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ABSTRACT

DEVELOPMENT OF PROCESS, VOLTAGE AND TEMPERATURE
VARIATION AWARE HIGHLY ENERGY-EFFICIENT DEEP NEURAL

NETWORKS WITH HIGH INFERENCE ACCURACY FOR
INTERNET-OF-THINGS APPLICATIONS

UMUT BARUT

EE, M.Sc. THESIS, JULY 2024

Thesis Supervisor: Asst. Prof. Ömer Ceylan

Keywords: internet-of-things, deep neural network accelerator, energy efficiency,
edge computing, probabilistic timing error model, PVT variation aware voltage

underscaling

Artificial intelligence (AI models have improved with advancements in hardware,
processing large datasets crucial for daily applications. The Internet-of-Things (IoT)
enhances AI usage but brings challenges like bandwidth overhead, latency, and cyber
threats. Edge computing and fast, energy-efficient hardware, like application-specific
integrated circuit DNN accelerators, are essential solutions for IOT devices.

To further enhance energy efficiency, voltage reduction on power supplies is a vi-
able method, despite causing timing errors that DNNs might tolerate due to their
inherent nature. Extensive MAC operations also lead to significant switching ac-
tivity, potentially generating noise on the chip’s power lines. In this thesis, process
voltage temperature (PVT) aware probabilistic timing error model is developed and
demonstrated to find error probability due to voltage and temperature noise. By
utilizing this model, bit error probability can be calculated without relying on the
time-consuming Monte Carlo (MC) simulations, thus the analysis time of the digital
hardware is significantly reduced. By observing the inference accuracy of a DNN
model through the introducing of bit errors to its layers, designers can optimize
power consumption by employing dynamic voltage scaling based on layer impor-
tance.
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A 16x16 systolic MAC array accelerator was designed using 65nm CMOS technology
to verify the model. Single MAC unit is analyzed for timing error probability and
result is compared with MC simulations. The model demonstrated decent accuracy
and was approximately 808 times faster than MC simulations (1500 sample), allow-
ing for rapid observation of voltage reduction effects on the accelerator in terms of
timing error probability.
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ÖZET

NESNELERİN İNTERNETİ UYGULAMALARI İÇİN GERİLİM, SICAKLIK VE
ÜRETİMSEL SAPMALARI DİKKATE ALARAK YÜKSEK ENERJİ

VERİMLİLİĞİ VE ÇIKARIM DOĞRULUĞUNA SAHİP DERİN ÖĞRENME
AĞLARI GELİŞTİRİLMESİ

UMUT BARUT

EE, YÜKSEK LİSANS TEZİ, TEMMUZ 2024

Tez Danışmanı: Dr. Öğr. Üyesi Ömer Ceylan

Anahtar Kelimeler: Nesnelerin interneti, derin öğrenme ağı, enerji verimliliği, uçta
yapay zeka, olasılıksal zamanlama hata modeli, zamanlama hata olasılığı, derin

öğrenme ağı geliştirme platformu, besleme geriliminin düşürülmesi, PVT
sapmalarını dikkate alarak besleme gerilimini düşürme

Yapay zeka modelleri, donanımda kaydedilen ilerlemelerle birlikte gelişerek günlük
uygulamalar için büyük veri kümelerini işlemek konusunda önemli hale geldi. Nes-
nelerin interneti, yapay zeka kullanımını artırsa da bant genişliği, gecikme ve siber
tehditler gibi zorluklar ortaya çıkarır. Yerinde hesaplama ve hızlı, enerji verimli do-
nanımlar, özellikle tümleşik devre yapay zeka hızlandırıcıları, nesenelerin interneti
cihazları için önemli çözümler arasında yer alır.

Enerji verimliliğini daha da artırmak için voltaj düşürme yöntemi uygulanabilir, bu
durum zamanlama hatalarına yol açabilir fakat derin sinir ağlarının doğası gereği bu
hatalar tolere edebilebilir. Yoğun çarpma ve toplama işlemleri önemli ölçüde girdi ve
çıktılarda değişikliğe sebep olduğundan, çipin güç hatlarında gürültü oluşturabilir.
Bu tezde, voltaj ve sıcaklık gürültülerinden kaynaklanan hata olasılığını belirlemek
için, işlem voltajı, sıcaklık ve üretimsel sapmalardan kaynaklı durumları hesaba
katan olasılıksal hata modeli geliştirilmiş ve çalıştığı gösterilmiştir. Bu model kul-
lanılarak, zaman alıcı Monte Carlo simülasyonlarına başvurmadan bit hata olasılığı
hesaplanabilir, böylece dijital donanımın analizi için harcanan süre önemli ölçüde
azaltılmış olur. Tasarımcılar, DNN modelinin katmanlarına bit hataları ekleyerek
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çıkarım doğruluğu gözlemleyip, katman önemine göre dinamik voltaj ölçeklendirmesi
uygulayarak güç tüketimini optimize edebilirler.

Modeli doğrulamak için 65nm CMOS teknolojisi kullanılarak 16x16 boyutunda bir
sistolik çarpma ve toplama dizisi, hızlandırıcısı tasarlanmıştır. Tek bir çarpma ve
toplama birimi zamanlama hata olasılığı açısından analiz edilmiş ve sonuçlar Monte
Carlo simülasyonları ile karşılaştırılmıştır. Model makul bir doğruluk göstermiş ve
Monte Carlo simülasyonlarından (1500 örnek) yaklaşık 808 kat daha hızlı bir şekilde
hata oranı hesaplaması yapmıştır. Bu da hızlandırıcı üzerindeki voltaj düşürme etk-
ilerinin zamanlama hata olasılığı açısından hızlı bir şekilde gözlemlenmesine olanak
tanımıştır.
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1. INTRODUCTION

1.1 Artificial Intelligence

Artificial Intelligence (AI) represents one of the most transformative technologies
of the 21st century, poised to reshape industries, economies, and societies. At its
core, AI involves the development of computer systems capable of performing tasks
that typically require human intelligence. These tasks include learning, reasoning,
problem-solving, perception, language understanding, and decision-making.

The origins of AI can be traced back to the mid-20th century when pioneers like
Alan Turing and Arthur Samuel laid the foundational concepts. Turing’s seminal
question, "Can machines think?" and his development of the Turing Test sparked
significant interest and research into creating intelligent systems (Turing (1950)).
Samuel’s early experiments with game-playing programs demonstrated the poten-
tial for computers to improve performance over time through experience (Samuel
(1959)). Since then, AI has progressed through several waves of innovation and
setbacks, each marked by breakthroughs and the eventual realization of previously
theoretical possibilities (Russell, Norvig & Davis (2010)).

AI can be broadly categorized into narrow AI and general AI. Narrow AI, also known
as weak AI, is designed to perform specific tasks such as speech recognition, image
classification, or recommendation systems. These systems have become increasingly
sophisticated, driven by techniques such as machine learning, deep learning, and
natural language processing. General AI, or strong AI, refers to a more ambitious
goal: creating machines that possess the ability to understand, learn, and apply
knowledge in a way that is indistinguishable from human intelligence. While general
AI remains a theoretical aspiration, the progress in narrow AI continues to drive
substantial advancements across various domains.
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In recent years, advancements in computational power, the availability of vast
amounts of data, and sophisticated algorithms have propelled AI to new heights.
Machine learning has enabled computers to achieve and even surpass human perfor-
mance in various tasks such as image and speech recognition, strategic game playing,
and language translation (LeCun, Bengio & Hinton (2015)). AI’s impact is evident
in everyday applications like virtual assistants, and recommendation systems, and
autonomous vehicles, revolutionizing how we interact with technology (Goodfellow,
Bengio & Courville (2016), Stilgoe (2017)). In healthcare, AI-powered systems as-
sist in diagnosing diseases, personalizing treatment plans, and predicting patient
outcomes (Topol (2019)). In finance, AI algorithms enhance fraud detection, al-
gorithmic trading, and risk management (Trivedi, Bhagchandani & others (2018)).
Moreover, AI is revolutionizing industries like manufacturing, retail, entertainment,
and education, fostering efficiency and innovation.

1.2 Machine Learning

Machine Learning (ML) is a dynamic and rapidly evolving field within AI that fo-
cuses on developing algorithms and statistical models enabling computers to perform
tasks without explicit instructions. Instead of following predetermined rules, ma-
chine learning systems learn from data, identifying patterns, and making decisions
with minimal human intervention.

Figure 1.1 Artificial Intelligence vs Machine Learning

The heart of machine learning is the concept of training models using data. These
models can be categorized into three primary types: supervised learning, unsuper-
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vised learning, and reinforcement learning. Supervised learning involves training a
model on a labeled dataset, where the desired output is known, allowing the model
to learn the relationship between input features and the target outcome. Common
applications of supervised learning include image classification, speech recognition,
and medical diagnosis (Michalski, Carbonell & Mitchell (2013)).

Unsupervised learning, on the other hand, deals with unlabeled data, where the
model must discern patterns and structures from the input data without explicit
guidance. Techniques such as clustering and dimension reduction fall under this
category, with applications ranging from customer segmentation in marketing to
anomaly detection in network security (Murphy (2012)).

Reinforcement learning involves training an agent to make a sequence of decisions
by rewarding it for desirable actions and penalizing it for undesirable ones. This
type of learning is particularly prominent in robotics, gaming, and autonomous
systems, where agents learn optimal strategies through trial and error (Sutton &
Barto (2018)).

Training model involves a learning algorithm that iteratively adjusts the model’s
internal parameters to minimize prediction errors. The term "model" can thus en-
compass several levels of specificity, ranging from a broad class of models and their
corresponding learning algorithms to a fully trained model with fine-tuned internal
parameters (Russell et al. (2010)).

In the realm of machine learning, various types of models have been explored and
utilized. The process of choosing the most suitable model for a particular task is
known as model selection. Some of the prominent examples of ML models include
Artificial Neural Networks, Logistic Regression, Support Vector Machines, Naive
Bayes, Decision Trees, Linear Regression, and Random Forests. Each of these models
has unique characteristics and is chosen based on the specific requirements and
nature of the task at hand.

The advent of deep learning, a subset of machine learning that utilizes neural net-
works with multiple layers, has led to remarkable breakthroughs in the field. Deep
learning models, inspired by the human brain’s architecture, excel at handling vast
amounts of unstructured data, such as images, audio, and text. This has enabled sig-
nificant advancements in computer vision, natural language processing, and speech
synthesis (LeCun et al. (2015)).
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1.3 Deep Neural Network

DNNs have emerged as a pivotal technology in the field of AI, revolutionizing the way
machines perceive, learn, and make decisions. Originating from the broader concept
of artificial neural networks, as depicted in Figure 1.3, DNNs are characterized by

Figure 1.2 Artificial Intelligence vs Machine Learning vs Deep Learning

their multiple layers of interconnected neurons that mimic the structure and func-
tion of the human brain. These networks are capable of automatically learning
hierarchical representations of data, which makes them exceptionally powerful for a
wide range of complex tasks.

Figure 1.3 General DNN Architecture
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The resurgence of interest in DNNs can be attributed to several key factors. First,
the exponential growth in data generation across various domains has provided the
necessary fuel for training these models. Second, advancements in computational
power, particularly with the advent of Graphics Processing Units (GPU) and spe-
cialized hardware like Tensor Processing Units (TPU), have enabled the efficient
training of deep networks. Third, the development of sophisticated algorithms and
techniques, such as back propagation, dropout, and various optimization methods,
has enhanced the performance and generalization capabilities of DNNs (LeCun et al.
(2015)).

Figure 1.4 Various Models (Fauzi et al., 2021)

DNNs have demonstrated remarkable success in numerous applications, including
image and speech recognition, natural language processing, and game playing. For
instance, DeepMind AlphaGo has 89 layers (Silver, Huang & others (2016)), and
ResNet model, which is used for image classification, can have a maximum of 152
layers (He, Zhang & others (2015)). This makes the neural networks capable of
learning more complex and abstract features, therefore, improving the classification
accuracy. Convolutional neural networks (CNN), a type of DNN, have achieved
state-of-the-art results in image classification and object detection tasks (Krizhevsky,
Sutskever & Hinton (2012b)). Similarly, recurrent neural networks (RNN) and their
variants, such as Long Short-Term Memory (LSTM) networks, have shown superior
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performance in sequential data processing tasks, such as language translation and
time series prediction (Hochreiter & Schmidhuber (1997)).

As can be seen at Figure 1.4, particularly image related model parameter size goes
about million to 100 millions. Most of the parameters are contributed by the fully
connected layers.

Figure 1.5 Various Large Language Models (LLM) (Mehra, 2023)

In today, Large Language Models (LLM) are a significant leap forward in the field of
artificial intelligence and natural language processing. Their ability to understand
and generate human language with remarkable accuracy has paved the way for a
wide range of applications, transforming industries and enhancing our interactions
with technology (Zhao & others (2023)). As shown in Figure 1.5, LLM’s parameter
reaches up to billions.

These AI models are increasingly integrated into everyday life, expanding their pres-
ence across various devices such as computers, mobile phones, and Internet of Things
(IoT) devices. IoT devices and their DNN applications are explored in the next sec-
tion.
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1.4 Internet of Things

The Internet of Things (IoT) refers to a network of physical objects (devices), ve-
hicles, appliances, and more that use sensors, software, and other technologies to
connect and exchange data with other devices and systems over the internet. These
"smart" devices collect and share data to improve efficiency, reduce human interven-
tion, and enhance user experience (Greengard (2021)).

Figure 1.6 Internet of Things (Muha, 2019)

IoT devices consist of key components such as sensors and actuators, connectivity
options, data processing capabilities, and user interfaces. Sensors gather data from
the environment (e.g., temperature, humidity, motion), while actuators perform ac-
tions based on processed data (e.g., turning on lights, adjusting thermostats). Con-
nectivity is achieved through various means like Wi-Fi, Bluetooth, cellular networks,
or Zigbee, allowing devices to communicate and exchange data. Data collected by
sensors is processed either locally on the device itself or remotely in the cloud. User
interfaces, such as mobile apps or web dashboards, enable users to monitor and
control these devices (Rose & Eldridge (2015)).

IoT technology is applied in various domains, including smart homes, healthcare,
industrial IoT, smart cities, and agriculture. In smart homes, devices like smart
thermostats, lighting systems, and security cameras provide convenience, security,
and energy efficiency. In healthcare, wearable devices monitor vital signs, track fit-
ness, and manage chronic diseases, providing real-time data to healthcare providers.
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Industrial IoT is used in manufacturing for predictive maintenance, improving oper-
ational efficiency, and automating processes. Smart cities benefit from IoT through
smart traffic management, waste management, and energy-efficient buildings. In
agriculture, IoT sensors monitor soil conditions, weather, and crop health, optimiz-
ing irrigation and increasing yields (Gubbi, Buyya & others (2012)).

The benefits of IoT include improved efficiency and productivity, enhanced decision-
making with real-time data, increased automation, and better resource management
and sustainability. However, challenges such as security concerns, privacy issues,
interoperability between different devices and standards, and managing the vast
amount of data generated by IoT devices need to be addressed. Security vulnerabil-
ities in devices and privacy issues related to data collection and use are significant
concerns (Atzori, Iera & Morabito (2010)).

IoT devices are deployed for the various DNN applications such as face recognition,
human activity recognition and activity tracking (Kodali, Hansen & others (2017)).
Running a DNN on the cloud introduces a significant dependency on wireless connec-
tivity. In many areas, wireless connections may be nonexistent, poorly established,
or slow. This poses a serious challenge for high-risk and real-time applications, such
as driverless cars, where continuous, reliable, and real-time DNN processing services
are essential for ensuring safety and security (Zhang & Kouzani (2020)). To reduce
the internet bandwidth usage, the latency and increase the security, edge comput-
ing is the one of the promising solution. Edge computing brings another problem
for the IoT devices since running DNN requires significant energy consumption for
the Multiply and Accumulate (MAC) operations for the computational units using
digital DNN hardware, which is the case mostly. Especially when the model gets
larger, parameter size increases and that requires frequent memory access. Different
hardware types are examined in the next section for the IoT devices.

1.5 Hardware Comparison

In literature there are some survey and comparison of hardware types for AI applica-
tions in terms of speed, power, flexibility and accuracy (Shahid & Mushtaq (2020),
Amanatidis, Iosifidis & Karampatzakis (2022), Guo, Zeng & others (2018)). Each
type of hardware has its own advantages and disadvantages for AI applications.
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1.5.1 Central Processing Unit

The Central Processing Unit (CPU) is the primary component of a computer that
performs most of the processing. It carries out instructions from programs by per-
forming basic arithmetic, logic, control, and input/output (I/O) operations. The
CPU is often referred to as the "brain" of the computer because it is essential for
executing programs and managing the computer’s operations.

The performance of a CPU is determined by several factors, including its clock speed
(measured in GHz), the number of cores it has (which allows for parallel process-
ing), and its architecture. Modern CPUs are often multi-core, meaning they contain
multiple processing units within a single chip, which can significantly enhance per-
formance for tasks that can be parallelized.

Main disadvantage of running DNN model on CPU are slow response of the model
and high energy consumption since CPUs are not optimized for the DNN operations
that require massive matrix multiplications. Figure 1.4 shows that moderate model
has about millions of parameters. Multi-core CPU provides parallelism up to certain
point however it is not enough for real-time applications especially when the latency
becomes extremely important. Instruction fetch, decode and going back and forth
to memory result in a considerable overhead for the DNN applications.

On the other hand, it is easy to deploy a CPU for small models in IoT device.
Software implementation requires less time. CPU is flexible so that most of the
models can be implemented and if necessary, updating or changing the model is
easy. It can handle floating point operations so activation functions such as Sigmoid
and Hyperbolic Tangent can be easily processed in CPU.

1.5.2 Graphics Processing Unit

The Graphics Processing Unit (GPU) is a specialized electronic circuit designed to
accelerate the rendering of images, videos, and animations. It is particularly effective
at handling the complex mathematical calculations required for rendering graphics.
Originally developed to render graphics for computer games, GPUs are now used in
a wide range of applications beyond gaming, including scientific computing, artificial
intelligence, and cryptocurrency mining.

GPUs are designed with many smaller cores that can handle multiple tasks simul-
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taneously. Unlike CPUs, which are optimized for sequential processing, GPUs are
optimized for throughput and parallelism. This means they can process many op-
erations concurrently, making them ideal for workloads that can be divided into
smaller, parallel tasks such as rendering graphics or performing large-scale compu-
tations (Owens & others (2008)). GPUs typically have high memory bandwidth to
quickly move large amounts of data in and out of the GPU for processing. This
is crucial for handling the data-intensive nature of graphic rendering and scientific
computations.

Compute Unified Device Architecture (CUDA) cores are parallel processors within
NVIDIA GPUs, designed for efficient computation across a variety of tasks, es-
pecially scientific, engineering, and deep learning applications (Nickolls & Dally
(2010)). A CUDA core is a single processing unit within an NVIDIA GPU, similar
to a CPU core but optimized for handling parallel workloads. GPUs typically house
thousands of CUDA cores, enabling simultaneous execution of many operations,
contrasting with the fewer but more powerful cores in CPUs optimized for serial
processing. These CUDA cores are integral components of Streaming Multiproces-
sors within the GPU, which also include warp schedulers and memory.

In the context of DNN, CUDA cores are particularly valuable due to their ability
to parallelize the highly computational tasks involved in training and inference.
DNNs require extensive matrix multiplications and additions, which CUDA cores
can efficiently perform in parallel, thereby accelerating the entire process. During
the training phase, CUDA cores facilitate the rapid computation of forward passes
(propagation of data through network layers) and backward passes (calculation of
gradients for backpropagation) (Zhang, Gunupudi & Zhang (2015)). For inference,
CUDA cores enable fast execution, crucial for real-time applications such as image
recognition and natural language processing (Dtv & Ramana (2019)).

GPUs are suitable for the running DNN models especially by utilizing the CUDA
cores. GPUs can enable real-time processing and decision-making, which is crucial
for many IoT applications such as autonomous vehicles, surveillance, and industrial
automation. However it consumes large amount of power that creates problem for
battery powered devices. On the other hand, GPUs are not small enough and heat
dissipation is another problem to make a compact IoT device.
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1.5.3 Field-Programmable Gate Array

An FPGA, or Field-Programmable Gate Array, is a type of semiconductor device
that can be configured by the user after manufacturing. Unlike traditional processors
(CPUs and GPUs), which have fixed architectures, FPGAs consist of an array of
programmable logic blocks and interconnects that can be reconfigured to perform
specific tasks.

FPGAs can be reprogrammed to execute different tasks, making them highly versa-
tile. They support massive parallelism by allowing many operations to be executed
simultaneously. Users can design custom hardware tailored to specific applications,
optimizing performance and efficiency. FPGAs can provide low-latency processing
because they can be configured to execute tasks in hardware, rather than software.

In DNN context, FPGAs can be programmed to create custom accelerators for var-
ious stages of DNN processing, such as convolution, pooling, and fully connected
layers. This allows for optimization specific to the neural network architecture and
workload. FPGAs are often used for accelerating inference in DNN (Tsai, Ho &
Sheu (2019))s. Their ability to execute highly parallel tasks with low latency makes
them suitable for applications requiring real-time processing, such as autonomous
driving, robotics, and video analytics. Although more commonly used for inference,
FPGAs can also be configured to accelerate the training of neural networks. Custom
architectures can be designed to handle the massive matrix multiplications and other
operations involved in training. FPGAs can be more energy-efficient than GPUs for
certain tasks because they can be optimized for specific operations, reducing unnec-
essary power consumption. The reconfigurability of FPGAs makes them ideal for
prototyping and deploying DNNs, especially when the architecture may change or
evolve over time. This flexibility is beneficial in research and development environ-
ments where algorithms are continually refined (Shawahna, Sait & El-Maleh (2018)).
In edge computing scenarios, FPGAs are deployed to run DNN inference close to the
data source (e.g., cameras, sensors), reducing the need for data transfer to central
servers and thereby minimizing latency and bandwidth usage (Suda, Chandra &
others (2016)). An FPGA-based scalable Deep Learning Accelerator Unit (DLAU)
has been proposed, featuring three pipeline processing units to enhance throughput.
This design employs tiling techniques, FIFO buffers, and pipelines to maximize the
reuse of computing units and minimize memory transfer operations (Wang, Yu &
others (2016)).
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1.5.4 Application-Specific Integrated Circuit

Application-Specific Integrated Circuit (ASIC) is a type of integrated circuit (IC)
that is custom-designed for a specific application, rather than being intended for
general-purpose use. ASICs are optimized to perform a particular set of tasks very
efficiently, making them highly effective for specific applications. Due to their spe-
cialized nature, ASICs can be more energy-efficient than other hardware types be-
cause they do not include unnecessary components and can be optimized for power
consumption. It can be designed to occupy less space on a chip that can be advan-
tageous especially in compact devices.

In DNN applications context, ASICs are commonly used to accelerate the inference
phase of DNNs. They are designed to handle specific neural network operations with
maximum efficiency, providing fast and low-latency inference. ASICs are ideal for
edge devices where power efficiency and compactness are critical. They enable real-
time inference directly on devices such as smartphones, IoT devices, and autonomous
systems without relying on cloud-based processing. ASICs support custom neural
network architectures and operations, ensuring that the hardware is perfectly suited
to their specific DNN workloads. At architecture level, some of the accelerators have
been designed to handle neural network tasks.

Google’s Tensor Processing Units (TPU) are a prime example of ASICs designed
specifically for accelerating machine learning workloads (Jouppi, Young & oth-
ers (2017)). The Eyeriss accelerator, as proposed, enhances energy efficiency and
throughput by implementing a new processing dataflow (Chen, Krishna, Emer &
Sze (2017)). This approach reduces costly data movement by maximizing local data
reuse.

As a result, ASIC based DNN accelerators are the most suitable hardware for the
IoT devices in terms of power consumption, performance and compactness.

1.5.5 Overall Comparison

There are lots of commercially available CPU, GPU and FPGA along with dif-
ferent specialization, manufactured at different technology node. Ignoring all the
differences, generally the Table 1.1 is valid for the hardware comparison.
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Hardware Flexibility Power Consumption Latency
CPU Highest Moderate High
GPU High High Moderate

FPGA Moderate Low Low
ASIC Low Lowest Low

Table 1.1 Hardware Comparison

1.6 Motivation

In recent years, usage of AI has increased in edge computing and processing applica-
tions (López, Montresor & others (2015)). The reasons are the enormous amount of
data being collected, increasing in computational power and high data traffic (Wang
et al. (2020)) as depicted in Figure 1.7. Moreover, IoT applications also have been
popular and there is a high interest in using IoT devices with AI. To be able to
run a DNN application on IoT devices, these devices need to be energy-efficient and
need to have the edge-computing capability since they are mostly not connected to
a continuous power supply, they have poor wireless internet connection or not at all.

Figure 1.7 Edge Intelligence and Intelligent Edge (Wang et al., 2020)
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Edge computing eliminates the necessity of sending data to cloud, thus workload
on internet traffic is reduced. At the same time, latency is reduced because data
is not being sent to a remote location to be processed and response of the remote
location is not waited by the edge device. Additionally, security of edge device and
the data itself increases since device is not connected to a public network thus edge
devices are protected from remote cyber-attacks (Chen & Ran (2019)). According
to a study, nearly half of IoT applications require edge computing capability for
latency, bandwidth and security reasons (Srivatsa (2018)). A quick comparison is
shown in Figure 1.8.

Figure 1.8 Capabilities comparison of cloud, on-device and edge intelligence (Wang
et al., 2020)

DNN applications require large number of matrix multiplications. Low-cost and en-
ergy efficient chips are needed to operate DNN applications on edge devices. Voltage
underscaling is one of the used method to reduce power consumption since power
consumption is proportional to the operating voltage square. With the same op-
erating clock frequency, timing errors arise while reducing the supply voltage and
impact of these bit errors may or may not be tolerable by the DNN model itself.

Process, voltage and temperature (PVT) variations affect the timing error proba-
bility. Change in these effects may speed up the circuit or slow down. Therefore,
taking into account PVT variations is a necessity in digital integrated circuit that
operates with a small margin for timing errors. Conventional method that gate-level
simulation takes huge amount of time to observe the effect of the PVT variations on
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the circuit and eventually on DNN model in terms of inference accuracy. In DNNs,
several optimizations can be implemented at the hardware level, including altering
the circuit architecture or modifying the number of bits (Jouppi et al. (2017), Chen
et al. (2017), Sharma, Park & others (2016)). Each minor adjustment necessitates
validation, leading to an increased design and verification duration for the final hard-
ware system. To be able to make the design faster, a crosslayer platform is desired
to be developed as depicted in Figure 1.9. It takes inputs as process variation, sup-
ply voltage variation, temperature variation, netlist of the hardware and operating
conditions (supply voltage, temperature, frequency).

Figure 1.9 Crosslayer Platform for Analyzing Hardware

The primary objective of this thesis work is to develop a PVT aware probabilistic
timing error model, which allows for efficient analysis of the provided netlist for
the crosslayer platform. This ultimately contributes to the development of rapid
DNN hardware for highly energy-efficient IoT applications. Moreover as shown in
Figure 1.9, this model considers power supply noise that might be the result of high
switching activities on the gates (Enami, Ninomiya & Hashimoto (2009)) or external
effects such as electromagnetic interference (Moon, Kim & others (2015)), temper-
ature variation due to workload of the chip (Iranfar, Terraneo & others (2017)).
Designed DNN hardware (gate level) could be analyzed by utilizing the error proba-
bility model without performing time consuming simulations to observe error proba-
bility on the bits. These bit errors are injected to DNN layers by the platform. Thus,
designer observe the effect of PVT variations on the inference accuracy quickly and
depending on the analysis result, designer can make changes if necessary and apply
dynamic voltage scaling to reduce power consumption according to importance of
the DNN’s layer.
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1.7 Thesis Organization

The next chapter focuses on the probabilistic timing error model. By taking into
account Process, Voltage, Temperature (PVT) variations in the case of supply volt-
age reduction for reducing the energy consumption, bit error probability should be
evaluated find to observe the effect of errors on the DNN model, eventually infer-
ence accuracy. Probabilistic model is developed to find error probability of the bits
without relying on the time consuming Monte Carlo (MC) simulations. That makes
the analysis faster with decent accuracy.

In chapter 3, DNN accelerator implementation is examined, how it works and digital
blocks are explained. DNN calculations requires multiply and accumulate (MAC)
operation extensively. Systolic MAC array architecture is chosen for accelerator
implementation. It consists of 16x16 MAC array, means accelerator supports 16
fully connected neurons for a single acceleration with 16 input combinations. The
accelerator works at 200 Mhz clock frequency at nominal voltage 1.2V . Designed
chip manufactured in 65nm CMOS technology.

The final chapter discusses the summary of the work undertaken and explains the
future work to be completed.
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2. Probabilistic Timing Error Model

2.1 Introduction

In the literature, most of the studies on improving the energy efficiency of DNNs
are based on network structure (Han, Mao & Dally (2016), Judd, Delmas, Sharify &
Moshovos (2017)), circuit architecture (Jouppi, Borchers & others (2017), (Sharma
et al. (2016))) and changing the data type or reducing number of bits (Courbariaux,
Hubara & others (2016), Vanhoucke, Senior & Mao (2011)). In addition, recently
developed memory technologies that enable in-memory computing are also impor-
tant areas of research, as they reduce the energy consumption by eliminating the
reading data from memory and writing data back to memory (Yan, Cherian & others
(2020), Halawani, Mohammad & others (2019)).

One of the most popular ways to increase energy efficiency in digital hardware
is to reduce the supply voltage. However, this affects the operating performance
of the circuit (slowing down) and increases the probability of timing errors in the
circuit. The timing error probability is directly proportional to how much the supply
voltage is reduced from the nominal operating level. On the other hand, as in all
semiconductor circuits, the performance of the circuit may change due to process
and temperature variations. Especially when the supply voltage is reduced, due to
process and temperature variation, the errors increase because of the combination
of all negative factors. Therefore, when developing energy-efficient digital hardware
for DNN accelerators, it is necessary to take into consideration process variation,
supply voltage and temperature (PVT) in order to properly analyze how lowering
the supply voltage affects the timings and eventually inference accuracy.

Generally, gate-level simulations are performed to verify the digital circuit. The
problem is that these standard cell libraries provided by the foundry are character-
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ized at certain voltage levels. If a designer wants to see the timing on the digital
circuit at different voltage level apart from the provided by the foundry, conven-
tionally there are two options. First one, designer has to create their own library
at desired voltage level to be operated, for Electronic Design Automation (EDA)
tools such as Design Compiler or Innovus for timing analysis. Thus, designers can
perform timing analysis easily. However, library characterization requires additional
tool. Even in this scenario, time-consuming gate level simulations are required.

Second one, designer has to perform transistor level simulation at desired voltage
level to be operated which is time consuming more than gate-level simulations.

Modern DNN models consist of hundreds of layers. Millions of parameters are used
and high number of operations are performed. Depending on the DNN model to be
accelerated, voltage reduction might have huge impact on some layers, little effect
for other layers. Dynamic voltage scaling is one of the possible solution.

DNN accelerators consist of a large number of circuit elements and gate-level simu-
lations take a lot of time. Simulation time increases proportional to the complexity
of the DNN model used, and the number of gates used in the integrated circuit. As
mentioned above, every situation needs to be simulated after the slightest change in
the integrated circuit. Simulations significantly increase design time. The size and
complexity of modern DNN, as well as the ability to make changes to many parame-
ters to save energy as mentioned above, increase the importance of simulation time.
During the design phase, being able to quickly learn how a change in each parameter
affects inference accuracy, will provide a significant advantage for the designer.

For that reason, it is necessary to be able to calculate accurately the timing errors
taking into account PVT variations when the supply voltage is reduced. As a result,
high accuracy timing model which takes all factors into account, is required to
accelerate development process of the digital circuit for DNN applications without
relying on the time-consuming transistor level simulations. The following section
explains how the probabilistic timing error model works.
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2.2 Probabilistic Error Calculation

DNN accelerators such as the systolic MAC array architecture, has high amount
of parallel synchronous components. In highly parallel synchronous circuits, the
concurrent switching of many registers generates a significant current drawn from
the power networks, leading to voltage fluctuations at the power lines (Wang &
Salman (2017)). In compact devices, where many circuit components are densely
placed on the Printed Circuit Board (PCB), electromagnetic interference can lead
to fluctuations in the power supply (Moon et al. (2015)).

The variations on the power supply voltage can be described as a random vari-
able following a Gaussian distribution. The standard deviation, denoted as (σ),
represents the power supply noise, while the mean, denoted as (µ), corresponds to
the nominal supply voltage (Enami et al. (2009)). Given the distinct voltage-delay
characteristics of the technology, the timing probability distribution can be modeled
based on the specified voltage distribution. The resulting probability density func-
tion (PDF) is utilized in the proposed modeling approach to calculate the timing
error probability.

In the literature, probabilistic timing analysis has been done by only considering the
supply voltage level and power supply noise (Rathore et al. (2020)). This work is
extended by integrating temperature and process variations. Figure 2.1 shows the
steps to calculate the probabilistic timing error at any node in a digital circuit.

Figure 2.1 Key steps in the proposed approach to analyze timing error probabilities
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For the probabilistic error calculation, standard gates are characterized for different
voltage-temperature pairs. Additionally, standard deviation due to process variation
is extracted for each gate. Characterization methodology is explained in section 2.3.
Then extracted gate delays are used for the calculation of the path delay similar to
Static Timing Analysis (STA). Standard deviation due to process variation is added
to analysis that explained in section 2.4.6.

Initially voltage variation aware model (V Model) which was proposed by the
Rathore and others (Rathore et al. (2020)), is demonstrated for 65nm CMOS tech-
nology. Then temperature variation is integrated to voltage aware model and
voltage-temperature aware model is obtained (VT Model). Lastly, process varia-
tion is added to VT Model and process-voltage-temperature aware model (PVT
Model) is developed. Timing error probability of the given netlist is calculated and
compared with 2 different methodology.

- First one is Monte Carlo (MC) simulations and this result is taken as reference for
the finding error probability. It is referred as "MC Simulation" in the comparison
tables. Process, voltage and temperature are varied separately or together with
given nominal (µ) value and sigma (σ) value. Then error probability is calculated
based on the number of failed simulations over total number of simulations.

- The second method calculates the error probability by integrating the PDF of the
variables which explained in the section 2.4. It is referred as "P,V,T Model STA"
in the comparison tables. Voltage and temperature characteristic of the given path
is calculated by utilizing extracted gate delays similar to STA tools. Each letter
corresponds to an effect that model considers to calculate error probability. P, V, T
represent process, voltage, temperature respectively.

2.3 Gate Characterization

In the proposed model, gates that have been used in the design of MAC Unit, were
characterized in a simpler way to find path delay without simulating the circuit.
Thus path delay is calculated in a faster way to analyze error probability. High to
low propagation delay (τP HL) and low to high propagation delay (τP LH) are defined
as shown in Figure 2.2. Delay of the gate is defined as their average as shown in
Equation 2.1.
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Figure 2.2 Propagation Delay Definition (Kang & Leblebici, 2003)

τP HL = t1 − t0

τP LH = t3 − t2

(2.1) τp = τP HL + τP LH

2

Example setup circuit of single input gate and multiple input gate are shown in
Figure 2.3 and 2.4 respectively. Ideal source creates pulse signal ranging between 0
to VDD with 50ps rise and fall times suggested by the foundry. Since ideal source
is capable of driving gates regardless of the Fan-out or input capacitance of the
gate to be characterized, weakest buffer is used in between ideal source and gate
to be characterized. Also, another buffer connected as a load. This is not a full
characterization since it represents only one case. Driving cell of the input, Fan-out
capacitance etc. can change depending on the design. However, demonstrated setup
enables a quick analysis for design. For the multiple input gates, pulse was applied
to only one input that results transition on the output and other inputs remain the
same.
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Figure 2.3 INVD0 Characterization Setup

Figure 2.4 NR2D2 Characterization Setup

For each gate, voltage and temperature were swept between 0.6V to 1.2V with 5mV

steps, −20◦C to 100◦C with 10◦C steps respectively. Thus 13x121 temperature,
voltage lookup table was obtained. Then 2D interpolation was used to increase the
resolution to 1mV and 1◦C. This lookup table was used for the calculation of the
path delay.

Figure 2.5 Simple Combinational Circuit
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An example of simple combinational circuit is depicted in Figure 2.5. It’s path delay
calculation is shown in Figure 2.6.

Figure 2.6 Path Delay Calculation

Calculated path delay is used for further error probability calculation for the path.

2.4 Probabilistic Timing Error Models

2.4.1 Timing Probability Distribution Considering Power Supply Noise

Voltage supply level determines the timing delay of the path. For the demonstration
of the analysis, an example circuit shown in Figure 2.7 is used. Initially voltage and
delay characteristic is extracted by performing simulation at different voltages which
is given in Figure 2.8.

Figure 2.7 Sequential Circuit
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Figure 2.8 Voltage versus Propagation Delay

As it can be seen from the voltage and delay characteristic of the example circuit,
when voltage increases, delay decreases. Then, VDD is varied as Gaussian distri-
bution with the introducing of the noise (σ) as previously explained. Probability
Density Function (PDF) of the voltage is shown on Figure 2.9 for different noise
value. Magnitude of the supply noise can vary depends on the internal switching
and environmental effects. The noise level is chosen based on the referenced study
(Rathore et al. (2020)).

Figure 2.9 Voltage PDF

Since voltage and timing delay has one to one relation, the timing probability dis-
tribution is found from the voltage distribution by applying the change of variable
technique (Ross (2010)). According to change of variable technique, if X is a con-
tinuous random variable with the PDF fX , then the probability density function of
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the random variable Y, defined as Y = g(X) as given in Equation 2.2.

(2.2) fY (y) = fX [g−1(y)]
∣∣∣∣ d

dy
g−1(y)

∣∣∣∣.
Timing delay of the path can be represented as function of voltage v(t) at time t.
Given the voltage PDF fV (v) with the random variable of voltage (v), corresponding
timing PDF can be found as a function of the timing random variable v(t). The
timing PDF fT (t) can be determined as shown in Equation 2.3,

(2.3) fT (t) = fV [v(t)]
∣∣∣∣ d

dt
v(t)

∣∣∣∣.
The voltage PDF of example circuit in given Figure 2.9 corresponds to, timing
PDF of the example circuit in Figure 2.10. Asymmetric delay distribution is result
of nonlinear voltage-delay relationship as shown on Figure 2.8, especially at lower
voltages.

Figure 2.10 Timing PDF

In a synchronous digital circuit, a data path fails if the total delay through the
combinational logic (tG) plus the setup time (tS) exceeds the clock period (Tclk).

tG + ts > Tclk

Since timing varies due to voltage variation, error probability of timing failure in
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given the path, can be calculated based on the timing PDF. Assuming that example
circuit works at 1Ghz clock period, to be able to calculate the error probability, area
under the timing PDF as depicted on Figure 2.11 should be calculated. (1Ghz clock
speed is chosen since setup circuit consist of 5 logic gates and 2 D-Flip-Flops (DFF)
which is small.)

Figure 2.11 Timing PDF

This area can be expressed using the integration 2.4 and expression represents the
total area under the timing PDF where the data path delay surpasses the clock
period, thereby indicating a timing error.

(2.4) EP =
∫ ∞

Tclk

p(δ)dδ

p(δ) represents the timing PDF, and the lower integration limit Tclk is the clock
period (Rathore et al. (2020)).

Since voltage PDF corresponds timing PDF, so voltage PDF can also be used for the
error probability calculation. The lowest voltage level that meets timing requirement
without any violation is the operational limit for the circuit. For the given circuit,
minimum 636mV satisfies the timing requirement which is tG + ts < 1ns.
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Figure 2.12 Voltage PDF

In Equation 2.5, voltage PDF utulized to calculate error probability. p(V ) represents
the voltage PDF, and the upper integration limit Vmax corresponds to minimum
voltage level that circuit does not have any timing violation.

(2.5) EP =
∫ Vmax

−∞
p(V )dV

Both shaded area corresponds to the same error probability and since delay mono-
tonically decreases when voltage increases. The integration 2.5 is used for the cal-
culation of error probability for the given sequential circuit for further analysis. To
verify the model, Monte Carlo (MC) simulation is performed with 5000 samples and
only VDD is varied with a Gaussian distribution with different σ and µ values.

2.4.1.1 Discussion

The error probabilities (%) are depicted in Table 2.1 for different voltage condi-
tions. There is small difference between MC simulation which only VDD varies,
and proposed error probability calculation method. Magnitude of error probabil-
ity difference between MC simulations and the method, changes with respect to
given voltage characteristic. That is directly related with randomness of the MC
simulation.
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Voltage
Characteristic

Method MC Simulation
(VDD Vary)

V Model STA
(VDD Sweep)

VDD = 1.2V
σ = %10 0 7.6097x10−5

VDD = 1.2V
σ = %30 5.54 5.4492

VDD = 0.9V
σ = %10 0.08 0.1043

VDD = 0.9V
σ = %30 15.44 15.2463

VDD = 0.6V
σ = %10 65.3867 64.9264

VDD = 0.6V
σ = %30 55.5467 55.0838

Table 2.1 Probabilistic Model vs MC (Voltage Variation) (1Ghz)

Probabilistic approach can be used for the MC simulations to find error probability
with a small difference. Since probabilistic timing model avoids transistor level
simulation which requires high amount of time.

2.4.2 Error Probability for Multiple Timing Paths

The timing error probability for a sequential data path with a single input is exam-
ined in section 2.4.1. In this section, the methodology is expanded to calculate the
timing error probability for multiple timing paths within the same pipeline stage. It
is assumed that the average supply voltage of the gates in the same pipeline stage is
uniform. This assumption is based on the observation that adjacent nodes exhibit
a high spatial correlation in average supply voltage (Rathore et al. (2020)). Hence,
to determine the probability of timing error at the output, driven by various data
paths, integrating the voltage PDF is applied as previously discussed. The upper
limit of integration is set by the highest voltage which at least one of the timing
path experiences a failure (Rathore et al. (2020)). Critical path has the highest
timing delay. Therefore, the error probability of the output is determined by the
error probability of the critical path.
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2.4.3 Error Probability for Sequentially Adjacent Paths

Figure 2.13, 1bit MAC unit is illustrated (Rathore et al. (2020)) for multiple paths
within a pipeline stage and sequentially adjacent pipeline stages. The probability
of a timing error in out1 driven by multiple paths is calculated by integrating the
voltage PDF as previously explained.

Figure 2.13 1-Bit MAC Unit (Rathore et al., 2020)

The corresponding voltage and timing PDF of PATH A and PATH B are shown
in Figure 2.14.

Figure 2.14 PDF of Multiple Paths (Rathore et al., 2020)

Only AND gate contributes the timing delay of PATH A whereas BUFFER and
AND gates contribute the timing delay of PATH B. Therefore, the upper limit
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voltage is determined by the PATH B since it has more path delay for that pipeline
stage.

Assuming the supply voltage for different pipeline stages is independent, the timing
error probability for each stage can be calculated separately. Error at the output
can be the result of failure in any stage or simultaneous failures in multiple stages.
So, the overall error probability at the final output node can be determined by
combining the error probability of each pipeline stage.

(2.6)
Pout = Pout1 ∪Pout2

Pout = Pout1 +Pout2 −Pout1 ∗Pout2

To calculate the error probability at the out, union operation is utilized as depicted
in Equation 2.6. Union operation is used for the calculation of total error probability
for the output of the MAC array that explained at the section 2.4.7.

2.4.4 Timing Probability Distribution Considering Temperature

Silicon chips, composed of semiconductor material and metal layers that interconnect
transistors, experience changes in performance with temperature fluctuations. As
temperature rises, the carrier mobility within the semiconductor decreases, leading
to a reduction in conductivity (Pierret (1996)). Conversely, the threshold voltage
VT H of the transistors also decreases with rising temperatures (Pierret (1996)), which
can have complex effects on total performance.

Additionally, the conductivity of the metal layers diminishes as temperature in-
creases (Kittel (2007)). These factors together mean that the overall impact of
temperature on chip performance depends on the operating voltage. Temperature
changes can either enhance or degrade the chip’s performance depending on the
specific conditions.

Operating temperature of the chip changes with the environment temperature, clock
frequency, and workload of the chip. The variation in temperature can be modeled
as a random variable in a Gaussian distribution similar to the voltage variation. The
standard deviation (σ) represents the temperature variation due to workload of the
operations and other effects, while the mean (µ) corresponds to temperature when
chip works under moderate workload as depicted in Figure 2.15.
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Figure 2.15 Temperature Variation Dependency of the Chip States

Temperature-Voltage Delay Characteristic of the circuit 2.7 is given in Figure 2.16.
At lower voltages, circuit gets faster when temperature increases, however reverse
effect is observed at higher voltages. In the middle such as 0.9V , until certain tem-
perature, circuit gets faster when temperature increases, further increase in temper-
ature makes circuit slower. Regardless of the temperature, rise in voltage improves
circuit performance meaning reduces the delay.

Figure 2.16 Voltage & Temperature versus Delay
(X:Voltage, Y:Temperature, Z:Delay)

Some of the voltage-temperature-delay points are shown in Figure 2.16.
Temperature-delay relations are shown for supply voltages 0.6V , 0.9V and 1.2V

in Figures 2.17, 2.18, 2.19 respectively. There is no direct relation between delay
and temperature as opposed to voltage-delay relation.
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Figure 2.17 Temperature-Delay Characteristic at 0.6V

Figure 2.18 Temperature-Delay Characteristic at 0.9V

Figure 2.19 Temperature-Delay Characteristic at 1.2V
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So, temperature effect is considered locally and probabilistic error calculation algo-
rithm modified as given in Equation 2.7,

(2.7) EP =
∞∑

Tn=−273

(∫ Tn+Tres

Tn

p(T )dT
)

, where p(Tn) > Clock period.

Practically, temperature range between −20◦C and 100◦C are used for analysis.
Tres corresponds to resolution and 1◦C is used for the error probability calculation.
Temperature aware model compares the timing delay with the clock period at the
current temperature. If failure occurs, than that temperature contributes the error
probability. If the resolution temperature decreases, model becomes more accurate
with the trade of increase in analysis time.

2.4.4.1 Discussion

MC simulation and temperature aware model are compared and error probabilities
(%) are given in Table 2.2 for different temperature variations. Nominal temperature
40◦C is selected based on the study that explores the thermal characterization of
the heterogeneous MPSoC (Iranfar et al. (2017)) and variation is approximately
10◦C. Another study shows that temperature of chip can go up to 90◦C depending
on the workload (Zhang, Sadiqbatcha & Tan (2023)). For the comparison, high
temperature variation is performed with the σ = 30◦C. Additionally, comparison is
done at different voltages since temperature effect behaves differently depending on
the voltage. Magnitude of the temperature variation depends on different factors
such as operating voltage, clock frequency, cooling down methodology of chip etc.
Therefore, magnitude of the temperature variations are selected empirically. When
voltage level higher than the 0.7V , error probability is 0 for given temperature
characteristic, so that they are not shown in the table. 0.7V and lower voltages are
used to compare the MC simulation and temperature aware model.

Temperature plays a critical role especially when there is a little margin for the
timing specification. For example, at 0.65V depending on the noise level of tem-
perature, error probability increases significantly since it is the voltage level that
timing specification has little margin. MC Simulation and T Model STA has sig-
nificant differences when noise of the temperature is high. That means, accuracy
of characterization of the gates with respect to temperature, becomes even more
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Temperature
Characteristic

Method MC Simulation
(Temperature Vary) T Model STA

VDD = 0.7V
T = 40◦C, σ = 10◦C

0 0

VDD = 0.7V
T = 40◦C, σ = 30◦C

0 0

VDD = 0.65V
T = 40◦C, σ = 10◦C

0.04 0.0337

VDD = 0.65V
T = 40◦C, σ = 30◦C

12.4433 5.12

VDD = 0.6V
T = 40◦C, σ = 10◦C

100 99.8134

VDD = 0.6V
T = 40◦C, σ = 30◦C

95.4567 83.3145

Table 2.2 Probabilistic Model vs MC Simulation (Temperature Variation) (1Ghz)

significant at low supply voltages.

This method provides fast observation with high magnitude of error with respect to
actual MC simulation. The model’s temperature awareness must be improved by
improving gate characterization method.

2.4.5 Voltage and Temperature Varied Timing Distribution

Considering both voltage and temperature effect together requires multivariate anal-
ysis for the timing distribution. Apart from the voltage and temperature µ and σ

values, their correlation (ρ) is necessary to calculate error probability of the path.
Power dissipation causes heat dissipation to environment that result in tempera-
ture increase on the chip. Both voltage and operating frequency contributes power
consumption as shown in Equation 2.8 (Kang & Leblebici (2003)).

(2.8) Pavg = Cload ∗VDD
2 ∗f

Therefore, depending on the cooling down methodology of the chip and environ-
ment, voltage level and frequency have positive correlation with the temperature
of the chip. However finding magnitude of the correlation constant (ρ), requires
advanced heat transfer analysis tool or measurement. For simplicity, correlation of
temperature between both voltage and frequency is assumed to be 0 which means,
temperature and voltage are independent variables for further analysis.
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Figure 2.20 MC Simulation Timing Distribution where,
µV = 0.9V , µT = 40◦C, σV = 0.09V , σT = 10◦C, ρ = 0

Figure 2.20 shows the delay distribution of MC simulation result with given voltage
and temperature conditions. Z axes shows the delay of corresponding voltage and
temperature (not the frequency of the corresponding voltage, temperature pair).
Figure 2.21 shows the PDF of voltage and temperature combination with assuming
ρ = 0.

Figure 2.21 PDF of Timing Delay where,
µV = 0.9V , µT = 40◦C, σV = 0.09V , σT = 10◦C, ρ = 0

The volume under the points where path delay > period is gives the error probability.
To calculate the error probability, both voltage and temperature error probability
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calculations are combined and the following formula is used to calculate error prob-
ability with given,
µT , σT

µV , σV

ρ between temperature and voltage

(2.9)

EP =
∞∑

Tn=−273

(∫ Tn+Tres

Tn

(∫ Vmax

−∞
p(V,T )dV

)
dT

)
, where p(Vmax,Tn) > Clock period.

Vmax represents the maximum voltage value that causes timing error on the path at
temperature Tn. Regardless of the temperature value, voltage increase reduces the
propagation delay as shown previously in Figure 2.16. Therefore, for each tempera-
ture, Vmax value is found and at that temperature, and then the volume under the
voltage-temperature distribution is found at interval (−∞, Vmax]. Then, all of the
volumes at different temperatures are added and that gives the error probability.

2.4.5.1 Discussion

MC simulation and VT aware model are compared and error probabilities (%) are
given in Table 2.3 for different voltage and temperature characteristics.

VT
Characteristic

Method MC Simulation
(VDD and T Vary) VT Model STA

VDD = 1.2V, σ = %10
T = 40◦C, σ = 10◦C

0 6.2086x10−5

VDD = 1.2V, σ = %30
T = 40◦C, σ = 30◦C

5.4545 4.3744

VDD = 0.9V, σ = %10
T = 40◦C, σ = 10◦C

0.1033 0.0865

VDD = 0.9V, σ = %30
T = 40◦C, σ = 30◦C

15.2133 12.2344

VDD = 0.6V, σ = %10
T = 40◦C, σ = 10◦C

69.0033 61.1809

VDD = 0.6V, σ = %30
T = 40◦C, σ = 30◦C

54.38 44.1466

Table 2.3 Probabilistic Model vs MC Simulation (Voltage and Temperature
Variation) (1Ghz)

From the results, VT Model STA error probability is the lower then the MC simula-
tion error probability for all given characteristics. As a result, accuracy of the gate’s
timing delay extraction gains more significance because MC Simulations also require

36



transistor level simulation. Transistor level simulation and STA method might differ
in terms of timing delay of the given path even in the same voltage-temperature con-
dition. However, VT Model STA provides error probability of the path faster than
the among all methods. Therefore, error probability of path can be found by using
the formula that is given in Equation 2.9 instead of long MC simulations. This result
can be used to observe bit error probability on the circuit intuitively since it provides
optimistic timing error probability for all voltage-temperature characteristic.

2.4.6 Process Variation Integration

Process parameters are randomly chosen by the simulator while performing MC
simulation. They can’t be swept as Voltage or Temperature value. Propagation
delay variation due to process variation, was extracted by performing MC simula-
tions on process parameters. Since magnitude of the variation differs at different
voltages and temperatures, MC simulations were performed at different voltage-
temperature combinations. In order to reduce the number of simulations, voltage
and temperature points were chosen with resolution of 150mV and 30◦C respec-
tively. Propagation delays obtained from MC simulations were used to find the
standard deviation (σ) of the propagation delays. Thus, at that corner, standard
deviation of propagation delay can be used to considering process variation without
performing MC simulations.

1.2V , −20◦C 1.2V , 10◦C 1.2V , 40◦C 1.2V , 70◦C 1.2V , 100◦C
1.05V , −20◦C 1.05V , 10◦C 1.05V , 40◦C 1.05V , 70◦C 1.05V , 100◦C
0.9V , −20◦C 0.9V , 10◦C 0.9V , 40◦C 0.9V , 70◦C 0.9V , 100◦C
0.75V , −20◦C 0.75V , 10◦C 0.75V , 40◦C 0.75V , 70◦C 0.75V , 100◦C
0.6V , −20◦C 0.6V , 10◦C 0.6V , 40◦C 0.6V , 70◦C 0.6V , 100◦C

Table 2.4 Corners that Process Variation Extracted

Table 2.4 shows the voltage, temperature pairs that process variation extraction was
performed. Then, the table was used for 2D interpolation to increase the resolution
of the voltage and temperature. Lastly, standard deviation lookup table is used to
create new propagation delay lookup tables as shown in Figure 2.22.
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Figure 2.22 Propagation Delay Inclusion Process Variation

λ is selected based on the Gaussian distribution with µ = 0 and σ = σ0 where sigma
σ0 corresponding percentage. For instance, %10 corresponds to σ0 = 0.1 (At higher
voltages voltages, σ0 is approximately %10 whereas at lower voltages, σ0 reaches
up to %30). For pessimistic approach, σ0 should be selected higher. To exacerbate
propagation delay further, taking absolute value of the λ results that propagation
delay always increases the due to process variations. In the silicon chip, adjacent
gates are affected with similar process variation, so that the same λ value is used
for creating the new lookup table. This requires the assumption that, each gate
is affected by the process variation in a similar way in terms of propagation delay
which might not be the case in real life.

2.4.6.1 Discussion

MC simulation and Process Model STA are compared in terms of error probabilities
(%) at the corners. At each corner, MC simulations with 1500 sample are performed.
To be able compare it with the methodology, 1500 new timing path delay created
with explained method. When voltage value higher than 0.9V , error probabilities
are 0 that are not shown on the Figure 2.23.
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Figure 2.23 Error Probability at the Corners (1Ghz)

As depicted in the figure, blue curve corresponds process varied MC simulations.
The other colors are repeated result of Process Model STA analysis to show error
probabilities are changing due to randomness of the process variation integration
into model. Both MC simulation and model STA results follow a similar trend
except their magnitudes are different. At the 0.6V both have high error probability.
In Table 2.5, error probabilities (%) are shown for the some corners.

Corner MC Simulation
Error Probability Model STA 1 Model STA 2 Model STA 3 Model STA 4

0.6V , −20◦C 99.925 100 100 100 100
0.6V , 10◦C 99.625 100 100 100 100
0.6V , 40◦C 97.074 100 100 100 100
0.6V , 70◦C 88.972 100 50.369 100 100
0.6V , 100◦C 71.117 76.125 25.701 1.154 9.468

0.75V , −20◦C 0.375 2.592 2.067 0.231 1.616
0.75V , 10◦C 0.075 0.955 0 0 0

Table 2.5 Error Probability Comparison at Corners (EP Different than 0)

At some corners, MC error probability is higher than the model error probability
and reverse is true for other corners. This difference occurs due to the randomness
of the MC simulation and also model calculation as explained previously.
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2.4.7 PVT Aware Probabilistic Timing Error Probability Calculation

Error probability is calculated based on the 3 variables as previously explained to
calculate error probability by taking into account all effects. Initially, path delay is
calculated with the method that explained at section 2.4.6. Then error probability
is calculated as explained section 2.4.5.

VT
Characteristic

Method MC Simulation
(PVT Vary) PVT Model STA

VDD = 1.2V, σ = %10
T = 40◦C, σ = 10◦C

0 6.2493x10−5

VDD = 1.2V, σ = %30
T = 40◦C, σ = 10◦C

5.6049 4.3919

VDD = 0.9V, σ = %10
T = 40◦C, σ = 10◦C

0.2144 0.0874

VDD = 0.9V, σ = %30
T = 40◦C, σ = 10◦C

12.5431 12.292

VDD = 0.6V, σ = %10
T = 40◦C, σ = 10◦C

68.0461 61.201

VDD = 0.6V, σ = %30
T = 40◦C, σ = 10◦C

52.1936 44.1862

Table 2.6 Probabilistic Model vs MC Simulation (PVT Variation) (1Ghz)

For all conditions, PVT Model STA calculates lower error probability with respect
to MC simulations as shown on Table 2.6. However as previously discussed, due to
nature of the randomness, error probability varies.

An actual case study was conducted on a Multiply-Accumulate (MAC) unit adder
circuit. In the MAC unit, Ripple Carry adder architecture was implemented. One
of the reason for choosing the Ripple Carry adder architecture was, its ability to
easily observe timing errors with given input combinations. To compare PVT Model
STA with MC simulations, the signal propagation of each bit must be observed, and
this requires generating propagation through specific input combinations. Since
multiplier has false paths and choosing correct input combination to trigger the
longest path is difficult, multiplier was not included in the analysis.

2.4.7.1 Results

Probabilistic model calculates the error probability independent from the input com-
binations, however for MC simulation, an input combination must be provided to
circuit and that input combination must trigger critical path to observe error proba-
bility of all bits. In order to satisfy this condition, one input is selected as 1 and the
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other one selected as -1. In 2’s complement addition, signal transition throughout
the critical path has occurred.

Error probabilities are compared at 200 Mhz since MAC units are designed to work
at 200 Mhz clock frequency. 3 different voltage value which are 1.1V , 1V and 0.9V

are compared in terms of error probability. Analysis at lower voltages are not shown
due to high error probability.

Figure 2.24 Error Probability 20 Bit Ripple Carry Adder (200Mhz)

Figure 2.25 Error Probability 20 Bit Ripple Carry Adder (200Mhz)
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Figure 2.26 Error Probability 20 Bit Ripple Carry Adder (200Mhz)

In Figures 2.24, 2.25 and 2.26, the blue curve shows the error probability of MC
simulation, other curves represent error probability of the PVT aware model anal-
ysis. As shown in all figures, the model calculates the error probability higher than
the MC simulations. In the previous analysis of small circuit, the error probabilities
are lower then the MC simulation analysis for almost all of the given VT character-
istics. From this observation, when the given netlist gets larger, PVT aware model
becomes more pessimistic. This is the result of transient simulation and STA differ-
ence. That makes the analysis conservative for large netlists and makes less reliable
for the small netlists. However the gap between model and MC simulation could
be reduced by improving the analysis (discussed at future work) and that brings
additional overhead for the model.

Also another observation is, result of the MC simulation in Figure 2.25, error proba-
bility of Bit 9 and 10 are higher then the error probability of Bit 11 which shouldn’t
be the case for the Ripple Carry Adder architecture since higher bits have higher
path delay. However, with the MC simulation, gates are affected differently. Some
gates get faster whereas others might become slower. In the model analysis, all of
the gates in the same pipeline are assumed to be affected the same manner in terms
of propagation delay. That also reduces the accuracy when netlist is large.

Model STA MC Simulation
(1500 sample)

49 second 11 hour

Table 2.7 Probabilistic Model vs MC Simulation Spent Time

For time comparison, model analysis for all bits takes approximately 49 second
whereas MC simulation takes about 27 second for one sample simulation. Depending
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on the number of samples, overall MC simulation might take several hours. For
confidence, MC simulations are performed with 1500 samples and took about 11
hours. Thus, probabilistic model analysis makes the test roughly 808 times faster
than the MC simulation with a decent error probability accuracy. For the large
netlist, model error probability is more pessimistic than the MC simulation, voltage
supply level can be regulated based on the analysis.

In the Accelerator, MAC Units are identical, and each adder circuit has timing error
probability. Since multiplier has lots of false paths, analysis of error probability
contribution by the multiplier discarded and error probability assumed to be 0.
Based on the analysis of multiple timing path error probability (2.4.2), total timing
error probability of result is calculated by the following code,

Listing 2.1 MAC Unit Error Probability
EPmac = EPmult + EPadder − EPmult ∗ EPadder ;

EPtotal = 0 ;
for ( int k = 0 ; k < 16 ; k++){

EPtotal = EPtotal + EPmac − EPtotal ∗ EPmac ;
}

EPmac and EPtotal of result is calculated and MSB of the result error probability
are depicted in Tables 2.8 and 2.9 for different voltage, temperature characteristics.

As it can be seen from the tables, accumulation error probability blows up. This is
the result of the accumulation of the error probability, as depicted on method 2.1.
However, this is the result based on the critical path signal transition which may not
be always the case with given input combinations. Actual error probability might
be less than the probabilistic error model analysis.
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Supply Voltage and
Temperature Characteristic

MAC Unit Error
Probability (%)

Accumulated Error
Probability of Array (%)

VDD = 0.9V T = 40◦C
σVDD

= %5 σT = 10◦C
0.7829 14.5473

VDD = 0.9V T = 40◦C
σVDD

= %10 σT = 10◦C
11.8152 91.9114

VDD = 0.9V T = 40◦C
σVDD

= %5 σT = 30◦C
0.7716 14.3516

VDD = 0.9V T = 40◦C
σVDD

= %10 σT = 30◦C
11.8373 91.9519

VDD = 0.9V T = 10◦C
σVDD

= %5 σT = 10◦C
1.2818 22.7422

VDD = 0.9V T = 10◦C
σVDD

= %10 σT = 10◦C
13.4405 94.4243

VDD = 0.9V T = 10◦C
σVDD

= %5 σT = 30◦C
1.8991 31.8511

VDD = 0.9V T = 10◦C
σVDD

= %10 σT = 30◦C
12.6792 93.3573

VDD = 0.95V T = 40◦C
σVDD

= %5 σT = 10◦C
0.04066 0.8101

VDD = 0.95V T = 40◦C
σVDD

= %10 σT = 10◦C
5.0650 64.6392

VDD = 0.95V T = 40◦C
σVDD

= %5 σT = 30◦C
0.0538 1.0709

VDD = 0.95V T = 40◦C
σVDD

= %10 σT = 30◦C
5.0726 64.6957

VDD = 0.95V T = 10◦C
σVDD

= %5 σT = 10◦C
0.0956 1.8954

VDD = 0.95V T = 10◦C
σVDD

= %10 σT = 10◦C
5.1919 65.5723

VDD = 0.95V T = 10◦C
σVDD

= %5 σT = 30◦C
0.1265 2.5014

VDD = 0.95V T = 10◦C
σVDD

= %10 σT = 30◦C
5.2030 65.6532

Table 2.8 Calculated Error Probability (200Mhz)

As it can be seen from the Tables 2.8 and 2.9, voltage supply level is dominant, and
its noise level affects the error probability greater than the temperature noise level.
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Supply Voltage and
Temperature Characteristic

MAC Unit Error
Probability (%)

Accumulated Error
Probability of Array (%)

VDD = 1V T = 40◦C
σVDD

= %5 σT = 10◦C
0.0018 0.0372

VDD = 1V T = 40◦C
σVDD

= %10 σT = 10◦C
1.8823 31.6182

VDD = 1V T = 40◦C
σVDD

= %5 σT = 30◦C
0.0018 0.0372

VDD = 1V T = 40◦C
σVDD

= %10 σT = 30◦C
1.8795 31.5783

VDD = 1V T = 10◦C
σVDD

= %5 σT = 10◦C
0.0038 0.0768

VDD = 1V T = 10◦C
σVDD

= %10 σT = 10◦C
1.8438 31.0790

VDD = 1V T = 10◦C
σVDD

= %5 σT = 30◦C
0.0051 0.1026

VDD = 1V T = 10◦C
σVDD

= %10 σT = 30◦C
2.5627 40.5024

VDD = 1.05V T = 40◦C
σVDD

= %5 σT = 10◦C
5.5419x10−5 0.0011

VDD = 1.05V T = 40◦C
σVDD

= %10 σT = 10◦C
0.7143 13.3584

VDD = 1.05V T = 40◦C
σVDD

= %5 σT = 30◦C
8.4806x10−5 0.0017

VDD = 1.05V T = 40◦C
σVDD

= %10 σT = 30◦C
0.6801 12.7586

VDD = 1.05V T = 10◦C
σVDD

= %5 σT = 10◦C
9.5801x10−5 0.0019

VDD = 1.05V T = 10◦C
σVDD

= %10 σT = 10◦C
0.8234 15.2418

VDD = 1.05V T = 10◦C
σVDD

= %5 σT = 30◦C
0.0001 0.0024

VDD = 1.05V T = 10◦C
σVDD

= %10 σT = 30◦C
0.8929 16.4217

Table 2.9 Calculated Error Probability (200Mhz)

With the consideration of the error probability, supply voltage can be reduced de-
pending on the supply noises, application, DNN model, or layer to save power with
the increasing error probability trade-off. Power consumption and error probabil-
ity graph with respect to voltage value is shown in Figure 2.27 (dynamic power
consumption) and Figure 2.28 (static power consumption) at different noise value.
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Figure 2.27 MAC Unit Error Probability vs Dynamic Power Consumption at
Different Noise Level (1 Clock Period of Time)

Figure 2.28 MAC Unit Error Probability vs Static Power Consumption at Different
Noise Level (1 Clock Period of Time)

Dynamic power consumption reduces significantly with the voltage reduction
whereas static power consumption is not reduced as much as dynamic power con-
sumption in terms of ratio.
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A study shows that, even in the range of 10−3 timing error rate leads to significant
accuracy drop for DNN models (Jiao, Luo, Lin & Gupta (2017)). So, the main focus
of probabilistic timing error model is low error rates. Therefore, when σV DD is %5,
reducing voltage supply to 1.05V reduces power consumption approximately %43
with %0.0011 error probability of the MSB. When σV DD is %10, reducing voltage
supply is not practical for the applications since circuit has error probability rate
%0.758 already at nominal voltage 1.2V . Depending on the DNN models or layers in
the same DNN model, dynamic voltage scaling can be applied to reduce the power
consumption. If a layer is robust to bit error probabilities, then voltage reduction
can be applied for that layer. If the accuracy is of the layer is crucial, then supply
voltage can be increased to reduce timing errors.

When green (σ = %10) and red (σ = %10) curves in Figure 2.27 are compared, the
following conclusions are observed. At higher voltages, high voltage variations lead
to increased error probabilities, since VDD has a higher likelihood of being lower
than the nominal voltage. Voltage fluctuations can affect performance positively or
negatively and that makes this trend reverse at lower voltages, since VDD has a
higher likelihood of being higher than the nominal voltage. Probability of exceed-
ing the nominal voltage for VDD is not realistic as voltage reduction case. Error
probability calculation methodology could be updated based on the voltage level.

These results are accumulated error probability and as already discussed, PVT aware
model error probability is independent from the input combinations. That means,
actual error probability might lower then the analysis since critical paths might not
triggered for all calculations.
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3. DNN ACCELERATOR

3.1 Introduction

This chapter explains how to accelerate DNN operations, by examining the DNN ar-
chitecture and showing small demonstrations. Then, designed prototype accelerator
at 65nm CMOS technology, is explained by showing the details of the accelerator.

3.2 DNN Architectures and How to Accelerate

DNNs are composed of multiple layers that transform input data into meaningful
outputs. A traditional fully connected neural network is that made up of layers of
neurons depicted in Figure 3.1.

Figure 3.1 Fully Connected Neural Network (Verhelst & Moons, 2017)
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These layers include the input layer, which receives the raw data just transfers
to next layer. Hidden layers are utilized for processing the data through multiple
neurons to extract features. Lastly output layer is used which produces the final
prediction or classification. Each layer consists of nodes (neurons) connected to the
next layer, with weights assigned to these connections that adjust during training to
minimize error. An essential component of each neuron is the activation function,
which introduces non-linearity into the network, allowing it to model complex pat-
terns and relationships in the data. Common activation functions include Rectified
Linear Unit (Relu), Sigmoid, and Tanh, each contributing to the network’s ability to
learn and represent complex data features. The complexity and depth of these lay-
ers and activation functions enable DNNs to perform effectively (Goodfellow et al.
(2016)).

Convolutional Neural Networks (CNN) are extensively used for image-related AI
tasks due to their unique architecture and ability to automatically and adaptively
learn spatial hierarchies of features from input images. CNNs use filters (also

Figure 3.2 AlexNet Architecture (Krizhevsky et al., 2012a)

called kernels) that slide over the input image to detect patterns such as edges, tex-
tures, and more complex shapes. These filters are learned during training, allowing
the network to adapt to the specific features of the training data. The same filter is
used across different parts of the image, which reduces the number of parameters and
helps the model generalize better. Figure 3.2 shows the architecture of the AlexNet.
As depicted in the figure, AlexNet employs CNN and dense layers (fully connected
layers) which requires extensive multiply and accumulate operations. Both CNN
and fully connected layer operations can be accelerated with the accelerator along
with similar mapping.
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Figure 3.3 Fully Connected Layer

An example of fully connected layer which has 3 neurons is shown on Figure 3.3.
Weights of the neurons are shown on the arrows in red color. It takes 3 different
3x1 sized input and its corresponding 3x3x1 sized output is shown.

Figure 3.4 Convolution Neural Network Layers

CNN layer can be represented similar to fully connected layer. For instance, input
matrix which has 3x3x1 dimension convolved with 3 kernels which their dimension
size is 3x1. The resulted matrix has dimension 3x3x1 as shown on the Figure 3.4.

As depicted in both Figures 3.3 and 3.4, both layer have different input combinations
(sizes), the same weight and result combinations. Both layers correspond to the same
operations and its demonstration is shown Figure 3.5 to Figure 3.15. Yellow color is
used to show any change in MAC unit or Register File. Activation transfer is shown
as red color and intermediate result is shown with green color.
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Figure 3.5 Accelerator, Memory and MAC Array Initial State

After reset signal, as shown Figure 3.5 internal Register Files are empty and their
values are unknown, and all MAC Units’ weight, activation and result registers are 0.
Before starting the acceleration operation, activations are loaded to Register Files,
weights are mapped to MAC Units.

Figure 3.6 Step 1

After loading, the values are indicated in Figure 3.6.
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Figure 3.7 Step 2

In Step 2, first input comes from the memory for the left top MAC unit (MAC00)
and, it’s activation is changed. Accumulated result is also changed as 1∗ (−1)+0 =
−1 (since there is no intermediate result for the first row MAC Units, their input
sum are 0).

Figure 3.8 Step 3

In Step 3, second input of the MAC00 comes from memory, MAC01 receives its input
from the MAC00. Also MAC10 receives first input from the memory. Moreover,
MAC10 receives intermediate result from the MAC00 as previously calculated and
its accumulated result is 0∗ (−2)+(−1) = −1.
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Figure 3.9 Step 4

In Step 4, last activation of the first memory is sent to MAC array. Read operation
is complete for the first memory and it is ready to receive calculated results.

Figure 3.10 Step 5

In Step 5, first accumulated result is calculated as −5 by the first column of MAC
Units.
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Figure 3.11 Step 6

In Step 6, first output of the first column is written back the memory. This flow
continuous until all results are calculated.

Figure 3.12 Step 7
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Figure 3.13 Step 8

Figure 3.14 Step 9
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Figure 3.15 Accelerator, Memory and MAC Array Final State

In the final state, all outputs are written back to the on-chip memory and internal
memory content is sent back to off-chip memory. Then, new activations are loaded
to internal memory, and if necessary, new weights are mapped to MAC units.

Listing 3.1 Pseudo Code of NxN Dimension Matrix Multiplication

for ( int e = 0 ; e < N; e++) {
for ( int d = 0 ; d < N; d++) {

for ( int a = 0 ; a < N; a++) {
r e s u l t [ e ] [ d ] += A[ e ] [ a ] ∗ B[ a ] [ d ] ;

}
}

}

NxN dimension MAC array accelerator requires 2x(NxN) read from Random Access
Memory (RAM) for reading activations and weights, NxN write access to RAM for
writing back the results. That means accelerator has O(N2) RAM access complexity.
Roughly 3xN clock cycle is required for calculation of all the results which means it
has O(N) time complexity for all calculations.

Software code is given above for matrix multiplication. On the other hand, NxN
sized matrix multiplication operation requires 2x(NxNxN) read from memory and
NxN write back to memory on CPU implementation. Both time and RAM access
complexities are O(N3).

GPU and FPGA are not included to Table 3.1 since both can be used to achieve the
same time and RAM access complexities as ASIC accelerator. However, assuming
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Calculation Time Complexity RAM Access Complexity
MAC Array Accelerator O(N) O(N2)

CPU O(N3) O(N3)

Table 3.1 CPU vs MAC Array Accelerator Comparison

that they are manufactured with the same technology, with the proper implemen-
tation in architectural level, ASIC has higher efficiency in terms of power, area and
speed.

Figure 3.16 CPU, GPU, FPGA, ASIC (Overflow, 2018)

3.3 16x16 Size Systolic Array

Designed DNN accelerator consists of 16x16 sized systolic MAC array, 16x40 byte
on-chip Register File, and the controller block to control accelerator and memory.
Memory and controller blocks are powered with nominal voltage level which 1.2V by
digital power pads. MAC array part is powered by analog power pads, that means
its voltage level can be adjustable (mostly lower than 1.2V) to demonstrate the
proposed PVT aware model. In the literature, there are proposed ASIC accelerators
work at different frequencies up to 1Ghz (Dhilleswararao, Boppu & others (2022)).
Since this study aims to IoT devices due to low power requirement, this accelerator
is designed to work at 200Mhz. Detail of each block is explained in section 3.4.

Various Electronic Design Automation (EDA) tools were employed to develop the
accelerator. Vivado was used for HDL design and behavioral verification. After-
wards, Synopsys Design Compiler was used for synthesizing the netlist at 200Mhz.
Each block was synthesized separately since synthesizing entire design as a whole,
takes huge amount of time. Then Cadence Innovus tool was used for Clock Tree
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Synthesis (CTS), placing and routing. Innovus’s DRC, LVS and antenna check was
used to check the design. Design was imported to Cadence Virtuoso and lastly Cal-
ibre tool was employed to perform detailed DRC and LVS checks. The chip was
manufactured. However, printed circuit board (PCB) for the chip has not been
finalized. The planned setup is going to be explained at section 3.5.

3.3.1 Development Process of Accelerator

Initially various architectures were discussed. The computations can be mapped
onto a systolic array, with various options available Chen et al. (2017). These
different mappings, known as dataflows, can be categorized into weight stationary,
output stationary, and input stationary based on the underlying data reuse patterns.
The order of input feature maps and weights being fed into the array, and how
intermediate partial sums are stored and utilized, is determined by these dataflows,
as explained further.

Figure 3.17 (Zhang et al., 2018)

- Weight stationary dataflow refers to a mapping where weights are deployed within
the systolic array while inputs flow into the array in each cycle, multiplied by their
corresponding weights. The partial sums are accumulated across multiple MAC
units within a specific column of the systolic array over several cycles. After com-
pleting all computations for a particular set of weights, the mapping is repeated for
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the subsequent set of weights and so on. In this approach, inputs change cycle by
cycle while weights remain stationary in the array.

- Input stationary dataflow shares similarities with weight stationary dataflow, ex-
cept that the input feature map which is mapped onto a systolic array and remains
fixed while the weights are fed into the systolic array.

- In the context of output stationary dataflow, each unit calculates each pixel within
the output feature map. This mapping involves streaming each necessary input
and weight for a particular output pixel per cycle, while accumulating them in the
corresponding MAC Unit. Once an activation is generated, it’s moved to memory,
and the MAC Unit begins computing the next output pixel. The process continues
in this manner.

Weight stationary was chosen among the 3 architectures due to simplicity of the
acquiring the results from the array (there is no real difference input and weight
stationary architecture in terms of hardware implementation). A small prototype is
being used for to verify the probabilistic model. Architecture that shown in Figure
3.17, was implemented using Verilog HDL. Parametric implementation was preferred
for future update of the array size, so that weight and activation bit sizes, MAC
array size (N must be power of 2 and array size must be NxN) can be changed via
parameters. This Verilog implementation allows functional test on FPGA before
moving on to ASIC implementation with desired parameters.

Since we wanted to support different types of DNN models (even different layers in
the same model might vary in terms of bit representation), fixed point representation
is not used on the accelerator. Moreover, it does not affect the result in terms of
bit representation for MAC operations (bias is not included to outputs immediately
since bias value has fixed point representation whereas outputs don’t have). An
example is shown in 3.1 and 3.2. It multiplies 3 bit numbers and adds it to 8-bit
number. As it can be seen, after quantization different real numbers can have the
same bit representation for accelerator ("." is used for separating the decimal part).
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(3.1)
Weight:2 bit integer, 1 bit decimal
2.5 = 1∗21 +0∗20 +1∗2−1 (10.1)
Activation:3 bit integer, 0 bit decimal
3 = 0∗22 +1∗21 +1∗20 (011)
Intermediate product:7 bit integer, 1 bit decimal
49 = 0∗26 +1∗25 +1∗24 +0∗23 +0∗22 +0∗21 +1∗20 +0∗2−1 (011 0001.0)

Result:7 bit integer, 1 bit decimal
2.5∗3+49 = 56.5
10.1∗011+011 0001.0 = 011 1000.1

(3.2)
Weight:0 bit integer, 3 bit decimal
0.625 = 1∗2−1 +0∗2−2 +1∗2−3 (.101)
Activation:1 bit integer, 2 bit decimal
0.75 = 0∗20 +1∗2−1 +1∗2−2 (0.11)
Intermediate product:3 bit integer, 5 bit decimal
3.0625 = 0∗22 +1∗21 +1∗20 +0∗2−1 +0∗2−2 +0∗2−3 +1∗2−4 +0∗2−5 (011.0001 0)

Result:3 bit integer, 5 bit decimal
0.625∗0.75+3.0625 = 3.53125
.101∗0.11+011.0001 0 = 011.1000 1

However, to add bias properly, accelerator has to know which bits represent what.
For example adding bias as 12.625 (in binary 01100.101, 5 bit integer, 3 bit
decimal) result in different accuracy loss for both results even the same bit size is
used for representation.

(3.3)

56.5+12.625 = 69.125 (100 0101.001) correct result

011 1000.1+0 1100.101 = 100 0101.0 actual result

accuracy loss : 0.125

3.53125+12.625 = 16.15625 (1 0000.00101) correct result

011.1000 1+0 1100.101 = 1 0000.001 actual result

accuracy loss : 0.03125
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Since most significant bit MSB and least significant bit LSB of 56.5 represents 26,
2−1 respectively (precision is 2−1), by employing 8-bit adder, bias value loses 2 LSBs
and 0.125 accuracy is lost during bias addition. On the other hand, for the second
addition, MSB and LSB are 24, 2−3 respectively (precision is 2−3). Calculated
result loses 2 LSBs and accuracy loss is 0.03125. As it can be seen, for bias addition,
circuit has to keep track of the bit representation. So, the information about what
the MSB of the activation, weight and bias values represent should be provided to
the accelerator.

3.3.2 Activation Functions

The activation functions are integral in introducing non-linearity into the neural
network, empowering it to learn complex relationships between features. Common
activation functions include Rectified Linear Unit (Relu), Sigmoid, and Tanh. For
instance, Relu substitutes all negative values with zero, facilitating effective mod-
eling of non-linear patterns within the network. Without activation functions, the
network would behave like a linear model, limiting its capacity to capture sophis-
ticated data patterns. The introduction of activation functions enriches network
functionality and empowers it to learn more complex, non-linear relationships be-
tween input features (LeCun et al. (2015)).

Activation functions Sigmoid, Hyperbolic Tangent, and Relu are implemented. To
facilitate implementation on ASIC, piecewise linear approximation approach is uti-
lized for complex functions, ensuring efficient hardware usage (Tsmots, Skorokhoda
& Rabyk (2019)).

(3.4) sgm(x) = 1
1+ e−x

(3.5) tanh(x) = ex − e−x

ex + e−x

Sigmoid and Hyperbolic Tangent functions are shown in equation 3.4, and 3.5 respec-
tively. The points selected to divide the Sigmoid and Hyperbolic Tangent function
into pieces, are shown in Figure 3.18, 3.20. Sigmoid and Hyperbolic Tangent are
divided into 18 lines (y = a∗x+ b) and their formulas are shown in Table 3.19, 3.21
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respectively.

Figure 3.18 Sigmoid Function, Used Points for Piece-wise Linear Division

Figure 3.19 Sigmoid Function, Line Coefficients
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Figure 3.20 Hyperbolic Tangent Function, Used Points for Piece-wise Linear
Division

Figure 3.21 Hyperbolic Tangent Function, Line Coefficients

(3.6) Relu(x) = max(0,x)

The most used activation function in DNNs is Relu, which eliminates the negative
results of a given input.

User can choose to get results directly or after passing through an activation func-
tion.
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3.3.3 Final Architecture

For the proof of concept, small size MAC array is chosen to be implemented to reduce
the chip area, eventually manufacturing cost. Since MAC array size is reduced to
16x16, large DNN model layers have to be divided into multiple blocks. All of the
necessary weights and activations couldn’t be kept in the internal SRAMs. Memory
size is also reduced along with array size since most of the chip area was dominated
by the SRAMs. There were 3 distinct memory blocks which are activation, weight
and result memory as shown Figure 3.17 at the beginning. However since we had to
divide the layer into parts, memory size should be compatible with the array size.
There was no need to use excess memory. So weight and result memory are discarded
from the accelerator and there is only one memory block which consist of 16 distinct
Register Files (RF). Initially, activations are written to the RFs, weights are directly
mapped to MAC units, and finally, results are stored back into the register files.
Then the results are sent back to off-chip. Activation functions and bias addition
are removed to make accelerator simpler and smaller. The final architecture is
depicted in the Figure 3.22.

Figure 3.22 Final Block Level Schematic of 16x16 MAC Array

Initially 10-bit quantization was planned to be implemented however, 8-bit quanti-
zation was chosen to operate, since it provides good balance between accuracy and
speed Jacob, Kligys, Chen & others (2018). On the other hand, pipeline register was
utilized between multiplier and adder to operate at faster clock frequency. For the
MAC Unit, Ripple Carry Adder and Array Multiplier were deployed due to simple
implementation for parametric design to make a change if necessary. Schematics are
shown in Figures 3.23, 3.24 respectively.
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Figure 3.23 20-Bit Ripple Carry Adder Schematic

Figure 3.24 8-Bit Array Multiplier (Själander & Larsson-Edefors, 2009)
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3.4 Accelerator Modules

This section examines each module of the accelerator. Top-down approach is used
to explain the modules. Top view of the implemented accelerator is shown in Figure
3.25.

Figure 3.25 Top View of DNN Accelerator
x = 1140µm, y = 1140µm
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3.4.1 DNN Accelerator

Figure 3.26 Schematic of DNN Accelerator

Chip is divided into 2 power domains which are digital and analog powered parts.
The digital powered part consist of memory blocks, controller and accelerator inter-
face block. The analog powered part includes only systolic MAC array.

Red boxes indicate low to high level shifter cells in Figure 3.25. Since we want to
reduce voltage of systolic array part to observe the impact on the results, to be able
to write the results back to memory properly, level shifter cells have been utilized.
High to low level shifter cells have been also deployed in analog region, but since
they are so small in terms of area, they are not indicated.

The orange and purple region indicate controller block and accelerator interface
respectively in Figure 3.25. Register Files are being seen in the blue box as distinct
blocks. Also, each MAC unit is being seen in the turquoise region. MAC units are
identical and one of which is indicated as yellow.

Overall chip size increased with adding bond pads and total area was
1.31cm x 1.31cm = 1.7161cm2.

In total, 5 digital power pads, 5 digital ground pads, 4 analog power pads, 4 analog
ground pads have been deployed in the design for powering the chip. 4 post driver
voltage supply pads and 4 post driver ground pads have been used to feed the I/O
pads. Analog pads have been isolated via power-cut pads, so the chip has 3 distinct
islands in terms of pad connections. Each digital pad island requires power on
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control (POC) pad to protect the chip from electrostatic discharge (ESD). Analog
pads have an internal circuit that chip is protected from ESD. The rest are the I/O
pads. In total 40 I/O pads, 26 power pads, have been used.

Innovus reports that accelerator consumes approximately 111mW power when both
digital power supply (VDD) and analog power supply (AVDD) set to 1.2V.

Figure 3.27 Top View of DNN Accelerator Under Microscope
x = 1384µm, y = 1539µm

The final design under microscope is shown in Figure 3.27. In total area is 2.13cm2.
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3.4.2 16x16 Systolic Array

As depicted in the Schematic 3.26, systolic array takes inputs as activation bus,
weight bus, mac mapping bus and lastly transfer signal from the controller.

Figure 3.28 Systolic MAC Array

Activation bus connected to first column of the MAC array as shown in Figure 3.28.
Each MAC unit has the "mapping" signal that enables keeping the weight in the
register. So, in total 256 bit signal distributed among all MAC units. Weight bus
distributed among the columns so that each column of MAC units has connection
with the bus however they can’t keep the weight unless own mapping signal is "1".

For simplicity, output signals are not shown except the "systolic_array_result_bus".
Other output signals that end with "_res" and "_ac" are shown in Figure 3.26,
sample the corresponding MAC unit’s result and activation respectively. They have
been utilized for debugging purposes.
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3.4.3 MAC Unit

Figure 3.29 Top View of MAC Unit (x = 40µm, y = 46.8µm)

As shown in Figure 3.29, MAC unit does not have power ring itself since it makes
complicated the placing and routing of MAC array. Instead of individual power ring,
MAC array has the power ring and MAC units are fed with stripes. Each MAC unit
has 2 pair of AVDD and VSS.

MAC array requires buffers to carry the signals further and CTS to balance the
clock skew. In the top hierarchy (systolic array 3.28), buffers and MAC array share
the same power rails so that MAC unit’s vertical dimension has to be multiple of
the height of standard cells which is 1.8 µm. Overall, MAC unit’s dimension is
40µm x 46.8µm.

Innovus reports that MAC unit’s power consumption is approximately 91µW .
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Figure 3.30 Schematic of MAC Unit

The block diagram of the MAC unit is shown in Figure 3.30. Since activations
and weights can be negative, instead of representing them in 1’s or 2’s complement
notation, the following notation is used.

- Most significant bit represents sign of the number. Logic "1" represents negative,
logic "0" represents positive.
- Rest 7 bit represents the unsigned version of the number. For the adder, 2’s
complement representation was used to add the negative and positive results easily.
- In this representation, range of [−127 : 127] is representable for activations and
weights. In 2’s complement notation, additionally -128 is representable and if it is
equals to -128, basically -127 is used. By doing that, multiplication becomes easier
since it does not require 2’s complement to unsigned conversion. Thus, additionally
the area was saved.
- Sign is determined by taking XOR of both MSB of activation and weight.
-Multiplication result is padded with respect to sign value. It padded with "000000"
or "111111" when sign logic is "0" or "1" respectively. Additionally, if the sign logic is
"1", inverted multiplication result is selected, and Cin also becomes "1" for addition.
Thus 2’s complement conversion for the multiplication result and summation with
the previous result can easily be done in the same adder.

An example is demonstrated in Equation 3.7 as decimal and 3.8 as binary. "A,B"
represents concatenation operation. Variable "adder_x" represents adder’s second
input.
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(3.7)

activation = 101
weight = −117
sign (Cin) = 1
multiple_result = 11817
adder_x = −11818
out_result = in_sum+adder_x+ sign

in_sum = −27507
out_result = −39324

(3.8)

activation = 01100101
weight = 11110101
sign (Cin) = 1
multiple_result = 10 1110 0010 1001
adder_x = {11 1111,01 0001 1101 0110}
out_result = in_sum+adder_x+ sign

in_sum = 1111 1001 0100 1000 1101
out_result = 1111 0110 0110 0110 0100

3.4.4 Accelerator Interface

The Accelerator Interface’s schematic view was not given since it is complicated. In
this part, Accelerator Interface’s purpose is explained. I/Os of the block is depicted
in Figure 3.26.

- It is kind of a bridge between on-chip and off-chip. Signals that come from off-chip
are registered and sent to Controller block. "clk", "rst" and "read_write _operation"
signals are used without registered and they are sent to all necessary blocks.
- Activations and weights are given to accelerator via "input_bus" and Interface con-
nects "input_bus" to "activation" or "weight" according to "read_write _operation"
signal.
- Output signals are registered and sent to I/O pads.
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3.4.5 Accelerator Controller

Accelerator Controller’s schematic view was not given since it is complicated as
well. In this part, Accelerator Controller’s purpose is explained. I/Os of the block
is depicted in Figure 3.26.

- It has an internal state machine that shown in Figure 3.31. States numbers are
indicated to refer in Figure 3.34. It generates necessary addresses and all read and
write signals for the RFs. When "read_write _operation" signal (shown in Figure
as "r/w op"), activations are written to memories, weights are mapped to MAC
array or memory contents are read. All three operations are performed row by row.

Figure 3.31 Controller State Diagram

- After loading activations and mapping weights, acceleerator is ready to be started,
so when array work signal is logic "1", then accelerator starts to calculation.

- In "CALCULATION_PART _0" state, RFs are read and in this state, no result
has been come out yet. The Figures 3.6 to 3.9 can be referred to this state.
- In "CALCULATION_PART _1" state, the reading of the first RF has been
completed. The first result of the first column comes out and it must be written
back to RF. In this state, reading or writing occurs at the same time for different
RF blocks. The Figures 3.10 to 3.12 can be referred to this state.
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- In "CALCULATION_PART _2" state, the reading of all RFs is completed. In
this state, only writing back to memory is performed. The Figures 3.13 to 3.15 can
be referred to this state.

- "DONE" state shows that calculation is performed. Results are ready to be read
from RFs.

An example of simulation waveform is shown in Figure 3.34. Initially values in RFs
are not known. Then activations that are given in Table 3.32, are loaded to RFs
row by row, by changing "read_write _operation" signal to 2’b01. Then weights
are mapped to MAC Units row by row that are given in Table 3.33, by changing
"read_write _operation" signal to 2’b11.

Figure 3.32 An Example Set of Activations

Figure 3.33 An Example Set of Weights

After that, the accelerator is ready for matrix multiplication. With the "array_work"
signal, accelerator starts to operate. After performing the calculations, results are
ready to be read. Then, they are read by changing "read_write _operation" signal
to 2’b10.
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As it can be seen from the waveform 3.1 of the example run, bottleneck of the
accelerator is reading activations, mapping weights and sending the result back to
off-chip which requires O(N2) time complexity. Calculating the outputs requires
approximately 3xN cycles which has O(N) time complexity as discussed at the end
of the section 3.2.

Results and detailed waveform are given in Figure 3.35 and 3.36 respectively. In the
both waveform and the result table, Result00 is indicated with the purple dot, red
and blue arrow indicates the direction of the row and column that corresponds to
results in the waveform.

Accelerator has been verified by post-layout simulation as well as the behavioral
simulation. Post-layout netlist and Standard Delay Format SDF files have been
retrieved from Innovus, and QuestaSim has been employed to perform verification
at 200Mhz clock frequency.
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Figure 3.35 Results Calculated by
Software

Figure 3.36 Results Calculated by
Accelerator
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3.5 Measurement Setup

iW-RainboW-G35M ZU19 Zynq UltraScale+ MPSoC SOM Development Board is
going to be employed for providing clock, controlling the chip, sending and receiving
the data. Keysight DC Power Supply E3631A is going to be used for both constant
and variable power supplies.

Initially activations, weights and results are going to be loaded to FPGA. Necessary
control signals are created by the FPGA, to transfer activations and weights, to start
the acceleration and to retrieve the result from the accelerator. Received results and
loaded results will be compared. Accelerator will be verified functionally at 200Mhz
with nominal supply voltage which is 1.2V .

After verification, bit error rate is going to be observed at different voltage and
temperature combinations. Model error probability estimation and measured error
probability are going to be compared. Static and dynamic power consumption will
be measured by using Logic Analyzer or Oscilloscope.
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4. Conclusion

4.1 Summary of Work

With the progression of AI models, AI is being applied in various fields, enhancing
its significance. IoT applications have also gained popularity, and there’s a growing
interest in integrating AI with IoT devices. These devices must be energy-efficient
and capable of edge computing, as they often lack a continuous power supply and
perform numerous operations. The need for energy efficiency and edge computing
stems from not only energy demands but also from requirements for communication
bandwidth, low latency, and security. Therefore, it’s crucial for DNNs, a prominent
AI branch, to be energy-efficient for use in IoT devices.

One method to reduce power consumption is voltage underscaling, as power con-
sumption is proportional to the square of the operating voltage. However, main-
taining the same clock frequency while lowering the supply voltage can cause tim-
ing errors, which may or may not be tolerable by the DNN model. Traditional
transistor-level simulations to study the effects of voltage reduction on the circuit
and the DNN model (in terms of inference accuracy) are time-consuming. To speed
up the development process of hardware at different voltage levels, beyond those for
which gates are characterized, PVT aware fast techniques are necessary instead of
extensive simulations.

In this thesis, the probabilistic timing error model which only takes into account
voltage supply variation (Rathore et al. (2020)) is verified for 65nm CMOS tech-
nology and improved by adding temperature and process variation into the model.
The model calculates error probability with acceptable accuracy compared with the
MC simulation. However, analysis time reduced about 808 times with respect to
1500 sample MC simulation. Based on the analysis, nominal supply voltage can be
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reduced to save power with the trade-off accuracy. To verify the error probability
model on the chip, 16x16 systolic MAC array accelerator was designed at 65nm
CMOS technology and verified by using various EDA tools.

4.2 Future Work

Probabilistic timing error model calculates the error probability with a reasonable
accuracy with a much faster with respect to MC simulations, however model could
be improved by improving the gate characterization methods such as, considering
different Fan-in and Fan-out capacitance, different slew rates, or increasing the reso-
lution of the temperature and voltage during the extraction of the gate delay. For the
small netlist, model calculates lower error probability with respect to MC simulation
where, model calculates higher error probability for the large netlist. So, depending
on the netlist size, optimization can be applied to model error probability calcula-
tion. That brings overhead for the model because the model gets complicated and
probably evaluation time increases. Another thing is gate delay definition might be
changed based on the voltage level since at lower voltage levels, %50 to %50 delay
definition becomes problematic since Vth gains more significance at lower operating
voltages.

Correlation between voltage and temperature could be found as a value to substitute
into model instead of assuming they are totally independent. That makes the model
more accurate with respect to real life. To be able to do that, advanced power
analysis tools could be employed such as Cadence Voltus.

Lastly, accelerator must be verified functionally by measurement. Then proper
activations and weights could be chosen to make sure that switching activity of the
gates are high, so that noise on the power lines occur or purposely noise could be
added to power supply pins. Then the model must be verified by measurements.
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