function
h :Rn→R is a control barrier function for viability kernel if the following conditions
hold.

• (B1) Assume that there exists h such that the viability kernel can be defined
as

Vx = {x ∈ Rn | h(x) > 0} . (2.12)

The system remains safe as long as h(x) is positive. Therefore, the condition
in the viability kernel is referred as the positivity condition of the CBF.

• (B2) h(x) is proper for ∀x ∈ Vx; for any L ∈ R≥0, the superlevel set
{x|h(x)≥ L} is compact.

• (B3) For any continuous mapping uh : R → Uh, i.e., there exists a locally
Lipschitz continuous extended class K functions α(·) such that the following
inequality holds:

sup
ν∈U

ḣ(x,ν(u,uh(t))) >−α(h(x)); ∀x ∈ Vx. (2.13)

The viability kernel Vx is determined based on state and input constraints and can
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Algorithm 1 Utilizing Viability Kernel Vx to Obtain CBF h(x)
Description: Let Vx is a convex subset of Rn. Vx is convex if for x,y ∈ Vx and
λ ∈ [0,1], (1−λ)x+λy ∈ Vx

Input: Vx ∈ Rn, x ∈ Rn

Define Viability Kernel Vx:
Determine constraints and conditions for Vx

Construct h(x):
if Vx is defined by explicit constraints then

Set h(x) =−s(x) if Vx = {x | s(x)≤ 0}
else

Use grid sampling to obtain viable states
Approximate the boundary of Vx with a convex hull on the viable states
Apply SVM to find a hyperplane separating viable from non-viable states
Define decision function h(x) as the signed distance from the SVM hyperplane
Use h(x) to determine whether a point lies within Vx (i.e., h(x) > 0 for points
in Vx, h(x)≤ 0 otherwise)

end if
Verify h(x):
Ensure h(x) satisfies:

• Positivity: h(x) > 0 if x ∈ Vx

• Non-positivity: h(x)≤ 0 if x /∈ Vx

Update h(x):
Modify h(x) to meet conditions if necessary
Output: CBF h(x) distinguishing points inisde Vx from outside

be explicitly described by boundaries that may be constant or time-varying. An
equation identifies Vx as a closed form with these boundaries. We modify this equa-
tion to meet the conditions of the CBF function mentioned earlier. Once all three
conditions are fulfilled, we can derive the h(x). On the other hand, if the viability
kernel Vx is defined as an open form, i.e., there is no explicit formula or algebraic
expression for Vx, then we first have to approximate the set of feasible initial con-
ditions. In other words, a simulation has to be run to obtain trajectories which
satisfy system constraints. These trajectories will provide us the viable region and
we use them to obtain CBF h(x) with numerical approaches (e.g. machine learning
methods; Support Vector Machine (SVM) or regression). The pseudo algorithm of
these whole process is given in Algorithm 1.

Based on Definition 2.3, the main objective is to design a controller that ensures the
forward invariance of the viability kernel with minimal intervention while effectively
handling unexpected errors as they arise. In other words, the goal is to maintain
the system’s safety over time by satisfying both the state constraint x(t) ∈ X and
the input constraint ν(u,uh(t)) ∈ U for all t ≥ 0, while making local decisions in
response to sudden failures or disturbances.
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2.4 Viability Guarantee with Control Barrier Function

This section will demonstrate that the proposed control function treats errors coming
from any agent in the system as a rule when any of the required conditions are not
met. The discussion will begin with a theorem related to Lipschitz continuity.

Lemma 2.1. Consider the system described in (2.9) and the safe set X defined by
(2.4). Recall that α(·) : R→ R is a locally Lipschitz continuous extended class K
function. If h : Rn → R is a CBF [70], h is proper for x ∈ X and ḣ > −α(h(x)),
then there exists a positive constant η ∈ R>0 such that

ηh(x)≥ α(h(x)); ∀x ∈ X , (2.14)

Proof: Note that x ∈ X implies h(x) > 0. Given function α(·) is locally Lipschitz
continuous, it can be represented as follows:

α(h(x)) = η1h(x)+ δ(h(x)), (2.15)

where η1 ∈ R>0 is a positive constant and δ : R→ R is a higher-order term of h(x).
To analyze how α(h(x)) behaves near h(x) = 0, the following limit

lim
h→0

1
h

(1
2η1h− δ(h)

)
= 1

2η1 > 0 (2.16)

is considered. This means that for small values of h(x), δ(h(x)) is dominated by the
linear term η1h(x). The result of the limit is crucial because it shows that for small
values of h(x), the higher-order term δ(h(x)) is sufficiently small relative to η1h(x).
Thus, a positive constant C ∈R>0 exists such that for all x∈B= {x|h(x) < C} ⊂X
the following equation holds

1
2η1h(x)≥ δ(h(x)). (2.17)

By substituting equations (2.17) into (2.15), it implies that a positive constant η

(> η1) ∈ R>0 exists such that the following equation holds

η ≥ α(h(x))
h(x) ; ∀x ∈ B ⊂ X . (2.18)
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The case h(x) ≥ C, i.e., x ∈ X\B, is now going to be considered. Because h(x)
is a proper function for all x ∈ X , the superlevel set X\B = {x|h(x)≥ C} is also
compact. Therefore, there exists a positive constant η ∈R>0 such that the following
equation holds.

η ≥ α(h(x))
h(x) ; ∀x ∈ X\B ⊂ X , (2.19)

due to the extreme value theorem, which is expressed and its prove is given below.

Theorem 2.2 (Extreme Value Theorem [74]). Let z be a function defined on the
closed interval I = v : a≤ x≤ b, and assume z is continuous on Y . Then, there
exist points v0 and v1 within Y such that z(v0)≤ z(v)≤ z(v1) for all z ∈ Y . In other
words, z attains both its maximum and minimum values on Y .

Proof: According to Theorem 2.2, the range of z is bounded. Let us define:

R = supz(v) for z ∈ Y, r = inf z(v) for z ∈ Y.

We aim to show there exist points v0 and v1 in Y such that z(v0) = r and f(x1) = R.
We will first prove the existence of v1, with the proof for v0 being similar. Assume
that R is not in the range of z, and we will arrive at a contradiction. Consider the
function Z on Y defined by:

Z : v→ 1
R− z(v) .

This function is continuous on Y and, by Theorem 2.3, has a bounded range. Let
R = supZ(v) for v ∈ Y . Since R > 0, we have:

1
R− z(v) ≤R or z(v)≤R− 1

R
for v ∈ Y.

This inequality contradicts the assumption that R = supz(v) for v ∈ Y . Therefore,
R must be within the range of z, meaning there exists v1 ∈ Y such that z(v1) = R.

■
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The compactness of the set X\B implies that h(x) attains its maximum and mini-
mum values on this set due to the extreme value theorem. By this theorem, since
h(x) is continuous on the compact set X\B, it must attain its maximum and mini-
mum on the set.

Let us denote the maximum of h(x) on X\B as h(xb), where xb ∈ X\B is the point
where maximum occurs. The extreme value theorem ensures that for all xb ∈ X\B,
the ratio α(h(xb))

h(xb) is bounded. Therefore, there exists a positive constant η ∈ R>0

such that:

η ≥ α(h(xb))
h(xb)

; ∀xb ∈ X\B ⊂ X ,

This constant η comes directly from the boundedness of the ratio α(h(xb))
h(xb) , which is

guaranteed by the compactness of the set X\B and the continuity of the function
h(x). The inequality in (2.19) is thus derived using the fact that on a compact set,
a continuous function attains both its maximum and minimum, ensuring that the
ratio is bounded and a constant η can be found to satisfy the inequality. ■

By using Lemma 2.1, we will provide the following theorem.

Theorem 2.3. Consider the system defined in (2.9), with the viability kernel Vx as
defined in (2.12) and a CBF h : Rn→ R. Any continuous controller u that satis-
fies ḣ(x,ν(u,uh)) ≥ −α(h(x)) ensures that the viability kernel Vx remains forward
invariant, thereby guaranteeing that x ∈ X for all t≥ 0.

Proof: If η exists for the safe set X such that the former equations hold, then there
also exists a positive constant ϖ ∈ R>0 for viability kernel Vx, since Vx ⊂X .

Specifically, if x0 ∈ Vx then h(x0) > 0. Under this condition, the time derivative of
the CBF function satisfies ḣ >−α(h(x)), as assumed. The extension of Lemma 2.1
demonstrates that there exists a positive constant ϖ ∈ R>0 such that the following
equation holds.

ϖh(x)≥ α(h(x)); ∀x ∈ Vx, (2.20)

and thus, by replacing the assumption ḣ >−α(h(x)) for the viability kernel Vx and
substituting it to (2.20), the result becomes as follows,
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ḣ≥−α(h(x))≥−ϖh(x); ∀x ∈ Vx, (2.21)

Hence, the following inequality holds according to Gronwall’s lemma (see Appendix
A.1):

h(t)≥ h(x0)exp(−ϖt) > 0; ∀t ∈ [0, t1] , (2.22)

where t1 ∈ R>0 can be arbitrarily extended. Since h(x) is a proper function for
all x ∈ Vx, the level set {x|h(x)≥ h(x0)exp(−ϖ1t1)} ⊂ Vx is compact; therefore,
any continuous controller u such that ḣ≥−α(h(x)) renders the viability kernel Vx

forward invariant, and the inclusion demonstrates that x(t) ∈ X for ∀t≥ 0.

This discussion completes the proof of Theorem 2.3. ■

Theorem 2.3 establishes the global Lipschitz condition for a CBF, which is a sig-
nificant result that guarantees the solution x(t) to the system (2.9) can continue to
evolve over time without interruptions or encountering singularities.

A key property derived from condition (B2) is that the solution x(t) to the system
(2.9) does not experience finite escape time. Additionally, the invariance of CBF
properties under coordinate transformations will be maintained if condition (B2) is
satisfied.

2.5 Controller with Control Barrier Function

Building on the conditions of the CBF to achieve viability, we propose a controller
for the system (2.9) as a key result of this thesis. Its summary is given in Figure
2.2.

Theorem 2.4. Consider the system (2.9), the safe set X defined by (2.4), and the
CBF h : Rn → R that satisfies the given conditions. For any continuous mapping
uh : R→ Rm, the following controller u = k(x,t) ensures the forward invariance of
X .
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Figure 2.2 Control Construction Summarized with a Diagram.

u = k(x,t) =

 −
I(x,uh(t))−J(x)

||Lgh(x)||2 (Lgh(x))T , if I(x,uh(t)) < J(x)
0, if I(x,uh(t))≥ J(x)

, (2.23)

where functions I : Rn×Rm→ R and J : Rn→ R are defined as follows.

I(x,uh(t)) = Lf h(x)+Lgh(x) ·uh(t), (2.24a)

J(x) =−α(h(x)), (2.24b)

Proof: The system (2.8) can be rewritten with the proposed controller.

ẋi,j = fci,j (xi,ki(xi, t),uh(t))+di,j(t), j = 1, . . . ,n,

= fi,j(xi)+gi,j(xi) [k(x,t)+uh(t)]+di,j(t),
(2.25)

First of all, we will prove the continuity of the proposed controller (2.23) to guarantee
that a local solution x(t) exists for (2.25).

Note that Lf h(x), Lgh(x) and uh(t) are all continuous functions in t, so functions
I(x,uh(t)) and J(x) are also continuous. Furthermore, u→ 0 as I → J uniformly
when Lgh(x) ̸= 0. Therefore, the proposed controller (2.23) is continuous when
Lgh(x) ̸= 0. Hence, we only need to prove the continuity of (2.23) at Lgh(x) = 0.
According to the Lipschitz continuity condition for the CBF function, for all t0 ≥ 0
such that Lgh(t0) = 0, the following inequality holds:
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ḣ = Lf h(t0) >−α(h(t0)), (2.26)

Therefore, this shows that a positive constant exists ϵ ∈R>0 such that the following
equation holds.

ḣ = Lf h(t0)− ϵ≥−α(h(t0)), (2.27)

Since Lgh(t0) ·uh(t0) is a continuous mapping, a neighborhood H⊂Rn×R of x(t0)
exists such that the following inequality holds.

||Lgh(t0) ·uh(t0)|| ≤ ϵ; ∀x(t0) ∈H, (2.28)

Hence, by replacing ϵ with (2.28), the inequality holds for any x∈H as shown below.

Lf h(t0)+Lgh(t0) ·uh(t0)≥−α(h(t0)), (2.29)

Accordingly, this shows that I(x,uh(t))≥ J(x). Thus u = k(x,t) = 0 for any x ∈H,
and this shows that a neighborhood H of Lgh(x) = 0 such that u = k(x,t) = 0 for
∀x ∈ H. Hence, u = k(x,t) is continuous for ∀x ∈ Rn. Thus, for any continuous
mapping uh(t), the mapping fci,j is continuous in x and thus a local solution x(t)
to the system (2.25)

Secondly, we will prove that the proposed controller (2.23) ensures the forward
invariance of X .

The time derivative of the CBF function is calculated as shown below:

ḣ = dh

dx

dx

dt

= Lf h+Lgh ·k(x,t)+Lgh ·uh(t),
(2.30)

Now, the Lipschitz continuity condition will be examined with cases defined in the
controller function (2.23).

Case 1: I ≥ J

In this case, there is no control update, according to (2.23). Since u = 0, the following
inequality holds:
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ḣ = I(x,uh(t)) = Lf h+Lgh ·uh(t)≥−α(h(x)), (2.31)

Case 2: I < J

For this case, substituting (2.23) into (2.30) yields to the following equation

ḣ = J(x) =−α(h(x)), (2.32)

As a result, the following inequality holds in both cases 1 and 2:

ḣ≥−α(h(x)), (2.33)

The right-hand side of (2.33) is globally Lipschitz continuous in h for all x ∈ X .
Consequently, there exists a unique bounded function h(t) over the interval [0, t1],
where t1 ∈ R>0 can be extended arbitrarily. In this context, the validity of the
inequality, as established by Gronwall’s lemma, is applicable. This was previously
demonstrated in (2.22).

According to the compactness of h(x) function with the level set
{x|h(x)≥ h(x0)exp(−ϖ1t1)}, there exists a positive constant s ∈ R>0 such
that {x | ||x−x0|| ≤ s} is supset of the level set. Consider the rectangle S defined
as shown below.

S = {0≤ t≤ t1, ||x−x0|| ≤ s} , (2.34)

where s is sufficiently large. Since the mapping fci,j is continuous in x on the
rectangle S, at least one solution x(t) to (2.25) exists and it is defined on [0, t1], and
t1 ∈R>0 can be extended indefinitely by (2.22); for any constant t1 ∈R>0, a solution
exists x : [0, t1]→X for any initial state x ∈X . Thus, the proposed controller (2.23)
guarantees the forward invariance of X , i.e., x(t) ∈ X for ∀t≥ 0.

This completes the proof of the forward invariance of X with the proposed controller,
which was initially derived without considering input constraints. ■

To establish that the viability kernel also ensures forward invariance, input con-
straints will now be incorporated. We will make minimal modifications to the pro-
posed controller to ensure viability. This modified controller is a specialized version
of Theorem 2.4 adapted for the viability kernel.
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Theorem 2.5. Consider the system (2.9) with the input ν(u,uh(t)) ∈ R, the input
constraint (2.10), and a CBF function h : Rn → R. For any continuous mapping
uh : R→ [−amax,amax], the following defined controller function u = k(x,t) always
satisfies the input constraint.

k(x,t) =

 −
1

Lgh(x) (I(x,uh(t))+J(x)) , if I(x,uh(t)) < J(x)
0, if I(x,uh(t))≥ J(x)

, (2.35)

where I(x,uh(t)) and J(x) were already presented at (2.24).

Proof: If the controller defined in (2.35) is applied to the time derivative of the
CBF function h, it results in ḣ > −α(h(x)) for both cases: I(x,uh(t)) < J(x) and
I(x,uh(t))≥ J(x). These cases will be analyzed in the context of the viability kernel.

Case 1: I(x,uh(t))≥ J(x)

In Case 1, where the controller function is zero (k(x,t) = 0), the input constraint
uh ∈ [−amax,amax] is clearly satisfied. Consequently, we consider the other case:
I(x,uh(t)) < J(x). If Lgh ≥ 0, then the control input νP (u,uh(t)) = uP + uh(t) =
amax maximizes ḣ and satisfies the following conditions:

max
ν∈U

ḣ(x,ν) = Lf h(x)+Lgh(x) ·amax >−α(h(x)), (2.36)

coming from the Lipschitz continuity condition for a CBF function. Thus, the
following equation is valid.

− 1
Lgh(x)

(
Lf h(x)+α(h(x))

)
< amax, (2.37)

Case 2: I(x,uh(t)) < J(x)

In Case 2, the controller function (2.35) is rewritten and updated to the following
function.

k(x,t)+uh(t) =− 1
Lgh(x)

(
Lf h(x)+α(h(x))

)
, (2.38)

Correspondingly, the inequality k(x,t) + uh(t) < amax is satisfied. If Lgh(x) < 0,
the control input νp(u,uh(t)) = up +uh(t) =−amax maximizes ḣ and the inequality
k(x,t)+uh(t) >−amax is satisfied similarly with the case of Lgh(x)≥ 0. This shows
that the proposed controller (2.35) satisfies the input constraints (2.10). ■
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From now on, we will refer to the proposed controller (2.35) as the Model Pre-
dictive Controller (MPC). This MPC is designed to continuously ensure the safety
of the system under the given constraints. We incorporated Viability Theory into
the MPC definition to address system failures or errors as they arise, rather than
applying the controller at all times. The controller leverages the learned viability
kernel to maintain safety.

We have designated the controller (2.35) as an MPC because its control input
generation is based on the behavior of agents within the system. Each agent may
exhibit different behaviors, and this non-linearity can potentially lead to unsafe
conditions. Therefore, the MPC controller, in conjunction with the CBF, generates
control inputs tailored to the dynamics of each agent. This approach ensures that
all agents remain in a safe state, thereby ensuring the overall safety of the system.
The MPC controller effectively manages the challenges posed by nonlinearity, which
is a key factor contributing to system failures or errors.

2.6 Neural Network Controller

The neural network controller leverages gains provided by the viability region. When
integrated with the viability region, it can assess whether an agent can reach the
target within a finite time. The MPC controller is activated when the agent deviates
due to external effects or nonlinearity, placing it near the boundaries of the region.
It then guides the agent towards a point closer to the center of the viability region.

According to the system definition given in (2.9), we assume an output-feedback
controller uNN

t = π(yi), where π(·) represents the control policy of the neural network
controller. This controller is parametrized by an n-layer neural network model and
is subject to input constraints uNN

t ∈ U , as defined in (2.10). For the n-layer neural
network, the number of neurons in each layer is denoted by nj , for all j ∈ [n], where
[n] denotes the set {1,2, . . . ,n}. The weight matrix for the j-th layer is denoted as
W(j) ∈ Rnj×nj−1 , and the bias vector for the j-th layer is b(j) ∈ Rnj . An operator
that maps the network input, which measures the output yi, to the j-th layer is
denoted as Fj = Rnx → Rnj . This operator is defined as follows:

Fj(yi) = σ(W(j)Fj−1(yi)+b(j)), ∀j ∈ [n−1] , (2.39)
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where σ(·) is the coordinate-wise activation function. General activation functions,
including ReLU, σ(x) = max(0,x), are applied. The network input produces the
control input as follows.

uNN
t = π(yi) = Fn(yi) = W(n)Fm−1(yi)+b(n), (2.40)

The key step in computing an optimal path to the target is to relax the nonlinear
constraints induced by the nonlinear activation functions of the neural network. The
relaxation transforms nonlinearities into linear upper and lower bounds that apply
to the activation’s known input ranges.

The ϵ-ball is going to be identified to denote the range of inputs to the activation
functions. The ϵ-ball under the ℓp norm is represented, centered at x, with scalar
radius ϵ as follows

Bp(x,ϵ) =
{
x
∣∣∣ ||x−x||p ≤ ϵ

}
, (2.41)

The ϵ-ball to the vector case ϵ ∈ Rn
≥0, identified as shown below.

Bp(x,ϵ) =
{

x

∣∣∣∣ lim
ϵ→ϵ+

||(x−x)⊘ ϵ||p ≤ 1
}

, (2.42)

where ⊘ represents element-wise division. The convex relaxation of the neural net-
work is given as a theorem below.

Theorem 2.6 (Convex Relaxation of NN). An n-layer neural network control policy
is given π : Rny →Rnu. Two explicit functions exist πL

l : Rny →Rnu and πU
l : Rny →

Rnu such that ∀l ∈ [nj ], ∀y ∈ Bp(y,ϵ), the inequality πL
l (y) ≤ πl(y) ≤ πU

l (y) holds
true, where πL

l (y) and πU
l (y) are given as shown below.

πU
l (y) = Ωl : y +µl, (2.43)

πL
l (y) = Ψl : y + ζl, (2.44)

where Φ,Ψ∈Rnu×ny and µ,ζ ∈Rnu are defined recursively using NN weights, biases,
and activations. The proof of this theorem is given in [40].

Theorem 2.3 provides constraints on the control values for a specific measurement
of y in a closed-loop system. It establishes limits for y and u based on the known
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Figure 2.3 The Architecture Structure

set of potential y values, facilitating the efficient determination of neural network
output boundaries.

In this context, the input to the neural network (NN) model is the output value
of the node yi. However, to ensure that the agent can reach the target within
a finite time, we need to incorporate the boundaries of the viability region. The
viability region is defined by the viability kernel in (2.12), where the control barrier
function h(x) may include time-varying functions that define the boundaries of the
viability region. The neural network controller must utilize these boundaries to
meet the requirement of achieving the intended goal in a finite time. Thus, these
performance functions should be included as inputs, along with the output values
of the nodes.

2.7 Overall Architecture

This section details the architecture using the provided definitions and explanations
of the CBF and the NN controller.

The system architecture is illustrated in block diagrams, as shown in Figure 2.3. This
figure depicts the architecture for each node individually. While the neural network
controller is trained for all nodes in the multi-agent system, the requirements of the
MPC may differ from node to node. Therefore, each node can be considered to have
its own dedicated controller within the system. The communication between nodes
will be discussed in the next chapter, and the structure of the central controller will
be detailed in the following subsection.
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Figure 2.4 The Central Controller Block Diagram

In this architecture, the initial values of each node xi(0), for i∈V , serve as the input.
The Dynamics block represents the behavioral evaluation of an agent, with its input
being the state value xi(t). The output from the Dynamics block is forwarded to
the corresponding central controller (illustrated as the Central Controller block in
the figure) for control decision evaluation. The control decision is then sent back to
the Dynamics block to determine the next state of the agent. This setup constitutes
a feedback system.

2.7.1 The Structure of The Central Controller

The central controller comprises two distinct controllers that work in tandem. As
previously mentioned, NN controller ensures that the agent reaches the target within
a finite time. Meanwhile, the MPC is responsible for guiding the agent back to the
viability region boundaries if it is displaced by external factors.

The central controller is illustrated in Figure 2.4. Its inputs include the output
values of the node and its neighboring nodes. The central controller first assesses
whether the agent is within the viability region. If the agent is outside this region,
the MPC takes control to return the agent to the safe zone. If the agent is within the
viability region, the NN controller activates to determine if the agent can achieve
the system’s objectives and make appropriate adjustments. In the figure, the output
value of the node is denoted as yi(t), the output value of the neighboring node is
yj(t), and the control input value of the node is represented as ui(t).

The proposed controller integrates NN and MPC to ensure both safety and efficient
operation. The NN controller handles control inputs when the system state is far
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Figure 2.5 The Overall Approach Structure

from safety boundaries, using its computational speed for effective control. MPC
takes over near the boundaries, ensuring the system stays within safe limits by
satisfying constraints. This dynamic switching minimizes computational overhead
and optimizes control actions.

By employing reachability analysis based on the viability region, the NN controller
generates control inputs only when necessary, reducing interventions and conserving
resources. This balance between robustness and efficiency ensures safe and effective
system operation.

In summary, the controller combines the robustness of MPC with the efficiency of
the NN controller, maintaining safety near critical boundaries while reducing com-
putational load for routine tasks. The controller adapts to dynamic environments
through role switching and minimizes unnecessary actions via reachability analysis,
ensuring robust, efficient, and adaptable performance across varying conditions.

2.7.2 Structural Overview of the Controller Approach in the Multi-Agent

System

This subsection details the integration of our approach into the multi-agent system.
The overall structure of the approach is depicted in block diagrams shown in Figure
2.5.

To utilize the neural network controller within the multi-agent system, it must first
be trained. Training requires input values that include the safe set of the system X ,
the viability kernel Vx (which defines the viability region and is specified in (2.12)),
and the control input set U , which represents the input constraints of the system.
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The neural network, tailored to the multi-agent system and its objectives, is trained
with these inputs to develop the control policy for the neural network controller,
denoted as πU (y(t)). Here, y(t) = [y1(t), . . . ,yN (t)] represents the output values
obtained from the observation model, which aligns with the multi-agent system
model. The multi-agent system is assumed to have N nodes.

Once the policy is trained, the neural network controller is ready to be deployed
alongside the MPC within the central controller. The system operates with initial
values for each agent, x(t) = [x1(t), . . . ,xN (t)], and generates output value y∗(t)
based on control inputs u∗(t), which are determined by the central controller. This
setup allows us to compute the optimal path for each node, ensuring it remains
within the boundary functions (b(t) as the minimum boundary function and b(t) as
the maximum boundary function).
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3. COMMUNICATION PROTOCOL

This chapter will explain how communication is handled in a described communi-
cation network system. According to the model of the system given in the previous
chapter, the communication is divided into two parts: 1) The sporadic communica-
tion between the node and its corresponding controller, and 2) the communication
between nodes. Both of these communications help nodes to adapt to the system.
However, both communications can bring a cost into the system, which brings inef-
ficiency, even though the system is controlled perfectly. Therefore, some limitations
will be included in the communication between nodes. The communication between
the node and the corresponding controller will be operated according to the control
signals, which will be clarified deeply in this chapter. Furthermore, the way com-
munication is operated between nodes will be clarified with its requirements and
limitations. The definition of limitations will lead to designing a protocol policy,
which will also be mentioned in this chapter. After all of these explanations, these
communications will be expressed as algorithms.

3.1 The Communication of A Node and Its Corresponding Controller

Before explaining the communication between the node and the corresponding con-
troller, a structure including the dynamics of the node, controller, and other physical
devices will be illustrated as a model, and this model will be clarified. After the
model is explained, the communication between the node and its corresponding
controller.
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Figure 3.1 Sub-Model with The Node and Its Corresponding Controller

3.1.1 Sub-Model of The System

This model is considered as a sub-model because it illustrates what happens when
the input enters the node, and the output of this sub-model is the output of the
node. This sub-model is shown in Figure 3.1. In this figure, the input comes from
the neighbor of the node, and it enters into the controller of the corresponding
agent along with the output of the dynamics of the agent. The control input is then
entered into the dynamics for evaluation. The output of dynamics is the output of
the node, and it is also sent to the corresponding scheduling policy when the priority
decision time has come. The scheduling policy will be explained later.

The "Transmission Medium" block included in Figure 3.1 means that the data coming
from the neighbor of the node is passing from the transmission medium. This
means that data can be affected by the transmission medium, e.g., transmission
rate, interference, distance between nodes. The "Network" block(s) is included in
the model to display that the output of the node is sent to the communication
network model, i.e., its neighbor(s) connected with the transmission link.

3.1.2 Control Signal Transmission

The essential part of the sub-model is communication between the controller of
the corresponding node (agent) and the node (agent) itself. The controller decides
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whether communication is required and checks whether the corresponding node
needs to be controlled before making a decision.

As a recall from Chapter 2, the controller was constructed with the control barrier
function, and it was defined in (2.23). In the function, the controller decides the
control signal value by checking the Lipschitz continuity of the control barrier func-
tion for the viability kernel. Assuming that the control barrier function satisfies all
other conditions, given in Chapter 2, if the Lipschitz continuity is also satisfied, the
control signal becomes zero. This means that the corresponding agent does not need
help from the controller at the time. Therefore, the controller decides not to send
a signal to the node, and the node continues evaluating its dynamic system. If, on
the other hand, the Lipschitz continuity is not satisfied, the controller calculates the
control signal to help the corresponding node satisfy the Lipschitz continuity condi-
tion. After that, the controller sends the control signal value to the corresponding
node at the time, so the node continues to evaluate the dynamical system with the
help of the control signal at the next time step. When the agent is in the viability re-
gion, a trained neural network controller uses the region to check whether the agent
can reach the target in a finite time. If it can’t, the neural network controller sends
the control input provided with the input of the controller to the agent. Otherwise,
the neural network controller will not send anything, and the agent will continue
evaluating its dynamic system without the assistance of the controller.

The system starts by transmitting the initial control signal values to the correspond-
ing node. The transmission of the control signal to the node takes the same time as
the data transmission between nodes, i.e., its transmission period is represented as
τtc = τt. The node starts to evaluate its dynamical system when it gets the initial
control signal. While the node sends its output to its neighbor nodes, it also sends
it to the controller. If the controller decides to send the control signal to the corre-
sponding node, it sends the new decision in the same transmission period. The node
waits τtc seconds for the control input value. If it does not receive control input, it
continues evaluating its dynamical system for the next time period. If it receives the
control input value, then the node begins evaluation with the new control update.

In the following chapters, the results of the communication between the controller
and its corresponding node will be shown and then analyzed. The aim is to decrease
the controller requirement of the node, and the proposed controller will achieve a
lower communication cost in this part. It will be explained in detail in the following
chapter.
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3.2 The Communication Between Nodes

The second part will explain the communication protocol between nodes. It was
assumed that all nodes can communicate with only one neighbor node. This limita-
tion was included to decrease the communication cost in this part. Nodes transmit
their outputs, i.e., the evaluated state of the dynamical system, to the prior neighbor
node. A scheduling policy decides the priority. The network topology model, the
transmission, and its physical layer requirements will be explained in this part. In
addition, the design of the scheduling policy will be clarified.

3.2.1 Network Topology Model

Before explaining the protocol, the first thing to do is to define the network topology
model. In Chapter 2, the network model for each node was described as a differential
equation, and the communication interaction was briefly explained. There are some
communication limits defined in the network model. Here, these limitations are
going to be clarified.

As a reminder, a multi-agent system composed of N agents was considered. The
same multi-agent system is going to be considered here too. Graph theory was
used to describe the information interaction G = (V ,E), and this directed graph is
utilized for the topology model. In this directed graph, a node set was defined as V ,
and an edge set E , defining the data flow existence between nodes. With these set
definitions, a new set definition is identified here. The neighbor set of each node is
denoted as Ni, i ∈ V , and it is defined as the number of nodes connected to node i.
The neighbor set is identified as a mathematical set in the following.

Ni = {j ∈ V | (j, i) ∈ E} ; i ∈ V (3.1)

The network topology model can be illustrated as Figure 3.2, showing nodes and
edges of a communication network model included in a real-world system. Figure
3.2 is a general example of a network topology model. The model could be in any
shape. We here want to show that our proposed controller is suitable for all types of
network topology models. The model is given here to display and make the protocol
understandable. This suitability will be proven in the following chapter by providing
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Figure 3.2 The Communication Network Model in A Real-World System

two different scenarios with different topology models.

In Figure 3.2, the communication network system receives data from the access
point, which also collects data from devices. The network system here aims to adapt
all nodes, which may all behave differently or the same, according to the upcoming
data coming from devices. Some examples from the real world could be as follows.
1) Intelligent transportation systems (ITS) enable vehicles to communicate for col-
lision avoidance, traffic management, and navigation, adapting transmission power
and channels and prioritizing messages based on real-time traffic conditions and
safety requirements. 2) Wireless sensor networks are low-power sensors used in en-
vironmental monitoring, industrial automation, and healthcare, requiring dynamic
adjustments to conserve energy, overcome interference, and maintain connectivity
in changing environmental conditions. 3) Dynamic adaptation is crucial for optimal
performance under changing link conditions, using techniques like adaptive modu-
lation and coding in satellites, which offer communication services for broadcasting,
telecommunication, and remote sensing.

The adaptation of all nodes to the environment of the network could have been done
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perfectly if all nodes sent data to all of their neighbor nodes. However, this can bring
network congestion or interference, causing packet loss, delays, and reduced data
rates. To avoid these costs, we will limit the allowance of data transmission between
nodes. For that, a scheduling policy is designed, and this design will be mentioned
later. Before this, the way how data transmission happens between nodes and the
physical layer requirements for a described transmission rate will be explained.

3.2.2 Data Transmission Between Nodes

At t = 0, all nodes start to transmit their initial output yi, i ∈ V to their neighbor
nodes. Since nodes are allowed to receive data from only one neighbor node, an
initial priority of the neighbor node is selected randomly. In addition, the initial
controller is initialized to solve the differential equation.

While the transmission is happening, all nodes begin calculating the output of their
dynamics for the next period of transmission and also check whether the state of
the node is safe or not. In other words, all nodes try to ensure that they are viable
and render to keep viable by their control update. If they are already viable, control
will not be updated (it will be zero). The way the controller is updated was already
mentioned in Chapter 2; it was defined as a function. It is important to note that
one of the dependants of the control update is the output of the neighbor node. The
CBF function h : Rn→ R is designed according to the output of the neighbor node
and the node itself.

After the control update is done, nodes send their new output to their neighbor
node. With the latest transmission of nodes, the next period is started. We can
define the data transmission period as τt. It is assumed that data transmission
and the solution of dynamical systems of nodes are done at the same time within
the period τt. Every period τt, the system is trying to keep viable under limited
communications throughout time.

To explain this in detail, let’s consider that the system tries to keep viable between
the interval t ∈ [0,T ], where T is the finite time. Then, the whole process is illus-
trated in Figure 3.3. In this figure, the beginning of the period τt means that output
is received from the neighbor node, and the evaluation of differential equations of
each node is started. The end of the period τt means that the control decision is
made, and the new output of the node is ready to be sent.

Since there are communication limits, nodes are allowed to receive from only one
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Figure 3.3 The Complete Transmission Process Between Nodes

of the neighbor nodes. Although this decreases channel congestion, there are some
requirements for deciding the priority between neighbor nodes. The scheduling
policy, which will be mentioned in the next section, decides the priority between
nodes.

3.2.3 Scheduling Policy

For this protocol, the scheduling policy is designed for the priority decision between
neighbor nodesNi. If the number of neighbor nodes is one, then the priority decision
is not necessary. In other words, this scheduling policy is designed for nodes that
have more than one neighbor node.

The priority decision is made periodically, and the period is denoted as τp. It was
illustrated in the transmission process diagram in Figure 3.3. It is assumed that
τp hits after an output value is transmitted. Although τp > τt, τp can be set after
any process or during the transmission of output data. But right now, the former
assumption will be made to describe how the scheduling policy works.

The scheduling policy requires data from all neighbor nodes, with each having its
own scheduling policy. Data transmission takes τt seconds, and the scheduling policy
calculates the communication workload by calculating the difference between the
output and input values. The mathematical representation of the communication
workload is provided.

Wj→i = yi−yj ; i ∈ V (3.2)
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The scheduling policy calculates communication workloads for neighbor nodes and
chooses the one with the minimum overload, making it the priority node, accepting
data from the prior neighbor node, ρi.

ρi = min
j∈Ni

|Wj→i|= min
j∈Ni

|yi−yj |; i ∈ V (3.3)

Neighbor nodes must determine data acceptance or decline, as continuous trans-
mission without prior knowledge can lead to system non-viability if all declined
packages are dropped. To avoid non-viability, the node sends acknowledgments to
neighbor nodes to avoid priority decision delays. Neighbor nodes stop and wait for
acknowledgment at the priority decision period τp. When the scheduling policy is
active, the dynamical system and its controller is passive until the acknowledgement
is received.

3.3 Algorithm of The Communication Protocol

Algorithm 2 explains the communication between nodes. Parameters needed for
the communication between nodes are the number of nodes N , the finite time T ,
the transmission period τt, the scheduling policy period τp, and the operator input
uh(t). The algorithm requires the node set V , the edge set E , the control input set
U , and the neighbor node set Ni. The algorithm initializes with the initial output
value yi(0) of nodes ni and neighbor nodes nj , and the initial control input v(u,uh)
is transmitted at time t = 0. The prior neighbor node ρi is also set for initialization.
After the evaluation of the dynamical system fc, the output data is transmitted to
the neighbor node. This process is repeated at every transmission time τt. When
the time hits the scheduling policy period τp, all neighbor nodes nj transmit output
data to obtain the priority decision. After ρi is set, ni sends an acknowledgment to
neighbor nodes nj . The parameter d is there for updating the value of scheduling
policy period τp. It is initialized as 1 before entering the transmission period for
loop, and it is increased every time the process enters the if scheduling policy period
case.
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Algorithm 2 Algorithm of Communication Between Nodes
Parameters: N , T , Vx τt, τp, uh(t)
Required: V , E , U Ni (i ∈ V)
yi(0)← Vx, ni←V , nj ←Ni, ρi←Ni (i ∈ V)
d = 1
vi(u,uh) transmission
for t = {0, τt,2τt, ...,T/τt} do

Evaluate fc(t,xi,u,uh(t)) and get yi(t+ τt)
ni send yi(t+ τt)
if t==τp then

All nj sends yj to ni

t← t+ τt

ni receives yj

Wj→i← Eqn. (3.2)
ρi← Eqn. (3.3)
Send ACK to all nj

t← t+ τt

d← d+1
τp← dτp

end if
end for

Algorithm 3 gives the process of communication between the node and its corre-
sponding controller. The parameters of this algorithm are the number of nodes N ,
the finite time T , the transmission period τt, and the human operator input func-
tion uh(t). The requirements for this algorithm are the node set V and the control
input set U . Similar to Algorithm 2, Algorithm 3 begins with initial control input
vi(u,uh), and the initial output values yi(0) of each ni. As soon as ni receives the
initial control input, ni evaluates the dynamical system fc to obtain the next output
value yi(t + τt). The output data is transmitted to the controller to calculate the
control input v(u,uh). To do that, ni first calculates the control barrier function
h(x), the lie-derivative functions Lf h, Lgh, and the class K function α(·), which
were all defined in Chapter 2. If the control input is zero, the controller does not
transmit any value to the dynamical system of ni. Otherwise, the control input
transmission happens to assist ni in reaching and staying viable. The next period
starts with checking whether the control input is received or not. If the control in-
put is received, then the dynamical system evaluation starts with the control input
value. If, otherwise, no control input is received, the node begins the evaluation,
assuming that the control input is zero.

Both these communications are explained in this chapter and summarized by giving
algorithms. This communication protocol will be used to get numerical results,
analyze them, and demonstrate that this protocol assists the designed controller in
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Algorithm 3 Algorithm of Communication Between Node and Its Corresponding
Controller

Parameters: N , T , Vx τt, uh(t)
Required: V , U
vi(u,uh) = ui(0)+uh(0)←U (i ∈ V)
yi(0)← Vx, ni←V
for t = {0, τt,2τt, ...,T/τt} do

if vi(u,uh) received then
Start fc(t,xi,u,uh(t)) with vi(u,uh)

else
Start fc(t,xi,u,uh(t)) with vi(u,uh) = 0

end if
Evaluate fc(t,xi,u,uh(t)) and get yi(t+ τt)
nj receives yi(t+ τt)
Calculate h(x),Lf h,Lgh,α(h(x))
if (Lf h+Lgh ·uh) <−α(h(x)) then

vi(u,uh) = k(x,t)← Eqn. (2.23)
else

vi(u,uh) = πi(yi(t))
end if
if vi(u,uh) == 0 then

Don’t transmit vi(u,uh)
else

vi(u,uh) transmission
t← t+ τt

end if
end for

obtaining efficient communication. All of these will be clarified in the next chapter.
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4. EXPERIMENTAL SETUP

This section will illustrate two scenarios of a communication network system. The
aim of both of them is to synchronize with a desired signal or the behavior of a node.
These two scenarios’ network topology models are chosen to be different from each
other because it is aimed to demonstrate that the proposed method is successful
in any system. Particularly, the main failure of these scenarios can be defined as
the synchronization failure of the nodes, and our proposed controller will treat this
failure as a rule, making local decisions accordingly. Therefore, these two scenarios
are suitable for addressing the issues. The system definitions will be done and the
calculations will be applied accordingly. After that, the simulation results will be
shown, and it will be analyzed. Finally, this method will be compared with another
control design method, and the efficiency of communication with given limitations
will be discussed.

4.1 System Definition

4.1.1 Scenario 1: A System with Identical Nodes

The first scenario is inspired by [75]. This scenario is convenient to the given prob-
lems in previous chapters because this scenario is susceptible to the synchronization
failure of any node, and our proposed controller is aimed to handle this failure as
a norm instead of considering it as an abnormal situation. Consider a multi-agent
system equation which is defined as follows:
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Figure 4.1 Communication Topology of MAS with Identical Nodes

Table 4.1 Table of Functions for All Nodes in Scenario 1

Functions Node i (i = 1, ...,5)
fi(xi) [xi,2 +xi,3 xi,2 2xi,1xi,2−2xi,3|xi,3|]
gi(xi) [0 0 5]
di(t) [0 0 0]



ẋi,1 = ẋi,2 + ẋi,3

ẋi,2 = ẋi,3

ẋi,3 = 2xi,1xi,2−2xi,3|xi,3|+5(ui +uh(t))

yi = xi,1

, (4.1)

where i = 1, ...,5, xi = [xi,1,xi,2,xi,3] is a three-dimensional state vector of node i,
yi is the output of the node i, which is sent to the connected neighbor node, ui is
the controller of node i, and uh(t) = 1− 0.5cos(πt/5) is the operator input. The
communication topology of the muti-agent system is described in Figure 4.1.

Functions are distributed according to the defined multi-agent system in this sce-
nario, and it is shown in Table 4.1. As a recall, we defined the heterogeneous
nonlinear input-constrained MAS in (2.9). In there, we defined the unmodeled dy-
namics fi(xi), the function interacted with the control input gi(xi), and the external
disturbance di(t). According to (2.9), we extracted the former functions from (4.1),
and Table 4.1 shows the function vectors since the dynamics of each node are three-
dimensional.
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Figure 4.2 Communication Topology of MAS with Non-Identical Nodes (Scenario
2)

In this scenario, the unit step signal is used as the desired signal, and all nodes are
aimed to track the desired signal. For the first scenario, two viability kernels will be
defined. Its boundaries 1) will stay constant and 2) will change in time.

4.1.2 Scenario 2: A System with Non-Identical Nodes

The second scenario is inspired by [76]. This scenario is applicable to the use of our
proposed controller because some effects, like noise or the act of priority mechanism,
may lead the system to failure, and our proposed controller will handle these errors
caused by apparent changes. In this scenario, all nodes are behaving differently
from each other, and, there exists an external disturbance for each of them. The
communication topology of this scenario is shown in Figure 4.2. The multi-agent
system for this scenario is shown below.


ẋ1,1 = x1,2 +cos(x1,1)+0.1cos(0.2t)

ẋ1,2 = (u1 +uh(t))− tanh(x1,1)x1,2 +0.2cos(0.2t)

y1 = x1,1

, (4.2a)


ẋ2,1 = x2,2 +0.5sin(x2,1)+0.1cos(0.2t)

ẋ2,2 = (u2 +uh(t))− tanh(x2,1)|x2,2|x2,2 +0.15cos(0.1t)

y2 = x2,1

, (4.2b)
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Table 4.2 Table of Functions in Node 1 and 2

Functions Node 1 Node 2
fi(xi) [x1,2 + cos(x1,1) − tanh(x1,1)x1,2] [x2,2 +0.5sin(x2,1) − tanh(x2,1)|x2,2|x2,2]
gi(xi) 1 1
di(t) [0.1cos(0.2t) 0.2cos(0.2t)] [0.1cos(0.2t) 0.15cos(0.1t)]

Table 4.3 Table of Functions in Node 3 and 4

Functions Node 3 Node 4
fi(xi) [x3,2 + sin(x3,1)cos(x3,1) [x4,2 +x4,1cos(x4,1)

x3,1cos(x3,2)|x3,2|] −x4,1sin(x4,2)cos(x4,2)]
gi(xi) 1 1
di(t) [0.1cos(0.2t) 0.1cos(0.1t)] [0.1cos(0.2t) 0.1cos(0.1t)]


ẋ3,1 = x3,2 +sin(x3,1)cos(x3,1)+0.1cos(0.2t)

ẋ3,2 = (u3 +uh(t))+x3,1 cos(x3,2)|x3,2|+0.1cos(0.1t)

y3 = x3,1

, (4.2c)


ẋ4,1 = x4,2 +x4,1 cos(x4,1)+0.1cos(0.2t)

ẋ4,2 = (u4 +uh(t))−x4,1 sin(x4,2)cos(x4,2)+0.1cos(0.1t)

y4 = x4,1

, (4.2d)

where xi = [xi,1,xi,2], yi is a two-dimensional state vector and output of node i =
1, . . . ,4 respectively, ui is the controller of node i, and uh(t) = 1− 0.5cos(πt/20) is
the supervisory control. According to the system definition given in the previous
chapter, the components of each equation can be denoted in Tables 4.2 and 4.3. The
unmodeled dynamics fi(xi), the function interacted with the control input gi(t) and
the external disturbance di(t) is extracted from (4.2) according to MAS definition
(2.9).

These functions written in the table will be used for obtaining the controller function.
They are needed for calculating parameters included in the controller function, as the
controller (2.23), lie-derivatives (2.2), and functions (2.24) were defined in Chapter
2. The system topology for this scenario is shown in Figure 4.2.

For this scenario, these nodes are aimed to track node 0, which can be considered
as a leader in the system, and its differential equation is defined as follows.

 ẋ0,1 = x0,2 +0.5sin(x0,1)

ẋ0,2 = cos(x0,2)x0,1 +u0(t)
, (4.3)
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Figure 4.3 Communication Topology of MAS with Non-Identical Nodes (Scenario
3)

Where u0(t) =−10(x0,2 +5(x0,1−2sin(πt/6))) is a time-varying dynamic input of
the leader, which is unknown to all other nodes.

4.1.3 Scenario 3: A Second System with Non-Identical Nodes

The third scenario is inspired by [77]. It is similar to the second scenario, but the
topology structure and dynamics of each agent are different. The topology is given
in Figure 4.3, and the multi-agent system for this scenario is given below.


ẋ1,1 = x1,2 +cos(x1,1)+0.5cos(0.3t)

ẋ1,2 = (u1 +uh(t))+x1,1 sin(x1,2)+0.1cos(0.15t)

y1 = x1,1

, (4.4a)


ẋ2,1 = x2,2 +0.1x2,1−0.5+0.1cos(0.4t)

ẋ2,2 = (u2 +uh(t))+0.6x2,2−0.1cos(x2,1)+0.15cos(0.2t)

y2 = x2,1

, (4.4b)


ẋ3,1 = x3,2 +0.5−x3

3,1 +0.3cos(0.25t)

ẋ3,2 = (u3 +uh(t))+1−0.37cos(x3,1)+x2
3,2 +0.1cos(0.1t)

y3 = x3,1

, (4.4c)
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Table 4.4 Table of Functions in Node 1, Node 2 and Node 3

Functions Node 1 Node 2 Node 3
fi(xi) [x1,2 + cos(x1,1) [x2,2 +0.1x2,1−0.5

[
x3,2 +0.5−x3

3,1
x1,1sin(x1,2)] 0.6x2,2−0.1cos(x2,1)] 1−0.37cos(x3,1)+x2

3,2
]

gi(xi) 1 1 1
di(t) [0.5cos(0.3t) [0.1cos(0.4t) [0.3cos(0.25t)

0.1cos(0.15t)] 0.15cos(0.2t)] 0.1cos(0.1t)]

Table 4.5 Table of Functions in Node 4, Node 5 and Node 6

Functions Node 4 Node 5 Node 6
fi(xi)

[
x4,2 +1−x2

4,1 [x5,2 +0.2cos(x5,1) [x6,2 +x6,1 +0.3cos(x6,1)
3.15−0.1x4,1e−0.0001x4,1

]
0.3cos(x5,1)+0.15sin(x5,2)] 1−0.5sin(x6,2)cos(x6,1)]

gi(xi) 1 1 1
di(t) [0.1cos(0.15t) [0.1cos(0.3t) [0.3cos(0.2t)

0.6cos(0.45t)] 0.5cos(0.15t)] 0.1cos(0.1t)]


ẋ4,1 = x4,2 +1−x2

4,1 +0.1cos(0.15t)

ẋ4,2 = (u4 +uh(t))+3.15−0.1x4,1e−0.0001x4,2 +0.6cos(0.45t)

y4 = x4,1

, (4.4d)


ẋ5,1 = x5,2 +0.2cos(x5,1)+0.1cos(0.3t)

ẋ5,2 = (u5 +uh(t))+0.3cos(x5,1)+0.15sin(x5,2)+0.5cos(0.15t)

y5 = x5,1

, (4.4e)


ẋ6,1 = x6,2 +x6,1 +0.3cos(x6,1)+0.3cos(0.2t)

ẋ6,2 = (u6 +uh(t))+1−0.5sin(x6,2)cos(x6,1)+0.1cos(0.1t)

y6 = x6,1

, (4.4f)

where xi = [xi,1,xi,2], yi is a two-dimensional state vector and output of node i = 1, ·,6
respectively, ui is the controller of node i, and uh(t) = 1− 0.5cos(πt/20) is the
supervisory control. The functions for this scenario can be denoted in Tables 4.4
and 4.5. The unmodeled dynamics fi(t), the function interacted with control input
gi(t) and the external disturbance di(t) is extracted from (4.4) according to MAS
definition (2.9).

This scenario also aims to track down node 0, as it is the leader of the system, and
its dynamics is defined as a time-varying equation, as shown below.
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x0(t) =−e−0.1t(sin(t)− cos(t)), (4.5)

Viability kernel and CBF definitions will be done for these three scenarios accord-
ingly in the following sections.

4.2 Viability Kernel Definition

All nodes in the system aim to track down a desired signal or a node (leader) included
in the system. Accordingly, a tracking error is going to be defined. Since not all
nodes have a direct connection to the desired signal or the leader node, the tracking
error cannot be handled directly. Therefore, the tracking error becomes local and
its calculation is done by using only its neighbor nodes.

zi =
∑

j∈Ni

aij(yi−yj)+ biỹi; i = 1, ...,4 (4.6)

where aij comes from the adjacency matrix, which is defined in Section 2.2.1, ỹi =
yi− y0 is the tracking error between leader node/desired signal and node i, and
bi is the relationship between node i and leader node/desired signal. However, in
calculating tracking error, all nodes can transmit their output to their neighbor
nodes. Limitations will be considered in this system to analyze the communication
cost.

Assume that nodes can receive data from only one node. In such case, the tracking
error is updated as follows.

zi = aij(yi−yj)+ biỹi; j ∈Ni, i = 1, ...,4 (4.7)

To achieve the synchronization, error constraints will be identified. Two types of er-
ror constraints will be identified: 1) symmetric and 2) asymmetric error constraints.

The symmetric error constraints in (4.8a) do not change in time, and the ranges
are assumed to be the same throughout time. On the other hand, asymmetric error
constraints in (4.8b) are time-varying, i.e., ranges change throughout time:
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Table 4.6 Boundary Functions of Each Node for Scenario 2

Upper & Node 1 Node 2 Node 3 Node 4
Lower Bounds

p
i
(t) 5e−t + c1 5e−t + c2 5e−t + c3 5e−t + c4

pi(t) 4e−1.2t + c1 4e−1.2t + c2 4e−t + c3 4e−t + c4

Table 4.7 Boundary Functions of Nodes 1, 2, and 3 for Scenario 3

Upper & Node 1 Node 2 Node 3
Lower Bounds

p
i
(t) 1.2e−0.6t + c1 1.5e−0.7t + c2 1.7e−0.8t + c3

pi(t) 3.1e−1.2t + c1 2.7e−1.2t + c2 2.4e−t + c3

−pi < zi(t) < pi, (4.8a)

−p
i
(t) < zi(t) < pi(t), (4.8b)

where pi is the bound value of node i, p
i
(t) and pi(t) are time-varying minimum and

maximum boundary functions of node i respectively.

Dynamical behaviors of each node are the same in the first scenario, and both error
constraints are going to be considered separately. For symmetric constraints, the
bound values for all nodes are going to be the same, and pi = 0.9 is chosen as an
example range value to demonstrate that our method is successful in a system with
symmetric constraints. For asymmetric error constraints, minimum and maximum
functions are also going to be the same, and they are designed for the first scenario
as follows.

p
i
(t) = 1.195e−0.6t +0.005

pi(t) = 0.995e−t +0.005
, (4.9)

In the second scenario, all nodes behave differently. Error constraints for each node
are different, where p

i
(t) and pi(t) are the lower bound and upper bound respectively:

In the third scenario, all nodes are behaving differently as well. Their error con-
straints are defined for each node. They are aimed to be adapted to their own, just
like in the second scenario.

Now that error constraints are defined, the viability kernel is going to be defined ac-
cordingly. With given symmetric and asymmetric error constraints, viability kernels
Vx can be formally derived as follows:
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Table 4.8 Boundary Functions of Nodes 4, 5, and 6 for Scenario 3

Upper & Node 4 Node 5 Node 6
Lower Bounds

pi(t) 2.1e−0.9t + c4 2.4e−t + c5 2.6e−t + c6
pi(t) 2e−t + c4 1.6e−t + c5 1.2e−t + c6

Vx =
{
x ∈ R3|(pi + zi(t))(pi− zi(t)) > 0

}
, (4.10a)

Vx =
{
x ∈ R2|

(
p

i
(t)+ zi(t)

)
(pi(t)− zi(t)) > 0

}
, (4.10b)

For the viability kernel, the control barrier function should satisfy three conditions.
The positivity condition is satisfied as long as the tracking error is between bound-
aries, as defined in (4.8). To satisfy the compactness condition, the viability kernel
is modified, yielding to the control barrier function h : RN →R; N = 2,3. In (4.11),
there are two separate CBF functions. (4.11a) is designed with symmetric error
constraints, and (4.11b) is designed with asymmetric error constraints.

h(x) = (pi + zi(t))(pi− zi(t))
1

1+Kx2
i,N

, (4.11a)

h(x) =
(
p

i
(t)+ zi(t)

)
(pi(t)− zi(t))

1
1+Kx2

i,N

, (4.11b)

where i = 1, ...,N , K ∈ R>0 is a positive constant.

The Lipschitz continuity condition is satisfied with the controller function.

The process of obtaining h(x) from Vx is described with psudo-algorithm, as shown
in Algorithm 4.

4.3 MPC Controller Using CBF Function

Recall that Lipschitz continuity is satisfied when a continuous extended class K
function exists such that the inequality is satisfied.

To obtain the time derivative of the control barrier function, the lie-derivatives of the
system should be calculated. Since there are two different control barrier functions,
the lie-derivatives are going to be calculated separately.
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Algorithm 4 Deriving CBF h(x) from Viability Kernel Vx for Scenarios
Input: Vx, yi(t), yj(t), y0(t), pi, p

i
(t), pi(t), K (i ∈ V), (j ∈Ni)

aij(yi−yj)+ bi(yi−y0)← zi

Define Viability Kernel Vx:
Symmetric: Vx = {x | (pi + zi)(pi− zi) > 0}
Asymmetric: Vx = {x | (p

i
+ zi)(pi− zi) > 0}

Verify conditions of CBF h(x):
Symmetric: Take h(x) as (pi + zi)(pi− zi)
Asymmetric: Take h(x) as p

i
+ zi)(pi− zi)

Verify conditions of CBF holds for h(x).
Positivity: h(x) > 0 is true for error constraints.
Compactness: Modify h(x) by adding 1

1+Kx2
i,N

Lipschitz Continuity: ḣ(x) >−α(x) satisfied with controller function.
Latest update of h(x):
Symmetric: h(x) = (pi + zi)(pi− zi) 1

1+Kx2
i,N

Asymmetric: h(x) = p
i
+ zi)(pi− zi) 1

1+Kx2
i,N

Lie-derivatives for control barrier function (4.11a) are:

Lf h =
(

(−aij− bi)(pi + zi(t))
1+Kx2

i,N

+ (aij + bi)(pi− zi(t))
1+Kx2

i,N

)
·fi,1(xi)

+
−2K (pi− zi(t))(pi + zi(t))x2

i,N(
1+Kx2

i,N

)2 ·fi,N (xi),
(4.12a)

Lgh =
−2K (pi− zi(t))(pi + zi(t))x2

i,N(
1+Kx2

i,N

)2 ·gi,N (xi), (4.12b)

Lie-derivatives for control barrier function (4.11b) are:

Lf h =
(−aij− bi)

(
p

i
(t)+ zi(t)

)
1+Kx2

i,N

+ (aij + bi)(pi(t)− zi(t))
1+Kx2

i,N

 ·fi,1(xi)

+
−2K (pi(t)− zi(t))

(
p

i
(t)+ zi(t)

)
x2

i,N(
1+Kx2

i,N

)2 ·fi,N (xi),
(4.13a)

Lgh =
−2K (pi(t)− zi(t))

(
p

i
(t)+ zi(t)

)
x2

i,N(
1+Kx2

i,N

)2 ·gi,N (xi), (4.13b)

These lie-derivative equations are replaced for the time-derivative of control bar-
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rier functions. The time derivative of CBF is calculated for both symmetric and
asymmetric error constraints, respectively.

ḣ =
(

(−aij− bi)(pi + zi(t))
1+Kx2

i,N

+ (aij + bi)(pi− zi(t))
1+Kx2

i,N

)
·fi,1(xi)

+

−2K (pi− zi(t))(pi + zi(t))x2
i,N(

1+Kx2
i,N

)2 ·gi,N (xi)

 ·uh(t),
(4.14a)

ḣ =
(−aij− bi)

(
p

i
(t)+ zi(t)

)
1+Kx2

i,N

+ (aij + bi)(pi(t)− zi(t))
1+Kx2

i,N

 ·fi,1(xi)

+

−2K (pi(t)− zi(t))
(
p

i
(t)+ zi(t)

)
x2

i,N(
1+Kx2

i,N

)2 ·gi,N (xi)

 ·uh(t),
(4.14b)

Accordingly, we can obtain the controller for both scenarios (4.1) and (4.2) by the
controller function defined in Chapter 2. Systems are going to be considered with
a single input for all nodes, and the input constraint is given as the following norm
constraint, and this is called the control set.

U = {v ∈ R | ||v(u,uh(t))|| ≤ amax} , (4.15)

Including this input constraint, the controller is expected to satisfy the input con-
straint, along with the error constraints.

k(x,t) =


− 1
Lgh

(I(x,uh(t))+α(h(x))) if I(x,uh(t)) <−α(h(x)) and h(x) > 0

0 otherwise
,

(4.16)

where α : R→ R is a locally Lipschitz continuous extended class K function and
a function I : RN ×R→ R is defined with lie-derivative functions and supervisory
control as follows:
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I(x,uh(t)) =
(

(−aij− bi)(pi + zi(t))
1+Kx2

i,N

+ (aij + bi)(pi− zi(t))
1+Kx2

i,N

)
·fi,1(xi)

+

−2K (pi− zi(t))(pi + zi(t))x2
i,N(

1+Kx2
i,N

)2 ·gi,N (xi)

 ·uh(t),
(4.17a)

I(x,uh(t)) =
(−aij− bi)

(
p

i
(t)+ zi(t)

)
1+Kx2

i,N

+ (aij + bi)(pi(t)− zi(t))
1+Kx2

i,N

 ·fi,1(xi)

+

−2K (pi(t)− zi(t))
(
p

i
(t)+ zi(t)

)
x2

i,N(
1+Kx2

i,N

)2 ·gi,N (xi)

 ·uh(t),

(4.17b)

For α(·), it is designed separately for two scenarios as follows: for non-negative
constants ϖ1,ϖ2,ϖ3 ∈ R≥0

α(h(x)) = ϖ1h(x)+ϖ2h2(x), (4.18a)

α(h(x)) = ϖ3h(x), (4.18b)

These continuous functions are mapped as (a,b)→ R, stating that it is continuous.
In addition, when taking the derivative of functions, it can be said that these func-
tions are strictly increasing because it is shown that h(x) is always positive under
given boundaries, and this tells us that the derivative of α(·) function, which is
given below, is positive when constants a,b ∈R of the mapping is assumed to be set
according to h(x) conditions.

α′(h(x)) = ϖ1ḣ(x)+ϖ22h(x)ḣ(x) > 0, (4.19a)

α′(h(x)) = ϖ3ḣ(x) > 0, (4.19b)

Lipschitz’s continuity condition could not be shown analytically. We demonstrate
that it is satisfied by numerical experiments.
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4.4 NN Controller and Its Cooperation with MPC

Recall from Section 2.6 that the gains offered by the viability region are used with
a neural network controller. The neural network controller with a viability region
will be able to determine whether it can reach the target within a finite time.

The input of the neural network model is the state values of each node, which can
be considered as the safe set X of this system. With the state set, the time-varying
minimum and maximum boundary functions are also given as input because these
boundary functions guarantee safety continuously throughout the time, i.e., it is
a representation of viability kernel Vx. Considering the input constraints U , the
output of this model is the control input values of each node. The hidden layers
consist of Dense layers with ReLU activation function, and the shapes of hidden
layers are proportionally designed according to the given network model.

A trained neural network controller cooperates with the MPC controller, as de-
scribed below. The MPC controller takes over when the state of a node is near
the boundaries, and this is decided with the given controller equation. The MPC
controller steers the state of the node away from the boundaries. Otherwise, when
the safety of the state of the node is not in danger, then it is left to the trained
neural network controller. The NN controller checks whether the node can reach
the target in a given finite seconds by using the viability region. If the reachability is
not successful, then the control input decision is made from the policy of the neural
network controller. Otherwise, i.e., if the reachability is successful, then no control
input will be generated from the NN controller policy. Whether the control input
value is zero or not zero, the dynamics evaluation of the node is made anyway.
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5. NUMERICAL RESULTS

Both scenarios are simulated with given calculations. The dynamical system is
solved with the high-order Runge-Kutta method (see Appendix B), and other cal-
culations are included with the solutions of the dynamical system.

5.1 Results of Output and System Safety

All of the three scenarios are sensitive to leader synchronization failure, and the
controller treats this failure as a norm. The aim of the Model Predictive Controller
is that when the synchronization fails, it will steer it to the safe zone to keep all
nodes synchronized with the leader. The aim of the Neural Network Controller is
to track the aim of the system, which is to follow the leader and achieve continuous
synchronization.

The first scenario is simulated with symmetric and asymmetric error constraints,
and all constraints are the same for all nodes. For symmetric error constraints, the
range is chosen as pi = 0.9, and for asymmetric error constraints, the limit functions
are given in (4.9). Constant values are set as K = 0.1, ϖ3 = 10 for α(·) function
(4.18b).

For the first scenario, the initial states of five agents are given in Table 5.1. Results
with symmetric error constraints are shown in Figure 5.1 and Figure 5.2. In Figure
5.1, y0 is defined as a command generator for the first scenario, and it generates a
unit step signal. Although all other nodes cannot reach the values of the command
generator, they are all in the viability kernel, as shown in Figure 5.2, so it means
that the system can stay viable throughout time.

Results with asymmetric error constraints are shown in Figure 5.3 and Figure 5.4. In
Figure 5.1, y0 generates a unit step signal. It can be seen that all nodes can perfectly
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Table 5.1 Initial State Values of Agents in Scenario 1

Initial Values Node 1 Node 2 Node 3 Node 4 Node 5
xi,1 0 0.1 0.18 0.25 0.3
xi,2 0 0 0 0 0
xi,3 0 0 0 0 0

Figure 5.1 Scenario 1 output results with symmetric error constraints

Figure 5.2 Scenario 1 synchronization error results when the system has symmetric
error constraints
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Figure 5.3 Scenario 1 output results with asymmetric error constraints

synchronize the desired signal, and since all nodes can stay in the viability kernel,
the system stays viable throughout the time when error constraints are asymmetric,
too. According to these results, it can be said that this method gives a successful
result when viability kernel boundaries are constant and time-varying.

Scenario 2 is introduced here to demonstrate that this method is also successful when
all nodes are behaving differently and an external disturbance, i.e., noise, exists for
nodes.

The second scenario is simulated with asymmetric error constraints, and each node
has different constraints. Error constraints for four nodes were given in Table 4.6.
(4.18a) is selected for extended Lipschitz continuous class K function for this sce-
nario. Constant values, the initial states of four agents are given in Table 5.2. For
Table 4.6, boundary offset values are also given in Table 5.2. Results for the second
scenario are shown in Figure 5.5 and 5.6. In Figure 5.5, the output value of the
node 0 y0 is selected as a leader of the network system. The other four nodes aim
to synchronize the behavior of node 0. It can be seen that the proposed method is
also successful when other nodes have unique error constraints and even an external
disturbance exists for nodes.

The third scenario is also simulated with asymmetric error constraints, and each
node also has different constraints. Error constraints for six nodes were given in
Tables 4.7 and 4.8. (4.18a) is selected for extended class K function for the third
scenario. Constant values for 4.18a is the same constants as it was set in the second
scenario. The initial values for six agents are given in Table 5.3. For Tables 4.7 and
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Figure 5.4 Scenario 1 synchronization error results when the system has asymmetric
error constraints

Table 5.2 Initial States, Viability Kernel Boundary Offset Values and Constant
Values in CBF and Extended Class K Functions for Scenario 2

Initial & Constant Values Node 0 Node 1 Node 2 Node 3 Node 4
xi,1 0 −0.2 0.6 −0.1 0.3
xi,2 0 0 0 0 0
ci − −0.2 −0.3 −0.1 −0.4
ci − 0.2 0.3 0.1 0.4
ϖ1 − 1000 1000 1000 1000
ϖ2 − 1 1 1 1
K − 0.1 0.1 0.1 0.1
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Figure 5.5 Scenario 2 output results

Figure 5.6 Scenario 2 synchronization error results
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Table 5.3 Initial States, Viability Kernel Boundary Offset Values and Constant
Values in CBF and Extended Class K Functions for Scenario 3

Initial & Node 0 Node 1 Node 2 Node 3 Node 4 Node 5 Node 6
Constant Values

xi,1 0 1.6 0.7 0.9 0.15 0.3 0.2
xi,2 0 0 0 0 0 0 0
ci − −0.6 −0.5 −0.7 −0.2 −0.5 −0.1
ci − 0.6 0.5 0.7 0.2 0.5 0.1
ϖ1 − 1000 1000 1000 1000 1000 1000
ϖ2 − 1 1 1 1 1 1
K − 0.1 0.1 0.1 0.1 0.1 0.1

Figure 5.7 Scenario 3 output results

4.8, constants ci and ci are also given in Table 5.3. Just like in the second scenario,
the output value of the node 0 y0 is selected as leader, as shown in Figure 4.3 in this
network system. Similar to the second scenario, other six nodes aim to synchronize
the behaviour of node 0. It is observed that our method is also successful in this
scenario.

You can observe some fluctuations in Figure 5.7, and that’s because nodes do not
communicate with the controller when they are in safe boundaries. Nodes can be
leaded to unsafety because of the disturbance or their behaviors, and in that case,
the MPC controller takes over to take them back to safety. With this third scenario,
it is shown that our method can be implemented into different systems with different
dynamics.
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Figure 5.8 Scenario 3 synchronization error results

In all scenarios, nodes transmit their output to their neighbor nodes at 0.0001-
second period. Since the system can stay viable in various scenarios, the next step
is to compare the proposed method with another method used for adapting the
system in the literature. The comparison will be made by obtaining the system’s
communication cost.

5.2 Results of Viability Kernel and CBF

Viability kernels for all nodes in the second scenario are drawn as a heatmap. It is
calculated by checking the control existence of the given initial state of the nodes to
their dynamical system. Since nodes are behaving differently, their learned viability
kernel is also expected to be different. According to the heatmap graphs, as given
in Figure 5.9, the color bar from 0 to 1 refers to the viability score. This score offers
a quantified measure of the viability of a state. For the range of viability score, 0
means that the agent is never viable throughout time, and 1 means that the system
is always viable throughout time. For each state, it is determined by using the
following formula.
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Figure 5.9 Viability Kernels for All Agents in the Second Scenario

Vscore(xi(t0)) =
∑T

t=01Vx

S
i ∈ V , (5.1)

which S represents the total number of states, equivalent to the cardinality of the
set xi,1×xi,2, xi,1 ∈

[
−pi(t),pi(t)

]
, xi,2 ∈ [−5,5]. In addition, the indicator function

1Vx defined whether a state lies within the defined viability kernel Vx.

With Figure 5.9, it is proven that all nodes have their own viability kernel to learn
to ensure safety. In addition, there are common regions where all nodes are viable
throughout time. For example, xi,1 values between 0 and 1 are always viable, and
this means that the system is successful in safety. As the color goes darker in the
heatmap, the probability of an agent staying viable throughout time decreases. For
example, according to agent 2 viability kernel heatmap, when x2,1 = 3 and x2,2 = 3,
the agent is only successful in staying viable in nearly half of the finite time.

To further explain how the CBF h(x) is derived from the viability kernel Vx, we
will now define Vx implicitly. Specifically, Vx is represented as a set of points
(x1,x2) ∈ R2, which includes feasible states. There are also infeasible states rep-
resented as points to make a classification while obtaining h(x). The feasible states,
also can be called as viable states, are obtained with grid sampling method. Since
Vx is implicit, we need to approximate boundaries of Vx, and we did that with con-
vex hull approximation on the set of viable states. To approximate h(x), we used
a Support Vector Machine (SVM), a machine learning method that analyzes and
classifies points to determine the boundary between classifications. In this case, the
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Figure 5.10 Viability Kernel and CBF of All Agents in the Second Scenario

classifications are based on the feasibility of points according to the definition of Vx.
The hyperplane of SVM refers to the definition of h(x), which is the signed distance
from the hyperplane. Finally, we used h(x) to reflect whether a point lies within the
boundary of Vx (i.e., h(x) > 0 for points in Vx, h(x)≤ 0 otherwise).

In Scenario 2, the feasibility of states for each node is assumed to differ. As a result,
we designed h(x) for each individual node. Figure 5.10 illustrates the feasible points
representing Vx, a colormap showing the values of h(x) after training the SVC with
feasible and infeasible states, and a black line representing the boundary of Vx,
derived from h(x). From these figures, it is clear that most feasible states fall within
h(x) > 0 region (blue), while most infeasible points lie in the h(x) < 0 region (red).
However, with the method we used for approximation, we still could not obtain
the perfect approximation of Vx, because some infeasible states lies within h(x) > 0
(blue). Some improvements to obtain an accurate Vx will be necessary.

We also observed the performance of viability with the CBF h(x) by using the
SVM method in Scenario 2. We evaluated dynamics of nodes and we used these
trajectories with the CBF h(x) designed from SVM. According to the result of
h(x), conditions of CBF is checked and the control input is generated accordingly
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Figure 5.11 Synchronization error results for implicit viability kernel

to guarantee viability. The synchronization error results when the viability kernel
is defined implicitly is given in Figure 5.11. Note that since the viability kernel is
time-varying, h(x) design is updated according to the viability kernel’s time-varying
boundaries. According to tracking error results, we can still guarantee viability
with the implicit viability kernel, but since h(x) is designed periodically, the overall
performance is smoothly degraded.

5.3 Results with MPC and NN Controller

So far, all results were shown with only a Model Predictive (MPC) controller, whose
proposed method was the control barrier function. Now, we enhance the controller
by including a new controller, which is a trained neural network controller. As
explained before, the neural network controller is used for reaching the target region
in finite seconds.

This central controller is utilized in the second scenario with the same differential
equations and the same aim. The target for this scenario is that all nodes synchronize
with the behaviors of node 0 throughout the time. Therefore, the goal of the neural
network controller for this scenario is to keep all nodes on the optimal road to reach
the target in a given finite seconds.

Accordingly, the model is designed with a graph neural network, and its underlying
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Figure 5.12 Graph Structures and Layers of the Graph Neural Network

graph structure is given in Figure 5.12. The graph structure is designed based on
the network topology model given in Figure 4.1 for the second scenario. The graph
neural network layers are listed on the upper right side of the figure. This neural
network’s input is three-dimensional and takes 4 inputs, as the number of followers is
4 according to scenario 2. Since the target here is the synchronization of node 0, each
input contains values of performance functions p

i
(t), pi(t), and the local tracking

error zi(t). Equations of these were given in Table 4.6 and (4.7) respectively. All
hidden layers are dense layers with different and coherent units, and ReLU is chosen
as an activation function. The output function has 4 distinct values, representing
control input values for each node.

The neural network controller is trained with 800000 samples of p
i
(t), pi(t) and

zi(t) per each node. These samples were obtained with only the model predictive
controller when the system was run. For the compilation of the neural network,
gradient descent (SGD) is chosen as the optimizer, and mean absolute error is chosen
as the loss function. The trained samples were split into train and validation samples
with the 90-10 ratio. Early stopping is included for the callback, and monitoring the
loss function to prevent overfitting. Moreover, hidden layers are L2-regularized to
avoid overfitting with a value of 0.001. The neural network is trained with a batch
size of 32 and 50 epochs. Figure 5.13 shows the train and validation loss graphs.

The trained neural network is used as a controller in the system along with the model
predictive controller. Test samples are obtained for predictions after evaluating
dynamical systems in a finite time, which is chosen as 20. Constant values ci, ci, in
Table 4.6 and initial values for all nodes are chosen randomly to see the performance
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Figure 5.13 Train and Validation Loss Graphs of the Graph Neural Network Model

of the cooperation of neural network and model predictive controller.

Figure 5.13 is obtained from the graph structure given in 5.12. It is observed that
the system can stay viable continuously with efficient communication. Moreover,
throughout the training procedure, the training and validation loss values are fairly
similar. This indicates that the model generalizes well to the validation set and is
not overfitted. The synchronization error results were similar to the synchronization
error graphics of the system using the only model predictive controller. What we
want to demonstrate is that when the neural network controller and the model
predictive controller work together, all agents can act with their own learned kernel
with less help from other agents. Figure 5.15 shows the control input values of
each agent in the system with the NN+MPC controller and the MPC controller. In
NN+MPC controller, the NN controller is trained from the graph structure given in
Figure 5.12. As it was explained in previous chapters, the control input value of 0

(a) Fully Connected (b) Ring (c) Bipartite

Figure 5.14 Underlying Graph Structures Designed with Three Types of Topologies
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Table 5.4 Complexity of NN+MPC and MPC methods

Methods Average & Total Time (sec) Computational Complexity
NN+MPC 0.001920 384.099861 MPC: O(n3), NN:O(LR2

i )
MPC 0.001279 255.869676 O(n3)

indicates that the node does not need assistance from its corresponding controller.
Figure 5.15 is put in here to observe the communication between the node and
its corresponding controller. It is shown that nodes can behave with their learned
viability kernels with less help from their controllers.

The GNN is also trained with different topologies to observe that our proposed
method can cooperate with MPC in any type of topologies described as an under-
lying graph structure for GNN. These topology structures given in Figure 5.14 are
designed based on the common topology types. Figure 5.14a is a fully-connected
topology, Figure 5.14b is a ring topology, and Figure 5.14c is a bipartite topology.
Nodes in the underlying graph structure represent features of input values. There-
fore, we set the number of nodes as 4, and we referred these nodes to boundary
functions and initial states of each agent in the MAS system. If the number of
nodes increases, a mismatch happens. This means that 4 inputs have to match
with 4 nodes and other nodes have to be filled with methods like interpolation or
replication, and this may deprecate the performance of the model. Therefore, we
set the number of nodes in the underlying graph structure equal to the number of
input values of the model to obtain the best performance of GNN. The efficient com-
munication between the node and its corresponding controller was successful with
different topologies. Therefore, it can be evaluated that the GNN model is compati-
ble with different topology structures to use viability gains and the controller makes
sure that the system can achieve its aim in finite time.

MPC and NN cooperation can bring more complexity, and we quantified the com-
plexity of the cooperation by measuring the time takes for the control decision, and
computational complexity. The computational complexity for MPC controller can
be formulated as O(n3), where n is the number of components in a differential equa-
tion of an agent, and the computational complexity for GNN, which it provides the
complexity of forward pass can be formulated as O(LR2

i ), where L is the number
of layers and Ri is the number of neurons of layer i. In addition, we quantified
the overhead of this cooperation by measuring the average memory usage, power
consumption and CPU usage. The quantified results are written down in Tables 5.4
and 5.5. It should be noted that the measurements are done when methods are in
operation, so values are obtained in every iteration of time.
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Figure 5.15 Control input values of each node in the system with NN+MPC and
MPC

Table 5.5 Overhead of NN+MPC and MPC methods

Methods Memory CPU Power
Usage (MB) Utilization (%) Consumption (W)

NN+MPC 1280.58 10.33 12.63
MPC 1071.56 8.87 10.47

5.4 Results with Changing Viability Kernel

We also observed the case with the central controller when the viability kernel is
shifted during the finite time. The viability kernel is a time-varying set defined in
(2.12). Here, we changed the minimum and maximum limit functions while the
simulation ran in a finite time. The system model chosen to observe this situation
is the second scenario. The differential equations of nodes were already defined in
(4.2).

The neural network is trained according to this case, and with the trained neural
network controller, the simulation begins executing with defined maximum and min-
imum limit functions in Table 4.6, with constant values, which are chosen randomly
c1 = −0.1, c1 = 0.1, c2 = −0.2, c2 = 0.2, c3 = −0.3, c3 = 0.3, c4 = −0.5, c4 = 0.5.
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Figure 5.16 Synchronization error results in changing limit functions

While the simulation is running with these limit functions, they are changed at
nearly half of the finite time to the following equations.

 p1(t) = 7e−t +0.3e0.07t−0.4

p1(t) = 4e−0.6t +0.2e0.08t−0.3
, (5.2a)

p2(t) = 7e−0.3t +0.3e0.06t−0.5

p2(t) = 4e−0.5t +0.2e0.1t−0.5
, (5.2b)

p3(t) = 7e−t +0.35e0.07t−0.2

p3(t) = 4e−t +0.2e0.06t−0.2
, (5.2c)

p4(t) = 7e−0.9t +0.2e0.08t−0.1

p4(t) = 4e−0.9t +0.2e0.08t−0.1
, (5.2d)

The simulation continues with the new minimum and maximum limit functions (5.2)
for a while. Then, near to the end of the simulation, the limit functions are again
changed to the old ones given in Table 4.6, and the simulation ends with the old
minimum and maximum limit functions.

The synchronization errors of all nodes and the output results per node for this case
are shown in Figure 5.16 and Figure 5.18 respectively. Because we wanted to apply
the change of min and max limit functions fluently, the shifting happened when the
values of old and new limit functions were equal to each other at the instant time t.
Compared with Figure 5.6, the limit function lines are curved in the current figure.
This shows that the limit function is changed during the simulation.

For this case, the control input results are shown in Figure 5.17. Just like Figure
5.15, this result also compares with the scenario that runs with only the MPC
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Figure 5.17 Control input compared with MPC controller in changing limit functions

controller.

5.5 Results of Communication Cost

The communication cost results are made by comparing with another method from
[76], which does not use viability. In [76], a distributed control scheme is improved
by offering a universal error transformation and employing a neural network in the
backstepping framework. The hysteresis quantizer’s sector characteristic is combined
with the minimal learning parameter concept, and this is used in the neural network
to decrease the computational complexity. From now on, we are going to call this
method as the control law method.

For the communication cost, the analysis is divided into two parts. The first part
gives the result of the packets transmitted from controllers to corresponding nodes.
The control signal transmission is done according to the control function. In other
words, instead of checking the value of the control transmitted to the node, it is

79



Figure 5.18 Output results in changing limit functions

Figure 5.19 Viability Kernel Boundary Offset - Total Transmitted Number of Control
Packets

checked whether the control value is zero or not. If the control value is zero, it means
that the controller does not have to transmit the control signal to the corresponding
node. Otherwise, the node needs to be restored with the help of the control signal.
The communication between the controller and the corresponding node is examined
by counting the total number of control signals transmitted as packets, just like
the transmission of output data between nodes. The transmission time for the
control signal transmission is chosen as τtc=0.0001 seconds. This communication
is also analyzed with the boundary offset of the performance functions defined in
Table 4.6. In Table 4.6, the boundary offset definition refers to the constant value
summed with the exponential component. The boundary offset values are picked
from 0.1 to 1.0 with the increasing order of 0.1, and the total number of transmitted
control packets is counted. The results are shown in Figure 5.19.
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The second part of the communication analysis lies in the communication between
nodes. According to the communication topology, two nodes are directly connected
to more than one nodes: node 3 and node 4. The error constraints were designed
assuming nodes can receive only one of the node’s data. Therefore, the commu-
nication cost graphs are drawn according to the neighbors of node 3 and node 4.
According to Figure 4.2, nodes 3 and 4 are connected to more than one node, and
all other nodes are connected to only one node. If a node has one neighbor node,
then the neighbor node priority decision is not needed, and therefore, the neighbor
node transmits data continuously. In Figure 4.2, nodes 3 and 4 are able to receive
from more than one neighbor node, but because of the limitation, the priority is
scheduled periodically. In addition, node 3 does not transmit data, so the number
of transmitted bits is zero.

Both methods are simulated with the data transmission period as τt = 0.0001, and
the priority scheduling period is chosen as τp = 0.1. The selection of the minimum
difference between the output of the node and the neighbor of the node does the
design of the priority scheduling.

Figures 5.20 and 5.21 show the transmitted number of bits in 0.25 second-period
for some nodes in the system. For calculating the transmitted bits, the bit depth
is taken as 32 because of the encoding and decoding of output data. The encoding
is done by transforming the output data into byte symbols and then transforming
that into binary values. The decoding is the inverse of the encoding operation.
Figure 5.20 shows the transmitted bits of nodes when the system is adapted with
our proposed method: the viability method. Figure 5.21 shows the transmitted bit
of nodes with control law method.

According to Figure 5.19, in the control law method, the boundary change does not
affect the communication between the controller and the node. That’s because the
control law method looks at the difference between the tracking error and boundary
values and makes the control decision accordingly. In our proposed method, the
controller can decide that the node does not need help because it evaluates that the
node is already safe. This evaluation happens by knowing the viability kernel and
therefore, this highlights the safety and operational integrity property. Particularly,
knowing the viability kernel assists in guaranteeing that each node operates safely
without violating constraints, and this property allowed us to achieve these results.

To sum up this chapter, our proposed method ensures system viability by reaching
all nodes in finite time with efficient controller and neighbor assistance. It achieves
good performance with fewer penalties and low communication costs. Knowing the
viability kernel allows agents to adapt to changes with efficient communication, even
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when the kernel changes.

82



Figure 5.20 The number of transmitted bits with viability method

Figure 5.21 The number of transmitted bits without viability method
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6. CONCLUSION & FUTURE WORKS

In this thesis, we provided an effective and efficient tracking control system for a
system that is addressed as susceptible to errors and failures. This proposed con-
troller offers an optimal path by treating these failures as a norm instead of an
exception to reach the target. With the viability theory concept, we could make
sub-optimal decisions for each node comprised in the network, guaranteeing robust-
ness and developed availability even under severe failures. This control mechanism
ensures that the network system can handle any incoming errors and achieve its
goal. It is designed such that the communication is kept as low as possible so that
nodes can behave with their learned kernels. In addition, the time-varying kernels
are also considered as tracking them down and notifying agents about them.

In Chapter 2, we proposed a model predictive controller with the control barrier
function method. It was related to the viability kernel to obtain the viability region
of each agent, and we explained the solution step by step. In addition, we defined
the neural network controller for the multi-agent system to utilize the gains of the
viability region in the system. The model predictive controller steers the agent to a
point closer to the boundaries of the viability region when the agent finds itself near
its boundaries because of the external conditions, and the neural network controller
utilizes the viability region to verify whether it can reach the target in a finite time.
The cooperation between them was explained in this chapter. Chapter 3 gives the
communication protocol to analyze the communication cost of the multi-agent sys-
tem later. The communication was divided into two sections: the communication
between a node and its corresponding controller and the communication between
nodes. The algorithms of both of these communications were given at the end of
the chapter. In Chapter 4, we introduced three distinct network scenarios, each
with a different topology but sharing the same objective. We addressed system
constraints in both symmetrical and asymmetrical forms, meaning constraints with
either constant or time-varying boundaries. Based on these constraints, we de-
fined the viability kernel and subsequently derived the control barrier function. The
model predictive controller, to be applied later, is formulated based on the control
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barrier function, incorporating the given state and input constraints. In Chapter 5,
we provided the numerical results of our proposed method. We applied the model
predictive controller in three scenarios. From the results of the synchronization er-
ror and output, it was seen that the model predictive controller can restore agents
to inside of the viability region when their safety is in danger. Viability kernels
were visualized, demonstrating that each node learns its own kernel for safety, with
shared regions of viability across all nodes. Further investigation involved defining
the viability kernel implicitly and designing the control barrier function using a sup-
port vector machine. While both the viability kernel and the approximated control
barrier function were illustrated, the approximation results were not very accurate.
As a next step, we added the neural network controller, designing a central con-
troller per each node to see that this design gives more efficient results than the
only model predictive controller. It is designed with graph neural network model
with its underlying graph structure, which is changed later to show that we can
achieve our aim with different graph structures. We achieved this by observing the
control input sent to the corresponding nodes, and it can be seen that with our
proposed method, the communication between the node and its corresponding con-
troller is less than the system with only the model predictive controller. In other
words, the given scenario can reach the intended goal with more minimized risk and
less communication, ending in obtaining the safe and optimal path for all nodes.
We also examined a case where the viability kernel changes throughout the simula-
tion and demonstrated that our controller approach effectively manages the shifting
viability kernel, ensuring the system remains safe. The communication cost is more
deeply analyzed by providing more graphs, compared with another method. This
other method was proposed in the literature, and its proposed controller generates
more control input values to reach the target. These results show that we achieved
less communication cost in the system while nodes self-adapted with their learned
viability kernels.

The results presented in Chapter 5 show that our proposed controller method gener-
ally achieved its objectives, though some results were less successful than expected.
For example, in the implicit viability kernel case, we were unable to accurately ap-
proximate the control barrier function. In the future, we aim to improve this using
nonlinear kernel-based classification algorithms.

Looking ahead, this proposed method could be implemented in an operational en-
vironment. It is well-suited for systems with a central control unit that monitors
the viability kernels of individual agents within the system and communicates up-
dates to them. For instance, our approach could be applied to a system involving
unmanned aerial vehicles (UAVs) communicating with a control center. The UAVs
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would receive control instructions from the center and transmit their current states
back. Additionally, this method could be used in a more general multiplex setup,
such as one consisting of access points, base stations, and mobile devices, which can
be considered as nodes. Since these nodes exhibit different behaviors, their respec-
tive controllers can monitor their viability kernels and provide updates, whether to
address uncertainty or to optimize network performance.
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APPENDIX A

A.1 Gronwall’s Lemma

Here, the following Gronwall’s Lemma will be adopted instead of directly using the
comparison Lemma to guarantee the forward invariance of a safe set.

Let λ ∈ R be a constant, and k : [t0, t1]→ R≥0 be a non-negative continuous func-
tion. If an absolute continuous non-negative function q : [t0, t1]→ R≥0 satisfies the
following equation

q(t)≤ λ+
∫ t

t0
k(s)q(s)ds (A.1)

for ∀t ∈ [t0, t1], then on the same interval, the following inequality holds:

q(t)≤ λexp
(∫ t

t0
k(s)ds

)
(A.2)

Under the assumption that q(t) is a C1 continuously differentiable function, we
obtain the following result.

Let k : [t0, t1]→ R≥0 be a non-negative continuous function. If a non-negative C1

continuously differentiable function q : [t0, t1]→R≥0 satisfies the following inequality

q̇(t)≥−k(t)g(t) (A.3)

for ∀t ∈ [t0, t1], then on the same interval, the following inequality holds:

q(t)≥ q(t0)exp
(
−
∫ t

t0
k(s)ds

)
(A.4)

In particular, if k(t) = η ∈ R≥0 is a non-negative constant, then the following in-
equality holds for ∀t ∈ [t0, t1]:

q(t)≥ q(t0)exp(−η (t− t0)) (A.5)
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APPENDIX B

B.1 Runge-Kutta Methods

Runge-Kutta methods have the same high-order local truncation error as Taylor
methods; the difference here is that there is no need to compute and evaluate the
derivatives of f(t,y). Before presenting the details of the method, let’s look at
Taylor’s theorem in two variables. The proof of this theorem exists in any standard
of advanced calculus.

Theorem B.1. f(t,y) and all of its partial derivatives of the order less than or
equal to n + 1 are supposed to be continuous on D = {(t,y) | a≤ t≤ b, c≤ y ≤ d},
and let (t0,y0) ∈D. For every (t,y) ∈D, a constant ξ exists between t and t0 and µ

exists between y and y0 with the following equation

f(t,y) = Pn(t,y)+Rn(t,y) (B.1)

where the functions Pn and Rn are defined mathematically as follows.

Pn(t,y) = f(t0,y0)+
[
(t− t0)∂f

∂t
(t0,y0)+(y−y0)∂f

∂y
(t0,y0)

]

+
[

(t− t0)2

2
∂2f

∂t2 (t0,y0)+(t− t0)(y−y0) ∂2f

∂t∂y
(t0,y0)

+(y−y0)2

2
∂2f

∂y2 (t0,y0)
]

+ . . .

+
 1

n!

n∑
j=0

n

j

(t− t0)n−j(y−y0)j ∂nf

∂tn−j∂yj
(t0,y0)



Rn(t,y) = 1
(n+1)!

n+1∑
j=0

n+1
j

(t− t0)n+1−j(y−y0)j ∂n+1f

∂tn+1−j∂yj
(ξ,µ)

The function Pn(t,y) is called the nth Taylor polynomial in two variables for the
function f about (t0,y0) and Rn(t,y) is the remainder term associated with Pn(t,y).
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The first step in deriving a Runge-Kutta method is to determine values of α1, δ1,
α2, and δ2 with the property of the approximation of a form which its expression is
given as follows.

f(t+α1,y + δ1f(t+α2,y + δ2f(t,y))) (B.2)

This approximation is made with error O(h3), and the most common O(h3) is Heun’s
method, which is given as shown below.

w0 = α

wi+1 = wi + h

4

(
f(ti,wi)+3f

(
ti + 2h

3 ,wi + 2h

3 f

(
ti + h

3 ,wi + h

3f(ti,wi)
)))

for i = 0,1, ...,N −1

This Runge-Kutta method is used for higher orders. However, Runge-Kutta Meth-
ods for order three are not generally used. The most common Runge-Kutta method
in use is of order four in the difference-equation form, which is given by the following
subsection.

B.1.1 Runge-Kutta Order Four

The following order of equations uses the order four of Runge-Kutta.

w0 = α (B.3a)

k1 = hf(ti,wi) (B.3b)

k2 = hf

(
ti + h

2 ,wi + 1
2k1

)
(B.3c)

k3 = hf

(
ti + h

2 ,wi + 1
2k2

)
(B.3d)

k4 = hf(ti+1,wi +k3) (B.3e)

wi+1 = wi + 1
6(k1 +2k2 +2k3 +k4) (B.3f)
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for each i = 0,1, . . . ,N − 1. This method has a local truncation error of O(h4),
provided the solution y(t) has five continuous derivatives. The notations k1, k2, k3,
k4 are introduced into the method to eliminate the need for successive nesting in
the second variable of f(t,y).
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