
ALGEBRAIC VIEW ON NEIGHBORHOOD HYPERGRAPHS
THEIR TRANSVERSALS, AND d-PARTITE HYPERGRAPHS

by
ASLI TUĞCUOĞLU MUSAPAŞAOĞLU

Submitted to the Graduate School of Engineering and Natural Sciences
in partial fulfilment of

the requirements for the degree of Doctor of Philosophy

Sabancı University
July 2024



ASLI TUĞCUOĞLU MUSAPAŞAOĞLU 2024 ©

All Rights Reserved



ABSTRACT

ALGEBRAIC VIEW ON NEIGHBORHOOD HYPERGRAPHS, THEIR
TRANSVERSALS, AND d-PARTITE HYPERGRAPHS

ASLI TUĞCUOĞLU MUSAPAŞAOĞLU

MATHEMATICS Ph.D DISSERTATION, JULY 2024

Dissertation Supervisor: Asst. Prof. AYESHA ASLOOB QURESHI

Keywords: dominating ideals, closed neighborhood ideals, componentwise linearity,
d-partite hypergraphs, t-spread ideals, normally torsion-free, linear quotients

In this thesis, we explore the algebraic and homological properties of square-free
monomial ideals that originate from graphs and hypergraphs. Our study has two
main parts. In the first part, we study the closed neighborhood ideals and the
dominating ideals of graphs. We prove that the closed neighborhood ideals and the
dominating ideals of some classes of trees are normally torsion-free. However, the
closed neighborhood ideals and the dominating ideals of cycles fail to be normally
torsion-free. We prove that the closed neighborhood ideals of cycles admit the
(strong) persistence property and the dominating ideals of cycles are nearly normally
torsion-free. Expanding our study to path graphs, we show the componentwise
linearity of dominating ideals of path graphs by describing a linear quotient order of
their minimal generators. We also give formulas for their Betti numbers, regularity,
and projective dimension.

In the second part, we shift our focus to d-partite hypergraphs. Inspired by the
definition of t-spread monomial ideals; we introduce the t-spread d-partite hyper-
graphs. The edge ideals of these hypergraphs, denoted by I(Kt

V), admit some nice
properties. Namely, I(Kt

V) has linear quotients and satisfies the ℓ-exchange prop-
erty and the strong persistence property. Moreover, all powers of I(Kt

V) have linear
resolutions and the Rees algebra of I(Kt

V) is a normal Cohen-Macaulay domain. We
also prove that I(Kt

V) is normally torsion-free and give a complete characterization
of Cohen-Macaulay S/I(Kt

V).
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ÖZET

KOMŞULUK HIPERGRAFLARI, TRANSVERSLERI VE d-PARÇALI
HIPERGRAFLARA CEBIRSEL BIR BAKIŞ

ASLI TUĞCUOĞLU MUSAPAŞAOĞLU

MATEMATİK DOKTORA TEZİ, TEMMUZ 2024

Tez Danışmanı: Asst. Prof. Dr. AYESHA ASLOOB QURESHI

Anahtar Kelimeler: baskın idealler, kapalı komşuluk idealleri, bileşen bazında
doğrusallık, d-parçalı hipergraflar, t-yayılımlı idealler, normalde torsiyonsuz,

doğrusal bölümler

Bu tezde, graf ve hipergraf kökenli karesiz tekterimli ideallerin cebirsel ve homolojik
özelliklerini araştırıyoruz. Çalışmamız iki ana bölüme ayrılmıştır. İlk bölümde,
grafların kapalı komşuluk idealleri ve baskın ideallerini inceliyoruz. Bazı ağaç
sınıflarının kapalı komşuluk ideallerinin ve baskın ideallerinin normalde torsiyon-
suz olduğunu kanıtlıyoruz. Ancak döngülerin kapalı komşuluk idealleri ve domi-
nasyon idealleri normalde torsiyonsuz değildir. Döngülerin kapalı komşuluk ideal-
lerinin (güçlü) kalıcılık özelliğine sahip olduğunu ve döngülerin baskın ideallerinin
neredeyse normalde torsiyonsuz olduğunu kanıtlıyoruz. Çalışmamızı yol graflarına
genişleterek yol graflarının baskın ideallerinin bileşen bazında doğrusallığını, min-
imal üreteçlerinin doğrusal bölüm sırasını açıklayarak gösteriyoruz. Ayrıca Betti
sayıları, regülarite ve projektif boyutları için formüller sunuyoruz.

İkinci bölümde, odak noktamız d-parçalı hipergraflara kaymaktadır. t-yayılımlı tek-
terimli ideal tanımından esinlenerek, t-yayılımlı d-parçalı hipergrafları tanıtıyoruz.
Bu hipergrafların kenar idealleri, I(Kt

V) olarak gösterilir ve bazı güzel özelliklere
sahiptir. Özellikle, I(Kt

V), doğrusal bölümlere sahiptir ve ℓ-değişim özelliğini ve
güçlü kalıcılık özelliğini sağlar. Dahası, I(Kt

V) tüm kuvvetleri için doğrusal bölüm-
lere sahiptir ve I(Kt

V)’nin Rees cebiri normal bir Cohen-Macaulay alanıdır. Ayrıca,
I(Kt

V) normalde torsiyonsuz olduğunu ispatlayıp, Cohen-Macaulay S/I(Kt
V)’nin tam

bir karakterizasyonunu veriyoruz.
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Introduction

Combinatorial commutative algebra is a fascinating and rapidly developing field that
lies at the intersection of two well-established areas: commutative algebra and com-
binatorics. Commutative algebra focuses on commutative rings, polynomial rings,
ideals, and modules. It has applications in algebraic geometry, number theory, and
coding theory. On the other hand, combinatorics focuses on counting, arranging,
and structuring discrete objects. It includes graph theory, combinatorial optimiza-
tion, and polyhedral geometry. The cornerstone of both commutative algebra and
combinatorics lies in the study of monomial ideals. These ideals bridge algebraic
structures and combinatorial objects, providing essential insights into both fields. By
investigating monomial ideals, researchers unlock connections to algebraic geometry,
simplicial complexes, integral points in polytopes, and graph theory. Their compu-
tational aspects allow us to solve various problems, making them indispensable tools
in mathematical exploration. This thesis investigates square-free monomial ideals
derived from graphs and hypergraphs. The well-known examples of these ideals are
the edge and cover ideals, which have been extensively studied. Every square-free
monomial ideal generated in degree two can be viewed as an edge ideal of a simple
graph. Villarreal introduced edge ideals in [54], and since their first appearance,
they have been a central topic of many articles. One of the exciting properties of
the edge ideals is that their minimal primes correspond to the minimal vertex covers
of their underlying graphs. In other words, the Alexander dual of the edge ideal of
a graph G is the cover ideal of G, a square-free monomial ideal whose minimal gen-
erators correspond to the minimal vertex covers of the underlying graph. Inspired
by this relation, the closed neighborhood ideals and the dominating ideals of graphs
were recently introduced in [48]. Let G be a simple graph. The closed neighborhood
ideal NI(G) of G is generated by square-free monomials corresponding to the closed
neighborhoods of the vertices of G. In contrast, the dominating ideal DI(G) of
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G is generated by the monomials that correspond to the dominating sets of G(see
Chapter 2 for the formal definitions). As shown in [48], NI(G) and DI(G) are
the Alexander dual of each other, a similar relation that exists between edge ideals
and cover ideals of G. In this thesis, to advance our understanding of square-free
monomial ideals arising from graphs and hypergraphs, we further extend the study
of closed neighborhood ideals and dominating ideals, and the details can be found in
Chapter 2 and Chapter 3. Moreover, we study the edge ideals of t-spread d-partite
hypergraphs to expand our knowledge in this context in Chapter 4.

The basic outline of this thesis is as follows. In Chapter 1, we recall some preliminary
results and definitions to be used in this work. Then, the thesis is divided into
three different parts. A breakdown of Chapter 2 is as follows: Section 2.1 focuses
on the closed neighborhood ideals and the dominating ideals of star graphs. Any
square-free monomial ideal can be visualized as an edge ideal of a hypergraph. A
hypergraph H is called Mengerian if it satisfies a certain min-max equation, which
is known as the Mengerian property in hypergraph theory or as the max-flow min-
cut property in integer programming. Algebraically, it is equivalent to I(H) being
normally torsion-free, see [22, Corollary 10.3.15], [55, Theorem 14.3.6]. This fact
enhances the importance of normally torsion-free ideals. In Section 2.1, our main
goal is to establish the normally torsion-freeness of the closed neighborhood ideals
and the dominating ideals of star graphs, which is achieved in Corollaries 2.1.6 and
2.1.19. To do this, we first prove some results of a general nature, which provide
certain inductive and recursive techniques to create new normally torsion-free ideals
based on the existing ones, see Theorem 2.1.3 and Lemma 2.1.5. We apply these
techniques to study the normally torsion-freeness of the closed neighborhood ideals
and the dominating ideals of cone graph of a given graph, see Lemma 2.1.10. In
addition, in Corollary 2.1.4, we prove that 3-path ideals of path graphs are normally
torsion-free.

In Section 2.2, we focus on the closed neighborhood ideals and the dominating
ideals of cycles. The edge ideals and the cover ideals of cycles are well-studied in the
context of normally torsion-freeness. It is a well-known fact that the edge ideals and
cover ideals of even cycles are normally torsion-free, and odd cycles fail to have this
property in general. Given a cycle Cn of length n, it is natural to expect somewhat
similar behavior for NI(Cn) and DI(Cn), but we observe in Section 2.2 that this is
not the case. Normally torsion-freeness is not maintained by NI(Cn), but we prove
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in Theorem 2.2.2 that they admit strong persistence property and, therefore, the
persistence property. This facilitates the study of the behavior of depth of powers
of NI(Cn) in Corollary 2.2.7. As a final result, we prove in Theorem 2.2.9 that
DI(Cn) are nearly normally torsion-free.

In Chapter 3, we turn our attention to the dominating ideals of path graphs.
In [13], Farber introduced strongly chordal graphs and proved that a graph G is
strongly chordal if and only if the neighborhood hypergraph of G is totally bal-
anced. Rephrasing this in the algebraic language, it is established in [40] that the
dominating ideals of strongly chordal graphs are componentwise linear. Since path
graphs are strongly chordal, one can conclude that the dominating ideals of path
graphs are componentwise linear. In our work, we show that the dominating ideals of
path graphs have linear quotients by precisely giving a linear quotient order of their
minimal generating set. Invoking [22, Theorem 8.3.15], we obtain another proof for
the componentwise linearity of dominating ideals of path graphs. Utilizing a well-
known result of Sharifan and Varbaro [49, Corollary 2.7], we also compute the total
and graded Betti numbers of the dominating ideals of path graphs. A breakdown of
Chapter 3 is as follows: We start by describing a recursive order on the generating
set of dominating ideals of path graphs which gives as linear quotients shown in
Theorem 3.1.5. This order is used to describe the total and graded Betti numbers
of dominating ideals of path graphs (See Theorem 3.2.3 and Theorem 3.2.4). In
Theorem 3.2.2, we also compute projective dimension and regularity of dominating
ideals of path graphs and recover the formulas given in [48, Theorem 2.6].

In Chapter 4 we introduce t-spread d-partite hypergraphs and study their edge
ideals. Recall that a hypergraph H is a pair (V (H),E(H)) where V (H) is a finite
set and E(H) is a finite family of non-empty subsets of V (H). Let V = {V1, . . . ,Vd}
be a partitioning of a finite set U ⊂ N such that p < q if p ∈ Vi, q ∈ Vj with i < j. We
call {i1, . . . , id} ⊂ U a t-spread set if ij ∈ Vj for all j = 1, . . . ,d and ij − ij−1 ≥ tj−1

for all j = 2, . . . ,d. We call the hypergraph Kt
V on vertex set V (Kt

V) = U , a complete
t-spread d-partite hypergraph if all t-spread sets of U are the edges of Kt

V . For
t = (1, . . . ,1), the hypergraph Kt

V is a complete d-partite hypergraph, see [6, Example
3]. Using this definition, we obtain the edge ideal of Kt

V denoted by I(Kt
V) is a t-

spread monomial ideal. The ideal generated by t-spread monomials is first defined
by Qureshi, Herzog and Ene in [12]. After their first appearance, different classes
of t-spread monomial ideals have been studied by many authors (see [5, 42, 3, 9]).
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In 2023, Ficarra gave a more generalized notion of t-spread monomials by replacing
the integer t with t = (t1, . . . , td−1) ∈ Nd−1, (see [14] and the reference therein).

It turns out that I(Kt
V) admits many nice algebraic and homological properties. It

is shown in Theorem 4.1.3 that I(Kt
V) has linear quotients. The ideals with linear

quotients were first defined by Herzog and Takayama in [26] and their free resolutions
were computed as iterated mapping cones. Using the description of Betti numbers
of ideals with linear quotients given in [26], in Proposition 4.1.4, we provide an
intrinsic way to compute Betti numbers of I(Kt

V).

In Section 4.2, we study the powers and fiber cone of I(Kt
V). One of the main

results of Section 4.2 is given in Corollary 4.2.7 that shows the ideal I(Kt
V) satisfies

the strong persistence property and all powers of I(Kt
V) have linear resolution. To

prove Corollary 4.2.7, we first show that the minimal generating set of I(Kt
V) is

sortable and I(Kt
V) satisfies the ℓ-exchange property with respect to sorting order,

see Proposition 4.2.1 and Theorem 4.2.4. Then it follows from classical results of
Fröberg [16], Sturmfels [52] and Hochster [29] that the Rees algebra R(I(Kt

V)) is
a normal Cohen-Macaulay domain, see Corollary 4.2.6. Then Corollary 4.2.7 is
obtained as an application of [27, Corollary 1.6] and [22, Corollary 10.1.8]. We also
compute the Krull dimension of fibercone R(I(Kt

V))/mR(I(Kt
V)) which provides the

limit depth of S/I(Kt
V) in Theorem 4.2.11.

Let H be a hypergraph with vertex set V (H). A set T ⊂ V (H) is called a transversal
of H, if it meets all the edges of H and the family of all minimal transversals of H, is
called the transversal hypergraph of H, see [6, Chapter 2]. The minimal transversals
of a hypergraph H correspond to the minimal prime ideals of the edge ideal of
H. In Section 4.3, we consider Kt

V with V = {V1, . . . ,Vd} such that each Vi is an
interval of integers. The description of the minimal primes of I(Kt

V) is obtained by
computing the minimal generating set of Alexander dual of I(Kt

V) in Theorem 4.3.1.
In Theorem 4.3.6, we prove that I(Kt

V) is normally torsion-free which is equivalent
to say that Kt

V is a Mengerian hypergraph. A complete characterization of unmixed
I(Kt

V) is given in Theorem 4.3.9. With the help of Theorem 4.3.9, a complete
characterization of Cohen-Macaulay S/I(Kt

V) is obtained in Theorem 4.3.11.
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Chapter 1

Algebraic and Combinatorial
Ingredients

This chapter introduces fundamental algebraic and combinatorial concepts of com-
mutative algebra necessary for the subsequent chapters.

All rings considered in this thesis are Noetherian and commutative with an identity.
Monomial ideals serve as a bridge between commutative algebra and combinatorics.
This thesis focuses on monomial ideals, with particular emphasis on square-free
monomial ideals.

1.1 Monomial ideals

Let S =K[x1, . . . ,xn] be a polynomial ring over a field K with n variables. An ele-
ment u∈S is called a monomial if u=∏n

i=1x
ai
i where ai ≥ 0. For ease of notation, we

denote a monomial u= xa, and if ai ∈ {0,1}, then we call u a square-free monomial.
In a polynomial ring S over a field K, every element f ∈ S can be written as a K-
linear combination of monomials. The set of all monomials in S denoted by Mon(S)
provides a natural K-basis for S. An ideal I ⊂ S is called a (square-free) monomial
ideal if it is generated by (square-free) monomials. A monomial ideal I ⊂ S also has
a K-basis of monomials. Monomial ideals have a unique generating set that is min-
imal with respect to divisibility. This unique minimal generating set of a monomial
ideal I is denoted by G(I). The support of a monomial u, denoted by supp(u), is
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the set of variables that divide u. Moreover, we set supp(I) = ⋃
u∈G(I) supp(u). A

monomial ideal can be characterized by the following result:

Corollary 1.1.1. [22, Corollary 1.1.3] Let I ⊂ S be an ideal. Then the following
are equivalent:

(i) I is a monomial ideal;

(ii) for all f ∈ S one has: f ∈ I if and only if supp(f) ⊂ I.

This result is one reason why it is easier to perform algebraic operations on monomial
ideals compared to general ideals. Ideal operations can be simplified for monomial
ideals. We recall some of these operations in the following:

Proposition 1.1.2. [22, Proposition 1.2.1] Let I and J be monomial ideals. Then
I ∩J is a monomial ideal, and {lcm(u,v) : u ∈G(I),v ∈G(J)} is a set of generators
of I ∩J .

Let I,J ⊂R be two ideals. The set I : J = {f ∈R : fg ∈ I for all g ∈ J} is an ideal,
called the colon ideal of I with respect to J .

Proposition 1.1.3. [22, Proposition 1.2.2] Let I and J be monomial ideals. Then
I : J is a monomial ideal, and

I : J =
⋂

v∈G(J)
I : (v).

Moreover, {u/gcd(u,v) : u ∈G(I)} is a set of generators of I : (v).

Now we recall the notion of associated primes in a ring R and their properties before
we discuss the associated primes of (square-free) monomial ideals.

Definition 1.1.4. Let I ⊂ R be an ideal. A prime ideal P is called an associated
prime of I if there exists u ∈R such that P = (I :R u) where
(I :R u) = {r ∈R : ru ∈ I}.

The set of associated primes of I is denoted by AssR(R/I), and if there is no confu-
sion about the underlying ring, we use the notation Ass(R/I). This set includes all
the associated prime ideals associated with I. The minimal elements of Ass(R/I)
are called minimal primes and denoted by Min(I). The embedded primes are the

6



ones that are not minimal elements in Ass(R/I).

In a Noetherian ring R, Broadmann showed that the set of associated primes for
the powers of an ideal I in R is stationary, that is

there exists a positive integer k0 such that Ass(R/Ik) = Ass(R/Ik0) for all k > k0.

The minimal such k0 is called the index of stability of I, and the set Ass(R/Ik0) is
called the stable set of associated primes of I denoted by Ass∞(I).

Definition 1.1.5. Let I ⊂R be an ideal. I has the persistence property if

Ass(R/I) ⊂ Ass(R/I2) ⊂ . . .⊂ Ass(R/Ik)

for all k ∈ Z+.

Later, Qureshi and Herzog gave a stronger version of the persistence property.

Definition 1.1.6. [27, Theorem 1.3] An ideal I satisfies the strong persistence prop-
erty if (Ik+1 : I) = Ik for all positive integers k.

The strong persistence property implies the persistence property.

In monomial ideals, in particular square-free monomial ideals, the associated primes
have a simpler form. A monomial ideal is called irreducible if it is generated by
pure powers of variables. Let I ⊂ R be a square-free monomial ideal. Then, the
irreducible monomial ideals that appear in the decomposition of I are all of the
form (xi1 , . . . ,xik

). The ideals (xi1 , . . . ,xik
) are called the monomial prime ideals. A

prime ideal P is called a minimal prime ideal of I if I ⊂ P , and there is no prime
ideal containing I which is properly contained in P . We denote the set minimal
prime ideals of I by Min(I).

Corollary 1.1.7. [22, Corollary 1.3.6] Let I ⊂ S be a square-free monomial ideal.
Then

I =
⋂

P ∈Min(I)
P

and each P ∈ Min(I) is a monomial prime ideal.

Definition 1.1.8. A monomial ideal I ⊂ S is called normally torsion-free if
Ass(S/Ik) ⊆ Ass(S/I) for all k ∈ Z+.

7



For a square-free monomial ideal I, if I is normally torsion-free then by Corollary
1.1.7, one has Min(I) = Ass(R/Ik) for all k ≥ 1.

By Gitler et al. [17], it is well-known that the cover ideals of bipartite graphs
are normally torsion-free. Furthermore, normally torsion-free square-free monomial
ideals have been studied in Ha and Morey [20], and Sullivant [52]. On the other
hand, little is known about the normally torsion-free monomial ideals that are not
square-free. One of our motivations in this thesis is to give some classes of square-
free monomial ideals that satisfy normally torsion-freeness. Additionally, we seek
for ideals that are normal and satisfies the (symbolic) (strong) persistence property.
If I is a square-free monomial ideal that is normally torsion-free , then one obtains
the other results immediately. In the following, we recall these results.

First, we give the symbolic power for a square-free monomial ideal.

Proposition 1.1.9. [22, Proposition 1.4.4] Let I ⊂ S be a square-free monomial
ideal. Then

I(k) =
⋂

P ∈Min(I)
P k.

An ideal I has the symbolic strong persistence property if (I(k+1) : I(1)) = I(k) for all
k.

In the following we recall the definition of normal ideals. Then we give conditions
for a square-free monomial ideal being normal.

Let R be a unitary commutative ring and I an ideal in R. An element f ∈ R is
integral over I, if there exists an equation

fk + c1f
k−1 + · · ·+ ck−1f + ck = 0 with ci ∈ Ii.

The set of elements I in R which are integral over I is the integral closure of I. The
ideal I is integrally closed if I = I, and I is normal if all powers of I are integrally
closed.
The following result provides a characterization of when a square-free monomial
ideal is normally torsion-free. Additionally, it gives when the regular powers and
symbolic powers of a square-free monomial ideal are the same.
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Theorem 1.1.10. [22, Theorem 1.4.6] Let I ⊂ S be a square-free monomial ideal.
Then the following conditions are equivalent:

(a) I is normally torsion-free;

(b) I(k) = Ik for all k.

If the equivalent conditions hold, then I is a normal ideal.

Kaiser, Stehlík, and Škrekovski [32] have shown that not all square-free monomial
ideals have the persistence property. However, combinatorial methods have shown
that many large families of square-free monomial ideals satisfy the persistence prop-
erty and the strong persistence property.

Theorem 1.1.11. [44, Theorem 6.2] Every normal monomial ideal has the strong
persistence property.

Since the strong persistence property implies the persistence property, a normally
torsion-free square-free monomial ideal satisfies the persistence property.

The notion of normally torsion-free ideals is generalized in [4] as follows:

Definition 1.1.12. A monomial ideal I in a polynomial ring S =K[x1, . . . ,xn] over
a field K is called nearly normally torsion-free if there exist a positive integer k
and a monomial prime ideal p such that Ass(S/Im) = Min(I) for all 1 ≤m≤ k, and
Ass(S/Im) ⊆ Min(I)∪{p} for all m≥ k+1.

If I is a normally torsion-free square-free monomial ideal, then it is nearly normally
torsion-free.

1.2 Krull dimension and depth

Let M be a module over a ring R. An element x ∈R is called an M -regular element
if xm= 0 for m ∈M implies m= 0. In other words, x is a nonzero divisor on M .

Definition 1.2.1. A sequence x = x1, . . . ,xn of elements of R is called an M -regular
sequence or, in short, an M-sequence if it satisfies the following conditions:

(i) xi is regular on M/(x1, . . . ,xi−1)M for all 1 ≤ i≤ n,

9



(ii) M/xM ̸= 0.

An R-regular sequence is simply called a regular sequence. The typical example of
a regular sequence is the sequence of indeterminates in the polynomial ring.

Let R be a Noetherian ring and M an S-module. If x = x1, . . . ,xn is an M -sequence
then

(x1) ⊂ (x1,x2) ⊂ . . .⊂ (x1, . . . ,xn)

is a strictly ascendant sequence of ideals. Thus, an M -sequence can be extended to
a maximal one. A maximal M -sequence is an M -sequence x = x1, . . . ,xn such that
for any xn+1 ∈R, the sequence x,xn+1 is no longer an M -sequence.

Definition 1.2.2. Let (R,m,k) be a local Noetherian ring and M a finitely gener-
ated R-module. The common length of all maximal M -sequences in m is called the
depth of M and will be denoted by depth(M).

Now, we give the definition of the Krull dimension of a ring.

Definition 1.2.3. Let R be a ring. Then the (Krull) dimension of R is given as:

dim(R) = sup{n : P0 ⊂ . . .⊂ Pn a chain of prime ideals in R}.

An Artinian ring has Krull dimension 0. In particular, fields are of Krull dimension
0.
Let P be a prime ideal of R. Then the height of P is defined as:

ht(P ) = max{n : P0 ⊂ . . .⊂ Pn = P a chain of prime ideals}

In other words, the height of P is the Krull dimension of the localization of R at P .
For an arbitrary ideal I ⊂R we have ht(I) = min{ht(P ) : P ⊃ I;P is a prime ideal}.

Example 1.2.4. 1) Let S =K[x1, . . . ,xn]. Then ht(x1, . . . ,xi) = i for all 1 ≤ i≤
n.

2) Let R be a Noetherian local ring with the maximal ideal m. Let a1, . . . ,ar ∈ m

be a regular sequence in R. Then dim(R/(a1, . . . ,ar)) = dimR− r.

3) Let S =K[x1, . . . ,xn] be a polynomial ring over a field K. Then dim(S) = n.
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Proposition 1.2.5. [8, Proposition 1.2.12] Let R be a Noetherian local ring and
M ̸= 0 a finitely generated R-module. Then depth(M) ≤ dim(M).

Definition 1.2.6. Let (R,m) be a Noetherian local ring and M a finitely generated
R-module. M is called Cohen-Macaulay if depth(M) = dim(M). If R itself is a
Cohen Macaulay R-module, then R is called a Cohen-Macaulay ring.

An ideal I is said to be unmixed if all the associated primes of I have the same
height. In a Cohen-Macaulay ring R/I, the ideal I is called a Cohen-Macaulay
ideal. If R/I is Cohen-Macaulay, then I is unmixed.

For an ideal I ⊂ R, the function f(k) = depthR/Ik is called the depth function of
I.

Definition 1.2.7. Let I ⊂ R be a graded ideal. Then, the analytic spread of I
denoted by ℓ(I) is the Krull dimension of the R(I)/mR(I) where R(I) =⊕

k≥0 I
k.

Brodmann showed in [7] that the depth function stabilizes for a large k. This
constant value is the limit depth of I. Let I ⊂R be an ideal and dimR = d. Then

limdepthk→∞R/Ik ≤ d− ℓ(I).

In a ring R, the associated graded ring of an ideal I ⊂R, denoted by grI(R) is defined
as

grI(R) =R/I
⊕

I/I2⊕ · · ·In/In+1⊕ · · ·

Eisenbud and Huneke showed in [10] the following:

Proposition 1.2.8. [10, Proposition 3.3] Let (R,m) be a local ring and let I be an
ideal of R of height at least one. Suppose grI(R) is Cohen Macaulay. Then

limdepthk→∞R/Ik = d− ℓ(I)

where dimR = d.

Definition 1.2.9. [28] The smallest integer k for which depthR/Ik = depthR/Ik0

for all k ≥ k0 is called the index of depth stability of I and denoted by dstab(I).
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1.3 Ideals with linear quotients

Let S =K[x1, . . . ,xn] be a polynomial ring over a field K and I be a homogeneous
ideal of S. Let

0 →
⊕
j∈Z

S(−j)βp,j(I) −→ ·· · −→
⊕
j∈Z

S(−j)β0,j(I) ϕ0−→ I → 0,

be the minimal graded free resolution of I. For each i and j, βi,j(I) is the (i, j)-th
graded Betti number of I, and the i-th Betti number of I is βi(I) =∑

j∈Zβi,j . The
Castelnuovo–Mumford regularity (or simply regularity) of I, denoted by reg(I), is

reg(I) = max{j| βi,i+j(I) ̸= 0},

and the projective dimension of I is the length of its minimal graded free resolution,
given by

projdim(I) = max{i| βi,j(I) ̸= 0}.

The ideal I is said to have d-linear resolution if βi,j(I) = 0 for all i and all j− i ̸= d.

Let Id be the ideal generated by all homogeneous polynomials of degree d in I.
The ideal I is called a componentwise linear ideal if Id has a linear resolution for
each d. Componentwise linear ideals were first introduced by Herzog and Hibi in
[23]. After their first appearance, Jahan and Zheng in [31] provided a large class of
componentwise linear ideals:

Definition 1.3.1. Let S =K[x1, . . . ,xn] be a polynomial ring over a field K. Let I =
(u1, . . . ,ur) be a monomial ideal. I is said to have linear quotients if (u1, . . . ,ui−1) :
(ui) is generated by subsets of variables for 2 ≤ i≤ r.

Theorem 1.3.2. [31, Theorem 2.7] Let I ⊂ S be a monomial ideal. If I has linear
quotients, then I have componentwise linear quotients.

Corollary 1.3.3. [31, Corollary 2.8] If I ⊂ S is a monomial ideal with linear quo-
tients, then I is componentwise linear.

If the ideal I is componentwise linear, then I may not have linear quotients:

Remark 1.3.4. [26, Remark 2.15] Despite having linear quotients, componentwise
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linearity (having a linear resolution) depends upon the characteristic of the field.
Due to Reisner [45], a well-known example is the square-free monomial ideal

I = (x1x2x3,x1x2x6,x1x3x5,x1x4x5,x1x4x6,x2x3x4,x2x4x5,x2x5x6,x3x4x6,x3x5x6)

in S =K[x1, . . . ,x6]. The ideal I has a linear resolution if and only if char(K) ̸= 2.
So I is componentwise linear if and only if char(K) ̸= 2. This example also shows
the converse of Corollary 1.3.3 is not true since having linear quotients is a property
that does not “see” the characteristic of the field.

A monomial ideal with linear quotients provides methods to compute Betti numbers
without finding the minimal free resolution. Let I be a monomial ideal with linear
quotients with respect to the ordering u1, . . . ,ur of G(I). If I is generated in a single
degree d, then I has linear resolution as shown in [26]. Following [26], we define

set(uk) = {i : xi ∈ (u1, . . . ,uk−1) : (uk)} for k = 2, . . . , r.

Using [26, Lemma 1.5], we can conclude that

βi,i+d(I) =
∑

1≤k≤r

(
nk

i

)
where |set(uk)| = nk.

Sharifan and Varbaro generalized this result by giving a recursive formula for total
and graded Betti numbers for an ideal not necessarily generated in the same degree
as given in [49, Corollary 2.7].

1.4 Simplicial complexes

This section aims to discuss the combinatorics on square-free monomial ideals.

Let [n] = {1, . . . ,n} be the ground set on n vertices. A simplicial complex ∆ is a
nonempty collection of subsets of [n] such that if A ∈ ∆ and A′ ⊂ A, then A′ ∈
∆. Elements of ∆ are called faces of ∆. For any A ∈ ∆, the dimension of A is
dimA = |A| − 1. The dimension of ∆ is defined by dim∆ = max{|A| : A ∈ ∆} − 1.
A maximal face of ∆ is called a facet and we denote the set of facets by F(∆). Let
F(∆) = {F1, . . . ,Fr}. Then ∆ is generated by Fi, 1 ≤ i≤ r.
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A pure simplicial complex has facets that have the same cardinality. A subsetG⊂ [n]
is called a non-face of ∆ if G /∈ ∆. We denote the minimal non-faces of ∆ by N (∆).

A square-free monomial ideal can be attached in two ways for a given simplicial
complex ∆. Below, we provide the definition of these ideals.

Given a subset A⊂ [n], we define a monomial xA :=∏
i∈Axi.

Definition 1.4.1. Let ∆ = ⟨F1, . . . ,Fr⟩ be a simplicial complex. Then the facet
ideal of ∆ is I(∆) = (xF : F ∈ F (∆)), and the Stanley-Reisner ideal of ∆ is I∆ =
(xF : F ∈ N (∆)).

Example 1.4.2.
F(∆) = {{1,2,3,4},{4,5},{3,5}}

N (∆) = {{3,4,5},{1,5},{2,5}}.

Figure 1.1 A geometric realization of ∆

In Figure1.1, I(∆) = (x1x2x3x4,x4x5,x3x5), I∆ = (x3x4x5,x1x5,x2x5).

This process can be reversed as follows: For a given ideal I, if we set I = I(∆) or
I = I∆, then there is a simplicial complex associated with I denoted by ∆I . Thus,
this one-to-one correspondence provides a tool to study ideals through simplicial
complexes and vice versa.

Let ∆ be a simplicial complex on [n]. Then the Alexander dual of ∆ denoted by ∆∨

is given by
∆∨ = ⟨[n]\F | F ∈ N (∆)⟩.

For each subset F ⊂ [n], we set PF = (xi : i ∈ F ).

Lemma 1.4.3. [22, Lemma 1.5.4] Let I∆ be a Stanley-Reisner ideal. Then the
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standard primary decomposition of I∆

I∆ =
⋂

F ∈F(∆)
PF

where PF̄ is the monomial prime ideal generated by the variables xi with i ∈ F =
[n]\F and F ∈ F(∆).

Corollary 1.4.4. [22, Corollary 1.5.5] Let I∆ = PF1 ∩ . . .∩PFr with each Fi ⊂ [n]
be the standard primary decomposition of I∆. Then

G(I∆∨) = {xF1 , . . . ,xFr}.

Example 1.4.5. Let ∆ be the simplicial complex of Figure 1.1. Then

I∆ = (x3,x4)∩ (x1,x5)∩ (x2,x5)∩ (x3,x5)∩ (x4,x5),

and the ideal I∆∨ = (x3x4,x1x5,x2x5,x3x5,x4x5).

Let I ⊂ S be an arbitrary square-free monomial ideal. Then there is a unique
simplicial complex ∆ such that I = I∆. For simplicity, we write I∨ for the ideal
I∆∨ .

1.5 Graphs and hypergraphs

Let G be a graph. We denote the set of all vertices of G by V (G) and the set of all
edges of G by E(G). If G has no loops or multiple edges, then G is a simple graph.
In this thesis, all the graphs are simple, undirected, and finite.

A set T ⊆ V (G) is called a vertex cover of G if it intersects every edge of G non-
trivially. A vertex cover is called minimal if it does not properly contain any other
vertex cover of G.

As in simplicial complexes, there are many ways to associate a square-free monomial
ideal with a graph. We recall some commonly known definitions in this context. The
edge ideal introduced by Villareal in [54] is one such example:

Definition 1.5.1. Let G be a simple graph with V (G) = {1,2, . . . ,n}. The edge
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ideal of G, denoted by I(G), is

I(G) = (xixj : {i, j} ∈ E(G)).

Every square-free monomial ideal generated in degree two can be considered as an
edge ideal of a graph. One of the interesting properties of the edge ideals is that
their minimal primes correspond to the minimal vertex covers of their underlying
graphs. In other words, the Alexander dual of the edge ideal of a graph G is the
cover ideal of G, denoted by J(G) is

J(G) = (
∏
i∈T

xi : T is a minimal vertex cover of G).

Let t be a fixed positive integer. The t-path ideal of G, denoted by It(G), is defined
as

It(G) = (xi1xi2 · · ·xit : {i1, . . . , it} is a path of length t−1 in G).

The notion of path ideals is a generalization of edge ideals. Indeed, we have I(G) =
I2(G).

For each vertex v ∈ V (G), the closed neighborhood of v in G is defined as follows:

NG[v] = {u ∈ V (G) : {u,v} ∈ E(G)}∪{v}.

When there is no confusion about the underlying graph, we will denote NG[v] simply
by N [v]. A subset S ⊆ V (G) is called dominating set of G if S ∩N [v] ̸= ∅, for all
v ∈ V (G). A dominating set is called minimal if it does not properly contain any
other dominating set of G. A minimum dominating set of G is a minimal dominating
set with the smallest size. The dominating number of G, denoted by γ(G), is the
size of its minimum dominating set, that is,

γ(G) = min{|S| : S is a minimal dominating set of G}

The dominating sets and domination numbers of graphs are well-studied topics in
graph theory. We refer to [19] for further information.
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Sharifan and Moradi recently introduced the closed neighborhood ideals and the
dominating ideals of graphs. These ideals have very similar behavior in the case of
edge ideals and cover ideals:

Definition 1.5.2. [48, Definition 2.1] Let G be a graph. Then, the closed neigh-
borhood ideal denoted by NI(G) is defined as follows:

NI(G) = (
∏

j∈N [i]
xj : i ∈ V (G)).

Moreover, the dominating ideal of G is defined as

DI(G) = (
∏
i∈S

xi : S is a minimal dominating set of G).

Example 1.5.3. Consider C6 with V (C6) = {x1, . . . ,x6}. Then

NI(C6) = (x1x2x6,x1x2x3,x2x3x4,x3x4x5,x4x5x6,x1x5x6)

and
DI(C6) = (x1x4,x2x5,x1x3x5,x3x6,x2x4x6).

It is shown in [48, Lemma 2.2] that DI(G) is the Alexander dual of NI(G). As
indicated in [30, Example 2.2.], different graphs can admit the same NI(G) and
DI(G).

Next, we recall some results about hypergraphs

Definition 1.5.4. A finite hypergraph H on a vertex set [n] = {1,2, . . . ,n} is a
collection of edges {E1, . . . ,Em} with Ei ⊆ [n], for all i = 1, . . . ,m. The vertex set
[n] of H is denoted by V (H), and the edge set of H is denoted by E(H).
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Figure 1.2 H1

Example 1.5.5. In Figure 1.2, V (H1) = {1,2,3,4,6,8} and E(H1) =
{{1,2,8},{4,6},{1,3,4}}.

A hypergraph H is called simple, if Ei ⊆ Ej implies i = j. Simple hypergraphs are
also known as clutters. Moreover, if |Ei| = d, for all i= 1, . . . ,m, then H is called a
d-uniform hypergraph. A 2-uniform hypergraph H is just a finite simple graph. A
vertex of a hypergraph H is said to be an isolated vertex if it is not contained in any
edge of H. In this thesis, all hypergraphs are simple, uniform, and without isolated
vertices.

A hypergraph H is a d-partite hypergraph if its vertex set V (H) is a disjoint union
of sets V1, . . . ,Vd such that if E is an edge of H, then |E∩Vi| ≤ 1. In particular, if H
is a d-uniform d-partite hypergraph with a vertex partition V1, . . . ,Vd, then |E| = d

and |E∩Vi| = 1 for each E ∈ E(H).

As in the graph case, the edge ideal of H is given by

I(H) = (
∏

j∈Ei

xj : Ei ∈ E(H)).

A subset W ⊆ VH is a vertex cover of H if W ∩Ei ̸= ∅ for all i= 1, . . . ,m. A vertex
cover W is minimal if no proper subset of W is a vertex cover of H. The cover ideal
of the hypergraph H, denoted by J(H), is given by

J(H) = (
∏

i∈W

xi :W is a minimal vertex cover of H).

Similar to the case of edge ideal of graphs, the cover ideal J(H) is the Alexander
dual of I(H), that is, J(H) = I(H)∨, for example, see [55, Theorem 6.3.39].
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Chapter 2

Dominating Ideals and Closed
Neighborhood Ideals of Graphs

In the 1960s, Berge and Ore developed a mathematical formulation for graph dom-
ination, which has since gathered significant attention from researchers. Its ap-
plications span diverse fields such as computer science, operations research, linear
algebra, and optimization. For additional related concepts regarding graph domina-
tion, readers are directed to [19]. In relation to domination in graphs, the definitions
of closed neighborhood ideals and dominating ideals were introduced by Sharifan
and Moradi recently in [48]. The closed neighborhood ideal of a simple graph G,
denoted by NI(G), is the squarefree monomial ideal generated by monomials cor-
responding to the closed neighborhoods of vertices of G. The dominating ideal of
G, denoted by DI(G), is the squarefree monomial ideal generated by monomials
corresponding to the dominating sets of G. It is observed in [48, Lemma 2.2] that
for any graphs G, the ideals DI(G) and NI(G) are Alexander dual of each other.
In comparison to the edge ideals and cover ideals associated with graphs which are
well-known and extensively studied, relatively little is known in the case of closed
neighborhood ideals and dominating ideals of graphs. In this chapter, we provide
some results about persistence properties and normally torsion-freeness of these ide-
als for specific graphs.
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2.1 On the closed neighborhood ideals and dom-
inating ideals of some classes of trees

In this section, our main goal is to prove that the closed neighborhood ideals and
the dominating ideals of star graphs are normally torsion-free. To obtain this goal,
we first give several results about normally torsion-free ideals and demonstrate a
new proof of a well-known result related to strong persistence property.

Proposition 2.1.1. Let I be an ideal in a commutative Noetherian ring S that
satisfies the strong persistence property. Then I has the persistence property.

Proof. Fix k ≥ 1, and choose an arbitrary element p ∈ AssS(S/Ik). This implies
that p = (Ik :S h) for some h ∈ S. Since I satisfies the strong persistence property,
we have (Ik+1 :S I) = Ik, and so p = ((Ik+1 :S I) :S h). Let G(I) = {u1, . . . ,um}.
Hence, one obtains p = (Ik+1 :S h

∑m
i=1uiS) = ∩m

i=1(Ik+1 :S hui). Accordingly, we
get p = (Ik+1 :S hui) for some 1 ≤ i≤m. Therefore, p ∈ AssS(S/Ik+1). This means
that I has the persistence property, as claimed.

To prove Theorem 2.1.3, we need the following result. We state it here for ease of
reference. For a given square-free monomial ideal I ⊂ K[x1, . . . ,xn], we denote by
I \xi the ideal generated by those elements in G(I) that does not contain xi in their
support.

Theorem 2.1.2. [47, Theorem 3.7] Let I be a square-free monomial ideal in a
polynomial ring R = K[x1, . . . ,xn] over a field K and m = (x1, . . . ,xn). If there
exists a square-free monomial v ∈ I such that v ∈ p \ p2 for any p ∈ Min(I), and
m\xi /∈ Ass(R/(I \xi)s) for all s and xi ∈ supp(v), then I is normally torsion-free.

The next theorem will be used frequently to formulate proofs of some main results
of this section. It provides a way to create new normally torsion-free ideals based
on the existing ones.

Theorem 2.1.3. Let I be a normally torsion-free square-free monomial ideal in
a polynomial ring R = K[x1, . . . ,xn] and h be a square-free monomial in R. Let
there exist two variables xr and xs with 1 ≤ r ̸= s ≤ n such that gcd(h,u) = 1 or
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gcd(h,u) = xr or gcd(h,u) = xrxs for all u ∈ G(I). Then I+hR is normally torsion-
free.

Proof. For convenience of notation, put L := I + hR. If L \ xk = m \ xk for some
1 ≤ k ≤ n, then one can write L = xkJ +m \xk. If J = R, then L = m, and there
is nothing to prove. Let J ̸= R, and take an arbitrary element v ∈ G(J). If xℓ | v
for some ℓ ∈ {1, . . . ,n} \ {k}, then v ∈ m \xk, and so J ⊆ m \xk. This implies that
L=m\xk, and hence the assertion holds. We thus assume that L\xk ̸=m\xk for all
k = 1, . . . ,n. We claim that h ∈ p\p2 for any p ∈ Min(L). Take an arbitrary element
p ∈ Min(L). Since h ∈ L and L ⊆ p, one has h ∈ p. Suppose, on the contrary, that
h ∈ p2. Due to h is square-free, this gives that |supp(h) ∩ supp(p)| ≥ 2. We observe
the following:
(i) If xs ∈ supp(u) for some u ∈ G(I), then xr ∈ supp(u) as well. It is due to the
assumption on gcd(h,u) with u ∈ G(I).
(ii) At most one of xr and xs can be in supp(p). Indeed, if both xr,xs ∈ supp(p),
then xr,xs ∈ supp(h) ∩ supp(p). From (i), we see that u ∈ p\ {xs} for all u ∈ G(I).
Also, h ∈ p\{xs}. Hence, L⊂ p\{xs}, a contradiction to the minimality of p.

In order to establish our claim, we have the following cases to discuss:

Case 1. xr ∈ p. Take any xi ∈ supp(h) ∩ supp(p) such that xr ̸= xi. Then xs ̸= xi

due to (ii). From the assumption on gcd(h,u) with u ∈ G(I) it follows that xi /∈
supp(I). Therefore, I ⊂ p\ {xi}. Since h ∈ p\ {xi}, we conclude that L ⊂ p\ {xi},
a contradiction to the minimality of p.

Case 2. xs ∈ p. By mimicking the same argument as in Case 1, we again obtain a
contradiction to the minimality of p.

Case 3. xr /∈ p and xs /∈ p. Take any xi,xj ∈ supp(h) ∩ supp(p). Then xi,xj /∈
supp(I), due to the assumption on gcd(h,u) with u ∈ G(I). It yields that I ⊂
p\ {xi}. Since h ∈ p\ {xi}, we conclude that L ⊂ p\ {xi}, again a contradiction to
the minimality of p.

This shows that our claim holds true. To complete the proof, note that for all
xk ∈ supp(h), one has L\xk = I \xk. Based on [46, Theorem 3.21], we gain I \xk

is normally torsion-free as well. This leads to L \xk is normally torsion-free. Fix
s≥ 1. Suppose, on the contrary, that m\xk ∈ Ass(R/(L\xk)s) for some k. Because
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Ass(R/(L\xk)s) = Min(L\xk), we get m\xk ∈ Min(L\xk), and so L\xk = m\xk,

which is a contradiction. Therefore, m \ xi /∈ Ass(R/(I \ xi)s) for all s and xi ∈
supp(h). Consequently, the assertion can be concluded readily from Theorem 2.1.2.

As an immediate consequence of Theorem 2.1.3, we give the following corollary.

Corollary 2.1.4. The path ideals corresponding to path graphs of length two are
normally torsion-free.

Proof. Let P = (V (P ),E(P )) denote a path graph with the vertex set V (P ) =
{x1, . . . ,xn} and the edge set E(P ) = {xi,xi+1} : i = 1, . . . ,n− 1}. Hence, the
path ideal corresponding to the path graph P of length two is given by

L := (xixi+1xi+2 : i= 1, . . . ,n−2).

We proceed by induction on n. If n= 3, then L= (x1x2x3), and there is nothing to
prove. Let n > 3 and the claim has been proven for n−1. Set h := xn−2xn−1xn and
I := (xixi+1xi+2 : i = 1, . . . ,n− 3). One can easily check that, for each u ∈ G(I),
we have gcd(h,u) = 1 or gcd(h,u) = xn−2 or gcd(h,u) = xn−2xn−1. It follows from
the induction hypothesis that I is normally torsion-free. Since L = I +hR, where
R =K[x1, . . . ,xn], we can derive the assertion from Theorem 2.1.3.

As an application of Theorem 2.1.3, we give the following lemma.

Lemma 2.1.5. Let G= (V (G),E(G)) and H = (V (H),E(H)) be two finite simple
graphs such that V (H) = V (G)∪{w} with w /∈ V (G), and E(H) =E(G)∪{{v,w}}
for some vertex v ∈ V (G). If NI(G) is normally torsion-free, and∏

j∈NG[v]xj /∈ G(NI(G), then NI(H) is normally torsion-free.

Proof. Let NI(G) be normally torsion-free. It is routine to check that NI(H) =
NI(G) + (xvxw)R, where R = K[xα : α ∈ V (H)]. In addition, one can easily see
that either gcd(xvxw,u) = 1 or gcd(xvxw,u) = xv for all u ∈ G(NI(G)). Therefore,
the claim follows immediately from Theorem 2.1.3.

We are ready to state the first main result of this section as an immediate corollary
of Theorem 2.1.3 and Lemma 2.1.5.
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Corollary 2.1.6. The closed neighborhood ideals of star graphs are normally
torsion-free.

Proof. Proceed by induction on the number of vertices and use Lemma 2.1.5.

In what follows, we investigate the closed neighborhood ideals related to the whisker
graph and cone of a graph.

Definition 2.1.7. [55, Definition 7.3.10] Let G0 be a graph on the vertex set Y =
{y1, . . . ,yn} and take a new set of variables X = {x1, . . . ,xn}. The whisker graph
or suspension of G0, denoted by G0 ∪W (Y ), is the graph obtained from G0 by
attaching to each vertex yi a new vertex xi and the edge {xi,yi}. The edge {xi,yi}
is called a whisker.

Question 2.1.8. (i) Can we conclude that the closed neighborhood ideals of trees
are normally torsion-free?

(ii) Let G0 be a graph and let H := G0 ∪W (Y ) be its whisker graph. If NI(G0)
is normally torsion-free, then can we deduce that NI(H) is normally torsion-
free?

Definition 2.1.9. [55, Definition 10.5.4] The cone C(G), over the graph G, is ob-
tained by adding a new vertex t to G and joining every vertex of G to t.

Lemma 2.1.10. Let G be a graph and let H := C(G) be its cone. Then NI(G) is
normally torsion-free if and only if NI(H) is normally torsion-free.

Proof. Assume that the cone H = C(G) is obtained by adding the new vertex w to
G and joining every vertex of G to w. Then one can easily see that

NI(H) = xwNI(G)+(xw

∏
i∈V (G)

xi).

Since ∏i∈V (G)xi ∈NI(G), this implies that NI(H) = xwNI(G).

The result can be deduced from [46, Lemma 3.12].

We recall the following definition which will be used in the proof of Lemma 2.1.12.
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Definition 2.1.11. [37, Definition 2.1] Let I ⊂ R = K[x1, . . . ,xn] be a monomial
ideal with G(I) = {u1, . . . ,um}. Then I is said to be unisplit, if there exists ui ∈ G(I)
such that gcd(ui,uj) = 1 for all uj ∈ G(I) with i ̸= j.

Lemma 2.1.12. Let G be a graph and let H := C(G) be its cone. Then DI(G) is
normally torsion-free if and only if DI(H) is normally torsion-free.

Proof. Suppose that the cone H = C(G) is obtained by adding the new vertex w to
G and joining every vertex of G to w. Using [48, Lemma 2.2] yields that

DI(H) =DI(G)+(xw).

It follows now from [20, Lemma 3.4] that, for all s,

(2.1) Ass(DI(H)s) = {(p,xw) : p ∈ Ass(DI(G)s)}.

Let DI(G) be normally torsion-free. Then the claim can be deduced from [46, The-
orem 2.5]. Conversely, let DI(H) be normally torsion-free. By using [46, Theorem
3.21], we obtain that DI(G) is normally torsion-free.

Our next goal is to show that the dominating ideals of star graphs are normally
torsion-free. To do this, we first prove some results of a general nature. We recall
some definitions from [15] which are necessary to establish Theorem 2.1.16. Let
H = (V (H),E(H)) be a hypergraph with V (H) = {x1, . . . ,xn}.

Definition 2.1.13. (see [15, Definition 2.7]) A d-coloring of H is any partition of
V (H) = C1 ∪ ·· · ∪Cd into d disjoint sets such that for every E ∈ E(H), we have
E ⊈ Ci for all i = 1, . . . ,d. (In the case of a graph G, this simply means that any
two vertices connected by an edge receive different colors.) The Ci’s are called the
color classes of H. Each color class Ci is an independent set, meaning that Ci does
not contain any edge of the hypergraph. The chromatic number of H, denoted by
χ(H), is the minimal d such that H has a d-coloring.

Definition 2.1.14. (see [15, Definition 2.8]) The hypergraph H is called critically
d-chromatic if χ(H) = d, but for every vertex x ∈ V (H), χ(H \ {x}) < d, where
H \{x} denotes the hypergraph H with x and all edges containing x removed.
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Definition 2.1.15. (see [15, Definition 4.2]) For each s, the s-th expansion of H
is defined to be the hypergraph obtained by replacing each vertex xi ∈ V (H) by a
collection {xij | j = 1, . . . , s}, and replacing E(H) by the edge set that consists of
edges {xi1l1 , . . . ,xirlr} whenever {xi1 , . . . ,xir} ∈ E(H) and edges {xil,xik} for l ̸= k.
We denote this hypergraph by Hs. The new variables xij are called the shadows of
xi. The process of setting xil to equal to xi for all i and l is called the depolarization.

The following result is a slightly generalized form of [42, Theorem 4.9].

Theorem 2.1.16. Assume that G = (V (G),E(G)) and H = (V (H),E(H)) are two
finite simple hypergraphs such that V (H) = V (G)∪{w1, . . . ,wt} with wi /∈ V (G) for
each i = 1, . . . , t, and E(H) = E(G) ∪ {{v,w1, . . . ,wt}} for some vertex v ∈ V (G).
Then

AssR′(R′/J(H)s) = AssR(R/J(G)s)∪{(xv,xw1 , . . . ,xwt)},

for all s, where R =K[xα : α ∈ V (G)] and R′ =K[xα : α ∈ V (H)].

Proof. For convenience of notation, set I := J(G) and J := J(H). We first prove that
AssR(R/Is) ∪ {(xv,xw1 , . . . ,xwt)} ⊆ AssR′(R′/Js) for all s. Fix s ≥ 1, and assume
that p = (xi1 , . . . ,xir) is an arbitrary element of AssR(R/Is). According to [15,
Lemma 2.11], we get p ∈ Ass(K[p]/J(Gp)s), where K[p] = K[xi1 , . . . ,xir ] and Gp is
the induced subhypergraph of G on the vertex set {i1, . . . , ir} ⊆ V (G). Since Gp = Hp,
we have p ∈ Ass(K[p]/J(Hp)s). This yields that p ∈ AssR′(R′/Js). On account of
(xv,xw1 , . . . ,xwt) ∈ AssR′(R′/Js), one derives

AssR(R/Is)∪{(xv,xw1 , . . . ,xwt)} ⊆ AssR′(R′/Js).

To complete the proof, it is enough for us to show the reverse inclusion. Assume
that p = (xi1 , . . . ,xir) is an arbitrary element of AssR′(R′/Js) with {i1, . . . , ir} ⊆
V (H). If {i1, . . . , ir} ⊆ V (G), then [15, Lemma 2.11] implies that p ∈ AssR(R/Is),
and the proof is done. Thus, let {w1, . . . ,wt} ∩ {i1, . . . , ir} ̸= ∅. It follows from
[15, Corollary 4.5] that the associated primes of J(H)s will correspond to critical
chromatic subhypergraphs of size s+1 in the s-th expansion of H. This means that
one can take the induced subhypergraph on the vertex set {i1, . . . , ir}, and then form
the s-th expansion on this induced subhypergraph, and within this new hypergraph
find a critical (s+1)-chromatic hypergraph. Notice that since this expansion cannot
have any critical chromatic subgraphs, this implies that Hp must be connected.
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Without loss of generality, one may assume that i1 = v and i2 =w1, i3 =w2, . . . , it+1 =
wt. Thanks to w1, . . . ,wt are connected to v in the hypergraph H, and because this
induced subhypergraph is critical, if we remove any vertex wk for some 1 ≤ k ≤ t,
one can color the resulting hypergraph with at least s colors. This leads to that
wk has to be adjacent to at least s vertices. But the only things wk is adjacent to
are the shadows of wi for each i = 1, . . . , t, and the shadows of v, and so one has a
clique among these vertices. Accordingly, wk and its neighbors will form a clique
of size s+ 1. Since a clique is a critical graph, it follows that we do not need any
element of {it+2, . . . , ir} or their shadows when making the critical (s+1)-chromatic
hypergraph. Hence, we obtain p = (xv,xw1 , . . . ,xwt). This finishes the proof.

Lemma 2.1.17. Let I be a normally torsion-free square-free monomial ideal in a
polynomial ring R =K[x1, . . . ,xn] with G(I) ⊂R. Then the ideal

L := IS∩ (xn,xn+1,xn+2, . . . ,xm) ⊂ S =R[xn+1,xn+2, . . . ,xm],

is normally torsion-free.

Proof. It is well-known that one can view the square-free monomial ideal I as the
cover ideal of a simple hypergraph H such that the hypergraph H corresponds to
I∨, where I∨ denotes the Alexander dual of I. Then we have I = J(H), where J(H)
denotes the cover ideal of the hypergraph H. Fix k ≥ 1. On account of Theorem
2.1.16, we get the following equality

AssS(S/Lk) = AssR(R/J(H)k)∪{(xn,xn+1,xn+2, . . . ,xm)}.

Because I is normally torsion-free, one derives that AssR(R/J(H)k) = Min(J(H)),
and hence AssS(S/Lk) = Min(J(H)) ∪ {(xn,xn+1,xn+2, . . . ,xm)}. This gives rise to
AssS(S/Lk) = Min(L). Therefore, L is normally torsion-free, as claimed.

Lemma 2.1.18. Let G= (V (G),E(G)) and H = (V (H),E(H)) be two finite simple
graphs such that V (H) = V (G)∪{w} with w /∈ V (G), and E(H) =E(G)∪{{v,w}}
for some vertex v ∈ V (G), and ∏j∈NG[v]xj /∈ G(NI(G). If DI(G) is normally torsion-
free, then DI(H) is normally torsion-free.

Proof. Let DI(G) be normally torsion-free. It follows from [48, Lemma 2.2] that
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DI(H) =DI(G)∩ (xv,xw)R, where R=K[xα : α ∈ V (H)]. Now, we can conclude
the assertion from Lemma 2.1.17.

We are in a position to give the second main result of this section in the following
corollary, which is related to the dominating ideals of star graphs.

Corollary 2.1.19. The dominating ideals of star graphs are normally torsion-free.

Proof. We use the induction on the number of vertices together with Lemma 2.1.18.

Question 2.1.20. (i) Can we conclude that the dominating ideals of trees are
normally torsion-free?

(ii) Let G0 be a graph and let H := G0 ∪W (Y ) be its whisker graph. If DI(G0)
is normally torsion-free, can we deduce that DI(H) is normally torsion-free?

2.2 On the closed neighborhood ideals and dom-
inating ideals of cycles

The edge ideals and the cover ideals of bipartite graphs are known to be normally
torsion-free, see [17, 50]. In particular, the edge ideals and the cover ideals of even
cycles are normally torsion-free. However, this behaviour changes when we consider
the odd cycles. The cover ideals of odd cycles happen to be nearly normally torsion-
free, see [38], but edge ideals of odd cycles do not admit such tamed behaviour for
the set of their associated primes. Given these facts, it is natural to expect some
irregularities for the closed neighborhood ideals and dominating ideals of even and
odd cycles. It can be verified by using Macaulay2 [18] that in general, the closed
neighborhood ideals of cycles, regardless of the parity of their lengths, are neither
normally torsion-free nor nearly normally torsion-free. However, in this section, we
will show that the closed neighborhood ideals of cycles admit strong persistence
property. On the other side, as another main result of this section, we will show
that the dominating ideals of cycles are nearly normally torsion-free.

To establish the above-mentioned results, we begin by proving the following theorem,
which gives an inductive way to study the normality of an ideal.
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Theorem 2.2.1. Let I and H be two normal square-free monomial ideals in a
polynomial ring R = K[x1, . . . ,xn] such that I+H is normal. Let xc ∈ {x1, . . . ,xn}
be a variable with gcd(v,xc) = 1 for all v ∈ G(I) ∪ G(H). Then L := I + xcH is
normal.

Proof. Let G(I) = {u1, . . . ,us} and G(H) = {h1, . . . ,hr}. Since gcd(v,xc) = 1 for all
v ∈ G(I) ∪ G(H), without loss of generality, one may assume that xc = x1 ∈ K[x1]
and

G(I)∪G(H) = {u1, . . . ,us,h1, . . . ,hr} ⊆K[x2, . . . ,xn].

We must show that Lt = Lt for all integers t ≥ 1. For this purpose, it is enough to
prove that Lt ⊆ Lt. Let α be a monomial in Lt and write α = xb

1δ with x1 ∤ δ and
δ ∈R. On account of [22, Theorem 1.4.2], αk ∈ Ltk for some integer k ≥ 1. Write

(2.2) αk = xbk
1 δ

k =
s∏

i=1
upi

i x
q+ε
1

r∏
j=1

h
qj

j β,

with ∑s
i=1 pi = p, ∑r

j=1 qj = q, p+ q = tk, ε≥ 0, and β is some monomial in R such
that x1 ∤ β. Because x1 ∤ β, x1 ∤ δ, and gcd(v,x1) = 1 for all v ∈ G(I) ∪ G(H), one
can conclude that bk = q+ ε. Accordingly, by virtue of (2.2), we obtain

δk =
s∏

i=1
upi

i

r∏
j=1

h
qj

j β ∈ (I+H)tk.

This leads to δ ∈ (I+H)t. Thanks to I +H is normal, we deduce that (I+H)t =
(I+H)t, and so δ ∈ (I+H)t. Therefore, one can write

(2.3) δ =
s∏

i=1
uli

i

r∏
j=1

h
zj

j γ,

with ∑s
i=1 li = l, ∑r

j=1 zj = z, l+ z = t, and γ is some monomial in R. Note that
x1 ∤ γ as x1 ∤ δ. Due to xbk

1 δ
k ∈ Ltk, it follows immediately from (2.3) that

s∏
i=1

ulik
i xbk

1

r∏
j=1

h
zjk
j γk ∈ Ltk = (I+x1H)tk .
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Consequently, we conclude that bk ≥ zk, that is, b≥ z. This gives rise to

xb
1δ =

s∏
i=1

uli
i x

b
1

r∏
j=1

h
zj

j γ ∈ (I+x1H)t ,

and the proof is over.

We state the third main result of this section in the next theorem, which is related
to the closed neighborhood ideals of cycles.

Theorem 2.2.2. Let Cn be a cycle graph of order n. Then NI(Cn) is normal.

Proof. (i) Let Cn = (V (Cn),E(Cn)) be a cycle graph of order n with V (Cn) =
{x1, . . . ,xn} and E(Cn) = {{xi,xi+1} : i= 1, . . . ,n−1}∪{{xn,x1}}. Then the closed
neighborhood ideal of Cn is given by

NI(Cn) = (xixi+1xi+2 : i= 1, . . . ,n) ⊂R =K[x1, . . . ,xn],

where xn+1 (respectively, xn+2) represents x1 (respectively, x2). If n = 3, then
NI(C3) = (x1x2x3), and so there is nothing to prove. Thus, let n ≥ 4. Put H :=
(x2x3,xn−1xn,x2xn) and I := (xixi+1xi+2 : i= 2, . . . ,n−2). One can easily see that
NI(Cn) = I+x1H. Our strategy is to use Theorem 2.2.1 to complete the proof. To
do this, we first show that I, H, and I +H are normal. Assume that G is a path
graph with V (G) = {x2,x3,xn−1,xn} and E(G) = {{x2,x3},{xn−1,xn},{x2,xn}}. It
is routine to check that I(G) =H, where I(G) denotes the edge ideal of G. Since by
[17, Corollary 2.6], the edge ideal of any path graph is normally torsion-free, and by
remembering this fact that every normally torsion-free square-free monomial ideal is
normal, we deduce that H is a normal square-free monomial ideal. Now, assume that
P is a path graph with V (P ) = {x2,x3, . . . ,xn−1,xn} and E(P ) = {{xi,xi+1} : i=
2, . . . ,n− 1}. It is not hard to check that I = I3(P ), where I3(P ) denotes the path
ideal of length 2 of P . It follows readily from Corollary 2.1.4 that I = I3(P ) is
normally torsion-free, and so is normal. To complete the proof, we show that I+H

is normal. To accomplish this, we note that

I+H = (x2x3,xn−1xn,x2xn,xixi+1xi+2 : i= 3, . . . ,n−3).

Set A := (x3,xn) and B := (xn−1xn,xixi+1xi+2 : i = 3, . . . ,n− 3). Notice that
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I+H = B+x2A. It is clear that A is a normal ideal. Furthermore, it follows from
Corollary 2.1.4 and Theorem 2.1.3 that B is normally torsion-free, and so is normal.
In addition, we have

B+A= (x3,xn,xixi+1xi+2 : i= 4, . . . ,n−3).

One can easily conclude from Corollary 2.1.4 and Theorem 2.1.3 that B +A is
normally torsion-free, and hence is normal. By virtue of Theorem 2.2.1, we deduce
thatB+x2A is normal, and so I+H is normal as well. Finally, note that gcd(v,x1) =
1 for all v ∈ G(I)∪G(H). This finishes the proof.

The neighborhood ideals of cycles are particularly nice because they are generated
by monomials of the same degree. This fact together with Theorem 2.2.2 enables
us to study the depth of powers of NI(Cn). For this purpose, we first recall the
following definition and result from [27].

Definition 2.2.3. Let I ⊂ R be a monomial ideal with G(I) = {u1, . . . ,um}. The
linear relation graph ΓI of I is the graph with the edge set

E(ΓI) = {{xi,xj} : there exist uk,ul ∈ G(I) such that xiuk = xjul},

and the vertex set V (ΓI) = ⋃
{xi,xj}∈E(Γ){i, j}.

Theorem 2.2.4. [27, Theorem 3.3] Let I ⊂ R =K[x1, . . . ,xn] be a monomial ideal
generated in a single degree whose linear relation graph has r vertices and s con-
nected components. Then

depth(R/It) ≤ n− t−1 for t= 1, . . . , r− s.

In order to apply the above theorem, we first analyze the linear relation graph of
NI(Cn). Let V (Cn) = [n] and E(Cn) = {{1,2},{2,3}, . . . ,{n−1,n},{n,1}}. We set
the following notations.

1.1 ui = ∏
j∈N [i]xj . In simple words, ui is the monomial that corresponds to the

closed neighborhood of the vertex i.

1.2 Note that ui = xi−1xixi+1, for all i = 2, . . .n− 1 and u1 = xnx1x2, un =
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xn−1xnx1. To synchronize this notation for all i, if i > n then we read i

as i(mod n). In this way, we can write ui = xi−1xixi+1, for all i= 1, . . .n.

Remark 2.2.5. Let i ̸= j. Note that each variable xi appears in exactly three mono-
mials in G(NI(Cn)), and these monomials are ui−1 = xi−2xi−1xi, ui = xi−1xixi+1

and ui+1 = xixi+1xi+2. From this observation, we conclude that {xi,xj} ∈ E(Γ) if
and only if there exists a path of length three from i to j in Cn. Here a path P of
length n is defined on n+1 vertices and n edges.

Remark 2.2.6. Let n ≥ 4, and set In := NI(Cn). Remark 2.2.5 leads us to the
following:

2.1 |V (ΓIn)| = n. This can be easily verified because, for every i, we can find
another vertex j such that there is a path of length three from i to j in Cn.

2.2 ΓIn has one connected component if n ̸= 3k, for all k ≥ 2. Indeed, if
n= 1(mod 3), that is, n= 3k+1 for some k ≥ 1, then we have

E(ΓIn) = {{x1,x4},{x4,x7}, . . . ,{x3k−2,x3k+1},

{x3k+1,x3},{x3,x6}, . . . ,{x3k−3,x3k},

{x3k,x2},{x2,x5}, . . . ,{x3k−2,x1}}.

If n= 2(mod 3), that is, n= 3k+2 for some k ≥ 1, then we have

E(ΓIn) = {{x1,x4},{x4,x7}, . . . ,{x3k−2,x3k+1},

{x3k+1,x2},{x2,x5}, . . . ,{x3k−1,x3k+2},

{x3k+2,x3},{x3,x6}, . . . ,{x3k,x1}}.

2.3 ΓIn has three connected components if n = 3k, for some k ≥ 2. Set V (Γ1) =
{x1,x4, . . . ,x3k−2}, and

E(Γ1) = {{x1,x4},{x4,x7}, . . . ,{x3k−2,x1}}.
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Set V (Γ2) = {x2,x5, . . . ,x3k−1}, and

E(Γ1) = {{x2,x5},{x5,x8}, . . . ,{x3k−1,x2}}.

Set V (Γ3) = {x3,x6, . . . ,x3k}, and

E(Γ1) = {{x3,x6},{x6,x9}, . . . ,{x3k,x3}}.

It can be easily verified that ΓIn is the disjoint union of Γ1, Γ2, and Γ3.

Theorem 2.2.4 together with Remark 2.2.6 leads to the following corollary:

Corollary 2.2.7. Let n ̸= 0(mod 3). Set In = NI(Cn) ⊂ R = K[x1, . . . ,xn]. Then
depth(R/In−1

n ) = 0. In particular, m ∈ Ass(R/In−1
n ) and limk→∞depthR/Ik

n = 0.

We provide the fourth main result of this section in the subsequent theorem, which
is related to the dominating ideals of cycles. We will use the following result to
establish our proof.

Corollary 2.2.8. [42, Corollary 3.3] Let I be a square-free monomial ideal in a
polynomial ringR=K[x1, . . . ,xn] over a fieldK. Let I(m\{xi}) be normally torsion-
free for all i= 1, . . . ,n. Then I is nearly normally torsion-free.

Now, we state the next main result.

Theorem 2.2.9. The dominating ideals of cycles are nearly normally torsion-free.

Proof. Let Cn denote a cycle graph of order n with V (Cn) = {x1, . . . ,xn} and
E(Cn) = {{xi,xi+1} : i = 1, . . . ,n− 1} ∪ {{xn,x1}}. In the light of [48, Lemma
2.2], the dominating ideal of Cn is given by

DI(Cn) =
n⋂

i=1
(xi,xi+1,xi+2) ⊂R = [x1, . . . ,xn],

where xn+1 (respectively, xn+2) represents x1 (respectively, x2). Set I := DI(Cn).
Our strategy is to use Corollary 2.2.8. To do this, we must show that I(m \ {xi})
is normally torsion-free for all i = 1, . . . ,n, where m = (x1, . . . ,xn). Without loss
of generality, it is sufficient for us to prove that I(m \ {x1}) is normally torsion-
free. To simplify notation, set F := ⋂n−2

i=2 (xi,xi+1,xi+2). By virtue of Corollary
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2.2.8, one has to show that the ideal F = I(m \ {x1}) is normally torsion-free. To
do this, let T = (V (T ),E(T )) be the rooted tree with the root 2, the vertex set
V (T ) = {x2, . . . ,xn}, and the edge set E(T ) = {(xi,xi+1) : i = 2, . . . ,n− 1}, where
(xi,xi+1) denotes the directed edge from the vertex xi to the vertex xi+1 for all
i = 2, . . . ,n− 1. It is not hard to check that F is the Alexander dual of the path
ideal generated by all paths of length 2 in the rooted tree T . Now, one can deduce
from [33, Theorem 3.2] that F = I(m\{x1}) is normally torsion-free. This completes
the proof.
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Chapter 3

Componetwise Linearity of
Dominating Ideals of Path Graphs

Let G be a simple graph. The graph G is called a path graph on {x1,x2, . . . ,xn} if
E(G) = {{x1,x2},{x2,x3}, · · · ,{xn−1,xn}}. We denote a path graph on n vertices
by Pn. In this chapter, we study the dominating ideals of Pn. Our main goal is to
prove DI(Pn) is componentwise linear. To do this, first, we show that DI(Pn) has
linear quotients by giving a precise order of minimal generators of DI(Pn).

3.1 Linear quotient order of dominating ideals of
path graphs

In this section, we will construct a recursive order of G(DI(Pn)), which gives linear
quotients. To do this, we first give a recursive presentation of dominating sets of
Pn. Throughout the following text, for any non-empty set A and for any element x,
we set xA := {xy| y ∈ A}. If A is empty, then we also set xA as an empty set.
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Remark 3.1.1. Let In =DI(Pn), and set

A1 = ∅, B1 = {x1},

A2 = {x1}, B2 = {x2},

A3 = {x2}, B3 = {x1x3},

A4 = {x1x3,x2x3}, B4 = {x1x4,x2x4}.

It can be readily verified with simple computations that

G(I1) = A1 ∪B1 = {x1};

G(I2) = A2 ∪B2 = {x1,x2};

G(I3) = A3 ∪B3 = {x2,x1x3};

G(I4) = A4 ∪B4 = {x1x3,x2x3,x1x4,x2x4}.

For n≥ 5, we set An = xn−1G(In−3)∪xn−1(xn−2An−4) and Bn = xnG(In−2). It can
be easily verified that

G(I5) = A5 ∪B5 = x4G(I2)∪x4(x3A1)∪x5G(I3) = {x1x4,x2x4,x2x5,x1x3x5}

and similarly,

G(I6) = A6 ∪B6 = x5G(I3)∪x5(x4A2)∪x6G(I4)

= {x2x5,x1x3x5,x1x4x5,x1x3x6,x2x3x6,x1x4x6,x2x4x6}.

Below, we give a recursive way to construct dominating ideals for path graphs.

Theorem 3.1.2. Let In =DI(Pn) and n≥ 5. Then G(In) = An ∪Bn, where

An = xn−1G(In−3)∪xn−1xn−2An−4 and Bn = xnG(In−2).

Moreover, the sets xn−1G(In−3), xn−1xn−2An−4, and xnG(In−2) are pairwise dis-
joint.

Proof. It immediately follows from the definition of the minimal dominating set and
the construction of An and Bn that xn−1G(In−3), xn−1xn−2An−4, and xnG(In−2)
are pairwise disjoint. To prove G(In) =An ∪Bn, we apply induction on n. The case
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n = 5 can be verified from Remark 3.1.1. Assume that n > 5. First we show that
An ∪Bn ⊆G(In). Let w ∈Bn, then w= xnw

′ for some w′ ∈G(In−2). Since supp(w′)
is a minimal dominating set of Pn−2 and xn dominates xn−1 and itself in Pn, we
obtain that supp(w) is a dominating set of Pn. The minimality of supp(w) follows
from the minimality of supp(w′). This gives w ∈G(In).

Now, let w ∈ An. Then w = xn−1w′′ for some w′′ ∈ G(In−3) or w′′ ∈ xn−2An−4.
If w′′ ∈ G(In−3), then supp(w′′) is a minimal dominating set of Pn−3. Further-
more, xn−1 dominates xn−2,xn and itself in Pn. It yields that supp(xn−1w′′) is a
dominating set of Pn. The minimality of supp(w) follows from the minimality of
supp(w′). This gives w ∈ G(In). On the other hand, if w′′ ∈ xn−2An−4, then there
exists w′′′ ∈ An−4 such that w = xn−1xn−2w′′′. By induction hypothesis, we have
An−4 ⊂G(In−4), hence supp(w′′′) is a minimal dominating set of Pn−4. The remain-
ing vertices xn−3,xn−2,xn−1,xn of Pn are minimally dominated by xn−2 and xn−1.
Thus, supp(xn−1xn−2w′′′) is a minimal dominating set of Pn and w ∈G(In).

Next we show that G(In) ⊆ An ∪Bn. Since N [xn] = {xn,xn−1}, for any w ∈G(In),
either xn divides w or xn−1 divides w. However xn and xn−1 do not divide w at the
same time, by the virtue of minimality of supp(w) as a dominating set of Pn.

First, assume that w= xnw
′. Since xn dominates itself and xn−1, the set supp(w′) =

supp(w)\{xn} is a dominating set of Pn−2. The minimality of supp(w′) follows from
the minimality of supp(w). It gives w′ ∈G(In−2) and w ∈Bn.

Now, let w = xn−1w′′. Below we show that w ∈ An. To do this, we consider the
following cases:

Case (1): Assume that xn−2 /∈ supp(w′′). Since xn−1 dominates only xn,xn−2 and
itself, for each i= 1, . . . ,n− 3, the vertex xi must be dominated by supp(w′′). This
shows that supp(w′′) is a dominating set of Pn−3. The minimality of supp(w′′)
follows from the minimality of supp(w), and we obtain w′′ ∈ G(In−3). This shows
that w ∈ xn−1G(In−3).

Case (2): Assume that xn−2 ∈ supp(w′′). Then w = xn−1w′′ = xn−1xn−2u for some
monomial u. Then xn−3 /∈ supp(u), otherwise, supp(w)\{xn−2} is a dominating set
of Pn, a contradiction to the minimality of supp(w). This shows that supp(u) is a
dominating set of Pn−4. The minimality of supp(u) follows from the minimality of
supp(w) and hence u ∈ G(In−4). By the induction hypothesis we have G(In−4) ⊆

36



An−4 ∪Bn−4. Note that xn−4 /∈ supp(u), otherwise, supp(w)\{xn−2} is a dominating
set of Pn, a contradiction to the minimality of supp(w). This shows that u /∈ Bn−4

because every element in Bn−4 is a multiple of xn−4. Therefore u ∈ An−4 and
w ∈ xn−1xn−2An−4 ⊂ An. This completes the proof.

Remark 3.1.3. Set In = DI(Pn). For each n ≥ 1, we order the elements of G(In)
by first listing the elements of An and then listing the elements of Bn. In particular,
for 1 ≤ n ≤ 4, we order the elements in An and Bn as given in Remark 3.1.1. For
n≥ 5, from Theorem 3.1.2 we have

G(In) = An ∪Bn

= [xn−1G(In−3)∪xn−1xn−2An−4]∪xnG(In−2)

Let G(In−3) = {u1, . . . ,ut}, An−4 = {a1, . . . ,ak} and G(In−2) = {v1, . . . ,vs}, then an
ordering of G(In) for n≥ 5 is given below

xn−1u1, . . . ,xn−1ut,xn−1xn−2a1, . . . ,xn−1xn−2ak,xnv1, . . . ,xnvs.

For example, in Remark 3.1.1 the elements of G(I5) and G(I6) are listed in the order
described above. Throughout the following text, we let An and Bn be the ideals
generated by the elements of An and Bn, respectively.

Next, we will show that DI(Pn) has linear quotients with respect to the ordering
of the generators given in the remark above. To do this, we first state the following
simple observation.

Lemma 3.1.4. Let I ⊂ S = K[x1, . . . ,xn,x,y] be a monomial ideal with G(I) =
{u1, . . . ,um} such that x,y /∈ supp(ui) for all i= 1, . . . ,m. Then the following state-
ments hold.

(i) Let w be a monomial in S with x /∈ supp(w). Then any generator of xI : (w)
is divisible by x.

(ii) For any ui ∈G(I), we have xI : (yui) = (x).

Proof. (i) It is easy to see that every generator of xI : (w) is of the form
xui/gcd(xui,w) for some i, for example, see [22, Proposition 1.2.2]. Using the

37



assumption that x /∈ supp(w) gives x does not divide gcd(xui,w), as required.

(ii) It follows from (i) that every generator of xI : (yui) is divisible by x. Moreover,
we have (x) = (xui) : (yui) ⊆ xI : (yui). This gives xI : (yui) = (x).

Now we give the main theorem of this section.

Theorem 3.1.5. For any n≥ 1, DI(Pn) has linear quotients.

Proof. Set In =DI(Pn). We show that the order of G(In) described in Remark 3.1.3
is a linear quotient order. We proceed by applying induction on n. It is easy
to verify the assertion for 1 ≤ n ≤ 5 by following straightforward computations.
Let n > 5 and for all 1 ≤ k < n assume that Ik has linear quotients with order as
in Remark 3.1.3. Let G(In−3) = {u1, . . . ,ut} and G(In−2) = {v1, . . . ,vs} where the
generators are listed in the linear quotient order. Indeed, by inductive hypothesis An

has linear quotients as well because G(In−4) =An−4 ∪Bn−4. Let An−4 = {a1, . . . ,ak}
where the generators are listed in the linear quotient order.

First, we show that An = xn−1In−3 +xn−1xn−2An−4 has linear quotients. We know
that xn−1In−3 and xn−1xn−2An−4 have linear quotients because In−3 and An−4

have linear quotients by inductive hypothesis as mentioned above. Moreover, for
i= 2, . . . ,k, we have

[xn−1In−3 +(xn−1xn−2a1, . . . ,xn−1xn−2ai−1)] : (xn−1xn−2ai) =

xn−1In−3 : (xn−1xn−2ai)+(xn−1xn−2a1, . . . ,xn−1xn−2ai−1) : (xn−1xn−2ai)

Therefore, we only need to show that xn−1In−3 : (xn−1xn−2ai) has linear quotients,
for all i= 1, . . . ,k. We claim that for all i= 1, . . . ,k,

xn−1In−3 : (xn−1xn−2ai) = (xn−3,xn−4).(3.1)

Proof of claim: For 5< n≤ 9, the above claim can be verified with straightforward
computation. The reason we let n > 9 in the following argument is to avoid the
negative indices in the following text.
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Note that xn−1In−3 : (xn−1xn−2ai) = In−3 : (xn−2ai). Using Theorem 3.1.2 we obtain

In−3 = xn−4In−6 +xn−4xn−5An−7 +xn−3In−5

which gives

In−3 : (xn−2ai) = xn−4In−6 : (xn−2ai)+xn−4xn−5An−7 : (xn−2ai)

+xn−3In−5 : (xn−2ai)
(3.2)

Since An−4 = xn−5G(In−7) ∪ xn−5xn−6An−8, we separate the discussion in the
following two cases: ai ∈ xn−5G(In−7) or ai ∈ xn−5xn−6An−8.

Case 1: Let ai ∈ xn−5G(In−7). From Lemma 3.1.4 and Theorem 3.1.2, we obtain

xn−3In−5 : (xn−2ai) = (xn−3An−5 +xn−3xn−5In−7) : (xn−2ai)

= (xn−3).

Note that xn−5G(In−7) = xn−5(An−7 ∪Bn−7). If ai ∈ xn−5An−7, then again from
Lemma 3.1.4, we obtain

xn−4In−6 : (xn−2ai)+xn−4xn−5An−7 : (xn−2ai) = (xn−4)

On the other hand, if ai ∈ xn−5Bn−7 = xn−5xn−7G(In−9), then by using the expan-
sion In−6 = xn−7In−9 +xn−7xn−8An−10 + Bn−6 obtained from Theorem 3.1.2, and
as an application of Lemma 3.1.4, we have

xn−4In−6 : (xn−2ai) = (xn−4xn−7In−9 +xn−4xn−7xn−8An−10 +xn−4Bn−6) : (xn−2ai)

= (xn−4)

Then, again from Lemma 3.1.4 we obtain

xn−4In−6 : (xn−2ai)+xn−4xn−5An−7 : (xn−2ai) = (xn−4)

Therefore, from (3.2) we conclude that In−3 : (xn−2ai) = (xn−3,xn−4) and the claim
holds.
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Case 2: Let ai ∈ xn−5xn−6An−8. Theorem 3.1.2 gives

In−6 = An−6 +Bn−6 = An−6 +xn−6In−8

= An−6 +xn−6An−8 +xn−6Bn−8

Thanks to Lemma 3.1.4, we obtain

xn−4In−6 : (xn−2ai) = (xn−4An−6 +xn−4xn−6An−8 +xn−4xn−6Bn−8) : (xn−2ai)

= (xn−4)

Hence

In−3 : (xn−2ai) = xn−4In−6 : (xn−2ai)+xn−4xn−5An−7 : (xn−2ai)+xn−3In−5 : (xn−2ai)

= (xn−4)+xn−3In−5 : (xn−2ai)

From Theorem 3.1.2, we have the expansion

In−5 = An−5 +Bn−5

= xn−6In−8 +xn−6xn−7An−9 +xn−5In−7

= xn−6An−8 +xn−6Bn−8 +xn−6xn−7An−9 +xn−5In−7

Once again, as a direct application of Lemma 3.1.4, we obtain

xn−3In−5 : (xn−2ai) = (xn−3).

This completes the proof of our claim.

Next, we show that An + (xnv1, . . . ,xnvi−1) : (xnvi) has linear quotients for each
i= 2, . . . , s. By induction hypothesis, In−2 has linear quotients which is equivalent to
(xnv1, . . . ,xnvi−1) : (xnvi) has linear quotients for i= 2, . . . , r. Therefore, to complete
the proof of the theorem, it only remains to show that An : (xnvi) has linear quotients
for each i= 1, . . . , r. We claim that

(3.3) An : (xnvi) = (xn−1)

Proof of claim: For 5< n≤ 7, the above claim can be verified with straightforward
computation. The reason we let n > 7 in the following argument is to avoid the
negative indices in the following text.
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Since G(In−2) = An−2 ∪ Bn−2, we first consider the case when vi ∈ An−2 =
xn−3G(In−5)∪xn−3xn−4An−6. After a repeated use of Theorem 3.1.2, we obtain

In−3 = xn−4In−6 +xn−4xn−5An−7 +xn−3In−5

= xn−4An−6 +xn−4Bn−6 +xn−4xn−5An−7 +xn−3In−5

Using above equality together with Lemma 3.1.4 gives xn−1In−3 : (xnvi) = (xn−1).
Therefore, in this case,

An : (xnvi) = (xn−1In−3 +xn−1xn−2An−4) : (xnvi)

= xn−1In−3 : (xnvi)+xn−1xn−2An−4 : (xnvi)

= (xn−1) as required.

Next, let vi ∈Bn−2 = xn−2G(In−4) = xn−2An−4 ∪xn−2Bn−4. If vi ∈ xn−2An−4, then
using Lemma 3.1.4 gives

An : (xnvi) = [xn−1In−3 +xn−1xn−2An−4] : (xnvi) = (xn−1)

If vi ∈ xn−2Bn−4 = xn−2xn−4G(In−6), then using Lemma 3.1.4 gives

xn−1In−3 : (xnvi) = [xn−1xn−4In−6 +xn−1xn−4xn−5An−7 +xn−1Bn−3] : (xnvi)

= (xn−1),

and we again retrieve An : (xnvi) = [xn−1In−3 +xn−1xn−2An−4] : (xnvi) = (xn−1).
This completes the proof.

Using Theorem 3.1.5, we retrieve the following result from [40, Theorem 2.8].

Corollary 3.1.6. For any n≥ 1, DI(Pn) is a componentwise linear ideal.

Proof. By Theorem 3.1.5, DI(Pn) has linear quotients. Thus, by [22, Theorem
8.2.15], DI(Pn) is componentwise linear.
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3.2 Betti numbers of dominating ideals of path
graphs

In this section, we give a recursive formula to compute the Betti numbers of dom-
inating ideals of path graphs. To do this, we recall the following result of Sharifan
and Varbaro from [49] which gives the Betti numbers, regularity and projective
dimension of an ideal with linear quotients.

Theorem 3.2.1. [[49], Corollary 2.7] Let I be a monomial ideal with linear quotients
with respect to u1, . . . ,ur whereG(I) = {u1, . . . ,ur}. Let np be the number of minimal
generators of (u1, . . . ,up−1) : up for p= 1, . . . , r. Then

βi,i+j(I) =
∑

1≤p≤r,deg(up)=j

(
np

i

)
, βi(I) =

r∑
p=1

(
np

i

)

reg(I) = max{deg(up) : p= 1, . . . , r}

projdim(I) = max{np : p= 1, . . . , r}

In [48, Theorem 2.6], authors computed the regularity and projective dimension
of NI(Pn). Using NI(Pn)∨ = DI(Pn) and invoking Terai’s well-known result [53,
Corollary 0.3] one can formulate the regularity and projective dimension of DI(Pn).
However, in the following result, we describe the regularity and projective dimension
of DI(Pn) in the terms of n as an application of Theorem 3.2.1 and Theorem 3.1.5.

Theorem 3.2.2. For any n≥ 2, the following holds.

(1) reg(DI(Pn)) = ⌈n
2 ⌉ = projdim(NI(Pn))+1 ,

(2) projdim(DI(Pn)) = ⌊n
2 ⌋ = reg(NI(Pn))−1.

Proof. A well known result of Terai [53, Corollary 0.3] states that for any square-
free monomial ideal reg(I) = projdim(I∨) + 1, and from [48, Lemma 2.2], we have
NI(Pn)∨ =DI(Pn). Therefore, to prove the assertion, it is enough to compute the
regularity and projective dimension of DI(Pn). Let n ≥ 2 and In = DI(Pn). It
follows from Theorem 3.2.1 that the regularity of In is

max{|S| : S is a minimal dominating set of Pn}.
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Note that a minimal dominating set A of Pn does not contain more than ⌈n
2 ⌉ ver-

tices of Pn. Otherwise, we readily obtain a contradiction to the minimality of A.
Therefore, reg(In) ≤ ⌈n

2 ⌉. On the other hand, it is easy to see that for any n,
the set {xi : i is odd and i ≤ n} is a minimal dominating set of Pn. This gives us
reg(In) = ⌈n

2 ⌉, as required.

To prove projdim(In) = ⌊n
2 ⌋, we apply induction on n. For 2 ≤ n ≤ 6, the equality

can be verified using Theorem 3.2.1. For n > 6, following (3.1), (3.3) and the linear
quotient order of DI(Pn) given in Theorem 3.1.5, we obtain

projdim(In) = max{projdim(In−3),projdim(An−4)+2,projdim(In−2)+1}

Moreover, using An−4 ⊂ In−4 and the inductive hypothesis yields projdim(An−4) ≤
projdim(In−4) = ⌊n−4

2 ⌋, projdim(In−3) = ⌊n−3
2 ⌋, and projdim(In−2) = ⌊n−2

2 ⌋. This
gives us the desired formula.

Using Theorem 3.2.1, and the linear quotient order of DI(Pn) from Theorem 3.1.5,
first we list Betti numbers of In =DI(Pn), for n= 1, . . . ,6.

n β0(In) β1(In) β2(In) β3(In)
1 1 - - -
2 2 1 - -
3 2 1 - -
4 4 4 1 -
5 4 4 1 -
6 7 11 6 1

Now, we give recursive formulas for the total and graded Betti numbers of DI(Pn),
for n > 6. To simplify the notation in the subsequent text, we use the following
definition. Let J be a monomial ideal with linear quotients and u1, . . . ,us be the
linear quotient order of the generators of J . We call the colon ideal (u1, . . . ,uk−1) : uk

the k-th colon of J . It follows from Theorem 3.1.5 that In has linear quotients with
respect to the order of generators given in Remark 3.1.3. For each n, we denote by
s

(n)
k , the size of k-th colon of In.
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Theorem 3.2.3. Let In =DI(Pn) with n > 6.

βi(In) = βi(In−3)

+βi(In−2)+βi−1(In−2)

+βi(In−4)+2βi−1(In−4)+βi−2(In−4)

−βi(In−6)−3βi−1(In−6)−3βi−2(In−6)−βi−3(In−6)

Proof. Recall from Theorem 3.1.2 that G(In) = An ∪Bn, where

An = xn−1G(In−3)∪xn−1(xn−2An−4), and Bn = xnG(In−2).

Let |An| = t. We recall the equality in (3.3) from the proof of Theorem 3.1.5 that
states An : (xnvi) = (xn−1). Let n ≥ 3 and |G(In)| = r. It follows from Theo-
rem 3.1.5 that In has linear quotients with respect to the order of generators given
in Remark 3.1.3. For each n, we denote by s(n)

k , the size of k-th colon of In. Then

βi(In) = βi(An)+
r∑

k=t+1

(
s

(n)
k

i

)

= βi(An)+
r∑

k=t+1

(
s

(n−2)
k +1

i

)
by using (3.3)

= βi(An)+
r∑

k=t+1

(s(n−2)
k

i

)
+
(
s

(n−2)
k

i−1

)
= βi(An)+βi(In−2)+βi−1(In−2).

Therefore

βi(An) = βi(In)−βi(In−2)−βi−1(In−2).(3.4)

On the other hand, for n > 4, using An = xn−1G(In−3) ∪xn−1(xn−2An−4), and the
equality (3.1) in Theorem 3.1.5, we obtain the following equations. Below, we let
|G(In−3)| = p, and denote the size of k-th colon of An by a(n)

k .
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βi(An) = βi(In−3)+
t∑

k=p+1

(
a

(n−4)
k +2

i

)

= βi(In−3)+
t∑

k=p+1

(
a

(n−4)
k

i−2

)
+2

t∑
k=p+1

(
a

(n−4)
k

i−1

)
+

t∑
k=p+1

(
a

(n−4)
k

i

)

This gives

βi(An) = βi(In−3)+βi−2(An−4)+2βi−1(An−4)+βi(An−4).(3.5)

For n > 6, using (3.4) together with (3.5) gives us the required recursive formula of
total Betti numbers of In.

Next, we give a recursive formula to compute graded Betti numbers of DI(Pn) for
n > 6.

Theorem 3.2.4. Let In =DI(Pn) and n > 6.

βi,i+j(In) = βi,i+j−1(In−3)

+βi,i+j−1(In−2)+βi−1,i+j−2(In−2)

+βi,i+j−2(In−4)+2βi−1,i+j−3(In−4)+βi−2,i+j−4(In−4)

−βi,i+j−3(In−6)−3βi−1,i+j−4(In−6)−3βi−2,i+j−5(In−6)−βi−3,i+j−6(In−6)

Proof. We proceed as in the case of total Betti numbers and follow the same nota-
tions given in Theorem 3.2.3. Let G(In) = {u1, . . . ,ur} and |An| = t. Using Theo-
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rem 3.2.1 together with the linear quotient order given in Remark 3.1.3 gives

βi,i+j(In) = βi,i+j(An)+
r∑

k=t+1
deguk=j

(
s

(n)
k

i

)

= βi,i+j(An)+
r∑

k=t+1
deguk=j−1

(
s

(n−2)
k +1

i

)
by using (3.3) and Theorem 3.1.2

= βi,i+j(An)+
r∑

k=t+1
deguk=j−1

(s(n−2)
k

i

)
+
(
s

(n−2)
k

i−1

)
= βi,i+j(An)+βi,i+j−1(In−2)+βi−1,i+j−2(In−2).

Therefore

βi,i+j(An) = βi,i+j(In)−βi,i+j−1(In−2)−βi−1,i−1+j−1(In−2).(3.6)

On the other hand, for n > 4, using An = xn−1G(In−3) ∪xn−1(xn−2An−4), and the
equality (3.1) in Theorem 3.1.5, we obtain the following equations. Below, we let
|G(In−3)| = p.

βi,i+j(An) = βi,i+j−1(In−3)+
t∑

k=p+1
deguk=j−2

(
a

(n−4)
k +2

i

)

= βi,i+j−1(In−3)+
t∑

k=p+1
deguk=j−2

(a(n−4)
k

i−2

)
+2

(
a

(n−4)
k

i−1

)
+
(
a

(n−4)
k

i

)

This gives

βi,i+j(An) = βi,i+j−1(In−3)+βi−2,i+j−4(An−4)+2βi−1,i+j−3(An−4)

+βi,i+j−2(An−4).

For n> 6, using (3.6) together with the above equality gives us the following recursive
formula of the total Betti numbers of dominating ideals of path graphs.
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Chapter 4

The Edge Ideals of t-Spread
d-Partite Hypergraphs

In 2019, Qureshi, Herzog, and Ene introduced the notion of t-spread monomials in
a polynomial ring S = K[x1, . . . ,xn] over a field K and studied some classes of ideals
and K-algebras generated by t-spread monomials.

Definition 4.0.1. Let u= xi1 · · ·xid
be a monomial in S and t≥ 0. The monomial

u is called t-spread if ij − ij−1 ≥ t for all j = 2, . . . ,d. A monomial ideal I ⊂ S is
called t-spread if it is generated by t-spread monomials.

After their first appearance, different classes of t-spread monomial ideals have been
studied by many authors (see [5, 42, 3, 9]). In 2023, Ficarra gave a more generalized
notion of t-spread monomials by replacing the integer t with t = (t1, . . . , td−1) ∈Nd−1.

Definition 4.0.2. [14] Let t = (t1, t2, . . . , td−1) ∈ Nd−1. A monomial xi1xi2 · · ·xid
∈

S = K[x1, . . . ,xn] with i1 ≤ i2 ≤ ·· · ≤ id is called t-spread if ij − ij−1 ≥ tj−1 for all
j = 2, . . . ,d. A monomial ideal in S is called a t-spread monomial ideal if it is
generated by t-spread monomials.

In this chapter, we study t-spread monomial ideals which appear as the edge ideals
of certain d-partite hypergraphs.
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4.1 t-spread d-partite hypergraphs and their edge
ideals

Let V = {V1, . . . ,Vd} be a partitioning of a finite set U ⊂ N such that p < q if p ∈
Vi, q ∈ Vj with i < j. We call {i1, . . . , id} ⊂U a t-spread set if ij ∈ Vj for all j = 1, . . . ,d
and ij − ij−1 ≥ tj−1 for all j = 2, . . . ,d. We call the hypergraph Kt

V on vertex set
V (Kt

V) = U , a complete t-spread d-partite hypergraph if all t-spread sets of U are
the edges of Kt

V . For t = (1, . . . ,1), the hypergraph Kt
V is a complete d-partite

hypergraph, see [6, Example 3]. The edge ideal of Kt
V , denoted by I(Kt

V), is a t-
spread monomial ideal generated by those monomials whose indices correspond to
the edges of Kt

V . It turns out that I(Kt
V) admits many nice algebraic and homological

properties.

Now, we introduce the definition of t-spread d-partite hypergraphs. To do this, we
give the following notation. For any integers i≤ j, let [i, j] := {k : i≤ k ≤ j} and for
any integer n, we set [n] := {1, . . . ,n}.

Definition 4.1.1. Let H be a d-partite hypergraph with V (H) ⊆ [n], and V =
{V1, . . . ,Vd} be a family defining partitioning of V (H) such that if p ∈ Vi and q ∈ Vj

with i < j, then p < q. Let t = (t1, . . . , td−1) ∈ Nd−1. An edge E of H is called a
t-spread edge if

(∗) E = {i1, i2, . . . , id} with ij ∈ Vj for all j = 1, . . . ,d, and ij − ij−1 ≥ tj−1 for all
j = 2, . . . ,d.

A d-partite hypergraph H is called t-spread if each edge of H is t-spread. Moreover,
H is called a complete t-spread d-partite hypergraph and denoted by Kt

V if all
E ⊆ V (H) satisfying (∗) belong to E(H).

Let 1 = (1, . . . ,1). A complete 1-spread d-partite hypergraph is just a complete d-
partite hypergraph as studied in [6]. The class of complete d-partite hypergraphs has
many nice combinatorial properties. We refer the reader to [6] for more information.

Let H be a hypergraph on V (H) = [n]. The edge ideal of H is given by

I(H) = (
∏

j∈Ei

xj : Ei ∈ E(H)).
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Note that a 0-spread monomial ideal is just an ordinary monomial ideal, while a
1-spread monomial ideal is just a square-free monomial ideal. When t = (t, . . . , t)
for some fixed integer t≥ 0, then t-spread monomial ideal is t-spread introduced in
[12]. In the following text, we will assume that ti ≥ 1 for all 1 ≤ i≤ d−1. It follows
from the above definitions that the edge ideal of a t-spread d-partite hypergraph is
a t-spread monomial ideal. To illuminate these definitions, we provide the following
example.

Example 4.1.2. Let t = (3,2,4) and V = {V1,V2,V3,V4} with V1 = {1,2,3},V2 =
{5,7},V3 = {8,9,11} and V4 = {12,13}. Then the minimal generators of the edge
ideal of Kt

V are as follows:

x1x5x8x12 x2x5x8x12

x1x5x8x13 x2x5x8x13

x1x5x9x13 x2x5x9x13

x1x7x9x13 x2x7x9x13 x3x7x9x13

The ambient ring of I(Kt
V) in this case is S = K[x1,x2,x3,x5,x7,x8,x9,x12,x13].

Indeed, we can remove 11 from V3 to exclude the isolated vertices.

The edge ideals of Kt
V have many nice algebraic and combinatorial properties.

We first prove that I(Kt
V) has a linear resolution. To do this, we show that I(Kt

V)
has linear quotients. Recall that an ideal I ⊂ S = K[x1, . . . ,xn] is said to have
linear quotients if G(I) admits an ordering u1, . . . ,ur such that the colon ideal
(u1, . . . ,ui−1) : (ui) is generated by variables for all i = 2, . . . , r. It is known from
[26, Theorem 1.12] or [22, Propositon 8.2.1] that an ideal generated in a single
degree has linear resolution if it admits linear quotients.

Theorem 4.1.3. The ideal I(Kt
V) has linear quotients.

Proof. Let >lex denote the lexicographical order induced by the total order x1 >

x2 > · · · > xn. Furthermore, let t = (t1, . . . , td−1) ∈ Nd−1 and set I = I(Kt
V) and let

G(I) = {u1, . . . ,ur} ordered such that u1 >lex u2 >lex · · · >lex ur. We need to show
that (u1, . . . ,ui−1) : (ui) is generated by variables for all i= 2, . . . , r. To do this, it is
enough to show that for all 1 ≤ j ≤ i− 1, there exists xp ∈ (u1, . . . ,ui−1) : (ui) such
that xp divides uj/gcd(uj ,ui).
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Let j < i and ui = xi1xi2 · · ·xid
and uj = xj1xj2 · · ·xjd

with i1 < i2 < · · · < id and
j1 < j2 < · · · < jd. On account of uj >lex ui, there exists some ℓ such that j1 =
i1, j2 = i2, . . . , jℓ−1 = iℓ−1 and jℓ < iℓ. Note that jℓ, iℓ ∈ Vℓ. Let v = xjℓ

(ui/xiℓ
) =

xi1xi2 · · ·xiℓ−1xjℓ
xiℓ+1 · · ·xid

. We have jℓ − iℓ−1 = jℓ − jℓ−1 ≥ tℓ−1 and iℓ+1 − jℓ ≥
iℓ+1 − iℓ ≥ tℓ. This shows that v corresponds to a t-spread edge of Kt

V . Hence, v ∈
G(I) and v= uk for some k < i. This completes the proof because xjℓ

∈ (u1, . . . ,ui−1) :
(ui) and xjℓ

divides uj/gcd(uj ,ui).

Let I be a monomial ideal with linear quotients with respect to the ordering u1, . . . ,ur

of G(I). If I is generated in a single degree d, then I has linear resolution as shown
in [26]. Following [26], we define

set(uk) = {i : xi ∈ (u1, . . . ,uk−1) : (uk)} for k = 2, . . . , r.

Using [26, Lemma 1.5], we can conclude that

βi,i+d(I) = |{α⊆ set(u) : u ∈ G(I) and |α| = i}|.

In the following proposition, we give a description of set(u) when u∈ G(I(Kt
V)). For

any S ⊆ [n], we set minS to be the smallest integer in S, and maxS to be the largest
integer in S.

Proposition 4.1.4. Let u= xk1xk2 · · ·xkd
∈ G(I(Kt

V)) with t = (t1, t2, . . . , td−1) and
i1 = minV1. With the notations introduced above, set(u) is the union of [i1,k1 −
1]∩V1 and [kj−1 + tj−1,kj −1]∩Vj for j = 2, . . . ,d.

Proof. Let ℓ ∈ set(u). Following Theorem 4.1.3, there exists v ∈ G(I(Kt
V)) such

that v >lex u and (v) : (u) = (xℓ). This gives v = (u/xkj
)xℓ for some 1 ≤ j ≤ d and

xkj
,xℓ ∈ Vj . Since v >lex u, we must have ℓ ≤ kj − 1. If j = 1, then ℓ ∈ [i1,k1 − 1].

Moreover, if 2 ≤ j ≤ d, then kj−1 + tj−1 ≤ ℓ because v is a t-spread monomial, and
hence ℓ ∈ [kj−1 + tj−1,kj −1]∩Vj .

On the other hand, if ℓ ∈ [i1,k1 − 1] ∩ V1 or ℓ ∈ [kj−1 + tj−1,kj − 1] ∩ Vj for any
j = 2, . . . ,d, then set v = (u/xkj

)xℓ for all j = 1, . . . ,d. In both cases, v ∈ G(I(Kt
V))

and v >lex u. Therefore, xℓ ∈ (v) : (u), and hence ℓ ∈ set(u), as required.
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4.2 The powers and the fiber cone of I(Kt
V
)

Let K be a field and Sd be the K-vector space generated by all monomials of degree
d in the polynomial ring S = K[x1, . . . ,xn]. Let u,v ∈ Sd and uv = xi1xi2 · · ·xi2d

with
i1 ≤ i2 ≤ ·· · ≤ i2d−1 ≤ i2d. Set u′ = xi1xi3 · · ·xi2d−1 and v′ = xi2xi4 · · ·xi2d

. The map

sort : Sd ×Sd → Sd ×Sd which maps (u,v) 7→ (u′,v′),

is called the sorting operator. A pair (u,v) ∈ Sd ×Sd is called sorted if sort(u,v) =
(u′,v′). A subset A ⊂ Sd is called sortable if sort(A×A) ⊆ A×A. Furthermore,
an r-tuple of monomials (u1, . . . ,ur) ∈ Sr

d is called sorted if for any 1 ≤ i < j ≤ n,
the pair (ui,uj) is sorted. In other words, if we write the monomials (u1, . . . ,ur) as
u1 = xi1 · · ·xid

, u2 = xj1 · · ·xjd
, . . . ,ur = xl1 · · ·xld , then (u1, . . . ,ur) is sorted if and

only if

(4.1) i1 ≤ j1 ≤ ·· · ≤ l1 ≤ i2 ≤ j2 ≤ ·· · ≤ l2 ≤ ·· · ≤ id ≤ jd ≤ ·· · ≤ ld.

Proposition 4.2.1. The set G(I(Kt
V)) is sortable.

Proof. Assume that u,v ∈ G(I(Kt
V)) and uv = xi1xi2xi3xi4 · · ·xi2d−1xi2d

with i1 ≤
i2 ≤ ·· · ≤ i2d. Since supp(u) and supp(v) correspond to the edges of Kt

V , it follows
that i1, i2 ∈ V1, i3, i4 ∈ V2, . . . , i2d−1, i2d ∈ Vd. Consequently, u′ = xi1xi3 · · ·xi2d−1 and
v′ = xi2xi4 · · ·xi2d

are monomials associated to the edges of a complete d-partite
hypergraph. It only remains to show that u′ and v′ are t-spread. We show that
u′ is a t-spread monomial and the argument for v′ follows in a similar fashion.
For any 1 ≤ l ≤ d− 1, we have i2l−1 ≤ i2l ≤ i2l+1 and at least two of the variables
among xi2l−1 ,xi2l

,xi2l+1 belong to either supp(u) or supp(v). Using the fact that
u and v are t-spread monomials, this implies that i2l+1 − i2l−1 ≥ i2l+1 − i2l and
i2l+1 − i2l−1 ≥ i2l − i2l−1, we obtain the desired conclusion.

Let I ⊂ S be an ideal generated by the monomials of the same degree. Here, set
T = K[{tu : u ∈ G(I)}] and K[I] = K[u : u ∈ G(I)]. Consider the K-algebra homo-
morphism

ϕ : T → K[I] defined by tu 7→ u for u ∈ G(I).
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The kernel of ϕ is called the defining ideal of K[I]. If G(I) is a sortable set, then
it follows from [52] or [11, Theorems 6.15 and 6.16] that there exists a monomial
order <sort such that the defining ideal of K[I] admits the reduced Gröbner basis
consisting of binomials of the form tutv − tu′tv′ , where sort(u,v) = (u′,v′).

Corollary 4.2.2. The K-algebra K[I(Kt
V)] is a Koszul and Cohen-Macaulay normal

domain.

Proof. As discussed above, with respect to >sort, the Gröbner basis of the defining
ideal of K[I(Kt

V)] contains quadratic binomials. Due to Fröberg [16], we conclude
that K[I(Kt

V)] is Koszul and due to a theorem of Sturmfels [52] we obtain K[I(Kt
V)]

is normal, see also [11, Theorem 5.16]. Therefore, K[I(Kt
V)] is Cohen-Macaulay

domain by [29, Theorem 1].

Our next goal is to establish that I(Kt
V) has strong persistence property and its

powers have linear resolution.

To achieve our goal, we first recall the definition of l-exchange property, see [25]
or [11, Sec 6.4] for more details. Let T and ϕ be the same as above and < be a
monomial order defined on T . A monomial tu1tu2 · · · tuN ∈ T is called a standard
monomial of kerϕ with respect to <, if tu1tu2 · · · tuN /∈ in<(kerϕ).

Definition 4.2.3. The monomial ideal I ⊂ S is said to satisfy the l-exchange prop-
erty with respect to the monomial order < on T if the following two conditions hold:
let tu1tu2 · · · tuN and tv1tv2 · · · tvN be two standard monomials of kerϕ with respect
to < such that

(i) degxi
u1u2 · · ·uN = degxi

v1v2 · · ·vN , for i= 1, . . . , q−1 and q ≤ n−1,

(ii) degxq
u1u2 · · ·uN < degxq

v1v2 · · ·vN .

Then there exist some j and α with q < j ≤ n such that xquα/xj ∈ I.

Theorem 4.2.4. The ideal I(Kt
V) satisfies the l-exchange property with respect to

the sorting order <sort.

Proof. Let tu1tu2 · · · tuN and tv1tv2 · · · tvN be two standard monomials of kerϕ with
respect to <sort and t = (t1, t2, . . . , td−1). It can be seen from Proposition 4.2.1
together with (4.1) that the N -tuples with t-spread monomials (u1,u2, . . . ,uN ) and
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(v1,v2, . . . ,vN ) are sorted. Assume that the products u1u2 · · ·uN and v1v2 · · ·vN

satisfy both conditions in Definition 4.2.3. The condition (i) together with (4.1)
gives

(4.2) degxi
uγ = degxi

vγ , for 1 ≤ i≤ q−1 and for all 1 ≤ γ ≤N,

and the condition (ii) of Definition 4.2.3 implies that there exists α with 1 ≤ α≤N

such that

(4.3) degxq
uα < degxq

vα.

Following (4.2) and (4.3), we can write

uα = xj1xj2 · · ·xjp · · ·xjd
and vα = xj1xj2 · · ·xjp−1xqxkp+1 · · ·xkd

,

with jp > q. To complete the proof, it is enough to show that w= xquα/xjp ∈ I(Kt
V).

Note that q and jp belong to Vp. Moreover, q−jp−1 ≥ tp−1 because vα is t-spread and
jp+1 − q ≥ jp+1 − jp ≥ tp because jp > q. This yields that w is a t-spread monomial,
as desired.

Let I = I(Kt
V) and R = S[{tu : u ∈ G(I)}]. We define a monomial order on R as

following: if u1,u2 ∈ S and v1,v2 ∈ T , then u1v1 > u2v2 if and only if u1 >lex u2 or
u1 = u2 and v1 >sort v2, where >lex denotes the lexicographical order on S induced
by x1 > · · · > xn. Let R(I) = ⊕j≥0Ijtj ⊆ S[t] be the Rees ring of I. The Rees ring
R(I) has the following presentation

ψ :R = S[{tu : u ∈ G(I)}] → R(I),

with xi 7→ xi for 1 ≤ i ≤ n and tu 7→ ut for u ∈ G(I). Let P = kerψ. Then we
have the next result.

Corollary 4.2.5. Let > be the monomial order on R as defined above. The reduced
Gröbner basis of P consists of the binomials of the following form:

5.1 tutv − tu′tv′ , where sort(u,v) = (u′,v′);

5.2 xitu − xjtv, where i < j, xiu = xjv, and j is the largest integer for which
xiv/xj ∈ G(I).

53



Proof. According to [25, Theorem 5.1] (or see [11, Theorem 6.24]), it is enough to
show that I(Kt

V) is sortable and satisfies the l-exchange property with respect to
>sort as noted in Proposition 4.2.1 and Theorem 4.2.4.

Following the similar argument as in the proof of Corollary 4.2.2, we obtain the
following corollary.

Corollary 4.2.6. The Rees algebra R(I(Kt
V)) is a normal Cohen-Macaulay domain.

We are in a position to state the main result of this section in the next corollary.

Corollary 4.2.7. The ideal I(Kt
V) satisfies the strong persistence property and all

powers of I(Kt
V) have linear resolution.

Proof. The strong persistence property of I(Kt
V) can be deduced from [27, Corollary

1.6] and Corollary 4.2.6. Moreover, Corollary 4.2.5 together with [22, Corollary
10.1.8] provides that all the powers of I(Kt

V) have linear resolution, as claimed.

Here, we determine the limit depth of I(Kt
V). By a theorem of Brodmann [7],

depthS/Ik is constant for large enough k. This constant value is known as the
limit depth of I and is denoted by limk→∞ depthS/Ik. The minimum value of k for
which depthS/Ik = depthS/Ik+t for all t > 0 is called the index of depth stability
and denoted by dstab(I). Let m be the graded maximal ideal of S. The analytic
spread of an ideal I ⊂ S is the Krull dimension of the fiber cone R(I)/mR(I) and
denoted by ℓ(I).

Definition 4.2.8. [[27], Definition 3.1] Let I ⊂ S be a monomial ideal in S =
K[x1, . . . ,xn] and G(I) = {u1, . . . ,ur}. Then the linear relation graph Γ of I is the
graph with the edge set

E(Γ) = {{i, j} : there exist ut,um ∈ G(I) such that xiut = xjum},

and the vertex set V (Γ) = ⋃
{i,j}∈E(Γ){i, j}.

An ideal I ⊂ S is said to have linear relations if I is generated in degree d and
β1,j(I) = 0 for all j ̸= d+1. We employ the following lemma to compute ℓ(I(Kt

V)).
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Lemma 4.2.9. ([9, Lemma 5.2]) Let I be a monomial ideal with linear relations
generated in a single degree whose linear relation graph Γ has r vertices and s

connected components. Then ℓ(I) = r− s+1.

We are now ready to determine the analytic spread of I(Kt
V) in the following lemma.

Lemma 4.2.10. Let Kt
V be a complete t-spread d-partite hypergraph and |V (Kt

V)| =
r. Then ℓ(I(Kt

V)) = r−d+1.

Proof. Let I = I(Kt
V) and V = {V1, . . . ,Vd}. Using Theorem 4.1.3 and [9, Lemma

5.2], it is enough to show that Γ(I) has r vertices and d connected components.
Let ai = minVi and bi = maxVi, for all i = 1, . . . ,d. Let h,k ∈ Vi for some i.
Since Kt

V does not have isolated vertices, this implies that the sets {a1, . . . ,ad}
and {b1, . . . , bd} are t-spread edges in Kt

V . Then u = xa1 · · ·xai−1xhxbi+1 · · ·xbd

and v = xa1 · · ·xai−1xkxbi+1 · · ·xbd
are also t-spread edges in Kt

V . This shows that
xku = xhv; hence, {h,k} ∈ E(Γ) and V (Γ) = r. Moreover, it follows from the defi-
nition of Kt

V that for i ̸= j and h ∈ Vi and k ∈ Vj , we have the edge {h,k} /∈ E(Γ).
Therefore, Γ has exactly d connected components, as required.

We now give the last result of this section in the following theorem.

Theorem 4.2.11. Let Kt
V be a complete t-spread d-partite hypergraph and

|V (Kt
V)| = r, and S be the ambient ring of I(Kt

V). Then

lim
k→∞

depth(S/I(Kt
V)k) = d−1,

and dstab(I(Kt
V)) ≤ r−d.

Proof. Let I = I(Kt
V). Then it follows from Corollary 4.2.6 and a result of Eisenbud

and Huneke [10] that limk→∞ depth(S/Ik) = r− ℓ(I). From Lemma 4.2.10, we have
r−ℓ(I) = r−(r−d+1) = d−1 as required. In addition, using [27, Theorem 3.3] and
Lemma 4.2.10, we see that depth(S/Ir−d) = d−1. It is shown in [24, Proposition 2.1]
that if all powers of an ideal have linear resolution, then depthS/Ik ≤ depthS/It for
all k < t. It follows now from Corollary 4.2.7 that dstab(I) ≤ r−d. This completes
the proof.
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4.3 Normally torsion-free and Cohen-Macaulay
I(Kt

V
)

In this section, our main goal is to show that I(Kt
V) is normally torsion-free and give

a complete characterization of Cohen-Macaulay I(Kt
V) for V = {V1, . . . ,Vd} such that

each Vi is of the form [ai, bi] for some integers ai, bi ∈ Z+. To this aim, we begin
with the description of minimal prime ideals of I(Kt

V) and view Kt
V as a simplicial

complex. For more details on simplicial complexes, we refer the reader to [22].

Given a square-free monomial ideal I ⊂R, the Alexander dual of I, denoted by I∨ is
given by I∨ =⋂

u∈G(I)(xi : xi ∈ supp(u)). The minimal generators of I∨ correspond
to the minimal prime ideals of I. Below we give a description of G(I(Kt

V)∨).

Theorem 4.3.1. Let Kt
V be a complete t-spread d-partite hypergraph with V (Kt

V) ⊆
[n] and V = {V1, . . . ,Vd}. Furthermore, let |Vj | = nj with Vj = [ij , ij +nj −1] for all
j = 1, . . . ,d. Then G(I(Kt

V)∨) consists of the following monomials:

(i)
∏

k∈Vi

xk for all i= 1, . . . ,d; and,

(ii) (∏p
i=j

∏
k∈Vi

xk)/(∏p−1
i=j vqi

∏p
i=j+1 vq′

i
), for all 1 ≤ j < p ≤ d and for each se-

quence of nonnegative integers qj , . . . , qp−1 satisfying

(4.4) iℓ + q′
ℓ < iℓ +nℓ −1− qℓ for j+1 ≤ ℓ≤ p−1,

(4.5) iℓ + q′
ℓ − (iℓ−1 +nℓ−1 −1− qℓ−1) = tℓ−1 −1 for ℓ= j+1, . . . ,p,

where vqℓ
= ∏1+qℓ

r=1 xiℓ+nℓ−r, for ℓ = j, . . . ,p− 1 and vq′
ℓ

= ∏q′
ℓ

r=0xiℓ+r, for ℓ =
j+1, . . . ,p.

Proof. Let ∆ be the simplicial complex on V (Kt
V) such that I∆ = I(Kt

V) be the
Stanley-Reisner ideal of ∆. Let F(∆) be the set of facets of ∆. For any F ∈ ∆,
we set xF = ∏

i∈F xi. It follows from [22, Lemma 1.5.4] that the standard primary
decomposition of I∆ is given by

I∆ =
⋂

F ∈F(∆)
PF̄ ,
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where PF̄ is the monomial prime ideal generated by the variables xi with i ∈ F̄ =
V (Kt

V)\F . Therefore, using [22, Corollary 1.5.5], it is enough to show that F(∆) is
the disjoint union of F1 and F2, defined below:

(i) F1 = {F1, . . . ,Fd}, where Fi = ⋃d
j ̸=i, j=1Vj for all i= 1, . . . ,d,

(ii) For all 1 ≤ j < p ≤ d, set Aj,p := ⋃d
i/∈{j,...,p}, i=1Vj . For each sequence of non-

negative integers qj , . . . , qp−1 satisfying conditions (4.4) and (4.5), we set

Bqℓ
:= {iℓ +nℓ −1− qℓ, . . . , iℓ +nℓ −1} ⊊ Vℓ for ℓ= j, . . . ,p−1,

and
Bq′

ℓ
= {iℓ, . . . , iℓ + q′

ℓ} ⊊ Vℓ for ℓ= j+1, . . . ,p.

Then we get

F2 = {Aj,p ∪ (
p−1⋃
ℓ=j

Bqℓ
)∪ (

p⋃
ℓ=j+1

Bq′
ℓ
) : for all 1 ≤ j < p≤ d and qj , . . . , qp−1}.

The condition (4.5) translates into the following: for each ℓ = j, . . . ,p− 1 we have
maxBq′

ℓ+1
− minBqℓ

= tℓ − 1. In the construction of elements in F2, it is enough to
determine the integers qj , . . . , qp−1, because q′

ℓ is uniquely determined from qℓ−1, for
all ℓ= j+1, . . . ,p, by using the equality in (4.5).

First, we show that F1 ⊆ F(∆). For any Fi ∈ F1, we have Fi ∩Vi = ∅. Therefore,
xFi

/∈ I∆. Moreover, for any k ∈ Vi, using the assumption that Kt
V does not contain

any isolated vertices, we obtain that Fi ∪ {k} contains a t-spread edge, and hence
xFi

xk ∈ I∆ and Fi ∈ F(∆).

Now, assume that F ∈ F2, where F =Aj,p ∪ (⋃p−1
ℓ=j Bqℓ

)∪ (⋃p
ℓ=j+1Bq′

ℓ
) for some 1 ≤

j < p≤ d and qj , . . . , qp−1. We here show that F ∈ ∆. On contrary, if xF ∈ I∆, then F
contains a t-spread edge, say G= {k1, . . . ,kd}. Then kj ∈Bqj because G∩Vj ⊆ F ∩
Vj =Bqj . If p= j+1, then by using the condition (4.5), it immediately follows that
for any choice of kj ∈Bqj , there is no suitable kj+1 ∈Bq′

j+1
such that kj+1 −kj ≥ tj−1.

If p > j+ 1, then the condition (4.5) gives that kj+1 ∈ Bqj+1 . Using the condition
(4.5) repeatedly in a similar way, we obtain kp−1 ∈ Bqp−1 . However, there is no
suitable kp ∈ Bq′

p
such that kp −kp−1 ≥ tp−1, a contradiction. Consequently, we get

F ∈ ∆.
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In what follows, we demonstrate that F ∈ F(∆). Note that

V (Kt
V)\F = (Vj \Bqj )∪ (

p−1⋃
l=j+1

(Vl \ (Bq′
ℓ
∪Bqℓ

))∪ (Vp \Bq′
p
).

Let a ∈ V (Kt
V)\F . Then a ∈ Vs for some j ≤ s≤ p. Set

kr =



ir, if r = 1, . . . , j−1,

ir +nr −1− qr, if r = j, . . . , s−1,

a, if r = s,

ir + q′
r, if r = s+1, . . . ,p,

ir +nr −1, if r = p+1, . . . ,d.

When s = j, then we remove the condition on kr for r = j, . . . , s− 1, and similarly,
when s= p, then we remove the condition on kr for r= s+1, . . . ,p. Using conditions
(4.4) and (4.5) together with the assumption that ∆ has no isolated vertices, we
obtain that kr −kr−1 ≥ tr−1 for all r= 2, . . . ,d. Therefore, G= {k1, . . . ,kd} ⊆F ∪{a}
is a t-spread edge, and hence xG ∈ I∆, as required.

It remains to check that F(∆) ⊆ F1 ∪F2. This is equivalent to show that for every
face G of ∆ there exists a facet F ∈ F1 ∪ F2 such that G ⊆ F . Let G ∈ ∆ such
that G∩Vk = Uk for all k = 1, . . . ,d. If Uk = ∅ for some k, then G⊆ Fk ∈ F1. Now,
assume that Uk ̸= ∅ for all k = 1, . . . ,d. Set ak = minUk and bk = maxUk for all
k = 1, . . . ,d. In the rest of the proof, we will use the following fact repeatedly:

(∗) If there exist a ∈ Vℓ and b ∈ Vℓ+1 such that b− a < tℓ and a+ tℓ − 1 <
iℓ+1 +nℓ+1 − 1, then by letting qℓ = iℓ +nℓ − 1 − a, and using the condition (4.5),
there is a unique q′

ℓ+1 such that b < iℓ+1 + q′
ℓ+1.

Case(1): If there exists some k with bk+1 −ak < tk, then it follows from the state-
ment (∗) that for a suitable choice of qk we have Uk ⊆ Bqk

and Uk+1 ⊆ Bq′
k+1

.
Since Ui ⊆ Vi ⊂ Ak,k+1 for all i = 1, . . . ,k − 1,k + 2, . . . ,d, we can deduce that
G⊆ Ak,k+1 ∪Bqk

∪Bq′
k+1

∈ F2, as desired.

Case(2): Assume that bk+1 − ak ≥ tk for all k = 1, . . . ,d− 1. Since G ∈ ∆, we
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know that G does not contain any t-spread edge. In particular, {a1, . . . ,ad} ⊆ G

is not a t-spread edge. This yields that there exists some k ∈ {2, . . . ,d} for which
ak+1 − ak < tk. We choose minimum j ≥ 1 for which aj+1 − aj < tj . Note that
M = {a1,a2, . . . ,aj} ⊂ G such that, ai+1 − ai ≥ ti, for all i = 1, . . . , j − 1. In the
discussion below, we aim to construct a suitable F ∈ F2 such that G ⊂ F . To this
aim, we perform the Step j as introduced below.

Step j: We set ej := aj and ej+1 := min{a ∈ Uj+1 : a− ej ≥ tj}. Note that {a ∈
Uj+1 : a− ej ≥ tj} ̸= ∅ because bj+1 −aj ≥ tj . We define ej+r recursively as ej+r =
min{a ∈ Uj+r : a− ej+r−1 ≥ tj+r−1} such that

{a ∈ Uj+r : a− ej+r−1 ≥ tj+r−1} ̸= ∅ for some 1< r < d− j.

There exists some p> j+1 for which {a∈Uj+r : a−ej+r−1 ≥ t} = ∅, that is, for some
p > j+ 1 we have bp − ep−1 < tp−1, otherwise, M ∪ {ej+1, . . . , ed} ⊆ G is a t-spread
edge in G, a contradiction. Choose minimum p > j+1 such that bp − ep−1 < tp−1.

Subcase(2.1): If for all j+1 ≤ l≤ p−1 we have iℓ+1 −eℓ < tℓ, then take cℓ+1 ∈ Vℓ+1

such that cℓ+1 − eℓ = tℓ − 1 for ℓ = j, . . . ,p− 1 . This gives us j,p and qj , . . . , qp as
described in statement (∗) for which eℓ ∈ Vℓ and cℓ+1 ∈ Vℓ+1 with cℓ+1 − eℓ < tℓ.
Moreover, Ui ⊆Aj,p for all i /∈ {j, . . . ,p}, and Uj ⊆Bqj , Up ⊆Bq′

p
, and Uℓ ⊆Bqℓ

∪Bq′
ℓ

for all ℓ= j+1, . . . ,p−1. Hence, this implies that

G⊆ Aj,p ∪ (
p−1⋃
ℓ=j

Bqℓ
)∪ (

p⋃
ℓ=j+1

Bq′
ℓ
),

and we are done.

Subcase(2.2): If for some j+ 1 ≤ l ≤ p− 1, iℓ+1 − eℓ ≥ tℓ, then replace M with
M ∪ {ej+1, . . . , eℓ,aℓ+1} ⊂ G. In this case, there exists a minimum j′ ≥ ℓ+ 1 such
that aj′+1 −aj′ < tj′ . Otherwise, M ∪ {aℓ+2, . . . ,ad} ⊆ G is a t-spread edge, a con-
tradiction. Repeat Step j by replacing j with j′.

Thanks to we have a finite number of partitions, this process must be terminated
after a finite number of steps. If the desired j and p are obtained, then we construct
a suitable F ∈ F2 with G⊂ F as described in Case(2.1). If the desired j and p are
not obtained, then G contains a t-spread edge in G, a contradiction.
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We illustrate the construction of monomials of the forms (i) and (ii) in Theorem 4.3.1
in the following example.

Example 4.3.2. Let V = {V1,V2,V3,V4} with V1 = [1,2], V2 = [4,6], V3 = [8,10],
V4 = [12,13], and t = (3,4,3). One can easily see that the minimal generators of the
edge ideal of Kt

V are as follows:

x1x4x8x12

x1x4x8x13

x1x4x9x12

x1x4x9x13

x1x4x10x13

x1x5x9x12 x2x5x9x12

x1x5x9x13 x2x5x9x13

x1x5x10x13 x2x5x10x13

x1x6x10x13 x2x6x10x13

Following Theorem 4.3.1, the minimal generators of I(Kt
V)∨ are given as follows:

(i) The monomials of the form (i) described in Theorem 4.3.1 are x1x2,x4x5x6,

x8x9x10, and x12x13.

(ii) The construction of monomials of the form (ii) described in Theorem 4.3.1 is
given in the following table.

j p qj , . . . , qp−1, q′
j+1, . . . , q

′
p u

1 2 q1 = 0, q′
2 = 0 x1x5x6

1 3 q1 = 0, q′
2 = 0, q2 = 0, q′

3 = 1 x1x5x10

q1 = 0, q′
2 = 0, q2 = 1, q′

3 = 0 x1x9x10

1 4 q1 = 0, q′
2 = 0, q2 = 0, q′

3 = 1, q3 = 0 , q′
4 = 0 x1x5x13

q1 = 0, q′
2 = 0, q2 = 1, q′

3 = 0, q3 = 0, q′
4 = 0 x1x9x13

2 3 q2 = 0, q′
3 = 1 x4x5x10

q2 = 1, q′
3 = 0 x4x9x10

2 4 q2 = 0, q′
3 = 1, q3 = 0, q′

4 = 0 x4x5x13

q2 = 1, q′
3 = 0, q3 = 0, q′

4 = 0 x4x9x13

3 4 q3 = 0, q′
4 = 0 x8x9x13
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Accordingly, we get

Ass(I(Kt
V)) = {(x1,x2),(x4,x5,x6),(x8,x9,x10),(x12,x13),(x1,x5,x6),(x1,x5,x10),

(x1,x9,x10),(x1,x5,x13),(x1,x9,x13),(x4,x5,x10),(x4,x9,x10),

(x4,x5,x13),(x4,x9,x13),(x8,x9,x13)}.

As an immediate consequence of Theorem 4.3.1, we obtain the following corollary,
which will be used to prove the normally torsion-freeness of I(Kt

V).

Corollary 4.3.3. Let Kt
V be a complete t-spread d-partite hypergraph with V (Kt

V) ⊆
[n] and V = {V1, . . . ,Vd}. Furthermore, let |Vj | = nj with Vj = [ij , ij +nj −1] for all
j = 1, . . . ,d. If v :=∏d

j=1xij , then v ∈ p\p2 for all p ∈ Min(I(Kt
V)).

Proof. Let v =∏d
j=1xij . The minimal prime ideals of I = I(Kt

V) correspond to the
minimal generators of I∨ described in statements (i) and (ii) of Theorem 4.3.1. The
minimal primes corresponding to the generators of the form (i) are pi = (xk : k ∈ Vi)
and v /∈ p2

i for all i = 1, . . . ,d. Moreover, each generator of I∨ of the form (ii) is
constructed by fixing j, p and qj , . . . , qp. Let q be a minimal prime of I corresponding
to a generator of the form (ii). Then xik

∈ q if and only if k = j, as required.

We recollect the following lemma, which will be used repeatedly in the next propo-
sition and Theorem 4.3.6.

Lemma 4.3.4. ([46, Lemma 3.12]) Let I be a monomial ideal in a polynomial
ring S = K[x1, . . . ,xn] with G(I) = {u1, . . . ,um}, and h = xb1

j1 · · ·xbs
js

with j1, . . . , js ∈
{1, . . . ,n} be a monomial in S. Then I is normally torsion-free if and only if hI is
normally torsion-free.

In order to establish Theorem 4.3.6, we require the following auxiliary proposition.
For a given square-free monomial ideal I ⊂ K[x1, . . . ,xn], we denote by I \ xi the
ideal generated by those elements in G(I) that does not contain xi in their support.

Proposition 4.3.5. Let Kt
V be a complete t-spread d-partite hypergraph with

V (Kt
V) ⊆ [n] and V = {V1, . . . ,Vd}. Furthermore, let |Vj | = 2 with Vj = {ij , ij + 1}

for all j = 1, . . . ,d. Then I(Kt
V) is normally torsion-free.
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Proof. To simplify the notation, set I := I(Kt
V). We proceed by induction on d. If

d= 1, then there is nothing to show. Hence, assume that d > 1 and that the result
holds for any complete t-spread (d− 1)-partite hypergraph. Choose an arbitrary
element p ∈ Min(I) and set v := ∏d

j=1xij . It follows at once from Corollary 4.3.3
that v ∈ p\p2. We show that I \xr is normally torsion-free for each xr ∈ supp(v).
Without loss of generality, we let V1 = {1,2} and we prove that I \x1 is normally
torsion-free. It is not hard to check that I \x1 = x2L where L is the edge ideal of
t-spread d-partite hypergraph with vertex partition V′ = {V ′

2 , . . . ,V
′

d} such that, for
all i= 2, . . . ,d, the set V ′

i is obtained from Vi after removing the isolated vertices, if
any. One can conclude from the inductive hypothesis that L is normally torsion-free.
Here, using Lemma 4.3.4 implies that I \x1 is normally torsion-free. It follows now
from [47, Theorem 3.7] that I is normally torsion-free, as claimed.

Theorem 4.3.6. Let Kt
V be a complete t-spread d-partite hypergraph with V (Kt

V) ⊆
[n] and V = {V1, . . . ,Vd}. Furthermore, let |Vj | = nj with Vj = [ij , ij +nj −1] for all
j = 1, . . . ,d. Then I(Kt

V) is normally torsion-free. In particular, I(Kt
V) is normal.

Proof. We first assume that |Vj | = 1 for some 1 ≤ j ≤ d, say Vj = {z}. Let I = I(Kt
V).

Then we can write I = xzL such that L can be viewed as the edge ideal associated
to a complete t-spread (d− 1)-partite hypergraph. According to Lemma 4.3.4, I is
normally torsion-free if and only if L is normally torsion-free. Thus, we reduce to
the case |Vj | ≥ 2 for all j = 1, . . . ,d. Set v := ∏d

j=1xij . Pick an arbitrary element
p ∈ Min(I). One can derive from Corollary 4.3.3 that v ∈ p \ p2. To complete the
proof, it is sufficient to establish I \xs in normally torsion-free for each xs ∈ supp(v).
To accomplish this, we use the induction on n := |V (Kt

V)|. On account of |Vj | ≥ 2 for
all j = 1, . . . ,d, this implies that n ≥ 2d. The case in which n = 2d can be deduced
according to Proposition 4.3.5. Now, suppose that n > 2d. It is not hard to see that
I \ xs is again the edge ideal of the t-spread d-partite hypergraph obtained from
Kt

V by removing all the edges that contain s. One can deduce from the inductive
hypothesis that I \xs is normally torsion-free. Here, in view of [47, Theorem 3.7],
we conclude that I is normally torsion-free, as desired.

The last assertion can be deduced according to [22, Theorem 1.4.6].

We can readily provide the following corollary inspired by Theorem 4.3.6. A match-
ing in a hypergraph H is a family of pairwise disjoint edges, and the maximum
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cardinality of a matching is denoted by ν(H). The transversal number of a hy-
pergraph H, denoted by τ(H) is the minimal cardinality of a transversal of H. A
hypergraph H is said to satisfy the König property if ν(H) = τ(H), see [6, Chapter
2, Section 4].

Corollary 4.3.7. Let Kt
V be a complete t-spread d-partite hypergraph. Then I(Kt

V)
satisfies the König property.

Proof. Based on Theorem 4.3.6, we get I(Kt
V) is normally torsion-free. In addition,

by virtue of [55, Theorem 14.3.6], one can deduce that Kt
V has the max-flow min-

cut property. It follows now from [55, Corollary 14.3.18] that Kt
V has the packing

property. On the other hand, by virtue of [20, Definition 2.3], we obtain I(Kt
V)

satisfies the König property. This completes the proof.

Next, we give a characterization of Cohen-Macaulay I(Kt
V). To do this, we first

determine the height of I(Kt
V).

Proposition 4.3.8. Let Kt
V be a complete t-spread d-partite hypergraph with

V (Kt
V) ⊆ [n] and V = {V1, . . . ,Vd}. Furthermore, let |Vj | =nj with Vj = [ij , ij +nj −1]

for all j = 1, . . . ,d. Then ht(I(Kt
V)) = min{n1, . . . ,nd}, where ht(I(Kt

V)) denotes the
height of I(Kt

V).

Proof. Let I := I(Kt
V) and nk = min{n1, . . . ,nd}. Since Kt

V does not contain any
isolated vertices, this yields that

(4.6) {i1, . . . , id},{i1 +1, . . . , id +1}, . . . ,{i1 +nk −1, . . . , id +nk −1},

are pairwise disjoint t-spread edges in Kt
V . Hence, we obtain the following monomials

xi1xi2 . . .xid
,xi1+1xi2+1 . . .xid+1, . . . ,xi1+nk−1xi2+nk−1 . . .xid+nk−1

belong to G(I). This gives that ht(I) ≥ nk. It follows also from Theorem 4.3.1 that
(xi : i ∈ Vk) is a minimal prime of I with height nk. This finishes our proof.

Note that the König property of Kt
V can be also observed from the proof of above

proposition. Indeed, the inequality ν(H) ≤ τ(H) holds for any hypergraph H and
the t-spread edges given in (4.6) give a maximal matching in Kt

V .
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Under the assumptions of Theorem 4.3.1, one can compute the degree of generators
of I∨ = I(Kt

V)∨. It is easy to see that deg∏k∈Vi
xk = ni for all i = 1, . . . ,d. Now,

let u ∈ G(I∨) of the form (ii) for some 1 ≤ j < p ≤ d and qj , . . . , qp. Then u =
(∏p

i=j

∏
k∈Vi

xk)/(∏p−1
i=j vqi

∏p
i=j+1 vq′

i
). Let h be the product of variables with indices

in [ij , ip +np −1]\ (Vj ∪·· ·∪Vp) and w = (uh)/h. Then degw = degu.

We have degh(∏p
i=j

∏
k∈Vi

xk) = (ip +np − 1) − ij + 1. Moreover, it follows from the
condition (4.5) that deg(h∏p−1

i=j vqi

∏p
i=j+1 vq′

i
) =∑p−1

i=j ti. We thus get

degw = (ip +np −1)− ij +1−
p−1∑
i=j

ti = ip − ij +np −
p−1∑
i=j

ti.

Hence, we obtain

(4.7) degu= ip − ij +np −
p−1∑
i=j

ti.

A square-free monomial ideal is said to be unmixed if its minimal prime ideals are
of the same height. Using the description of generators of I(Kt

V)∨ and their degrees,
we obtain the following characterization for unmixedness of I(Kt

V).

Theorem 4.3.9. Let Kt
V be a complete t-spread d-partite hypergraph with V (Kt

V) ⊆
[n] and V = {V1, . . . ,Vd}. Furthermore, let |Vj | = nj with Vj = [ij , ij +nj −1] for all
j = 1, . . . ,d. Then I(Kt

V) is unmixed if and only if n1 = · · · = nd = s, and for each
j = 1, . . . ,d−1 either ij+1 − (ij + s−1)> tj −1 or ij+1 − ij = tj .

Proof. Let I = I(Kt
V) be unmixed. Then every minimal prime of I has the same

height; equivalently, I∨ is generated in the same degree by Theorem 4.3.1, we know
that every Vj corresponds to a minimal generator in I∨, and this yields n1 = · · · = nd.
Let n1 = · · · = nd = s. We only need to show that for each j = 1, . . . ,d− 1 either
ij+1 − (ij + s− 1) > tj − 1 or ij+1 − ij = tj . Indeed, if ij+1 − (ij + s− 1) ≤ tj − 1 for
some j, then we obtain u∈ G(I∨) of the form (ii) with p= j+1 and a suitable choice
of qj and q′

j+1 as described in statement (∗) in the proof of Theorem 4.3.1. It follows
from (4.7) that degu= ij+1 − ij + s− tj . Since degu= s, we obtain ij+1 − ij = tj .

Now, assume that for all j = 1, . . . ,d we have nj = s and for each j = 1, . . . ,d−1 either
ij+1 − (ij + s− 1) > tj − 1 or ij+1 − ij = tj . Then all generators of I∨ of the form
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(i) have the same degree s. If I∨ has no generator of the form (ii), then the proof
is complete. Otherwise, let u ∈ G(I∨) of the form (ii) for some j,p and qj . . . , qp−1.
Then, for all ℓ= j, . . . ,p−1, we have iℓ+1 −iℓ = tℓ, because if iℓ+1 −(iℓ +s−1)> tℓ −1
for some ℓ, then qℓ and q′

ℓ+1 do not satisfy the condition (4.5). This gives that
ip = ij +∑p−1

i=j ti. Using (4.7), we obtain

degu= ip − ij + s−
p−1∑
i=j

ti = ij +
p−1∑
i=j

ti − ij + s−
p−1∑
i=j

ti = s,

and the proof is done.

Remark 4.3.10. Let V = {V1,V2,V3,V4} with V1 = [2,4], V2 = [6,8], V3 = [9,11],
V4 = [13,15], and t = (2,3,4). By virtue of Theorem 4.3.9, the edge ideal I = I(Kt

V)
is unmixed. In fact, by using Theorem 4.3.1, the minimal primes of I are as follows:

Ass(I) = {(x2,x3,x4),(x6,x7,x8),(x9,x10,x11),(x13,x14,x15),(x6,x7,x11),

(x6,x7,x15),(x6,x10,x11),(x6,x10,x15),(x6,x14,x15),(x9,x10,x15),

(x9,x14,x15)}.

However, one can verify with Macaulay2 [18] that S/I is not Cohen-Macaulay.

The above remark states that unmixedness is not sufficient for the edge ideal of
t-spread d-partite hypergraphs being Cohen-Macaulay. In what follows, we give a
characterization of Kt

V with Cohen-Macaulay edge ideals. To do this, we introduce
the following notations, that is, q(uk) := |set(uk)| and q(I) := max{q(u1), . . . , q(ur)}.

We are in a position to state the last result of this section in the subsequent theorem.

Theorem 4.3.11. Let Kt
V be a complete t-spread d-partite hypergraph with

V (Kt
V) ⊆ [n] and V = {V1, . . . ,Vd}. Furthermore, let |Vj | =nj with Vj = [ij , ij +nj −1]

for all j = 1, . . . ,d. Then S/I(Kt
V) is Cohen-Macaulay if and only if either I(Kt

V) is
a principal ideal, or n1 = · · · = nd = s and ij+1 − ij = tj for each j = 1, . . . ,d−1.

Proof. Let I = I(Kt
V) and S be the ambient ring of I. Since I has linear quo-

tients, thanks to Theorem 4.1.3, it follows from [26, Corollary 1.6] that the length
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of the minimal free resolution of S/I over S is equal to q(I) + 1. This implies that
depth(S/I) = |V (Kt

V)|−q(I)−1. Moreover, dim(S/I) = |V (Kt
V)|−ht(I), where ht(I)

denotes the height of I. This summarizes to S/I is Cohen–Macaulay if and only if
ht(I) = q(I)+1. Therefore, it is enough to show that ht(I) = q(I)+1 if and only if
n1 = n2 = · · · = nd = s and ij+1 − ij = tj for each j = 1, . . . ,d−1.

If I is a principal ideal then S/I is Cohen Macaulay. Now, assume n1 = n2 = · · · =
nd = s and ij+1 − ij = tj for each j = 1, . . . ,d− 1. Let u = xk1 · · ·xkd

∈ G(I), where
ki ∈ Vi for all i= 1, . . . ,d. Since [i1,k1 − 1] ⊆ V1 and [kj−1 + tj−1,kj − 1] ⊆ Vj for all
j = 2, . . . ,d, by Proposition 4.1.4, we obtain q(u) = kd − i1 −∑d−1

j=1 tj . This shows that
the maximum value of q(u) is obtained when kd takes the maximum possible value
which is maxVd = id +s−1. Furthermore, using ij+1 − ij = tj for all j = 1, . . . ,d−1,
this gives that id = i1 +∑d−1

j=1 tj . Hence, we have q(I) = s−1, as required.

Conversely, suppose S/I is Cohen-Macaulay, that is, ht(I) = q(I) + 1. It follows
from ht(I) = q(I) + 1 that I is unmixed and by using Proposition 4.3.9, this yields
that, for all j = 1, . . . ,d, we have nj = s, and for each j = 1, . . . ,d− 1 either ij+1 −
(ij + s− 1) > tj − 1 or ij+1 − ij = tj . Then ht(I) = s thanks to Proposition 4.3.8.
If s = 1, then I is a principal ideal. Now, let s > 1. We only need to show that,
for each j = 1, . . . ,d− 1, we have ij+1 − ij = tj . Suppose that for some j we have
ij+1 −(ij +s−1)> tj −1. Let v= xi1+s−1xi2+s−1 · · ·xid+s−1. Then v ∈ G(I) because
Kt

V do not contain isolated vertices and {i1 + s− 1, i2 + s− 1, . . . , id + s− 1} is a t-
spread edge in Kt

V . Now, Proposition 4.1.4 gives that set(v) ∩ V1 = [i1, i1 + s− 2]
and set(v) ∩ Vj+1 = {ij+1, . . . , ij+1 + s− 2}. This shows that q(v) > 2(s− 1) and
q(I)+1> ht(I) = s, a contradiction.
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