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Milling processes are a basis of manufacturing across a variety of industries, including 

aerospace, automotive, and heavy machinery. Effective monitoring of these processes is 

essential to ensuring high-quality production, minimizing downtime, and extending tool 

life. Inefficient monitoring can lead to defects in machined parts, excessive tool wear, and 

ultimately, significant financial and material waste. Traditionally, the monitoring of 

milling operations has relied heavily on direct human supervision, periodic testing, and 

sensor-based monitoring systems, which are based on time-consuming teach cycles. 

These existing monitoring systems, mainly targeted at tool condition monitoring, cannot 

accurately identify the source of variation or fault, making them both error-prone and 

resource-intensive. This thesis seeks to revolutionize this traditional approach by 

implementing advanced machine learning (ML) techniques integrated with physics-based 

simulations, significantly reducing the reliance on extensive physical testing and manual 

oversight. 

The enhanced monitoring capabilities offered by these advanced technologies enable 

precise control over the milling process, ensuring optimal tool engagement and machining 

parameters. This leads to improved consistency in product quality and a substantial 

reduction in waste, which is crucial for maintaining competitiveness in fast-paced 
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markets. Moreover, intelligent monitoring systems can predict tool wear and potential 

failures before they occur, allowing for preemptive maintenance and scheduling. This not 

only extends the lifespan of milling equipment but also ensures continuous production 

without unexpected interruptions, thereby enhancing overall manufacturing efficiency. 

The first section of the thesis presents a series of innovative hybrid models, known as 

physics-informed machine learning (PIML), which excel in predicting milling forces, tool 

wear, and tool-related faults. By combining limited experimental data with detailed 

simulation outputs, these models achieve predictive accuracies up to 98%. Demonstrated 

across various materials and tool configurations, the models’ adaptability and scalability 

underscore their potential for widespread industrial application. 

Subsequent sections elaborate on the development of an advanced fault detection system, 

designed specifically for real-time applications in unmanned manufacturing 

environments. This system, employing refined force models and sophisticated machine 

learning algorithms, not only detects deviations with over 96% accuracy but also 

pinpoints the source of these faults. By accurately identifying not just the occurrence of 

anomalies but also their origins, the system enables targeted interventions, thereby 

optimizing manufacturing processes and significantly reducing operational costs. This 

dual capability of detection and precise source identification enhances the system’s 

effectiveness in maintaining continuous production flow and minimizing downtime. 

Additionally, the thesis explores tool wear prediction using hybrid modeling approaches 

that integrate mechanistic insights with diverse ML algorithms. This approach 

significantly reduces the need for extensive wear testing, facilitating a more streamlined 

and economically viable monitoring process. 

In conclusion, the research presented in this thesis not only advances the field of 

intelligent manufacturing monitoring by providing robust predictive tools but also 

establishes a solid foundation for future enhancements. By transforming traditional 

monitoring methods into more intelligent, efficient, and adaptive systems, this work 

pioneers a new era of manufacturing that aligns with the demands of modern industry. 
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Arash Ebrahimi Araghizad 
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Doktora Tezi Danışman Yardımcısı: Doç. Dr. Kemal Kılıç 

 

Talaşlı imalat işlemleri, havacılık, otomotiv ve ağır makine endüstrileri dahil birçok 

sektörde imalatın temelini oluşturur. Bu işlemlerin etkin bir şekilde izlenmesi, yüksek 

kaliteli üretimin sağlanması, iş durma sürelerinin en aza indirilmesi ve takım ömrünün 

uzatılması açısından hayati öneme sahiptir. Etkin olmayan izleme, işlenmiş parçalarda 

hatalara, aşırı takım aşınmasına ve sonuçta önemli mali ve malzeme israfına yol açabilir. 

Geleneksel olarak, frezeleme operasyonlarının izlenmesi büyük ölçüde doğrudan insan 

gözetimi, periyodik testler ve zaman alıcı öğretim döngülerine dayanan sensör tabanlı 

izleme sistemlerine dayanmaktadır. Bu mevcut izleme sistemleri, esas olarak takım 

durumunu izlemeye yönelik olup, varyasyonun veya arızanın kaynağını doğru bir şekilde 

belirleyemezler, bu da onları hem hata yapmaya yatkın hem de kaynak yoğun hale getirir. 

Bu tez, fizik tabanlı simülasyonlarla entegre edilmiş ileri makine öğrenimi (ML) 

tekniklerinin uygulanması suretiyle bu geleneksel yaklaşımı devrim niteliğinde 

değiştirmeyi amaçlamaktadır. Bu, kapsamlı fiziksel testlere ve manuel denetime olan 

bağımlılığı önemli ölçüde azaltır. 

Bu ileri teknolojilerin sunduğu gelişmiş izleme yetenekleri, frezeleme işlemi üzerinde 

hassas kontrol sağlayarak optimal takım angajmanı ve işleme parametrelerini garanti 

eder. Bu, ürün kalitesindeki tutarlılığın artmasına ve atıkların önemli ölçüde azalmasına 

yol açar ki bu da hızlı hareket eden pazarlarda rekabetçiliği korumak için hayati önem 

taşır. Dahası, akıllı izleme sistemleri, oluşmadan önce takım aşınmasını ve olası arızaları 
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tahmin edebilir, bu da önleyici bakım ve planlama imkanı sunar. Bu, sadece frezeleme 

ekipmanlarının ömrünü uzatmakla kalmaz, aynı zamanda beklenmedik kesintiler 

olmaksızın sürekli üretimi de garanti eder, böylece genel üretim verimliliğini artırır. 

Tezin ilk bölümü, frezeleme kuvvetlerini, takım aşınmasını ve takımla ilgili arızaları 

tahmin etmede üstün olan yenilikçi hibrit modeller serisini, fizik bilgilendirilmiş makine 

öğrenimi (PIML) olarak adlandırılan, sunar. Sınırlı deneysel veriler ile detaylı simülasyon 

çıktılarını birleştirerek, bu modeller %98'e varan tahmin doğruluklarına ulaşır. Çeşitli 

malzemeler ve takım konfigürasyonları üzerinde gösterilmiştir; modellerin uyum 

kabiliyeti ve ölçeklenebilirliği, geniş endüstriyel uygulama potansiyellerini vurgular. 

Sonraki bölümler, insansız imalat ortamlarında gerçek zamanlı uygulamalar için özel 

olarak geliştirilen sofistike bir arıza tespit sisteminin geliştirilmesini detaylandırır. 

Gelişmiş kuvvet modelleri ve ML algoritmaları kullanarak, bu sistem %96'nın üzerinde 

bir doğrulukla sapmaları tanır, süreçleri optimize eder ve maliyetleri önemli ölçüde 

düşürür. 

Ayrıca, tez çeşitli ML algoritmaları ile mekanistik içgörülerin entegre edildiği hibrit 

modelleme yaklaşımlarını kullanarak takım aşınmasının tahmin edilmesini araştırır. Bu 

yaklaşım, kapsamlı aşınma testlerine olan ihtiyacı önemli ölçüde azaltır, daha akıcı ve 

ekonomik olarak uygulanabilir bir izleme sürecini kolaylaştırır. 

Sonuç olarak, bu tezde sunulan araştırmalar, sadece sağlam tahmin araçları sağlayarak 

akıllı imalat izleme alanını ilerletmekle kalmaz, aynı zamanda gelecekteki geliştirmeler 

için sağlam bir temel de oluşturur. Geleneksel izleme yöntemlerini daha akıllı, verimli ve 

uyumlu sistemlere dönüştürerek, bu çalışma modern endüstrinin talepleriyle uyumlu yeni 

bir üretim çağının öncüsü olur. 
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1. INTRODUCTION 

In recent years, the manufacturing industry has experienced a paradigm shift driven by 

the principles of Industry 4.0, emphasizing automation, and the integration of smart 

technologies. This shift has been particularly transformative for machining operations, 

where precision, efficiency, and real-time monitoring are paramount. The development 

of advanced simulation models for milling and turning processes, utilizing machine 

learning (ML) algorithms, has shown promise in enhancing the accuracy of these 

simulations. Subsequently, these algorithms have been employed to develop sophisticated 

monitoring systems, significantly improving fault detection, process optimization, and 

overall manufacturing efficiency. 

The motivation for this technological advancement stems from the growing need to 

improve production efficiency, reduce costs, and maintain high product quality standards 

in modern manufacturing. One of the critical challenges in milling and turning operations 

is the deterioration of cutting tool performance due to wear, breakage, and chipping, 

which can lead to increased production costs, decreased product quality, and longer 

production cycles. Traditional tool and process monitoring methods, such as direct 

observation and indirect sensor-based monitoring, often suffer from limitations such as 

subjectivity, low sensitivity, and lack of adaptability to varying cutting conditions. 

Therefore, there is a pressing need for more sophisticated and data-driven approaches to 

tool and process monitoring. 

The integration of machine learning algorithms into the simulation of milling and turning 

processes represents a significant advancement in this field. These ML models can 

process large amounts of data and learn complex patterns, making them particularly 

suitable for applications involving multiple factors. By training these models on extensive 

experimental and simulation data, it is possible to enhance the accuracy of milling and 

turning simulations significantly. This improvement in simulation accuracy lays a strong 

foundation for further advancements in process monitoring and optimization. 

Using force models, combined with machine learning algorithms, offers a comprehensive 

understanding of the interaction between cutting tools and workpieces. By calculating 
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cutting forces for each angular increment of the tool, the model provides accurate 

predictions that are crucial for optimizing machining parameters, tool geometries, and 

cutting strategies. The integration of these models with machine learning algorithms 

enhances the accuracy of simulations, making them a valuable tool for real-time fault 

detection and process optimization. 

Building on the enhanced simulation accuracy, these machine learning algorithms have 

been employed to develop advanced monitoring systems for milling and turning 

processes. A significant development in this area is intelligent process monitoring for 

unmanned manufacturing. Traditional monitoring systems rely heavily on sensory data 

such as cutting forces, acoustic emissions, or power consumption. However, these 

methods often fall short due to their time-consuming nature and inability to generalize 

across different conditions. To overcome these limitations, a hybrid approach that 

combines physics-based models with machine learning algorithms was developed. This 

method leverages extensive simulation data to enhance force models, achieving over 96% 

accuracy in real-time predictions. The results demonstrate the method's applicability in 

various unmanned manufacturing scenarios, enabling precise parameter identification 

and fault detection using CNC controller signals. 

Accurate prediction of milling forces is crucial for monitoring systems. These predictions 

inform decisions about power requirements, geometrical accuracy of machined 

components, stability, and strength of cutting tools. Traditional methods for predicting 

these forces have relied heavily on empirical and mechanistic models. Empirical models, 

although straightforward, often lack accuracy due to their reliance on curve-fitted 

equations that require extensive experimental data. Mechanistic models improve upon 

this by dissecting the machining process into smaller components, but they too face 

limitations due to the assumptions and simplifications necessary for their application. 

Recent advancements in artificial intelligence (AI) and machine learning (ML) have 

introduced new methodologies for predicting milling forces. These data-driven 

approaches offer the potential for higher accuracy but require substantial training data, 

which can be costly and time-consuming to gather. Integrating ML with mechanistic 

models provides a promising alternative, leveraging the strengths of both approaches to 

enhance prediction accuracy while reducing the need for extensive experimental data. 
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This study proposes a hybrid model that combines physics-based simulations with 

machine learning algorithms. By training ML models with both simulated and limited 

experimental data, this approach aims to achieve high prediction accuracy for milling 

forces across various materials and tool types. The model's effectiveness is validated 

through tests on materials such as Al7075-T6, Steel 1050, and Ti6Al4V, and is further 

demonstrated to generalize well to other materials like Inconel 625. The proposed hybrid 

model not only improves prediction accuracy but also reduces the dependency on 

extensive experimental datasets, making it a practical solution for real-world industrial 

applications. 

The advancement of unmanned manufacturing has underscored the critical need for 

intelligent process monitoring to ensure efficiency and quality in machining operations. 

This necessity was further highlighted during the COVID-19 pandemic, where workforce 

availability was severely impacted, revealing vulnerabilities in traditional manufacturing 

setups. Unmanned manufacturing requires robust real-time fault detection systems to 

maintain operational integrity and product quality. 

In another advancement, a novel approach for monitoring tool-related faults in milling 

processes was developed using process simulation-based machine learning algorithms, 

for fault detection. This method eliminates the need for costly, time-consuming laboratory 

tests by utilizing analytical simulation data to train the machine learning models. The 

proposed approach has demonstrated a 94% accuracy rate in predicting tool-related faults, 

supported by actual measurement data. This indicates that process simulation-based 

machine learning algorithms can significantly impact tool condition monitoring and the 

efficiency of manufacturing processes. 

Existing monitoring methods fall into three main categories: experimental, simulation-

based, and machine learning (ML)-based systems. Traditional methods relying on sensory 

data like cutting forces and acoustic emissions are often time-consuming and application-

specific, making them difficult to generalize across different conditions. Simulation-

based approaches, while beneficial, often lack the precision required due to inherent 

modeling simplifications. Conversely, data-driven ML systems require extensive datasets 

to function effectively, which is impractical due to the infrequency of certain fault 

occurrences. 
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This study proposes a novel hybrid approach that combines physics-based models with 

ML techniques to improve real-time parameter identification in milling processes. By 

integrating mechanistic models with ML algorithms, the proposed method enhances the 

accuracy of cutting force predictions, thereby facilitating precise fault detection and 

process optimization. The hybrid model leverages a constrained set of experimental data 

to refine simulation results, significantly reducing the need for extensive empirical 

testing. 

In the quest for enhanced production efficiency, improved product quality, and reduced 

manufacturing costs, accurate tool wear prediction remains pivotal. Tool wear 

significantly affects tool life, surface quality, dimensional accuracy, and the overall 

economics of machining operations. Traditional methods for predicting tool wear often 

rely on either experimental data or machine learning (ML) techniques, both of which 

necessitate extensive and costly wear tests. This dependency on large datasets limits the 

applicability of ML models in practical industrial settings, confining their use primarily 

to academic research. 

To bridge the gap between research and industrial application, this study introduces a 

novel physics-informed machine learning (PIML) model for predicting tool wear in 

turning processes. By integrating an analytical wear-included force model with advanced 

ML algorithms such as least-squares boosting, random forest, and support vector 

machines, the proposed approach aims to enhance prediction accuracy while minimizing 

the need for extensive experimental data. The foundation of the PIML model is a thermo-

mechanical turning model that accounts for the effects of flank wear and edge forces on 

cutting forces. This model's accuracy is further refined through ML, achieving over 97% 

accuracy on training datasets and 94% on unseen test datasets. 

The hybrid PIML model not only enhances the precision of wear predictions but also 

streamlines the data collection process, reducing the reliance on numerous wear tests. The 

results highlight the potential of PIML models to revolutionize tool wear prediction by 

offering a reliable, efficient, and scalable solution for modern manufacturing processes.  

Furthermore, the integration of these advanced monitoring systems aligns with the 

broader trends of digital transformation and the Industrial Internet of Things (IIoT). As 

manufacturing processes become increasingly interconnected, the ability to gather and 
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analyze vast amounts of data in real-time will be essential for maintaining competitive 

advantage. Machine learning algorithms, combined with robust databases and simulation 

models, provide the tools necessary to harness this data and drive continuous 

improvement in manufacturing operations. 

In conclusion, the integration of machine learning algorithms into tools and process 

monitoring represents a significant advancement in the field of manufacturing. The ability 

to accurately predict and detect tool faults, machining parameters, and enhance overall 

process efficiency is crucial for meeting the demands of modern production 

environments.  

 Motivation 

In the current landscape of the manufacturing industry, the principles of Industry 4.0 have 

ushered in a new era characterized by automation and the integration of smart 

technologies. This transformation is especially critical in machining operations, where 

precision, efficiency, and real-time monitoring are vital for maintaining competitive 

advantage. However, the industry still faces significant challenges that hinder optimal 

performance and efficiency. 

One of the primary challenges in milling and turning operations is the deterioration of 

cutting tools due to wear, breakage, and chipping, which can lead to increased production 

costs, decreased product quality, and prolonged production cycles. Traditional methods 

of tool and process monitoring, such as direct observation and indirect sensor-based 

approaches, often fall short due to their subjectivity, low sensitivity, and inability to adapt 

to varying cutting conditions. These limitations underscore the need for more advanced, 

data-driven monitoring systems that can provide accurate and real-time insights. 

The motivation for this research stems from the critical need to address these challenges 

by leveraging the power of machine learning (ML) algorithms to enhance simulation 

accuracy and develop sophisticated monitoring systems. These advancements have the 

potential to significantly improve fault detection, process optimization, and overall 

manufacturing efficiency. Moreover, the COVID-19 pandemic has highlighted 

vulnerabilities in traditional manufacturing setups, emphasizing the importance of 
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unmanned manufacturing and the need for robust real-time fault detection systems to 

maintain operational integrity and product quality. 

 Objectives 

1. To Develop Hybrid Simulation Models: 

Integrate physics-based simulations with machine learning algorithms to enhance the 

accuracy of milling and turning process simulations. Train ML models on both 

experimental and simulation data to capture complex patterns and improve prediction 

accuracy. 

2. To Enhance Tool and Process Monitoring: 

Create advanced monitoring systems that utilize ML algorithms to detect tool wear, 

breakage, and chipping in real-time. Employ force models combined with ML to 

understand the interaction between cutting tools and workpieces, enabling precise fault 

detection and process optimization. 

3. To Implement Real-Time Fault Detection: 

Develop a hybrid approach that combines physics-based models with ML techniques to 

improve real-time parameter identification and fault detection in milling processes. 

Leverage extensive simulation data to enhance force models, achieving high accuracy in 

real-time predictions for unmanned manufacturing scenarios. 

4. To Minimize Dependency on Extensive Experimental Data: 

Introduce a novel physics-informed machine learning (PIML) model for predicting tool 

wear in turning processes, integrating analytical wear-included force models with 

advanced ML algorithms. Reduce the need for extensive experimental datasets by 

refining simulation results with a constrained set of experimental data, making the 

approach practical for real-world industrial applications. 

5. To Align with Digital Transformation and Industrial Internet of Things 

IIoT Trends: 

Ensure that the developed monitoring systems are compatible with the broader trends of 

digital transformation and the Industrial Internet of Things (IIoT). Utilize the capability 
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of ML algorithms combined with robust databases and simulation models to gather and 

analyze vast amounts of data in real-time, driving continuous improvement in 

manufacturing operations. 

This research aims to bridge several critical gaps identified in the current literature and 

industry practices: 

• Subjectivity and Low Sensitivity in Traditional Monitoring: 

Traditional methods suffer from subjective interpretation and low sensitivity, limiting 

their effectiveness. The proposed ML-based monitoring systems aim to provide objective, 

high-sensitivity detection of tool and process faults. 

• Adaptability to Varying Cutting Conditions: 

Existing monitoring methods often fail to adapt to different cutting conditions. The 

integration of ML algorithms allows the proposed systems to learn from diverse data sets, 

enhancing their adaptability and generalizability across various scenarios. 

• Time-Consuming and Application-Specific Sensory Data: 

Current methods relying on sensory data are often time-consuming and application 

specific. The hybrid approach proposed in this study combines the strengths of physics-

based models and ML, reducing the reliance on extensive sensory data and enabling 

quicker, more accurate fault detection. 

• Dependency on Extensive Experimental Data: 

Traditional ML models require large datasets for training, which can be impractical in 

industrial settings. The proposed hybrid and PIML models aim to minimize this 

dependency by leveraging simulation data, thus reducing the need for costly and time-

consuming experimental tests. 

By addressing these gaps, this research contributes to the advancement of intelligent 

process monitoring systems, offering practical, scalable solutions that enhance efficiency, 

reduce costs, and maintain high product quality standards in modern manufacturing 

environments. 
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 Thesis Overview 

The thesis begins with an introduction that sets the stage by highlighting the 

transformative impact of Industry 4.0 on the manufacturing industry, focusing on 

machining operations. It underscores the importance of precision, efficiency, and real-

time monitoring in milling and turning processes. The motivation for the study is driven 

by the need to improve production efficiency, reduce costs, and maintain high product 

quality standards. Traditional tool and process monitoring methods, such as direct 

observation and indirect sensor-based approaches, are discussed, emphasizing their 

limitations such as subjectivity, low sensitivity, and lack of adaptability to varying cutting 

conditions. These limitations highlight the necessity for advanced, data-driven 

approaches, leading to the outlined objectives of the thesis: developing hybrid simulation 

models, enhancing tool and process monitoring, implementing real-time fault detection, 

minimizing dependency on extensive experimental data, and aligning with digital 

transformation and IIoT trends. 

Following the introduction, the literature review chapter provides a comprehensive 

examination of existing research on milling process monitoring and tool wear prediction. 

It explores traditional methods, simulation-based approaches, and machine learning (ML) 

techniques. The review identifies significant gaps in the literature, such as the subjectivity 

and low sensitivity of traditional methods, the lack of adaptability to different cutting 

conditions, and the extensive data requirements of ML models. In terms of tool wear 

prediction, the literature review discusses the limitations of empirical and mechanistic 

models, which often require extensive experimental data and make simplifying 

assumptions that can reduce their accuracy. These gaps underscore the need for more 

sophisticated monitoring systems that integrate the strengths of different approaches. 

The third chapter presents a hybrid approach for improving milling force predictions. This 

approach integrates physics-based simulations with ML algorithms to achieve remarkable 

accuracy across diverse unseen materials and tool types, including ball end mills and 

serrated tools. By training ML models on both simulated and limited experimental data, 

the hybrid model enhances prediction accuracy while reducing the need for extensive 

empirical testing. 
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The fourth chapter focuses on developing a smart tool-related faults monitoring system 

using process simulation-based ML algorithms. This system leverages analytical 

simulation data to train ML models, achieving high accuracy in predicting tool-related 

faults without the need for costly and time-consuming laboratory tests. The approach 

demonstrates significant improvements in tool condition monitoring and overall 

manufacturing efficiency. 

In the fifth chapter, the thesis delves into intelligent real-time parameter identification for 

unmanned manufacturing. The proposed monitoring system combines physics-based 

models with ML techniques to improve real-time parameter identification and fault 

detection in milling processes. By utilizing extensive simulation data, the system 

enhances force models, achieving high accuracy in real-time predictions and supporting 

the advancement of unmanned manufacturing. 

The sixth chapter addresses tool wear prediction in turning processes, introducing a 

physics-informed machine learning (PIML) model. This model integrates a thermo-

mechanical wear-included force model with advanced ML algorithms to predict tool wear 

accurately. The PIML model reduces the dependency on extensive experimental datasets, 

offering a reliable and scalable solution for modern manufacturing processes. 

The thesis concludes with a summary of the key findings and their implications for the 

manufacturing industry. It highlights the contributions of the research in advancing 

intelligent process monitoring systems, improving prediction accuracy, and reducing 

costs. The final chapter also discusses potential future work, suggesting areas for further 

research and development to continue enhancing machining operations through advanced 

simulation models and machine learning algorithms. 
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2. LITERATURE REVIEW 

Milling is a crucial machining process in manufacturing, involving the removal of 

material from a workpiece using rotary cutters. Effective tool monitoring in milling is 

essential for optimizing performance, ensuring product quality, and minimizing 

downtime. This literature review explores recent advancements and methodologies in the 

milling process and tool monitoring, providing insights into various techniques and their 

effectiveness. 

Milling involves a variety of operations and setups, allowing for the production of 

complex geometries and high surface finish. The primary parameters influencing milling 

are spindle speed, feed rate, depth of cut, and tool geometry. According to  

C. Brecher et al., these parameters must be precisely controlled to achieve desired 

machining outcomes and avoid tool wear and failure [1]. 

Tool wear is a critical factor affecting the efficiency and quality of the milling and turning 

processes. As tools wear, they become less effective, leading to poor surface finish, 

dimensional inaccuracies, and increased machining costs. K. Jemielniak emphasized that 

understanding the mechanisms of tool wear, such as abrasion, adhesion, and diffusion, is 

vital for developing effective monitoring strategies [2]. 

Tool monitoring can be broadly categorized into direct and indirect methods. Direct 

methods involve measuring wear using sensors and imaging technologies, while indirect 

methods infer tool condition from process parameters and signals. Direct measurement 

techniques include optical and vision-based systems, which use cameras and image 

processing algorithms to detect wear on the tool surface. S. Y. Liang et al. highlighted 

that these systems offer high accuracy but can be expensive and complex to  

implement [3]. Another direct method is acoustic emission (AE), where sensors detect 

high-frequency sound waves generated during cutting. According to D. E. Dimla, AE is 

effective in identifying tool wear and predicting tool life [4]. 

Indirect measurement techniques include vibration analysis, where vibration sensors 

measure the oscillations of the tool and workpiece. W. T. Chang and S. J. Hsieh found 

that vibration patterns can effectively indicate tool wear and breakage [5]. Cutting force 
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monitoring involves measuring the forces in the cutting process, providing insights into 

tool condition. M. N. Islam et al. demonstrated that variations in cutting forces correlate 

with different wear states [6]. Temperature monitoring uses thermocouples and infrared 

sensors to measure the temperature near the cutting zone. T. Moriwaki and M. Shamoto 

reported that high temperatures are often associated with increased tool wear [7]. 

Recent advancements in technology have led to the development of sophisticated 

monitoring systems that integrate multiple sensors and employ machine learning 

algorithms. Sensor fusion, which combines data from multiple sensors (vibration, AE, 

force, temperature), can provide a more comprehensive understanding of tool condition. 

B. Sick showed that sensor fusion enhances the accuracy of tool wear prediction [8]. 

Machine learning and artificial intelligence techniques, such as neural networks and 

support vector machines, are increasingly used for tool condition monitoring. R. Teti et 

al. demonstrated that machine learning models could predict tool wear with high accuracy 

using sensor data [9]. 

Despite significant advancements, challenges remain in the field of tool monitoring. 

These include the need for real-time monitoring, handling large datasets, and ensuring the 

robustness of monitoring systems in varying operational conditions. X. Li et al. suggested 

that future research should focus on developing more adaptive and intelligent monitoring 

systems that can self-correct and improve over time [10]. 

Effective process monitoring in milling is essential for optimizing machining processes, 

reducing costs, and ensuring product quality. Advances in sensor technology and artificial 

intelligence hold promise for the future of tool monitoring, making it more accurate, 

reliable, and efficient. 

 

 Enhanced Milling Forces Estimation 

To design effective machining systems, it is crucial to obtain accurate quantitative 

predictions of cutting force components in machining operations. These predictions 

provide a framework for determining the power requirements, machined component 

geometrical errors or deviations, stability and chatter vibration characteristics, and 
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strength requirements of cutting tools, jigs, and fixtures. Historically, empirical methods 

have been used to determine forces in practical machining operations [11–14]. In these 

methods, the effects of more apparent process variables, such as feed rate, depth of cut, 

and cutting speed, are related to the experimentally measured average force components 

using curve-fitted (or empirical) equations [15,16]. Semi-empirical or mechanistic 

approaches have been used to forecast the force components for specific cutting 

conditions in actual milling operations, where the radial cut thickness and accompanying 

forces might fluctuate cyclically during cutter rotation [17,18]. End milling has been 

studied using a mechanistic approach to anticipate force variations in both rigid and 

flexible cutter-workpiece systems and to extend its application to forecast associated 

machine components or surface geometrical defects[19,20]. In addition to predicting 

forces, the mechanistic approach can also forecast associated machine component 

deflections and form errors[12,13,21,22]. The cutting force models for the end milling 

process that have been discussed in the literature can be broadly categorized into four 

groups: experimental models [23], mechanics-based analytical force models [24,25], 

mechanistic force models[26], and machine learning-based (ML) data-driven models 

[27–30]. Analytical models based on mechanics require prior information on shear 

angles, mean friction angles, chip flow angles, etc., the accurate estimation of which is 

challenging. Furthermore, the analytical model restricts the practicality of these 

approaches because it requires numerous experiments for various combinations of work 

materials, cutter geometry, and cutting conditions. Mechanistic models meticulously 

forecast cutting forces by dissecting the machining process into precise increments and 

rotation angles, dissecting each flute individually, and segmenting the end mill axially. 

The uncut chip area for each element was determined through geometric calculations and 

correlated with the components of the cutting force using mechanical constants. These 

constants combine the geometry, material properties of the workpiece, and material of the 

cutting tool into an empirical relationship that can be obtained by performing a few tests.  

For a variety of machining processes, Artificial Intelligence (AI)-based algorithms have 

also been used to estimate cutting forces and other process variables, including surface 

roughness, tool life, and wear[31–33], etc.  Fuzzy logic [34], genetic algorithms, Neural 

networks (NN) [35] are a few of the several approaches that can be considered examples 

of AI-based techniques. Tandon et al.[36] expanded the backpropagation algorithm and 
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feed-forward neural network for predicting cutting forces during milling operations. To 

learn the behavior of milling process mechanics, the ML model requires extensive 

training datasets throughout the training (i.e., learning) stage. According to Briceno et al. 

[37] and Dave and Raval[38], the integration of the design of experiments-based strategy 

with ML could significantly reduce the number of tests while improving prediction 

accuracy. When determining the robustness of an ML model, the accuracy and 

dependability of the datasets used during the learning stage are crucial. Radhakrishnan 

and Nandan [28] proposed using filtered data in the training of the ML model and created 

a regression model to remove anomalous datasets from experimental findings. Xu et 

al.[39] presented a model for predicting the cutting force for the end-milling processes of 

complex Cutter Workpiece Engagement (CWEs) based on elementary physical priors. 

The CWE geometry was represented using grayscale images, providing a universal input 

for ForceNet. With ForceNet, the directional cutting force elements are approximated by 

elementary neural networks rather than by deep neural networks, which are typically 

treated as unexplainable black boxes [39]. Furthermore, Xie et al. [40] created images 

called images of comprehensive geometric processing information (ICGPI), which 

include comprehensive geometric and processing information in the machining process. 

The ICGPI is used as an input to design a deep learning network called the Milling Force 

Convolutional Neural Network (MF-CNN), and the three-dimensional instantaneous 

cutting forces are the outputs of their model. Moreover, machine learning and neural 

networks have been used in experimental studies. Kara et al. [41] aimed to predict the 

cutting forces generated during the orthogonal turning of AISI 316L stainless steel by 

using artificial neural network (ANN) and multiple regression algorithms. Vaishnav et al. 

[27] present a method of predicting instantaneous cutting force variation during end 

milling using the mechanistic model and the supervised neural network. However, in this 

method, the cutting force was predicted using only simulation data and machine learning 

algorithms. The outputs of the analytical simulations may have lower accuracy when 

compared to real measurement data because of certain assumptions made during the 

analytical modeling of milling simulations. Furthermore, the exact determination of 

cutting and edge force coefficients requires cumbersome experiments and calibration for 

utilizing them in milling processes. In relation to the previous studies, Wang et al. [42] 

proposed a transfer learning NN model to predict the cutting forces of the milling process. 

In this study, the finite element simulation data were used to train the NN algorithm. 
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Although the proposed transfer network shows higher accuracy in comparison to ordinary 

algorithms, data preparation using finite element methods is time consuming and incurs 

high computational costs for machining simulations.  

Based on the literature mentioned above, it is evident that the majority of AI-based data-

driven models in this context significantly depend on experimental datasets, whereas only 

a few studies utilize simulated datasets because of their perceived unreliability. The 

accuracy of the models relying on experimental datasets is strongly influenced by the size 

of the training dataset. This represents one of the most challenging limitations of ML 

models for industrial applications owing to the high cost and time requirements associated 

with experimental testing. It is important to consider that calibration of the datasets 

employed in the learning or training process affects the accuracy of the ML model. The 

datasets produced by machining tests contain a significant number of outliers arising from 

process disturbances, including vibrations, tool-workpiece defections, and cutting 

temperatures, which negatively affect the overall prediction accuracy of the algorithm. 

The application of ML models is constrained by a large number of datasets and noise in 

the experimental results, making it impossible to deploy them in practice for milling 

processes. Owing to these restrictions, most ML models discussed in the literature 

forecast the average cutting forces rather than instantaneous fluctuations, which do not 

accurately reflect the actual intermittent nature of the milling process. Analytical models 

have the advantage of being able to estimate instantaneous cutting forces for particular 

tools and work materials. However, owing to the simplifications and various assumptions 

during the analytical modeling of the milling mechanics, these models are not very 

accurate. In this regard, the combination of analytical and data-driven machine-learning 

algorithms can compensate for the limitations of both types of algorithms. 

In this study, a hybrid mechanistic and AI-based force model is proposed that incorporates 

analytical models into a data-driven ML approach. Such a hybrid model overcomes the 

limitations of the experimental dataset preparation faced by data-driven AI-based models, 

simultaneously improving the accuracy of the analytical models. The hybrid ML model 

has been trained using analytical simulation (along with the cutting parameters) results as 

inputs and real measured cutting forces as targets. This approach results in increased 

reliability and accuracy for practical applications in the machining industry. Therefore, a 

hybrid force model was developed using mechanistic machining models and AI-based 
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techniques. It is employed to train the machining dataset under various conditions, 

including different materials, such as Al7075-T6, Steel 1050, and Ti6Al4V, as well as 

various tool types. Then, the accuracy and generality of this model were assessed in 

relation to the prediction of the cutting forces under completely different conditions. In 

addition, this hybrid ML model was employed to predict the cutting forces of unseen 

conditions, such as various materials (i.e., Inconel 625 superalloy) and different cutting 

tool types, including end mills with normal and serrated edges with different shapes (i.e., 

cylindrical and tapered end mills with flat, ball, and round noses). 

 

 Milling Process Parameter Identification 

The intensive research on monitoring of machining operations is motivated by the ever-

increasing interest in enhancing manufacturing efficiency, quality, [43,44] and process 

optimization as well as realization of unsupervised manufacturing [45]. The importance 

of unsupervised manufacturing was realized once more by communities at large during 

the COVID-19 pandemic which caused reduced or completely halted production in many 

sectors due to unavailability of the workforce in factories [46]. Consequently, in the realm 

of unmanned manufacturing, identification of real-time anomalies and deviations enabled 

by process monitoring has gained more attention than ever, making the need for real-time 

fault source detection capability particularly critical. 

The milling process monitoring systems can be divided into three main categories: 

experimental, simulation, and data-driven machine learning (ML) based systems [44]. 

Process monitoring traditionally relies on trained systems using sensory data such as 

cutting force, acoustic emission signals, or power consumption. However, collecting, 

analyzing such data, and establishing the acceptable limits is time-consuming, and also 

case and application dependent which cannot be generalized to other [9,47]. In these 

systems, deviations from accepted margins are detected indicating a problem which is 

most often attributed to the tool condition, e.g., excessive wear, however the actual fault 

sources cannot be identified. The primary challenge in these methods lies in the time-

consuming process of setting margins for all tools and conditions without considering 

other potential fault sources. Sensory signal levels are influenced by various factors other 
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than tool sharpness, including material properties, process and machine conditions adding 

complexity to precision monitoring [48]. Limited research has been conducted in the 

second category, i.e., in simulation-based monitoring [49]. The simulation-based 

monitoring approach proposed by Altintas and Aslan [43], relying on predicted and 

measured forces, could accurately detect tool failure where the sudden peaks in cutting 

forces are exclusively associated with the tool condition, which might not always be the 

actual reason. The data-driven monitoring systems rely on analysis of extensive amounts 

of data collected under various machining states requiring very long development time 

during which the system will not be effectively functional [27]. This is because of the fact 

that the occurrence of some of the faults such as machine, process, fixturing or material 

related issues are relatively less frequent than when compared to the faults for the cutting 

tools [9]. Therefore, there is a clear need for a solution which can detect fault sources in 

machining systems accurately in a time efficient manner, both in the development stage 

and during the process in real-time. In this regard, employing a hybrid approach that 

combines physics-based model predictions and experimental data using ML can be 

effective providing rapid and accurate response suitable for real-time applications based 

on a very limited number of measurements. The proposed method in this work has the 

potential to overcome the limitations and problems of previous studies.  

In this study, a hybrid physics-based machine learning (PBML) algorithm is employed to 

identify parameters by utilizing a mechanistic linear edge force model. To enhance the 

accuracy of predicted cutting forces, the model is further refined through the integration 

of ML algorithms using a constrained set of measured cutting forces. In this regard, a 

limited number of tests with the conditions commonly employed in industrial applications 

have been conducted to improve simulation results [50]. Afterwards, enhanced cutting 

force simulations were utilized to create a substantial database instead of relying on the 

measured data. Owing to the very fast generation of large amounts of data with this 

approach, it was possible to develop a large database encompassing a broad range of 

cutting parameters with fine precision levels in a short time. Subsequently, this database 

was employed for precise parameter identification through ML techniques in real-time. 

Therefore, this approach eliminates the necessity for a vast number of measurements yet 

provides remarkably high prediction accuracy. 
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The proposed method is validated experimentally on complex geometries with continuous 

variations in machining conditions where good agreement between predicted and actual 

values are demonstrated. One of the major and novel advantages of the proposed approach 

is its suitability to monitoring systems capable of fault source detection with high 

accuracy in real-time.  

 

 Tool Condition Monitoring (TCM) 

These days, modern manufacturing industry are constantly striving to improve production 

efficiency, reduce costs, and maintain high product quality standards. Cutting tool 

condition is a key factor that influences these objectives in milling processes. Tool 

condition monitoring (TCM) is important because it helps to predict and detect tool faults 

and failure, resulting in reduced machine downtime, improved product quality, and more 

efficient tool replacement procedures. By applying machine learning algorithms for tool 

condition monitoring in milling processes, TCM will be more practical by utilizing data-

driven techniques. 

In subtractive manufacturing, milling is the process by which materials are removed from 

workpieces with rotating cutting tools in order to achieve the desired shapes and features. 

It is known that the performance of cutting tools deteriorates over time as a result of wear, 

breakage, and chipping, which can result in undesirable consequences such as increased 

production costs, a decrease in product quality, and a longer production cycle. In modern 

manufacturing, milling process simulations have become an integral part of the process, 

as they enable engineers to analyze and optimize various aspects of the machining process 

without having to conduct physical experiments. These simulations are particularly 

beneficial when using analytical methods for calculating cutting forces because they 

provide a comprehensive understanding of how the cutting tool interacts with the 

workpiece. A variety of factors are considered in these models, including tool geometry, 

workpiece material properties, cutting speed, feed rate, and depth of cut. Mechanic 

models, oblique cutting theories, and linear edge force models are common analytical 

methods.  The linear edge force model is an analytical method used to predict cutting 

forces in milling processes. Using this simplified approach, it is possible to estimate the 
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force experienced during machining by considering the cutting forces acting along the 

cutting edge of the milling tool. There are certain cases where the linear edge force model 

is particularly useful, such as when cutting conditions are stable and the cutting-edge 

engagement with the workpiece is relatively constant. 

The linear edge force model [51] is based on the idea that the cutting forces acting on the 

tool can be represented as a linear distribution of force components along the cutting edge. 

These force components typically include the tangential force (Ft), radial force (Fr), and 

axial force (Fa). The model divides the cutting edge into small segments, and the forces 

acting on each segment are calculated based on the chip thickness, cutting speed, and 

other relevant parameters. 

The linear edge force model offers several advantages in milling process simulations, 

such as its simplicity and relatively low computational requirements. This model can 

provide a reasonable estimation of cutting forces, which can be used for optimizing 

machining parameters, tool geometries, and cutting strategies. However, it is essential to 

consider the limitations of the linear edge force model, such as its reliance on the 

assumption of constant cutting-edge engagement and stable cutting conditions. 

Traditionally, TCM has been approached through various methods such as direct 

observation, indirect monitoring using sensors, and statistical process control. While 

these methods have proven useful to some extent, they often suffer from limitations such 

as subjectivity, low sensitivity (small changing in input parameters), and a lack of 

adaptability to varying cutting conditions. Implementing tool condition monitoring in 

milling operations can lead to several benefits, such as reduced machine downtime, 

improved product quality, extended tool life, and optimized tool replacement scheduling. 

Additionally, TCM can be integrated with Industry 4.0 technologies, such as internet of 

things(IoT) and cloud computing, to enable remote and centralized monitoring of multiple 

milling machines in a manufacturing facility. In recent years, the emergence of machine 

learning algorithms has opened new approaches for TCM, offering a more sophisticated 

and data-driven approach to the problem. 

As machine learning algorithms are capable of processing large amounts of data and 

learning complex patterns, they are particularly suitable for TCM applications involving 

multiple factors, such as cutting forces, vibrations, and acoustic emissions. In order to 
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prevent and detect tool failure more accurately and in real-time, machine learning models 

are trained on simulation data from milling processes. This allows tool maintenance and 

replacement to be approached in a more proactive manner. 

This paper will investigate various machine learning algorithms, such as Multiple Linear 

Regression, K-Nearest Neighbor (KNN), and Random Forest, in the context of TCM for 

milling processes. The performance of these algorithms has been assessed in terms of 

accuracy, sensitivity, and robustness, and provide recommendations for their practical 

implementation in industrial settings. 

Typically, measuring cutting forces serves as an indirect approach for real-time tool 

condition monitoring [52]. The amplitude of cutting force is used in milling operations as 

a means of monitoring flank wear. In some studies, online tool condition monitoring 

systems based on cutting forces has been developed [53]. During the milling process, tool 

wear was monitored by measuring the average cutting force, revealing that the variation 

in cutting force consistently increased throughout the machining process. This 

observation confirmed that cutting tools progressively lost their sharp edges and became 

worn [54,55]. Artificial Neural Network (ANN) based tool condition monitoring systems 

were developed using cutting force signals in milling processes to predict flank wear and 

surface roughness, indicating that cutting force signals increased alongside tool wear [56]. 

Tool wear in face milling was estimated using the Normalized Cutting Force (NCF) 

indicator and the Torque-Force Distance (TFD) indicator. The TFD method was found to 

be superior to NCF, as it remained unaffected by cutting parameters and their interactions 

[57]. An analysis of wear progression and changes in cutting force was conducted for 

coated carbide tools. This study illustrates that flank wear was the primary failure mode 

and had a significant impact on the tool's life [58]. Tool wear in the milling process was 

monitored using cutting force as the monitoring signal and the Continuous Hidden 

Markov Model (CHMM) as a diagnostic technique [59]. By tracking the tangential and 

radial cutting force coefficients during the end milling process, tool wear was monitored. 

The behavior of these cutting force coefficients was found to be independent of cutting 

conditions and correlated with tool wear [60]. Tool Condition Monitoring systems 

(TCMs) for Glass Fiber Reinforced Plastic (GFRP) composite end milling were 

developed using cutting force signals and the Adaptive Network-based Fuzzy Inference 

System (ANFIS). The findings confirmed that ANFIS-based feed force data accurately 
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predicted tool wear [61]. 

The tool condition was predicted using various decision-making algorithms based on the 

extracted features. Decision-making algorithms play a crucial role in the development of 

Tool Condition Monitoring systems (TCMs). A wide range of techniques has been 

explored to automate TCMs, such as Probabilistic Neural Network (PNN) [62], Support 

Vector Regression (SVR) [56], Support Vector Machine (SVM) [63], pattern recognition, 

Artificial Neural Networks (ANN) [64,65], fuzzy logic [66,67], and genetic algorithms 

[68]. More recently, researchers have employed the Hidden Markov Model [59], ANFIS 

[61], and Decision Trees [69] to predict tool conditions.  

In this work the data mining freeware named ‘WEKA’ was used for feature classification. 

Among all classifiers, the random forest classifiers yield the highest classification 

accuracy. As a result, this study compared tree classifiers to determine the best among 

them. Other algorithms, such as the KNN algorithm, Naïve Bayes, and LWL, can also be 

employed if they offer superior classification accuracy. In this case, tree classifiers, 

including J48, Logistic Model Tree, and Random Forest algorithms are used to classify 

different milling cutter conditions based on a 10-fold cross-validation. Classification 

validation is demonstrated using a confusion matrix, as it effectively categorizes distinct 

tool conditions. 

This study presents a novel approach to tool-related fault detection in milling processes 

by leveraging machine learning algorithms and simulation data. Utilizing machine 

learning algorithms typically requires a substantial number of tests with various cutting 

parameters to achieve satisfactory results, which can consume significant time and 

financial resources. By training machine learning algorithms with milling process 

simulation data, the drawbacks associated with conducting extensive cutting tests have 

been effectively circumvented. To accomplish this, the simulations generate a 

comprehensive milling process database by performing numerous simulations with 

varying input parameters. Subsequently, the machine learning algorithms were trained 

using these databases. Finally, this method can identify potential tool-related faults in 

milling processes. As demonstrated in the results section of this study, the proposed 

algorithm exhibits a high degree of accuracy in detecting various tool-related faults. 
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 Tool Wear Monitoring 

Increasing demands of process automation for un-manned manufacturing have attracted 

many researchers to the field of online monitoring of machining processes. Extensive 

research is underway globally in the area of online tool condition monitoring systems 

(TCMS) [48,70], highlighting its critical role in modern industrial setups. Among the 

challenges faced, tool wear emerges as the most undesirable characteristic of machining 

processes. It adversely affects tool life, which is paramount in metal cutting because of 

its direct impact on the surface quality of the machined products, their dimensional 

accuracy, and consequently, the economics of machining operations. This underscores 

the necessity of tool wear monitoring not just as a routine procedure, but as an essential 

strategy to maintain productivity, tool life, and product quality. By effectively monitoring 

tool wear, manufacturers can prevent extensive damage to machine tools, reduce costly 

downtime, and minimize the number of scrapped components. Therefore, developing and 

implementing precise methods for cutting tool wear sensing are crucial, ensuring the 

optimum use of cutting tools and maintaining operational efficiency and reliability.  

Tool wear measurements can be categorized into two primary types: direct and indirect 

measurement methods. Direct measurement techniques are one of the primary methods 

used to assess tool wear. These include using toolmaker's microscopes [71], which 

magnify worn areas for accurate measurement, and optical microscopy, which allows for 

close observation of the wear on the cutting edges. Additionally, scanning electron 

microscopy (SEM) can provide detailed images of tool surfaces at a microscopic level, 

enabling precise wear analysis [72]. However, indirect measurement techniques are also 

popular due to their non-invasive nature. Changes in cutting forces, for example, can be 

an indicator of tool wear. As the tool wears, the forces required to cut the material increase 

[73–75]. Monitoring the power consumption of a machine tool provides indirect 

indications of tool wear; more power is generally needed as the tool degrades [76]. 

Vibration analysis [77,78] based on short-time Fourier transform (STFT) and acoustic 

emission sensors are other popular methods where increased vibration or changes in the 

high-frequency noises produced during the cutting process can suggest tool degradation 
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[79,80]. Acoustic emission (AE) sensors operate by detecting the high-frequency energy 

waves generated when materials undergo deformation or fracture. These sensors capture 

the sound waves emitted during processes like cutting, allowing for the monitoring of tool 

conditions and the early detection of wear or failure [81]. Choosing the most preferred 

sensor for indirect tool wear measurement largely depends on the specific application, 

machining conditions, and the type of information required. Among the presented 

sensors, acoustic emission and force sensors are utilized more commonly. Unlike acoustic 

emission sensors, which can be sensitive to background noise and may require complex 

setups to differentiate relevant signals, force sensors are generally more robust and less 

affected by external noise. This makes them particularly effective in industrial 

environments where numerous disturbances might otherwise complicate data accuracy. 

In many industrial applications, the detection of significant wear before tool failure is 

more critical than the early detection of minor wear. Force sensors [82,83] provide this 

by measuring changes in cutting forces that directly correlate with the wear state of the 

tool, offering a practical approach to preventing catastrophic failures and optimizing 

maintenance. In this study, the impact of tool wear on cutting forces was explored, and 

force sensors were utilized for experimental validation. 

Tool wear modeling and prediction involve various approaches, each designed to 

anticipate the condition and tool life under different operating circumstances. The main 

tool wear modeling approaches which are utilized in industries are empirical, finite 

element analysis (FEA)-based, analytical, statistical and machine learning (ML) models. 

Empirical models are based on experimental data and observations [84,85]. These models 

often use simple mathematical formulas derived from historical tool wear data to predict 

future wear. They are straightforward but can be limited by their dependence on specific 

measured conditions. FEA-based models emphasize mechanisms of wear, such as 

abrasion, adhesion, and diffusion, to model the tool wear process accurately. These 

models include the interactions between the tool and workpiece at a microscopic level, 

such as using FEA to predict stress and strain patterns that influence wear [86,87]. 

Moreover, Yen et al. [88] utilizes FEA to calculate the increase in flank wear width after 

a specified cutting time, providing a detailed analysis of wear rates and progression based 

on simulated cutting conditions. However, this method leads to high demands on 

computational resources and extended processing times, which can be impractical for 
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real-time applications. The accuracy of FEA predictions heavily depends on the material 

models used. For tool wear, the material behavior under high stress, high temperature, 

and high strain rates must be accurately modeled, which can be challenging due to the 

lack of reliable material data under such extreme conditions. Huang et al. [89] developed 

a comprehensive model for predicting cutting forces in hard turning by extending a two-

dimensional mechanistic force model to consider three-dimensional chip formation 

considering wear effects. The model incorporates the impact of flank wear by adapting a 

worn tool force modeling approach to three-dimensional contexts, considering process 

parameters like low feed rates, small depths of cut, and large tool nose radii. Their model, 

however, did not account for the third deformation zone and the influence of edge forces. 

Additionally, it only considered specific machining conditions, such as hard turning. 

Some other studies have been done based on analytical tool wear estimations [90]. 

Analytical cutting tool wear prediction based on the multi-stage Wiener process was 

presented by Wang et al. [91]. In this study, the degradation rates of cutting tools are 

considered to change in three stages based on the typical cutting tool wear curve model. 

The parameter estimation for each stage of the cutting tools' degradation processes is 

independently carried out using the Expectation-Maximization (EM) algorithm. Another 

method for tool wear modeling is prediction using data-driven ML algorithms [92,93]. 

Gouarir et al. [32] presented a ML system which is used to monitor the progression of 

tool flank wear utilizing force sensors. In this study, the experiments were conducted 

using dry machining conditions with an uncoated ball endmill and a stainless-steel 

workpiece. Predictions from the ML model were derived from a comprehensive database 

that includes a huge number of experiments. Moreover, Li et al. [94] introduced a tool 

wear prediction model that utilized an Improved Particle Swarm Optimization (IPSO) 

technique combined with a Convolutional Neural Network (CNN) and a Bidirectional 

Long Short-Term Memory (BiLSTM) network. One of the most significant disadvantages 

of predicting tool wear using ML algorithms is the heavy reliance on large volumes of 

high-quality data for training which are time consuming. Machine learning models, 

particularly those that are complex, require diverse and extensive datasets to develop 

accurate predictions, and any deficiencies in data quantity or quality can lead to poor 

model performance and unreliable predictions. Collecting these data involves extensive 

measurements that are both costly and time-consuming. 
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In this study, a hybrid physics-informed machine learning model (PIML) was developed 

to address the identified challenges. This innovative approach not only enhances the 

precision of the analytical model but also eliminates the extensive data collection 

typically required by conventional data-driven ML algorithms. To achieve this, initially 

a thermo-mechanical force model was established to calculate the cutting forces in the 

turning process, considering the effects of tool wear, nose radius, and hone radius. The 

advantages of the proposed model compared to previous ones include accounting for local 

pressure and shear stress distribution along the cutting edge in various deformation zones. 

This provides a more nuanced understanding of how the material behaves during cutting, 

potentially leading to more accurate predictions of cutting forces. Also, the model 

accounts for the effect of edge forces and flank wear on the cutting forces. This is a 

significant improvement, as edge forces and flank wear can significantly impact the 

cutting process. By first enhancing the model's accuracy with PIML algorithm, it was 

employed to create a training dataset for a new complementary reverse ML model, to 

predict tool wear based on the cutting forces, machining parameters and tool geometry. 

This streamlined tool wear prediction by eliminating the need for extensive and resource-

consuming experimental testing. The final phase of this study involved the experimental 

validation of the method, which confirmed a robust agreement between the modeled 

results and the actual experimental data, thus underscoring the effectiveness of this hybrid 

approach in enhancing predictive reliability and reducing the need for extensive data 

collection typically required by traditional ML models in tool wear analysis. 
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3. IMPROVING MILLING FORCE PREDICTIONS: A HYBRID APPROACH 

INTEGRATING PHYSICS-BASED SIMULATION AND MACHINE 

LEARNING FOR REMARKABLE ACCURACY ACROSS DIVERSE 

UNSEEN MATERIALS AND TOOL TYPES 

 Machine Learning Algorithms (ML) 

3.1.1. Support Vector Regression (SVR)  

Support Vector Machines (SVM) in their contemporary manifestation can be traced back 

to the collaborative efforts of Vapnik and colleagues at AT&T Bell Laboratories during 

the 1990s. Initially introduced for binary classification challenges [95], SVM swiftly 

garnered recognition within the machine learning community, notably distinguished by 

its accomplishments in Optical Character Recognition (OCR). Support Vector Machines 

are fundamentally based on the identification of a hyperplane that serves as the decision 

boundary. These hyperplanes are determined by the resolution of the quadratic 

programming problem. The optimization problem aims to find the hyperplane that 

maximizes the margin while guaranteeing the accurate classification of the maximum 

number of training points. Notably, the so-called kernel trick, a technique recognized for 

mitigating computational costs, facilitates the application of SVM, even in scenarios 

characterized by nonlinearity. The efficacy of SVM extends beyond binary classification 

problems, demonstrating noteworthy performance in diverse machine learning 

applications. In instances of nonlinear classification challenges, the method's proficiency 

remains robust, underscoring its versatility.  

Support Vector Regression (SVR), which shares a foundational theoretical framework 

with SVM, is a supervised learning paradigm embraced particularly in scenarios where 

the target variable assumes numerical values [47,96]. The objective of SVR is to find a 

function that approximates the relationship between the input features (independent 

variables) and target output (i.e., the dependent variable) while minimizing the prediction 

error. This function approximation problem is also considered as a quadratic optimization 

problem, which aims to find a hyperplane that, maximizes the margin while still ensuring 
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that the deviations of the data points from the hyperplane (within a certain range, 

determined by the 𝜀 parameter) are minimized. In the context of SVR, the margin includes 

a tolerance margin (managed by the 𝜀 parameter) that allows points to fall inside the 

margin without incurring penalties in addition to the distance between the hyperplane and 

the support vectors. Because of this flexibility, SVR may concentrate on fitting most of 

the data while allowing some points to stray within a predetermined range. The solution 

of the following optimization model yields the approximated function used in the 

regression:  

𝑚𝑖𝑛𝑤,𝑏,𝜉,𝜉∗
1

2
‖𝑤‖2 + 𝐶∑(𝜉𝑖 + 𝜉𝑖

∗)

𝑛

𝑖=1

 

𝑠. 𝑡. 

𝑦𝑖 − (𝑤.𝜙(𝑥𝑖) + 𝑏) ≤ 𝜀 + 𝜉𝑖 

(𝑤. 𝜙(𝑥𝑖) + 𝑏) − 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖
∗ 

𝜉𝑖, 𝜉𝑖
∗ ≥ 0 

(1) 

where 𝑤 is the weight vector which is perpendicular to the separating hyperplane (i.e., 

the decision boundary), 𝑏 is the bias term, 𝜉𝑖 and 𝜉𝑖
∗ are the slack variables, 𝜙(𝑥𝑖) is the 

feature vector transformed into a higher dimensional space and ". " is the dot product. The 

solution of this optimization problem can be obtained analytically only for small sample 

sizes and for most of the real-world cases various numerical techniques are used to 

determine the optimal 𝑤 and 𝑏, and for an unknown data vector 𝑢 (i.e., the test data), the 

dependent target output is calculated as 𝑦 = 𝑤. 𝑢 + 𝑏. For further details regarding SVR, 

please refer to [97]. 

3.1.2. Least Square Gradient Boosting Algorithm (LSBoost) 

In this study, we incorporate two distinct ensemble learning methodologies into our 

analytical framework. Specifically, we employed the Least Square Gradient Boosting 

(LSBoost) and Random Forest (RF) algorithms. Ensemble learning methods, 

distinguished by the integration of multiple foundational models known as base learners, 

are prevalent in contemporary machine-learning paradigms. This paradigm draws 

inspiration from the theoretical underpinnings articulated in Condorcet's Jury Theorem 
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dating back to 1785 (for a detailed discussion on the history and assumptions of the 

theorem, please refer to [98]. The fundamental premise lies in the recognition that while 

an individual weak learner is susceptible to misguidance, the collective robustness of an 

ensemble, comprising such weak learners, serves to mitigate susceptibility to erroneous 

outcomes. In other words, a crowd is smarter than the individuals that are in the crowd. 

Various ensemble learning algorithms, such as randomization, bootstrap aggregation (i.e., 

bagging), boosting, and stacking, have been proposed to enhance the predictive 

performance and resilience in machine learning applications by leveraging the combined 

insights of diverse models. Specifically, boosting strategically addresses the identification 

and rectification of errors made by the existing models through an iterative generation 

process. Each new model is influenced by the mistakes of its predecessors, assigning 

additional weights to previously misclassified observations. The algorithm introduces a 

nuanced dimension to model construction, allowing subsequent models to specialize as 

experts in addressing misclassified cases. This diversification is achieved through a 

voting or averaging mechanism, in which the ensemble's collective wisdom is harnessed, 

with the influence of each model being differentially weighted. This approach often yields 

a transformative impact on algorithmic performance, emphasizing collaborative learning 

from diverse models to enhance the predictive accuracy and overall robustness. 

The concept of boosting weak learners to create a strong learner originated in Kearns and 

Valiant [99], and the first polynomial-time boosting algorithm was introduced by 

Schapire [100]. In the original boosting algorithm, the dataset is partitioned into three sets 

(𝐷1, 𝐷2, 𝐷3). The first classifier (ℎ1) is trained using the first dataset (𝐷1). Subsequently, 

the second dataset (𝐷2) serves as the test data for the first classifier (ℎ1). Misclassified 

instances from the training data (𝐷1) and correctly classified instances from the test data 

(𝐷2) are then used to train the second classifier (ℎ2). The third dataset (𝐷3) is employed 

as the test data for both the first and second classifiers (ℎ1 and ℎ2). Instances where these 

classifiers disagree are identified, and the third classifier (ℎ3) is trained exclusively on 

these cases. For the new test data, the first two classifiers are initially utilized, and if they 

agree, their decision is accepted. If they disagree, the final decision is determined using 

the third classifier.  

Subsequently,Freund and Schapire [101] introduced one of the most famous boosting 

algorithms, AdaBoost, an abbreviation for Adaptive Boosting that refines the boosting 
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process by repeatedly using the same training set. AdaBoost extends the methodology to 

combine an arbitrary number of base learners, eliminating the original three-set constraint 

and showcasing the adaptability and scalability of the boosting framework. In brief, 

AdaBoost assigns weights (which correspond to the probability of consideration by the 

current weak learner) to the training instances and adjusts these weights during each 

iteration to focus on examples that are misclassified by the current set of weak classifiers. 

The final model is a weighted sum of the weak classifiers, where the associated weights 

are determined based on the predictive performance of the classifiers. 

Friedman [102] extended the AdaBoost framework by introducing Gradient Boosting 

Machines, which are commonly referred to as gradient boosting. Given a 

dataset {(𝑥𝑖, 𝑦𝑖)}𝑖=1
𝑁 , conceptualizes the learning problem as an optimization model, 

where the primary objective is to minimize a differentiable loss function, denoted 

as 𝐿(𝑦𝑖, 𝐹(𝑥)). In regression scenarios, the loss function is typically represented by 0.5* 

Mean Squared Error (MSE), which is defined as half of the sum of squared residuals (𝑟), 

expressed as the difference between the observed value (𝑦𝑖) and the predicted value (𝑦𝑖̂ =

𝐹(𝑥)). Note that, in the loss function MSE is scaled with 0.5 due to mathematical 

convenience.  LSBoosting stands out as a prominent gradient boosting algorithm tailored 

for regression tasks when the loss function is 0.5*MSE. 

Gradient Boost, with 𝑀 stages, incorporates a new weak learner (ℎ𝑚(𝑥; 𝜃)) at each stage 

to improve the loss function through a gradient descent-like procedure. Notably, in 

Gradient Boost, the target output for the weak learner ℎ𝑚(𝑥) is not the original output of 

the training data (𝑦𝑖) but rather the residuals (𝑟𝑖). Consequently, for each training 

data, 𝑥, the target output (i.e., the predicted value) at stage 𝑚 is determined based on this 

residual information as follows 

𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + 𝛾𝑚ℎ𝑚(𝑥; 𝑎𝑚) (2) 

where ℎ𝑚(𝑥; 𝑎𝑚) corresponds to the output of the 𝑚𝑡ℎ weak learner trained for the pseudo 

residuals (𝑟𝑚) obtained for the 𝑚𝑡ℎ stage, 𝑎𝑚 correspond to the parameters of the learner) 

and 𝛾𝑚 is the scaling weight (referred to as the learning rate or step size) associated with 

ℎ𝑚(𝑥; 𝑎𝑚). It is important to note that if 0.5*MSE is employed as the loss function, then 

𝑟𝑚 are indeed the residuals. However, for other loss functions, like MSE, 𝑟𝑚 would be 2 



29 

 

times the residuals, hence the term pseudo residuals. In contrast to the AdaBoost 

algorithm, where weights are determined by focusing on misclassified instances, the 

Gradient Boost algorithm updates weights by calculating the negative gradient of the loss 

function with respect to the prediction for each instance. This characteristic gives the 

algorithm its name—Gradient Boosting. It's worth mentioning that when the loss function 

is 0.5*MSE, negative gradient becomes 𝑟𝑖𝑚.  

Algorithm 1 presents the steps of the LSBoost. It initiates by assigning 𝐹0(𝑥), that 

minimizes the loss function, as the prediction for each instance (line 1). Since the loss 

function for LSBoost involves minimizing MSE (or half of it), the prediction 𝐹0(𝑥) is set 

to be the mean of the output values of the training data (𝐹0(𝑥) = 𝑦̅). Subsequently, a loop 

is initiated to execute the following steps for each stage 𝑚 (line 2). The loop begins with 

computing the negative gradients (𝑟𝑖𝑚) for each data point (𝑥𝑖). Note that since the loss 

function is half of MSE, the gradient with respect to the predicted values is the negative 

of the residual  (𝑟𝑖 = 𝑦𝑖 − 𝑦𝑖̂) (line 3). Next, a weak learner is trained to fit the determined 

negative gradients (ℎ𝑚(𝑥; 𝑎𝑚)) (line 4). The optimal step size 𝛾𝑚 is determined which 

minimizes the lost function (line 5) and ultimately the target outputs are updated (line 6).  

Algorithm : Least Square Gradient Boosting 

1: 𝐹0(𝑥) = 𝑎𝑟𝑔𝑚𝑖𝑛𝐹(𝑥)∑𝐿(𝑦𝑖, 𝐹(𝑥𝑖))

𝑁

𝑖=1

= 𝑦̅ 

2: 𝐹𝑜𝑟 𝑚 = 1 𝑡𝑜 𝑀 𝑑𝑜 

3: 𝑟𝑖𝑚 = − [
𝜕𝐿(𝑦𝑖, 𝐹(𝑥𝑖))

𝜕𝐹(𝑥𝑖)
]
𝐹(𝑥)=𝐹𝑚−1(𝑥),

= 𝑦𝑖 − 𝐹𝑚−1(𝑥𝑖)    ∀𝑖 = 1, . . , 𝑁 

4: 𝑎𝑚 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑎∑[𝑟𝑖𝑚 − ℎ𝑚(𝑥𝑖; 𝑎𝑚)]
2

𝑁

𝑖=1

 

5: 𝛾𝑚 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛾∑[𝑦𝑖 − ( 𝐹𝑚−1(𝑥) + 𝛾ℎ𝑚(𝑥𝑖; 𝑎𝑚))]
2

𝑁

𝑖=1

 

6: 𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + 𝛾𝑚ℎ𝑚(𝑥; 𝑎𝑚) 
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7: End For 

8: End Algorithm 

 

The boosting framework was then expanded by scholars and industry professionals, 

giving rise to well-known and powerful algorithms like XGBoost [103] , LightGBM 

[104] and others that are used in many different applications.   

3.1.3. Random Forest (RF) 

The Random Forest algorithm employs a combination of diverse randomization 

techniques to create a resilient ensemble of decision trees, enhancing the overall 

robustness of the model. Decision trees, fundamental in supervised learning for tasks such 

as classification and regression, have a rich history, with the earliest regression trees 

introduced as Automatic Interaction Detection (AID) by Morgan and Sonquist [105]. 

Notable among tree-based learning algorithms are Classification and Regression Trees 

(CART) by Breiman et al. [106] and C4.5 by [107], which is an extension of the Iterative 

Dichotomizer version 3 (ID3) [108]. While decision trees are esteemed for their 

interpretability, speed, and widespread software availability, their predictive performance 

is often considered suboptimal. 

The evolution of decision trees has been guided by a quest for improved performance and 

robustness. As decision trees can exhibit variability with different training samples, the 

manipulation of data introduces diversity in generating decision trees, which lays the 

groundwork for ensemble learning. Breiman , which introduced Bootstrap Aggregating, 

leverages this characteristic to create an ensemble by training each tree on a randomized 

subset of the data. Concurrently, Ho [110] advocated for a random selection of features 

when growing trees, enhancing diversity. Amit and Geman [111] extended the evolution 

by using a random subset of features at each node, while  

Dietterich [112] proposed selecting one of the best features randomly among a set of 

promising features at each node. Breiman [109] suggested injection of random noise and 

creating new features during tree growth.  

All these attempts of amalgamating multiple trees with varied perspectives opted for 
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developing a more potent and accurate predictive model. The primary incentive behind 

this lies in the recognition that, while decision trees may be considered weak learners 

individually, their combined influence within the ensemble synergistically enhances the 

overall predictive capability and robustness of the model. Breiman [113] introduced the 

Random Forest (RF) algorithm which encapsulates the evolution of decision trees into a 

robust ensemble model. RF algorithm builds 𝑀 decision trees, each grown from a subset 

(𝐷𝑚) sampled with replacement from the training data. At each node, the algorithm 

selects the best split from a random subset of 𝐹 features. Each tree grows to its maximum 

extent without pruning, contributing to the diversity of the ensemble. The final prediction 

is made by aggregating the outputs of all 𝑀 trees, employing a majority vote for 

classification or averaging for regression. Below is the RF algorithm: 

Algorithm: Random Forest 

Given a training data 𝐷 

1. For 𝑚 = 1 to 𝑀 do: 

1) Build subset 𝐷𝑚 by sampling with replacement from 𝐷 

2) Learn tree 𝑇𝑚 from 𝐷𝑚 

1) At each node: 

• Choose best split from random subset of 𝐹 feature 

2) Each tree grows to the largest extend, and no pruning 

2. Make predictions according to majority vote (for classification) or mean (for 

regression) of the set of 𝑚 trees. 

This algorithm introduces randomness in two ways: by randomly sampling features at 

each split and by training multiple trees on different bootstrap samples of the training 

data. In conclusion, Random Forest stands as a testament to the evolution from traditional 

decision trees [114], incorporating randomness and diversity to create a powerful 

ensemble learning method that excels in handling complex datasets and achieving high 

predictive performance [107]. 

3.1.4. Hyperparameters Optimization 

A machine learning model's performance is strongly affected by hyperparameter values. 

Among different optimization algorithms, Bayesian optimization, grid search and random 
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search are the most widely used techniques for hyperparameter optimization[115,116]. In 

grid search, an optimal set of hyperparameters is chosen by taking into account all 

possible combinations of hyperparameter values. In spite of covering the entire search 

space, this approach is computationally expensive and inefficient since the number of 

models to be trained increases exponentially with the number of hyperparameters. Grid 

search is therefore suitable for ML models with one or two hyperparameters to optimize. 

In the random search, instead of testing each hyperparameter individually, random 

combinations of the hyperparameters are examined, resulting in a faster response time. 

However, the obtained solution does not necessarily represent the best possible one. Both 

the random search and the grid search algorithms are blind methods, meaning that the 

previous trial data is not used to select the next hyperparameter values. As opposed to 

these techniques, Bayesian optimization keeps track of all prior trials to select the next 

set of hyperparameters, instead of blindly searching the domain space.  Therefore, in the 

present study the Bayesian optimization algorithm was implemented for hyperparameter 

optimization of the ML models. This algorithm includes two key elements: a probabilistic 

model for the objective function, and an acquisition function to assess the quality of an 

evaluation point and determine the subsequent query point. To optimize the objective 

function, an initial probability distribution (the prior) is generated as the starting point of 

the optimization process. Whenever an observation of the objective function f(x) is made 

at an evaluation point x, the distribution of probable functions (now known as posterior) 

narrows. In a subsequent step, using the posterior distribution, an acquisition function is 

constructed to identify the upcoming inquiry point. As a result, a probabilistic model 

produces a Bayesian posterior probability distribution which defines the potential f(x) 

values at x. Following the observation of f(x) at a new candidate point, a new posterior 

distribution is generated. The acquisition function then selects the next query point based 

on the current posterior distribution. Among various probabilistic models for objective 

function estimation, Gaussian Process Regression (GPR), a kind of kernel-based model, 

has been extensively used. The prior distribution of objective function is a Gaussian 

process with covariance kernel function k(xi ,xj|θ) and mean m(x|θ). 

Under the assumption of additional Gaussian noise with variance σ2 in the observations, 

the prior distribution will have a covariance of K((X,X|θ) + σ2I). By determining the 

kernel parameter θ and noise variance σ2, a GPR model can be fitted to the observations. 
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In this study ARD Matérn 5/2 kernel function was used for Bayesian optimization 

algorithm, as explained by equation 3 [117]: 

𝑘(𝑥𝑖 , 𝑥𝑗|𝜃) =  𝜎𝑓
2 𝑒𝑥𝑝(−√5𝑟) (1 + √5𝑟

+
5

3
𝑟2) 

𝑟 = √∑
(𝑥𝑖𝑚 − 𝑥𝑗𝑚)2

𝜎𝑚2

𝑑

𝑚=1

 

 

(3) 

The second essential component of the Bayesian optimization algorithm is the acquisition function, which 

is used to judge the “merit” of a point x based on its posterior distribution. In this study, the 'expected-

improvement' function was used as the acquisition function, as explained by equation 4: 

𝐸𝐼(𝑥, 𝑄) = 𝐸𝑄(max (0,𝑚𝑄(𝑥𝑏𝑒𝑠𝑡) − 𝑓(𝑥) (4) 

 Hybrid Milling Force Prediction Methodology 

As discussed in previous sections, the main aim of this study is increasing the accuracy 

of the mechanistic milling models. For this purpose, machine learning algorithms were 

trained with dataset considering the cutting parameters and corresponding simulation data 

as inputs, and real measurement as target values. Afterwards, the improved cutting force 

predictions are obtained using trained machine learning model. In this regard, different 

ML algorithms (such as random forest, LSBoost and support vector regression) were 

implemented, and the prediction accuracy of these models were evaluated in terms of the 

RMSE and R2 values. It should be mentioned that before regression analysis, the 

hyperparameters optimization was performed using Bayesian optimization method. 

Furthermore, the developed models were used to enhance the simulation accuracy of a 

completely different material. For this purpose, the ML models were trained by dataset 

of Aluminum 7075-T6, Steel 1050 and Ti6Al4V. Meanwhile, the trained models were 

employed to predict the cutting forces of Inconel 625, as an unseen dataset. In addition, 

this method was utilized for special milling tools including cylindrical, and tapered end 

mills with flat, ball and round noses. A schematic representation of the proposed ML 

model is illustrated in Figure 1. 
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Figure 1. Schematic representation of the hybrid ML model. 

The simulated cutting forces used for ML training were obtained utilizing linear edge 

force model, as described in the following section.  

 

3.2.1. Milling Force Modeling  

As previously discussed in the preceding section, the first step in simulating cutting forces 

during milling with various types of end mills involves modeling the mechanics of 

milling. This study utilizes a general geometric model for commonly used end mills 

proposed by Tehranizadeh et al. [118]. The models considered in this research encompass 

cylindrical and tapered end mills with flat, ball, and round nose shapes. Additionally, 

various types of cutting edges, both straight and serrated, with circular, sinusoidal, and 

trapezoidal serration waveforms, are employed in this investigation. To formulate milling 

forces in this study, the linear edge force model [51] is employed. The initial step in the 

calculation procedure involves acquiring differential forces in the axial, radial, and 

tangential directions for every tooth on each axial element at any angular position of a 

cutting tool. The chip thickness in each element of each tooth is obtained using the method 

described in [118].  

The cutting force coefficients, 𝐾𝑟𝑐, 𝐾𝑡𝑐 and 𝐾𝑎𝑐, utilized in the calculation of cutting 

forces, are determined by applying orthogonal cutting data and employing the oblique 
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cutting transformation method described by Budak et. Al (1996). This method takes into 

account the obtained local chip thickness and local cutting angles using the approach 

detailed by [118,119]. 

The total forces in 𝑥, 𝑦, 𝑧 directions for angular orientation of the tool can be obtained by 

summation of the elemental differential forces: 

𝐹𝑥(𝜑) =∑∑[−𝑑𝐹𝑟(𝑖, 𝑗, 𝜑𝑖𝑗) 𝑠𝑖𝑛(𝜑𝑖𝑗) 𝑠𝑖𝑛( 𝜅𝑖𝑗)

𝑁𝑡

𝑗=1

𝑁

𝑧=0

− 𝑑𝐹𝑡(𝑖, 𝑗, 𝜑𝑖𝑗) 𝑐𝑜𝑠(𝜑𝑖𝑗)

− 𝑑𝐹𝑎 (𝑖, 𝑗, 𝜑𝑖𝑗)𝑐𝑜𝑠( 𝜅𝑖𝑗) 𝑠𝑖𝑛(𝜑𝑖𝑗)] 

𝐹𝑦(𝜑) =∑∑[−𝑑𝐹𝑟(𝑖, 𝑗, 𝜑𝑖𝑗) 𝑐𝑜𝑠(𝜑𝑖𝑗) 𝑠𝑖𝑛( 𝜅𝑖𝑗)

𝑁𝑡

𝑗=1

𝑁

𝑧=0

+ 𝑑𝐹𝑡 (𝑖, 𝑗, 𝜑𝑖𝑗)𝑠𝑖𝑛(𝜑𝑖𝑗)

− 𝑑𝐹𝑎(𝑖, 𝑗, 𝜑𝑖𝑗) 𝑐𝑜𝑠( 𝜅𝑖𝑗) 𝑐𝑜𝑠(𝜑𝑖𝑗)] 

𝐹𝑧(𝜑) =∑∑[𝑑𝐹𝑟(𝑖, 𝑗, 𝜑𝑖𝑗) 𝑐𝑜𝑠( 𝜅𝑖𝑗) − 𝑑𝐹𝑎(𝑖, 𝑗, 𝜑𝑖𝑗) 𝑠𝑖𝑛( 𝜅𝑖𝑗)]

𝑁𝑡

𝑗=1

𝑁

𝑧=0

 

(5) 

where 𝑑𝐹𝑟(𝑖, 𝑗, 𝜑𝑖𝑗) , 𝑑𝐹𝑡(𝑖, 𝑗, 𝜑𝑖𝑗) and 𝑑𝐹(𝑖, 𝑗, 𝜑𝑖𝑗)𝑎are the differential forces in radial 

and tangential and axial directions, for each tooth (𝑗) on each axial element (𝑖) at any 

angular position (𝜑𝑖𝑗) of a cutting tool (Figure 2). 𝜅𝑖𝑗is the axial immersion angle, 𝑁𝑡 and 

𝑁 are the number of teeth and axial elements respectively.  

 

Figure 2. The schematic view of the differential milling cutting force directions [118]  

Furthermore, experiments are essential for obtaining cutting forces, which can be 
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compared to simulation results to enhance their accuracy. Figure 3 depicts the milling 

process test setup, where cutting forces were measured using a Piezo-electric 

Dynamometer 9257BA, an amplifier, and the NI USB-6259 data acquisition system. 

These tests encompass various materials (Aluminum 7075-T6, Steel 1050, Ti6Al4V, and 

Inconel 625) as workpieces, along with different types of end mills. Figure 4 shows 

different cutting tools which have been utilize for conducting measurements.  

  

Figure 3. Cutting test setup 

     

(a) (b) (c) (d) (e) 

Figure 4. Cutting tools (a) Flat end-mill with 50⁰ helix angle (12 mm) (b) Flat end-mill 

with 30⁰ helix angle (20 mm) (c) Tapered ball end-mill (d) Serrated end-mill (e) 

Tapered serrated end-mill 
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3.2.2. Data Preparation 

The accuracy of any machine learning model is greatly influenced by the quality of the 

input data that forms the basis of the model. Data preparation is the first step in the 

machine learning process. The raw data obtained from the dynamometer must be filtered 

for this purpose. The air-cutting portions of the data need to be removed in the first stage. 

In the next step, the cutting force relating to the specific angular position of both 

simulation and measured data should be synchronized.   

For this, the starting point for each simulation and measured dataset is the peak force in 

one revolution in all directions (i.e., X, Y and Z), as illustrated in Figure5. Machine 

learning algorithms were trained using only one revolution of measured data and 

simulation, for each cutting condition of the milling process. Finally, the dataset was 

scaled to have zero mean and unit variance. The purpose of feature scaling is to ensure 

that all features are on a comparable scale, making it easier for most ML algorithms to 

process them.  

  

(a) (b) 

Figure 5. (a) Filtered Measured data (b) Milling Simulation 

 Results and Discussion 

3.3.1. Cutting force prediction by hybrid ML model 

Based on the mechanistic machining models as described by Equation (5), simulated 

cutting forces were calculated and compared with the experimental results, for three 
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different materials (Steel 1050, Al7075-T6 and Ti6Al4V). As summarized in Table1, the 

simulation accuracy lies between 86.57%-89.57% for Fx, 83.22%-87.40% for Fy, and 

83.21%-89.83% for Fz during machining of various materials. The RMSE values lie 

between 6-10 for Fx, 7-15 for Fy and 4-6 for Fz. Due to numerous assumptions made 

during the milling simulations, the cutting forces predictions are not precise enough. This 

issue is well illustrated in Figures 6 and 7, which demonstrate the comparison between 

the simulated and measured cutting forces.  

Table 1. Comparison of simulated cutting forces and experimental results. 

Material  Fx
 (N) Fy (N) Fz (N) 

Aluminum 7075-T6 

R2 (%) 88.3 87.40 83.21 

RMSE 8.04 11.18 6.31 

Steel 1050 

R2 (%) 86.57 83.22 89.07 

RMSE 10.07 15.22 6.36 

Ti6Al4V 

R2 (%) 89.53 73.69 89.83 

RMSE 6.27 7.84 4.35 

 

Figure 6. Predicted and measured cutting forces for AL7075-T6. (Axial depth of cut is 

4mm, Radial depth of cut is 4mm, Spindle speed is 2000 rpm,  

Feed rate is 0.25 (mm/rev*tooth)) 
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Figure 7. Predicted and measured cutting forces for Ti6Al4V (Axial depth of cut is 

6mm, Radial depth of cut is 2mm, Spindle speed is 1000 rpm,  

Feed rate is 0.125 (mm/rev*tooth)) 

Since the simulated cutting forces weren't sufficiently accurate, a hybrid physics-based 

ML model was developed, which was trained using both analytical and experimental data. 

By ensuring the generality of such a hybrid ML model, the need for expensive 

experimental tests can be minimized. Meanwhile, when the mechanistic machining 

models are improved through hybrid ML models, they can be employed with a high level 

of reliability to calculate the cutting forces of various materials with various cutting tools, 

and under a variety of milling conditions.  

The hybrid physics-based ML model used in this study was trained by measurements 

datasets of three different materials, including Steel 1050, Aluminum 7075-T6 and 

Ti6Al4V. In selecting these materials, consideration was given to the fact that they are 

widely used across a variety of industries. Additionally, their thermo-mechanical 

properties cover the properties of various materials that are used extensively in machining 

processes.  In this study, a wide range of input parameters have been used to train various 

machine learning algorithms. The presented algorithms were trained using a very limited 

number of tests, and this significantly increased the accuracy of milling simulations to 

98.90%. Furthermore, the range of RMSE values narrowed, decreasing from “4-15” to 

the more concise range of “3-6”. The input parameters which have been used for these 

algorithms are radius, teeth number, helix and rake angle of the tool, axial and radial depth 

of cut, feed rate, spindle speed and material characteristics of the workpieces. To conduct 

a suitable set of experiments, the composite central design (CCD) method was utilized. 

One of the most significant advantages of this algorithm is reducing the number of tests 
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for further workpiece materials. It means that if a model is created using three different 

materials, the requirement for real measurements for the third material is less than that 

for the other two materials, and the need to conduct tests with the second material is less 

than that for the first workpiece material. As illustrated in Table1 different materials have 

been used to conduct the proposed model. Based on the results obtained from the ML 

model trained only with Al7075-T6, fewer training datasets were prepared for Steel 1050 

and Ti6Al4V. In other words, since the hybrid machine learning model could successfully 

discover the relationship between cutting forces and input parameters for aluminum, it 

was not necessary to perform as many tests as those conducted for aluminum on the other 

mentioned materials. In addition, due to the high cost and technological difficulties 

involved in Ti6Al4V machining, only a few experimental tests were conducted on this 

material. As a result, the training dataset contained only a small portion of Ti6Al4V 

machining data. In order to define the materials for the machine learning model, two 

different scenarios can be applied, i.e., quantitative and qualitative. Material types are 

defined qualitatively through categorical parameters such as type A, type B, etc. This type 

of material definition is limited to trained cases only. Therefore, to increase the flexibility 

and generality of the proposed model, thermo-mechanical and physical properties were 

utilized as quantitative material indicators in this study. 

The wide range of input parameters which have been used for generating databases for 

training of machine learning algorithms are listed in Table 2. The tool geometries, cutting 

parameters, thermo-mechanical properties of workpieces and the simulated cutting forces 

were considered as the inputs; and the experimentally measured cutting forces as the 

outputs of the physics-based ML model.  

Table 2. Input parameters  

Input Parameters Levels 

Tool radius (mm) 12, 16 and 20  

Teeth number 3 and 4 

Helix angle (⁰) 35 and 50 

Rake angle (⁰) 5 and 7 

Runout (µm) 23 and 37 

Axial depth of cut (mm) 1, 4, 11, 17 and 30  

Radial depth of cut (mm) 1, 2, 4, 8  
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Spindle speed (rpm) 1000-2000 and 4000  

Feed rate (mm / rev.teeth) 0.05, 0.15 and 0.25  

Workpiece material Aluminum 7075-T6, Steel 1050, 

Ti6Al4V 

The regression analysis was conducted in the MATLAB® and Python environment using 

three different ML models, namely random forest (RF), gradient boosting (LSBoost) and 

support vector regression (SVR). Initially, a Bayesian optimization algorithm was 

employed to optimize the hyperparameters of the ML models, which are listed in Table3. 

To avoid over-fitting the models, a five-fold cross validation error was used as the 

objective function of the Bayesian algorithm.  

Table 3. Hyperparameters of ML models and their optimum values. 

ML 

Models 
Hyperparameters Fx Fy Fz 

SVR 

Box Constraint 982.67 943.09 992.83 

Epsilon 15.234 11.771 6.231 

Kernel Function Gaussian Gaussian Gaussian 

Random  

Forest 

Minimum leaf size 3 3 1 

No. predictors to 

sample 
13 14 7 

No. of Trees 15 15 15 

In bag Fraction 0.83193 0.7596 0.5656 

LSBoost 

No. of Learning 

Cycles 
320 156 499 

Learning rate 0.1412 0.2426 0.0928 

Minimum leaf size 58 29 21 

Maximum No. of 

splits 
18402 17944 3597 

No. of variables to 

sample 
4 5 3 

 

After hyperparameter optimization, the regression analysis for each machine learning 

algorithm was conducted. A summary of obtained results is listed in Table 4. As 

demonstrated, all ML models have a high coefficient of determination (R2 more than 

97%) with low RMSE values (i.e., in the range of 3-6). Root mean square error (RMSE) 

is a widely used performance metric in machine learning to assess the accuracy of 

regression models. It quantifies the average magnitude of the differences between 

predicted and actual values. Lower RMSE values indicate better model performance, as 
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they signify smaller prediction errors, while higher RMSE values suggest less accurate 

predictions. Subsequently, the highest performance (i.e., the lowest RMSE and highest 

R2 values of the unseen test dataset) is associated with the LSBoost model, followed by 

SVR and RF, respectively. The SVR model exhibits significantly longer training times 

compared to LSBoost and RF. While LSBoost and RF demonstrate similar R2 and RMSE 

values, LSBoost slightly outperforms RF. The adjusted R2 values of LSBoost model are 

98.27%, 99.43% and 99.09% for the training dataset; and are 97.32%, 98.9% and 98.51% 

for the test dataset, for the cutting forces of Fx, Fy and Fz, respectively. The regression 

curves for both training and testing data set are illustrated in Figures 6-8.  

Table 4. Performance parameters of the ML models for unseen test dataset. 

ML Models Metrices FX FY FZ 

SVR 

RMSE 5.97 5.95 3.52 

Adj. R2 

(%) 
97.28 98.92 98.45 

LSBoost 

RMSE 5.94 5.76 3.54 

Adj. R2 

(%) 
97.32 98.9 98.51 

Random Forest 

RMSE 6.07 6.01 3.62 

Adj. R2 

(%) 
97.09 98.89 98.29 

 

Table 4 illustrates the performance of various machine learning algorithms when applied 

for simulation improvements. The LSBoost algorithm demonstrates the best performance 

compared to the other two methods. As shown in the table, the performance of improved 

milling process prediction has increased to 98.9%. Such a high prediction accuracy can 

reduce the need for costly and time-consuming measurements resulting in a better 

understanding of the process and higher quality of products. Figure 8 shows the 

correlation of both training and test data set.  
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(a) (b) 

Figure 8. Regression curves of LSBoost model for cutting forces in X direction:  

a) Training data, b) Test data 

  

(a) (b) 

Figure 9. Regression curves of LSBoost model for cutting forces in Y direction:  

a) Training data, b) Test data 
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(a) (b) 

Figure 10. Regression curves of LSBoost model for cutting forces in Z direction:  

a) Training data, b) Test data 

Moreover, the evolution of the optimization process for LSBoost model is illustrated in 

Figure11. As shown in the mentioned figure, one of the most important aspects is the 

convergence observed throughout the optimization process by utilizing Bayesian 

algorithms. As the number of iterations increases, the algorithm progressively narrows its 

search, and the points representing evaluated hyperparameters steadily gravitate towards 

a specific region of the hyperparameter space. This convergence signals a compelling 

ability of the algorithm to pinpoint optimal configurations, resulting in the minimization 

of the objective function. Min observed objective represents the objective function the 

lowest value of observed during the hyperparameter optimization process and estimated 

min objective is an approximation of the true minimum value of the objective function, 

obtained through optimization algorithms. 

  

(a) (b) 
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(c) 

Figure 11. Evolution of hyperparameter optimization process for LSBoost model:  

a) Fx, b) Fy and c) Fz. 

A statistical error analysis was conducted to illustrate the accuracy of the proposed ML 

model. To evaluate the performance of the simulation and the improved ML model in 

comparison with experimental cutting forces, fifty test data sets were selected. These 

experiments were performed by using different axial (1, 2, 3 mm), radial depth of cut (2, 

4, 8 mm), feed (0.05, 0.1, 0.15 mm/rev.tooth), spindle speed (1000, 3000 rpm) and various 

materials (i.e., Al7075-T6, Steel 1050 and Ti6Al4V). In this regard, for each test setup 

the maximum cutting force was selected as the performance metric. The improved 

simulation model shows a significant reduction in deviation for the maximum cutting 

force (see Figure12). Furthermore, the error distribution was remarkably tightened to a 

very narrow range. The majority of deviations in the improved model were within a 

narrow band of -5 to 5%, representing 90% of the observations. According to this error 

analysis, the hybrid model provides superior performance in predicting the milling cutting 

forces. 

  

    (a)      (b) 
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    (c)     (d) 

  

    (e)      (f) 

Figure 12. Statistical error analyses for simulation and hybrid model 

3.3.2. Prediction accuracy of unseen material 

The physics-based machine learning models proposed in this study demonstrated high 

accuracy in predicting cutting forces for a range of materials, such as Aluminum 7075-

T6, Steel 1050, and Ti6Al4V. As previously mentioned, these materials were 

characterized based on their thermo-mechanical properties. Consequently, the model 

exhibits the capability to predict cutting forces for materials not encountered during 

training. To assess both accuracy and generality, the proposed hybrid model was utilized 

to predict cutting forces for the unseen material Inconel 625 superalloy. As depicted in 

Table5, the RMSE values are 5.47, 6.15 and 3.51 for Fx, Fy and Fz, respectively. The 

adjusted R2 values are 96.43%, 95.76% and 97.02% for Fx, Fy and Fz respectively, which 

indicates that the developed physics-based ML model could predict the cutting forces of 

completely different materials by using the properties of the three trained materials. 

Indeed, by transferring the acquired knowledge of the trained ML model on St1050, 

Al7075-T6 and Ti6Al4V, the cutting forces of another material (i.e., Inconel 625) were 
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predicted with a high level of accuracy, which proves the model’s generality. In other 

words, incorporating the analytical models into the ML algorithms enabled the trained 

model to discover the relationship between the input features and the output responses 

very accurately, i.e., it could well capture the dependency of the cutting forces on the 

“machining parameters, cutting conditions and thermo-mechanical properties”. 

Consequently, such a hybrid model can predict the cutting forces of a different material, 

under a variety of cutting conditions. Figure12 Shows the machine learning based 

predicted cutting forces of Inconel 625. To conduct this measurement, the tool radius is 

16 mm, tooth number of the tool is 4, helix angle is 35⁰, rake angle is 5⁰, spindle speed is 

1000 (rpm), feed rate is 350 (mm/min), axial depth of cut is 4 (mm), radial depth of cut 

is 1 (mm) and the milling process is down-milling. As illustrated in Figure12, there is a 

huge improvement in prediction accuracy when machine learning methods have been 

applied. In this prediction the aforementioned ML algorithm has been trained by using 

three specified materials (i.e., Steel 1050, Aluminum 7075-T6 and Ti6Al4V). Moreover, 

the trained algorithm has been used for predicting the cutting forces of Inconel 625 by 

only importing the thermo-mechanical properties of this material. Figure 13 illustrates the 

prediction accuracy of the utilized method.  

Table 5. Performance metrices for unseen dataset of Inconel 625  

ML Model Metrices FX FY FZ 

LSBoost 

RMSE 5.47 6.15 3.51 

Adj. R2 (%) 96.43 95.76 97.02 

 

 

Figure 13 Machine learning based prediction. of Inconel 625 cutting forces 
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The thermo-mechanical properties of the materials utilized in training and prediction of 

machine learning algorithm have been illustrated in Table 6. 

Table 6. Thermo-mechanical properties of work-piece materials 

Material 

Yield 

Strength 

(MPa) 

Young’s 

Modulus 

(GPa) 

Hardness 

(HB) 

Thermal 

Conductivity 

(W/mK) 

Thermal 

Expansion 

Coef. 

(1/⁰C) *e-6 

Density 

(Kg/m3) 

Ultimate 

Tensile 

Strength 

(MPa) 

ST1050 515 200 182 51.9 14.7 7.87 620 

AL7075-

T6 
503 72 150 130 25.2 2.81 572 

Ti6Al4V 830 115 340 6 9 4.706 900 

Inconel 625 517 207 190 9.8 12.8 8.44 930 

 

3.3.3. Prediction accuracy of special milling tools  

 A complementary hybrid ML model was developed to predict the cutting forces during 

milling with various cutting tool geometries, such as: tapered ball end mills, serrated end 

mills and tapered serrated ball end mills. The geometrical specifications of the tools have 

been shown in Table7. In this regard, some experimental tests were carried out with these 

cutting tools on Aluminum 7075-T6; meanwhile the simulated cutting forces were 

estimated using mechanistic machining models, as described by Equation (5). Then the 

training data set was prepared, containing the machining parameters, cutting tool 

geometries, and simulated cutting forces as the inputs, and the experimental cutting forces 

as the targets. Moreover, this data has been added to the database that was prepared for 

normal endmills. In normal tools, the geometric aspects related to serration geometry, 

such as wavelengths and amplitude, were considered as zero. These values for special 

milling tools are illustrated in Table7. The predicted cutting forces for the aforementioned 

cutting tools are depicted in Figure15, and the RMSE and adjusted R2 values are 

summarized in Table8. The RMSE values for the unseen test data lie between 2.85 and 

6.18, with R2 values of 98.76%, 98.17%, and 98.62% for Fx, Fy, and Fz, respectively, 

indicating that the hybrid physics-based ML model could accurately predict the cutting 

forces involved in the milling process with various cutting tools geometries. The obtained 
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results reveal that the proposed approach in this research not only helped minimize the 

required experimental tests for training the ML model, but also improved the accuracy of 

the mechanistic model, making it more reliable in real-world applications, for various 

materials, cutting tools, machining parameters and conditions. 

Table 7. Special tools geometrical specifications 

Tools Geometrical specs 

Tapered ball end mills  Nose ball radii = 3 mm, Root radii = 13.5 mm, Tapered 

angle = 9⁰ 

Serrated end mills Radius = 6 mm, Wavelength =2 mm, 

 Amplitude = 0.3 mm 

Tapered serrated ball end 

mills 

Nose ball radii = 2.5 mm, Root radii = 7 mm 

Wavelength = 4.5 mm, Amplitude = 0.350 mm  

  

a) (b) 

Figure 14. Serrated endmills (a)Wavelength (b)Amplitude measurements. 

Table 8. Performance metrices for special milling tools 

ML Models Metrices FX FY FZ 

SVR 

RMSE 5.76 6.17 3.17 

Adj. R2 

(%) 
96.24 95.81 97.73 

LSBoost 

RMSE 4.97 5.95 2.85 

Adj. R2 

(%) 
98.76 98.17 98.62 
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Random 

Forest 

RMSE 5.48 6.18 3.35 

Adj. R2 

(%) 
97.94 95.37 96.24 

 

 

Figure 15. Comparison of serrated tools cutting forces predicted by ML and 

experimental tests. 

3.3.4. Models’ performance for out-of-range input values 

In this study, the machine learning models were trained with nine input parameters, each 

defined within an acceptable wide range (see Table 2), which is more common in 

industrial applications. The range of input parameters for training datasets can be defined 

by using historical data in manufacturing lines. In this section of study, the performance 

of developed methods in the cases of input parameters are out of trained range has been 

investigated. As mentioned previously, these algorithms have very high accuracy when 

all test input parameters are in the range of training data sets (i.e., 98.9%). However, the 

performance of an ML model should be evaluated in predicting the cutting forces for out-

of-range input values. For this purpose, several datasets were prepared, each one having 

one or more out-of-range input parameters. In this respect, this procedure was applied for 

all the input parameters (i.e., tool radius, teeth number, rake and helix angle, feed rate, 

spindle speed, axial and radial depth of cut and runout).  Four sets of tests produced by 

the combination of n (n=1~4) parameters out of nine parameters have been considered 

and the average performance of model for each of the sets is found.  According to the 

obtained results, when a single input parameter deviates from its training range, the model 
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maintains high accuracy, achieving 96.5% average accuracy. In cases where two input 

parameters fall out of range simultaneously, the model's accuracy decreases to 91.7%. 

Further deviations occur when three input parameters are out of range, leading to a 

reduced accuracy of 85%. The most significant accuracy drop is observed when four input 

parameters are simultaneously out of their training ranges, resulting in 72% and in this 

case the simulation results have better accuracy (see Figure16). For instance, one of the 

previously mentioned test setups aimed to assess the accuracy of the proposed algorithm 

involves investigating out-of-range input parameters, such as axial depth, radial depth, 

feed rate, and spindle speed. In conducting these tests, each parameter has been employed 

in combinations of both in-range and out-of-range values. In cases where the axial depth 

of cut is out of range (OR) while other parameters are in range (IR), the accuracy of 

prediction exceeds 96% compared to the measured data. In the second scenario, 

combining out-of-range axial and radial depths with in-range parameters results in an 

accuracy of over 91%. However, in tests involving 4 out-of-range inputs, axial, radial 

depth of cut, feed rate, and spindle speed, the model's accuracy decreases to almost 70%. 

 

Figure 16. The prediction accuracy for out-of-range input. 

 Summary 

In this study a physics-based machine learning model was developed to improve the 

accuracy of analytical prediction of the cutting forces during the milling process of 

various materials with different cutting tools and under a variety of cutting conditions. In 

addition, the present study comprehensively investigated the feasibility of the hybrid 
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model in decreasing the number of experimental tests required for preparing training 

dataset. For this purpose, three different ML algorithms (i.e., SVR, RF and LSBoost) were 

employed, which were trained by utilizing both analytical models and experimental data. 

The following conclusions were drawn from the present study: 

- The simulation accuracy of the mechanistic milling models (without implementing ML) 

for various materials (i.e., Steel 1050, Aluminum 7075-T6 and Ti6Al4V) was between 

86.57%-89.46% for Fx, 83.22%-87.40% for Fy, and 83.21%-89.83% for Fz. Nevertheless, 

these values suggest that significant enhancements are necessary to make the simulation 

models more practical in real-world industrial applications. 

-  By developing a hybrid model based on both analytical models and experimental data, 

high prediction accuracy (more than 97%) was obtained, even for an unseen dataset of 

completely different conditions. Comparison of the obtained results indicates a 14% 

improvement in cutting force predictions by hybrid model. 

- Among various ML models, the best performance was achieved by the LSBoost model, 

followed by support vector regression and random forest, respectively. 

- Incorporating the mechanistic milling models into the ML model enabled it to discover 

the complex relationship between the cutting forces and machining parameters, cutting 

conditions and thermo-mechanical properties.  

- Since the materials were characterized using their thermo-mechanical and physical 

properties, by transferring the acquired knowledge of the ML model for Steel 1050, 

Aluminum 7075-T6 and Ti6Al4V, the cutting forces of unseen material (Inconel 625) 

were also predicted with a high level of accuracy (i.e., 95%), proving the model’s 

generality.  

- Furthermore, a complementary hybrid ML model was proposed to predict the milling 

forces of various special tool types including end mills with normal and serrated edges 

with different shapes (i.e., cylindrical, and tapered end mills with flat, ball and round 

noses). The developed hybrid ML model could also accurately predict the cutting forces 

of these tools, where the coefficient of determination was more than 98%. 

- The performance of the proposed model was evaluated in terms of predicting the cutting 

forces for the out-of-range input parameters. In this respect, several datasets were 
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prepared, each one having one or more out-of-range input parameters. The obtained 

results indicated that the prediction accuracy of the ML model was remarkably high even 

in the case of two simultaneous out-of-range input parameters. 

- This approach offers a significant benefit wherein the machine learning database can be 

enhanced through the continuous collection of data during the manufacturing process and 

on the production line, leveraging Internet of Things (IoT) and Industry 4.0 principles. 

- The proposed physics-based approach not only helped minimize the required 

experimental tests for training the ML model, but also improved the accuracy of the 

mechanistic model, making it more reliable for real-world applications. 

 Future work 

The obtained results provided valuable insights into the application of hybrid machine 

learning models in accurately predicting the cutting forces of various materials, tool types, 

and machining conditions. The significance of our findings lies in their potential 

implications for real-time condition monitoring systems. Therefore, such hybrid models 

can be used for condition monitoring of machining processes, where a high level of 

reliability and accuracy is required. Furthermore, the proposed model not only addresses 

current challenges but also serves as a robust foundation for process optimization 

purposes. Considering this foundational aspect, the model can be viewed as the basis for 

industrial quality improvement. 
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4. SMART TOOL-RELATED FAULTS MONITORING SYSTEM USING 

PROCESS SIMULATION-BASED MACHINE LEARNING ALGORITHMS 

 Milling Force Model 

In the present study, the linear edge to calculate milling forces for end-milling tools and 

these simulations were calibrated using measured test force model [29] is employed data 

and machine learning algorithms. In order to this input parameters and results of 

simulation are used as inputs for machine learning algorithms and the outputs of machine 

learning algorithms were measured data. By using this method, the accuracy of analytical 

simulations has been improved. To determine cutting forces for each angular increment 

of the tool, differential forces are computed for every axial element (i) on each tooth (j) 

at a specific rotational position (𝜙) throughout a complete rotation of the cutting tool: 

𝜑𝑖,𝑗(𝜙) =  𝜑𝑖,𝑗 + 𝜙 

𝑑𝐹𝑟(𝑖, 𝑗, 𝜙) = 𝑔 (𝜑𝑖,𝑗(𝜙)) [𝐾𝑟𝑒 + 𝐾𝑟𝑐(𝑖, 𝑗)ℎ𝑖,𝑗(𝜙)]𝑑𝑧 

𝑑𝐹𝑡(𝑖, 𝑗, 𝜙) = 𝑔 (𝜑𝑖,𝑗(𝜙)) [𝐾𝑡𝑒 + 𝐾𝑡𝑐(𝑖, 𝑗)ℎ𝑖,𝑗(𝜙)]𝑑𝑧 

𝑑𝐹𝑎(𝑖, 𝑗, 𝜙) = 𝑔 (𝜑𝑖,𝑗(𝜙)) [𝐾𝑎𝑐(𝑖, 𝑗)ℎ𝑖,𝑗(𝜙)]𝑑𝑧 

(6) 

Where the cutting force coefficients 𝐾𝑟𝑐, 𝐾𝑡𝑐 and 𝐾𝑎𝑐 are calculated using the oblique 

cutting force model, combined with orthogonal cutting data [25], while taking into 

account local oblique angles (𝜂𝑖,𝑗) for each element. The edge force coefficients 𝐾𝑟𝑒, 𝐾𝑡𝑒 

and 𝐾𝑎𝑒  are typically determined from cutting tests, but can also be predicted using 

thermo-mechanical models applied to the third deformation zone [120]. In calculating the 

force coefficients, the rake angle on the cutting edges is assumed to be constant; however, 

it may vary along the cutting edges depending on the manufacturing process of these 

tools. In such cases, the local rake angle should be utilized in force coefficient  

calculations [118,119]. 

The binary function 𝑔(𝜑𝑖,𝑗(𝜙)) equals 1 when the element is in cut (i.e.  𝜑𝑠𝑡𝑎𝑟𝑡 ≤

𝜑𝑖,𝑗(𝜙) ≤ 𝜑𝑒𝑥𝑖𝑡  and 0 otherwise. 𝜑𝑖,𝑗(𝜙) represents the angular position of each point 

on the edge when the tool's rotation angle is 𝜙. 𝑑𝑧 denotes the thickness of each axial 

element. As depicted in Figure 17, Δ𝜑𝑖,𝑗 differs for each edge at a specific axial position, 
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and therefore, ℎ𝑖,𝑗(𝜙) (chip thickness) can be defined as follows: 

ℎ𝑖,𝑗(𝜙) =
Δ𝜑𝑖,𝑗

2𝜋
 𝑁𝑓 sin (𝜑𝑖,𝑗(𝜙)) (7) 

where N represents the number of teeth and f corresponds to the nominal feed per tooth. 

The total forces in 𝑥, 𝑦, 𝑧 directions for angular orientation of the tool can be obtained by 

summation of the elemental differential forces: 

𝐹𝑥(𝜙) =  ∑∑[−𝑑𝐹𝑟(𝑖, 𝑗, 𝜙) 𝑠𝑖𝑛 (𝜑𝑖,𝑗(𝜙)) −  𝑑𝐹𝑡(𝑖, 𝑗, 𝜙) 𝑐𝑜𝑠 (𝜑𝑖,𝑗(𝜙))]

𝑁𝑡

𝑗=1

𝑎

𝑖=0

 

𝐹𝑦(𝜙) =  ∑∑[−𝑑𝐹𝑟(𝑖, 𝑗, 𝜙) 𝑐𝑜𝑠 (𝜑𝑖,𝑗(𝜙)) +  𝑑𝐹𝑡(𝑖, 𝑗, 𝜙) 𝑠𝑖𝑛 (𝜑𝑖,𝑗(𝜙))]

𝑁𝑡

𝑗=1

𝑎

𝑖=0

 

𝐹𝑧(𝜙) =  ∑∑𝑑𝐹𝑎(𝑖, 𝑗, 𝜙)

𝑁𝑡

𝑗=1

𝑎

𝑖=0

 

(8) 

 

Figure 17. The schematic view of the milling cutting force directions [121] 

 Applied Machine Learning for Fault Detection 

Since fault diagnosis is the most challenging aspect of process and machine repair, the 

majority of downtime is spent localizing the fault rather than addressing it [122]. 

Consequently, organizations are exploring innovative methods to enhance the root cause 
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analysis (RCA) process for faults. 

As a first step, it is essential to define the problem and determine the appropriate data 

analytics techniques. In order to make the required data suitable for further analysis, it is 

necessary to collect, and preprocess the data based on the problem and the selected 

method. As a result, developing, and evaluating a data model is vital. To resolve the issue, 

the outcomes are examined. The process is typically repeated several times in order to 

achieve better results. 

Based on the type of input data and the type of learning system, machine learning 

algorithms can be divided into three categories. In supervised learning, algorithms are 

trained to map inputs to known outputs (provided by experts). In unsupervised learning, 

models or functions are developed without incorporating any previously known outputs. 

This approach typically analyzes large datasets to discover meaningful patterns or 

classifications. Additionally, reinforcement learning allows a machine to determine its 

performance based on a reward signal that has been previously defined. 

Two major objectives of these algorithms are to classify or cluster data, and to identify a trend or 

relationship over time, respectively. This study investigated a number of machine learning algorithms for 

data training and fault detection and selected three algorithms based on the results: Multiple Linear 

Regression, K-Nearest Neighbor (KNN), and Random Forest. 

Multiple Linear Regression (MLR): Multiple linear regression is a statistical method used to model the 

relationship between a dependent variable and two or more independent variables. It is an extension of 

simple linear regression, which involves only one independent variable. The primary goal of multiple linear 

regression is to create a predictive model that can estimate the value of the dependent variable based on the 

values of the independent variables. The multiple linear regression model takes the form: 

y = β0 + β1 * x1 + β2 * x2 + ... + βn * xn + ε (9) 

Here, y represents the dependent variable, x1, x2, ..., xn are the independent variables, β0 

is the intercept, β1, β2, ..., βn are the regression coefficients, and ε is the residual or error 

term, which accounts for the variation in the data not explained by the model. 

The regression coefficients (β1, β2, ..., βn) represent the change in the dependent variable 

associated with a one-unit change in the corresponding independent variable, while 

holding all other variables constant. These coefficients are estimated using a technique 

called ordinary least squares (OLS), which minimizes the sum of the squared differences 
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between the observed values of the dependent variable and the values predicted by the 

model. 

K-Nearest Neighbor (KNN): K-Nearest Neighbor (KNN) is a non-parametric, instance-

based, supervised learning algorithm used for classification and regression tasks. It is 

considered one of the simplest and most intuitive machine learning algorithms, owing to 

its easy-to-understand approach and minimal training requirements. In KNN, the 

prediction for a new data point is determined based on the K closest data points 

(neighbors) from the training dataset. The algorithm operates under the assumption that 

similar data points are located near each other in the feature space. Euclidean distance is 

a commonly used distance metric in the KNN algorithm. It is the straight-line distance 

between two points in an n-dimensional space [123,124]. The algorithm calculates the 

Euclidean distance between the new data point and every point in the training dataset, 

then sorts these distances in ascending order. 

The choice of K is crucial in KNN, as it directly affects the algorithm's performance. A 

small value of K might result in overfitting, while a large value of K can lead to 

underfitting. Typically, the optimal value of K is determined through techniques like 

cross-validation. KNN is sensitive to the scale of the input features, so it is often necessary 

to normalize or standardize the data before applying the algorithm. Furthermore, KNN is 

sensitive to the presence of irrelevant or noisy features, which can negatively impact its 

performance. Feature selection techniques can help mitigate this issue. 

Below is a simple pseudocode for the K-Nearest Neighbor (KNN) algorithm for 

classification: 

• Function KNN_Classify (new_data_point, training_data, K): 

•      Initialize an empty list called distances_list.    

• For each data_point in training_data: 

• Calculate the distance (e.g., Euclidean distance) between new_data_point and data 

point. 

•          Add (distance, data_point's class) to the distances_list. 

•      End For 

•      Sort distances_list in ascending order of distance 

•     Select the first K elements from the sorted distances_list. 

•     Initialize an empty dictionary called class_votes. 

•     For each (distance, class) in the K selected elements: 

•         If class is not in class_votes: 

•             class_votes[class] = 0 



58 

 

•         End If 

•         class_votes[class] += 1 

•     End For 

•     Determine the class with the highest vote in class_votes. 

•     Return the class with the highest vote as the prediction for new_data_point. 

 

Random Forest (RF): Random Forest is an ensemble learning method used for both 

classification and regression tasks. It operates by constructing multiple decision trees 

during the training phase and then aggregating their outputs to make a final prediction. 

The main idea behind the Random Forest algorithm is to combine the results of multiple 

weak learners (decision trees) to obtain a more accurate and robust model. It is 

particularly effective for handling high-dimensional data and can address classification 

and regression problems. Here's the logic behind how Random Forest works: 

1. Bootstrapping: For a given dataset, Random Forest creates multiple bootstrap 

samples by randomly selecting data points with replacement. Each bootstrap 

sample is used to train a separate decision tree. 

2. Feature Randomness: During the process of growing individual decision trees, at 

each node, a random subset of features is selected to determine the best split. This 

random feature selection introduces diversity among the trees and reduces the 

correlation between them. 

3. Decision Tree Construction: A decision tree is built for each bootstrap sample 

using the selected features at each node. The tree construction continues until a 

maximum depth is reached or a minimum number of samples per leaf is obtained. 

4. Aggregating Predictions: Once all decision trees are constructed, the Random 

Forest algorithm makes a prediction by combining the predictions of all trees. For 

classification problems, this is typically done by taking the majority vote among 

the tree predictions. For regression problems, the average prediction of all trees is 

used. 

In addition to reducing overfitting risk, the Random Forest algorithm also improves 

model generalization by combining predictions from multiple decision trees. 

Furthermore, this algorithm is robust to noise and can handle a large dataset, making it 

an excellent choice for a variety of machine learning applications. 
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Here's a pseudocode representation of the Random Forest algorithm: 

Procedure Random_Forest (training_data, num_trees, max_depth, min_samples_leaf, 

max_features): 

• Initialize an empty list called forest. 

• For i = 1 to num_trees: 

     a. Bootstrap_sample = Create_Bootstrap_Sample(training_data) 

    b. Tree = Build_Decision_Tree (Bootstrap_sample, max_depth, 

min_samples_leaf, max_features) 

     c. Add Tree to forest. 

• Return forest. 

 

Procedure Create_Bootstrap_Sample(data): 

• Randomly select data points with replacement from the given data. 

• Return the created bootstrap sample. 

 

Procedure Build_Decision_Tree (data, max_depth, min_samples_leaf, max_features): 

• If max_depth is reached or the number of samples in data is less than or equal to 

min_samples_leaf: 

     a. Return a leaf node with the majority class (classification) or average value 

(regression) of data. 

• Randomly select a subset of features up to max_features. 

• Determine the best split using the selected features. 

• Split the data into left and right subsets based on the best split. 

• left_child = Build_Decision_Tree (left_subset, max_depth, min_samples_leaf, 

max_features) 

• right_child = Build_Decision_Tree (right_subset, max_depth, min_samples_leaf, 

max_features) 

• Return a decision node with the best split and left_child, right_child as its 

children. 
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Procedure Predict (forest, test_data): 

• Initialize an empty list called predictions. 

• For each test_point in test_data: 

     a. tree_predictions = [tree. predict (test_point) for tree in forest] 

     b. prediction = Majority_Vote (tree_predictions) (classification) or 

Mean(tree_predictions) (regression) 

     c. Add prediction to predictions. 

• Return predictions. 

4.2.1. Dataset for Training Machine Learning Algorithms 

As a result of the application of an algorithm based on process simulation, significant 

advancements have been made in the monitoring of tool condition. Tool-related faults 

can be detected more effectively and economically by eliminating extensive laboratory 

testing. As a result of this research and development, this approach can help tool condition 

monitoring to be more practical and enhance manufacturing processes in general. As 

mentioned before, in order to predict by machine learning, the algorithms must train by 

the acceptable portion of datasets. A common practice is to split the dataset into the 

following portions: 

1. Training set: This subset is used for training the machine learning model. The 

model learns the patterns and relationships within the data. A typical proportion 

for the training set is around 70%-80% of the entire dataset. 

2. Test set: This subset is used to evaluate the performance of the trained model. It 

is crucial that the test set is separate from the training set and is not used during 

the training process. The test set typically comprises 20%-30% of the entire 

dataset. 

4.2.2. Inputs and Outputs of Trained Dataset Parameters 

To perform a milling simulation, several inputs are required to represent the milling 

process accurately. Some of the essential inputs include: 
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• Tool geometry: This includes the tool's radius, number of teeth, helix angle, rake 

angle, and cutting-edge geometry. These parameters are crucial for simulating the 

tool's interaction with the workpiece. 

• Workpiece material: The material properties of the workpiece and cutting force 

coefficients during the milling process. 

• Cutting conditions: These include cutting parameters such as spindle speed, feed 

rate, and depth of cut, which affect the cutting forces. 

• Cutting tool material: The cutting tool material affects the tool's performance, 

wear resistance, and cutting forces. Common cutting tool materials include high-

speed steel (HSS), carbide, and polycrystalline diamond (PCD). 

• Coolant and lubrication: The type and application method of coolant or lubricant 

used in the milling process impact the tool's temperature, cutting forces, and chip 

formation. 

The input parameters employed for constructing the database in this study are as follows: 

• Tool diameter: 10, 14, 18 and 20. (mm) 

• Teeth number: 3,4, and 6 

• Tool helix angle: 30, 35, and 45° 

• Tool rake angle: 5, 7 and 11° 

• Spindle speed: 4000, 6000 and 8000 (rpm) 

• Feed per revolution per tooth: 0.1, 0.3, 0.5, 0.7, 0.9 and 1. mm/(rev*tooth) 

• Axial depth of cut: 1, 3, 5, 7, 9 and 10. (mm) 

• Radial depth of cut: 0.4, 1.6, 2, 2.4, 2.8, 3.6 and 4 (mm) 

Utilizing these input parameters, a total of 81,648 simulations were conducted. 

This study evaluated a number of machine learning algorithms. Root-mean square error 

(RMSE) and mean absolute error (MAE) are two commonly used metrics for evaluating 

such algorithms.   

• Root Mean Squared Error (RMSE): 

RMSE is a measure of how well the machine learning model fits the data, similar to MSE. 

However, RMSE is the square root of the average squared difference between the 

predicted values and the actual values, which makes it more interpretable in the same 

units as the target variable. The equation for RMSE is: 
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RMSE = √
∑ (y

pred
-y

actual
)
2n

i=1

n
 

(10) 

Where n is the number of observations in the test set, y_pred is the predicted value of the 

target variable and y_actual is the actual value of the target variable. A lower RMSE 

indicates that the model is better at predicting the target variable. However, it is also 

sensitive to outliers in the data. 

• Mean Absolute Error (MAE): 

MAE is another measure of how well the machine learning model fits the data. It is the 

average absolute difference between the predicted values and the actual values. The 

formula for MAE is: 

MAE = 
∑ |y

pred
-y

actual
|n

i=1

n
 (11) 

MAE is less sensitive to outliers than RMSE because it does not square the differences 

between the predicted values and the actual values. However, it may not be as 

interpretable as RMSE because it is not in the same units as the target variable. 

Table 9. Comparison of various ML algorithms 

 
Random 

Forest 

Random 

Tree 
KNN MLR 

RMSE 0.1070 0.1852 0.1078 1.4068 

MAE 0.0426 0.0313 0.0462 1.1891 

 

As previously discussed, the training-data utilized for the development of the machine 

learning models in this study consisted of 65% of the simulation data, while the remaining 

35% was reserved as test-data. As depicted in Table 1, the Random Forest algorithm 

demonstrated superior performance compared to other machine learning methods. 

Consequently, this algorithm will be employed as the primary fault detection mechanism 

in the process. 
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 Results and Discussion 

By using machine learning algorithms, this method can gain several key insights into the 

detection of tool-related faults in milling processes. As described above the Randomforest 

algorithm has been used in order to detect tool-related faults in milling processes. It has 

been tested 50 different scenarios for each input parameter in order to determine whether 

or not this method is accurate for vast range of input parameters. Approximately 50 

simulations were conducted in order to determine how well the algorithm identified faults 

associated with the tool radius, as an example. These simulations involved deliberately 

changing the radius, teeth number, helix and rake angle of the tool in the simulation, as 

well as executing machine learning models in order to test how well the method would 

perform for varying parameters related to the tool. The results of this method are 

presented in Figure 18: 

  

(a) (b) 

  

(c) (d) 

Figure 18.Correct vs incorrect fault detection of (a)Tool diameter, (b)Teeth number,  

(c)Tool helix angle and (d)Tool rake angle 
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Figure 18. illustrates the percentage of correct and incorrect prediction by using 

mentioned algorithms in various situations. For instance, Figure 18a. first column shows 

the percentage of correct prediction of tool diameter which was 10(mm). Moreover, 

Figure 18a. The first column shows that the algorithm can predict the cutting tool diameter 

with  

10(mm) can be predicted with 96% accuracy. Each column of every graph shows the 

correct prediction percentage of that parameter. It is evident from Figure 18 that the tool 

parameters that have an enormous impact on the cutting force have been identified with 

higher precision.  

The figure above indicates that the number of incorrect predictions for helix and rake 

angle is higher than for the other two parameters (e.g. tool diameter and tooth number). 

This is because helix and rake angle appear to have less impact on cutting forces 

compared to the tool diameter and tooth number. Aside from that, all of the tool related 

faults detected within acceptable precision.  

 

Figure 19. Measurement setup 
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The cutting forces were conducted using Piezo-electric Dynamometer 9257BA, amplifier 

and data acquisition NI USB-6259. 16 and 20 (mm) Solid Carbide end mill cutter with 4 

flutes and 7075-T6 aluminum and 1050 steel were used as workpieces during the tests. 

 

Figure 20. One revolution of measured cutting forces. 

Figure 20. illustrates the measured cutting forces with dynamometer. The cutting 

parameters which have been used for conducting this test are spindle speed is 2000(rpm), 

Feed is 1600 (mm/min), axial depth is 4(mm), radial depth of cut is 4(mm) and the 

workpiece material is 1050 steel. This measured data has been used for input of proposed 

algorithm and the ML algorithm can predict that the tool diameter is 16(mm) with 4 

cutting flutes, helix angle is 35° and rake angle is 7°. The predicted tool geometry 

parameters are the same as the tool which has been used for conducting this test.  

Figure 21. shows the other measured cutting forces. In this test spindle speed is 

1000(rpm), Feed is 1000(mm/min), axial depth is 7(mm), radial depth of cut is 2(mm) 

and the workpiece material is 1050 steel. The proposed algorithm predict that tool 

diameter is 20(mm) with 4 cutting flutes, helix angle is 30° and rake angle is 5°. The 

predicted tool geometry parameters are the same as the tool which has been used for 

conducting this test. 

15 tests have been conducted to assess the accuracy of the proposed algorithm, which 

includes four parameters of tool geometry: diameter, tooth number, helix, and rake angle 

of the tool. The algorithm yielded 56 correct predictions of tool geometry parameters, 

showcasing an impressive 93% accuracy by utilizing real measured data. 
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Figure 21. One revolution of measured cutting forces. 

 Summary 

The main goal of this paper has been to show how using process simulation-based 

machine learning algorithms can effectively monitor and detect tool-related faults during 

milling processes. The approach proposed in this study eliminates the need for expensive 

and time-consuming lab tests by training machine learning models with milling process 

simulation data. 

Throughout this investigation, a range of machine learning algorithms underwent testing 

using two evaluation metrics. Notably, the random forest algorithm demonstrated 

superior performance when contrasted with alternative methods for handling such input 

and output parameters. 

Based on the outcomes of this research, the algorithm is capable of achieving a 94 percent 

accurate prediction rate for tool-related faults. Attaining such a high level of accuracy in 

predicting tool-related faults solely through the utilization of simulation data can enhance 

the viability of monitoring systems. This method holds the potential to eliminate the 

necessity for a substantial volume of tests, a common requirement in typical monitoring 

applications. These findings have been supported by actual measurement data, with a 

notable accuracy rate of 93 percent in the predictions. 

Although the results are promising, it is essential to continue with further research and 

improvements. To elevate the overall performance and reliability of the fault monitoring 
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system, future endeavors could delve into integrating supplementary data sources and 

adopting advanced machine learning algorithms. Furthermore, the scope of this work can 

be expanded to encompass process and machine-related faults in forthcoming studies. 

This paper has resulted in a notable stride forward in the realm of tool condition 

monitoring through the application of a process simulation-based algorithm. By 

streamlining the detection of tool-related faults in a more efficient and cost-effective 

manner, the demand for extensive laboratory testing has been minimized. This approach 

holds the capacity to bring about a transformative impact on the domain of tool condition 

monitoring, thereby enhancing manufacturing processes as a cohesive whole, all the 

while fostering ongoing research and development efforts. 
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5. MİLLİNG PROCESS MONİTORİNG BASED ON İNTELLİGENT REAL-

TİME PARAMETER İDENTİFİCATİON FOR UNMANNED 

MANUFACTURİNG 

 Parameter identification using PBML algorithms  

To identify milling process conditions and status during operation, ML algorithms are 

utilized to extract process parameters from collected cutting forces in real-time. For this 

purpose, two interrelated steps are employed, as illustrated in Figure 22. 

 

Figure 22. Flowchart of the parameter identification process. 

- Developing a PBML model to improve the accuracy of milling force predictions: As 

discussed in the preceding section, the primary challenge in ML training lies in data set 

preparation. Conducting experiments for this task is both time-consuming and expensive 

in terms of the computational resources, such as time and memory. Simulation models 

often lack the accuracy required to generate reliable results for ML training. To overcome 

this challenge, a hybrid PBML model has been developed to enhance simulation results 

and effectively address the aforementioned challenge. 

For this purpose, the cutting forces were simulated using a linear edge force model [125], 

and subsequently they were integrated into the PBML model as input features, along with 

the thermo-mechanical properties of various materials, milling tool geometries and 

different cutting parameters such as feed rate, axial/radial depth of cuts and measured 

cutting forces. Integrating mechanistic milling models into the ML framework enables 

Improvement of the 
mechanistic force 

model through PBML

Parameter 
identification using 

ML model

Dataset preparation 
via improved milling 

force model

Inputs

• Machining parameters
• Simulated milling force
• Experimental force

Outputs

• Improved milling 
force model

Inputs

• Improved simulation
milling force

Outputs

• Machining 
parameters and 
conditions

Efficient exploration of 
diverse process 

conditions with reduced 
step increments through 
rapid simulations with 

high accuracy.
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creating a robust relationship between cutting forces and input features. With this 

approach, the PBML model provides enhanced simulated milling forces, which are then 

used in the dataset preparation required for training the ML for parameter identification 

in the second step. Using simulation alongside ML algorithms eliminates the need for 

numerous costly and time-consuming experiments. 

- Developing a second-layer ML model for parameter identification: In this step, the ML 

model is trained based on the accurate milling force simulations obtained from the 

previous step. Afterwards, a reverse procedure is employed to predict the cutting 

parameters based on the real-time cutting forces and ML model.  

It should be mentioned that three various ML algorithms were employed for training the 

models, including support vector machine (SVM) [12], random forest (RF) [113] and 

least square boosting (LSBoost) [103]. Bayesian optimization [126], a powerful technique 

in ML and statistical modeling, was employed to select the optimum values for the 

hyperparameters of ML algorithms, as their accuracy is strongly dependent on these 

values. By combining probabilistic models with an acquisition function, this algorithm 

intelligently explores and exploits the parameter space, selecting the most promising 

configurations iteratively. As Bayesian optimization navigates the search space 

efficiently, it is particularly useful for optimizing complex and expensive functions, 

which makes it well suited for hyperparameter tuning. By balancing exploration and 

exploitation, it can provide a faster convergence to optimal solutions (seeTable 10). 

Table 10. Hyperparameters of ML models and their optimum values. 

 

ML 

Models 
Hyperparameters ADOC RDOC 

Feed  

rate 

Tool 

Radii 

No. of 

teeth 

RF 

Minimum leaf size 4 5 3 4 2 

No. predictors to 

sample 
21 18 19 17 14 

No. of Trees 24 24 24 24 24 

In bag Fraction 0.8425 0.8142 0.7613 0.8664 0.8124 
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LSBoost 

No. of Learning 

Cycles 
417 232 385 462 364 

Learning rate 0.2362 0.2176 0.1456 0.2438 0.1859 

Minimum leaf size 48 37 31 42 24 

Maximum No. of 

splits 
21351 19824 19215 20457 5487 

No. variables to 

sample 
6 7 4 4 5 

SVM 

Box Constraint 982.67 943.09 992.83 895.41 886.47 

Epsilon 14.634 13.751 9.231 8.524 7.546 

Kernel Function Gaussian Gaussian Gaussian Gaussian Gaussian 

 

 

 Results and discussion 

5.2.1. Improving accuracy of the milling force model predictions 

As previously mentioned, to enhance the accuracy of milling force simulations through 

ML algorithms, a limited set of measurements were taken. To achieve this, a 

comprehensive array of cutting parameters, predominantly employed in industrial 

applications, were selected for conducting milling force measurements. To conduct a 

suitable set of experiments, the composite central design (CCD) method was utilized. 

Two different end mills were used for these tests - with 20mm and 16mm diameters and 

cutting teeth of 4 and 3, respectively. The cutting parameters of these measurements are 

detailed in Table 11. 
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Table 11.Training cutting parameters for improved milling force prediction with ML 

algorithm. 

Cutting parameters  Levels 

Spindle speed (rpm) 2500, 3500,4500 

Feed rate (mm/rev.tooth) 0.025, 0.05, 0.1, 0.15 

Axial depth of cut (mm) 1, 3, 6, 10, 15 

Radial depth of cut (mm) 1, 2, 4, 8, 10 

Material AL7075-T6 

 

Cutting forces used for ML training were measured using a Piezo-electric Dynamometer 

9257BA, an amplifier, and the NI USB-6259 data acquisition system. 

Following the collection of measured cutting force data and the training of ML models, 

the established PBML model was employed to correlate experimentally measured cutting 

forces with simulated milling forces using 2.40 GHz Intel Core i7-13700H CPU and 

32GB RAM. The model was trained by LSBoost, SVM and RF algorithms, and was 

subsequently employed to predict the cutting forces of an unseen dataset. It should be 

mentioned that 70% of the dataset was used for training, while 15% was allocated for 

validation and another 15% for testing. Comparison of the obtained results with 

experimentally measured forces reveals that the proposed PBML model remarkably 

improves the accuracy of the mechanistic models, where the correlation coefficient (R2 

value) is more than 97% for the unseen datasets. The LSBoost model yielded the lowest 

root mean square error (RMSE), followed by RF and SVM, respectively. An example of 

the obtained results (i.e., enhanced cutting forces) is demonstrated in Figure 23.  
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Figure 23. Comparison of the measured cutting forces with simulations and enhanced 

simulations using PBML. (tool diameter is 16mm, number of teeth is 4, runout is 10 

µm, axial and radial depth of cuts are 4mm, feed rate is 0.2 mm/rev.tooth,  

and spindle speed is 2000rpm) 

5.2.2. Parameter identification 

After the accuracy of the mechanistic model was improved, it was utilized to generate a 

training dataset, a crucial step in the subsequent parameter identification process. The low 

calculation time of these simulations allows the exploration of a wide range of conditions 

within a short period, a task which is impractical with experimental data only due to cost 

and time constraints. This expanded dataset played a pivotal role in refining the model's 

ability to identify parameters effectively. The output of this model was the estimated 

milling conditions, including feed rate, axial/radial depth of cut, tool diameter, number of 

teeth etc. It should be mentioned that the spindle speed was identified by applying Fast 

Fourier Transform (FFT) on cutting force signals and using the identified number of teeth 

by ML.  

As illustrated in Table 12, the proposed model has yielded exceptionally accurate results, 

with the predicted parameters closely aligning with the actual values. The predictions 

accuracies exceed 95% for all machining parameters using the developed PBML model, 

and it demonstrates superior performance in parameter identification. The obtained 

results demonstrate the effectiveness of PBML in achieving a high level of accuracy in 

the context of parameter identification. 
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Table 12. Parameter identification performance of ML algorithms. 

ML 

Models 

Metrices Axial 

depth 

of cut 

Radial 

depth of 

cut 

Feed 

rate 

Tool 

radius 

No. of 

Teeth 

RF R2 (%) 95.03 97.88 96.14 94.20 97 

RMSE 0.036 0.21 0.024 0.015 0.01 

LSBoost R2 (%) 97.89 98.65 97.32 98.47 98 

RMSE 0.032 0.14 0.015 0.01 0.008 

SVM R2 (%) 95.11 96.63 95.09 95.74 97 

RMSE 0.041 0.23 0.027 0.014 0.01 

 

To clarify the precision of the obtained outcome, a statistical error analysis was conducted 

to portray the distribution of disparities between the actual and predicted values of 

machining parameters. The results, illustrated in Figure 24. The statistical error analysis 

of the identification of a) axial depth of cut (ADOC) and b) radial depth of cut (RDOC). 

The percentage error between the milling force predictions and the measured values were 

determined for over 50 different unseen data.Figure 24, reveal that the error distribution 

is tightly constrained within a narrow band, with the majority of deviations falling 

between -5% and 5%. This interval encompasses 90% of the observations. The model's 

adeptness in capturing and minimizing errors within this specified range not only 

reinforces the overall robustness of the parameter identification process but also 

underscores the developed ML approach as a valuable tool for achieving a high level of 

accuracy in intricate machining scenarios. 
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Figure 24. The statistical error analysis of the identification of a) axial depth of cut 

(ADOC) and b) radial depth of cut (RDOC). The percentage error between the milling 

force predictions and the measured values were determined for over 50 different unseen 

data. 

5.2.3. Experimental verification 

To experimentally verify the proposed method, the accuracy of the algorithm was 

evaluated on milling of a complex part geometry. For this purpose, the test workpiece 

illustrated in Figure 25 was prepared to include continuous variations in both axial and 

radial depth of cuts on the AL7075-T6 block. Furthermore, the feed rate was altered in 

three steps over the cutting length. This scenario is referred to as case 1. 

To identify varying process parameters, the real-time measured cutting forces by 

dynamometer were fed to the trained ML model (as the input features) in each 0.3 second. 

The sampling rate of the system is determined based on the computation time of the ML 

model. Subsequently the model predicted the cutting parameters in different cutter 

locations. Comparison of actual and identified process parameters are shown in Figure 26 

and Figure 27 (Case 1). Comparison of the actual cutting parameters with predicted values 

(through real-time cutting forces) reveals a high level of precision, where the estimation 

accuracy for axial depth of cut is 97.9%, for radial depth of cut is 98.7%, and for feed rate 

is 97.3%. The highest RMS error is 0.14, illustrating the effectiveness of the proposed 

methodology in capturing the intricate variations in cutting conditions throughout 

different regions of the specimens (see Figure 26 and Figure 27, case 1).  
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Figure 25. a) Experimental setup for verification b)3D view and c) top and side views of 

the test workpiece. 

 

Figure 26. Comparison of identified & actual axial depth of cut and feed rate. 

 

Figure 27. Comparison of identified and actual radial depth of cut and feed rate. 

Z
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The remarkable precision observed across various parameters confirms the proficiency 

of the model proposed in thoroughly comprehending and predicting complex patterns in 

the cutting process. Additionally, the results obtained suggest that the proposed approach 

functions as a reliable and adaptable tool for accurately identifying parameters in practical 

machining applications, utilizing real-time cutting forces. This can also be considered as 

digitalization of an existing machining process to obtain the required conditions for 

further analysis and simulations.  

 Production Applications  

5.3.1. Monitoring and fault detection 

As mentioned earlier, the main advantage of the proposed method, in contrast to previous 

monitoring systems, is its capability to identify accurate cutting parameters for detection 

of various faults and their sources. These faults may originate from errors in workpiece 

clamping, tool definition offsets, wrong fixture position and/or offsets, errors in 

workpiece and machine tool coordinate transformation etc. The real-time detection of 

such discrepancies is crucial for machining operations and investigated in a case study. 

The example case involved clamping of the workpiece with angular displacements around 

both X and Z axes, resulting in discrepant axial and radial depth of cut values (i.e., 

different from the desired values), representing a possible fixturing error, which is 

referred to as case 2. The cutting forces, as measured by the dynamometer, were then 

utilized for parameter identification using the proposed PBML model outlined in 

preceding sections. The results, as depicted in Figure 26 and Figure 27(case 2), 

demonstrate that the model has well captured the discrepancy of 1.5° and 1° in axial and 

radial directions, respectively, highlighting the efficiency of the developed approach in 

accurately detecting workpiece-clamping faults. 

5.3.2. Parameter optimization 

As an important application of this method, the identified parameters can be utilized for 

real-time cutting parameter optimizations. For instance, the feed rate significantly 

influences machining time, cutting forces, and overall production efficiency. Feed rate 
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optimization not only minimizes process time but also serves as a means to maintain 

cutting forces at a desired level respecting machine, tool and part constraints eliminating 

overloads while providing uniform quality, as well. Utilizing the exponential cutting force 

model, Equation (12) [127] was employed to determine the optimal feed rate from 

measured cutting forces. 

𝑓𝑜 = 𝑓 (
𝐹𝑡𝑎𝑟
𝐹𝐸
)

1
1−𝑝

 (12) 

where, FE is the estimated cutting force by PBML, Ftar is the target force, f and fo are 

estimated and optimal feed rate, and ‘p’ is a material-dependent constant found by 

exponential cutting force model. 

The obtained result for feed rate optimization is illustrated in Figure 28. In this context, 

the optimization objective was to ensure that the resulting cutting force remains below 

the specified target force value of 600 N. In addition to the constant resultant cutting 

force, the optimized feed rate values lead to a 27% reduction in the cutting time. 

 

Figure 28. Feed rate optimization utilizing PBML-estimated resultant cutting forces. 

5.3.3. Current data from CNC controller 

The developed approach is versatile, supporting various sensors for implementation in 

different situations. Using dynamometers can be challenging due to the obstacles they 

introduce, the cables can create operational issues, moreover they are expensive and 
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vulnerable to damage in the production environment. Therefore, using alternative sensors 

for real-time identification of cutting parameters is more practical. The direct utilization 

of servo current data from the CNC controller is a convenient approach, though it suffers 

from a major drawback of insufficient sampling rates, particularly at higher spindle 

speeds. Consequently, the ongoing project is focused on exploring the use of CNC 

controller data for parameter identification at high spindle speeds. In this context, the 

servo current data captured is employed to derive cutting forces through a ML model. 

Figure 29 illustrates a comparison between the cutting forces derived from the current 

data and those acquired by the dynamometer where a good agreement is observed. 

Subsequently, the derived cutting forces can be utilized for identifying the process 

parameters. 

 

Figure 29. a) Comparison of cutting forces collected by dynamometer and  

ML-predicted forces using CNC controller data, b) Regression curve for unseen test 

data (The tooth passing frequency is equal to 66.66 Hz). 

 Summary 

This study aims for the development of an intelligent monitoring system through real-

time fault detection using a novel ML system developed based on a hybrid approach.  

● Highly accurate simulation results obtained by PBML, based on the linear edge force 

model, are used instead of experimental data to train the ML model.  

a) b)
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● The proposed approach demonstrates remarkable accuracy in predicting the machining 

parameters, exceeding 96% in real-time. The statistical error analysis indicates a 

notably confined error distribution. 

● The high prediction accuracy of the proposed method in real-time has been verified by 

the machining of a complex free-form workpiece. 

● The proposed approach finds applicability across various unmanned manufacturing 

applications serving purposes such as process monitoring, fault detection and parameter 

optimization, as exemplified in the case studies. 

● The suggested method exhibits notable adaptability for deployment in industrial 

applications, such as utilizing CNC controller current signals instead of a dynamometer.  
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6. PHYSICS-INFORMED TOOL WEAR PREDICTION IN TURNING 

PROCESS: A THERMO-MECHANICAL WEAR-INCLUDED FORCE 

MODEL INTEGRATED WITH MACHINE LEARNING 

 Methodology 

This section presents an overview of the mechanistic modeling approach used to estimate 

cutting forces, considering both unworn and worn cutting tool conditions. First, thermo-

mechanical modeling of the primary, secondary, and third deformation zones is 

introduced, neglecting the influence of flank wear but incorporating the effect of edge 

forces. Subsequently, the proposed model for incorporating the effect of tool wear on 

cutting forces is presented, and the application of this model for the turning process is 

discussed, considering the effect of the nose radius. Finally, the details of the physics-

informed ML model used to improve the accuracy of the mechanistic model are 

presented. 

6.1.1. Modeling of the primary, secondary and third deformation zones 

In this section, the thermo-mechanical modeling of cutting forces in the primary, 

secondary, and third deformation zones is introduced. To facilitate the mathematical 

tractability of the model, the cutting tool was partitioned into six regions, as illustrated in 

Figure 30a. Regions 1-3, located on the rake face, are responsible for chip formation; 

region 4, being on the hone face, is responsible for ploughing; and the regions 5-6 

represent the flank contact due to elastic recovery. 
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Figure 30. a) Representation of cutting-edge including rake, hone and flank faces,  

b) 3D tool model considering nose radius effect. 

Unlike conventional force models, the model used in this study does not rely on constant 

cutting coefficients to calculate cutting forces. Instead, it employs local coefficients 

derived from the local pressure and shear stress distributions on the rake, hone, and flank 

faces. To calculate the stress distribution on these faces, the shear stress at the exit of the 

shear zone (τ1) has to be first determined. By considering the inertia effects, from the 

equations of motion for continuous chip condition, τ1 is calculated by Equation (13): 

𝜏1 = 𝜌 (𝑉𝑐 𝑐𝑜𝑠𝜆𝑠𝑠𝑖𝑛𝜙𝑛)
2𝛾1 + 𝜏0 (13) 

where, ρ is the material density, Vc is the cutting speed, λs is the inclination angle, ϕn is 

the normal shear angle, and γ1 is the shear strain at the exit of the shear band. τ0 is the 

shear stress at the entry of the primary deformation zone, which is calculated using the 

Johnson-Cook model, with strain rate and temperature boundary conditions applied at the 

entry and exit of the shear band [128]: 

 

{
 
 
 
 

 
 
 
 𝛾̇ = 𝛾̇(𝛾, 𝜏0) = 𝛾0̇ exp( 

𝜏√3

𝑚 𝑔1(𝛾)𝑔2(𝑇)
 − 

1

𝑚
)

𝑔1(𝛾) = 𝐴 + 𝐵 (
𝛾

√3
)
𝑛

𝑔2(𝑇) = 1 − (
1 − 𝑇𝑟𝑒𝑓

𝑇𝑚 − 𝑇𝑟𝑒𝑓
)

𝑣

𝑇 =  𝑇𝑤 + 
𝛽

𝜌𝑐
[ 𝜌(𝑉𝑐𝑜𝑠𝜆𝑠𝑠𝑖𝑛𝜙𝑛)

2
𝛾2

2
+ 𝜏0 𝛾 ]

                   

where, 

(14) 

 

𝑑𝛾

𝑑𝑧
=

𝛾̇(𝛾, 𝜏0)

𝑉𝑐𝑜𝑠𝜆𝑠𝑠𝑖𝑛𝜙𝑛
 

(15) 
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γℎ =
𝑐𝑜𝑠𝛼𝑛

𝑠𝑖𝑛𝜙𝑛𝑐𝑜𝑠𝜂𝑠cos (𝜙𝑛 − 𝛼𝑛)
 (16) 

∫
𝑉 𝑐𝑜𝑠𝜆𝑠𝑠𝑖𝑛𝜙𝑛
𝛾̇(𝛾, 𝜏0)

 𝑑𝛾 = ℎ

γℎ

0

 
(17) 

 

where, γ is shear strain, Tr is reference temperature, Tm is the melting temperature, n is 

the strain hardening exponent, m is the strain rate sensitivity, v is thermal softening 

coefficient, A and B are material constants, 𝜂s is the shear flow angle, and h is the thickness 

of the primary shear band.  

After estimating the shear stress at the exit of the primary shear zone, the pressure 

distributions on the rake, hone and flank faces are calculated. For the rake face, most of 

the researchers have employed a decreasing quadratic pressure distribution, as 

represented by equation (18). While, for the hone and flank faces, there is no universally 

accepted solution, and different scenarios are tested by researchers [120]. Therefore, in 

this study various distribution functions were examined, including linear, quadratic and 

cubic for both “decreasing” and “increasing-decreasing” patterns, as depicted in  

Figure 31. 

 

Figure 31. Different pressure distribution patterns on hone and flank faces. 

𝑃(𝑥) = 𝑃0  (1 −
𝜒

𝑙𝑓
)

𝜁

 

(18) 
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𝑃0 = 𝜏1
ℎ1(1 + 𝜁)

𝑙𝑐
 

𝑐𝑜𝑠𝜂𝑠 𝑐𝑜𝑠𝛽𝑛
𝑠𝑖𝑛𝜙𝑛 𝑐𝑜𝑠𝜂𝑐  cos (𝜙𝑛 + 𝛽𝑛 − 𝛼𝑛)

 

𝑃(𝑥) = 𝑎𝜒2 + 𝑏𝜒 + 𝑐 

𝑎 =
𝑃0

2𝑙𝑓𝑙1 − 𝑙𝑓
2 ;     𝑏 =  −2𝑎𝑙1;    𝑐 = 𝑃0;  𝑙1 = 𝑅ℎ. 𝜃 

(19) 

where, lf denotes the contact length in the flank face, lc is the contact length in the rake 

face, ζ is the distribution exponent, P0 is the normal pressure at the stagnation point, βn is 

the normal friction angle, Rh is the hone radius, θ is the stagnation angle, and χ represents 

the distance from stagnation point. The stagnation point separates the secondary 

deformation zone from the third deformation, as illustrated in Figure 30a. 

The equations      (20) and (21) describe the normal and frictional forces acting on the 

cutting tool across the six previously mentioned regions, i.e. the rake face, hone region, 

and flank face [120].  

𝐹𝑁𝑖 = ∫ 𝑤. 𝑃(𝜒). 𝑜(𝜒)𝑑𝜒
𝑙𝑖+𝑙𝑖+1

𝑙𝑖

      (20) 

𝐹𝐹𝑖 =

{
 
 

 
 ∫ 𝜏1. 𝑤. 𝑜(𝜒)𝑑𝜒,     𝑠𝑡𝑖𝑐𝑘𝑖𝑛𝑔 𝑟𝑒𝑔𝑖𝑜𝑛

𝑙𝑖+𝑙𝑖+1

𝑙𝑖

∫ µ. 𝑃(𝜒).𝑤. 𝑜(𝜒)𝑑𝜒,     𝑠𝑙𝑖𝑑𝑖𝑛𝑔 𝑟𝑒𝑔𝑖𝑜𝑛
𝑙𝑖+𝑙𝑖+1

𝑙𝑖

  (21) 

 

{
𝑖𝑓     𝜇. 𝑃(𝜒) > 𝜏1 ;     𝑠𝑡𝑖𝑐𝑘𝑖𝑛𝑔 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛

𝑖𝑓    𝜇. 𝑃(𝜒) < 𝜏1 ;     𝑠𝑙𝑖𝑑𝑖𝑛𝑔 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛
  (22) 

 

where, FN is the normal force, FF is the friction force, w is the depth of cut and o(x) is the 

orientation function for the partitioned regions. The shearing forces acting on the rake 

face (Ftc and Ffc) are calculated by equation (23); and the edge forces acting on hone and 

flank faces (Fte and Ffe) are calculated by equation (24), respectively: 



84 

 

𝐹𝑡𝑐 = ∑𝐹𝑁𝑖𝑧 + ∑𝐹𝐹𝑖𝑧 

3

𝑖=1

 

3

𝑖=1

 

𝐹𝑓𝑐 = ∑𝐹𝑁𝑖𝑦 + ∑𝐹𝐹𝑖𝑦 

3

𝑖=1

 

3

𝑖=1

 

(23) 

 

𝐹𝑡𝑒 = ∑𝐹𝑁𝑖𝑧 + ∑𝐹𝐹𝑖𝑧 

6

𝑖=4

 

6

𝑖=4

 

𝐹𝑓𝑒 = ∑𝐹𝑁𝑖𝑦 + ∑𝐹𝐹𝑖𝑦 

6

𝑖=4

 

6

𝑖=4

 

(24) 

where, the subscript c and e refer to shearing forces and edge forces, respectively. The 

sum of these forces represents the total cutting forces.  

6.1.2. Modeling flank wear effect on cutting forces 

To investigate the wear effect on cutting forces, a virtual wear is simulated, and the 

distribution of forces acting on the worn area is recalculated. The formation of new 

contact regions due to wear alters stress distributions, friction, and normal forces, 

necessitating recalculation and updates to accurately capture these changes. A linear wear 

pattern parallel to the cutting speed, which is commonly used by other  

researchers [89,129], was employed in this study. The wear effect on the cutting forces 

can be addressed by recalculating and updating the forces acting on the worn zone, as 

illustrated in Figure 32 and equation (25): 

𝐹𝑁4 =  ∫ 𝑤. 𝑃(𝑥) 𝑑𝑥
𝑙𝑒𝑛𝑑

𝑙𝑠𝑡

 

(25) 

𝐹𝐹4 = − ∫ 𝜏(𝑥). 𝑤 𝑑𝑥        
𝑙𝑒𝑛𝑑

𝑙𝑠𝑡

 

where, lst and lend are the start and end points of the flank wear. τ is the shear stress, which 

is dependent on the friction type (i.e., sliding or sticking). As previously explained in 

equation (22), at points where μP(x) is greater than τ1, the sticking condition exists and τ 

is equal to τ1; while for the rest of the contact length, sliding condition exists and 
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consequently τ is equal to μP(x). An important consideration is that the friction coefficient 

of the worn surface inherently differs from that of the unworn surface. Hence, the friction 

behavior on the worn surface was investigated using an iterative numerical approach. For 

this purpose, the friction coefficient was calibrated to minimize the relative error between 

the experimental and analytical results. This involved performing wear modeling with 

various friction coefficient values on the worn surface. The value that yielded the least 

difference between measured and model-estimated forces was then selected as the friction 

coefficient for the worn surface. Also, the investigation included examining different 

pressure distributions on the hone and flank faces, as outlined in the previous section. 

 

Figure 32. Schematic representation of flank wear. 

6.1.3. Modeling of turning process  

One of the applications of the proposed model is for the turning operation, where the 

effect of nose radius and cutting-edge angle also needs to be considered. For the sake of 

the mathematical simplicity, the cutting edge was partitioned into two regions: R1, 

representing the straight edge, and R2, representing the nose region, as depicted in Figure 

1b. In the first region, the direction and magnitude of the forces along the straight edge 

don’t change, unlike the second region in which the local edge angles are varying [130]. 

Therefore, the nose region is subdivided into infinitesimal elements with a length of ds 

(=Rn dθ) and a local edge angle of κr(θ). The presence of the nose radius results in local 

variations in cutting angles [131]. Even if the tool has no global inclination angle, the 

global rake angle leads to local inclination and rake angles along the nose radius, as 
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explained by equation (26). 

𝛼𝑛
𝑗
= 2𝑠𝑖𝑛−1 (cos(𝜅𝑗 − 𝜅𝑟) sin (

𝛼𝑛
2
)) +  2𝑠𝑖𝑛−1 (sin(𝜅𝑗 − 𝜅𝑟) sin (

𝑖

2
))  

𝑖𝑗 = 2𝑠𝑖𝑛−1 (sin(𝜅𝑗 − 𝜅𝑟) sin (
𝛼𝑛
2
)) −  2𝑠𝑖𝑛−1 (cos(𝜅𝑗 − 𝜅𝑟) sin (

𝑖

2
))               

(26) 

where, αn
j represents the local normal rake angle, and ij is the local inclination angle for 

the jth element; αn and i are global normal rake and inclination angles, respectively.  

The feed and radial forces are calculated using a similar approach as explained in the 

previous sections. These elemental forces are then transformed into the global X, Y, and 

Z coordinate system to obtain the total cutting forces in the global (dynamometer) 

reference system, as described by equations (27)-(29).  

- For region 1: 

𝐹𝑥
𝑅1 =

1

𝑤
[−𝐹𝑓  cos 𝜅𝑟 + 𝐹𝑟  sin 𝜅𝑟 ] (

𝑤 − 𝑅𝑛(1 − cos 𝜅𝑟)

sin 𝜅𝑟
) 

𝐹𝑧
𝑅1 =

1

𝑤
[𝐹𝑓  sin 𝜅𝑟 + 𝐹𝑟  cos 𝜅𝑟 ]   (

𝑤 − 𝑅𝑛(1 − cos 𝜅𝑟)

sin 𝜅𝑟
) 

(27) 

- For region 2: 

𝑑𝐹𝑥
𝑅2 = −𝑑𝐹𝑓

𝑅2 𝑠𝑖𝑛𝜃 + 𝑑𝐹𝑟
𝑅2 𝑐𝑜𝑠𝜃 

𝑑𝐹𝑧
𝑅2 = 𝑑𝐹𝑓

𝑅2 𝑐𝑜𝑠𝜃 + 𝑑𝐹𝑟
𝑅2 𝑠𝑖𝑛𝜃 

 

(28) 

𝐹𝑞
𝑅2 = ∑𝑑𝐹𝑞,𝑗

𝑅2,          𝑞 = 𝑥, 𝑧

𝑁

𝑗=1

 

 

(29) 

where, N is the number of elements in the nose region, and FX, FY and FZ represent global 

radial, tangential and feed forces, respectively.  

The total cutting forces on the tool edge are calculated by summing the forces acting on 

the regions 1 and 2:  

𝐹𝑞
𝑡𝑜𝑡𝑎𝑙 = 𝐹𝑞

𝑅1 + 𝐹𝑞
𝑅2,          𝑞 = 𝑥, 𝑦, 𝑧 (30) 

As a sample, the cutting forces estimated by the wear-included turning model is illustrated 

in Figure 33 for a specific cutting condition and wear length value (e.g., feed rate: 0.05 
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mm/rev; depth of cut: 0.5 mm; cutting speed: 100 m/min; nose radius: 0.2 mm; hone 

radius: 15 µm, wear length= 190 µm). Complete results for other cutting conditions and 

wear lengths are presented in the Results section. 

 

Figure 33. A sample of measured and estimated cutting forces (feed rate: 0.05 

mm/rev; depth of cut: 0.5 mm; cutting speed: 100 m/min; nose radius: 0.2 mm; hone 

radius: 15 µm, wear length= 190 µm). 

 

 

6.1.4. Physics-informed machine learning model 

Conventional machine learning models, relying solely on experimental data, suffer from 

the high costs and extensive time required for data collection. This limitation has 

restricted the application of ML to academic research rather than real production 

environments, primarily due to the challenges in data preparation. To bridge the gap 

between industry and research, a novel physics-informed machine learning (PIML) [50] 

model was developed to predict cutting forces in the turning process. This hybrid model 

is not solely trained on experimental data but also incorporates estimations derived from 

mechanistic models. In other words, the forces estimated by the mechanistic model serve 

as additional inputs to the ML model, along with machining parameters and tool 

geometrical properties. This innovative approach enriches the predictive capabilities of 

the ML model beyond what could be achieved with experimental data alone. A schematic 
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representation of the proposed model is illustrated in Figure 34a. As depicted, the inputs 

of the ML model are feed rate, cutting speed, depth of cut, hone radius, nose radius, wear 

length and the cutting forces estimated by the mechanistic model. Meanwhile, the 

experimentally measured cutting forces are the targets of the hybrid model. Such a hybrid 

physics-informed model, which incorporates the mechanistic models in the training 

algorithm, not only improves the accuracy of the mechanistic model, but also eliminates 

the need for performing numerous experimental tests, an essential requirement often 

associated with data-driven ML models.  

Upon verifying the accuracy of the hybrid model, it can be employed in a reverse manner 

to predict wear length based on cutting forces and machining parameters. Here, the 

improved wear-included turning model from the previous step is used to generate a 

reliable training dataset for wear prediction, avoiding numerous expensive and time-

consuming experimental wear tests. As demonstrated in Figure 5b, for this reverse ML 

model, the wear length is considered as the output, while the inputs are the improved 

cutting forces, machining parameters, and tool geometry. 

To achieve the most accurate predictions possible, different ML algorithms were utilized 

for data analysis, including random forest (RF), support vector regression (SVR), and 

least square boosting (LSBoost). In this respect, initially hyperparameter optimization 

was conducted using Bayesian optimization. This algorithm combines probabilistic 

models with an acquisition function to navigate the parameter space, iteratively selecting 

the most beneficial configurations. As Bayesian optimization explores the search space 

effectively, it is specifically well-suited for optimizing complicated and expensive 

functions, making it appropriate for hyperparameter tuning. By balancing exploration and 

exploitation, it facilitates faster convergence to optimal solutions [115]. 
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Figure 34. Schematic diagram of the hybrid physics-informed ML model:  

a) Force prediction in the presence of tool wear,  

b) Wear length prediction via reverse ML model. 

 

 Experimental set-up 

Figure 35 depicts the wear and turning process test setup, where cutting forces were 

measured using a Piezo-electric Dynamometer 9257BA, an amplifier, and the NI USB-

6259 data acquisition system. The workpiece material is Steel 1050, and the cutting tool 

a) 

b) 
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is uncoated, brand-new turning inserts from the TPGN 160-883 series with various nose 

radii of 0.2, 0.4, and 0.8 mm. The wear measurements were performed with Dino-Lite 

digital microscope and Nano focus µ-surf explorer, as shown in Figure 35b. 

 

 

 

Figure 35. Experimental set-up, a) Lathe machine, MORI SEIKI, NL1500  

b) Tool wear measurement by Nano-focus device. 

The hone and nose radius measurements were carried out by Nano-focus measurement 

machine, as illustrated in Figure 36.  

 

  

 

 
 

b) a) 

a) 
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Figure 36. a) Hone radius measurement (10 µm), b) Nose radius measurement by 

Nano-focus µ-surf explorer 

The Composite Central Design (CCD) method was employed to conduct the experiments. 

This method offers significant benefits, primarily by reducing the total number of the 

required experimental tests. CCD allows researchers to efficiently explore the effects of 

various factors with minimal resource expenditure. This efficiency is achieved through 

the strategic placement of center points and axial points in the design space, which 

enhances the ability to predict responses with fewer trials. This approach not only 

conserves resources but also accelerates the experimental process, making it an effective 

strategy for robust and systematic investigation.      

 Results and discussion 

6.3.1. Improvement of the turning model accuracy through ML 

The accuracy of the turning model was evaluated without considering flank wear, while 

incorporating the effects of hone radius and nose radius into the assessment. For this 

purpose, the experimental tests were conducted using brand-new cutting inserts with 

varying nose and hone radii, and the measured forces were compared with the model-

estimated forces. A sample of the measured cutting forces is depicted in Figure 37, and 

the comparison of the model-estimated forces and the experimental results is summarized 

in Table 13. It should be mentioned that for the hone and flank faces, different pressure 

distribution functions were investigated, considering constant pressure, increasing-

decreasing and decreasing, each with different zeta values. Among various functions, two 

patterns demonstrated better estimations: the increasing-decreasing and decreasing 

patterns, both with zeta values set to one. As summarized in Table 1, the coefficient of 

determination (R2) for the analytical model ranges from 67% to 85%, indicating a 

moderate level of agreement between the model estimations and experimental results. 

However, this suggests that the model's estimations are not precise enough to reliably 

predict cutting forces in the turning process. Therefore, as previously mentioned in 

Section 6.1.4, a hybrid physics-informed machine learning model was developed to 

b) 
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improve the accuracy of the mechanistic model. In the proposed ML approach, the 

predicted forces by the mechanistic model were also included as the inputs of the ML 

algorithm, along with the machining parameters and tool geometrical properties. To 

achieve the most accurate predictions possible, different ML algorithms were utilized for 

regression analysis, including random forest, support vector regression, and LSBoost. The 

dataset was first partitioned into three subsets: training, validation, and test data. In this 

respect, 75% of the dataset was allocated for training purposes, 15% for validation to 

evaluate model performance during training, and the remaining 15% was kept as unseen 

test data to assess the generalization performance of the trained model. The dataset was 

standardized to have zero mean and unit variance. To achieve this, the necessary statistics 

were computed using the training data, and these statistics were then applied to both the 

training and test datasets to avoid data leakage and ensure consistency in the scaling 

process. Then, Bayesian optimization was employed to identify the optimal values of the 

algorithms' hyperparameters, as specified in Table 2. To prevent overfitting, k-fold cross-

validation error was used as the objective function of the optimization algorithm. As 

illustrated in Figure 9, the results of Bayesian optimization reveal that convergence was 

achieved for all three ML models, indicating that the optimization process successfully 

found hyperparameter values that maximize the performance of each algorithm. The 

consistent convergence of Bayesian optimization across iterations highlights its 

effectiveness in navigating complex hyperparameter spaces. This stability and reliability 

reinforce its suitability for fine-tuning ML models. Additionally, this convergence 

validates the optimization strategy and suggests that the chosen hyperparameters are 

likely to generalize well across various datasets, thereby enhancing the versatility and 

applicability of the optimized models. 
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Figure 37. A sample of measured and predicted cutting forces 

 (feed rate: 0.05 mm/rev; depth of cut: 0.5 mm; cutting speed: 100 m/min;  

nose radius: 0.2 mm; hone radius: 15 µm). 

Table 13. Comparison of cutting forces: Mechanistic model vs. experiment tests. 

Machining 

parameters 

Tool 

geometry 

Experimental 

forces 

Analytical 

model 

(decreasing 

pattern with 

zeta=1) 

Analytical 

model 

(increasing-

decreasing 

pattern with 

zeta=1) 

feed rate 

(mm/rev) 

depth 

(mm) 

cutting 

speed 

(m/min) 

nose 

radius 

(mm) 

hone 

radius 

(µm) 

Fx  Fy  Fz  Fx  

 

Fy  Fz  Fx  
 

Fy  Fz  

0.1 1 125 0.4 30 330 77 194 270 87 221 296 102 233 

0.15 1.5 150 0.8 5 620 115 240 535 118 223 541 129 244 

0.05 1.5 150 0.2 15 300 37 170 205 22 167 224 30 228 

0.05 1.5 150 0.8 5 280 70 160 184 52 97 209 63 118 

0.05 1 125 0.4 30 195 59 140 157 71 181 183 102 263 

0.15 0.5 100 0.2 15 220 50 90 181 38 94 188 46 115 

0.15 1.5 100 0.8 5 700 145 310 527 114 212 534 125 233 

0.1 1 125 0.8 5 350 115 150 238 84 105 242 95 118 

0.1 1 125 0.2 15 345 60 170 250 31 150 263 38 191 

0.05 0.5 100 0.2 15 95 29 65 67 22 55 73 30 76 
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0.15 1.5 100 0.2 15 690 82 345 545 38 282 565 46 344 

0.05 1.5 100 0.4 30 310 65 215 234 71 272 273 105 377 

0.15 0.5 100 0.8 5 300 115 155 186 113 113 188 124 124 

0.1 1.5 125 0.4 30 510 125 300 405 89 331 444 122 404 

0.15 1 125 0.4 30 470 145 210 385 105 261 411 139 344 

0.15 0.5 150 0.2 15 230 67 95 184 39 97 191 47 118 

0.15 1.5 150 0.2 15 620 70 280 554 39 291 573 47 352 

0.05 0.5 150 0.2 15 85 22 57 68 22 56 74 31 76 

0.1 1 100 0.4 30 370 130 200 268 89 221 294 122 304 

0.1 1 150 0.4 30 340 107 150 273 90 223 299 123 306 

0.15 1 100 0.4 30 475 110 263 382 105 260 408 138 343 

0.05 1 100 0.4 30 205 55 140 156 70 182 182 104 265 

0.05 1 150 0.4 30 203 53 135 159 70 182 185 103 264 

0.1 1.5 100 0.4 30 510 90 300 402 89 330 441 111 455 

0.15 1.5 100 0.4 30 705 110 345 573 105 389 612 136 473 

0.05 1.5 150 0.4 30 300 57 210 239 99 273 278 103 396 

0.1 1.5 150 0.4 30 500 92 285 410 90 334 449 109 408 

0.1 0.5 125 0.4 30 170 65 95 135 87 111 148 102 122 

0.05 0.5 150 0.8 5 125 55 70 72 52 54 74 60 63 

0.05 0.5 100 0.8 5 140 70 85 71 50 51 73 62 62 

0.15 1.5 150 0.4 30 680 105 320 584 106 396 622 139 402 

0.15 0.5 150 0.8 5 260 80 120 178 119 119 181 130 130 

R2 for increasing-decreasing pressure distribution: Tangential force: 85%; Feed force: 

71%: Radial force: 67%. 

R2 for decreasing pressure distribution: Tangential force: 77%; Feed force: 75%: 

Radial force: 68%. 
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Figure 38. Progression of hyperparameter tuning in LSBoost model: a) Tangential 

force, b) Feed force and c) Radial force. 

Table 14. Hyperparameter optimization results. 

ML 

Models 
Hyperparameters 

Tangential 

force 
Feed force 

Radial 

force 

SVR 

Box Constraint 245.16 57.47 6.97 

Epsilon 8.86 11.85 6.94 

Kernel Function Linear 
3rd order 

polynomial 
Linear 

Random  

Forest 

Minimum leaf size 1 1 1 

No. predictors to 

sample 
5 5 3 

No. of Trees 6 4 6 

In bag Fraction 0.95 0.91 0.74 

LSBoost 

No. of Learning 

Cycles 
499 223 35 

Learning rate 0.06 0.04 0.34 

Minimum leaf size 1 5 2 

Maximum No. of 

splits 
1 18 1 

No. of variables to 

sample 
2 6 6 

 

Followed by hyperparameter optimization, the regression analysis was performed with 

the PIML models. The obtained results are presented in Figure 10 and Tables 3 and 4. As 

demonstrated, all three machine learning models achieved remarkable accuracy in 

predicting cutting forces, which is evident from the close agreement between the 

predicted forces and the forces measured experimentally by the dynamometer. Among 

the ML models tested, LSBoost yielded the best performance, with SVR and RF showing 
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comparable performance for certain force components. It should be mentioned that the 

increasing-decreasing pressure distribution with zeta set to one slightly outperforms the 

decreasing pattern. The determination coefficient (R2) values of LSBoost algorithm for 

increasing-decreasing force model are 98%, 97% and 93% for tangential, feed and radial 

forces, with RMSE values of 14.93, 12.37 and 7.94, respectively. These values indicate 

the remarkable performance of the PIML model in predicting cutting forces in the turning 

process, considering both hone radius and nose radius effects. The determination 

coefficient measures the proportion of the variability in the cutting forces that can be 

explained by the model. A high R-squared value of more than 93% indicates that the 

model's features explain approximately 93% of the variability in cutting forces. 

Additionally, the low RMSE values signify a small average difference between predicted 

and actual cutting forces, suggesting close agreement between the model's predictions 

and the actual values. The obtained results demonstrate 13-25% improvement over the 

mechanistic turning model, highlighting the accuracy and effectiveness of the proposed 

approach in capturing the complex relationship between cutting forces, machining 

parameters and tool geometry. To further assess the accuracy of the PIML model, 

predictions were made for the unseen test dataset. The results indicated that the hybrid 

model effectively predicted cutting forces for this dataset as well, achieving R2 values of 

97% for tangential force, 97% for feed force, and 91% for radial force. This validation on 

unseen test data confirms the robustness and reliability of the model across different 

datasets. 
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Figure 39. Regression curves of LSBoost model for: a) tangential; b) feed and c) 

radial forces. 

Table 15. Performance metrices of the PIML algorithms for increasing-decreasing force 

model. 

ML Models Metrices Tangential 

force 

Radial 

force 

Feed 

force 

LSBoost 
RMSE 14.93 7.94 12.37 

Adj. R2  98% 93% 97% 

SVR 
RMSE 16.88 14.85 14.88 

Adj. R2  98% 80% 96% 

Random Forest 
RMSE 23.19 10.22 20.81 

Adj. R2  98% 89% 94% 

 

Table 16. Performance metrices of the PIML algorithms for decreasing force model. 

ML Models Metrices Tangential 

force 

Radial 

force 

Feed 

force 

LSBoost 
RMSE 15.13 9.96 13.15 

Adj. R2  97% 90% 97% 
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SVR 
RMSE 17.06 10.39 18.33 

Adj. R2  97% 89% 95% 

Random Forest 
RMSE 23.66 9.07 23.95 

Adj. R2  96% 92% 92% 

In summary, integrating the thermo-mechanical model into the ML algorithm not only 

enhanced the accuracy of the turning model by over 13-25%, but also this physics-

informed model eliminated the need for numerous experimental tests. According to the 

obtained results, highly accurate predictions of cutting forces was achieved with a limited 

number of experimental tests (i.e., 32 tests). Such a hybrid physics-informed system 

bridges the gap between industry and research, where, the necessity for extensive datasets 

in conventional data-driven ML models poses a significant challenge for the application 

of these models in real machining environments, limiting their scope to research academy. 

 

6.3.2. Flank wear effect on the cutting forces 

Followed by the improving the accuracy of the mechanistic turning model through ML 

algorithms, the effect of flank wear on the cutting forces was investigated. For this 

purpose, the wear tests were carried out and the measured forces were compared with the 

model-estimated forces, with and without PIML implementation. In the developed PIML 

model, the wear length was also considered as one of the inputs of the ML algorithms, 

along with the machining parameters, hone radius, nose radius, and the cutting forces 

estimated by the wear-considered force model. Initially, the friction behavior on the worn 

surface was analyzed using an iterative numerical approach. The goal was to calibrate the 

friction coefficient in a way that the relative error between the measured cutting forces 

and the model-estimated forces was minimized. For this purpose, force modeling was 

executed with various values of the friction coefficient on the worn surface, and the one 

leading to the least difference between the experimental and analytical results was 

selected as the friction coefficient in the worn surface. According to the obtained results 

the friction coefficient in the worn surface varies between 0.7-0.9 for various cutting 

conditions. Also, various pressure distribution types and zeta values were examined to 

determine the most ideal conditions resulting in accurate predictions. Among these, the 
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increasing-decreasing pressure distribution with zeta equal to 1 resulted in the most 

accurate estimations. The comparison of the model-estimated and experimental forces is 

illustrated in Figure 40 and Figure 41, for two specific machining setups. For the entire 

dataset, the regression curves are shown in Figure 42, and the corresponding performance 

metrices (i.e., R2 and RMSE values) are summarized in Table 17.  

According to the obtained results, without employing the ML algorithms, the prediction 

accuracy of the model is 93% for the tangential force, 80% for the feed force, and 71% 

for the radial force. However, with the implementation of the PIML model, prediction 

accuracy increased to 97-98%, highlighting the superior performance of the proposed 

physics-informed ML model in accurately predicting turning forces in the presence of 

flank wear effects. This significant improvement demonstrates the effectiveness of 

integrating machine learning with analytical models, resulting in more reliable and 

precise predictions, even with limited number of experimental tests. 
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Figure 40. Model-estimated vs. experimental cutting forces: a) tangential; b) feed and 

c) radial forces. (feed rate= 0.05 mm/rev, depth of cut= 0.5 mm, cutting speed= 100 

m/min, nose radius= 0.2 mm, hone radius= 15 µm) 
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Figure 41. Model-estimated vs. experimental cutting forces: a) tangential; b) feed and 

c) radial forces. (feed rate= 0.05 mm/rev, depth of cut= 1.5 mm, cutting speed= 100 

m/min, nose radius= 0.8 mm, hone radius= 5 µm) 
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Figure 42. Regression curves of LSBoost algorithm for wear-considered force model: 

a) tangential; b) feed and c) radial forces  

(wear length varies between 45 µm and 300 µm). 

Table 17. Performance metrics of wear-included force model: with and without ML 

implementation. 

ML Models Metrices Tangential 

force 

Radial 

force 

Feed 

force 

Without ML 
RMSE 37.51 30.58 47.17 

Adj. R2  93% 71% 80% 

LSBoost 
RMSE 4.98 4.22 5.64 

Adj. R2  98% 97% 98% 

SVR 
RMSE 5.38 5.48 6.23 

Adj. R2  98% 96% 97% 

Random Forest 
RMSE 16.47 8.32 10.85 

Adj. R2  97% 94% 97% 

To evaluate the model's generalizability, a crucial aspect is whether the model can 

accurately estimate cutting forces for unseen conditions or not. This was investigated by 

applying the PIML-based model to unseen dataset without calibrating and updating the 

friction coefficient. In this respect, modeling was conducted using the average friction 

coefficient of 0.8 (obtained from the calibrated model), and the estimated cutting forces 

were compared with experimental results. The ML prediction applied to the unseen 

dataset reveals R2 value of 97% for the tangential force, 96% for the feed force, and 93% 

for the radial force.  
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The remarkable predictive capability on unseen data indicates ML's ability to generalize 

well beyond the training dataset, offering robust insights into process behavior even in 

unfamiliar conditions. This finding highlights the importance of PIML implementation in 

predictive modeling for enhanced accuracy and reliability, particularly in complex 

scenarios involving tool wear. 

6.3.3. Reverse ML model for wear length prediction 

In this section, a reverse ML model was developed to predict the wear length based on 

cutting forces, machining parameters, hone radius, and nose radius. Since the accuracy of 

the wear-considered force model was improved through the physics-informed ML model, 

this enhanced model was used to generate a reliable training dataset for wear prediction, 

avoiding numerous expensive and time-consuming experimental wear tests. As explained 

in Section 6.3.2, the PIML-enhanced force model can predict cutting forces in the 

presence of flank wear with high accuracy (R² exceeding 97%). Therefore, this model 

was employed to produce the training dataset for the ML algorithm to predict wear length. 

In this reverse ML model, wear length is the output, while the inputs are the improved 

cutting forces, machining parameters, nose radius and hone radius.  

Initially, hyperparameter optimization was carried out using Bayesian optimization, 

followed by regression analysis using three ML algorithms: SVR, RF and LSBoost. The 

regression curves are illustrated in Figure 43, and the corresponding performance 

metrices are summarized in Table 18. As demonstrated, all ML models accurately predict 

the wear length, with LSBoost slightly showing better performance. For the entire dataset, 

the R2 values of the LSBoost model is 97%, and for the unseen test dataset, it is 94%. It 

should be mentioned for the unseen dataset, experimental tests were performed to validate 

the predicted wear length. These high R2 values along with small RMSE values indicate 

the superior performance of the proposed PIML model in accurately predicting the wear 

length according to the machining parameters and cutting forces. As previously 

demonstrated, incorporating the mechanistic force model into the ML algorithms 

eliminated the need for numerous experimental tests to train the ML model, while still 

achieving highly accurate predictions. 
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Figure 43. Regression curves of employed ML models for wear prediction: a) 

LSBoost; b) RF and c) SVR. (feed rate= [0.05, 0.1, 0.15, 0.2] mm/rev; depth of cut= 

[0.5, 1, 1.5, 2] mm; cutting speed= [100, 125, 150] m/min; nose radius= [0.2, 0.4, 0.8] 

mm; hone radius= [5, 15, 30] µm). 

Table 18. Performance metrics of ML models for wear prediction. 

Performance 

metrices 

LSBoost SVR RF 

RMSE 10.88 11.06 19.54 

Adj. R2 97% 97% 93% 
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The results of this study demonstrate that the proposed model accurately accounts for the 

influence of flank wear on cutting forces while also predicting wear length based on 

machining parameters, nose radius, hone radius, and cutting forces. Notably, this is 

achieved without the need for numerous time-consuming and expensive experimental 

tests, while still achieving high accuracy. Predicting tool wear in machining processes is 

essential for sustaining production efficiency and quality. It allows for preventative 

replacement before catastrophic failure, optimizing tool life for maximum efficiency 

without sacrificing part quality. As a result, downtime and costs are reduced due to tool 

changes and scrapped parts, and surface finish and dimensional accuracy enhance 

throughout the machining process. With such a critical advancement in the field of 

machining process monitoring, tool wear prediction through ML-improved cutting force 

model has significant implications for productivity, quality control, and competitiveness 

in the manufacturing domain. 

 Summary 

This study proposed a novel physics-informed machine learning (PIML) model to predict 

wear length based on cutting forces, machining parameters, and tool geometry. This 

hybrid model addresses the limitations of conventional data-driven ML models by 

reducing the need for extensive and expensive wear tests, while simultaneously enhancing 

the accuracy of the analytical wear-included force model. To achieve this, a thermo-

mechanical force model was established to calculate the cutting forces in the turning 

process, considering the effects of flank wear, nose radius, and hone radius (i.e., edge 

forces). First, the accuracy of this model was improved through the PIML, and 

subsequently it was used to generate a training dataset for another complementary reverse 

ML model to predict tool wear length, thereby streamlining the tool wear prediction 

process and eliminating the resource-intensive task of conducting numerous experimental 

tests. The following results were drawn from the present study: 

- Without considering wear effects, the thermo-mechanical model could estimate the 

cutting forces with a prediction accuracy of 85% for tangential force, 71% for feed force, 

and 67% for radial force. However, integrating the PIML model significantly enhanced 

the prediction accuracy by 13% to 25%. 
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- The wear-included force model, which utilized calibrated friction coefficient for the 

worn surface, achieved a prediction accuracy of 93% for the tangential force, 80% for the 

feed force, and 71% for the radial force. By incorporating the PIML model, prediction 

accuracy increased to 97-98% for the entire training dataset, and 93-97% for the unseen 

test dataset.   

- Leveraging the high prediction accuracy achieved by the PIML-enhanced force model, 

a training dataset was generated for wear length prediction. This enabled the development 

of a highly accurate reverse ML model that predicts wear length based on cutting forces, 

tool geometry, and machining parameters. 

- Among the various ML algorithms employed, LSBoost demonstrated superior 

performance in terms of R2 and RMSE values, while SVR and RF showed comparable 

performance for certain force components. 

- The proposed physics-informed ML model accurately predicts tool wear length by 

incorporating machining parameters, tool geometry, and cutting forces, achieving high 

prediction accuracy (R² > 97%) without extensive wear tests. This capability enables 

precise tool wear monitoring, enhancing production efficiency and making the model 

applicable to various industrial machining processes. 
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7. CONCLUSION 

 Conclusion 

This thesis presents a comprehensive investigation into the development and application 

of advanced machine learning (ML) models integrated with physics-based simulations to 

enhance the accuracy and efficiency of milling and turning process monitoring. The 

overarching aim was to improve prediction accuracy for various machining parameters 

and tool wear, thereby optimizing manufacturing processes and reducing the need for 

extensive experimental testing. The key findings and contributions from each chapter are 

summarized below, highlighting their implications for the industry and future research 

directions. 

In the first study, a hybrid model combining physics-based simulations and ML 

algorithms was developed to predict cutting forces during the milling process. By 

employing support vector regression (SVR), random forest (RF), and least-squares 

boosting (LSBoost), the model achieved high prediction accuracy, significantly 

improving upon traditional mechanistic models. The hybrid approach demonstrated 

remarkable accuracy, even for unseen datasets and diverse materials, including Steel 

1050, Aluminum 7075-T6, Ti6Al4V, and Inconel 625. The integration of mechanistic 

milling models into the ML framework allowed the discovery of complex relationships 

between cutting forces, machining parameters, cutting conditions, and thermo-

mechanical properties. This method not only reduced the number of required 

experimental tests but also enabled the continuous enhancement of the ML database 

through the application of IoT and Industry 4.0 principles. The proposed physics-based 

approach proved to be highly practical for real-world applications, providing a robust 

foundation for further advancements in simulation accuracy and process optimization. 

The second study focused on developing a process simulation-based ML algorithm for 

monitoring and detecting tool-related faults in milling processes. By training the ML 

models solely on simulation data, the need for costly and time-consuming laboratory tests 

was eliminated. The random forest algorithm emerged as the most effective, achieving a 
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94% accuracy rate in predicting tool-related faults. This study highlighted the potential 

for significant improvements in fault monitoring systems, suggesting that future research 

could enhance performance by integrating additional data sources and adopting more 

advanced ML algorithms. The approach demonstrated a transformative potential in tool 

condition monitoring by streamlining the detection process, reducing costs, and 

improving manufacturing efficiency. These findings, supported by actual measurement 

data, underscore the method's viability for industrial applications and its ability to foster 

ongoing research and development efforts in tool condition monitoring. 

The third study aimed to develop an intelligent real-time fault detection system for 

unmanned manufacturing using a novel hybrid ML approach. By utilizing highly accurate 

simulation results from physics-based models instead of experimental data, the system 

achieved over 96% accuracy in predicting machining parameters. The method 

demonstrated remarkable accuracy and reliability in real-time applications, with 

statistical error analysis indicating a notably confined error distribution. The system was 

validated through the machining of a complex free-form workpiece, proving its 

applicability in various industrial contexts. The proposed approach is particularly suitable 

for deployment in unmanned manufacturing applications, serving purposes such as 

process monitoring, fault detection, and parameter optimization. Additionally, the 

method's adaptability for industrial applications, such as utilizing CNC controller current 

signals instead of traditional sensors, further highlights its practicality and potential for 

wide-scale implementation. 

The final study introduced a physics-informed machine learning (PIML) model for 

predicting tool wear length in turning processes. By integrating a thermo-mechanical 

force model with advanced ML algorithms, the study addressed the limitations of 

conventional data-driven models, reducing the dependency on extensive wear tests while 

enhancing prediction accuracy. The PIML model achieved high accuracy in predicting 

cutting forces and tool wear, demonstrating its capability to generalize across different 

materials and machining conditions. This hybrid model leveraged a comprehensive 

understanding of machining dynamics and tool wear mechanisms, achieving prediction 

accuracies of over 97% for the training dataset and 93-97% for the unseen test dataset. 

The study's findings highlight the model's potential to revolutionize tool wear prediction, 

offering a reliable, efficient, and scalable solution for modern manufacturing processes. 
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In conclusion, this thesis has significantly advanced the field of machining process 

monitoring by developing and validating innovative hybrid models that combine physics-

based simulations with machine learning algorithms. These models not only improve 

prediction accuracy for cutting forces and tool wear but also reduce the need for extensive 

experimental testing, making them highly practical for industrial applications. The 

findings underscore the potential of integrating IoT and Industry 4.0 principles to 

continuously enhance the ML database and further improve monitoring systems. Future 

research should focus on expanding the scope of these models to include additional fault 

types and machining processes, integrating more advanced ML techniques, and exploring 

their deployment in diverse industrial settings. By addressing these future directions, the 

manufacturing industry can achieve greater efficiency, cost reduction, and quality 

improvement, fully realizing the benefits of these advanced monitoring systems. 

The contributions of this research have laid a strong foundation for the continued 

development and application of intelligent monitoring systems in manufacturing. By 

leveraging the strengths of both physics-based simulations and machine learning, these 

systems can provide real-time, accurate, and reliable insights into machining processes, 

thereby enhancing decision-making and operational efficiency. As the industry moves 

towards greater automation and the adoption of smart technologies, the methodologies 

developed in this thesis will play a crucial role in shaping the future of manufacturing, 

driving innovation, and maintaining a competitive edge in an increasingly digital and 

interconnected world. 

 Future Research Directions 

This thesis has laid a strong foundation for the development and application of advanced 

machine learning (ML) models integrated with physics-based simulations for milling and 

turning process monitoring. Building on this work, several promising areas for future 

research have been identified: 

1. Calculating Cutting Forces from CNC Controller Data Using ML: 

Developing ML models to directly calculate cutting forces from data obtained from CNC 

controllers, leveraging real-time data for enhanced monitoring and control. 
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2. Process Optimization Using ML and Identified Process Parameters: 

Utilizing ML algorithms to optimize machining processes based on the parameters 

identified through simulation and experimental data, aiming to improve efficiency, 

quality, and cost-effectiveness. 

3. Optimization of Special Milling Tools Using ML: 

Applying ML algorithms to optimize the performance of special milling tools, such as 

variable pitch, serrated tools, and crest cuts, to achieve better machining outcomes. 

4. Predicting Orthogonal Data for Cutter-Workpiece Combinations: 

Developing ML models to predict orthogonal data for various cutter-workpiece 

combinations without conducting extensive orthogonal tests, thus saving time and 

resources. 

5. Machine Tool Parameter Identification Using Cutting Data: 

Utilizing ML algorithms to identify specifications of machine tool components such as 

spindles and servo drives from cutting data, enhancing the understanding and control of 

machining operations. 

6. Analytical Modeling of Surface Roughness and Enhancement with ML: 

Creating analytical models for surface roughness in milling operations and enhancing 

these models using ML algorithms to improve surface quality predictions and process 

optimization. 

7. Tool Specification Identification Using ML: 

Employing ML techniques to identify and optimize tool specifications, leading to better 

tool performance and longer tool life. 

These future research directions promise to further enhance the capabilities of intelligent 

monitoring systems in manufacturing, contributing to greater efficiency, accuracy, and 

adaptability in machining processes. By exploring these areas, the potential of machine 

learning in the context of advanced manufacturing can be fully realized, driving 

innovation and maintaining a competitive edge in the industry. 
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