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ABSTRACT

RANDOM HOLOMORPHIC SECTIONS ASSOCIATED WITH A SEQUENCE
OF LINE BUNDLES ON COMPACT KAHLER MANIFOLDS

AFRIM BOJNIK
MATHEMATICS Ph.D. DISSERTATION, JULY 2024

Dissertation Supervisor: Assoc. Prof. Dr. Turgay Bayraktar

Keywords: Random holomorphic sections, equidistribution of zeros, variance

estimate, central limit theorem, Bergman kernel asymptotics.

The study of zeros of random polynomials is a fascinating subject due to its numerous
connections within mathematics and physics. In particular, the distribution of these
zeros is crucial for understanding chaotic dynamics and quantum ergodicity, as it
models the behavior of nodal sets of eigenfunctions in chaotic quantum systems.
Building upon these ideas, the concepts naturally extend to higher dimensions
through random holomorphic sections, which generalize random polynomials, giving
rise to the emerging field of stochastic Kahler geometry. This thesis investigates two
interconnected problems within the realm of stochastic Kéahler geometry, focusing
on the equidistribution and statistical fluctuations of zeros of random holomorphic
sections associated with Hermitian holomorphic line bundles on compact Kéhler
manifolds.

In the first part, we establish an equidistribution phenomenon for zeros of systems
of random holomorphic sections associated with a sequence of positive Hermitian
holomorphic line bundles with €2 metrics on a compact Kihler manifold X . This is
achieved through variance estimates and an analysis of the expected distributions of
random zero currents of integration in any codimension k. Our results extend previous
findings in the field by encompassing a broader range of probability distributions,
including Gaussian, Fubini-Study measures, and probability measures with bounded
densities and logarithmically decaying tails.
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In the second part, we establish a central limit theorem for random currents of
integration along the zero divisors of standard Gaussian holomorphic sections. This
theorem, proved within the framework of sequences of holomorphic line bundles,
demonstrates the asymptotic normality of smooth linear statistics of random zero
divisors. Along the way, using methods from complex differential geometry, such as
Demailly’s L?-estimates for the d-operator, we obtain first-order asymptotics and
upper decaying estimates for near and off-diagonal Bergman kernels.



OZET

KOMPAKT KAHLER MANIFOLDLAR UZERINDEKI BIiR Dizi DOGRU
DEMETLERIYLE ILISKILI RASSAL HOLOMORFIiK KESITLER

AFRIM BOJNIK
MATEMATIK DOKTORA TEZI, TEMMUZ 2024

Tez Danigmani: Dog. Dr. Turgay Bayraktar

Anahtar Kelimeler: Rassal holomorfik kesitler, sifirlarin esdiizgiin dagilimi, varyans,

merkezi limit teoremi, Bergman cekirdegi asimptotikleri.

Rassal polinomlarin sifirlarinin incelenmesi, matematik ve fizik alanlarindaki cesitli
baglantilar nedeniyle oldukca ilgi cekici bir konudur. Ozellikle, bu sifirlarin dagilima,
kaotik dinamikler ve kuantum ergodikligini anlamak igin kritik éneme sahiptir,
¢inkii kaotik kuantum sistemlerdeki 6zfonksiyonlarin nodal kiimelerinin davranigini
modellemektedir. Bu temel fikirler iizerine inga edilerek, kavramlar rassal holomorfik
kesitler araciligiyla dogal olarak daha yiiksek boyutlara genigletilmektedir ve rassal
polinomlar1 genellegtirerek, ortaya c¢ikan stokastik Kéahler geometrisi alaninin temelini
olugsturmaktadir. Bu tezde, stokastik Kéhler geometrisi alaninda birbirleriyle
baglantili iki problem ele alinmigtir. Calismamiz, kompakt Kéahler manifoldlar:
tizerinde Hermisyen holomorfik dogru demetleriyle iligkilendirilen rassal holomorfik
kesitlerin sifirlarinin es dagilimi ve istatistiksel dalgalanmalarina odaklanmistir.

Ik boliimde, bir kompakt Kihler manifoldu X fizerinde €? smifi metriklere
sahip pozitif Hermisyen holomorfik dogru demetlerinin bir dizisiyle iligkili rassal
holomorfik kesitlerin sistemlerindeki sifirlar i¢in bir eg dagilim fenomeni kanitlanmigtir.
Bu sonuca, herhangi bir k£ esboyutundaki rassal sifir akiglarinin beklenen
dagilimlarini ve varyans sinirlamalarini analiz ederek ulagilmigtir. Bu sonuclar,
Gaussian, Fubini-Study ve simirli yogunluk fonksiyonlara ve logaritmik olarak
azalan kuyruklara sahip olasilik dagilimlarini igerecek sekilde onceki sonuglari
geligtirmigtir.
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Ikinci boliimde, standart Gauss holomorfik kesitlerinin sifirlariyla iliskilendirilen
rassal sifir akimlar1 i¢in bir merkezi limit teoremi elde edilmistir. Bu teorem,
holomorfik dogru demetlerinin dizileri gergevesinde ispatlanmig olup, rassal sifir
kiimelerinin lineer istatistiklerinin asimptotik normalitesini gostermektedir. Ek
olarak, Demaily’nin 0-operatorii icin L?-smirlamalarindan gelen karmagik diferansiyel
geometri tekniklerini kullanarak, diagonale yakin ve diagonal Bergman cekirdeklerinin
birinci dereceden asimptotiklerini ve yeterince hizli azalan tist siirlar elde edilmistir.
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1. INTRODUCTION

1.1 Literature review

In recent years, equidistribution and statistical properties of zeros of random
holomorphic sections have been progressed heavily. There are numerous results as to
the distribution of zeros of holomorphic sections in diverse probabilistic frameworks.
Amongst these, what has been more largely focused on is the tensor powers of a given
positive Hermitian line bundle over a compact Kédhler manifold within a Gaussian
setting. In this background, [Shiffman & Zelditch (1999)] is one of the very first
papers in the mathematics literature considering the equidistribution problem of
(Gaussian) random holomorphic sections. In the following years, [Shiffman & Zelditch
(2008)] and [Shiffman & Zelditch (2010)] derived asymptotic variance formulas
for linear statistics and their smooth analogs, all within the same geometric and
probabilistic framework. One of the most recent results, proved via the techniques of
[Shiffman & Zelditch (2010)] in [Shiffman (2021)], is the asymptotic expansion of the
variance for the codimension 1 case in the aforementioned setting. This asymptotic
expansion shows also that the coefficient of the first term in the expansion, which also
appeared as the leading-order term in the asymptotic formula obtained in [Shiffman
& Zelditch (2010)], is sharp. On the other hand, Dinh and Sibony [Dinh & Sibony
(2006)] innovated a method from complex dynamics for analyzing zero distribution,
and set convergence speed bounds in the compact case, enhancing Shiffman and
Zelditch’s initial results, namely [Shiffman & Zelditch (1999)]. Alongside the Gaussian
setting, in the papers [Bayraktar (2016), Bayraktar, Coman, Herrmann & Marinescu
(2018), Bloom & Levenberg (2015), Coman, Lu, Ma & Marinescu (2023), Coman
& Marinescu (2015), Coman, Ma & Marinescu (2017) and Bayraktar, Coman &
Marinescu (2020)], more general scenarios are investigated, including the Gaussian

case as a particular instance. For example, in [Bloom & Levenberg (2015)], the
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authors focus on the complex random variables that possesses bounded distribution
functions on the whole complex plane C and outside of a very large disk with
radius p, its integral with respect to the two-dimensional Lebesgue measure has an
upper bound depending on p, the latter condition is called the tail-end estimate.
Meanwhile, in [Bayraktar et al. (2020); Coman et al. (2017)] the authors expand
their research to the equidistribution problem within a wider context, involving a

sequence of Hermitian line bundles over a normal reduced complex Kéhler space.

It is essential to highlight that global holomorphic sections are natural generalizations
of polynomials. In relation to the general setting, there has been a great deal of interest
in the statistical problems related to the zero sets of random polynomials of several
variables in both real and complex domains. For a comprehensive overview of results
in this direction, interested readers can refer to [Bayraktar (2017b); Bloom (2005);
Bloom & Dauvergne (2019); Bloom & Levenberg (2015); Bloom & Shiffman (2007);
Edelman & Kostlan (1995); Hughes & Nikeghbali (2008); Ibragimov & Zaporozhets
(2013); Rojas (1996); Shub & Smale (1993)](and references cited therein). These
sources cover a wide range of results encompassing both Gaussian and non-Gaussian
cases, along with historical developments of the polynomial theory. Long before these
developments, it is important to recognize the pioneering work of mathematicians
such as Littlewood-Offord, Kac, Hammersley, and Erdos-Turan, who were among
the first to investigate the distribution of roots of algebraic equations both with
random and deterministic coefficients in a single real variable. For more insights into
these foundational studies, interested readers can consult the papers [Erdos & Turan
(1950); Hammersley (1956); Kac (1943); Littlewood & Offord (1943)]. On the other
hand, there is also a growing physics literature dealing with the equidistribution
and probabilistic problems of zeros of complex random polynomials. For studies of
fundamental importance in this direction, see, e.g., [Bogomolny, Bohigas & Leboeuf

(1996); Forrester & Honner (1999); Hannay (1996); Nonnenmacher & Voros (1998)].

Alongside these developments, investigation of the central limit theorem in the
context of smooth linear statistics, such as integrals of smooth test forms over zero
divisors of random holomorphic sections, is another intriguing challenge. In this
regard, the work by Sodin and Tsirelson [Sodin & Tsirelson (2004)] holds significant
importance. They established an asymptotic normality result for Gaussian random
polynomials and analytic functions in the complex plane. This seminal work has been
extended in two distinct contexts. The first extension, attributed to the research of
Shiffman and Zelditch [Shiffman & Zelditch (2010)], applies within the prequantum
line bundle setting. This involves random holomorphic sections of a Hermitian line
bundle (with ¥ Hermitian metrics) over a compact Kihler manifold, where the

first Chern form and Kéhler form satisfy the prequantum line bundle condition.
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The second extension, studied in [Bayraktar (2017a)], is attributed to Bayraktar,
who expanded this result to encompass general random polynomials in C" utilizing

techniques from weighted pluripotential theory.

Recent developments have also focused on asymptotic normality in the context
of noncompact complex manifolds. In [Bojnik & Gunyiiz (2024)], a central limit
theorem (proposed in [Drewitz, Liu & Marinescu (2023)]) has been established
for currents of integration associated with the zero divisors of standard Gaussian
random holomorphic sections of large tensor powers of a positive line bundle over
a noncompact Hermitian manifold. Unlike previous cases, this situation involves
studying infinite-dimensional separable Hilbert subspaces of the space of holomorphic
sections, which is itself a Fréchet space. For further considerations, see [Bojnik &
Gunyiiz (2024)] and [Drewitz et al. (2023)]. Building on their work in [Drewitz et al.
(2023)], in the setting of Berezin-Toeplitz operators, the authors have newly proved
a central limit theorem for zero currents of integration related to standard Gaussian
holomorphic sections in the closure of the image subspace (which is also a separable
Hilbert space) of square-integrable holomorphic sections under a Berezin-Toeplitz
operator [Drewitz, Liu & Marinescu (2024)].

In both compact and non-compact cases, the asymptotic behavior of the normalized
Bergman kernel, particularly off-diagonal and near-diagonal, is crucial. This kernel,
functioning as a covariance function of normalized complex Gaussian processes, is

pivotal to the analyses.

Separately, Nazarov and Sodin ([Nazarov & Sodin (2012)]) focused on the asymptotic
normality of linear statistics of zeros in Gaussian entire functions on C. They provide
a more general approach in terms of test functions, which are typically smooth,
by considering measurable bounded test functions and the clustering of k-point

correlation functions.

1.2 Motivation

In the standard setup of geometric quantization, we work with a compact Kéhler

manifold (X,w), equipped with a Hermitian holomorphic line bundle (L, h), known

as the prequantum line bundle, fulfilling the prequantization condition given by
v—1

(1.1) w:?RL:cl(L,h).
3



Here R” is the curvature of the Chern connection on L, and ¢;(L,h) is the Chern
curvature form of (L,h). The existence of the prequantum line bundle (L,h) allows
the investigation into the Hilbert space H°(X,L) of holomorphic sections and to
establish a mapping between classical observables on X and quantum operators on
HY(X, L) in the setting where the Planck constant approaches zero. The modification
of Planck’s constant corresponds to scaling the Kéhler form via tensor powers L®P,

and the curvature of the line bundle is thus described by h = %.

The stipulation in (1.1) is recognized as an integrality condition. The existence of a
prequantum holomorphic line bundle is strongly connected with the integral nature
of the de Rham cohomology class [w], i.e., [w] € H?(X,Z). When dealt with a Kéhler
form w that is not integral, one can construct an associated family of positive line
bundles (L, hp). The curvatures of these bundles approximate integer multiples of w,
thus serving as a prequantization of the non-integral Kéhler form w. This approach

extends the framework of geometric quantization to a broader class of manifolds.

Motivated by this, in a recent work presented by Coman, Lu, Ma, and Marinescu
[Coman et al. (2023)], in addition to providing a diagonal Bergman kernel expansion,
they establish an equidistribution result for zeros of random holomorphic sections of
such a sequence of line bundles (Ly, hy) by imposing a natural convergence condition
on the Chern curvature forms c1(Ly, hy). This contrasts with the traditional setting
of the tensor powers of a single prequantum line bundle L, i.e., (L®P h®P). As a
probability measure they consider the Fubini-Study measure and use the standard
formalism of meromorphic transforms from complex dynamics, as introduced by
Dinh and Sibony in [Dinh & Sibony (2006)].

Building upon the foundations presented in [Coman et al. (2023)] and [Coman et al.
(2017)], in the present thesis, we explore two distinct problems. In one direction, we
establish an equidistribution phenomenon for zeros of systems of random holomorphic
sections associated with a sequence of positive Hermitian holomorphic line bundles
with €2 metrics on a compact Kéhler manifold X, by using variance estimates
and the expected distribution of random zero currents in any codimension k. This
classical yet efficient approach allows for the extension of previous results to a wide
spectrum of probability distributions, generalizing Theorem 0.4 considered in [Coman
et al. (2023)]. In the other direction, we prove a central limit theorem for the smooth
linear statistics of random zero divisors related to the zero sets of standard Gaussian
holomorphic sections in a sequence of a positive holomorphic line bundles with

Hermitian metrics of class €2 over a compact Kahler manifold X.



1.3 Statement of main results

In this part, we present our primary results regarding the equidistribution and
fluctuations of zero sets of holomorphic sections in the context of compact Kéhler

manifolds.

I. Equidistribution

Let (Lp,hp)p>1 be a sequence of holomorphic line bundles on a compact Kéhler
manifold (X,w) of dimension n with a fixed Kéhler form w and ¢ Hermitian metrics
h, (see Section 2.4 below) such that the curvature forms c1(Ly,hy) satisfy the so

called “prequantization condition” or “diophantine relation”.

1
(12) HACl(Lp’hp)_ w
P %0

where A, >0, a >0 and lim,_,o A, = +00.

The space of global holomorphic sections of L, is denoted by H (X ,Lp), which
is a finite-dimensional vector space due to the compactness of X. We consider a
Borel probability measure o, on H O(X ,Lp), which does not charge pluripolar sets

and satisfy the moment condition (3.8) (see Section 3.1 for further elaboration).

The current of integration over simultaneous the zero locus of Elg = (s}),...,s];),
where 311),...,5’; are k-independent sections of HY(X, L,), selected with respect to

the probability measure o), is denoted by [Zy,

(see Section 3.5). Additionally, we set [22’5] = Ai’g

;5] and it is almost surely well-defined
[Zzg] for the normalized current of

integration.
Then, we obtain the variance estimate for such zero currents.

Theorem 1.3.1. Let (Ly, hy)p>1, (X,w) and o, be as defined above. Assume that

they satisfy the conditions (3.2), (3.5) and (3.8). Assume further that the sections

311),312), . .,s’; are independent random holomorphic sections for each p. Then there

exists P € N such that for all p> P and any ¢ € D" F"F(X), one has the following

estimate

N 2/
(VarlZgy].¢) < 20 (@ 1vol(x) B, )2
P

bt



where a > 2, C, >0, and By is a positive constant depending on the form ¢.

Consequently, using the above variance estimation, we obtain the following

equidistribution result.

Theorem 1.3.2. Let (Ly,hy)p>1, (X,w) and oy, be as defined above. Assume that
they satisfy the conditions (3.2), (3.5) and (3.8).

1/a
(1) If limpy oo CA =0, then for 1 <k <dimcX

in the weak™* topology of currents as p — oco.

/
(i) If 3524 A2 < 00, then for o —almost every sequence {3} € HP

7 k
in the weak™* topology of currents as p — oo.

Here, E and Var denote the expectation and variance of the random current of
integration [ZEIE] which are explicitly defined in (3.10) and DP4(X) represent the
space of test forms of bidegree (p,q) on X.

For codimension one, a method that circumvents the use of variance and expected
distribution, such as the approach employed by Marinescu, Coman, and Bayraktar
[Bayraktar et al. (2020)] in the setting where the normalized first Chern forms may
not converge, works well, however, this method is not applicable for codimensions
greater than one. Our approach with one summability condition generalizes their
results for equidistribution in various codimensions. One should also emphasize
that if the measure o, satisfy the moment condition (3.8) with constants Cp, = A
independent of p, then the assumption in (i), lim,_ C';/ QA; L' =0, is automatically

satisfied. Moreover, the hypothesis (i) transforms into 352 ; A% < oo.

At the same time, our principal result, which has been established for codimension
k, is applicable to a multitude of frequently investigated probability measures.
These include the area measure of spheres, Gaussian, Fubini-Study measures, and
measures with bounded density having logarithmic decaying tails. When our main
result is applied to these measures in the context of codimension k and tensor
powers of a fixed prequantum line bundle, the required summability assumption
can be dropped. This reduction indicates that our results are consistent with the
existing literature in this particular scenario. In [Bayraktar (2016)], for homogeneous
projective manifolds, Bayraktar obtained, within a weighted pluripotential theory
6



setting, an equidistribution result by employing Kolmogorov’s law of large numbers
in synthesizing the variance estimation with the expected distribution. In doing so,
he utilizes the properties of positive closed currents with super-potentials ([Dinh
& Sibony (2009)] and [Dinh & Sibony (2010)]), as introduced and studied by
Sibony-Dinh in complex dynamics, to demonstrate that the limit of the average
sequence of zero currents associated with their super-potentials is, in fact, identical to
the limit of the sequence of these zero currents itself. Our methods extend the results
of Zelditch-Shiffman. Bayraktar’s results can also be regarded as generalizations of
Shiffman-Zelditch’s if one assumes the projective manifolds considered in [Shiffman
& Zelditch (1999)] are homogeneous. Moreover, in [Bayraktar (2016)], when we take
the locally regular compact set K to be the whole manifold X and ¢ = 0, our results
in this paper generalize his results in terms of probability distributions and sequences
of line bundles. In the same paper, he posed the question whether equidistribution
result (Theorem 1.1 of [Bayraktar (2016)]) holds for any projective manifold. We also
answer this question affirmatively by Theorem 1.3.2 when K = X is any projective

manifold and ¢ = 0.

Characterizing positive closed currents on complex manifolds that can be
approximated by currents of integration along analytic subvarieties, and their local
versions, are significant problems in pluripotential theory with numerous applications.
For more on this topic, see [Coman & Marinescu (2013)] and [Coman, Marinescu &
Nguyén (2018)]. Our result, Theorem 1.3.2, provides insights into the probabilistic
version of this problem. Specifically, it demonstrates that a smooth positive closed

k

form w" can be approximated by random currents of integration along analytic

subsets of X of codimension k, for each integer k € {1,...,n}.

I1. Fluctuations

Building upon the same framework as in the equidistribution setting, with the
sole distinction of employing Hermitian metrics of class €3 (rather than %?), and
utilizing a Gaussian probability measure, we achieve an asymptotic normality result

for smooth linear statistics of random zero sets.

Let s € HY(X,L)\{0}. We denote by Zs the set of zeros of s, and by the symbol
[Zs], we mean the current of integration (with multiplicities) along Z,. Here and
throughout dd¢ = @@5.

Now we state our main theorem in this direction.

7



Theorem 1.3.3. Let {(L,, hp)}ffél be a sequence of positive holomorphic line bundles
over a compact Kihler manifold (X,w) of dimension n with diophantine condition
(4.1) and Hermitian metrics of class €3 such that % — 0 as p— oo . Suppose
that HO(X,LP) is endowed with the standard Gaussz’anppmbability measure for all
p>1. Let s, € HY(X,L,) and ¢ be a real valued (n—1,n —1)-form on X with

€3-coefficients and dd°¢ # 0. Then the distributions of the random variables

<[ZSp]7¢> - E([ZSp]7¢>

1.3
) Var([Z,],¢)

weakly converge towards the standard (real) Gaussian distribution N(0,1) as p — oo.

Here, E and Var denote the expectation and variance of the random variable ([Zs,], ¢),
respectively, which are defined in (4.79) and (4.80).

We emphasize that this result is general enough, as we consider a sequence of line
bundles instead of powers of a single line bundle, as studied in [Shiffman & Zelditch
(2010)]. In particular, if we choose (Ly,hy) = (L®P,h®P) for some fixed prequantum

line bundle (L, h), we obtain the result of Shiffman and Zelditch as a special case.

The key to our analysis will be the behaviour of the Bergman kernel. We establish
an upper decaying estimate for the off-diagonal Bergman kernel and derive the first
order asymptotics of the Bergman kernel function. These results may have further
consequences in other contexts as well. Notably, the study of Bergman kernels also
plays a crucial role in understanding the existence of Kahler-Einstein metrics, which

are special Hermitian metrics with constant scalar curvature.



2. Preliminaries

In this chapter, we provide the essential background required for the thesis. We briefly
delve into the basics of complex geometry, define currents on complex manifolds
with a main emphasis on positive closed currents, and examine their relationship
with intersection theory. The primary reference guiding this chapter is Demaily’s
book [Demailly (2012)], supplemented by other references such as [Griffiths & Harris
(1978)], [Huybrechts (2005)], [Dinh & Sibony (2005)], [Székelyhidi (2014)] and [Ma
& Marinescu (2007)].

2.1 Differential calculus on Complex Manifolds

In this section, we lay the groundwork for doing calculus on complex manifolds
by introducing essential tools. Specifically, we define the complexified tangent and
cotangent spaces, establish consistent notations, and introduce complex differential
forms on complex manifolds. These foundational elements will serve as crucial

instruments throughout the thesis.

Definition 2.1.1. A complex manifold X of dimension n is a topological space (that
is Hausdorff and separable) that admits an open cover {Uy}acr and local charts

o : Uy — C™ such that for all o, € I, the transition maps

¢o¢6 = ¢ao¢gl : Qbﬁ(UamUB) — (ba(UOémU@)

are holomorphic maps between open subsets of C™.

The components ¢q(z) = (27,...,2%) are called the local coordinates on U, defined
by the chart ¢, and they are related by means of transition functions z® = gbaﬁ(zﬁ ),

where 2% = (2f,...,29).



For z € X, we denote by T, X the real tangent space of dimension 2n at the point x
of the underlying smooth manifold X. We also denote by T'X (respectively, T X)
the corresponding real tangent bundle (respectively, cotangent bundle). A differential
form of degree k on X is a section of the exterior bundle A¥T*X. We will use the
notation Q¥(X) for the space of degree k differential forms on X.

An almost complex structure on X is an endomorphism J: TX — TX with the
property that J2 = —Id.

We note that when X is a complex manifold, it naturally has a complex structure

induced by the coordinate isomorphisms
dpo(z) : Ty X —C"

which is independent of the coordinate chart Uy, since the transition maps d¢,g are

complex linear isomorphisms.

On a complex manifold, it is convenient to work with the complexified tangent bundle

TeX :=TX ®C, which decomposes as a direct sum:
TeX =TV X 1% X,

where

THX :=ker(J —ild) = {€ —iJE: £ € TX}

and
T X =ker(J+ild) = {¢+iJE: €€ TX} =TLOX

represent the eigenbundles of the complexified endomorphism Je := J ® Id¢
corresponding to the eigenvalues i and —i, respectively. The components 719X and
TO1X are called the holomorphic and anti-holomorphic tangent bundles of X. By

duality, a similar decomposition occurs for the complexified cotangent bundle:
TEX =T*X@C=(T*X)" o (T Xx)%,
where

(T*X)0 = {f—ifoJ: feT*X}, and (T*X)% = (T*X)L0,

Now, since the exterior algebra of a direct sum is isomorphic to the tensor product of

the exterior algebras of the individual spaces, and this isomorphism respects grading,
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we have .
AkTEX ~ @ (A] (T*X)LO ®Ak*j(T*X)0,l) '
=0

Hence, the complexified exterior algebra is given by

(2.1) AEX = P APIX,

pt+q=k
p,q€N

where Aé}X = AkT(EX and the components AP9X are defined by
APAX = AP(T*X)H0 @ A9(T* X)L

A complex differential form of degree k on X is defined to be a smooth section
of the exterior bundle Aé“’:X . We denote by Q(%(X ) the space of such complex
differential forms. Using (2.1), we have a natural decomposition of the space of

complex differential forms:

(2.2) QLX) = P aPI(X),
pt+g=k
p,q€EN

where QP4(X) is the space of smooth sections of APYX. The elements of QP4(X)

are called complex differential forms of bidegree or type (p,q).

Locally, if (z1,...,2y) are holomorphic coordinates on an open subset U C X, where
zj = xj+iy; for j =1,...,n, then one has real coordinates (x1,y1,...,%n,yn) for the

underlying smooth manifold. The natural complex structure on X is given by

0 0 0 0
J(a) =3y J(ay> = o,
For j =1,...,n, define

0 1o 0\ o _1(o o
32]' ) axj 8yj ’ 32]' ) axj 8yj

de = dl‘j +idyj, d?j = dZL'j — z'dyj.

and

n n

Then, {82} and {82} form local bases for 710X and T%!1X | respectively.
J j:l J j=1

Similarly, by duality, {dz;}!_; and {dz;}"_; form local bases for (7*X )10 and

(T*X)%! respectively. Hence, {dzj,dz;}_; is a local basis for T¢X. Therefore, a

11



local basis for AP4X is given by

(d'zil Ao Ndei NdZj N A dzjq>1§i1<~~~<ip’j1<~~~<jq§n'

In turn, any complex differential k-form ¢ can be locally written as

(2.3) o(z):= >,  ¢rs(z)dzrNdzy,
[I|=p.|J|=q
where ¢r ; are complex-valued smooth functions, I = (i1,...,ip) and J = (j1,...,Jq)

are multiindices with integer components arranged in increasing order, and

dZ]:dzil/\-H/\dZZ‘p, de:del/\~-‘/\d§jq.

A differential form ¢ € Q%(X) is said to be real if ¢ = ¢. In particular, a (1,1)-form
¢ is real if and only if, locally,

=1 ¢j7kdzj/\d5k7

n
Jk=1
where [¢; 1] is a Hermitian n x n matrix.

Given the structure of complex differential forms, we can now consider the exterior
differential. The C-linear extension of the exterior differential on Qfé(X ) is denoted
by

d: QE(X) — QE(X).

The decomposition (2.2) of complex differential forms naturally leads to a
corresponding decomposition of the exterior differential. More precisely, if ¢ : X — C

is a complex valued smooth function, then locally

=19 Y
" 1(0¢ . 0¢ "1<a¢ .8(;5)
=Y “\g——iz7—|dzj+ ) - |m—+iz—]dz
;2(8% dy; ) ;2 Ox;  0Oyj J
——dzj+ d
]2_:18zj J ;8?] J

More generally, if ¢ € QP4(X) is a differential (p,q)-form. Then, locally

o= > ¢rgdzndzy,
[I|=p,|J|=q

12



where ¢; j are smooth functions. Since d(dz; AdZ ;) = 0 for all multiindices I, J, by

the Leibniz Rule, we have

(2.4) dp = Z dor g Ndzp Ndz g
I1=p.|J|=q

25 = 3 Zgj"]dzk/\dzf/\dzj—ir 3 Z;f"]dzk/\dzf/\dzJ.
I=p.|J|=gk=1 77 \I|=p,|J|=qk=1 9%k

Hence, the exterior differential d splits into d = 0+ 9, where
9:OPI(X) — Qp—&-l,q(X)7
R OPI(X) — Qp,q+1(X)’

o=y Zgl‘]dzk/\dzj/\dzj,
|1|:p,|,]|:qk1 K

~ )
o=y Z (bIszk/\dz[/\dzJ
[1=p.|J|=gh=1

The equality d?> = (0 + 0)> = 0? + 00 + 90 + 7 = 0, along with the
fact that 0?2 : QPI(X) — QPF24(X), 7 QPI(X) — QPIt2(X),  and
00+ 00 : QP4(X) — QPHLITL(X) implies that

2 =0, 09+90=0, 5 =0.

Moreover, 0 and O are conjugate, i.e., ¢ = 875 for any ¢ € QP9(X).

This shows that for each p=10,1,2,...,n we can define a cohomological complex of

C-vector spaces

0—POx) L art(x) 4. = PI(X) = OP(X) = 0.

Definition 2.1.2. The (p,q)- Dolbeaut cohomology group of X is the vector space

kerd : QP9(X) — QPa+1(X)

p,q
HEXC) = g 1(x) 5 v (X))

Remark 2.1.1. [t is worth noting that the complex de Rham cohomology group of

X s expressed as

kerd : Q& (X) — QEF(X)
Imd: QEH(X) = Q&(X)

HEo(X,C) = ~ gk (X, R)®C,
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where HCIZCR(X, R) is the de Rham cohomology group of the underlying (real) smooth
manifold X. Moreover, if X is a compact Kihler manifold (our main assumption we

maintain throughout the thesis) we have the following Hodge decomposition

HER(X,0)=2 @ HPY(X,C).
pt+g=k

The following is an analogue of the Poincaré lemma for the exterior derivative.
Lemma 2.1.1 (Dolbeaut-Grothendieck Lemma). A 9-closed form is locally d-exact.

This lemma can be used to establish the local d9-Lemma (see 2.3.1), which is a

frequently beneficial tool for subsequent analyses.

2.2 Currents on Complex Manifolds

The concept of currents was initially introduced by Georges de Rham and was
further developed by other mathematicians such as Federer and Fleming. It is a
generalization of the notion of distribution. This section is dedicated to defining
currents on complex manifolds and presenting fundamental properties associated
with them.

2.2.1 Spaces of Currents

Let X be a complex manifold of dimension n. In this context the space of smooth
differential forms of bidegree (p,q) with compact support is denoted by DP4(X),
often referred to as test forms. For a subset U of X, DP4(U) represents the space

consisting of elements ¢ € DP4(X) with compact support contained within U.

Next, we introduce a topology on the space DP4(X) of test forms. Given a sequence
of relatively compact open subsets {Uj}?i1 in X such that U; C Uj41, for each j,
and U2, U; = X. Associated to each compact subset K C U; contained within a

single local coordinate chart (z1,...,2,), where z; = x;+iy;, and any positive integer
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[, we define a semi-norm

l (6%
p ¢ = sup max max a ¢I:J z
x(9) zeK I1=p,|J|=q |a|<i | (2,

2n « ol
where o = (..., « runs over N“" and 0% = represents
(a1, azn) A L9z gy, "Ly 2n P

mixed partial derivatives of order |a| = a1 + -+ 4 2y, The coefficients ¢r ; are the

components of the form ¢ in these coordinates.

We endow each of the spaces DP4(U;) with the topology of local uniform convergence
of coefficients and all of their derivatives, this means that a sequence (¢y) converges
to ¢ in DPY(T;) if phe(dr — @) — 0 for all compact subsets K C U; and for all
integers [. This convergence ensures that not only do the forms themselves converge
uniformly to ¢ on compact subsets, but also all their derivatives up to any order [
converge uniformly. The topology defined in this way is actually given by a countable
family of semi-norms le varying over all compact subsets K C U, and all integers [,

making DP4(U;) a Fréchet space, which is a complete, metrizable, and locally convex

topological vector space.

Consequently, we furnish DP4(X') with the topology of the direct limit (or inductive
limit) of the spaces DP4(U;). This direct limit topology is defined such that a
sequence (¢y) converges to ¢ in DP4(X) if there exists N € N such that for all &k > N,
¢r € DP4(U,,) for some m, and ¢y, — ¢ in DP4(U,,). Essentially, beyond a certain
point, all forms ¢y, are supported within a single U; and converge in the local Fréchet
space topology of DP4(Uj).

When p = ¢ =0, DP(X) corresponds to the space of test functions studied in

distribution theory, denoted as D(X).

Definition 2.2.1. A current of bidegree (p,q) and of bidimension (n—p,n—q) on
the complex manifold X is a continuous linear form T : D" P"9(X) - C. If ¢ is a
test form in D" "P""9(X), the pairing between T and ¢ is denoted by (T,¢) :=T ().

The support of a current T, denoted by supp(7’) is the smallest closed subsest of
X such that T vanishes outside of it. In other words, (T, ¢) = 0 for any test form
¢ € DPIA(X \supp(T)).

A current of bidegree (p,q) is abbreviated as a (p,q)-current, and the set comprising
all (p,q)- currents will be denoted by D;Lq(X ). The principles of complex differential
calculus can be easily extended to currents by duality, leading to the following

decomposition of the space of test forms and currents, respectively.
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(2.6) DMX)= @ DPUX), Di(X)= @ Dpy(X).

ptq=Fk ptq=Fk
p,geN p,geN

Here, D*(X) and D). (X) denote the complexified spaces of test forms and currents,

respectively, of degree k in the underlying (real) smooth manifold X.

Clearly, distributions are currents of maximal bidegree, and we use the notation
D' (X) for them, whereas also (0,0)-currents can be thought locally as distributions.
For instance, if T' is a current of bidegree (0,0), we can associate to T" a distribution

S just by defining
(2.7) (S,0) :=(T,pdzy N+~ Ndzpy NdZy N -+ NdZy),

where (z1,...,2y) are local coordinates on an open set U. This is a one-to-one
correspondence between distributions and (0,0)-currents. Hence, we often use them
interchangeably in various contexts. We also remark that distributions are building
blocks for (p,q)-currents, since locally any current 7' can be seen as a differential
form with distribution coefficients; see [Demailly (2012), I. Proposition 2.9]. Indeed,

if T is a (p,q)-current on X. Then, T has a unique representation

(2.8) T= Z T]deZ]/\dZ],
[|=p,|J|=q

where T j are distributions.

Observe that if T"is a (p, ¢)-current, one can form the wedge product with a differential

form ¢ of bidegree (r,s) to define a new current T'Avy € D}, .., as follows
(T AD,6) = (T,6 A, for all ¢ € DVP~Tm=4=5(X),

This operation is one instance for the construction of higher-degree currents from

the existing ones. In the next section, we will see other instances as well.
Next, we provide some classical examples of currents.

Example 2.2.1. Let Z be a closed submanifold of X of dimension p (with no
boundary). The current of integration along Z, denoted by [Z], is defined as

(12),6) = [ 6. for 6 € D(X),

It is clear that supp([Z]) = Z.
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Example 2.2.2. If ¢ is a differential form of bidegree (p,q) with coefficients in
L} (X), then we can associate to v a (p,q)-current Ty as follows

(T,0) = [ A

for any ¢ € D"PTIX).
Note that the examples above justify the notion of degree and dimension for currents.

Throughout, we employ the weak* topology in the space of currents. In this topology,
a sequence of (p,q)-currents {T}} converges to a current 1" if (T}, ¢) — (T, ¢) for
every ¢ € D" P"9(X) and we say that T, — T in the weak sense of currents or in

the weak™ topology of currents.

Finally, by definition, given that a current is a linear form which is continuous in the
direct limit topology of D"™P"~4(X), we have that for any T' € D), ,(X), and any
compact set K C X, there exists [ € N and a positive constant M such that

(2.9) (T, 6)| < Mpl(9)

for every ¢ € D" P4 X) with supp(¢) C K.

A current for which the positive integer [ in (2.9) can be chosen independently of
K is said to be a current of finite order. In this case, the smallest such integer [ is
called the order of T. Currents of compact support naturally exhibit finite order,

and it is easy to see that the examples above have order 0.

2.2.2 Positive closed currents

In this part, we focus on positive closed currents due to [Lelong (1957)]. This notion is
a powerful tool for studying complex manifolds and their singularities, particularly in
the context of pluripotential theory and geometric measure theory. Additionally, they
have applications in other fields, such as algebraic geometry and complex dynamical

systems.

Motivated by the classical Stokes Theorem, we can extend the operation of the
exterior derivative from differential forms to currents as well. Let T be a current of

bidegree (p,q) on X. The exterior derivative of T" is defined as

dTl := 0T + 0T,
17



where 9T and OT are currents of bidegree (p+1,q) and (p,q+ 1), respectively, and

are defined as follows

for any test form ¢.

Note that d(dT) =0, and thus 9(0T) =0, 9(IT) = 0, and dIT = —JOT. Moreover,
the maps T~ dT', 9T, and OT are continuous for the topology of currents defined

above.
Definition 2.2.2. A current T is said to be closed if dT = 0.
Obviously, currents of maximal bidegree (distributions) are always closed.

Example 2.2.3. If [Z] is the current of integration defined in the example above, by

Stokes’ Theorem we have
d[Z] = (-1)"""*'[9Z] =0,

where 0Z is the boundary of the complex submanifold Z.

Next, we define the differential operator d¢ := ﬁ(a —0). Then, dd° = %6@ is a real

operator, and the following relation, which we will consistently use, holds
(dd°T, ¢) = (T,dd ).

Additionally, we define the conjugate of a form and a current as

5::Z%d§[AdZJ, and (T,¢) := (T, ),
1,J

where ¢ =377 7¢r jdzr Adzy is a form of suitable bidegree and T is a current. We
say that T (resp. ¢) is real if T =T (resp. ¢ = ¢). In particular, a real (1,1)-form ¢
locally is equivalent to ¢ =437,y ¢jr(2)dz; Adzy, where [¢;x] is a Hermitian n x n

matrix.

Definition 2.2.3. A (p,p)-form ¢ is said to be positive if at each point it is equal to
a finite combination of forms (iaq Adq) A--- A (ioy A cy) where oy are (1,0)-forms
which might depend on the point. The form ¢ is said to be weakly positive if ¢ A
is positive for any positive (n—p,n—p)-form . A (p,p)-current T is called positive
(resp. weakly positive) if (T, ¢) >0 for every weakly positive (resp. positive) test
(n—p,n—p)-form ¢.
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The notions of positivity coincide for p=0,1,n—1,n. It is evident from the definition
that positive forms and currents are real. Specifically, if ¢ is a real (1,1)-form, then
locally ¢ =i377 -1 ¢jk(2)dzj Adz. In this case, there is a characterization of
positivity in terms of its coefficients; see [Demailly (2012), IV. Corollary 1.7], where ¢
is said to be positive if the Hermitian matrix [¢;1(2)] is positive semidefinite for all 2.
Throughout this thesis, we further classify such forms as positive (resp. semipositive)
if [¢;x(2)] is positive definite (resp. semidefinite) for all z. Additionally, when 7" is a
real (1,1)-current on X, we call it strictly positive if there exists a positive smooth

(1,1)-form w on X such that T'—w is a positive current on X.

In particular, positive currents of maximal bidegree (i.e., distributions) are positive
measures. This is because any positive distribution can be extended to a positive
linear functional on the space of complex-valued continuous functions. By the Riesz
representation theorem, it is then represented as a positive measure. Now, if T' is
a positive (p,p)-current, then by standard duality arguments (see, e.g., [Demailly
(2012), II1. Proposition 1.14]), one can show that 7" is of order zero, meaning that the
coefficients 77 ; in ¢ are of order zero, i.e., complex measures, and satisfy 77 ;=T .

In this case, we define the mass measure of T by

(2.10) T = > T4l
[I|=p,|J|=¢

where |T7 ;| represents the total variation of the complex measures 77 ;. Note that

|T|| depends on the coordinate charts, as the expression is locally defined.

Next we present a fundamental result due to Lelong, which demonstrates that we
can generalize Example 2.2.1 and define currents of integration on analytic subsets

of complex manifolds, providing an important class of positive closed currents.

Recall that a subset Z C X is said to be an analytic subset of X if Z is closed, and
for each point p € Z, there exists a neighborhood U of p and holomorphic functions
fi,..., fr on U such that

ZNU={fi=-= fr=0}.

In particular, if £ =1, that is, if ZNU = {f =0} for some f € O(U), we refer to Z

as an analytic hypersurface of X.

We say that Z has pure dimension n—k if dim(ZNU) =n —k for every point p € Z.
A point p € Z is said to be a reqular point if ZNU is a manifold for a sufficiently
small neighborhood U of p. The set of all such points of Z is denoted by Zyeg.
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Theorem 2.2.1 (Lelong (1957)). Let Z be a pure (n— k)-dimensional analytic subset
of X. Define the (k,k)-current of integration [Z] by

(12).0):= [ 6. forall e D" FrH(X),

Then [Z] is a well-defined and positive closed current on X .

This theorem illustrates how the concept of an analytic subset in a complex manifold
gives an important example of positive closed currents. Furthermore, it indicates

that Zyee has finite volume locally near singular points of Z.

2.2.3 Plurisubharmonic functions

Plurisubharmonic functions were introduced by Lelong and Oka in 1942 [Lelong
(1942)]. They are a key subject in pluripotential theory and are closely linked to
the theory of currents. For instance, positive closed (1,1)- currents can be locally
analyzed using plurisubharmonic functions. In this part, we recall basic definitions
and fundamental properties concerning the local theory of plurisubharmonic functions

and their connections with positive (1,1)-currents.

Definition 2.2.4. Let € be an open subset of C". An upper semi-continuous function
@ : Q= [—00,+00) is said to be plurisubharmonic (psh for short) if ¢ Z —o0 and if
for any complex line L C Q, the restriction ¢|onr, is subharmonic on QN L, that is,
for all a € Q and & € C™ with [£| < d(a,0?), the function ¢ satisfies the mean value

inequality

L2 9
(2.11) ola) < %/0 o (a+e)do.
The set of plurisubharmonic functions on ) is denoted by PSH((Q).

Observe that every psh function is also subharmonic, meaning it satisfies the mean
value property on Euclidean balls or spheres, which follows by integrating (2.11) over
¢ € 5(0,r). Consequently, many results for subharmonic functions can be extended
to the case of psh functions. As in the subharmonic case, smoothing a psh function u
by convolution with a radial regularizing kernel p(z1,...,2,) = p(|21],...,|2n|) yields
a psh function (on a smaller domain). Thus, given ¢ € PSH(f2), we can find a
decreasing sequence of smooth psh functions {pxp.} on Q. = {z € Q:d(2,00) > ¢},
where p-(z) = e 2"p(z/¢), such that lim._,o@*p. = ¢ in Q. This allows one to verify
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properties for smooth psh functions and then pass to the limit.

Now we outline some of the properties of psh functions and for the proofs we refer
to [Demailly (2012)].

Theorem 2.2.2. Let () be an open subset of C".

(i) The set PSH(S) forms a convez cone, i.e., if p,1p € PSH(Y) and o, 3 > 0, then
ap+ By e PSH(Q).

(ii) If Q is connected and ¢ € PSH(Q), then either p = —o0 or ¢ € L}, ().

(iii) If p; € PSH(QY) is a decresing sequence of psh functions such that oy, — u, then
either ¢ € PSH(Y), or ¢ = —oc.

(iv) Let {@a} C PSH(Q2) be a locally uniformly bounded family and ¢ = sup, pq-

Then its upper semicontinuous reqularization

©*(2) = limsup ()

(—=z
is also a psh function in Q and ©* = ¢ almost everywhere.

(v) Let @1,...,0p € PSH(Q) and x : R¥ = R be a convexr function such that
x(t1,...,tk) is non-decreasing in each variable t;. Then x(¢1,...,¢x) € PSH(Q).
In particular, o1+ ...+ ¢k, max{p1,...,0r}, and log(e¥* +...+€%*) are psh

functions on €.

(vi) Let Q1 and Qg be open subsets of C" and C, respectively. If ¢ € PSH(3),
and f:Qy — Qg is a holomorphic map, then the composition po f € PSH(2).

Example 2.2.4. Using the fact that log|z| is a subharmonic function on C, we have
that log|f| € PSH(X) for every holomorphic function f on X. More generally, for
any fj € O(X) and oj >0 with 1 < j <k, we have that

log (/1™ +---+ | fk|**) € PSH(X),

which is a simple consequence of Theorem 2.2.2(v) with p; = ajlog| f;|.

Note that property (vi) implies that the notion of psh function makes sense on any
complex manifold X, unlike subharmonic functions. A function u on X is said to be
psh if it is psh on any holomorphic coordinate chart. It is also worth noting that
there are no non-constant psh functions on compact complex manifolds (a simple
consequence of maximum principle). This observation led to the introduction of

the concept of quasi-plurisubharmonic (quasi-psh) functions on compact complex
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manifolds. A function u on X is called quasi-psh if locally it can be written as the
sum of a psh function and a smooth function. This generalization allows for the

flexibility needed to work with psh-like functions in the compact setting.

If o € PSH(2) N%€?(2), by definition, the subharmonicity of the restrictions of u to
complex lines implies that u is psh if and only if the complex Hessian {%}
is positive semi-definite on (), which means that ddp is a semi-positive form.
Particularly, if dd“p is a positive form, we say that ¢ is strictly psh (spsh for

short).

For nonsmooth functions, a similar characterization of plurisubharmonicity can be
attained through a regularization process. Indeed, if ¢ € PSH(Q2) ﬂL}OC(Q), for
each € > 0, define p. = p*p. where p. is the standard smoothing kernel, then
dd®p. — dd°p as € — 0 in the sense of distributions. However, since (. is a smooth
psh function, ddp. is semi-positive. Hence, ddyp is positive in the sense of currents,
and it is closed since d(dd“p) = 0. As a result, if ¢ € PSH(2), then dd‘p defines
a positive closed current. Conversely, if ¢ € L} (Q) such that dd°p is a positive
(1,1)-current, one can show that, there exists ¢» € PSH(Q2) such that ¢ = almost
everywhere (with respect to Lebesgue measure). We note that in this regularity, ¢ is

called spsh if dd“p is a strictly positive current.

More generally, if T is a positive closed (1,1)-current, then for any point zg € X,
there exists a neighborhood 2 of z¢ and ¢ € PSH(Q2) such that T'= ddp, for the
proof see [Demailly (2012), III. Proposition 1.19]. The psh function ¢ with this
property is called the local potential of the current T.

The following important result known as the Poincaré-Lelong formula demonstrates
the connection between integration currents over analytic hypersurfaces and their

potentials. For the proof, we refer to [Demailly (2012), I1I. Proposition 2.15].

Theorem 2.2.3 (Poincaré-Lelong formula). Let f be a holomorphic function on
X which does not vanish on any connected component of X . Then log|f| is a psh

function, and it satisfies

ddlog|f| =>_m;[Zj],
J

where Z; denotes the irreducible components of f_l(O), and mj represents their

respective multiplicities.

Next we introduce the concept of pluripolar sets, which will be useful in our later

analysis.
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Definition 2.2.5. A subset E of X is said to be pluripolar if for every point v € X
there exists a neighborhood Q0 of x and ¢ € PSH(SY) such that ENQ C {p = —o0}.

Theorem 2.2.2 (ii) implies that pluripolar sets have zero Lebesgue measure.

Example 2.2.5. Any proper analytic subset of X s pluripolar, and the Hausdorff

dimension of a pluripolar set cannot exceed 2n — 2.

2.2.4 Monge-Ampeére operators and Intersection of currents

In this part, we present the intersection theory for analytic cycles from the current
point of view. Specifically, we define the wedge product dd“p AT of a positive closed
current 7" and a “generalized” divisor dd“p where ¢ is a psh function on X. In
this generality, this is not possible since dd°¢p and T have measure coefficients and
measures cannot be multiplied. However, if we assume that ¢ is a locally bounded
psh function, then the current ¢T is well-defined since ¢ is a locally bounded Borel
function and 7" has measure coefficients. According to [Bedford & Taylor (1982)], we

can then proceed to define

ddp AT = dd°(T).

An easy consequence of approximation of ¢ by regularizing kernels implies that
dd°u AT is actually a positive closed current. More generally, when given locally

bounded psh functions ¢1,..., ¢4, we define inductively

ddépy A - NddCoy AT = dd*(p1ddSpg A -~ Nddpy AT)

which is a positive-closed current as well. In particular, when « is a locally bounded
psh function, the (n,n)-current (dd®p)" is a well-defined positive measure, and the
operator (dd®)™ is called Monge-Ampére operator. 1t is important to highlight that
the mapping

(@1, pn) > ddSp1 A+~ NddCgy,
is also commonly referred to as the Monge-Ampere operator.

Next, we introduce the Monge-Ampere operators for unbounded psh functions. This

will be of fundamental importance, since we will deal with the products of integration
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currents along analytic subsets.

Let ¢ be a psh function on X we define the unbounded locus L(y) to be the set of
points x € X such that ¢ is unbounded in any neighborhood of z. Clearly, L(y) is a
closed subset containing the —oo locus of ¢. Now if, ¢1,...,¢, are unbounded psh
functions, the following result shows that we can define Monge-Ampeére operators
as long as the intersections of unbounded loci have sufficiently small Hausdorff

dimensions with respect to the dimension n—p of T'.

Theorem 2.2.4 (Demailly (1993)). Let T' be a (p,p)- current and ¢1,...,0q psh
functions on X, such that ¢ <n—p. If

Hon—2p—2k+1(L(pjy) N---N L(pj,) NsuppT’) =0

for all indices j1 < --- <ji in {1,...,q}. Then currents p1dd®pa A\--- Nddpy AT
and dd°p1 A\ ---Ndd°pq N'T are well-defined and have locally finite mass in X.

The proof uses induction on bidegrees, along with an improved version of
Chern-Levine-Nirenberg inequalities in this context. For more details, see [Demailly

(1993), Theorem 2.5]

Definition 2.2.6. The analytic subsets Z1,...,Z, of X are said to be in general
position if codim(Z;, N---NZj,) >k for all indices j1 < --- < ji in {1,...,q}.

If, in particular, T" is of bidegree (0,0), and ¢ is arbitrary, the following result holds.

Corollary 2.2.5 (Demailly (1993)). Let ¢1,...,¢4 be psh functions on X such that
L(p;) is contained in an analytic subset Z; C X for every j. Then dd®p1 A...Nddp,

is well-defined provided that Zv,---,Z4 are in general position.

When ¢; = log|f;| for some non-zero holomorphic function f; on X. Then,
[Z1] N N[Zg] = ddCp1 N\ --- NddCpq is well-defined provided that the intersection of
supports Z1N---NZ, has pure dimension n—k, i.e., codim(Z; N---NZ;, ) =k for
every ji < --- < jr in {1,...,¢q}. Consequently, we arrive at the following result. For
the detailed discussion of the proof we refer to [Demailly (1993), Proposition 2.12].

Proposition 2.2.6 (Demailly (1993)). Suppose the divisors Z; satisfy the
aforementioned codimension condition. Let (Cy)p>1 represent the irreducible
components of the intersection of point sets |Z1|N---N|Zy|. Then, there exist positive

integers my, such that

[Z1] N N [Zg) = my[Cl.
k

The term my, denotes the intersection multiplicity of Zu,...,Zq along Cy,.
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2.3 Kahler Manifolds

In this section, we introduce the definition of Kéhler manifolds and provide an
overview of some of their key properties, with a particular focus on compact Kéahler

manifolds.

Let X be a complex manifold of dimension n with complex structure J. We will
be interested in Riemannian metrics on X which are compatible with the complex
structure in a particularly nice way. Recall that a Riemannian metric g on X is a
smooth section of T* X ® T* X defining a positive definite symmetric bilinear form
on 1T, X for each z € X.

Definition 2.3.1. A Hermitian metric on X is a Riemannian metric g on X
such that g(J&, Jn) = g(&,n) for any tangent vectors €,m, i.e., J is an orthogonal

transformation on each tangent space.

Any complex manifold admits a Hermitian metric. To elaborate, consider any

Riemannian metric g on the manifold X and define

h(&,m) == g(&n)+g(JE JIn)

for every ¢,n € TX. Then h(§,n) = h(JE, Jn). Given a Hermitian metric g on X we

define its fundamental form as

w(&n) = g(JEmn)

for every £,m € TX. Then one can check that w defines a real 2-form of type (1,1),
ie., we QYN (X)NO2(X). Conversely, we can also retrieve the metric g from w using

the expression

9(&§,m) = w(&, Jn).

Definition 2.3.2. A Hermitian metric g on a complex manifold X is called a Kdahler
metric if the associated fundamental form w is closed, i.e., dw =0, and the form w is
called the Kdhler form. A Kdhler manifold is a complex manifold endowed with a

Kdhler metric g.

Remark 2.3.1. [t is a standard notational convention to identify the Kdahler metric

g with its associated Kdhler form w.

In a local coordinate system (z1,...,2,), a Hermitian metric is determined by
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components g, where
(2
9k =9\ 5= )»
J aZj azj
and ¢ is the extended Hermitian metric on the tangent bundle TX @ C by C—

bilinearity. The Hermitian condition implies that for any j,k we have

00 00
9 aZj’aZk — 9 8@’8@

Therefore, we can write

n
g= Z 9jk(dz; @ dzy, + dz), ® dzj).
J k=1

The symmetry property of g implies gj; = gx;, and the positivity of g ensures that
gjk forms a positive definite Hermitian matrix at each point. The corresponding

fundamental form w can be expressed as

w= izgjdej ANdZp,
Jk

In turn, the Kéhler condition implies that g is Kéahler if

995k _ Ogik
8zz~ 8Zj

, for alli, 7, k.

Moreover, the Kéahler condition gives rise to additional fundamental outcomes in

Kahler geometry, which are recognized as the 99-lemmas.

Lemma 2.3.1 (Local 0-lemma). Let X be a Kdihler manifold with Kdhler form w.
Then there exists an open neighborhood U such that

(2.12) w = i0Dy

for some p € €°°(U,R) strictly plurisubharmonic function.

The local real-valued smooth function ¢ is called the Kdahler potential. If the manifold

X is compact, then we have the global version of 99-lemma.

Lemma 2.3.2 (Global 99-lemma). Let X be a compact Kihler manifold. If w and
W' are two real (1,1)- forms in the same cohomology class, then there is a function
@ : X — R such that

W' =w+i0dp.

As the Kahler form w is a closed real form, it defines a cohomology class
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[w] € H%(X,R). The global 90 lemma, implies that on a compact manifold, Kéhler
metrics in a fixed cohomology class can be parameterized using real-valued functions.

The proof of this lemma relies on the Hodge theory of compact Kahler manifolds;
for details, see [Huybrechts (2005), Corollary 3.2.10].

Example 2.3.1. C™ with the standard Kdhler form

:on n
w :%Zdzj/\dfj :iZda:j/\dyj,
= j=1

is a Kdihler manifold with the global Kdhler potential ¢ = %2?21 |2

Example 2.3.2. The complex projective space P is a Kdhler manifold. Let
P =Uj_oUj be the standard open cover where Uj = {[z0: ... zn| € P" : 2; # 0} with
the charts ¢ : Uj — C", given by

20 Zi—1 Rj+1 Z,
di(lz0:... 1 2)) = (,,],],,n>

On each Uj, define the function

p; =log (HZW) ,

=1

where & = j—; for 1 7, and the form
i
Wy = ;8(‘9%,

which is a real, closed (1,1)-form. We now show that w; defines a global element

w € QVLYP?) NO2(P"), meaning that wjlu;nvy, = wklu;nu, - On U MU, we have

2
sog:log( >+90k-

Since 90log|¢|? =0 (fgfé) =0 (dé) =0 on C, we have 85(

that w; is globally well-defined.

2 n

>

=0

25

2l 2k
Zj j

2
)zlog(
z z

k J

%2
]

) =0, which implies
Now, a straightforward computation yields

(- i & _
k=1
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where

9 =z
G:(gkl)kl: ((1+‘|§H )5kl) §k§l> .
1<k,l<n

(1+&]1%)?
The matrix G is positive definite because, for any v # 0 € C™, the Cauchy-Schwarz

inequality for the standard Hermitian product on C™ yields

(Go,v) = (ol + N2l = 1€, ) 2) =

1
(1+1€112)? (1 +11€11%)?

As a result, w is a Kdhler form, referred to as the Fubini-Study form, denoted by

wrg, and the functions ¢; are its local Kdhler potentials.

The next result demonstrates that the above examples are not a coincidence, that is,
in the presence of a Kéhler metric, one can choose holomorphic coordinates near any
point with particularly favorable properties. Specifically, it indicates that locally, a
Kahler metric approximates the Euclidean metric up to second order. This fact will

prove to be highly beneficial for computational purposes.

Theorem 2.3.3. Let X be a complex manifold and g a Kdhler metric on X. Then,

given x € X there exists holomorphic coordinates (z1,...,z,) around x such that

w—zZ( %+ O(|7] ))dzj/\dék,

where 8y, is the identity matriz and O(|z|*) denotes terms which are at least quadratic

i 2",z

Such coordinates are known as normal coordinates. We will use a slightly modified

version of these coordinates in Chapter 4.

2.4 Holomorphic Line Bundles

In this section, we present a comprehensive overview of the theory of holomorphic
line bundles. We delve into their definition, construction via trivializations, and their
interplay with algebraic operations like tensor products and duality. Additionally, we
discuss hermitian metrics on line bundles, their role in defining positive and ample

line bundles, and their connection to curvature and Chern classes.

28



2.4.1 Holomorphic line bundles and their curvature

Let X be a complex manifold of dimension n. A holomorphic line bundle on X
consists of a family {L;},ex of one dimensional complex vector spaces parametrized

by X, together with a structure of a complex manifold on L = U,¢x L, such that
(i) The projection map m: L — X taking L, to x is holomorphic.

(ii) There exists an open cover {U,} of X and biholomorphisms

bo T H(Uy) = Uy x C

taking the vector space L, = 7~ !(z) isomorphically onto {z} x C for each x € U,
The map ¢, is called a trivialization of L over U,. We define the transition functions

9ap : UaNUg — C* for L relative to the trivializations ¢, by

9ap(2) = ($a095") Najxc € C*

Clearly, the functions g,g are non-vanishing holomorphic functions and satisfy the

cocycle condition

o —1
(2.13) Job " I
JaB 9By  Gya = 1

Conversely, given a collection of holomorphic functions {g,g € O*(UoNUpg)} satisfying
the cocycle conditions. We can construct a unique (i.e. up to isomorphism)

holomorphic line bundle L — X with transition functions {g,s} basically by defining
L:= <|_|UQXC>/~
«

where (z,v) ~ (2, gqs(x)v) whenever x € Uy, NUg. Any linear algebraic operation on
fibers induces operation on line bundles and this is easily described by the transition
functions, e.g. if L and L’ are line bundles on X with transition functions géﬁ
and ggﬁ, respectively. Then L® L' — X is a line bundle with transition functions
gé?y = géﬁ ggg Similarly, the dual of L is the line bundle L* — X with transition

functions gég = (géﬁ)_l etc.

Example 2.4.1 (Line bundles on P"). Consider the set

O(=1) :={([z],€) e P"x C"TL . ¢ e [2]} c P" x C"*!
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and the projection map m: O(—1) — P" defined by 7([z],£) = [z]. Then O(—1) is a
holomorphic line bundle on P", called tautological line bundle. Indeed, if{Uj}?:O is
an open cover of P", where Uj ={[z0:...: z,] € P": 2; # 0}. Define the trivializations
¢j N U;) = U; xC by ¢i([2],€) :=&;, then

giod; ([2,1) = ¢ille]. (202 Lo 2n/ %)) = (), 2/ 7).

j-th
Hence, transition functions

gij : UiNU; — C* are given by g¢;;([2]) = j—z € O"(U;NU;).
J
The dual of O(—1) is called the hyperplane line bundle denoted by O(1) and for
p >0 we define O(p) := O(1)®P whose transition functions are simply obtained by
inversion and multiplication of transition functions of the tautological line bundle

O(-1), that is ghj([2]) = (2)".

Zq

The cocycle condition for the transition functions yields that they define a cohomology
class, denoted as [g,5] € H'(X,0%). Here, H'(X,0*) is the first sheaf cohomology
group of the manifold X with coefficients in the sheaf of non-zero holomorphic

functions, denoted by O*. The exponential short exact sequence
0Z—-0—-0"—=0

produces a mapping ¢; : H'(X,0*) — H?(X,Z), and the first Chern class c1(L) is
defined by the image of [g,p] under this mapping.

A holomorphic section of L — X over U, C X is a holomorphic map s: U, — L
such that s(z) € L, i.e., mos=1idy,. A holomorphic frame for L over U, is a
non-zero holomorphic section of L over U,, and we denote it by e,. In turn, any
section s of L over U, can be written as s = sye, where s, € O(U,,) and satisfies the
compatibility condition s, = gages on U, NUg. We denote by H 0(X, L) the space of
global holomorphic sections of L. By the observation above, we can think of a global
section s € H(X, L) as a collection of holomorphic functions s = {s,} satisfying the

compatibility condition on the overlap.

Example 2.4.2. For p> 0, H(O(p),P") = Cﬁom[zo, ..y 2n]. For a detailed proof
see [Huybrechts (2005), Proposition 2.4.1]

A Hermitian metric h on a holomorphic line bundle L is a choice of the Hermitian

inner product hy : Ly X L, — CU{oo} on each fiber L, varying smoothly with z € X.
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If e is a holomorphic frame over U,, then we define its hermitian norm
(2.14) leal? = h(ea,eq) = e 29 € [0, 00],

where @, € €°°(Uy,). The local functions ¢, are called local weights of the hermitian

metric h and satisfy the relation

(2.15) Yo = pg+10g|gasl, onUsNUg.

Consequently, a hermitian metric is a collection h = {e~%>} of functions ¢, € €°°(U,)

satisfying the above compatibility condition (2.15).

We say that the metric h is of class €% if the local weight functions p, € €*(U,).
Moreover, h is said to be positive, semi-positive metric of class € if p, is strictly
plurisubharmonic and plurisubharmonic, respectively. The metrics that we will
consider in this thesis will be mainly positive of class €* where k = 2,3, (i.e. o € ¢k,
and dd“p, > 0 holds pointwise). Note that if s is an arbitrary holomorphic section
of L over U, then locally s = syeq with s, € O(U,) and |s|3 = |sa|?|eal? almost

everywhere (unless s(z) =0 and |eq|p(z) = 00).

A holomorphic line bundle (L,h) equipped with a €% metric h is called positive if h
is a positive metric of class €*. Note that unless we specify the regularity, the term
positive holomorphic line bundle implies that we are considering a positive smooth

Hermitian metric.

Given such a metric h, its curvature form defined by
c1(L,h) = —ddlogleq|n = ddpq in Uy

is a globally well-defined real, closed (1,1) form due to the relation dd“log|g,s| =0
on U, NUg. By de Rham’s isomorphism theorem, it represents ci(L) where c1(L) is
the image of the first Chern class of L under the mapping i : H?(X,Z) — HY1(X,R)
induced by the inclusion i : Z — R.

Definition 2.4.1 (Canonical line bundle). The top exterior power of the holomorphic
cotangent bundle (T*X)(l’o) 1s called the canonical line bundle of X and is denoted
by Kx, i.e.,

n

Kx = \NT*X)10 = det((T* X)),
Its dual is called the anti-canonical line bundle and is denoted by K .

A local holomorphic frame for Kx on a coordinate neighborhood (U, z) is given
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by dz1 A--- ANdz, and the transition functions are given by jacobians of coordinate
changes, that is if {(Uq,2%)}s are holomorphic coordinates then on U, NUg #

«
3zj

B

dz?A~-~/\dz$;:det[
0z,

]dzlﬂ/\~~-/\dzg

If g is a Hermitian metric on X, then it induces a natural hermitian metric on Ky
by hEx = (detg)~!

Definition 2.4.2. The first Chern class of X is defined by

e (X) = o (K%, hEX) = —¢1 (K x, h5X).

2.4.2 Poincaré Lelong Formula for Holomorphic Sections

Our goal here is to generalize the Poincaré-Lelong formula from Section 2.2.2 to
holomorphic sections of holomorphic line bundles. Let L be a holomorphic line
bundle, and s € H%(X, L) a non-trivial holomorphic section of L. Recall that zero

divisor of s is defined as the formal sum
Zs = ZordV(S) -V,
\%4

where the sum ranges over all irreducible analytic hypersurfaces within the zero set
of s, and ordy (s) € N\ {0} represents the vanishing order of s along V. The current

of integration over the zero divisor of s is given by
[Z5] = _ordv (s)[V],
14

where [V] denotes the current of integration over V.

In a trivializing neighborhood U, we express s = sq€q, Where s, € O(U,,). Utilizing

the Poincaré-Lelong formula locally, given by Theorem 2.2.3, we have

2] = dd°log]s.l.

Now, employing the fact that |s|, = |sq|e™%> and ¢1 (L, h) = dd®p, on U,, along with
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compatibility conditions, we deduce
(2.16) [Zs] = c1(L,h) + ddlog|s|p,

which represents the Poincaré-Lelong formula for holomorphic sections of line bundles.

This formula will serve as an indispensable tool in the subsequent analysis.

Remark 2.4.1. [Z,] is a positive-closed (1,1) current with local psh potentials of the

form log|sq].

In this framework, we treat the concepts of zero set and zero divisor interchangeably,
denoting both by the same symbol for simplicity. Additionally, by [Zs], we indicate the
current of integration along the zero divisor Z or equivalently along the zero set of s
with multiplicities. Similarly, in higher codimensions, if ¥ = (s1,...,s,) € H°(X,L)*,
Z, is used to represent the zero cycle of ¥ and the zero set of ¥ interchangeably.
Furthermore, [Zx] denotes the current of integration over the zero cycle Zy or

equivalently over the analytic subvariety Zy;, considering multiplicities.

2.4.3 Projectivity Criterion

In this part, we introduce the classical Kodaira embedding theorem, which serves
as a criterion for determining whether a compact Kéhler manifold is projective.
Additionally, we present a theorem by Grauert, which also addresses the projectivity

of a compact Kéahler manifold under different sufficient conditions.

Let X be a compact Kéahler manifold and L be a holomorphic line bundle over X. A
point ¥ € X is said to be a base point of L if s(x) =0 for all s € H*(X,L). The base
locus of L, denoted as Bs(L) (sometimes also denoted as Bs(H%(X,L))), is the set of
all such base points of L. According to Hodge Theory ([Huybrechts (2005), Theorem
4.1.3)), it is known that as X is compact HY(X, L) forms a finite-dimensional vector
space and say d = dim H°(X,L). If Sy,...,Sy constitute a basis for H°(X, L), then

Bs(L) = Sy H(0)N---nS;1(0)

is an analytic subvariety.

Definition 2.4.3. The Kodaira map associated with L is defined as
d: X > P(HYX,L)*)
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®(x):={sec H'(X,L): s(z) = 0}.

Fix a basis S1,...,5; for HY(X,L) we can then identify H(X,L)= C? and hence
P(HO(X,L)*) 2 P?!. Locally, when we trivialize L over an open cover {U,} of X
using the transition functions g,g: UoNUg — C*, the Kodaira map over the open
set Uy, is given by

d:X -5 P71 O(x) = [S1,a(x) ... 0 Sgalx)]

Here, S; o € O(Uy,) are local holomorphic functions representing S; over U,. Note
that the map is well-defined, i.e., independent of trivializations, since for z € U, NUpg
as Sja = gapSj s, we have [S1.4() 1 ... : 93 0(7)] = [9ap(7)S1,a(T) : ... : Gap(7)Sg.a(T)].
Moreover, this local description shows that ® is meromorphic on X and holomorphic
on X \ Bs(L). Note that since Bs(L) is a closed subset of X, then X \ Bs(L) is an

open submanifold of X, so the notion of holomorphic map is meaningful.

Remark 2.4.2. Evidently, this map does depend on the choice of basis. However,
for two different basis choices, the induced maps differ by a linear transformation of

pd-1,

Definition 2.4.4. A holomorphic line bundle L is called ample if there exists a

positive integer p such that the Kodaira map associated with L®P is an embedding.

By definition, a compact Kéhler manifold is projective if and only if it possesses an
ample line bundle. The characterization of ampleness in this context is given by the

following well-known theorem due to Kuhiniko Kodaira.

Theorem 2.4.1 (Kodaira Embedding Theorem). A holomorphic line bundle L over

a compact Kdahler manifold X is ample if and only if it is positive.
Next, we recall an important criterion for projectivity due to Grauert

Theorem 2.4.2 (Grauert (1962)). Let (X,w) be a compact Kihler manifold equipped
with a €%- Hermitian holomorphic line bundle (L, R) such that c1(L,h) > ew for some

positive constant €. Then the line bundle L is ample and X s projective.

We note that this theorem was originally given in a more general setting, where X is

a reduced Hermitian space. However, this version is sufficient for our needs.

Therefore, in this thesis, the line bundles considered will always be ample, as assured

by Grauert’s projectivity criterion mentioned above.
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2.4.4 Ricci Curvature

In this part, we introduce the Ricci curvature of compact Kéhler manifolds, which

will be utilized in Chapter 4 for L?-estimations of the 0- operator.

Let (X,w) be a compact Kéhler manifold with natural complex structure J. It is
well-known that the Kahler form w and the complex structure .J, compatible with
w, determine a Riemannian metric g on X by ¢g(&,n) :=w(&, Jn) for all £,neTX.
Let Ric be the Ricci curvature of g which is defined as Ric(n, () :=tr(§ — R(&,n)C)
for all §,n,¢ € TX, where R(£,1)¢ = V¢Vy( = VyVe( = Ve € is the Riemannian
curvature of X and V represents the Levi-Civita connection. The Ricci form, denoted

by Ric,, is defined on X as the (1,1)-form associated with Ric, given by
Ricy (§,n) = Ric(J¢§,n), for any {,neTX.

The volume form w” induces a metric, denoted by hEx , on the anti-canonical line
bundle K%. By the result from [Ma & Marinescu (2007), Problem 1.7], since the

metric is Kédhler, we have
*
Ric, = iRKX = —iRKxX

where REX (resp. REX) is the curvature of the holomorphic Hermitian connection
on K% (resp. Kx). For more details on connections see [Ma & Marinescu (2007)].

Let [Ric,] be the cohomology class of Ric,, then we have

[Ric,,] = 27me1 (X) € H*(X,R).

Locally, let w =13, 1. gjxdz; A dzy be the Kahler form. Then Ricci form of w can be

written as
2
0z 2 0zy,

(2.17) Ricy, =—1)
jik

log(det(gjx))dzj N dZy.

Example 2.4.3. Consider the complex projective space P™ with the Fubini-Study
metric wpg defined as in the Fxample 2.3.2 with

gip— (5]' _ 22k
) A+Iz))?
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A straightforward computation shows that

1
log(det(g;x)) = IOgW = —(n+1)log(1+||z]*)

and hence its Ricci form is given by

Ricypg = (n+1)wrs.
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3. Equidistribution of zeros of random systems of holomorphic

sections

In this chapter, we establish an equidistribution phenomenon related to the
simultaneous zeros of random holomorphic sections arising from sequences of positive
holomorphic line bundles. Our investigation include a diverse range of probability
measures, including classical ones. The analytical tools utilized include variance
estimation and the study of the expected distribution of random zeros. Additionally,
to illustrate the results, we present explicit examples such as the Gaussian and

Fubini-Study measures, among many others.

3.1 Geometric Framework and Randomization

Let (Lp,hp)p>1 be a sequence of holomorphic line bundles on a compact Kéhler
manifold (X,w) of dim¢ X =n with a fixed Kihler form w and ¢ Hermitian metrics
hy, (see Section 2.4) such that the curvature forms cq (L, hy) satisfy the following so
called diophantine approximation of w or sometimes we refer as “prequantization

condition”:

3.1 Ly, hy) =w+O(A>%) in the €°-topology as p — oo,
P> /lp P

Ap

where a >0, A, > 0 and lim,_,s, A, = co. This means that

(3.2) (Lp,hp) —w

||AP €0

where A, >0, a >0 and lim,_,, A, = +00.

The approximation condition (3.2) is derived naturally as follows: Starting with

a Kéhler form w, one may initially approximate the associated cohomology class
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[w] € H?(X,R) with integral classes in H?(X,Z) through diophantine approximation,
as described by Kronecker’s lemma. Subsequently, one can construct smooth forms

corresponding to these integral approximations.

This was first considered in [Coman et al. (2023)] in the ¥°*°-norm topology induced
by the Levi-Civita connection VX because the authors deal with the complete
asymptotic expansion of the Bergman kernel restricted to the diagonal. We do not
need such a strong topology, in fact, only the €%-norm (or continuous norm) topology

will be sufficient for us.

It is also important to highlight that, within the examples of sequences of line bundles
(Lp, hy) fulfilling the condition (3.2), one natural instance is (Lyp,hp) = (L%P, h%P)
for some fixed prequantum line bundle (L,k). Other examples include cases where
(Lp, hy) = (L®P, hy) but here, hy is not necessarily the product metric h?, e.g., one can
consider the twisted metrics hy, = hPe™#?, with appropriate weights ¢,. Additionally,
there are examples involving tensor powers of several line bundles, for more details
see [Coman et al. (2023)].

In this context, the k-volume is expressed as Vol (A) = [4w"*. We suppress the
subindex because it will be clear from the context which codimension is meant.
We also remark that, unlike [Coman et al. (2023)], for the sake of simplifying our
notation, we will not utilize additional volume form on the base manifold X besides
w. Although employing a different form than w might alter the notation, it will not
affect the equidistribution results of this paper. The adjustment mainly involves
substituting the appropriate powers of w with another form ¢ in the relevant parts,
such as basic cohomology arguments and the total variation of the signed measure
dd‘¢ for a test form ¢.

We denote the vector space of global holomorphic sections of L, by H O(X Lyp).
Take into consideration the following inner product on the space of smooth sections

% >°(X, Ly) with respect to the metric h, and the volume form w” on X:

(s1,52)p ::/X<51(:1:),32(:E)>hpwn and HSHI% = (5,5)p.

By virtue of Cartan-Serre finiteness theorem (see, e.g., Chapter 6, [Grauert &
Remmert (2004)]), the space H(X, L) is finite dimensional (since every line bundle
can be seen as a coherent sheaf) and we will write dj, := dim H*(X,L,). The
Associated Bergman kernel will be denoted by K,(x,y) and its restriction to the
diagonal is denoted by, K,(x) := Kp(z,x) which is called the Bergman function. If
{sr,... ,Sgp} is an orthonormal basis for H(X, L,), the Bergman kernel function
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has the following representation
(33) Ep(x) =Y |57 (@)f;,, =€ X.

Note that K, is independent of the chosen basis {S} ,...,Sgp}, (see [Coman &
Marinescu (2015)], Section 3), and

(3.4) log K, € LY (X,w"),

as it is locally difference of psh functions. Moreover, it has the dimensional density

property, that is
Ky(x)w" =d,.
/X p( ) P

Next, we make the following assumption about the behaviour of Kp(z) : There exists

a constant My > 1 and py € N such that

AP
p
(3.5) ; < Kp(z) < MOAZ

holds for every x € X and p > pg. Consequently, this leads to the following estimates

on the dimension d,, which will be useful in the subsequent analysis:
(3.6) My~ 'Vol(X) A} < dp, < MoVol(X) Ay

for all p > pog.

Randomization

Let us fix an orthonormal basis {Sf};lp:l of HY(X, L,). Then, every s € HY(X, L,) is

written in a unique way

(3.7) Sp = Za?Sf.

Using this representation, we identify the spaces H%(X, L) with C% and equip them
with the dp-fold probability measures ¢, which does not put any mass on pluripolar

sets and satisfy the following moment condition:
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There exists a constant o > 2, and for every p, a constant C), such that

(3.8) /«: . Jlogl(@,0)]| "oy (a) < €,

for every v € C% with ||v|| = 1. The probability space (H°(X,L,),0,) depends, as
is seen above, on the choice of the orthonormal basis used in the identification of
HO(X,L,) (unless o, is unitary invariant).

Additionally, we consider the product probability space
o0 o

(Hoo,000) i= ( I1 2°(X.L,). I] ap>
p=1 p=1

consisting of independent random sequences of holomorphic sections of L, with

increasing values of p.

3.1.1 Intersection of random zero currents

Before we proceed further, it is essential to define the random integration currents
over the simultaneous zero loci of k— independent holomorphic sections, chosen with
respect to the probability measure o, as defined above. Furthermore, we define their

variance and expectation, which will be consistently employed throughout.

Let o), be the aforementioned probability measure. For 1 <k < dimc X, consider the
following probability spaces

k k 0 0
(1,05) = (T L), [T op) and (ko) = (TT 78 TLok )
j=1 j=1 p=1 p=1

These probability spaces consist of random k-systems of independent holomorphic
sections of L, and sequences of k-systems of holomorphic sections with increasing

values of p, respectively.

Let Zlg = (SZIJ, e ,slg) € 7—[]'; be such a random system of k-sections. We denote its

simultaneous zero locus by
. ol _ _ ok —
ZE;]; ={r€ X :sy(r)="---=s,(x)=0}.

The current of integration (with multiplicities, whenever well-defined) along the
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analytic subvariety ZEIE is defined as follows, given ¢ € D Fn=F(X)
(Zg)o) =], o
p

Now, since the base locus Bs(H(X, Ly)) =0 for p > po (by 3.5), and our probability
measure does not charge pluripolar subsets, Bertini’s theorem (see Section 3.5)
implies that with probability one the zero sets ng; ,J=1,... k are in general position.
In particular, for ag—almost every system ZI; € 7—[5 the common zero set ZZI; is a
complex submanifold of pure dimension n — k and the current [22’5] is well-defined.

Moreover, the current of integration along ZE’; is represented by

(39) [ZE ] = [Zs})] ASEERA [Zsﬁ]

k
P

The expectation and the variance of the current-valued random variable

(HY(X, Lp)k,af,f) > Z’; c [Zzgg] are defined as follows:

(3.10) (ElZg).0) =BllZgglo) = [ (s ) dof(Sh)
) o))

(3.11)  (Var[Zyy), 6R¢) := Var([Zys], 6) = E([Zgs], 6)° — (B{[Zsy

where ¢ € D" F"=k(X). Here, ¢ X ¢ := mi A s, where m1,m0 : X x X — X are

projections onto the first and the second factors, respectively.

By definition, the expectation and variance can be regarded as currents as well.
Specifically, we have E[ZE’;] € D'y, x(X) whereas Var[Zgi] € Doy o0 (X x X)

k
P
3.2 Variance Estimate

In this section, we delve into the proof of Theorem 1.3.1 using an inductive approach
based on the codimension k. We start with the case of codimension 1, serving as the
initial step in our induction process. In order to initiate our analysis, we first make

some preliminary observations and recall the facts needed for the proof.

We start by proving the following useful lemma, which will be used in multiple

calculations in this chapter.
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Lemma 3.2.1. There exists a constant b > 0 such that
(3.12) —b||9l| 2™ < dd°® < b|| @[ 2™
for any real-valued ¢ € D"~ Hn~1(X).

Proof. Let x € X and (U, z) be a local holomorphic coordinate system centered at x.

In U, we write

P(z) = > br.5(2)dzr Ndzy, ¢1.5€CT(U).
[I|=n—1,|J|=n—1

The operator dd® applied to ¢ gives

e, 1 2 Pora(z) _ _
dd“¢ = — Z Z dzip NdZyNdzrp NdZ .
T l|=n—1,|J|=n—1k,l=1 02,07

For any relatively compact subset G CC U, we have

Por.(2)
(92]49?1

< ||¢ll2(q) forall I,J.k,l.

To bound dd®¢ by w™, we consider the Kéhler form in local coordinates,

n
w=1 Z gr1dzi Ndzp,
k=1

where gi; are the components of the Hermitian metric. The volume form is then
given by
w" =i"det(gg) dzi NdZL N\ -+ Ndzp NdZy,.

Thus, noting that there are n? terms in the double sum below, and comparing the

terms with w", we have

n

O¢r.y(z

1
C < - 2
‘dd ¢| - (92}4921

T\ 1|=n—1,]J|=n—1k,I=1

‘ ]dzk/\dzl/\dzf/\dzﬂ

2
< (Wdet())H(bH%w |i" det(gr) dz1 Adzy A+ Ndzp NdZy|

2

= 7rdet( )HngCf?

Now, since X is compact, we can cover X by finitely many such charts U;. For

each chart, consider a relatively compact subset G; CC U;. Let C; = be the

wdet( )
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constants corresponding to these subsets. Taking b = max; C;, we have

dd°| < b6z on X.

Therefore,
—b[|@l 2" < dd°p < b||p]| 2"

where b > 0 is a universal constant inherently depending on the dimension n and the
Kéhler metric. 0

Let s, € HY(X,L,), then we can write it as
Z apSp

where ') = (57, .,Sgp), a=(d,...;a ) C% and {Sp} ” | is an orthonormal basis
of HO(X,L,).

Let x € X. U C X be an open trivializing neighborhood of  and e, be a holomorphic

frame of L, in U. Then locally S’p fp ep, where fp are holomorphic functions in U

and so, by writing f = (fl,.--,fdp)7

By Poincaré-Lelong formula (2.16), on the neighborhood U, we have
[Zs,] = dd®log|{a, f}| = ddlog|{a,T'p)|n, + c1(Lp, hp).

Now, for any ¢ € D"~ 1"~1(X), we define the following random variable

(3.13) Wy, = [Zs,] — c1(Lp, hyp) = dd“log |{a,T'p)|p,,

By the invariance property of the variance under translations with deterministic

constants, we get
(3.14) Var([Zs,],¢) = Var(Ws,,¢).

Therefore, in the light of (3.14) it is enough to estimate Var(W,,¢). Employing
certain methods from [Shiffman & Zelditch (1999)] and [Shiffman & Zelditch (2008)]

in our setting, we obtain the following theorem for codimension one.
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Theorem 3.2.2. Under the hypotheses of Theorem 1.5.1, if s) € HO(X,LP), then
for all p>1 and any (n—1,n—1)-form ¢ of class €% on X, the following variance

estimate holds true

(Cp)®
A

(Var[Zs,],¢) = (ByVol(X))?,

where By is a constant depending on the form ¢.

Proof. First, note that

(3.15) Var(IW,, ,6) = E(W,. 6)? — (E(W,. ) "

By the relation (3.13), we have
(3.16)

E(Woy 0= [ s ) Ji S 10810 Tl 081, Tplo)) n, dd*6 () dd o) (5)

Writing
dp

1/2
T, = (L 187@)E,) =Kyl

j=1
gives I'y(z) = |Up()]n,up(w) (so that |up|p, = 1) and we insert I'y, = [T'y|p, up into the

integrand in (3.16), which breaks it into four terms:

(3.17)
log [Ty (2)|n, 10g [Ty (y) |n, +10g |Up()| 1, Log [{a, up(y)) |, +10g |Up(y)|n, log|{a, up(x))|n,
+log [{a, up(x))|n, log|{a, up(y))|n,-

Before continuing with the variance estimate, we will see that (W, ¢) is bounded.
To do this, we establish an auxiliary inequality to begin with. First, by the relation
(3.12), we have

w" < 00

318) [ [loalTy(a)hy |t 0(e)] < bl [, [lox (L@,

since log K, € L'(X,w™) for every p > 1. Now, it is evident that

‘E<WSP7¢>‘ = ‘/HO(X,LP)/X (log’Fp(x)|hp —i—log\(a,up(xmhp) dd°¢ () doy(s,)
< Jrogrny 108 @, | ld0(@) oy 5,

* Jogr 1y Jx 1081 U @y 42002 doy(sy)
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The first integral has an upper bound by (3.18) and ¢, being a probability measure on
HO(X, Ly). The second double integral is also bounded from above. To elaborate on
this, by the identification H°(X, L,) ~ C% and the moment condition (3.8) combined
with Holder’s inequality and the relation (3.12), we get

319) [ [, [lo5l{a,pp())l|doy(@)ldd°s(@)] < (Cp)7 b8l Vol X),

where

fi(z) fa,(x)
ity fi(@)] ity fi(@)]

It follows from Fubini-Tonelli’s theorem that
(3.20)

Jocs J 1081 @ @Dl lda* 6o (sp) = [ [, [og](a,pp(o))[dep(a) (x|
Hence, we are done.

We now return to the variance estimate of Ws,. In order to do this, we also

2
expand the second term, (E(Wsp,qb>) , in the variance expression (3.15) by using

the aforementioned expression for expected distribution:

E(W,,.0) = |

HO(X.Ly) /X (log |T'p()|n, +log [(a, up())|n, ) dd°¢(x)doy(sp),

which gives the following

(E(W,,.0))" = i +202+ Js,

where
(3.21) 2= /HO(Xva) /. log [Ty (2) |, dd°é(x) oy (s,) )
2= </HO(XL )/X logwp(m)‘h” dd9(z) dap(sP))
(3.22) P
U Ry
and lastly,
(3.23) Js = /HO(X . /X log (@, up (2)) [, () dory(5,))

Note that all of the integrals Ji,.Jo and J3 are finite since E(W,,, ) is bounded.
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According to the four terms given in (3.17), we have
E(Ws,, ¢)* = B1+ 2By + Bs,

where

B21)  Bu= [ ] 10810, log Tyl ddo(x)dd*6(y)dory (s),

3:25) Byi= [ [ [ 08I0 by los o, upl)) n, dd*6 () dd o)y (5)

(The second term, log|T',(z)|n,log|(a,up(y))|n,, and the third one,
log [Ty (y)|n, log [{a, up())|n,, in (3.17) are actually the integrands that yield

the same result) and finally,

(326)  By:= [ [ ddo(y)ddo(a) [, 10g](app(@))|logl(app(y)|doy(a)

From (3.18), the moment assumption (3.8) and the Fubini-Tonelli’s theorem, we
see that By, By and Bsj are all finite, moreover, we have that B; = J; and Bs = Js.
Therefore, the only integrals that survive are J3 and B3, which are not always equal

to each other, thus we obtain
(3.27) Var(Wsp,qb) = Bg — Jg,

so it will suffice to estimate the term Bs from above to complete the variance
estimation. To this end, by Tonelli’'s theorem and Hélder’s inequality with é—|—% =1,

where v > 2 is the constant satisfying the moment condition (3.8), we obtain

By< [ [ ddo(y)dao() [, [1ogl(a.py(@)][1o5](a.py(y)|doy(a)

< [ [ arowaro] [, [glta. ooy} { [, [1glt0. oo o)}
< [ [ aowarowicyH] [, [loslam do@)

If we again apply Holder’s inequality to the innermost integral in the last line (since

=

a >2> (3 allows us to do so), we get

(3.28) By< [ [ ddo(y)ddo(a)(Cy) .

Consequently, using the total variation inequality (3.12) of dd® twice in (3.28) leads
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to the following
(3.29) B < (Gp)*/ 0|2 Vol(X)?,
which, by normalization, gives the desired variance estimate. O]

Before proceeding to the proof of our main theorems, we present a lemma concerning
cohomology classes of integration currents that will be instrumental in the sequel.
This lemma has been previously proven in [Shiffman & Zelditch (2008)](as part of

proposition 2.2), and for the sake of completeness, we include its proof here.

Lemma 3.2.3. Let (X,w) be a compact Kihler manifold with the fixed Kdihler form

w. If ZS}), . 'aZs’; are smooth and intersect transversally, we have

(3.30) ([Zgp] . *) = /X c1(Lp, hy)F Aw .

Proof. For k =1, this is just a consequence of Poincaré-Lelong formula and the fact

that w is a closed form. Indeed,

<[Zsp},w"’1>:/Xcl(Lp,hp)/\w"il—i—/xddclog|sp\hp/\w"*1:/Xcl(Lp,hp)/\wnfl.

Let us now suppose that the assertion (3.30) is true for k — 1 sections
Zk 1= (s2 Spy - ,s’;). Then by the induction hypothesis and the base step of induction,
it yields that

<{ZSI1) N Zzlgfl} ,w”_k’> = /Z 1 cl(Lp,hp)k_l Aw"F

Sp

:/Xcl(Lp,hp)Acl(Lp,hp)’HAw”*k:/Xcl(Lp,hp)k/\w"*k.

Finally, based on the observation that <{ZZ§} ,wh™ > <[Z 1M ZEk 1} ”_k>, where
Zl; = (31197215_1), we complete the proof. O

Next we proceed with the proof of the variance estimate in higher codimensions. We

adapt some of the methods in [Shiffman (2008)] into our setting.

Proof of Theorem 1.3.1. Theorem 1.3.1 provides the case k =1 of induction on the
codimension k. Now let n > k > 2 and we suppose that the variance estimate of
Theorem 1.3.1 holds true for £ —1 sections. We pick a system of k£ independent random

holomorphic sections Ek (5ps- ,s']ﬁ) € H(X, L,)* and write Ek (Ek 1 ) where

k—1 k—1
2y (p”p

p large enough (by Bertini’s Theorem). Let ¢ € D"*7=%(X) be a test form. Since
47
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|=E[Z

IE[ZE;]; sh-1] AE[Z 815] in view of the independence of the random holomorphic
P

sections s}), .. .,5]; , we first have

(3.31) Var([Zsy], 0) = E{[Zsy), 6)* — (E([Z5x],6))

= ([ Zg 1] A 28], 0)? ~ (ElZyy 1] AE[Z,5].6))°.

P

We shall use the following
{(Zgx 1A 2]} 6~ (ElZg 1] AE[Z,].6) = [+,
where
[1 = 11(2’;’1,3’;)
= ([ Zyg 1| A[Z,4). 6~ {[Zgg 1] AE[Z,g]. )

and
Iy := I3y ) = ([Zyp 1| AEZ ) 6)? — ((E[Zgp 1] AE[Zg),0))*

for generic choice of Z’;_l and slg :

We observe that

(3.32) Var([Zgi], @) = E[I1] + E[I2].

Now let Y := {x €X: El;*l(x) = O}. Notice that ([221;71] A [ZSI;],¢> = <[ZS;5] Y,¢|y>.
Initially, we will estimate E[I;]. To do so, the first step is to integrate I; over

H°(X,L,) then use the observation above and apply Theorem 3.2.2:

o 0lv)? — (E((Zy)

Il(ngl,sz)dap(sl;) - /HO(X Ly) <[ZSII§] Y’¢‘Y>)2

/HO(X,Lp)

< (Cp)Y (By Vol (X)(24,)F 1),
where the last inequality is obtained by using the fact that
/X WL A c1(Ly, hp)k_l < (2Ap)k_1VOZ(X) for p > p1,

which is a simple consequence of the diophantine approximation condition (3.2).
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Now integrating over H?(X ,Lp)]"_1 and taking the last inequality just above into
account, it yields that

E| :/ / L(ZEY sBYdo, (sF)dok 1 0k
(4] HO(X,L,)k=1 JHO(X L,) 12y sp)dop(sy)doy ™ (35,77)

< (Cp)M'® (ByVol(X)(24,) 1),

; k—1
sice O'p

estimation of E[/;].

is a product probability measure on H°(X ,Lp)k_l. This finishes the

In order to get the upper bound for E[/3], first observe that
2
(3.33) E[l5] = E( ([ZE,F] - E[Zzgfl]) NE[Zy), ) -

Also we see that

2
(121 ~Elzgg ) AELZgLo) =1 [, o, ((Zspi) ~ElZgg]) A2 ] 0)doy(s})

2

k
= HO(X,Lp) {<([ZE§_1] _E[Zzlﬁ_l]) A [ZSS]’¢>} dop(sp),

where, in the second line, we have used Cauchy-Schwarz inequality. Analogous

to the case for E[[1], this time we consider the zero set of single s];, namely,

the set Y := {x €X: s’;(x) = 0}. We first get

(3.34)

2
E[IQ] < {<<[ZE§1] _E[Zzzlffl])/\ [Zs§]7¢>} d"p(sﬁ)dag_l(zlg_l)-

HO(XvLP)kil ‘/HO(XaLP)

As has been argued for E[I;] above, since

([Zggt] Bl Zygs 1)) A[Zg), 6) = (1 Zamr] ~ElZyer ]|, 6], )

by invoking Fubini-Tonelli’s theorem, (3.34) becomes
(3.35)

B[] < /HO(X,Lp) /HO(X,Lp)kl {<<[ZE§1] a E[erﬁ*l])

The inner integral is, by definition, the variance of Z

2
Y’¢’y>} dag_l(Elg_l)dap(sI;).

, so (3.35) takes the

E’;_l Y
following form:

(3.36) E[l5] < /HO(X . Var([Zgi-a]|, 0lv )do (s5).
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By using the induction hypothesis we have

Var<[ZE’5_1]‘Y’¢’Y> < (G (B¢‘Y(2Ap)k2/ywn1)2

(Cp>2/a <B¢ (ZAp)k_z/XWn_l /\Cl(Lmhp))z

< (G (B, VOZ(X)(zAp)k*1)2,

IN

where the last inequality is obtained by using the fact that
/X W Aer(Ly, hy) < 24,Vol(X) for p > pa,

for some py € N. Now by integrating over H°(X, L,) and taking the last inequality

just above into account, we obtain
2
B[] < (Cp)* (By Vol (X)(24,)*")

since o} is a product probability measure on HY(X, L,). Lastly, using the relation

P
(3.32) and applying normalization ends the proof of Theorem 1.3.1.

3.3 Equidistribution of Zeros of Random Sections

In this section, we provide the proof for Theorem 1.3.1. We begin by first establishing
the asymptotic behaviour of the expected zero distribution. Subsequently, by utilizing
the variance estimate from the previous section in conjunction with the expected
distribution, we prove that, subject to one summability condition, the normalized

zero currents equidistribute with respect to w*.

3.3.1 Expected Distribution of Zeros

Here, we embark on proving the first assertion in Theorem 1.3.1. To achieve this, we
employ an inductive argument. Initially, we establish the expected distribution for

the case of codimension one, and then extend our proof to cover higher codimensions.
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Theorem 3.3.1. Let (X,w) be a compact Kihler manifold of dimcX =n and let
(Lp,hp)p>1,be a sequence of Hermitian holomorphic line bundles on X with %
metrics hy,. Assume that the conditions (3.2) and (3.5) hold. Then

1

(3.37) —ElZ,]| —w

in the weak™* topology of currents as p — oo.

Proof. Let s, € HY(X, L), then

sp—ZapSp L'y,

where I'), = (S]f,...,Sgp), and a = (ay,...,aq,) € C%. Let z € X, U C X be an open
neighborhood of z and e, be a holomorphic frame of L, in U. Then locally Sf = fjep,
where f7 are holomorphic functions in U and so, by writing f = (f{,..., fgp), we

have

dp
Sp = Z a§ff€p =(a, f)ep
j=1
By Poincaré-Lelong formula (2.16), on the neighborhood U, we have
(3.38) [Zs,] = ddlog|(a, f)| = dd°log[(a,Tp)|n, + c1(Lp, hy).

Let us now fix ¢ € D”_L"—l(X ), without lost of generality we may assume that
supp(¢) C U as the general case follows by covering supp(¢) by U,’s and using the
compatibility conditions. Using the definition of expectation and incorporating (3.38)
along with the observation that ci(Ly,h,) is independent of s, we have

(3.39)

1 1 1

ATD(]E[ZS,;]’@ = Ip<cl(Lp7hp>u¢> +A7p HO(XLP)/X10g|<a7Fp<x)>|hpddc¢(x)dap(3p)
Let us denote the second term above by I(p), then by exploiting the fact that
[p(x) = |Up(w)|n,up(x) (so that |up|p, = 1) one has

1 C

: /. J1ogl @, w1,

Ap JHO(X,L,) /X

(3.40) I(p) <

|dd°¢(x)| dop.

Utilizing (3.12) and the fact that Aiplong(x) — 0 as p— oo, in L'(X,w) we obtain
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the following

(3.41)
1

Ap/HO(X,Lp) /X |log [Ty («)]n,

as p — oo. Additionally, using the identification HY(X Lp) =~ C% the moment

B
4d9() doy(sy) < ] Nlog Ky ()] () 0

condition (3.8) along with Holder’s inequality and the relation (3.12), we get

342) [ [, logl(a.pp(@))l|do (@) dd°6(a)| < (Cy)¥ By Vol(X),

where

ppl(z) = .
( 2?21 |fi(@)? 2?21 | f5(x)

It follows from Fubini-Tonelli’s theorem that
(3.43)

/HO(X,LP) /X [log [{a,up(2)) 1, | |dd(x) |doy (s,) = /X /C |10 1(a. py ()] doy(a) dd ()]

fi(x) fay (@)
P)

Consequently, employing the given hypothesis, we deduce that

1/«

1
|dd¢(z)|doy(sp) < ijx By Vol(X) =0,
p

(344 4 /HO(X7L;D) /X 10g [{a 1y (2)) n,

as p — oo. In turn, (3.41) and (3.44) imply that I, — 0, as p — oco. Finally, by using
(3.2) we obtain that, A%,(cl (Lp,hp), ¢y — (w,¢), thus concluding the proof. O

Theorem 3.3.2. Let (X,w) be a compact Kihler manifold of dimeX =n and let
(Lp, hp)p>1,be a sequence of Hermitian holomorphic line bundles on X with € metrics
hy. Assume that the conditions (3.2) and (5.5) hold. Then for 1 <k < dimcX

E|Zsy] =E|Z,] A AE[Z]

Cl/a
Moreover, if limy ﬁ—p =0, then

in the weak™* topology of currents as p — oo.

Proof. Let ¢ € D%~k (X), then

(3.45) (2] o) =2 [, 9| < geswliol Vol(zgy)
P oxk 14
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Using Lemma 3.2.3 above, and the prequantization condition (3.2)
(346)  Vol(Zyy) = ([ Zyy] ") = /X c1(Lp, hy)F Aw™F < (24,)F Vol (X)

for all p > p1. Thus, combining both of the inequalities above, we obtain that for
P2 D1,

(3.47) \<[ZE,5},¢>| < 2F Vol (X) sup ||¢|| < oo
which means that <{ZE’;}7¢> is bounded for almost all El;. Consequently, E[EE,;] is
a well-defined current of bidegree (k,k).

Let us now prove the first assertion. To accomplish this, we induct on the codimension

k. The base step, k =1 is obvious. Suppose that the claim holds for k — 1 sections, say

Zk T=(s2,..., k) Fix s}, € H°(X, Ly) so that Y := Z,1 is a complex submanifold.
p

p7
For almost all s, we write (s}) = si|y and HY(X,L,)" := H(X, L, )‘ , which in
turn for almost all Ek (sps--- ) € ’ng gives rise to the notation (E’;) Ek y» and
(HEY =HE 4 Where ZI;’Y = p|y,...,s]]§\y), and HE = HO(X,L,)F respectlvely. We

endow HO(X, L,)" with the push-forward probability measure 0;) := 040p, where
0: HY(X,L,) — HY(X,L,) is the restriction map. The induced measure on
(”H’;)’ will be denoted by (O’I/))k. By the independence and induction hypothesis
applied to Y = Zs‘zl) and (H;j’_l)’, and observation that ZE,’%’ = Z(Z;;_l), we have,

for ¢ € D" Rk (X)),

e (sl )i = [, <[Z<z';—1y}’¢\y> ol ()
= (E[Z(ay) A~ NElZ )., )

=/, E[Zga]A- /\]E[Zk]/\gb

6

Finally, integrating over all 311) in the last expression, leads us to the desired result.

We will now prove, using an inductive approach based on codimensions, that for
¢ c Dn—kz,n—k(X)’

(345 ([ Zeg).0) = (pentty byt o) + By o),

Here, } We refer to Rx ), as a

— Vol
2(9)| < 2 i B+ D'
remainder current. Similar to the previous part by ertlng Y=7 s and using the
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induction assumption on Y, one finds, for ¢ € D" Fn=F(X),

74 k—1 /5 k— =~
/H,;_lqzzg},qs)dap ME ) = EB|Zgi1y ) 9],)
1 -
= Jy, agr )" A0+ Ry (0)

<{Z1} CAR-T i¢ (vahp)k_1A¢>+RY,p(¢),

where

log A, C’;/a] w1

4 <2 'B 1 :
(3.49) | Byp(9)] = ol [(1+D) 24, = A, 1)y 24,

Using Lemma 3.2.3 and the fact that [y 01(21/7127:7»1)) AW < Vol(X) for sufficiently

large p, we have

B 1OgA Cl/a C1 (L h ) _
| < on 1 p D Py p n—1
(3.50) |Ryp(¢)| <277 ' By |(n+1) 24, A, ] /X o4, ¢
L Val(X) log 4, Cyp'
‘ < 9N 1—. .
(3 51) <2 (2Ap)codlm(X) B¢ |:( + 1) 2A + Ap }

By taking the average over szl, € H°(X,L,) and using the information about

codimension one, specifically

1 1
——dd‘log Kp(z) + —dd‘log ’ (a,up(x)) ‘

52 E[Z ] =
(3.52) [Z4] oA, A,

1

one finds

(E[Zg].0) = /H 1 /H o[ 2y 0o (S o (sh)
- L (23] Akl 1 (Lp,hp)k—lA@da;(s;)Jr/% Ry p(¢)do)(s1)
51],14,}_101(Lp,hp>k—w>+ J Pral@)da(s))

1 Ly, hy
<Akcl Lpah +/ / 2A log Kp(z (Ak 1) dd¢(x )dap(szl,)
Ly.h i
/Hl/X log| (a. uy( )>‘hpcl(f1;£_p1) dd° () dory(51)
+/7-ll Ry gb)dap(sp)

Choosing p € N sufficiently large so that A, > M and the assumption (3.5) is satisfied,
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we obtain that
-1 1
Ay < Ky(z) < AZ+

for all such p. In turn, we have ﬁlog Ky(z) < (n+ 1)1%%4?)”. Now, using the moment

condition (3.8), relation (3.2), total variation inequality (3.12), the previous estimate
fOI' ‘RY,p(¢) )

and the induction hypothesis

(3.53)
5 _ log A C’l/a
k—1 P
(E[Zgy].0) = <Ak01(Lp,h) 8)+ 28IV ol(X) By [(n+1) 1t |+ Ry, (0)
Thus we have
~ 1
(3.54) (E[Zsy)0) = { grer Lo, hp)".0 ) + R p(0)
P
where
b1 log A, C’l/a
R p(0)] <Ry p(0)| + 2 Vol (X) By[(n+1) 522 4 22 ]
P P
_ log A, Cl/a
< n—1
< 2" Wol(X)By[(n+ 1)~ it |
Finally, passing to the limit as p — oo we obtain the result. O]

3.3.2 Almost Sure Distribution of Zeros

In this subsection, we will delve into the proof of the second assertion from Theorem

1.3.2, which deals with the almost sure behaviour of random zeros.

Theorem 3.3.3. Let (X,w) be a compact Kihler manifold of dimcX =n and let

(Lp,hp)p>1,be a sequence of Hermitian holomorphic line bundles on X with ¢?

2/04
metrics hy. Assume that the conditions (3.2) and (3.5) hold. If 72

p1A2 < 0,

_ _ k
then for O'OO almost every sequence Xy = {Zp }p21 € Heo,
- k

in the weak™* topology of currents as p — oo.

Proof. Fix ¢ € D" *7=F(X), and pick Xy = {E’;}p>1 € Hoo. Let us examine the
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non-negative current valued random variables

~

(3.55) Xp(Zi) = (| Zst] —E[sz],gbf > 0.

P

By appealing to the equivalent characterization of variance, notice that

. ~
(3.56) /H (D)o (S = (Var|Zg], ).
Using Theorem 1.3.1 along with the summability condition given by the hypothesis,
we obtain

o o
(3.57) 3 /H X, (Sx)do" (Sie) = Z (Var|Zg]. 6) < oo.

p=1"7" p=1

By the relation (3.56) above and invoking Beppo-Levi Theorem from the standard

measure theory, we get

(3.58) /OOZX (Zy)dok (Zy) = §<Var[ } ><oo.

This implies that, for algo— almost every sequence of k—systems Xy € Hqo, the series
pe1 Ap(Xx) converges, leading to the conclusion that &), — 0, ok — almost surely.
By definition (3.55) of random variables &), this also indicates that

(3.59) (|Zss] —E|Zsy].0) =0

a’g’o—almost surely. Combining this last information with Theorem 3.3.2, we conclude

that for a’go— almost every sequence,
(3.60) Zgy,| — w*

in the weak™ topology of currents as p — oo. O

3.4 Some Special Cases

In [Bayraktar et al. (2020)], certain types of measures which satisfy the assumption
(3.8) have been investigated as special cases. We will now provide some insights

regarding a few of these measures in connection with Theorem 1.3.1 and 1.3.2. The
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first two measures to be considered here will be the Gaussian and the Fubini-Study
measures, both of which are unitary invariant measures that come with certain

advantages in estimations.

3.4.1 Gaussian and Fubini-Study

In what follows, ), represents the Lebesgue measure on C” (identified with R?"”). We
will present the variance estimate simultaneously for both Gaussian and Fubini-Study
cases, with detailed explanations provided for the Gaussian case, as the computations
are exactly the same. It turns out that, in these cases, the constants C), reduce to
the ones independent of p and Theorem 1.3.1 remains valid for every a > 1. The

standard Gaussian measure is precisely defined as follows, for a = (ay,...,a,) € C",
1 o llalf?
(3.61) dop(a) = e dn(a),

and the Fubini-Study measure on CP" D C" is defined as:

n! 1

(3.62) don(a) = o (L1 |Ja2)" 1

dAn(a).

As for these two measures, we record two facts (Lemma 4.8, Lemma 4.10) from
[Bayraktar et al. (2020)]: Given that oy, is the Gaussian measure, for every integer

n > 1 and every a > 1, we have
« oo 2
(3.63) /C [1og |{a, )| “do(a) = 2/0 r|logr|®e~" dr, Vv e C, ||v|| = 1;
if oy, is the Fubini-Study, then for every integer n > 1 and every av > 1
1
(3.64) /C [log [(a,v)]|" dera(a) 2/ rl Ogr' TIO8TL dr, Yo e C, [[v]] = 1.

It is evident that they are indeed independent of the dimension n.

Let us first show that,

(3.65) E[W,,] = dd°log|Ty|p,.
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Since
By ) = o1 Jx BITo @), dd0(2) o,

1 c
+/HO(X7LP)/X og [{a, up())|p,dd°¢(z)dog, ,

we need to show that the second double integral is zero. By (3.43),

/HO o /Xlog|<a,up(r)>lhpddc¢(x>dadp(sp) = /X /C . 1081(a,py (1)) |dog, (a)dd“o ().

Hence, in the form of currents, this gives

(aa{ [, logl(a.pyl@)ldog, (@)},6) =0

since the integral acted by dd® is a constant independent of x due to the relation
(3.63), which gives (3.65).

Now, the first term is ]E(I/Vsp,gb)2 owing to the relation (3.65), which cancels out

the second term of the variance. Also, similar to the above reasoning, we see that

the integrals of the second and third terms become zero by using the fact (3.63).

Therefore, we estimate only the fourth term, which results in the variance of W,
that is
(3.66)

Var(Wy,,0) = [ [ ddo(y)dd“o(x) [ , 1og(a,py(e))| o5 |(a py(y) do, (a).

By Cauchy-Schwarz inequality, the relations (3.63) and (3.12), we get

Var(Wy,,0) < [ [ ddo(y)dd“o(x) [, [1og|(a.py(x))l|[1og](a. py(y))]|do, a)

< [ fars s [ et i)

< Al b* Vol (X),

[N

where A :=2 [7°r| logrPe_’“2 dr, which we have obtained the Gaussian (Fubini-Study)
version of Theorem 3.2.2. Thus, by carrying out the proof of this theorem in the

same way, what we have is the next theorem:

Theorem 3.4.1. Under the same assumptions of Theorem 1.5.1, let ‘75,, be the
product Gaussian (Fubini-Study) measure on HO(X, L,)* given by (3.61) (by (3.62)).
Then for any ¢ € D" F"=k(X), one gets

Var< [225} , ¢> . Ak B3Vol*(X),

28

{ L, ogl @ po)| do, }
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2 a
where Ay = 2871 [S°r|logr|®e™ dr (A =281 [$° %dr}.
We infer from Theorem 3.3.2 and (3.65) the following theorem

Theorem 3.4.2. With the same assumptions of Theorem 1.3.2, let o}, be the Gaussian
(Fubini-Study) measure on H*(X,L,) ~ C% given by (3.61) (by 3.62). Then, for
1<k <dimcX

(3.67) E|Zg| — o

in the weak™ topology of currents as p — oo. In addition, if 5724 % < 00, then for
P

ok —almost every sequence {Z’;} € HE we have
(3.68) [225] Wb

in the weak™® topology of currents as p — 0o.

When we consider the prequantum line bundle setting, where (Ly,h,) = (L”,hP)
and ¢1(L,h) =w in Theorem 3.4.1 and Theorem 3.4.2, we recover the results of
Shiffman-Zelditch ([Shiffman & Zelditch (1999)], [Shiffman & Zelditch (2008)]).

3.4.2 Area Measure of Spheres

Let A, be the surface area measure on the unit sphere S?*~! in C”, given by

Ap = (35{)!. Let us consider the following probability measure on 2"~

1

(3.69) o= AT

A,

Given that o, is the normalized area measure on the unit sphere, in accordance with
Lemma 4.11 from [Bayraktar et al. (2020)], for every a > 1, there exists a constant

Cy > 0 such that for every integer n > 2, we have:

(3.70) /(C [log (a,0)|" doa(a) < Ca (logn)?, Yo eC", |lu]| =1.

One should remark that, in this specific case, even though the measure is unitary

invariant, the aforementioned upper bound is not a universal constant.

Now, due to the fact that Cy (logd,)* < Cq ((n+2)log A,)* for sufficiently large p,
using Theorem 1.3.1 with C), = Co ((n+2)log A,)® leads to the following estimate.
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Theorem 3.4.3. Under the same assumptions of Theorem 1.5.1, let o}, := 0gq, be
the normalized area measure on the unit sphere of H(X, L,) ~ C% given by (5.69).
Then for any ¢ € D" F"=k(X) and sufficiently large p, one has

(] )2

where Mg, .o = (2871 (n+2)Vol(X) Cg/a)2 is a positive constant.
Consequently, we have the equidistribtion theorem.

Theorem 3.4.4. Under the same assumptions of Theorem 1.53.2, let o, be the
normalized area measure on the unit sphere of HY(X,L,) ~ C% given by (3.69).
Then, for 1 <k <dimcX

(3.71) E|Zg| — o

2
in the weak™ topology of currents as p — oo. In addition, if Zg‘;l (loifp> < 00, then

for ok —almost every sequence {El;}pzl € H® we have
(3.72) Zgy,| — w*

in the weak™ topology of currents as p — oo.

3.4.3 Random Holomorphic Sections with i.i.d. coefficients

In this context, we examine the probability space (H(X,L,),0,) where o, is the
product probability measure induced by the probability distribution law P governing
the i.i.d. random coefficients a? in the representation (3.7). This distribution
possesses a bounded density ¥ : C — [0, M], and satisfies the property that there
exist constants € > 0andd > 1, such that

(3.73) P({z€C:log|z| > R}) < %, for all R > 1.

This particular density type has been investigated in [Bayraktar (2016)] and
[Bayraktar et al. (2020)], and it encompasses distributions such as the real or

complex Gaussian distributions. Given such a measure o, on H%(X, L,), according
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to Lemma 4.15 of [Bayraktar et al. (2020)] we have the following for any 1 < a <4 :
a )
(3.74) /Cdp\logua,v)” doy(a) < Bd2/?, Yo e C, ||| = 1;

where B = B(M,¢,6,a) > 0. In our present setting, for p sufficiently large,
dy < MyVol(X)A). Using Theorem 1.3.1 with () = DA%, where
D = B(MyVol(X))*% we obtain

Theorem 3.4.5. Under the same assumptions of Theorem 1.3.1, if o, is
the probability measure on HO(X, Ly) ~ C% defined as above. Then for any
¢ € D"k (X)) and sufficiently large p, one has

<Var [225} , ¢> < (141_17”6)2(2]5—1131/0& VOI(X)B(z))Q’
P

where D = (MoVol(X))*/9B is a positive constant.
As a consequence, we have the following equidistribution result;

Theorem 3.4.6. Let (Ly,hy)p>1, (X,w) be as in Theorem 1.3.2. Assume that
op 15 the probability measure on HO(X,Lp) defined as above. If 6 > n then for
1<k <dimcX

~

(3.75) IE[ZE;;] — WP

in the weak™ topology of currents as p — oco. In addition, if > W < 00, where
4

0 > 2n, then almost surely
(3.76) [22,5} Wb

in the weak™® topology of currents as p — oo.

3.4.4 Locally moderate measures

Consider a complex manifold X and a positive measure ¢ on X. In accordance
with [Dinh, Nguyen & Sibony (2010)], we define ¢ as a locally moderate measure
if, for any open set U C X, any compact set K C U, and any compact family F of

plurisubharmonic functions on U, there exist positive constants M and S such that

(3.77) /K e B%do < M, for all g € F.
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It is evident that o does not charge pluripolar sets. Furthermore, it is noteworthy to
mention that significant examples of such measures arise from the Monge-Ampere
measures associated with Holder continuous plurisubharmonic functions, for more
details in this direction check [Dinh et al. (2010)]. According to [Bayraktar et al.
(2020), Lemma 4.16], if o), is a locally moderate probability measure with compact
support in C% = HY(X, L), then for every a > 1

(3.78) /Cdp [tog |{a,0)||"dop(a) < AR, Yo e Cl, [Jo]| =1;

where A, B, > 0 are positive constants and R, > 1 such that |la|| < R, for all
a € supp op. Continuing in the same manner as the previous examples, we deduce

the following results.

Theorem 3.4.7. Under the same assumptions of Theorem 1.3.1, if oy is a locally
moderate probability measure with compact support in CW = HY(X, Ly). Then for
any ¢ € DR =k(X) and sufficiently large p, one has

(Ap Iy )1

2 (2" 1Vol(X) By )2,

(virlZey] )

where Ay, B, > 0 are positive constants and R, > 1.

Theorem 3.4.8. Let (Ly,hy)p>1, (X,w) be as in Theorem 1.3.2. Assume that o), is
the locally moderate probability measure on H°(X, Ly) defined as above.

(i) If lim Wzothenf0r1<k<dim X
DP—>00 Ap = v > C

in the weak™ topology of currents as p — oo.

28p\2/a
(i) If 3524 % < 00, then for ok -almost all {SF},>1 € HYP

in the weak™* topology of currents as p — oco.

In [Bayraktar et al. (2020)], various significant probability measures are thoroughly
examined, including small ball probability measures, among others. For a more

in-depth exploration of such measures, refer to [Section 4, [Bayraktar et al. (2020)]].
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3.5 Probabilistic Bertini Theorem

In this section, by adapting the proof of Proposition 3.2 in [Coman, Marinescu &
Nguyen (2016)], we present a general version of Bertini’s theorem applicable to any
probability measure o, defined on C? that assigns zero mass to pluripolar subsets
of C%. As a result, we demonstrate that the intersection current is almost surely

well-defined with respect to the product measure induced by oy.

Recall that the analytic subsets Aq,..., A, k <n of a compact complex manifold
X of dimension n are said to be in general position if codimA; N...NA4;, > m for
every l<m<kand 1< <... <1ty <k

Proposition 3.5.1. Let L — X be a holomorphic line bundle over a compact complex

manifold X with dimc X =n. Suppose the following:

(i) V is a subspace of H°(X,L) with a basis {S1,...,Sq}, and the base locus
Bs(V)={x e X :51(z)=---=S4(z) =0} C X such that dim Bs(V') <n—k.

(i) Z(t)={re X : Z;l:ltjsj(x) =0}, where t = (t1,...,tq) € C%.

If as is the product measure on (CY)* induced by the probability measure o4 on C%
coming from the identification V ~ C?, then analytic sets Z(t'),...,Z(t*) are in
general position for ak— almost every (t,...,tF) € (C4)*.

Proof. The proof will be based on induction on k. Let
(3.79)  Hp:={(t'....t") e (CH* :dimZ(t")N...nZ(t*)NBs(V) < n—k}.

We start with the case k= 1. If Z(t')NBs(V) = 0, then Z(t') is a
complex submanifold of dimension n — 1 whatever t! € C% is chosen, that is
{ eC?:dimZ(t') <n—1}=CL If Z(t")NBs(V) # ), corresponding to the
set Hy = {t' € C?:dim Z(t")NBs(V) < n—1}, we consider the decomposition of the
base locus

No
(3.80) Bs(V) = | J E,UY,

=1
where FE; are the irreducible components of Bs(V) with dimFE; = n —1 and
dimY <n—2. The set {t' € C?: E; C Z(t')} has to be a proper algebraic subvariety
of C%, because, if E; C Z(t') for all t' € C?, then since E; C Bs(V), we must have
that dim Z(¢') > dim Z(t') N Bs(V) > n — 1, which is a contradiction since any single
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analytic variety is always in general position. Therefore, for any point ¢! € Cd\H 1
we get dim Z(t')NBs(V) >n—1. Since Z(t')NBs(V) is an analytic subvariety of
Bs(V), there exists [ € {1,..., Ny} such that E; C Z(t!)NBs(V), so we can write

No
Ch\H, = J{t'eC?: B C Z(th)}.
=1

Since ¢4 puts no mass on pluripolar sets, it follows that oq(C%\ H;) = 0, which
completes the initial step for induction. Suppose that Us(H i) =1 for all Hy defined
as in (3.79). Let
(3.81)

Hyp ={(t' .. t"H e @€H*  dimz(HYn---nZE* T HNBs(V) <n—k—1}.

We need to show that 0§+1(Hk+1) = 1. For this purpose, we show that the

agﬂ—measure of the complement set H_ ; is zero. First, let us fix t = (th, ... ,tk) € H;.

Define, Z(t) := Z(t')N...N Z(t*) and
(3.82) G(t) = {t"teC?:dim Z(t)NBs(V)N Z(t**H) > n—k—1}.

It will suffice to prove that o4(G(t)) = 0. These sets G(t) are called the slices of the
set Hy . Let

No
(3.83) Z(t)NBs(V)= | E,UY,

k=1
where Ej are, as in the case k = 1, the irreducible components of Z(t) NBs(V') with
dimE; =n—k and dimY =n—k — 1. If t*T1 € G(¢t), then Z(t)N Z(t}41) N Bs(V) is
an analytic subset of Z(t)NBs(V) with dim Z(¢) N Z (tx+1) NBs(V) =n —k, and this
gives that there is some [ € {1,..., Ny} such that

(3.84) By C Z(#)N Z(trsr) NBs(V).

Hence, we have
No

(3:85) G(t) = U Ai), A1) :={* et B c 2(FH)
=1

Now we see that not all sections become zero on Ej;. Indeed, if it were not
so, by arguing as in the case kK =1 above, E; C Bs(V) would imply that
dimZ(t)NBs(V) > n — k, contradicting ¢t € Hx. We may then assume that
Sq# 0 on Ej. As before, by examining, this time, the slices of A;(t), for any
(t’f“,...,tff_r%) € C%1  there exist at most one h € C such that
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(t’f“,...,tflﬂ,h) € Ay(t), otherwise, if there exist two different elements h,h’ € C

with this property, we have

LS At TSy RSy =0
tlerlSl +... —i—th%Sd_l +h'S;=0,

which immediately gives that S; =0 on FEj;, which is a contradiction. Thus,
o4(A;(t)) =0. This implies that o4(G(t)) = 0, which finishes the proof. O

In our setting, because of the relation (3.5), there exists pp € N such that
Bs(HY(X,Ly)) =0 for all p > py. Therefore, by using the arguments from Lemma
3.1 in [Coman et al. (2023)] which is based on the results of Demailly (Corollary 2.11
and Proposition 2.12 in [Demailly (1993)], as a result of Proposition 3.5.1, we arrive

at the following proposition
Proposition 3.5.2. There exists pg € N such that for all p > po,

(i) The analytic subvarietes ZS}D, . ‘>Zs’; are all in general position for ag—almost
all (s}),...,sg) € HY(X,Ly,)k.

(ii) For a’;-almost every Z’; = (3]13,...,515) c H(X, Lp)k, the analytic subvariety
Zsjl N---N Zsjl is of pure dimension n —1 for each 1 <1 < k and
p P
I<jp<---<pu<k.

(iii) The intersection current [ZE’];] = [Zsll)] ARRRVAY [ZS;;] is well-defined and is equal

to the current of integration with multiplicities over the common zero set ZZ’;-

Proof. By (3.5) there exists pg € N such that K,(z) > 0 for all z € X and p > po,
hence Bs(H(X,Ly)) =0 for all p > pyg. Now using Proposition 3.5.1, by taking
V = H%X,L,) =~ C% with the measure o, := 04,, and fixing an orthonormal basis
{sr,..., Sgp}, we have that for 05— almost every (5113, . s];) cHO(X, Lp)k7 the analytic
hypersurfaces Z shoe s A o are in general position. Thus, Zsf,l N---N Zsf,l has dimension
at most n—1[ for each 1 <!l <k and 1 <j; <--- <j; <k, which proves (i). Now let

Ti= (2400 A7)

Sp Sp
then by the part (i) and [Demailly (1993), Corollary 2.11], T" is a well-defined
positive-closed current of bidegree (I,l), supported in the set Zsjl N ~~ﬂZSjl.
P P

Moreover, by Poincaré-Lelong formula we know that for each s, € H*(X, L,), the
cohomology class of [Z,] is the same as c1(Ly,hpy). Then using the diophantine

relation we obtain
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TA ”—lz/ Ly b)Y AW > 0.
/X w Xcl( P p) W

Hence, Zsjl N---N Zsjl # () and has pure dimension n — [, which shows (ii). Finally,
p
the last assertion follows from [Demailly (1993), Corollary 2.11, Proposition 2.12]. [
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4. Central limit theorem for random zero divisors

In this chapter, we prove a central limit theorem for random zero currents related
to the zero divisors of standard Gaussian holomorphic sections in a sequence of
holomorphic line bundles with Hermitian metrics of class €3 over a compact Kéhler

manifold.

4.1 Reference Covers

Let (X,w) be a compact Kéhler manifold, with dim¢ X = n, and let {(Lyp, hy)}p2;
be a sequence of positive line bundles with Hermitian 43-metrics whose curvatures

satisfy the following diophantine approximation relation:

1

(4.1) e (Lp,hp) =w+O(A,") in the % -topology as p — oo,
P

where a >0, A, >0 and limp_,o, A, = 00.

In order to measure the distance between any two points x,y on the compact Kéahler
manifold (X,w), we use the Riemannian distance, which is defined as follows: As it
is well-known, the Kéhler form w and the complex structure J on X compatible with
w determine a Riemannian metric g on X by g(u,v) := w(u, Jv) for all u,v € TX.
Given a piecewise ¢! curve v : [a,b] — X with y(a) = z and ~(b) = y, the length
L(7) of the curve ~ is given by

D ARCIORION

and the Riemannian distance d is defined by

d(z,y) =inf {L(7) : v(a) = z, 7(b) = y}.
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Throughout, (U, 2), z = (21,...,2y), will indicate local coordinates centered at a point
x € X. The closed polydisk around y € U of equilateral radius (r,...,r),r > 0, is
given by

P'(y,r):={z€U:|zj—yj|<r, j=12,...,m}.

The coordinates (U, z) are said to be Kahler at y € U in case

- m
(4.2) wzz%ZdszTq+O(|z—y|2)Zdszd7k on U.
Jj=1 gk

Definition 4.1.1. A reference cover of X is defined as follows: for j=1,2,....N, a
set of points x5 € X and

(a) Stein open simply connected coordinate neighborhoods (Uj,wl)) centered at

ZL‘jEO.

(b) Rj >0 such that P"(x;,2R;) € U; and for every y € P"(xj,2R;) there exist

coordinates on U; which are Kdhler at y.
(c) X =UN, P"(x;,R;).
We will write R =min R; once a reference cover is provided.

It is not difficult to see how one can construct a reference cover. Indeed, first, for
x € X, take a Stein open simply connected neighborhood (for instance, a round ball
in C") U of 0 € C", where =0 under a determined chart. Choose some R > 0 so
that P"(x,R) € U and for every y € P"(x, R) there exist Kahler coordinates (U, z)
at y. The compactness of X implies that there exist finitely many points {z; }g\le

such that the three conditions above are satisfied.

We take into consideration the differential operators D&, a € N?* on Uj,

corresponding to the real coordinates associated to w = w’. For ¢ € Cﬁk(Uj), we
define

lelle = llellkw = sup {[Dyp(w)] - w e P*(x),2R;), o] < k}.

Let (L,h) be a Hermitian holomorphic line bundle on X, i.e., the metric A is smooth.
For k <, write

7]

ku; = {{lojllk w5 € €' (U;) is a weight of h on Uj},

and
|l = max {1, ||k

ku; 1 <j< N}

@; is said to be a weight of h on Uj if there exists a holomorphic frame e; of L on
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U; such that |ej|;, =e %4,

Lemma 4.1.1. Let a reference cover of X be given. Then there exists a constant
D > 1 relying on the reference cover with the following property: When provided with
any Hermitian line bundle (L,h) on X, any j € {1,...,N} and any x € P"(z;,R;),
there exist coordinates z = (z1,...,2n) on P"(x, R) which are centered at xt =0 and

Kdhler coordinates for x such that

(i) dV < (1+Dr2)% and %,l < (14 Dr?)dV hold on P"(x,r) for any r < R where

dV =dV (z) is the Euclidean volume relative to the coordinates z,

(ii) (L,h) has a weight ¢ on P"(z,R) with ¢(z) = Rt(z) + X1 Ajlz|* + @(2),
where t is a holomorphic polynomial of degree at most 2, \j € R and
|2(2)| < D'||lls|2]* for = € P"(, R).

Proof. By the definition of a reference cover, there exist coordinates z on U; which are
Kahler for z € P"(zj,R;j). Then, w = Y1 dz Adz 4+ O(|]z — z|*) ¥,  dzj A dzg and
(i) holds with a constant D; uniform for € P"(x, Rj). Let e; be a frame of L on Uj,
¢ a weight of h on U; with |e;|, =e™% and ||¢||3,> < 2||h||3. By translation, we may
assume z = 0 and write p(z) = Rt(z) + pa(z) + ¢3(z), where t(z) is a holomorphic
polynomial of degree <1 in 2, pa(z) = Xj ;1 prizxZ and Rf(2) +p2(z) is the Taylor
polynomial of order 2 of ¢ at 0. In order to estimate ¢3(2), let ||¢||3. be the
supremum norm of the derivatives of ¢ of order 3 on P"(z;, R;) in the z-coordinates.
Then, by (4.1), there exists a constant D’ being uniform on P"(z;, ;) such that
llls,. < Djllell3w < 2Dj||R]|3, which also gives that |@3(z)| < 2D} [|h|3]z|* for all

z € P"(z,R).

Applying a unitary change of coordinates, we may suppose that
p(C) = Rt(C) + Xy /\5?|Cj|2 + ¢(¢). Under these coordinates, w%,b and @(()
verify the required estimates with a uniform constant D; for x € P"(z;,R;), as
unitary transformations preserve distances. Finally putting D' = maxj<j<ny Dj
finishes the proof. O

Now, we make the following observation, which will play a crucial role in the
forthcoming theorems.

Let {Uj};v:l be a finite subcover of X. Locally, on each Uj;, we have the following

representations

1 — 11 —
(4.3) A—pcl(Lp,hp)(z) = ZZ;A—pakj(z)dzk/\dzj
k’j
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and

(4.4) = ®ZX]€] Ydzp N dZ;.

Here, [x1;(2)]k; is a positive definite Hermitian matrix because, on a Kéhler manifold,
by the local 90- lemma, we always have a strictly plurisubharmonic local potential

function ¢ so that

82
Xij(2) = 8zf8(2

e R, for eachl1 <k, j <n.

Similarly, since line bundles L, are positive, by the definition of positivity,
. 82@ . o . L. . .

[ (2)]kj = {Wa%(z)hj is a positive definite Hermitian matrix , where ¢, is the

corresponding local weight function for h,. Note that in particular ay;(z) € R for

every 1 <k, j <n.

Let us fix some U; taken from the subcover. By the diophantine approximation

condition (4.1) on U, for any € > 0, there exists some pg = po(€) € N such that, for
all D 2 Po,

1
(4.5) —e < ——af?(2) —vis(z) <
for all z € U;. Take, for example,

1
€ = —(min min x;(2)).
gk z€U;

Then (4.5) gives
3 I o 5)
ZXk:j(z) < rApakj (2) < 4ch]( z).
Summing this last inequality over idz; A dz;, we have, for all z € U; C X and for all

P 2 Po

RV
i}: XZ()d /vk]<z§:paék)daﬁvkj< 2: XZ<)dkAd%,
k,j Y 2

which concludes that

(4.6) < ——c1(Ly, hy) <

B _ 1 5w
4 p 4’
for p > pg. This will be useful in the proof of Theorem 4.3.1 and Theorem 4.3.2.

We also observe that, at the point x =0 where we have the Kéahler coordinates by
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(4.2), we have

n
‘ 1 _
Wy = szZl §dzj Ndz;.

Also, by using the local representation of ¢1(Ly, hy) and Lemma 4.1.1,

n \P
j=1

Diophantine approximation (4.1) implies
4.8 li A‘]; L forj=1,2
() ngorflp_é ory=1,4,...,n,
which in turn gives

N s
(4.9) pll{& lA" no— (5)?1

4.2 Demailly’s L?-estimations for 0 -operator

Essential for proving both the upper decay estimate of the Bergman Kernel and the

first order asymptotics of the Bergman kernel function in our current diophantine

setting, we follow the approaches in [Coman et al. (2017)] and [Bayraktar et al.

(2020)] to provide first certain L?- estimations for solutions of the d-equation, and

then derive a weighted estimate for these solutions.

Theorem 4.2.1. (Demailly (1982), Théoréme 5.1) Let (X,w) be a Kdahler manifold
with dime X =n having a complete Kdahler metric. Let (L,h) be a singular Hermitian
holomorphic line bundles such that c1(L,h) > 0. Then for any form g € L%J(X, L,loc)

verifying
_ Zw”
(4.10) 99 =0, [ 19T <o,

there is u € L2 (X, L,loc) with du = g such that

w™ W™
411 / 27</ 24
( ) X|U|h ol = X\g\h ol
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Theorem 4.2.2. Let X be a complete Kahler manifold with dimc X =n and let w be a
Kdhler form (not necessarily complete) on X such that its Ricci form Ricy, > —2nTow
on X for some constant Ty > 0. Let (L, hy) be a sequence of holomorphic line bundles
on X with Hermitian metrics h, of class €3 such that (4.1) holds and there is a

po € N such that A, > ATy for allp>po. If p>po and f € L%’l(X, Ly,loc) satisfies
df =0 and fX |f|h n, < 00, then there exists u € Lg o(X, Ly,loc) such that du= f

and [x [ul} <5 < 2 [x|fI}, %

Proof. By the diophantine approximation relation (4.1), fix some po € N so that the
assertions in the theorem are satisfied and also for all p > po, 35“ > 1 a c1(Lp, hy) > %“J.
Let L, = F,® Kx, where Fj, = L, ® K)_(l. The canonical line bundle K x is endowed
with the metric A%X induced by w. If gp=hp® hEx" is the induced metric on Fy,
then, since ¢1(Kx,hg, ) = —%Ricw and A, > 4Ty for all p > po,

1 1 1
4.12 F, L Ky, hEx
( ) Ap ( p’gp) Ap ( p:h ) Apc]-< X7h )
1

Ricwzgr—w:w>0

= Ly, h
(p7) 4 2_

1
Ap 2mA,

for all p > pg. On the other hand, there exists a natural isometry,

U=~ AY(T*(X))® L, — A™(T*(X))® F,

by
(4.13) U(s)=5=(wA--Aw" As) @ (wi A--- Awy),
where wi,...,w, is a local orthonormal frame of T(LO)(X) and {w!,...,w"} is

the dual frame. This operator ¥ commutes with the action of 8. Now for a
form f € L3 (X Ly, loc) satisfying f =0 and [x |f\h n, < 00, obviously, we have
[y 2 i, \f\hp n, < 00. By using the isometry ¥, we can find U(f)=F € L%»l(X, F,,loc)
with OF = 0VU(f) =Wof =0 and [y %]F!gp% < oo since isometries preserve the

L?-norm. By Theorem 4.2.1, there exists f € L? (X, Fp,loc) such that of = \/\/Ai—F
P

and [y \f|gp n, <[y 2 a, \F\gp n, . Taking u:= ¥~!f and f = U~!(F) finishes the proof

since U1 is an isometry as well. O
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Theorem 4.2.3. Let (X,w) be a compact Kihler manifold, dimc X =n and let
{(Lp,hp)}p>1 be a sequence of holomorphic line bundles on X with € Hermitian
metrics as before, such that the diophantine approzimation condition (4.1) holds.
Then there exists po € N such that if u, are real-valued functions of class €2 on X
such that

_ \/Ap A
(4.14) Gty e 0y < 7 oy = 2,
then
n
. 2 2u,,7< / 2 upw
(4.15) Sl s < 5 [ 1o,

holds for p > py and for every €'-smooth section v of L, which is orthogonal to
HY(X, L) with respect to the inner product induced by hy, and w™.

Proof. As in the proof of Theorem 4.2.2, via the diophantine convergence assumption
(4.1), we first fix some py € N so that for any (fixed) p > pg, one can get
%T“ < Aicl(Lp,hp) < 37“ and A, > 47p. The main idea is to use Theorem 4.2.2.
P

To this end, let us fix a constant Ty > 0 so that Ric, > —27Tpw on X. Using the
real-valued functions w, given in the assumptions of theorem, we consider the metrics
gp = e 2h, on L, From (2.3.5) in [Ma & Marinescu (2007), (p. 98)] and the
second relation in (4.14) yield the following

3Apw  Apw B Apw

c1(Lyp, gp) = c1(Lp, hyp) +dduy, > | ==

i
n )

If we define an inner product by using g, in L*(X, L) as (s1,2)g, = [x (51,52)g,
we see, by the relation g, = e*QUPhp, for every s € HO(X,Lp),

(eupv7s>gp :/)(< QUPU S 7_/ _O

for every ¢'-smooth section v of Ly.

Write
(4.16) B = 9(e*rv) = 2P (20u, A v+ ).

Since 8 = 0 and by assumptions on u, and v, it follows immediately that
B e L%,l(X7 Ly,loc), so by Theorem 4.2.2, there exists 0 € L%,O(X, L,,loc) such that
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00 = and

(4.17) /|| TS /ngnv

Since e?“»y is orthogonal to HO(X,LP) for every v € €1(X, Ly), by writing
o = e?"rv + s for some s € H(X, L,), one can observe

(4.18)
(ot s, ot s)g, = [ 108,20 = [ (e, 4125 > [ e 2
dp n‘ X dp dp n! - X 9p n! ’

From (4.17) and (4.18), we have

(4.19) /|2“”v|g,, ,_/ a7, ,_A / Iﬁlg,, ol

Let us now estimate ]ﬁ]gp from above. By (4.16) and the first upper bound in (4.14),
we obtain the following
(4.20)

_ _ _ _ A _
2 2 2 2 2 2 2 2 2
18]g, = e7"7[20up Av +Ovl, < 2e77 (4]up Avlj,, + 00 < 27 ( 1g]v]hp+ 0v[1,,)

where, in the first estimation, we use an elementary inequality for norms:
|z +y|? <2(]x|2 +|y?|). Finally, putting (4.20) into (4.19) finishes the proof. O

4.3 Bergman Kernel Estimations

In this section, we establish a first-order asymptotic behavior for Bergman kernels
when restricted to the diagonal for sequences of positive line bundles. Additionally,
we provide an exponential off-diagonal decay for K, (x,y) in the given context. Our

proofs rely on papers [Coman et al. (2017)] and [Bayraktar et al. (2020)].

To initiate our analysis, we start by recalling fundamental properties of Bergman

kernels.

Let H O(X ,Lp) be the space of global holomorphic sections of L,. In this context,
unlike the equidistribution setting we consider an inner product on the space of

smooth sections ¢*°(X, L,), using the metric h, and the Riemannian volume form
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%!L on X (instead of w™). More precisely,

wn

(4.21) <aﬁnglgq@%@@»%gp

and the norm of a section s is given by ||s||2 := (s,s),. We denote the dimension of
this space as dj, := dim H°(X, L,) and consider £2(X, L,), which is the completion
of the space of smooth sections €*°(X, L,) under this norm, forming a Hilbert space
of square-integrable sections of L,. A normal family argument shows that H(X, L,)
is a closed subspace of £2(X, Ly,)

Next, we introduce the orthogonal projection operator K, : L2(X, L,) — H°(X, L,).
The Bergman kernel, Kp(z,y), turns out to be the integral kernel of this projection.
If {Sp } ? | is an orthonormal basis for H°(X, L), by using the reproducing property

of Kp(x,y), we express K,(x,y) in terms of this basis as follows:
(4.22) ZS” )@ ST ()" € Ly ® Ly,

where S%(y)* = (.,57(y))n, € Ly, is the metric dual of S7(y) with respect to h.
As in the previous chapter, the restriction of the Bergman kernel to the diagonal
of X is called the Bergman kernel function of H°(X,L,), which we denote by
K,(x) := Kp(z,z), and (4.22) becomes

dp
(4.23) Kpy(x) =:Z£;\S?(aﬁ o
J:

The Bergman kernel function has the dimensional density property, namely

n

A&@i:%

n!

In addition, it satisfies the following variational principle
(4.24) Ky () = max{|S(@), : § € H(X, L), [IS]], = 1}.

This holds for every x € X for which ¢,(z) > —oo, with ¢, denoting a local weight,

for the metric hy, in the vicinity of z.

We also defined the normalized Bergman kernel

~ L |Kp(xay)|hp,m®h;v7y
ICp(%?/) T Kp(m)l/QKp(y)l/Q’

75



which will be important throughout this chapter.

Theorem 4.3.1. Let (X,w) be a compact Kihler manifold with dimc X =n. Let

{(Lp, hp) 521 be a sequence of holomorphic line bundles with Hermitian metrics hy

of class €3 such that (4.1) holds. Assume that n, = % — 0 as p— oo. Then we
P

VAp

have

K
(4.25) lim Kplw) _ 1.
p=oo  An
Proof. We begin by taking a reference cover of the Kahler manifold X, as in Definition
4.1.1. Selecting x € X and a corresponding z-coordinate system based on Lemma

4.1.1 at z € X. Then

(4.26) on(2) = Rip(2) +0h(2) £ Gol)s Ph(z) = Zl M) 2
2

¢p is the weight for the Hermitian metric h, on P"(x, R) satisfying the condition (ii)
in Lemma 4.1.1 and ¢, is the polynomial of degree at most 2. Let e, be a local frame
of L, on U; with the norm |e,|,, =e™#P. Next, we choose R, € (0, R/2), which we

will determine later.

To estimate the norm of a section S € HY(X, L,) at the point z = 0, we consider
S = fep, where f is a holomorphic function on P"(x, R). Utilizing the sub-averaging

property for plurisubharmonic functions, we obtain:

(4.27)

2 Rty —20. 20, W™
)<an(o,Rp)!f\ e~ 2Rtp o —20p gpp(,;)?‘

S(@)[7 = [£(0)e~ O = | £(0)[?e2Rr(

Jpn(o.ry) € 2Fre 2oy
For the right-hand side of (4.27), by Lemma 4.1.1, there exists a constant D > 0
such that —D||hy|l3]2]> < @p(2) < D||hyl|3]2|, and by considering (4.21) and (4.26)

we have,

_ _9., o9 "N 9 W™
Jpn(o,py) |f1PeRipe2ope=20p Ly Jpn(o.r) | f1Pe7297<r

b 2er 1+Cg/R2
P

<

Ipro,R,) €
< (14 DR2)e2PlIhsllaRi | 52
- Ipnio.r,) € 2rdV

_2/ —QNUJH
Ipro,p,) € Fre=r sy

Combining the above inequality with (4.27) yields
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(14 D R2)e2PIklls By |52

498) 1S(2)2 = [£(0)e (D)2 — | £(0)[2e—2Rtr(0) < ,
(4.28) [S(z)[5, = £(0)e "= =1f(0)[% =

Let us now estimate the integral in the denominator of (4.28). To do this, we consider

the Gaussian-type integrals of finite radius,
(129 Flp)= [ e dm(e) =T (-
1€1<p 2

where dm is the Lebesgue measure on C. It is easy to see that F' is an increasing

function of p. We also write

4, F(o0) := li 20 g ::/ 2 gm(e) = L.

(4:30) (o0 = Jim, [ 2 ()= [ dm(e) = ]

Since

(4.31) / e 2V = 20l P N enl) gy ()
Pn(0,Rp) Pn(0,Ry) ’

it is enough to treat the integral
p 2
4.32 / e~ 2 gm (2
432 A(0.Ry) )
in order to get a lower bound for the integral (4.31), where A(0, R,) is the unit closed

disk in C. By the relation (4.6), there exists p; € N such that, for all p > py,

3A 5A
(4.33) prw <c1(Lp, hp)a < prm,

which, on account of (4.1) and (4.7), leads to

3TAp <\ < 57TAp'

4.34
(4:34) g — =3

Let us go back to the integral (4.31),

12
e P dm(zy),

/A(O:Rp)_{ZjSRp}
which, by a change of variable (\/7? zj = wj), equals the following

1

il —2|w;[? 4 ,
e mlwsj).
X /{|wj|SRp Ay (1)

2P
Now, (4.34) gives 1/ A—; > \/%ﬂ > 1, which gives R),/A, < Rp\/)\?. Combining this
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with the fact that F' is increasing, we get
(4.35)

/A(O:Rp)—ﬂzj |<Rp}

Consequently, from (4.31), we have

Inserting this last inequality in (4.28) give

(14 DR2)e2Plhwlls B
F(Rp\/ Ap)n

If we take the supremum in (4.36) for all S € H(X,L,) with ||S||, = 1 and use the
variational principle (4.24) for K),, we get

(4.36) S@)}, < XL DS

(1+ DR§)€2DthH3 R}

F(Ry\[Ap)"

(4.37) Kpy(z) < AP

for any R, € (0, g)

We will now determine a lower bound for K, by employing L? estimations obtained
carlier as Theorem 4.2.2. Let x:C" — [0,1] be a cut-off function with
a compact support in P"(0,2), k =1 on P"(0,1). By defining
Kp(z) == K(Rip), we consider H = rpe're,, which is a (smooth) section of L, and

\H(:)j)ﬁp = |kp() 220t (@) c=9p() W estimate ||H||, from above as follows:

wn n

(4.38)  |H|2< / (2Rt (2) 20 (x) Vo _ / —26(@) ~250() Y
P n(0,2R,) n!  Jpn(0.2R,) n!

By using Lemma 4.1.1 (i) along with the relations (4.30) and (4.35) on the integral
at the very right end of the inequality (4.38), we get the following

|H|Z < (1+4DE)!OPhula s [ —2eh gy
Pn(0,2Ry)

n 1
4.39 < (144D R2)e16DIhsll3 R} <7r> ‘
Y = (1D 2/ M- M

Let us define ® = 9H. Noting that [|0k,||* = [|0k||?/R5, where ||9x| is the supremum

of |0k|, we deduce the following inequality:
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L3
(L4 / Ok, |2 26 o~ 25p ¥ Hé’nllz( v , (1+4D R2)e6 D lholls 1y

As A, — 00, by using Theorem 4.2.2, there exists pg € N such that, for all p > po,
we can find a smooth section I" of Ly, as a solution to the d-equation for ® such that

O =® =0H and

2|10k || (Fyn (1+4DR?) (16D || hp||3 Ry)
ApR]% 2 N

2
(4.40) P2 < o] <
/4

Given that H = e, is holomorphic on P™(0,R)), I' is holomorphic on P™(0, R,) as
well since 9T'=0H =0 on P"(0,R,). Applying estimate (4.36) to I' on P"(0,R,)

leads us to the following inequality

1+ D R2)e2DIpls R}
P, < LHPR)e e
F(Ry/ A"

9,112
2||0k| (E)n(l+4DR]2))2618Dth||3R§’)'

a APR]%F<RP \/ Ap)n 2

M- NG5

(4.41)

Now we will construct a new section A := H —1T" € HO(X,LP). Then, by a basic
inequality |S7 — 52|h (IS1[n, — |S2]n,)? for norms applied to A, combined with
(4.41) and the observation |F'(x)[;, =1, we get

A7, > (1H (z)|n, — T (2)|n,)?
n/2 V2||0k[|(1+4D R?) 9Dy B

(4.42) > (1-( 2) NN \f"ﬂ )

On the other hand, by (4.39) and (4.40) together with the triangle inequality, we
obtain
(4.43)

1 3
1AL < (1H]lp + IT]])? ()”Ap 7 (L4 D RE) 0PIl (1

| Vsl
; ea)

o

To simplify what we have done so far, we write

NN

(4.44) Bi(R,) = (1-(3)
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and

V23]
B4y~

The variational property (4.24) combined with (4.42) and (4.43) implies

(4.45) Ba(Ry) = (1 +4DRg)€16DIIth3R2 (1 4

IA@)[7 M2 By(R,)
440 502 RE" 2 T By

For the upper bound (4.37), as above, we put

/2

F(Ry,/4p)

(4.47) Bs(Ry) = ( )" (14D R2) 2P wlls By,

Observe that

7

(4.48) (EV K (x) < By(Ry) N .. AP

[\

By our hypothesis 7, = Li;ﬂﬁ’ — 0, and now we determine R, in the following way
D

1/3 77_2/3
5 = -

Rpiznp 3 - \/Ia
p

which means
Tlp = HhPH3R?)> 77p_2/3 = Rp\/ Ap.

Since || hpll3 > 1 from Subsection 4.1, we have R, < 7}11)/3, and so R, — 0 when p — oco.
All in all, based on Ry, it follows from the quantities Bi(R)), Ba(R)) and Bs(R))

that we find uniform upper and lower bounds for K, depending only on 1,

Bl(Rp)

(4.49) B

>1-— D’ng/3 and B3(R,) <1 +D’n§/3.
Here D’ > 0 denotes a constant that merely depends on the reference cover. We
finally consider the following inequality that holds for all p > pg

1 o7 AN By(R) _ omo Kp(r) 1
29" T By Q) S
p 2 2\U1p P P

(4.50) B3(Rp)A\L.. A2,

which, in light of the findings (4.9), (4.46), (4.48) and (4.49), finishes the proof.
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Relying on the proof presented in [Bayraktar et al. (2020)], which incorporates
methods from [Berndtsson (2003)], [Coman et al. (2017)] and [Lindholm (2001)], we
provide a proof for the off-diagonal decay estimate of the Bergman kernels K, (z,y)
associated with the corresponding line bundles (L,,h,) in the current setting of

diophantine approximation.

Theorem 4.3.2. Let (X,w) be a compact Kdihler manifold with dimc X =n. Let
{(Lp,hp)}p=1 be a sequence of holomorphic line bundles with Hermitian metrics hy
of class €3 such that (4.1) is satisfied. Write n, = % — 0 when p — oo. Then
there exist constants G,B >0, pg > 1 such that for eveﬁy x,y € X and p > pg, the

following estimation holds true
(4.51) |[Kp(,)[fy, < Ge™ BV Avd@y) g3,

Proof. Initially, we select a reference cover for X in accordance with the earlier

definition above and choose a large enough py € N such that

R

1
Rp::@<2

and Theorem 4.2.2 and Theorem 4.2.3 are valid for all p > py.

Let y € X and r > 0. Write
B(y,r) :={r e X :d(y,z) <r},

which is the ball of radius » > 0 centered at y. Choose a constant 6 > 1 so that for
any y € X,
Pn(y7 Rp) g B(y7 eRp)u

where P"(y,R)) is the (closed) polydisk centered at y given by the coordinates

centered at y in view of Lemma 4.1.1.

Claim: There exists a constant D’ > 1 such that if y € X, so y € P"(z;, R;) for some

j and z-coordinates centered at y are due to Lemma 4.1.1, then

52 <

(452) Sw, <045 [ s

Pn(y7Rp)

where, as above, P"(y,R,) is the (closed) polydisk centered at y =0 in the
z-coordinates and S is an arbitrary continuous section of L, on X which is

holomorphic on P"(y, R,).
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Proof of the Claim: By Lemma 4.1.1(ii), (L, hp) has a weight ¢, on P"(y, R) such
that

(4.53) op(2) = Rtp(2) + go%(z) +op(2),
where t(2), ¢1,(2) = Y11 Af|2i|? and () satisfies the inequality
(4.54) —Dlhplis|=l < p(2) < Dl hplls]2]*

for z € P"(y,R) (Recall that R = min R;). Let e, be a frame of L, on U; so that
S = fep, where f is a holomorphic function on P"(y, Rp) and |ey|p, =€ ¥7. Asin
the beginning of the proof of Theorem 4.3.1, we have first the relation, which is
nothing but (4.28)

(1+ D R2)e2PIsllsfy | )2
Jpn(o.r,y € 9PV

(455) |S@), = 17(0)e @ = | £(0) 2 2RO <

Since

(4.56) / 6_2@;’dv _ / 6—2()\’1’|21‘2+...+)\ﬁ\zn‘2)dv<z)
Pn(0,Ry) Pn(0,Rp) '

as we have done in the proof of Theorem 4.3.1, it will be sufficient for us to find a

lower bound for the integral

—2X]|z? .
(4.57) /A(O,Rp) e I dm(z;)

in order to get a lower bound for the whole integral (4.56), where A(0, R)) is the
unit closed disk in C. By the relation (4.34), there exists p; € N such that, for all

AP
p > p1, 37r8A” <M< 57r8A”, and as before, 4> %” > 1. We also observe that

1 w21

?)>§%>1

(4.58) F)="(@1-

s
2
since % < e < 3. By the same argument used in the proof of Theorem 4.3.1, we get

—QAP\Z]“Q N — 1 / —2|w;|? .

e i dm(z;) = e il dm(w;) >
|1 p AP J D>
A(0,Rp)={lzj]< /pr} )‘] {\wj|§1lfi)} )‘]

since F'(1) > 1 by (4.58) and F is increasing. Consequently, from (4.56), we have

/ 1
4.59 / 2y >
(4:59) P"(O,Rp)e TN
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Inserting (4.59) into the sub-mean estimation (4.55) and using (4.34), one has

n

S < (1+ DR 2D”hp||?>R§AP...Ap/ sp L

S, < 1+ DR2)e ISR,

5T wh
4.60 < (1+ DR2)e2Dllhpll3Ry nAn/ g2 Yo
(460 < (DRI gy [ sz @

As R, = % — 0 and by our assumption that n, = % — 0 when p — oo, one can
P

P
find a constant D’ > 1 such that, for a large enough py € N,

om

(1+DRI2))€QD||hpllng( 2 <D
for all p > max {po,p1,p2}. Hence,
n
4.61 S)2 <D’A”/ S|z Y
(4.61) 1Sk, < DAy Pn(y’Rp)l by

which completes the proof of the claim. Let us fix x € X. Then there exists
Sy = Sp. € HY(X, Ly) such that

1Sp@)7, = [Kp(z.9)]7,

for all y € X. By Theorem 4.3.1, there exists a constant D” > 1 and p3 € N such
that, for all p > ps,

(4.62) Kp(x) < D"A7,

where D" is some constant that depends only on the reference cover. On the other
hand,

@63 IS = LIRS < [ Ry, LW < Kyf)

n! n! -

In the rest of the proof, we proceed with the near-diagonal and off-diagonal estimations
of Kp(x,y).

For the near-diagonal estimation, let y € X and d(z,y) < 4—\/21—. By the variational
P
property (4.24) of K,(x), the inequality (4.62) and (4.92), we have

K@), = 1SR, < Kp@)IIS,II;
(4.64) < Ky(2)K,(y) < (D")2A2"

< 640(D//)2A]2)n6_ Apd(x,y).



We go on with the far off-diagonal estimation. Let y € X, and this time, consider

1
§:=d(x,y) > 40 — = 40R,,

NEs

By the choice of S}, and the claim in the beginning of the proof, we get

(4.65) Sy, = e, <47 [ KO,
pe "(y,Rp) P n
We observe that the inclusions
. 5 . 36
(4.66) P"(z,Ry) C B(x,i) and P"(y,Ry) C {( € X :d(z,() > Z}

hold.

Let B be a non-negative smooth function on X with the following properties:

BO) =i d(r.0) > >
BO=0ifdr,0) < 5
8(0)2 < 6%5(@ for some ¢ > 0.

According to these data, we first have

n

4 we
(467) Jony o V@ Ol < [ 1 O, B

Using the variational property for K,(z), the right-hand side of the inequality (4.67)

takes the following form
Ky(BS)|5 S e H'(X,L SR g —1
max{|K,(3), : S € HX, L), [ 15T, 557 =1},
where

0= [ Kylw QBO SO

is the Bergman projection of the smooth section 3S to H%(X,L,). Note that when
f =1, the usual variational formula (4.24) is obtained. Therefore, if we manage to
estimate |Kp(65)|,2lp, then we will be done. To this end, to find an upper bound for
|Kp(BS )|%Lp, we use the decomposition of the space L?(X, L) as below

(4.68) L*(X,L,) = H°(X,L,) @Y.

(Since L?*(X,L,) is a Hilbert space and H°(X,L,) is a closed subspace of
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it, such an orthogonal complementary subspace Y always exists).  Since
BS € €°(X,Ly) — L*(X,L,) it follows from the decomposition (4.68) that there

exists an element v € Y such that
u=pS— Kp(ﬁS).

Owing to the inclusion P"(x,R,) C B(x, %) from (4.66) and B({) = 0 for
¢ € B(x, %) given previously in the proof, we readily have 5 =0 on P"(z,R,), so
u=pS—Ky(BS)=—Kp(3S), which is holomorphic on P"(z,R,) (defined by the
coordinates centered at x provided by Lemma 4.1.1). Therefore, by using the claim

in the beginning, one has

(4.69) K, BS)F, = ), < DAY [, Julf, %

We provide an upper bound for the integral on the right-hand side of (4.69) by
Theorem 4.2.3. For this purpose, let 7:[0,00) — (—00,0] be a smooth function

defined as follows

Write ¢s(2) = 07(%). Observe that 7/ and 7" have compact supports within the set

[3.3], and so are ¢} and ¢§. This means that there exists a constant My > 0 such

that |¢§(z)] < Mo and |¢f(x)| < 2 for all # > 0. Define the function

¢) =€y Apos(d(x,0))

Since ¢f and ¢§ are smooth and have compact supports, we can find a constant
M > 0 such that

(470) HEUPHLOO X) < M16\/A
(4.71) dvp > —— Le /A pw > — epr

. . 1 1 "
because of the inequality 6 > 46 i Now we can choose € = S for the conditions

of Theorem 4.2.3 to hold. Since 7(z) =0 for z < i, we have that

(€)= e/ Apasla(z. ) = e /A1) —

for d(z,() < g. Also, by the inclusion P"(x, R),) C B(m,g) given in (4.66), we get
vp(¢) =0 on P"(x,Ry). By the definition of 3, it is seen that du = 9(3S) =9dBAS
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(because S is holomorphic) has the following (compact) support

Us={ce X <dw0)< 2},

so, for ¢ € Us, by the definitions of Us, 7 and ¢5 we obtain

Q) = e/ Ap0s(a(e.0) = ey A3 (M2 - e [y atw0) < e/, 2

By Theorem 4.2.3 and the definition of 3, we have

n n
Lol 5 < [l e
Pr(z,Rp) P nl x 7 nl

Plugging this last inequality into (4.69) gives
|Kp(BS)[;, < D' Affce™ VA,
which gives, by using the inequality (4.67),

n
2 “¢ e Todo,
Ln(y7Rp)|Kp<x7C)|hpm SD,AZCG € P (my)

From the inequality (4.65), we infer
(4.72) | Kp(,y)lf, < e(D)? A7 eV Ay,

which finalizes the proof. O

4.3.1 Linearization and near diagonal asymptotics

Let V C X, U C C" be open subsets and zg € V, 0 € U. Let us take a (Kéhler)
coordinate chart as follows «y : (V) — (U,0), v(xg) = 0. We will use the following

notation, so-called linearization of the coordinates on the Kahler manifold X: For
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any u,v € C", we write v~ !(u) = 29 +u and v~ (v) = 29+ v, and
(4.73) Kp(v (u), 7y (v)) := Kp(wo +u,z0 +v).

Since 0 € C™ and C" is a complex vector space, we can write v =04v and © =0+ u.
Linearization means that when we translate 0 € C" by u (or by v for that matter),
by thinking of 0 € C" as x9 € X, we can also write v~ !(u) = zo+u, so in local
coordinates we express the difference between 4~ !(u) and z( (not meaningful in X)
by the difference u — 0 (meaningful in C™ because C" is a complex vector space).
This is also called the abuse of notation in, for instance, [Shiffman & Zelditch (2008)]
and [Shiffman & Zelditch (2010)].

Near diagonal asymptotics

Modifying the argument in [Bayraktar (2017a), Theorem 2.3], we consider the

following holomorphic functions

el

K (o ) ) ) o ) o ()

l —
Apep o)

) ()

on = {(u,v) : u,v € P"(0,R)}, where A, := Diag[\},...,\], which is a diagonal
matrix whose diagonal entries >‘§ are positive from the discussions in Section 4.1.
Let Qo :={(u,u) : u e P"(0,R)}. It follows from Theorem 4.3.1 and Lemma 4.1.1
(ii) that I'y — 1 on €. Observe that since I', is uniformly bounded on €2, there is a
subsequence {I',,} such that I'y, = I'g uniformly on Q, where we must have that
['g =1 on Q. Since g is a maximally totally real submanifold, we get I'o =1 on
the whole €). Since this argument can be applied to any subsequence of I';, we see
that T', — 1. We make now an observation for |I',(u,v)|? that will be used in our
main theorem. Since A, has positive diagonal entries, its square root All,/ % s defined,

so we have

(4.74) (Apu, ) = (A 20, AY?0).
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(4.75)
2 728%17

()2 ()

R(Apu,v)

)~ ()|

AQn e Ap

(o) () ()

- >\ AP AP
n n J—
AQ"ezzFl Ap |2 e 2> 5 A; |Uj|2€_22j:1 Az, |uj =52
P

(g ) [T o S

AP
J .2
A2n€*22j=1 ,Tp|uj =751
p

where, in the second equality, we have used (4.74) and the polarization identity
1
R(Gey) = SRl + Iyl = Ix=y1)

for the vectors x = A})/ %y and y = A}g/ 2@ and in the third equality, we take into account
the representation ¢, (2) = Rtp(2) + X7 1)\p|zj|2+g0p( ) from Lemma 4.1.1(ii). By
the limit argument made above regarding the holomorphic functions I'y, the expression
(4.75) for |T'p(u,v)|> and Lemma 4.1.1(ii), we have

(4.76) ‘K <\/_ \/A—p>’2 29%(\/%7)6_2%(\/;7)

P —1
A2n6722j:1 /TJP |uj =5
p

as p — 0o. By linearization (4.73) on the coordinate polydisk P"(z, R) C U;, where
we have the Kahler coordinates at the point x = 0 provided by Lemma 4.1.1 for
(4.76), we obtain

u T 2 20, (a+ “)_2%7(%_’_5)
(4.77) ‘Kp(ﬂﬁ’“mﬂ 2l ) e s

AL
n
42n€72zj:1 A; |uj =52
P

0 —1 as p— oo
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4.4 Asymptotic Normality

4.4.1 Gaussian holomorphic sections and random zero currents

of integration

A complex random variable W is said to be standard Gaussian in case
W =X+4++—1Y, where X and Y are i.i.d. centered Gaussian distributions of

variance 1/2.

Given an orthonormal basis {Sf };?p:1 of H(X, L,) with respect to the inner product

(4.21), a Gaussian holomrophic section of L, is a linear combination

where &; are i.i.d. real or complex Gaussian random variables of mean zero and
variance one. For any such Gaussian holomorphic section s, its zero locus Z, is
a purely l-codimensional analytic subvariety of X, and the current of integration
(with multiplicities) along Zs, is defined as in the previous chapter, that is for
¢ € Dr—Lln—l(X)

<[Zsp]a¢> = ¢

Zs

We remark that the random variables
(4.78) sp > ([Zs,], &)

on the probability space (HY(X, Ly),p), where v, is the d,-fold Gaussian product
measure on HY(X,L,) are called smooth linear statistics of zeros for Gaussian

holmorphic sections s, € H*(X, Ly,).

The expectation and variance of the current valued random variable s, — [Z;,] are
defined by their action on ¢ € D"+ ~1(X), i.e.

(4.79) ¢ — (E[Zs,],0) == E([Zs,],0),
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and

(4.80) ¢ (Var[Zy,], oW ¢) := Var([Z,,], ) = E([Zs,], ¢])* — (E([Zs,], 6))*.

Note that the expectation here is taken with respect to the Gaussian measure 7, on
HO(X,L,) = C%, and the external product ¢ X ¢ is defined as in Section 3.1.1.

4.4.2 Asymptotic normality of random zero currents

In this section, we delve into the proof of Theorem 1.3.3. We begin our analysis
by recalling basic facts needed for the proof and stating a fundamental theorem by
Sodin and Tsirelson [Sodin & Tsirelson (2004)], which provides sufficient conditions

for proving an asymptotic normality result.

Theorem of Sodin and Tsirelson:

Given a sequence {v; }?‘;1 of complex-valued measurable functions on a measure
space (G,o) such that

oo
(4.81) > |”yj(3:)]2 = 1forany z € G,
j=1
following [Sodin & Tsirelson (2004)] (and also [Shiffman & Zelditch (2010))),

a normalized complex Gaussian process is defined to be a complex-valued random

function a(z) on a measure space (G, o) in the following form
[0.9]

(4.82) () =3 _bjvj(w),
j=1

where the coefficients b; are i.i.d. centered complex Gaussian random variables with

variance one. The covariance function of a(z) is defined by

(4.83) C(x.y) = Elo(z)a)] = ffl (@700,
2

A simple observation gives that |C(z,y)| <1 and f(z,z) = 1.
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Consider a sequence {a;}32; of normalized complex Gaussian processes on a finite

_ 2
measure space (G,0), and let A(p) € LRt e 2 pdp). Suppose ¢ : G =R is a
bounded and measurable function, we will focus on the following non-linear functionals

that also serve as random variables in this context.
(4.84) T3 (o) I/GA(!%(JI)IW(ﬂf)dU(&?)-

The next theorem (Theorem 2.2 of [Sodin & Tsirelson (2004)]) was proved by Sodin

and Tsirelson.

Theorem 4.4.1. For each n=1,2,..., let By(r,s) be the covariance functions for
the complex Gaussian processes. Assume that the two conditions below hold for all

veN:

(i)

> 0.

i 1606 (Cp (1 8)[* 6(r)§(s)dor(r)do (s)
n—o0 SUPrcG fG’ |Cp(’l“, S) ’do’(s)

(ii)
Jim sup /G 1C,(r, 5)|dor(s) = 0.
Then the distributions of the random variables

7

converges weakly to the normal distribution N'(0,1) as p — oo. If X\ is increasing,
then it is sufficient for (i) to hold only for v =1.

The proof is based on applying the method of moments, a fundamental tool in
probability theory, coupled with the use of the diagram technique. This approach
facilitates the computation of moments for non-linear functionals, which are then
compared to the moments found in a standard Gaussian distribution. Such an
approach is a classical one in establishing the central limit theorem for non-linear
functionals within Gaussian fields. We also remark that the condition (ii) ensures

that Var[]—'g(ap)] — 0 as p — 0.

Now we are ready to establish our main theorem. For the proof, we use the arguments
from [Shiffman & Zelditch (2010)] and the primary objective will be to apply Theorem
4.4.1 to our setting, specifically to Gaussian holomorphic sections in a sequence of
positive holomorphic line bundles with class > Hermitian metrics on a compact

Kahler manifold. To accomplish this, we will make use of the Bergman kernel
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estimates from the previous sections.

Proof of Theorem 1.3.3. To begin with, we modify the information about analytic
functions from Theorem 4.4.1 to suit our present setting. The normalized Gaussian
processes a; on X will be constructed as follows: We take a measurable section er,
of Ly such that ep, : X — L, with |er, (z)[p, = 1 for any 2z € X. We pick now an
orthonormal basis {s7, ?”Zl of H(X,Ly), where s} = @ler, . Let us write

(4.85) fi(z) = L i=1,2,.,dy.

Notice that |¢f| = |s]|p, and Z?”Zl | fi()|* =1 by the relation (4.23). Therefore, we

can express a normalized complex Gaussian process on X for each p € N as follows:

(4.86) ap=>_bif;,

j=1
where the coefficients b; are i.i.d. complex Gaussian centered random variables with
variance one. We observe that a random holomorphic section s, = Z?”: 1bj s% can be
represented as

dp '
(4.87) sp=_ bish =/ Kp(z,x)aper,,
j=1

which indicates the presence of the normalized complex Gaussian process. The

relation (4.87) gives us that

[55(2)In,

(4.88) lay(z)| = Kp(x,x)'

We proceed to compute the covariance functions 3, of the complex Gaussian processes
ap. We observe from the fact that the complex Gaussian random coefficients b; in

(4.86) are centered, i.i.d., and have variance one
(4.89) Var[b;] = E[|b;|*] = 1, E[bgb] =0 if k #1.

By the relation (4.83), (4.86) and (4.89), we have

dp ) dp ) dp i
(4.90) Cpla,y) =E[3_ b fj(2) X_0ifp (W) = > fr () fo ().
j=1 j=1 j=1
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Since {s}, } @ | is an orthonormal basis, due to the representation 8] gpg,e L, and the
relation (4.85), we have gop( )gop( ) = 0 whenever k # [. Combining this with (4.90)
yields

(4.91) Col2,y)| = Zlfp IR

Next, after a series of computations, we arrive at

dp

(4.92) K@, 9y sty = | S |5B@)2 [shw)2 .
j=1

By putting together (4.91), (4.92) and (4.85), we find

~

(4.93) Kp(z,y) = [Cp(z,y)]

because ]sg;]hp = \go%\.

Take A(p) =logp and (G,0) = (X, %,L) In the rest of the proof, to make the notation
lighter, we will write dix := %7 for the (Riemannian) volume form on X. Let us fix
a (n—1,n—1) real-valued form ¢ with ¢ coefficients. Then,

=1 _
(4.94) dd°¢p = ——00¢p = diy,

7r

where the function ® is a real-valued €' function on X. By invoking the
Poincaré-Lelong formula (2.16), the non-linear random functional given by (4.84)

assumes the subsequent form in our case,

(4.95) ]-‘;D(ap) = /X (log |5pln, — log\/Kp(x,x)) \/?8&;5(:1:) =([Zs,),0) +Cp,1,»

where (1, = <—01(Lp,hp) —log./Kp(a:,a:),gb>, namely, (,, is some constant
depending only on the line bundle L, and the dimension of the Kéhler manifold X.
Thanks to a standard property of variance, the expression (4.95) shows that F¥ (ap)

and ([Z,], ¢) have the equal variances.

For the remaining part of the proof, our goal is to validate the fulfillment of the
requirements (i) and (ii) of Theorem 4.4.1 for the current setting. First, with
A(p) = logp being increasing, we only focus on the case where v = 1. To use both

far-off-diagonal and near-diagonal asymptotics, we split the integration regions
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accordingly: d(z,y) < ¢4 and d(xz,y) > 8 Ay Let us start with the simpler

yz e

condition (ii). For the integral on the far off-diagonal set where d(x,y) > k\’?%’, by
P

Theorem 4.3.2, we have

lim sup . Kp(z,y)ddx(y) < lim sup/ . Ge BV Ard@y) 4y  (y) =0.
N e Jaa)2 2 A )= 5 )

For the integral over the near-diagonal set where d(x,y) < %, due to the relations
P

(4.93) and (4.83), we get

~

’Cp(l',y)dﬁX(y> S nhm Sup log Ap

1 dﬁx(y) =0.
TR0 pex Jd(z,y)< NEY

lim sup
=0 e x Jd(z,y)<

log Ap
Ap

Our next step is to affirm condition (i). For the integral on the far off-diagonal
log Ap
VA
zero more rapidly compared to that of the denominator because, by Theorem 4.3.2,

set where d(z,y) > as p — 0o, the integrand of the numerator approaches

the corresponding decaying orders (to zero) for numerator and denominator are
O(A,€)and O(Ap ¢/ 2), respectively.

Finally, we verify that the lower limit below will be strictly positive on the

K logApy .
near-diagonal set, where {|v| < \/A_p} :

fX f|v\§logAp IE]%('%?*I"*’ \/TiTpW(xW(fB + ﬁ) dv dﬁX(x)

(4.96) lim inf . - > 0.
P f|v|§logAple(xax+ \/A_p)dv
Let
Jx Sioj<iog 4, K (@, 2+ —2= )i ()ib(x + —=) dvdi)x (x)
491)  J(p) = ’ VA VA |

f|v|§logAp ICP($’$ + \/Z—p) dv

Let us examine the numerator and the denominator separately. Using the left part
of the inequality (4.50) for the denominator and the right part of the same inequality
for the numerator, the linearization (4.73) in the neighborhood U;, where we have
the Kéahler coordinates at the point x on the polydisk P"(z, R) C U; provided by
Lemma 4.1.1, we get the following.
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(4.98)

v v
/X/|v|<logAp px’x+\/A>p)w($)¢($+\/A»p)dvdﬁX($)
2n |Kp(z, 2+ j—)l%,,w(a:>w(x+ \/lg—p)
> /X/|v|§logAp (5) A2”(1+D' 2/3) dvdix(z):= Ii(p).
and
/ lap(a:,x—i—L)dv
v|<log Ay \//Tp
(4.99) (it

)
< v, (3) o = 1),
lv[<log Ap Ag(l—D?]p )

which implies, by extracting the weight functlons and multiplying and dividing both

AP
the integrand of I1(p) and I2(p) by e 221 AP' vl and e ~ Xyl , respectively.

We obtain the following expression for I1(p)

(4.100)
.
on | Kp(z, 2+ \/—p)| eXp <—2S0p(x) —2¢p (er \/v_p> —22 5= Ap|vj|2>

Lo, ) 7
lv|<log Ap A}%n(1+D’nz/3)ZeXp( 2570 174, |UJ|2)

x (x) (x—i— \//Tp) dvdix(x).

and
(4.101)
o | Ky (z, 2+ —2)|e=Pr@e “0”(”\/7) P
Iy(p) = / <4> o e X Al gy,
jo|<log Ap \3 X

Ap(1— Diyp/)e” 2= 101

Now, as p — oo, and utilizing (4.77) and (4.8), along with the fact that for 1) € ¢!,
vy v :
we have ¥(z + \/A_p) P(x)+0 <\/A_p)’ it follows that

(4.102) nw) = [ @) [ (‘;)2”6—”2?-1%'%,
and
(4.103) I (p) —>/ (g)ne_gzy—lezdv.
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By (4.98) and (4.99), we obtain

(4.104) J(p) > ).

liminf J(p) >

p—
which ends the proof. O

In comparison, the authors in [Coman et al. (2017)] and [Bayraktar et al. (2020)]
consider a more general hypothesis between the first Chern forms and the Kéahler

form. More precisely, they assume
(4.105) c1(Lp, hp) > apw for all p > 1 and ap > 0, such that a, — co.

In our setting, the role of a, is played by A, (which was defined as
Ap =[x c1(Lp,hp) Aw™ 1 in [Coman et al. (2017)] and [Bayraktar et al. (2020)]), and
there are two different limits because of the diophantine approximation relation (4.1)
between )\1]? and A,. In the case of (4.105), we do not have (4.8) (and consequently
(4.9)). However, as Theorem 1.3 in [Coman et al. (2017)] shows, there still exists a

Kp(@) — (2)™. Despite the existence of the limit in terms of N, we

limit: lim =
P00 NI w

2
do not know whether the limit lim, A—; exists, which is crucial in the proof of

Theorem 1.3.3. Therefore, the arguments followed in this paper cannot be used to

prove a central limit theorem in this framework.
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