
AI-ASSISTED CONSTRUCTION OF EDUCATIONAL
KNOWLEDGE GRAPHS

by
MEHMET CEM AYTEKIN

Submitted to the Graduate Engineering and Natural Sciences
in partial fulfilment of

the requirements for the degree of Doctor of Philosophy

Sabancı University
June 2024

AI-ASSISTED CONSTRUCTION OF EDUCATIONAL
KNOWLEDGE GRAPHS

APPROVED BY

Prof. Dr. Yücel Saygın .
(Dissertation Supervisor)

Prof. Dr. Şule Gündüz Öğüdücü .

Prof. Dr. Hüsnü Yenigün .

Assoc. Prof. Dr. Öznur Taştan .

Assoc. Prof. Dr. Tevfik Aytekin .

DATE OF APPROVAL: July 16, 2024

MEHMET CEM AYTEKİN 2024 ©

All Rights Reserved

ACKNOWLEDGEMENTS

First and foremost, I would like to express my sincere gratitude to my advisor Prof.
Dr. Yücel Saygın for his guidance, support, and encouragement throughout the
course of my research in Sabanci University. His expertise in the field of computer
science and his dedication to his students have been instrumental in shaping my
academic and professional career. During challenging times, he always approached
my research from different perspectives, asked insightful questions, and provided
critical feedback that helped me refine my work. Moreover, I would also like to thank
Prof. Dr. Hüsnü Yenigün and Prof. Dr. Şule Gündüz Öğüdücü for their valuable
help as members of my dissertation committee. Their understanding attitude, along
with their thoughtful guidance, played a crucial role in the successful completion of
my dissertation. Additionally, I also express my appreciation to Assoc. Prof. Öznur
Taştan and Assoc. Prof. Tevfik Aytekin for taking place in my final dissertation
presentation and providing valuable feedback.

I also gratefully acknowledge the support by The Scientific and Technological Re-
search Council of Turkey (TUBITAK) through their 2244 Industrial PhD Program
under the project number 118C056.

Finally, I extend my heartfelt appreciation to my family members, Osman Galip
Aytekin and Selda Aytekin, for their constant support, patience, and understanding.
Their love, encouragement, and words of wisdom were the driving force behind my
determination and without them, this dissertation would not have been possible.

iii

ABSTRACT

AI-ASSISTED CONSTRUCTION OF EDUCATIONAL KNOWLEDGE GRAPHS

MEHMET CEM AYTEKIN

Computer Science and Engineering
Ph.D Dissertation, June 2024

Dissertation Supervisor: Prof. Dr. Yücel Saygın

Keywords: automated prerequisite detection among concepts, building knowledge
graphs, automated educational content generation, explainable AI, fine-tuning

large language models, deriving inference rules from knowledge graphs.

Knowledge graphs are effective tools for organizing information. In this dissertation,
we introduce a specialized graph called the Educational Knowledge Graph (EKG).
This graph visualizes the concepts within a domain by circles and indicates their
prerequisite relations with arrows. Such a visualization provides a comprehensive
representation of the learning domain and shows students the appropriate order in
which to learn these concepts. EKGs can be further enriched by textual information
defining what each concept means and why it forms a prerequisite relation with
the other concepts in the graph. Manual construction of EKGs is a challenging
and time consuming task for three main reasons. First, it requires assigning precise
definitions to each concept within the domain. Second, the domain experts need
to evaluate each concept pair for identifying possible prerequisite relations. Third,
the identified prerequisite relations must be justified. To address the first two chal-
lenges, we propose a methodology that combines machine learning techniques with
expert knowledge. Given a domain name, our approach automatically generates
specific descriptions for a predetermined number of concepts related to that domain
and then assigns a prerequisite probability score to each concept pair using the gen-
erated descriptions. The high scored pairs are then asked to a human expert for
validation in an iterative manner. With each round of expert feedback, the EKG in
the background is updated dynamically and the final EKG is constructed once the
expert decides to finish the interaction. In order to address the third challenge, we

iv

describe a fine-tuning procedure for Large Language Models (LLMs) to teach them
to identify and explain the prerequisite relations between the concepts. The results
show that LLMs, fine-tuned according to our described procedure are effective mod-
els for prerequisite detection and can generate satisfactory explanations when asked
to clarify the reasoning behind these relations. Finally, we present all the described
methodologies in this dissertation in a web application. By using this application, we
provide instructors with the ability to create their own AI-assisted EKGs and offer
them to their students during their courses as supplementary learning materials.

Keywords: semantic search, prerequisite relation extraction, knowledge graph con-
struction, large language models, fine-tuning

v

ÖZET

YAPAY ZEKA DESTEKLI EĞITIMSEL BILGI ŞEMALARININ
OLUŞTURULMASI

MEHMET CEM AYTEKIN

Bilgisayar Bilimi ve Mühendisliği Doktora Tezi, Haziran 2024

Tez Danışmanı: Prof. Dr. Yücel Saygın

Anahtar Kelimeler: Önkoşul İlişki Çıkarımı, Önkoşul Grafikleri, Tavsiye Sistemleri,
Açıklanabilir Yapay Zeka, Büyük Dil Modellerini İnce Ayarlamak, İlişkisel Verileri

Sınıflandırma, Grafikler Üzerinde Çıkarım Kuralları

Bilgi şemaları, bilgiyi organize etmek için etkili araçlardır. Bu tezde, Eğitimsel Bilgi
Şeması (EBŞ) adı verilen özel bir şemayı tanıtıyoruz. Bu şema bir alan içerisin-
deki kavramları yuvarlaklar ile görselleştirir ve bu kavramların ön koşul ilişkilerini
oklarla belirtir. Böyle bir görselleştirme, öğrenilmek istenilen alanının kapsamlı bir
temsilini sağlar ve öğrencilere kavramları hangi sırada öğrenemeye başlamalarının
uygun olacağını gösterir. EBŞ’ler, her kavramın ne anlama geldiğini ve grafikteki
diğer kavramlarla neden bir ön koşul ilişkisi oluşturduğunu tanımlayan metinsel bil-
gilerle daha da zenginleştirilebilir. EBŞ’lerin manuel olarak oluşturulması üç ana
nedenden dolayı çok vakit alıcı ve zor bir iştir. Birinci zorluk, alan içindeki her
kavramın spesifik tanımlarının oluşturulmasıdır. İkinci zorluk, ilgili alanın uzman-
larının alan içindeki her kavram çiftini tek tek değerlendirmesi ve önkoşul içerip içer-
mediklerini belirtmesidir. Üçüncü zorluk ise, belirlenen her bir önkoşul ilişkisinin
gerekçelendirilmesidir. İlk iki zorluğun üstesinden gelmek için, uzman insan bilgisi
ile yapay zeka tekniklerini birleştiren bir metodoloji öneriyoruz. Metodolojimiz bize
bir alan adı verildiğinde o alan ile ilgili belirli sayıda kavram ve onlara karşılık gelen
açıklamaları üretiyor. Daha sonra bu üretilmiş açıklamaları kullanarak, her kavram
çiftine bir önkoşul olasılık puanı atıyor. Yüksek puan alan çiftler daha sonra uzman
bir insana tek tek soruluyor ve gerçekten önkoşul içerip içermedikleri teyit ettiriliyor.
Her uzman geri bildiriminde arka planda eş zamanlı olarak EBŞ güncelleniyor ve uz-
man süreci bitirdiğinde şema oluşturulmuş oluyor. Buna ek olarak üçüncü belirtilen

vi

zorluğun üstesinden gelmek için ise Büyük Dil Modelleri (BDM) için bir ince ayar
prosedürü tanımlıyoruz. Sonuçlar, tanımladığımız prosedüre göre ince ayarlanmış
BDM’lerin önkoşul tespiti için etkili modeller olduğunu ve kavramlar arası önkoşul
ilişkilerini mantıklı gerekçelere dayandırarak açıkladığını gösteriyor. Son olarak, bu
tezde anlatılan tüm metodolojileri bir web uygulamasında sunuyoruz. Bu uygula-
mayı kullanarak eğitmenlere, kendi yapay zeka destekli EBG’lerini oluşturabilme ve
bunları öğrencilerine ek öğrenme materyali olarak sunabilme imkanı sağlıyoruz.

vii

This thesis is dedicated to my family
For their endless love and support...

viii

TABLE OF CONTENTS

LIST OF TABLES . xii

LIST OF FIGURES . xiii

1. INTRODUCTION . 1
1.1. Importance of Prerequisite Knowledge in Education 3
1.2. Mathematical Definition of a Prerequisite Relation. 4
1.3. Representing Prerequisite Relation Using Graphs . 6
1.4. Prerequisite Detection Using ACE Methodology . 7
1.5. Explaining the Prerequisite Relations Using Large Language Models . 8
1.6. Summary of Research Contributions. 9
1.7. Outline of the Dissertation . 10

2. RELATED WORK . 11
2.1. Representing Data Using Graphs . 11
2.2. Concept Discovery by Keyword Extraction from Text. 13
2.3. Prerequisite Identification . 15
2.4. Emergence of LLMs and their Potential in Education 19

3. AI-Assisted Construction of Educational Knowledge Graphs 22
3.1. Problem Setup . 22
3.2. Semantic References Versus Exact References . 22
3.3. Embeddings for Semantic Similarity . 24
3.4. Scoring Based on Semantic and Exact References . 25
3.5. Inference Rules . 27
3.6. ACE Main Algorithm and System Implementation . 29
3.7. Role of the Expert . 33

3.7.1. Maximum Number of Edges in MEKGs . 33
3.7.2. Bounds On the Number of Queries to the Expert 35
3.7.3. Representing Strict Partial Ordered Sets Using MEKGs. 36

3.8. An Automated Algorithm to Sort Concepts based on their Difficulty . 38
ix

3.9. Complexity Analysis of CSR Computation and DO Algorithm 41

4. Discovering Prerequisite Relations Using LLMs . 42
4.1. Introduction . 42
4.2. The Study and the Method . 42
4.3. Fine-tuning Process . 43
4.4. Parameter Details for Fine Tuning and Testing . 45
4.5. Fine Tuning Strategy of LLMs for Other Tasks in Education 46
4.6. Integrating LLMs to MEKGs . 48
4.7. Active Learning Strategy in ACE Algorithm . 50

5. Experimental Evaluation . 52
5.1. Introduction . 52
5.2. Prerequisite Scoring Methodology as a Supervised Binary Classifier . . 53

5.2.1. Evaluation Metrics for Binary Classification 53
5.2.2. Utilized Dataset and Compared Models . 55

5.3. Testing the Predictive Performance of Prerequisite Scoring Method-
ology on Student Success . 57

5.4. Constructing and Evaluating MEKGs: Methodologies, Quality Met-
rics, and Efficiency Factors . 61

5.5. Evaluating LLMs . 66
5.5.1. Benchmark Datasets . 67
5.5.2. Performance Comparison of LLMs to Other Models on UCD . 68
5.5.3. Observable Changes in Fine Tuning on UCD 69
5.5.4. Performance Comparison of Fine-Tuned GPT-3 to Other

Models on CD . 71
5.5.5. Performance Comparison between Fine-Tuned GPT-3 and

LLAMA2 on MC-PSY . 72
5.5.6. Assessment of the AI-Created Explanations 73
5.5.7. Analysis of Parameter Configuration for GPT-3 75
5.5.8. Cost Analysis of Fine-Tuning GPT-3 and LLAMA2 77
5.5.9. Current Limitations of Utilizing Fine-Tuned LLMs 78

6. MEKG Toolkit: A Web Application for Building and Exploring
Concept Relations . 80
6.1. Introduction . 80
6.2. System Overview . 81

6.2.1. Instructor Role . 81
6.2.2. Student Role . 85

6.3. Implementation Details . 87

x

7. CONCLUSION & FUTURE WORK . 88

BIBLIOGRAPHY. 89

APPENDIX A . 94

xi

LIST OF TABLES

Table 3.1. Binary labeled data where 1 indicates a prerequisite relation
from the first concept to the second concept and 0 means not a pre-
requisite . 33

Table 5.1. Table comparing different prerequisite detection methods.. 56
Table 5.2. Description of the two datasets that are used as gold-standard

MEKGs . 62
Table 5.3. Effect of the number of concepts on Runtime. 65
Table 5.4. Effect of Concept Description Length on Runtime. 65
Table 5.5. Effect of word embedding model on runtime on the Metacademy

dataset. 66
Table 5.6. Effect of word embedding model on runtime on the Metacademy

dataset. 66
Table 5.7. Benchmark Datasets . 67
Table 5.8. Precision, Recall, and F-score for Various Methods on UCD

Datasets . 70
Table 5.9. Prerequisite Axioms . 71
Table 5.10. Precision, Recall, and F-score for CS and MATH 71
Table 5.11. Performance Comparison of LLMs on MC-PSY Dataset 73
Table 5.12. Validity and Similarity of Explanations . 74
Table 5.13. METEOR score statistics for various epochs. 76
Table 5.14. METEOR Scores for Different Learning Rates 76

Table A.1. 8 possible configurations of edges among nodes A,B and C. 94

xii

LIST OF FIGURES

Figure 1.1. Conversation snippets from various online learning forums de-
picting the frequent student inquiries regarding prerequisite knowl-
edge for certain concepts or courses. These discussions highlight the
common need for prerequisite knowledge. 3

Figure 1.2. Illustration of the transformation from EKG to MEKG. 7

Figure 3.1. Flowchart illustrating the prerequisite detection with CSR. . . . 23
Figure 3.2. Four inference rules for a concept pair (i, j). Dashed lines rep-

resent the non existing prerequisite relations and solid lines represent
the existing ones. 28

Figure 3.3. Scenario for an existing edge becoming a transitive one with
newly labeled direct prerequisites. 31

Figure 3.4. A sample concept set for constructing an EKG. 32
Figure 3.5. Example of a constructed MEKG for 6 concepts. 32
Figure 3.6. Example of an instance where the expert makes a selection

from the GUI . 33
Figure 3.7. Comparison between a Partial Order and a Total Order Set. . . 37

Figure 4.1. Construction of a positive training instance . 44
Figure 4.2. Construction of a negative training instance 44
Figure 4.3. The fine-tuned LLM model classifies student assignments, pro-

vides feedback for improvement, and explains the rationale for each
classification. 47

Figure 4.4. Example of a constructed MEKG with node colors and edge
labels. A node which has no incoming edge is colored to green indi-
cating that it is a basic concept without any prerequisites and nodes
without outgoing edges are colored to red indicating they are ad-
vanced concepts. 48

Figure 4.5. An instance of an update in the description of a concept. 49

Figure 5.1. Zero shot GPT-3 used as a binary classifier . 56

xiii

Figure 5.2. Overview of Our Three-Phase Experimental Setup 58
Figure 5.3. Outperforming ratio of TG over CG for lists of concept pairs

with decreasing CSR scores . 60
Figure 5.4. Impact of CSR on path recall in Metacademy dataset. 63
Figure 5.5. Impact of CSR on path recall in DSA dataset.. 63
Figure 5.6. Impact of utilizing different language models for CSR. 64

Figure 6.1. Home page of the web application . 81
Figure 6.2. Upload page . 82
Figure 6.3. Uploaded Concepts in the System. 83
Figure 6.4. Computation of CSR scores. 84
Figure 6.5. Presentation of a pair from ranked list. 84
Figure 6.6. Termination of the expert interaction . 84
Figure 6.7. Demo MEKG for 6 concepts. 85
Figure 6.8. Recommended study path consisting of 4 concepts. 85
Figure 6.9. An example description for Bayes’ theorem . 86
Figure 6.10. An example description for Conditional probability without

the justification text from LLM. 86
Figure 6.11. An example description for Conditional probability with the

justification text from LLM. 86

xiv

1. INTRODUCTION

The field of Artificial Intelligence (AI) is constantly evolving and finding its way into
many areas of our daily lives. A wide range of industries adopt AI technologies in
order to improve their operations and services. Despite this broad adoption, the inte-
gration of AI in education is progressing at a slower pace compared to other sectors.
This is because teaching and learning processes involve complex human interactions
and emotions, making it challenging to implement AI in this area effectively. Most
efforts in AI within education focus on improving knowledge presentation and opti-
mizing the sequence of learning. To achieve this, traditional long courses are broken
down into smaller knowledge units, referred to as concepts, with labeled relations
between them. Among the many types of possible relations, prerequisite relation
is the most studied one as identifying prerequisite relations among concepts have
significant benefits to both students and instructors. First, based on the prerequi-
site information, students can arrange an optimal study plan for themselves where
they first start learning the basic concepts and gradually move to the more ad-
vanced ones. On the other hand, instructors can use the prerequisite information to
assess the students’ level of knowledge within a specific course. Automatic detec-
tion of prerequisite relations among concepts in education is a challenging AI task
for researchers. This is because the AI system must understand the context and
meaning behind each concept and how it relates to other concepts in an unfamil-
iar domain. This requires a deep understanding of the educational curriculum and
the ability to analyze large amounts of data. Concepts and their relations can be
stored in a special data structure called Knowledge Graph (KG). This dissertation
focuses on the construction of a distinct type of KG, termed as Educational Knowl-
edge Graph (EKG) which visualizes the domain knowledge with nodes and directed
edges. Nodes are the little circles, representing the key concepts in the respective
domain and the directed edges are the arrows showing the identified prerequisite re-
lations between those concepts. Instructors can build and maintain their curriculum
as an EKG, together with teaching materials and learning objectives. In addition
to the prerequisite relation, other types of knowledge such as the difficulty of the
concepts in the domain or the reasoning behind the prerequisite relations can also

1

be included in the proposed EKGs. Overall, this dissertation research consists of
three main parts. In the first part, we introduce a semi-supervised methodology to
construct EKGs, which are designed to show all the prerequisite relations among
concepts in a chosen domain. In the second part, we analyze how Large Language
Models (LLMs) can be fine-tuned to help students and instructors in education
especially in the context of prerequisite detection. We also demonstrate how the
outputs from fine-tuned LLMs can be integrated to EKGs to improve their utility
as educational tools. Finally in the third part, we present series of experiments
to test the validity of our presented approaches in part one and part two. These
experiments include the assessment of our prerequisite detection methodology on
benchmark prerequisite datasets, testing the reliability of our constructed EKGs,
measuring the correlation between prerequisite identification and student success
and a comprehensive analysis of the fine-tuned LLM outputs. Before delving into
the details of our proposed methodologies, we first begin by introducing terms that
will be frequently encountered throughout this dissertation.

Definition 1.0.1 (Concept). A concept is defined as an abstract thought or idea.
We represent concepts as data structures with two fields: a title which is the unique
name of the concept that can be composed of multiple words and a description which
is a textual document that includes additional details clarifying and expanding upon
the title. For instance, we may create a concept with the title “Arithmetic Opera-
tions”, and then define what it is by including examples from addition, subtraction
or multiplication in its description.

Definition 1.0.2 (Domain). A domain is an area that consists of many concepts.
We assume that the knowledge of the domain depends on the knowledge of its con-
cepts. For instance, if a student wants to master the Physics domain, he or she needs
to be familiar with the concepts such as force, energy, motion, and electromagnetism.
Frequently, knowledge of a particular concept is dependent on the knowledge of the
some other concepts within the domain.

Definition 1.0.3 (Prerequisite Relation). The prerequisite relation is established
from one concept to the other. Given a pair of concept (ci , cj) if knowing ci helps
to understand cj, then there is a prerequisite relation from ci to cj. For instance
knowing the concept “Arithmetic Operations” can be helpful in understanding the
other concept “Dividing Fractions”.

1.1 Importance of Prerequisite Knowledge in Education

2

According to the Cambridge Dictionary (2024), a prerequisite is something that must
exist or happen before something else can. In the context of education, we adopt
a softer definition and assume that any concept that is helpful in understanding
the other concept can be regarded as a prerequisite. Online discussions between
students and instructors often revolve around the question of whether a certain
course or concept is a prerequisite for understanding another Quora (2024). These
discussions focus on determining the proper order of course study and identifying
the essential knowledge needed to understand complex subjects. Figure 1.1 provides
an illustrative example of such a discussion between an instructor and a student.

Additionally, with the ever-growing knowledge on the internet, we have also wit-
nessed rapid growth in Massive Open Online Courses platforms (MOOCs) such as
Coursera, Udemy, Udacity, Khan Academy, and many more. According to a re-
cent report, Coursera has 118 million students and provides over 10,000 different
courses MOOC report (2024). Organizing the structure of the courses and arrang-
ing a learning order among educational materials require the usage of concept pre-
requisite information. In the past, instructors in universities provided prerequisite
information for courses within certain major programs. For example, “Discrete
Mathematics” was identified as a prerequisite for “Algorithms”, and “Advanced
Programming” was considered a prerequisite for “Compiler Design” in Sabanci Uni-
versity CS Curriculum (2023). However, in the era of MOOCs, manually organizing
learning resources for tens of thousands of courses is not a scalable approach.

Figure 1.1 Conversation snippets from various online learning forums depicting the
frequent student inquiries regarding prerequisite knowledge for certain concepts or
courses. These discussions highlight the common need for prerequisite knowledge.

Since prerequisite detection plays a fundamental role in the organization and pre-
sentation of the knowledge, this dissertation focuses on identifying and explaining
all the prerequisite relations within an educational domain using AI methodologies,
LLMs and certain graph algorithms.

3

1.2 Mathematical Definition of a Prerequisite Relation

Prerequisite relation is defined as a binary relation in mathematics. Given two sets
X and Y , a binary relation is a subset of their Cartesian product X × Y . The
Cartesian product represents the set of all ordered pairs (x,y) where x ∈ X and
y ∈ Y and the binary relation specifies which of those pairs in X×Y should have
a relation based on certain rules. For instance, in the case of “divides” relation,
one can create two integer sets Z1 and Z2 and form the corresponding relation as
a subset of Z1×Z2. The rules of the relation can specify that for any two integers
a ∈ Z1 and b ∈ Z2, the pair (a,b) belongs to the "divides" relation if there exists an
integer n such that b = a×n. Therefore, pairs that satisfy this rule can become a
part of that relation. Binary relations have three important characteristics:

1.1 Symmetry: A binary relation R on a set X is symmetric if for all pairs
(x,y) ∈R, the reverse (y,x) also belongs to R.

1.2 Transitivity: A binary relation R on a set X is transitive if whenever pairs
(x,y) ∈R and (y,z) ∈R exist, then the pair (x,z) also belongs to R.

1.3 Reflexivity: A binary relation R on a set X is reflexive if every element x is
related to itself, meaning (x,x) ∈R for every x in X.

A binary relation containing a symmetry characteristic is called a binary symmetric
relation. Conversely, a binary relation can also be antisymmetric. The antisymmetry
is defined as follows:

∀a,b ∈X, if (a,b) ∈R and (b,a) ∈R then a = b

A binary relation R on a set X is considered antisymmetric if, for any pair of
elements a and b in the set, the condition where both (a,b) and (b,a) are in relation
R necessitates that a and b must be the same element. This ensures that the relation
cannot have two distinct elements that are mutually related in both directions unless
they are identical. This characteristic is the opposite of symmetry, where mutual
relations between distinct elements are permitted. Likewise a binary relation can
be also irreflexive, which is defined as:

∀x ∈X,(x,x) /∈R

4

This definition signifies that a relation R on a set X is irreflexive if no element in X

is related to itself. That is, for every element x in the set X, the pair (x,x) does not
belong to the relation R. This property is the opposite of reflexivity, where every
element must relate to itself. Irreflexivity ensures that reflexive pairs are explicitly
excluded from the relation. A relation that is both antisymmetric and irreflexive is
called an asymmetric relation.

Prerequisite relation is an asymmetric and transitive relation. This means that if
a concept pair (a,b) is an element of a prerequisite relation P that is defined on a
concept set C, then concept pair (b,a) should not be in P due to the requirement
of the antisymmetric property. Likewise, all the concept pairs which contain same
concepts (a,a) are not the elements of P . Finally due to the requirement of the
transitivity property, if (a,b) and (b,c) are the elements of P , then concept pair
(a,c) is also the element of P . We also define the set P0 which contains pairs that
do not have a prerequisite relation. The union of two sets P0∪P corresponds to the
set cartesian product C×C.

The identification of prerequisite relations is treated as a binary decision problem
where we determine whether a given pair (a,b) from the set C×C belongs to P or P0.
The assignment of pairs can be done manually by an expert, automatically by an AI
model, or through collaboration between an expert and an AI model. Assignment
of one pair effects the future assignments of the other pairs. For instance, if a pair
(a,b) is assigned to set P , it should be immediately inferred that the pair (b,a)
belongs to set P0 due to the antisymmetry property of the prerequisite relation. We
name the pairs in P as positive and pairs in P0 as negative. Moreover, in order
to indicate which pairs are assigned and which pairs are inferred, we use the term
direct and indirect. For instance, if pairs (a,b) and (b,c) are assigned to set P , they
are called direct positive pairs and the pair (b,c) becomes an indirect positive pair
because it can be inferred from the direct pairs (a,b) and (b,c). Likewise, if (a,b)
is a direct positive pair and (a,c) is a direct negative pair, then (b,c) becomes an
indirect negative pair. We describe in detail all of those inference rules that rise
from the properties of the prerequisite in Chapter 3.

1.3 Representing Prerequisite Relation Using Graphs

5

A binary relation on a finite set can be represented using a directed graph DAG
(2024). In this dissertation, we demonstrate the prerequisite relations in a domain
using EKGs. Since the prerequisite relation is asymmetric and transitive, it can
be represented with a directed acyclic graph (DAG). The acyclicity of the graph
is a result of the asymmetry property of the prerequisite relation. In the below,
we introduce the related terminology from Graph Theory and explain the specific
characteristics of EKGs.

Definition 1.3.1 (Directed Graph). A directed graph G = (N, E) consists of a
set of nodes (also called vertices) N and a set of edges E that are ordered pairs
of distinct nodes from N. Nodes are represented as small circles and directed edges
between nodes are represented as arrows.

In EKGs, nodes represent the concepts in the set C, and the edges represent the
direct positive pairs.

Definition 1.3.2 (Simple Directed Path). A simple directed path from node A to
node B in a graph is a sequence of edges that originates at node A and terminates at
node B, consisting of two or more edges. This sequence allows us to reach B from
A by following the directed edges, and all nodes in the path are distinct.

In EKGs, simple directed paths between two nodes represent the indirect positive
pairs.

Definition 1.3.3 (Transitive Edge). A directed edge from node A to node B is
called a transitive edge, if and only if there is a simple directed path from node A to
node B.

Figure 1.2a shows transitive edges in red. Transitive edges can also be called re-
dundant edges because they do not provide additional information regarding the
prerequisite relations of the concepts.

Definition 1.3.4 (Directed Acyclic Graph (DAG)). A directed acyclic graph is a
directed graph with no cycles where a cycle is a sequence of edges forming a directed
path starting from a node A and ending at the same node A.

A cycle in an EKG indicates that the asymmetric property of the prerequisite
relation is violated.

Definition 1.3.5 (Minimal Educational Knowledge Graph (MEKG)). A graph
Gmin is called a Minimal Educational Knowledge Graph of a directed acyclic graph
G if and only if Gmin has the same nodes as G and Gmin has all the edges of G

except the transitive edges.

6

(a) (b)

Figure 1.2 Illustration of the transformation from EKG to MEKG.

1.4 Prerequisite Detection Using ACE Methodology

Identifying prerequisite relations within a set of concepts C exhibits quadratic com-
plexity, denoted as O(n2), where n is the number of concepts in C. Consequently,
manual consideration of a prerequisite relation for each ordered pair in C×C be-
comes impractical as the size of C increases. In order to speed up this process,
we propose a two-step methodology called AI-assisted Construction of Educational
KGs. In the first step, we introduce an unsupervised prerequisite scoring mecha-
nism called Cumulative Semantic Reference (CSR) which is a function that takes
an ordered concept pair (A,B) as input and returns a unique score s as output
which shows how much the title of A is semantically referenced in the description of
B. We assume that high values of s may be an indication of a prerequisite relation
from A to B because it is likely that a concept A is essential to the understanding
of concept B if A is frequently referenced or discussed in the description of B. We
sort all the ordered concept pairs in C×C according to their CSR scores and store
them in a list L. Pairs with scores below a predetermined threshold t are removed
from L so that the list only contains pairs which are most likely to form a prereq-
uisite relation. In the second step of ACE, we form the nodes of the EKG from
the concepts of L. We then retrieve the highest scored pair (A,B) in L and ask
if this pair contains a prerequisite relation to an expert. Depending on the answer
of the expert, we update the EKG and move to the next highest scored pair in L.
During the interaction with the expert, certain prerequisite relations can already be
inferred from the previous answers of the expert, therefore, those pairs are removed
from L to reduce the total number of interrogations to the expert. After the expert
interaction, ACE converts the EKG into a MEKG and the algorithm terminates.

CSR scores can be considered as textual evidences for the pairwise prerequisite rela-

7

tions. Our evaluations on student datasets from online learning platforms show that
CSR scores alone can predict student performances. For instance if a concept pair
(A,B) has a high score, we demonstrate that students knowing concept A perform
better on the questions related to B than randomly selected students. Furthermore,
experiments regarding the ACE methodology show that experts can construct ac-
curate and reliable EKGs in a relatively short amount of time compared to the fully
manual approach. The details of those experiments are reported in Chapter 5.

1.5 Explaining the Prerequisite Relations Using Large Language Models

In recent years, LLMs gained significant attention especially after the release of
GPT-3, which is the largest language model as of 2023 OpenAI (2024). GPT-3 pro-
duced impressive results in natural language processing tasks (NLP) which require
an understanding of language, context, and the generation of coherent, relevant
text Imamguluyev (2023). One of the potential applications of LLMs is in the field
of education. We already start to see collabarative works on how GPT-3 can im-
prove the learning experience of students Kasneci, Sessler, Küchemann, Bannert,
Dementieva, Fischer, Gasser, Groh, Günnemann, Hüllermeier, Krusche, Kutyniok,
Michaeli, Nerdel, Pfeffer, Poquet, Sailer, Schmidt, Seidel, Stadler, Weller, Kuhn &
Kasneci (2023). In order to enrich our MEKGs produced by our ACE methodol-
ogy, we propose a special fine-tuning procedure for large language models (LLMs)
that aims to teach the models to detect and explain pairwise prerequisite relations
between concept pairs. Specifically, we apply this fine-tuning procedure on two dif-
ferent LLMs: GPT-3 OpenAI (2024) and LLAMA2 Touvron, Martin, Stone, Albert
& others (2023). After the fine-tuning, LLMs learn to generate an explanatory text
for each concept pair (A,B). This text outlines the reasons why A should or should
not be considered a prerequisite of B. Unlike existing supervised prerequisite classi-
fiers in the literature, this approach not only predicts prerequisite relations but also
provides a rationale behind each prediction, improving the interpretability and ed-
ucational utility of the models. Evaluations show that fine-tuned LLMs can achieve
state-of-art performances on benchmark prerequisite datasets and the explanations
they provide are similar to those made by human annotators.

8

1.6 Summary of Research Contributions

In summary, the purpose of this dissertation is to introduce a special type of graph
data structure named MEKG which is designed to represent the prerequisite rela-
tions in an educational domain with nodes and directed edges. Manual construction
of such graphs is a time-consuming process. To address this challenge, the first
part of this dissertation proposes a novel methodology that combines AI techniques
and expert knowledge. Towards the end of the first part, the sub-relations that
can be derived from the prerequisite relation are formalized. The second part of
this dissertation discusses the application of LLMs in education especially in the
context of prerequisite detection. This part includes the integration of additional
features to MEKGs such as generating automated edge labels which explain the
reasoning behind the prerequisite relations or improving the descriptions of the con-
cepts using their prerequisite information. In the third and final part, we present
the detailed evaluations of the discussed methodologies in the first and second part,
demonstrating their effectiveness through case studies and experimental results.

Our main research contributions include:

2.1 Introduction of the AI-assisted Construction of Educational Knowledge
Graphs (ACE): A novel approach that significantly speeds up the process of
manual prerequisite identification by employing AI strategies.

2.2 Integration of Large Language Models (LLMs) for Prerequisite Detection: Im-
plementation of fine-tuning techniques on LLMs, such as GPT-3 and LLAMA2,
to effectively identify and provide explanations for prerequisite relations within
educational content.

2.3 Assessing the correlation between the prerequisite knowledge and student suc-
cess on a real world student data from an educational platform.

2.4 Presentation of our web application which can be used by instructors and
students. Instructors can create their own EKGs, while students can observe
the paths in the constructed EKGs to understand the prerequisite relations
between different concepts within a particular domain.

1.7 Outline of the Dissertation

9

The rest of the dissertation is organised as follows. Chapter 2 gives related work
on KGs and discusses general methodologies employed in concept-relation extrac-
tion. The chapter then presents a detailed review of the state-of-the-art methods
on prerequisite detection task which is the main focus of this dissertation. Follow-
ing the related work, Chapter 3 demonstrates ACE methodology which is used to
identify all the prerequisite relations in a concept set. Chapter 4 introduces LLMs
and their fine-tuning process for detecting and explaining prerequisite relations be-
tween concepts. Chapter 5 analyzes the effectiveness of the proposed prerequisite
detection methodologies on various benchmark datasets. Moreover, this chapter also
analyzes the ACE algorithm from different perspectives such as accuracy, efficiency,
and scalability. Finally, Chapter 6 describes our web application which implements
all the described methodologies in a user-friendly interface, enabling educators and
researchers to easily create, visualize, and interact with MEKGs.

10

2. RELATED WORK

2.1 Representing Data Using Graphs

Previous research has extensively used graph data structures for representing knowl-
edge or data in various domains. Graphs are powerful tools for organizing and visual-
izing complex relationships between entities, making them well-suited for represent-
ing interconnected data. For example, in the field of natural language processing,
graphs have been used to model the semantic relationships between words in text
documents. In bio-informatics, graphs are utilized to represent biological networks
such as protein-protein interactions or metabolic pathways. Additionally, in social
network analysis, graphs are commonly employed to model connections between in-
dividuals or organizations. In 2012, Google announced (KGs) Google Knowledge
Graphs (2012) to structure the vast amount of information in its web documents.
The usage of KG for Google showed numerous benefits such as improved search
result precision Singhal (2012), enhanced data interconnectivity and the ability to
answer complex queries with more accurate information Paulheim (2016). KGs of-
fer several advantages compared to other data representation models, such as the
relational model and NoSQL, mainly in terms of flexibility and scalability Hogan,
Blomqvist, Cochez, d’Amato, Melo, Gutierrez, Kirrane, Gayo, Navigli, Neumaier &
others (2021). In recent years, the use of KGs has been extended to various domains
beyond web search, such as e-commerce, finance, or healthcare IBM Knowledge
Graphs (2024). Hogan et al. discuss the application of KGs in the tourism sector
to organize festivals in Chile. The graph includes entities such as cities, events, and
dates, represented by nodes, and relations between these entities, represented by
directed edges with different labels. KGs also enable the deduction of new knowl-
edge that is not explicitly stored in the graph through reasoning and inference. This
involves using logical rules and algorithms to derive new facts based on existing in-

11

formation in the graph. For instance, in the field of recommendation systems, KGs
can capture the relations between users, items, and their attributes. By reasoning
over this graph, new recommendations can be generated based on the preferences
and behaviors of similar users or the characteristics of similar items Shokrzadeh,
Feizi-Derakhshi, Balafar & Bagherzadeh Mohasefi (2023). Another example is in
the domain of healthcare, where the KGs have nodes representing a patient, a dis-
ease they are diagnosed with, and the symptoms they are experiencing. By applying
reasoning techniques, the graph can deduce additional information, such as potential
treatments for the disease based on known effective treatments for similar cases Cui,
Lu, Wang, Xu, Ma, Yu, Yu, Kan, Ling, Ho & others (2023).

Representing educational content with graphs in order to improve student learning
is first proposed by Novak & Cañas (2006). Authors drew key concepts as circles
and their interrelations as arrows and named their graphs as “Concept Maps”. Later
studies have revealed that using this means of visualization has been shown to ben-
efit students on multiple levels, including a more satisfactory learning experience,
reduced cognitive load, and better learning achievement Chiou, Tien & Lee (2015);
Hirashima, Yamasaki, Fukuda & Funaoi (2015). Today the terms such as “Knowl-
edge Graphs in Education” by Li, Cheng, Zhang, Zhu & Zhao (2023) or “Multi
Source Education Knowledge Graphs” by Fettach, Ghogho & Benatallah (2022) or
“Educational Knowledge Graphs” by Dang, Tang, Pang, Wang, Li & Li (2021) are
more widely adopted than term “Concept Map” when referring to special graph
data structures to represent the educational content. In line with the recent termi-
nology, we use the term “Educational Knowledge Graph” (EKG) throughout this
dissertation.

The initial works on EKGs assume the existence of an expert or a teacher who
manually identifies the key concepts and their relations with each other in an ed-
ucational domain. The manually constructed EKGs are then given to students
and their learning performances are compared to the other students who study
with traditional learning materials such as textbooks and lecture notes. The re-
sults showed that students utilizing EKGs generally exhibited improved retention
rates and higher academic performance Novak (2010). Later on, various attempts
have been made to construct EKGs either automatically or semi-automatically.
For example, Aguiar et al. construct EKGs by using natural language processing
techniques (NLP) on the given text document Aguiar, Cury & Zouaq (2016). The
resulting graph has the extracted noun phrases as key concepts represented by nodes
and verbs between them as relations represented as labeled edges. However, pre-
cision (29%) and recall (44%) were low when comparing the identified relations of
the automatically constructed EKGs with EKGs constructed by experts. Lee et

12

al. adopted another approach which consists of utilizing burst analysis of words to
establish relations between terms Lee, Park & Yoon (2015). Meanwhile, Hirashima
et al. propose a semi-automatic method through which instructors and students
collaboratively construct EKGs where instructors provide students with the con-
cepts and students are asked to define the possible relations Hirashima et al. (2015).
These approaches often assume an unlimited number of possible relations between
concepts, making it challenging to fully automate the construction of EKGs Pinan-
dito, Prasetya, Hayashi & Hirashima (2021). Overall, researchers face two main
challenges when attempting to construct EKGs automatically. The first challenge
is the extraction of key concepts in the studied domain and the second challenge is
the identification of the relations between those concepts. This dissertation offers
certain methodologies to automatically extract concepts from a domain however, it
concentrates more on representing their prerequisite relations in EKGs after the
initial concept set is established.

2.2 Concept Discovery by Keyword Extraction from Text

Named-entity recognition (NER) is a subtask of information extraction that seeks to
locate and classify named entities mentioned in unstructured text into pre-defined
categories such as person names, organizations, locations, medical codes, time ex-
pressions, quantities, monetary values, percentages, etc. Wikipedia contributors
(2024). Entities are regarded as specific, tangible real-world objects, whereas the
concepts are regarded as abstract notions or ideas. Therefore, while KGs in general,
attempt to map the relationships of the real world entities in a given context, EKGs
focus only on the relationships of the concepts that have educational significance.
In order to discover those concepts within a given domain, researchers have applied
a variety of keyword extraction algorithms. For instance, authors Chen, Lu, Zheng,
Chen & Yang (2018) formulated this task as a word sequence labeling problem where
the main goal is to annotate each word with a label specifying whether the word is
part of a concept. The process involves assigning one of three distinct labels to each
word: 1) B-CP (Begin-Concept), indicating the beginning of a concept word se-
quence; 2) I-CP (Inside-Concept), denoting words that continue a concept after the
initial word; and 3) O (Outside-Concept), for words that are not part of a concept.
In order to achieve this, authors utilize the Conditional Random Fields (CRF) model
and the Gated Recurrent Unit (GRU)-based Neural Network model. The training

13

data for these models typically consists of text where the educational concepts or
keywords are already labeled correctly. This annotated data teaches the models
the patterns and relationships between words that indicate whether they form part
of an educational concept. The CRF model uses the training data to learn the
probabilities of different labels (like the beginning of a concept, inside a concept,
or outside a concept) following each other in sequences of words. It leverages the
predefined feature functions to understand how the context of certain words affects
these probabilities. On the other hand, the GRU model uses training data to adjust
its internal parameters, improving its ability to remember and utilize patterns seen
in the data. This model learns directly from the examples provided, without needing
explicit rules (feature functions), and progressively improves at predicting whether
words are part of concepts based on its training. Manrique, Pereira & Mariño (2019)
uses a more straightforward and generic approach to identify keywords that can be
regarded as concepts. Authors first form a large corpus from a domain of interest
and segment it into words, maintaining the sequence in which they appear within
the original corpus. Following the segmentation, they perform a statistical analy-
sis of words across the corpus and find meaningful unigrams, bigrams or trigrams
which can be the candidates for the educational concepts. The meaningfulness of
an n-gram is defined by its Pointwise Mutual Information (PMI) score which takes
into account the frequency of the n-gram within the corpus and compares it to the
frequencies of its individual words, essentially measuring how often words appear
together compared to how often they appear independently. Apart from the PMI
technique, a simple system based on noun-phrase selection is also proposed earlier
for keyword extraction Barker & Cornacchia (2000). However, one major limita-
tion of this that it may not capture the full context in which the keywords are
used. Noun phrase selection primarily focuses on identifying noun phrases that are
frequent within the text, but this method can miss out on relevant keywords that
are not part of standard noun phrases, such as verbs, adjectives, or domain-specific
terms that fall outside of the noun phrase category. Another popular method for
keyword extraction is given in the work of Mihalcea & Tarau (2004) where authors
present their TextRank algorithm. TextRank represents nouns and adjectives in the
text as nodes and their co-occurrence as undirected edges. Each node is given a
score based on its number of edges with the other nodes and high scored nodes are
accepted as important words in the text. Finally if two important words co-occur in
a fixed window size within the text, they are joined together. The rapid development
of online glossaries and encyclopedias such as Wikipedia, led to the emergence of
new concept extraction models which leveraged these vast repositories of structured
knowledge. TextRazor (2024) is an example of such model which utilizes multiple
external knowledge bases to detect keywords that can be the representation of the

14

important concepts within the text. It operates by matching the candidate keywords
against Wikipedia article titles, as well as sections and chapter names of digitized
books in its database. The model also uses certain machine learning techniques to
measure the similarity of the context of the candidate keyword with the context of
the keyword in its database to compute a relevance score. Matched keywords with
high relevance scores are accepted as important concepts within that document.

2.3 Prerequisite Identification

Automatic detection of prerequisite relations among concepts in education has al-
ways been a challenging AI task for researchers Metacademy (2024). This is mainly
due to the reason that an AI system is required to grasp the context and significance
of each concept, and interpret its relation to other concepts within an unknown do-
main. The prerequisite detection task is treated as a binary classification problem
in the literature. The objective of this problem is to assign concept pairs (A,B) into
two classes 0 and 1 where class 1 includes pairs with a prerequisite relation from A

to B, and class 0 includes pairs without such a relation. According to Talukdar &
Cohen (2012), there are four cases for a concept pair (A,B);

3.1 A is a prerequisite of B

3.2 B is a prerequisite of A

3.3 A and B are related but no prerequisite relation exists

3.4 A and B are unrelated therefore no prerequisite relation exists.

In binary classification, pairs with cases 2, 3, and 4 belong to class 0 and called nega-
tive pairs while pairs with case 1 belong to class 1 and called positive pairs. In order
to automate the prerequisite classification task using AI, researchers propose a wide
range of models, each with its unique characteristics and constraints. A typical pre-
requisite classifier learns to assess certain factors about concept pairs (A,B), which
can lead to the formation of a prerequisite relation from A to B. These factors are
called features. For instance, if both A and B have dedicated articles in Wikipedia,
the metadata of their articles can be used as features in prerequisite detection. For
example, the AI model may learn that when the Wikipedia article categories of two
concepts are different, then that pair of concepts belongs to class 0. The Maxi-
mum Entropy (MaxEnt) Talukdar & Cohen (2012), and the Reference Distance

15

(RefD) Liang, Wu, Huang & Giles (2015) are such models that match concepts to
Wikipedia articles. To identify prerequisite relations, they utilize features such as
the inter-article links, the text structure, and the categories to which the articles
belong. For instance, an article about basic algebra might link to an article on cal-
culus, suggesting that understanding algebra is a prerequisite for learning calculus.
Similarly, Sayyadiharikandeh, Gordon, Ambite & Lerman (2019) uses clickstream
logs of Wikipedia articles and argue that if lots of users while reading an article
B go back to the article A, then concept A can be the prerequisite of concept B.
Extreme Gradient Boosting (XGBOOST) model by Manrique et al. (2019) uses
a large online Corpus (2024) which consists of 131 million English text documents.
In order to identify a prerequisite relation between two concepts, authors calculate
the co-occurrence statistics of those two concepts’ names in the documents. The
authors argue that if two concept names frequently appear together but rarely on
their own, this may indicate a relationship. Moreover, if one concept consistently
precedes another in related contexts, this pattern could indicate a prerequisite rela-
tion. PREREQ by Roy, Madhyastha, Lawrence & Rajan (2019) and MOOC-RF
by Pan, Li, Li & Tang (2017) match concept pairs (A,B) to the online learning videos
(vA,vB). In order to identify prerequisite relations, they count the occurrence of cer-
tain words that are semantically related to A inside the transcribed video text of
vB. They assume that high occurrence of such words indicate that concept A is a
prerequisite of B. One common limitation of the models in the literature is their
reliance on specific external knowledge bases, such as Wikipedia, a specific book or
a course material to derive features for identifying prerequisite relationships. In the
case of a Wikipedia-based approach, concept names should exist as articles so that
a prerequisite relation can be identified. In the case of a corpus-based approach,
concept names should be present in substantial quantities within the corpus to en-
sure the accurate computation of their co-occurrence statistics. Similarly, for models
that use online learning materials, each concept should have its corresponding video
or educational resource. There are also other approaches which extract student-
related data from educational platforms to determine prerequisite relations between
concepts. The typical approach is to connect the questions in the exams to various
predetermined concepts and assume that if concept ci is a prerequisite for concept cj

then a student failing on the question qi will also fail on the question qj . Molontay,
Horváth, Bergmann, Szekrényes & Szabó (2020) propose a data-driven probabilistic
student flow approach to characterize the prerequisite relations among university
courses based on the success rates of students in those courses. This approach lever-
ages large-scale student performance data to uncover hidden prerequisites among
various concepts. By systematically analyzing how student successes and failures in
certain courses correlate, it becomes possible to construct a probabilistic model that

16

predicts prerequisite structures with greater accuracy. Such models enable educa-
tional institutions to personalize learning pathways, ensuring students are guided
through a curriculum that aligns with their existing knowledge and capabilities.

The described approaches in this section so far assume that the prerequisite rela-
tions between concept pairs are independent of each other. This means that when
deciding a prerequisite relation from A to B for the concept pair (A,B), concept A’s
prerequisite relations with the other concepts do not influence the decision regard-
ing its prerequisite relation to concept B. However, the independence assumption
is not correct because all the pairs that are in prerequisite relation should reflect
the mathematical properties of the prerequisite relation which are defined in Section
1.2. In the recent years, we see the emergence of graph-based learning models which
represent prerequisite relations as directed graphs and assume that with enough la-
beled data, their models can learn to represent prerequisite relations of a set while
not violating the properties of the prerequisite relation. For instance, Zhang, Lan,
Yang, Zhang, Song & Peng (2022) introduced MHAVGAE, which is a multi-head
attention variational graph auto-encoders model. This model takes as input an
incomplete graph which consists of concepts, their resources and a set of labeled
prerequisite relations and learns to complete the graph by labeling the rest of the
prerequisite relations between concepts using the features from the initial graph (fea-
tures from the concept resources and the existing prerequisite relations). Similarly,
Jia, Shen, Tang, Sun & Lu (2021) discuss the automatic completion of a KG using
the same idea. Furthermore, determining which prerequisite relations to initially
label in the input graph is another research question to consider. Liang, Ye, Wang,
Pursel & Giles (2018) propose an active learning paradigm in which the AI system
is presented with a pool of unlabeled instances (concept pairs) and then allowed to
selectively request labels for these instances based on a strategy that optimizes the
learning efficiency most. The strategy chosen by the authors is uncertainty, which
means that the AI model continuously learns to assign prerequisite probabilities to
unlabeled instances and then requests the label of the pair whose probability is clos-
est to 0.5 (the most uncertain). These probabilities are updated each time a concept
pair is labeled. Authors show that when the initial pairs are chosen based on the
uncertainty strategy, the model completes the graph more accurately compared to
an alternative scenario where the initial labels are chosen from random pairs.

Although the graph based approaches show promise in identifying prerequisite re-
lations, it is not clearly stated by the authors of the papers whether the completed
graphs by the AI models actually reflect all the properties of the prerequisite rela-
tion. For instance, initially a graph can contain a prerequisite relation from concept
A to B and from B to C but the AI algorithm may miss to construct an edge

17

from A to C which should ideally be present due to the transitivity property of the
prerequisite relation. In order to overcome this problem, Liang, Ye, Zhao, Pursel
& Giles (2019) introduced a check mechanism to their active learning framework.
This mechanism ensured that any updates to the graph considered the transitivity,
irreflexivity and the asymmetry properties of the prerequisite relation. However,
the check mechanism also poses a problem. For instance, in the case where the
AI-algorithm mistakenly assigns a prerequisite relation from A to B and B to C,
an extra erroneous edge from A to C is also assigned. Therefore, while the check
mechanism can prevent the formation of edges that violate the properties of the pre-
requisite relations, it can also unintentionally propagate errors, leading to a series of
incorrect prerequisite relations. Consequently, we argue models that combine expert
knowledge with AI capabilities should be more preferable in detecting prerequisite
relations.

Yu, Wang, Zhong, Luo, Mao, Sun, Feng, Xu, Cao, Zeng, Yao, Hou, Lin, Li, Zhou,
Xu, Li, Tang & Sun (2021) describe the design of the largest MOOC websites in
China (MOOCCubeX) for adaptive learning. The website contains a repository
consisting of around 4K courses, 230K videos, 358K exercises, 637K fine-grained
concepts and over 296 million raw behavioral data of more than three million stu-
dents. The main research objective of MOOCCubeX is to personalize the student
learning experience and recommend the best possible learning paths to students.
In order to achieve this, both student-related and content-related data are utilized.
Content-related data comprises identified concepts and pairwise prerequisite rela-
tions of those concepts. Due to the massive size of the unlabeled pairs, experts
manually label a small portion of them, which is then used by a neural network
(NN) as training data. The trained NN then predicts the prerequisite relations of
the unlabeled pairs by assigning probability scores to each of them. These probabil-
ity scores are evaluated by the experts, and verified pairs are included in a separate
pool. Another group of experts checks whether the prerequisite pairs in this pool
form cyclic relations and, if so, removes the ones that cause cycles. This process is
an example of a methodology which combines AI knowledge with human expertise
in order to improve the reliability of the identified prerequisite relations.

2.4 Emergence of LLMs and their Potential in Education

18

In the recent years, LLMs gained significant attention especially after the release of
GPT-3, which is currently the largest language model as of 2024 OpenAI (2024).
The model showed impressive results in natural language processing tasks (NLP)
such as question answering, named-entity recognition or natural language genera-
tion Imamguluyev (2023). One of the potential application of the model is in the
field of education. We already start to see how GPT-3 can improve the learning
experience of students in the work of Kasneci et al. (2023). For example, within
the elementary school setting, the authors claim that LLMs like GPT-3 can improve
critical thinking skills of students by generating prompts and questions that encour-
age them to think more deeply about the content they engage with. Extending this
application to middle and high school students, LLMs can automatically generate
practice exercises and quizzes that are specifically tailored to the curriculum, as-
sisting students in their understanding of the subject matter. authors also argue
that LLMs like GPT-3 can also contribute to lesson planning by helping educators
construct comprehensive and inclusive lesson plans based on a provided corpus of
documents. Khosravi, Denny, Moore & Stamper (2023) introduce the concept of
learnersourcing which is a collaborative approach where students create educational
content. This process offers a cognitive benefit from active involvement and builds
a rich pool of learning materials. Authors claim that GPT-3 and similar LLMs
can enrich these learnersourcing environments by generating initial content drafts,
providing a basis upon which students can refine and build more complex learn-
ing resources. This partnership between human intelligence and AI in the creation,
evaluation, and utilization of learnersourced content is anticipated to be pivotal for
future educational models.

While the literature explores the advantages of LLMs in education, there is also
considerable research on evaluating the outputs of these models to ensure their util-
ity and reliability. Shneiderman (2020) discusses a human-centered approach to
AI, arguing for rigorous testing and validation of AI systems before they are im-
plemented in critical areas such as education. This perspective is crucial because
even though LLMs like GPT-3 demonstrate remarkable performance across various
tasks, they can still generate inaccurate, biased, or inappropriate content, which
can have serious implications in educational settings. One area of focus within the
evaluation of LLM outputs is the accuracy and relevance of the content generated
by these models. Ziegler, Stiennon, Wu, Brown, Radford, Amodei, Christiano &
Irving (2019) address the need for fine-tuning LLMs on specific domains or datasets
to improve the performance on tasks that require domain-specific knowledge. This
fine-tuning process must be evaluated to maintain content quality. In educational
contexts, this may involve assessment by domain experts to ensure that the gen-

19

erated content aligns with learning objectives. Bender, Gebru, McMillan-Major &
Shmitchell (2021) caution against the tendency of LLMs to replicate social biases
present in their training data, necessitating active measures to detect and reduce
such biases. In an educational context, biases in generated content can be damaging
by providing misleading information to learners.

In this dissertation, we propose leveraging LLMs in the prerequisite detection task.
Unlike existing models, the proposed approach does not require direct mapping
of concepts to specific articles, text documents, or educational videos to learn the
prerequisite relationships. Through their initial training with a vast amount of text
data, LLMs can already generate accurate descriptions of concepts and comprehend,
to some extent, what constitutes a prerequisite relation. For instance, LLMs such
as GPT-3 OpenAI (2024) or Touvron et al. (2023) LLAMA2 are reported to be
trained on billions of documents, including all English articles from Wikipedia, web
texts, and books. Therefore, even without fine-tuning, LLMs can correctly answer
half of the questions when asked whether A is a prerequisite of B, as shown in
Chapter 5. To the best of our knowledge, this is the first study that uses LLMs in
prerequisite detection. Another common limitation of the prerequisite classification
models is their lack of explainability. Although the models classify pairs as 0 and 1,
they do not provide an explanation as to why a concept is a prerequisite of another
concept or not. Furthermore, when the number of the considered features increase,
as in the case of deep learning models, which consider hundreds or thousands of
features, interpretation of the class decisions becomes even more challenging. This
is not specific to the prerequisite detection task. Any classification model that
includes a large number of features will suffer from the same problem. Doshi-Velez
& Kim (2017) highlight the importance of explainable AI, emphasizing that users
must comprehend the rationale behind model output to trust and effectively utilize
the system. As LLMs become more involved in educational processes, it will be
crucial for researchers and practitioners to focus on how these models arrive at their
conclusions to build student trust in automated educational tools. In the context
of prerequisite detection, it becomes difficult to assess the accuracy of prerequisite
relations identified by the AI models or to comprehend the potential reasons for
incorrect classifications. The problem is especially evident in the first crowd-sourced
prerequisite dataset initiated by Talukdar & Cohen (2012). The dataset contains
many disagreements among annotators when asked if a given concept pair contains
a prerequisite relation or not. Since the annotators do not provide a justification for
their choices, the decision process of the annotators remains vague when evaluating
these relations. As a solution, during fine-tuning process, we teach LLMs to generate
a text that justifies why a certain concept is or is not considered as a prerequisite

20

for the other concept.

.

21

3. AI-Assisted Construction of Educational Knowledge Graphs

3.1 Problem Setup

We assume that there is a domain of interest together with a set of concepts with
their textual descriptions from that domain. Our aim is to construct a MEKG

where nodes are the concepts and directed edges between nodes represent prereq-
uisite relations. Our prerequisite pair scoring mechanism for building the graph is
based on the references in the textual descriptions, which could be exact references
or semantic references. A concept can have different explanations, and depending
on its explanation, its prerequisites can vary. Consequently, we rely on references to
concept names in those explanations to identify prerequisite relationships, yet the
final decision is left to the expert. The expert may determine that, although refer-
ences exist, they are insufficient to establish a prerequisite relationship. Conversely,
the expert might decide that a concept is a prerequisite, despite the absence of
references. Therefore, by incorporating expert feedback, we improve the reliability
of our MEKGs in prerequisite identification. In the following subsections, we first
explain the notion of semantic references as opposed to exact references, then we
describe our scoring mechanism based on semantic references.

3.2 Semantic References Versus Exact References

If a learner frequently encounters some keywords in the textual description dj of
a concept ci then this is an indication that one should know ci before they may
fully understand dj . Determining which keywords are related to which concept in

22

a given textual description requires semantic analysis of the textual description. In
our problem setting we have predetermined concepts where each concept has its own
textual description and we need to check if there are references to other concepts
in a given textual description. These references could be either exact or semantic

references. An exact reference is identified when a concept is explicitly mentioned in
the textual description while a semantic reference is observed when keywords with
semantic connection to a concept are in the textual description. For example let cj

be recurrent neural networks along with its description dj and let ci be chain rule.
If we encounter specific keywords such as "derivative," "product rule," or "quotient
rule" within the description dj , which are highly associated with the concept chain
rule (ci), we consider them as semantic references to ci in dj . However, if we directly
encounter the concept name chain rule in dj , we consider that as an exact reference
to ci. Based on the frequency and prevalence of semantic and exact references to
ci in dj , we can decide if chain rule is a potential prerequisite of recurrent neural
networks. The process of identifying exact references is straightforward. But, in
order to capture the semantic similarity, we employ embeddings.

Figure 3.1 Flowchart illustrating the prerequisite detection with CSR.

23

3.3 Embeddings for Semantic Similarity

In order to compute semantic similarities, each word sequence must be represented
by a fixed length vector called its embedding. Embeddings are learned by models
through training on large amounts of textual data based on how often words appear
together in the training data. By representing word sequences as fixed length vectors,
the models can compare the embeddings using metrics such as cosine similarity.
Cosine similarity measures the angle between two vectors, with a smaller angle
indicating a higher level of similarity. Therefore, if two word sequences have similar
embeddings, their cosine similarity will be high.

In this dissertation, we use 3 models that can produce embeddings with different
strategies. The first two are Word2Vec and Fasttext. These models produce fixed
embeddings for the words they encounter during their training phase. We calculate
the similarities between sequences of words (between a 10-gram and concept name,
which can be composed of any number of words). To be able to do this with
Word2Vec and Fasttext, we represent two sequences by taking the average of the
word embeddings for each individual word in the sequence. Since each embedding is
a vector and vectors can have different lengths, we also make sure that the averaged
vectors are unit vectors by dividing each vector to its L2 norm (Ecludian norm).
Furthermore, Word2Vec cannot deal with out-of-vocabulary words (oov); therefore,
if there is an oov in either of the sequences, we exclude it from the calculation.
Fasttext, on the other hand, considers each word as a combination of character n-
grams. It uses these n-gram representations to generate word embeddings. Therefore
for the calculations with Fasttext, we don’t check for oov because Fasttext can
recognize each word even if it is oov due to its character n-gram representations.

The overall methodology for obtaining the embeddings is provided in Figure 3.1.
For training Word2Vec and Fasttext models, we first formed a corpus that consists
of Wikipedia articles that are of category "Machine Learning", "Linear Algebra" and
"Algorithms and Data structures". We chose these domains because they align with
our areas of expertise, allowing us to more accurately analyze the data. We also
included the text of all the articles that are linked from those articles, eventually
reaching a corpus of 2.5 million sentences. We then preprocessed our corpus by
removing stopwords and punctuation marks, and by converting all words to lower-
case. We tokenized the sentences into individual words and trained Word2Vec and
Fasttext models on the preprocessed corpus. We used Gensim Library (2024) in
Python programming language to train both Word2Vec and Fasttext models.

24

For Word2Vec, we set the dimension of the word embeddings to 100 and trained
the model with the skip-gram algorithm with a window size of 20. We also set the
minimum word count to 100, meaning that words occurring less than 100 times in
the corpus are excluded from the vocabulary. We trained the Word2Vec model for
10 epochs. For Fasttext, we set the dimension of the word embeddings to 100 as in
the case of Word2Vec and trained a model using skip-gram algorithm with a window
size of 20. Similarly to Word2Vec, we set the minimum word count to 100. We also
set the character n-gram size to range from 3 to 6, meaning that the model considers
character n-grams of lengths 3, 4, 5, and 6 during training.

The third model we employed is a more sophisticated and recent model named
all-MiniLM-L6-v2, which belongs to the category of sentence-transformers models.
Sentence Transformers start by employing a pre-trained language model, such as
Bidirectional Encoder Representations from Transformers (BERT) Devlin, Chang,
Lee & Toutanova (2019) or Unified pre-trained Language Model (UniLM) Dong,
Yang, Wang, Wei, Liu, Wang, Gao, Zhou & Hon (2019) and then train with pairs
of sentences that are semantically related and non-related. The training process
encourages the models to generate embeddings where semantically related sentences
have close vector embeddings and non-related sentences have distant vector embed-
dings. The all-MiniLM-L6-v2 employs Microsoft’s MiniLM pre-trained language
model Microsoft (2023) and is fine tuned on 1B sentence pairs for semantic sim-
ilarity task sentence transformers (2023). The fine-tuned model can already be
downloaded from Huggingface MiniLM (2023). Given a sentence with a maximum
of 128 tokens, all-MiniLM-L6-v2 produces a fixed-length sentence vector embed-
ding of size 384. Since the model is already fine-tuned on a very large dataset for
semantic similarity task, we directly use the model without any further fine-tuning
and analyze its effect on our prerequisite detection methodology together with the
two other models (Word2Vec and Fasttext).

3.4 Scoring Based on Semantic and Exact References

Given a set of concepts C and ci ∈ C where di is the textual description of ci, we
calculate either of the two reference scores: the Cumulative Semantic Reference
score (CSR) or the Cumulative Exact Reference score (CER).

We use a sliding window strategy to split di into n-grams, with a fixed value of n set

25

to 10 and stride parameter s (which determines the distance that the window moves
at each step) also set to 10. This is done to ensure a reasonable sentence size while
simultaneously optimizing the speed and performance of the algorithm’s execution.

Let di be a textual description which contains x number of 10-grams. We denote
each 10-gram of di by sij , where 0 < j ≤ x. To detect semantic references, we
consider the cosine similarities between the embeddings of concept names in C and
the embedding of sij . We would like to note that the language model we use returns
a single embedding for sij . CSR score of pair (ci, ck) is calculated as shown in
Equation 3.4.

CSR(ci, ck) =
∑

j

simCosine(sij , ck)

CSR scores are not symmetric, meaning that CSR(ci, ck) may not be equal to
CSR(ck, ci) since semantic references of ck in di are different than the semantic
references of ci in dk.

Exact references are identified without any word or sentence embedding. Given a
concept ci and its description di with 10-grams sij , the formula for CER is:

CER(ci, ck) =
∑

j

I(sij , ck)

In this context, I(sij , ck) is an indicator function that outputs 1 if the 10-gram
contains the concept name ck and returns 0 otherwise.

Prerequisite ranking scores are based on either CSR or CER scores of the concept
pairs. For two concepts ci and ck, a high CSR(ck, ci) indicates a strong possibility
that there is a direct prerequisite relation from ci to ck because ci is highly referenced
in the description of ck. Although the CSR score is a good indicator for prerequisite
relations, an expert interaction is still needed. This is because when both scores for
CSR(ci, ck) and CSR(ck, ci) are high, it may cause the fully automated algorithm
to make a wrong prerequisite direction assignment. Since one false positive or false
negative label can effect the future labels of the other pairs in the set, we incorporate
expert interaction. Therefore, in order to identify potential prerequisite pairs, we
calculate the CRS scores of all ordered pairs in a concept set and sort them with
respect to their scores. We then consider the top t percent of the sorted pairs as

26

potential direct prerequisite pairs to be evaluated by the expert.

3.5 Inference Rules

The top t% of concept pairs with the highest CSR scores are stored in a ranked
list RL. The labels for these pairs are then presented to an expert for validation,
starting from the first element of RL and proceeding to the last. If the expert
confirms the prerequisite relation from ci to cj for a pair (ci, cj) in RL, this pair is
added to the set P . Conversely, if the expert does not confirm, the pair is added to
the set P0. After each expert interaction, the EKG is updated using the two sets P

and P0. The primary goal of our methodology is to minimize the manual labeling
of prerequisites by the expert. Therefore, if the label of the pair in RL can already
be deduced from the previous answers of the expert, this pair is not presented to
the expert and we move to the next pair in RL. Deduction of the labels is possible
using inference rules on an EKG. We define 4 inference rules that are applied each
time a pair (ci, cj) is retrieved from RL as shown in Figure 3.2.

• First rule:

– Form the set Dj which contains node j and all of its descendant nodes.

– Form the set Ai which contains node i and all of its ancestor nodes.

– If there is any path from a node in Dj to Ai, then it can be automatically
inferred that the label of (ci, cj) should be 0. This is because otherwise,
an edge from node i to j would introduce a cycle in the EKG and would
violate the asymmetry property of the prerequisite relation.

• Second rule:

– Form the set Di which contains node i and all of its descendant nodes.

– Form the set Aj which contains node j and all of its ancestors.

– If there is any path from a node in Di to Aj , then it can be automatically
inferred that the label of (ci, cj) should be 1. This is because otherwise,
a missing edge from node i to j would violate the transitivity property
of the prerequisite relation.

27

Figure 3.2 Four inference rules for a concept pair (i, j). Dashed lines represent the
non existing prerequisite relations and solid lines represent the existing ones.

• Third rule:

– Form the set Ai which contains node i and all of its ancestors.

– For each node a in Ai, check if there is a non existing path from a to j

in EKG.

– If such non-existing path is found, then the label of (ci, cj) is 0. This is
because if the label of (ci, cj) would be 1, then due to the transitivity, the
expert would confirm the prerequisite relation from a to j in pair (a,j).

• Fourth rule:

– Form the set Dj which contains node j and all of its descendant nodes.

– For each node d in Dj , check if there is a non existing path from i to d

in EKG.

28

– If such path is found, then the label of (ci, cj) is 0. This is because if
label of (ci, cj) would be 1, then the expert wouldn’t label the edge (i,d)
as 0 due to the transitivity property.

3.6 ACE Main Algorithm and System Implementation

The ACE System takes a set of concepts along with their textual descriptions as
input. Figure 3.4 shows a sample input set. Based on the provided input, ACE forms
an MEKG based on prerequisite scores, expert feedback and inference rules.Concept
descriptions can be prepared by the experts or they can be obtained from existing
resources. The experts also have the option to make modifications to the descriptions
such as removing or adding sentences, as needed.

29

Algorithm 1 ACE Main Algorithm
Input:

C = {c1, . . . , cm} — the set of concepts
d = {d1, . . . ,dm | di describes ci ∈ C} — textual descriptions of concepts
P = {} — set of direct positive pairs, initially empty
P0 = {} — set of direct negative pairs, initially empty

Output:
MEKG for set C

1: RL← rank(C,d) ▷ Rank all the ordered pairs of C according to their CSR
scores.

2: EKG = (V,E), where V = ∅ and E = ∅ ▷ Initial graph with no nodes or edges.
3: for k = 0 to length(RL)−1 do
4: (ci, cj) = RL[k] ▷ Retrieve the first pair from the ranked list.
5: if not isInference(EKG, (ci, cj)) then
6: answer← getExpertResponse() ▷ Expert input is required.
7: if answer = 0 then
8: P0← P0∪{(ci, cj)}
9: Update(EKG, P0) ▷ Update the graph knowing no prerequisite

exists.
10: Reduce(EKG) ▷ Remove transitive edges.
11: else if answer = 1 then
12: P ← P ∪{(ci, cj)}
13: Update(EKG, P) ▷ Update the graph knowing a prerequisite

exists.
14: Reduce(EKG) ▷ Remove transitive edges.
15: else if answer = 2 then
16: break ▷ Expert decided to stop the process.
17: end if
18: end if
19: end for

ACE algorithm has two distinct phases. In the first phase (line 1 of Algorithm 1),
ACE assigns scores to all ordered pairs of the concept set C based on their CSR

values as described in Section 3.4. This results in a list, RL, containing all concept
pairs, sorted from the most likely to the least likely to form a prerequisite relation.
In the second phase, ACE initializes the EKG as a null graph, where V corresponds
to the set of concepts and E to the set of edges which is initially empty (line 2
of Algorithm 1). Subsequently, in (lines 3 to 15 in Algorithm 1), it iterates over
concept pairs in RL. For each pair (ci, cj), the current graph is checked to see if the
label of the pair (ci, cj) can be inferred automatically. If so, the function isInference,
labels the pair and returns true (line 5 of Algorithm 1). Otherwise, the algorithm
asks for expert feedback (line 6 in Algorithm 1), presenting the pair for evaluation.
The expert’s response is obtained through a graphical user interface (GUI) and

30

stored in the variable answer. Based on the expert’s response, the algorithm takes
appropriate actions to update the EKG. If the expert determines that ci is not a
prerequisite of cj (line 7 in Algorithm 1), (ci, cj) is added to P0 and the changes
are reflected to the EKG. Alternatively, if the expert identifies ci as a prerequisite
of cj (line 10 in Algorithm 1), pair (ci, cj) is included in set P and changes are
again reflected to the EKG. The graph formation process may turn some edges
into transitive edges. Such a scenario is shown in Figure 3.3 where red nodes in
the figure indicate the current concept for which direct prerequisites are labeled.
Similarly, dashed red lines indicate prerequisite candidates for labeling, whereas
black edges denote actual prerequisites after the transitive edge is eliminated. Such
cases are checked and newly formed transitive edges are removed by Reduce(EKG)
operation (Lines 10 and 14 in Algorithm 1) to structure the graph in MEKG format.
The expert can also label some of the sorted pairs and retrieve the corresponding
MEKG without having to complete all the pairs in RL.

pi

d

c

d is labeled and pi and c
are its prerequisites

now pi d becomes a tran-
sitive edge and is removed

pi

d

c

c is labeled, and pi is
its prerequisite

pi

d

c

Figure 3.3 Scenario for an existing edge becoming a transitive one with newly
labeled direct prerequisites.

We implemented the ACE methodology in a web application. Experts can use
the system to create their own MEKGs by interacting with a simple GUI. The
Figure 3.6 shows an instance where the expert decides that there is a prerequisite
relation from probability to expectation and variance by checking the box correspond-
ing to C1→ C2. The label C1 corresponds to the name of the first concept; C2
corresponds to the name of the second concept. The CSR score is also included as
a reference for the expert. Each time the expert evaluates a concept pair, she can
also see the resulting MEKG in the web application. Figure 3.5 shows an example
MEKG. We can see that the DAG shows the prerequisite relations among 6 con-
cepts. Experts may also use the web application to create their own labeled data for
training supervised algorithms on a prerequisite detection task. In order to do that,
ACE system has the option to convert the graph to binary labelled data in tabular
form as shown in Table 3.1 where the presence of a simple directed path between a
pair of concepts is represented by ’1’ to indicate a prerequisite relationship from the
first concept to the second concept in the pair.

31

Figure 3.4 A sample concept set for constructing an EKG.

Figure 3.5 Example of a constructed MEKG for 6 concepts.

3.7 Role of the Expert

32

Figure 3.6 Example of an instance where the expert makes a selection from the
GUI

Concept 1 Concept 2 Label
C1 C2 1
C1 C3 0
C1 C4 0
C4 C1 1
C4 C2 1
C4 C3 0

Table 3.1 Binary labeled data where 1 indicates a prerequisite relation from the
first concept to the second concept and 0 means not a prerequisite

The involvement of an expert helps ensure the MEKG does not contain invalid
edges, assuming the expert accurately assigns direct prerequisite relationships. Note
that, invalid edges in the graph can have a cascading effect, resulting in the formation
of many invalid paths. Furthermore, references in a textual description indicate a
potential prerequisite relation but, sometimes an expert assistance is needed in order
to determine the direction of the relation because both descriptions can refer to
each other with similar CSR scores. For example, in our evaluation study we have
encountered the concept linked list whose textual description refers to concept tree as
“linked list can be used to implement several other data structures such as stack and
tree” and at the same time, description of concept tree also refers to concept linked
list as “trees are implemented with linked lists” thus making CSR(linked list, tree)
and CSR(tree, linked list) high and close to each other. Therefore, expert judgment
becomes crucial in identifying the correct prerequisite direction between such closely
connected concepts.

3.7.1 Maximum Number of Edges in MEKGs

The MEKGs produced by ACE algorithm are DAGs with no transitive edges. We
investigate the maximum number of edges an MEKG can contain. This is important

33

in identifying the minimum number of questions that can be asked to the expert in
MEKG construction. A MEKG can contain maximum of n2/4 number of edges.
We derive this formula using Mantel’s Theorem as follows:

Consider two graphs G(N,E) and Gdir(N,E∗). The graph G is a simple undirected
graph, meaning that it has no edges connecting a node to itself and no multiple
edges between any pair of its nodes. The graph Gdir is the directed version of G,
in which all edges E∗ are assigned a random direction, either from the first node to
the second or from the second to the first.

Proposition 1. If Gdir does not contain a transitive edge then G is triangle free.

Proposition 2. If G is a triangle free graph then we can always form a Gdir which
contains neither a cycle nor a transitive edge.

Since a MEKG neither contains a cycle nor a transitive edge, we conclude that there
will always be a Gdir in MEKG format if G is known to be triangle free. We also
know that the number of edges in G and Gdir are same because direction assignments
do not change the edge count. Therefore, in order to find an upper bound on the
number of edges a MEKG can contain, we find the maximum number of edges a
triangle-free graph G can contain using Mantel’s Theorem.

1

The upper bound on the number of edges in MEKG suggests that given a concept
set C with n number of concepts, there can be at most n2/4 number of concept pairs
(A,B) which contain a direct prerequisite relation (or directed edge in MEKG) from
A to B if n is even number. If n is odd, the formula changes to (n2−1)/4 . Similarly,
the total number of direct and indirect relations can be at most :

n× (n+1)
2 −n

This is because if a pair (A,B) in C×C has a prerequisite relation from A to B,
then the pair (B,A) does not have a prerequisite relation from B to A, due to the
asymmetry property and due to the irreflexivity, n number of same pairs (A,A)
cannot have a prerequisite relation from A to A, and the total number of pairs that
can potentially hold a prerequisite relation becomes the total number of unordered
pairs minus the reflexive pairs in set C.

1Please see Appendix for the proofs of theorems introduced hereafter.

34

3.7.2 Bounds On the Number of Queries to the Expert

The prerequisite scoring algorithm in ACE ranks all the ordered pairs (A,B) ac-
cording to their likelihood of containing a prerequisite relation from A to B and then
brings top scored pairs to the expert for consideration. If the ranking algorithm is
perfect, thereby achieving 100% sensitivity (true positive rate), the top %25 pairs
will include all the direct prerequisites. This is because for a concept set with n

concepts, the number of total ordered concept pairs is n2 and the maximum number
of direct prerequisites is n2/4 making

(
n2

4

)
n2 = n2

4 ·
1
n2 = 1

4 = 25%

Consequently, from those direct prerequisite pairs, all the prerequisite relations will
be revealed and visualized in the respective MEKG. If the prerequisite scoring
algorithm does not make a distinction between an indirect and direct prerequisite
pair but achieves 100% sensitivity (i.e every pair it brings to the expert is either
a direct or indirect prerequisite pair) then it has to make sure that the expert
validates n×(n+1)

2 −n pairs. This means that in worst case, expert has to consider
approximately half of the pairs to build the complete MEKG assuming that the
prerequisite scoring algorithm is perfect.

We call a MEKG with all the true prerequisite relations as a complete MEKG.
However, in practice no algorithm has a 100% sensitivity and it may be the case that
the algorithm brings false positives instead of true positives to the expert. Presence
of the expert guarantees that the those false positives are labeled as no prerequisites
therefore, no erroneous edge is drawn in the MEKG. The more pairs are brought
to expert, the more it is likely that all the true positives will be captured. Triv-
ially, if a prerequisite ranking algorithm brings all the n2 pairs to the expert, the
MEKG will be complete. However, this means that expert has to evaluate all the
pairs for prerequisite relation which increases the manual effort a lot. Conversely, if
the algorithm only brings the small portion of the pairs, then the MEKG will be
incomplete as lots of true positives will not be labeled by the expert. In order to
demonstrate the balance between the reduction in expert effort and the complete-
ness of the MEKG, we introduce two parameters t and path recall. Parameter t

shows what percentage of the most likely prerequisite pairs will be evaluated by the
expert and path recall shows how much of the true prerequisites are captured by the
resulting MEKG after the expert interaction. As described in the ACE Algorithm
(see Algorithm 1), once the MEKG starts being constructed from the answers of

35

the expert, some of the top-scored pairs’ labels can be inferred and not asked to the
expert. Therefore, the total reduction in expert effort for a concept set with size n

becomes

100− t

100 + f

n2

where f represents the number of inferred labels. For instance, given a set C with
10 concepts, suppose t = 40. This means that in worst case, 40 of the highest
scored pairs from a total of 100 pairs should be evaluated by the expert. During
the construction of the MEKG, if 5 labels are inferred and not asked to expert, the
total number of pairs not considered by the expert becomes 60 + 5 = 65, and the
relative reduction in expert effort becomes 65%. In evaluation, we plot path recall
against t to demonstrate the balance between algorithm accuracy and manual effort.
Continuing from the previous example, if for t = 40, the path recall value is 80, it
means that with a 65% relative reduction in expert effort, the constructed MEKG

covers 80% of the total true prerequisite relations.

3.7.3 Representing Strict Partial Ordered Sets Using MEKGs

In mathematics, a strict partial order is defined as a binary relation that is irreflex-
ive and asymmetric. Therefore, prerequisite relation can also be called as a strict
partial order. The word partial means that not all the elements of the relation are
comparable. On the contrary, a strict total order is an irreflexive and asymmetric
relation in which all the elements are comparable. For instance, the binary relation
“greater than” on a set of natural numbers N is a strict total order because for each
chosen ordered pair (A,B) there is either a relation from A to B or B to A. The
word strict refers to the irreflexive property of the relation and if the relation is a
partial or a total order with reflexive property such as the relation “greater than or
equal to”, than the word strict is removed. In MEKGs with prerequisite relations,
a prerequisite scoring algorithm in ACE helps the expert to build the graph by
eliminating pairs that are not likely to have direct prerequisite relations. Similarly,
for other types of relations that are strict partial order, a similar ranking algorithm
can be built and the rest of the steps in ACE can be directly utilized to produce
the MEKG of the corresponding relation.

A subset of a strict partial order set can be a total order set. In general, the term

36

Figure 3.7 Comparison between a Partial Order and a Total Order Set.

chain is used to describe these sets. In MEKGs, chains correspond to the nodes of
the simple directed paths in the graph. Since indirect prerequisite relations between
concept pairs are simple directed paths, if A is an indirect prerequisite of B, all
the nodes of path (A→ n1→ n2→ ·· · → B) form a total order set. Identification
of chains in MEKGs allows us to define more strict relations between the ordered
pairs of the chain such as “precedence” or “difficulty”. Given a chain H from a
MEKG with prerequisite relation, the relation R on H contains pairs either (A,B)
or (B,A). This means that if the length of H is n, there are exactly n ∗ (n− 1)/2
pairs containing the relation R. When R is defined as the difficulty relation, each
pair formed from H can tell which of the concept in the pair is less difficult than
the other. We can also identify the maximum or the minimum element of H. The
minimum element of the chain is defined as the node which has no incoming edge and
it can be interpreted as the concept whose description is the easiest to understand.
Figure 3.7 shows the difference between a partial order and total order. In left, we

37

observe that all concepts are comparable and in right, we see that C3 and C4 are
not comparable.

3.8 An Automated Algorithm to Sort Concepts based on their Difficulty

In this section, we introduce an algorithm called Difficulty Orderer (DO) which
orders concepts based on their difficulty scores from easiest to hardest. The difficulty
scores are determined according to the difficulty relation R which is defined as the
subset of the prerequisite relation as explained in Section 3.7.3, and we assume it is
a strict total order.

Given a concept pair (i, j) from a concept set C, if (i, j) ∈R then (j, i) /∈R and i is
a less difficult concept than j. Conversely, if (j, i) ∈R then (i, j) /∈R and j is a less
difficult concept than i. Moreover, since R is a strict total order, either (i, j) ∈R or
(j, i) ∈R.

In order to determine if concept pair (i, j) or (j, i) belongs to R, we define a com-
parator function F which takes a concept pair (i, j) and returns 1 if (i, j) ∈ R and
-1 if (j, i) ∈ R. The function uses the incoming Cumulative Semantic Reference
(inCSR) and outgoing Cumulative Semantic Reference (outCSR) scores of the con-
cepts. Given a concept set C, inCSR is defined as follows:

inCSR(i) =
∑

x∈C\{i}
CSR(x,i)

Intuitively, if a concept i has high inCSR score, this means that i is frequently
referenced in the other concepts’ descriptions.

Similarly, outCSR is defined as follows:

outCSR(i) =
∑

x∈C\{i}
CSR(i,x)

A high outCSR of a concept i indicates that i frequently references the other concepts
in its description.

38

Difference between the inCSR and outCSR of a concept determines its difficulty.
A basic concept is assumed to have a simple definition that does not involve the
usage of other concepts hence a low outCSR value. Conversely, this basic concept
is expected to be present in the definitions of the other concepts since it serves as a
foundational knowledge element, thus leading to a high inCSR value. Therefore, the
difference between the inCSR and outCSR values (inCSR - outCSR) can indicate
the relative simplicity of a concept within a given concept set. Higher positive values
suggest the concept is more basic and foundational, while lower or negative values
might indicate that the concept is more complex or specialized, relying heavily on
other concepts for its definition.

Finally we define the comparator function F (i, j) as :

F (i, j) =

1 if inCSR(i)−outCSR(i)− (inCSR(j)−outCSR(j)) > 0,

−1 otherwise.

We illustrate all the described steps in Algorithm 2. The DO algorithm utilizes the
merge sort technique, specifically adapted to sort concepts by their difficulty levels
as defined by the comparator function F . This structured ordering is useful for
organizing educational content, structuring lessons, or designing curricula, effectively
organizing concepts from the simplest to the most complex based on their difficulty
relations.

39

Algorithm 2 DO Algorithm with Recursive Merge Sort
Input:

C = {c1, . . . , cn} — List of elements to sort

Output:
Sorted list of concepts from easiest to hardest based on difficulty

1: function DO(C)
2: if length(C) > 1 then
3: mid← length(C)//2 ▷ Find the middle index
4: L← C[1 : mid] ▷ Divide the list into left half
5: R← C[mid+1 :] ▷ Divide the list into right half
6: L←DO(L) ▷ Recursively sort the left half
7: R←DO(R) ▷ Recursively sort the right half
8: C←Merge(L,R) ▷ Merge the sorted halves
9: end if

10: return C
11: end function
12: function Merge(L, R)
13: i← 1
14: j← 1
15: merged← []
16: while i≤ length(L) and j ≤ length(R) do
17: if F(L[i],R[j]) == 1 then
18: Append L[i] to merged ▷ L[i] is less difficult than R[j]
19: i← i+1
20: else
21: Append R[j] to merged ▷ R[j] is less difficult than L[i]
22: j← j +1
23: end if
24: end while
25: while i≤ length(L) do
26: Append L[i] to merged ▷ Copy remaining concepts from L
27: i← i+1
28: end while
29: while j ≤ length(R) do
30: Append R[j] to merged ▷ Copy remaining concepts from R
31: j← j +1
32: end while
33: return merged ▷ Return merged list with concepts sorted by difficulty
34: end function

3.9 Complexity Analysis of CSR Computation and DO Algorithm

40

In order to calculate the CSR score of a concept pair (A,B), our methodology
utilizes the description of A, the title of B and a language model L. As described
in Section 3.4, the textual description of A is converted into a set of 10-grams and
each 10-gram is vectorized by L. After that, L also vectorizes the title of B and
then calculates the cosine similarity between the vectors of 10-grams of A and the
vector of the title of B. The vectorization process of an n-gram depends on the
chosen L. For instance, if L is trained to produce fixed word vectors (embeddings),
it may use a hash data structure and a look up table to find the corresponding
vectors of 10 words and average them to find the embedding of the given 10-gram
which takes constant O(10) time. However, if the word vectors are dynamic (i.e
the embedding of each word depends on the embeddings of the previous words in
the n-gram) then the process may exhibit a complexity that is up to O(n) time.
When a 10-gram is vectorized, its cosine similarity with the vector of title B is
computed. Cosine similarity operation takes O(s) time if both vectors have length
s. This is because each operation (multiplying vector components, adding them
for the dot product, computing the squares of components, summing them for the
norms, and dividing the dot product by the product of the norms) relates directly
to the number of elements in the vectors. Given that the size of the vectors and the
length of the n-grams may vary depending on the chosen language model L, we treat
the similarity calculation between the 10-gram of A and the title of B as having a
unit cost, denoted by c. This assumption simplifies our calculations by considering
these operations as constant time, irrespective of the actual vector dimensions or
n-gram length.

In each concept description, if we have k number of sentences on average, then cal-
culating CSR(A,B) requires k similarity operations which has a cost of c×k. Each
inCSR and outCSR computation requires n number of CSR operations. Moreover,
F (i, j) requires 2 inCSR and 2 outCSR computations, which at total constitutes a
4×n× c×k cost. Since merge-sort algorithm does n× log(n) comparisons in every
case (worst, best or average) for n number of items, we use F (i, j) n× log(n) times.
Finally, we decide that the cost of sorting n concepts based on their difficulty has a
cost of n× log(n)×4×n×c×k which can also be expressed as having a n2× log(n)
time complexity.

41

4. Discovering Prerequisite Relations Using LLMs

4.1 Introduction

This section illustrates the process of fine-tuning large language models (LLMs) to
predict prerequisite relations between concepts. In the fine-tuning phase, a LLM
receives a prompt asking whether one concept is a prerequisite for another. It then
learns to respond in a structured format. The response includes: 1) a “yes” or “no” to
indicate whether a prerequisite relationship exists, and 2) a rationale, provided in a
subsequent sentence, explaining the reason for its decision. This fine-tuning strategy
is then generalized to other potential classification problems in education such as
student profiling or automatic assignment evaluation. The evaluation results show
that the fine-tuned LLMs learn the classification tasks with ease and their answers
to the test prompts are similar to those answered by human annotators.

4.2 The Study and the Method

Our methodology exploits LLMs as binary classifiers for prerequisite detection.
LLMs are able to generate an output text (called completion) based on a given
input (called prompt). By leveraging this capability, we introduce a specialized fine-
tuning strategy where LLMs receive a concept pair (A,B), and a label l, through
which they learn to generate a completion which states why A is a prerequisite of
B if l = 1 and why A is not a prerequisite of B if l = 0. Therefore, after fine-tuning,
LLMs have two main functions. First, they are able to classify any given pair to a
class 0 or 1. Second, they are able to justify their assignments with completion text.

42

The second functionality is particularly important in educational applications where
students need to understand why certain concepts are prerequisites for others.

4.3 Fine-tuning Process

The benchmark datasets, on which we fine-tune LLMs, consist of two separate files:
a training file and a test file. The training file contains a set of concept pairs and
their respective labels (0 or 1) and the test file contains another set of concept pairs
whose labels should be predicted by the AI model. During the fine-tuning process,
we convert each concept pair (A,B) in the training file into a question prompt as “Is
concept A a prerequisite of B?”. This is the question that the LLMs should learn
to answer when predicting the class of a concept pair in the test file. Since we also
want to teach the models how to specifically answer a question, we create two types
of answers; positive and negative represented by completion string1 and completion
string2 respectively as can be seen in Figure 4.1 and Figure 4.2. Answers for positive
pairs (those with a class label 1) represented with completion string1 start with the
keyword “Yes”, followed by a special marker “;”. The keyword corresponds to the
correct class of the pair. Since we also want to have a justification text on why A

is a prerequisite of B, we provide an additional prompt as input to LLM, which
is in the form of “Why is concept A a prerequisite of B?” The answer returned
from LLM is appended to completion string1 following the special marker “;”. The
construction of the completion string1 for a positive pair (Expected Value, Kalman
Filter) is depicted in Figure 4.1. Similarly, for the negative pairs (pairs with class
label 0), the answer formatted as completion string2 starts with the keyword “No”,
followed by the special marker “;”. This is followed by a justification response
from LLMs to the question “Why is concept A not a prerequisite of B?” and
appended after the special marker. The construction of the completion string2 for an
example negative pair (Integral, Predicate Logic) is also depicted in Figure 4.2. Upon
successful fine-tuning, LLMs can determine whether one concept is a prerequisite
for another and justify their decision with a generated explanation. We made the
fine-tuning data publicly available so that any researcher working on the prerequisite
detection problem can reuse it to fine-tune their own LLM models. Our fine-tuning
procedure can also a guide for other models which work on different types of binary
classification problems.

43

Figure 4.1 Construction of a positive training instance

Figure 4.2 Construction of a negative training instance

44

4.4 Parameter Details for Fine Tuning and Testing

This section introduces two sets of fine-tuning parameters associated with LLMs.
The first set of parameters can only be set during the fine-tuning process and second
set of parameters is utilized during the testing of the fine-tuned models.

The first set of parameters includes:

• Batch Size: The number of examples used in each iteration of the fine-tuning
process. Larger batch sizes decrease the fine-tuning time as the models process
data in batches (more than one example at a time). However, increasing
the batch size may lead to overfitting as the models fine-tuned with large
batches tend to generalize poorly to unseen test data. In GPT-3’s official
documentation OpenAI (2023), the batch size is recommended to be 0.2% of
the number of examples in the training file and we adhered to this guidline
during our experiments.

• Learning Rate: This parameter determines the rate at which models update
their knowledge during the fine-tuning process. For both of our LLMs, we
utilized a learning rate of 5×10−2. According to the official documentation it is
stated that larger learning rates often yield better performance in conjunction
with larger batch sizes. However, excessively increasing the learning rate can
cause the models to make overly large updates to their knowledge, potentially
leading them to diverge from the optimal learning path.

• Number of Epochs: The number of times the entire training dataset is scanned
during fine-tuning. We set the number of epochs to 3 for both LLMs.

• Maximum Sequence Length: The maximum number of tokens models can
process in a single input sequence. We set the maximum sequence length
to 128 for both LLMs as the explanations on the prerequisite relations are
intended to be short and precise.

The second set of parameters includes:

• Temperature: The temperature parameter controls the level of randomness
in LLM outputs. A higher temperature value leads to more diverse and ex-
ploratory outputs, while a lower temperature value leads to more conservative
and predictable outputs. The temperature parameter directly influences the
model’s output randomness, reducing uncertainty in predictions by favoring
more deterministic responses. Since in the classification task we want definite

45

answers starting with “Yes” or “No”, we set the temperature to 0 during the
testing of the fine-tuned models.

• Top P: The top P parameter controls the number of most likely tokens to
consider in the model’s output. A higher top P value leads to a narrower set
of options, while a lower top P value leads to a wider set of options. Similar
to temperature parameter, we also set top P = 1 since we aim to ensure the
answers follow a specific, expected format.

• Frequency Penalty: The frequency penalty parameter controls the degree to
which the model penalizes the repetition of tokens in its output. A higher
frequency penalty value leads to less repetition, while a lower frequency penalty
value allows for more repetition. We set frequency penalty = 0 as we have
two options for each output: “prerequisite” and “non-prerequisite” and many
concept pairs can be, or not be, prerequisites of each other for the same reasons.

4.5 Fine Tuning Strategy of LLMs for Other Tasks in Education

Even though our study mainly focuses on applying the fine-tuning strategy for pre-
requisite detection task, it is important to recognize that this methodology is not
limited to this specific scope. This flexible strategy can be adapted to address a
wide range of challenges in various learning settings, thus improving the capabil-
ities of intelligent education systems. To demonstrate this, we first present how
this approach can be beneficial in student assignment evaluation. Given the exist-
ing records of students’ assignments, their respective grades, and instructors’ notes
on the strengths and weaknesses of each work, LLMs can be fine-tuned to classify
new student assignments. They can learn to provide feedback on each assignment’s
quality and assist students by identifying their mistakes in the assignments. To
demonstrate this approach, we present a scenario in Figure 4.3, which outlines the
process of tailoring LLMs for assignment evaluation. The fine-tuning procedure
starts with the graded student assignments. These assignments include questions,
students’ answers for the questions, grade of the student and the instructor feedback.
The numeric grade information is categorized into n number of classes where n is
a pre-determined number set by the instructor. For instance, in the demonstrated
schema n = 5 means that model will separate students into 5 different classes ac-
cording to their grades. If the minimum possible grade is 0 and the maximum is 100,

46

Figure 4.3 The fine-tuned LLM model classifies student assignments, provides
feedback for improvement, and explains the rationale for each classification.

the range of grades will be divided into five equal-sized intervals. This will generate
the classes such as class 1 [0-20), class 2 [20-40), class 3 [40-60), class 4 [60-80), and
class 5 [80-100]. Each class corresponds to a level of performance. Moreover, in
order to explain why a certain student is assigned to a certain class, the model will
learn to use instructor feedback as a justification for its choice. Most likely, students
belonging to class 1 will have a negative feedback and there will be a text explaining
the mistakes of the student. Upon a successful fine-tuning, if LLM sees a similar
poor assignment paper as the ones in the training, it will be able to classify this
paper as belonging to class 1 and generate feedback similar to that of the instructor.
Following the illustration of assignment evaluation, we turn to student profiling as
another area where the proposed fine-tuning strategy can be effectively employed.
In student profiling, the fine-tuned LLM model can be used to understand students’
learning behavior. This includes how they engage with classroom materials, their
problem-solving speed, their learning pace, preferred learning materials, and more.
The fine-tuned model can help categorize students into different groups. More im-
portantly, it can provide reasons as to why a particular student fits into a specific

47

group. This can allow instructors to understand each student’s learning style, tailor
content to individual needs and optimize the educational outcomes.

4.6 Integrating LLMs to MEKGs

This section demonstrates how MEKGs can be enriched using the outputs of the
fine-tuned LLMs. In Figure 4.4, we observe an instance of a MEKG produced
by our web application. The nodes are colored and certain edges contain labels.
These labels are produced by the fine-tuned GPT-3 model and they explain why
a prerequisite relation exists from one node to the other. The explanations for
prerequisite relations can either be generated after the MEKG is constructed or
during its construction. When an expert is presented with a concept pair (A,B) in
ACE algorithm, the prediction of a fine-tuned LLM on why a prerequisite relation
exists or not exists from A to B can also be helpful to expert.

Figure 4.4 Example of a constructed MEKG with node colors and edge labels.
A node which has no incoming edge is colored to green indicating that it is a basic
concept without any prerequisites and nodes without outgoing edges are colored to
red indicating they are advanced concepts.

Generative capability of LLMs can also be used to create automatic descriptions for
the concepts in the MEKG. Given a general LLM (without any fine-tuning) and a
MEKG, we design an algorithm called Description Generator (DG) which generates

48

Figure 4.5 An instance of an update in the description of a concept.

an explanation eA for a concept A where eA contains all the direct prerequisites of
A in the MEKG. Therefore, whenever learners read the description of A, they
not only understand what it means but also establish a foundational link to the
concepts that should ideally be understood prior to studying A. The process of DG is
illustrated in Figure 4.5. An edge with concept nodes (Bayesian Network, Likelihood
Function) is chosen from the MEKG. The description of Bayesian Network is
expanded by a text from a LLM which is generated in response to a query “Explain
concept Bayesian Network using concept Likelihood Function”. If a concept c has n

prerequisites, n number of texts are generated in the description. Since the generated
descriptions are independent of each other, we unite them in one coherent text with
an additional query. This query gets all the generated texts so far and then asks
LLM to summarize it. The summarization helps to ensure that the final description
is not only comprehensive but also logically consistent and flows naturally from one
point to the next.

49

The change in the descriptions also effect the pairwise CSR scores in a way that if A

is a prerequisite of B and C is not a prerequisite of B, then CSR(B,A) > CSR(C,A).
This is because after the updates, we make sure that A is semantically referenced
more in B’s description than in C’s description.

4.7 Active Learning Strategy in ACE Algorithm

Recall from Section 3.6 that the ACE Algorithm generates a ranked list (RL) of
concept pairs (A,B). Each pair is ranked based on the likelihood that concept A

is a prerequisite to concept B. The algorithm presents a concept pair from RL

to an expert for evaluation if its relationship cannot be inferred from previously
gathered expert responses. Initially, this ranked list is static; it does not dynamically
update based on new inputs from the expert. Consequently, once established, the
list remains unchanged throughout the expert’s interaction with the system, and
only those pairs that can be inferred from prior answers are skipped to speed up
the annotation process. In this section, we explore how the automated description
generation process, outlined in the previous Section 4.6, can be used to dynamically
update RL within an active learning framework whenever new feedback is received
from the expert.

We show the ACE with Active Learning in Algorithm 3. First, the initial descrip-
tions are used to assign CSR scores to the concept pairs. When the highest scored
pair is presented to the expert, if the expert confirms a prerequisite relation, then the
description is updated using a LLM. The update carried out by the LLM involves
generating a new version of the text description for the concept that now incorpo-
rates references from its prerequisite concept. After updating the description, the
algorithm readjusts the associated CSR scores. These scores assess the likelihood of
prerequisite relations among concepts considering the newly updated descriptions.
Such updates lead to a re-ranking of pairs in the list RL, thereby continuously re-
fining which pairs should be presented next to the expert for validation or further
inquiry.

50

Algorithm 3 ACE Algorithm with Active Learning
Input:

C = {c1, . . . , cm} — the set of concepts
d = {d1, . . . ,dm | di describes ci ∈ C} — textual descriptions of concepts
P = {} — set of direct positive pairs, initially empty
P0 = {} — set of direct negative pairs, initially empty
LLM = selected Large Language Model — the LLM used for updating concept

descriptions.
Output:

MEKG for set C

1: RL← rank(C,d) ▷ Rank all the ordered pairs of C with their initial
descriptions.

2: EKG = (V,E), where V = ∅ and E = ∅ ▷ Initial graph with no nodes or edges.
3: for k = 0 to length(RL)−1 do
4: (ci, cj) = First(RL) ▷ Retrieve the first pair from the ranked list.
5: if not isInference(EKG, (ci, cj)) then
6: answer← getExpertResponse() ▷ Expert input is required.
7: if answer = 0 then
8: P0← P0∪{(ci, cj)}
9: Update(EKG, P0) ▷ Update the graph knowing no prerequisite

exists.
10: Reduce(EKG) ▷ Remove transitive edges.
11: else if answer = 1 then
12: P ← P ∪{(ci, cj)}
13: Update(EKG, P) ▷ Update the graph knowing a prerequisite

exists.
14: Reduce(EKG) ▷ Remove transitive edges.
15: UpdateDescription(LLM,i, j) ▷ Update description dj using

concept ci.
16: for all x ∈ C \{j} do
17: UpdateCSR(j, x) ▷ Update CSR score for the pair (j,x).
18: RL← rank(C,d) ▷ Re-sort RL
19: end for
20: else if answer = 2 then
21: break ▷ Expert decided to stop the process.
22: end if
23: end if
24: end for

51

5. Experimental Evaluation

5.1 Introduction

Experimental evaluation consists of two main parts. In the first part, we assess
the accuracy of the CSR scores on benchmark prerequisite datasets and report our
findings. Following this, we explore the potential advantages of our scoring method-
ology within educational settings. This examination involves conducting a series
of empirical tests using real-life student datasets to observe the correlation between
CSR scores and student success. After that, we assess the quality of our constructed
MEKGs by comparing them to the manually built gold standard graphs. Conclud-
ing the first part of our experimental evaluation, we also delve into the practical
aspects of the ACE algorithm’s performance. Although the theoretical computa-
tional complexities of the ACE algorithm are detailed in Section 3.9, we extend our
analysis to include practical evaluations. These evaluations consist of specifically
designed experiments that monitor how the run-time of the algorithm varies under
real-world conditions with different initial parameters.

In the second part of the evaluation, we present a detailed examination of how well
LLMs can detect prerequisite relations between concepts. This analysis begins by
introducing the datasets used in our study. We then proceed to a comparative perfor-
mance evaluation of the fine-tuned LLMs on those datasets. Our results demonstrate
that the fine-tuned GPT-3 shows significant improvements in performance metrics
such as the F-score, surpassing previous models. We also compare the outputs gen-
erated by the fine-tuned GPT-3 with those from a non-fine-tuned baseline model
to highlight the enhancements achieved through fine-tuning. Further, we evaluate
the quality of explanations generated by the fine-tuned GPT-3. We employ a novel
method that compares these AI-generated explanations to those crafted by humans,
aiming to quantify how well the LLM’s outputs align with human explanations. Ad-

52

ditionally, an in-depth analysis of various parameter configurations used during the
fine-tuning process of GPT-3 is conducted. This section emphasizes the critical role
careful parameter optimization plays in maximizing model performance. Finally, we
include a comprehensive cost analysis covering the computational resources, time
requirements, and financial investments necessary for fine-tuning GPT-3 and the
other LLM.

5.2 Prerequisite Scoring Methodology as a Supervised Binary Classifier

In this experiment, we create a supervised binary prerequisite classifier CSR_bin(t)
which turns the CSR scores of concept pairs into binary classes 0 and 1 according
to a learned threshold t. Class 1 is composed of pairs (A,B) where there is a
prerequisite relation from A to B and Class 0 is composed of pairs where there is
no prerequisite relation from A to B. By creating a binary supervised classifier, we
are able to evaluate our prerequisite scoring methodology against the other well-
known approaches in the literature. The parameter t is a learnable parameter and
we decide that it should be the t value which gives the highest evaluation metrics
in the training data.

5.2.1 Evaluation Metrics for Binary Classification

In the context of a binary classification task, such as identifying if there is a pre-
requisite relation from one concept to the other, the performance of a classification
model is assessed through four common metrics: precision, recall, F1-score, and ac-
curacy. Each of these metrics offers a unique perspective on the effectiveness of the
model, providing insights into its strengths and weaknesses. Understanding these
metrics is vital for optimizing model performance and ensuring its practical utility
in educational applications or other domains where binary classification is employed.
Precision measures the accuracy of positive predictions made by the model. It is
defined as the ratio of true positive predictions (correctly identified prerequisites)
to the total number of positive predictions (both correctly and incorrectly identified
prerequisites). High precision indicates that when the model predicts a prerequisite
relation, it is likely to be a correct prediction. This is important when the cost of

53

a false positive (wrongly assuming a prerequisite relation) needs to be minimized.
Precision is calculated as follows:

Precision = TP
TP+FP

where TP (True Positives) are instances correctly identified as having a prerequisite
relation and FP (False Positives) are instances incorrectly identified as having a
prerequisite relation when there is none.

Recall, also known as sensitivity, measures the model’s ability to identify all the
actual positive cases in the dataset. It is the ratio of true positive predictions to
the actual number of positives in the data (the sum of true positives and false
negatives). High recall is essential in scenarios where failing to detect a prerequisite
relation could have negative implications. Recall is calculated as follows:

Recall = TP
TP+FN

where FN (False Negatives) are actual prerequisite relations that the model failed
to identify.

The F1-score is the harmonic mean of precision and recall. It provides a single metric
that balances both the precision and recall of a model, which is crucial when there
is a need to find a compromise between making accurate positive predictions and
ensuring no positives are missed. The F1-score is particularly useful in situations
where an imbalance between the classes might render other metrics less informative.
F1 score is calculated as follows:

F1 Score = 2× Precision×Recall
Precision+Recall

Accuracy measures the overall correctness of the model across both positive and
negative predictions. It is the ratio of correct predictions (both true positives and
true negatives) to all predictions made by the model. It is a simple metric which
can be preferable in cases where there are equal numbers of positive and negative
instances in the dataset. Accuracy score is calculated as follows:

Accuracy = TP+TN
TP+TN+FP+FN

We decide to use t value that gives the best F1 score in the training data, as both

54

recall and precision are equally important in this task.

5.2.2 Utilized Dataset and Compared Models

We evaluate CSR_bin(t) on University Course Dataset (UCD), introduced
by Liang, Ye, Wu, Pursel & Giles (2017). UCD dataset initially contained 1008 man-
ually annotated prerequisite concept pairs which are extracted from the Computer
Science course syllabus of various universities in the USA. UCD was later enriched
by Roy et al. (2019) by providing 1512 negative instances (i.e., non-prerequisite
pairs) on top of 1008 positive pairs making it a larger and more complete dataset
with 2520 pairs. The dataset can be downloaded from Github 1. Roy et al. (2019)
conducted a comparative analysis of the outcomes associated with four distinct
prerequisite detection strategies applied to this dataset. Two of these strategies, de-
veloped by Pan et al. (2017) and Liang et al. (2017), are referred to as MOOC-RF
and CPR-Recover and the remaining two strategies, introduced by Roy et al. are
referred to as PREREQ and Pairwise LDA. Each concept pair (A,B) in UCD is
labeled either 0 or 1. Label 1 indicates that A is a prerequisite of B, and 0 indicates
that A is not a prerequisite of B. Each concept in the concept pair has its corre-
sponding Wikipedia article; therefore, the textual content in these articles is used
as concept descriptions. In addition to these four mentioned models, we also create
a baseline GPT-3 model through zero-shot prompting to test if raw large language
models are capable of understanding prerequisite relations. GPT-3 takes an input
string from the user which is called a prompt and produces an output string called
a completion, which contains a sequence of words that are most likely to come after
the prompt according to the model’s trained probabilistic associations. In order
to test GPT-3 as a baseline binary classifier, we turn each instance in UCD test
dataset to a prompt as depicted in Figure 5.1. Given a prompt for a concept pair
(A,B), if the completion string contains the keyword "Yes", we label the instance as
1; otherwise, we label it as 0.

Liang et al. report that they use the 60% of UCD data as training and 40% of it
as testing for all the reported models. In order to make a fair comparison, we also
use the same ratio. After training, we learn the t value to be 68. As for the GPT-3
model, we don’t do any additional training or fine-tuning and use it as a baseline.

1https://github.com/suderoy/PREREQ-IAAI-19

55

https://github.com/suderoy/PREREQ-IAAI-19

Figure 5.1 Zero shot GPT-3 used as a binary classifier

Table 5.1 Table comparing different prerequisite detection methods.

Name of the
method

Precision Recall F1 score

PREREQ 46.76 91.64 59.68
Pairwise LDA 98.27 16.42 28.14
CPR-Recover 16.66 46.51 24.54
MOOC-RF 43.70 53.43 50.95
CSR binary classi-
fier(t=68)

46.13 1 66.53

Zero-shot GPT-3 84.10 35.33 49.65

In Table 5.1, we compare the performance of CSR_bin(t = 68) with five other mod-
els: PREREQ, Pairwise LDA, CPR-Recover, MOOC-RF, and Zero-shot GPT-3
in terms of recall, precision, and F1 score. From the table, we can observe that
CSR_bin(t = 68) outperforms other models in terms of the F1 score. It achieves
an F1 score of 66.53, which is higher than the second-best method, PREREQ, with
a score of 59.68. In terms of recall, our method achieves a perfect score of 1, mean-
ing all actual prerequisite pairs in the dataset were correctly identified by labeling
top %68 of the CSR-sorted pairs as prerequisites. When it comes to precision,
CSR_bin(t = 68) outperforms PREREQ and MOOC-RF by achieving a precision
of 46.13 which means that it is more accurate in identifying true positives. How-
ever, it is outperformed by Pairwise LDA and Zero shot GPT-3 which show a high

56

precision of 98.27 and 84.10 respectively.

Overall, we conclude that simultaneously achieving high precision and recall in the
context of binary prerequisite detection tasks still remains a significant challenge.
Nonetheless, our methodology demonstrates a promising approach, particularly in
maximizing recall without substantially compromising precision, thereby contribut-
ing to more effective and reliable identification of prerequisite relationships in edu-
cational content.

5.3 Testing the Predictive Performance of Prerequisite Scoring

Methodology on Student Success

In this experiment, we test if CSR scores are an indicator of student performance.
Remember that CSR(B,A) is high if concept A is highly referenced in the descrip-
tion of concept B. In case of a high CSR(B,A) score, we expect that students who
already know concept A perform better on concept B when compared to the control
group. Conversely, in case of a low CSR(B,A) score, students knowing A are not
expected to have better performance on B when compared to the control group.
Control group is a set of randomly selected students whose knowledge on A is not
known.

In order to test our hypothesis, we use the student logs from a dataset of a real-
world educational platform obtained from the work of Gong, Smith, Wang, Barton,
Woodhead, Pawlowski, Jennings & Zhang (2022). We partition the dataset into two
tables concept_metadata.csv and student_answers.csv. The concept_metadata.csv
contains 756 different secondary school mathematics concepts with columns:

• Concept IDs: A unique numerical code assigned to each concept.

• Concept Name: A descriptive title associated with each concept.

The student_answers.csv table contains 6468 unique students and their answers for
questions related to these concepts with columns:

• User IDs: A unique identifier for each student.

• Concept and Question IDs: Identifiers that link each question to its cor-
responding concept.

57

Figure 5.2 Overview of Our Three-Phase Experimental Setup

58

• Timestamps: The exact date and time of each attempt on a question.

• IsCorrect: A binary value indicating if the student’s answer to a question is
correct.

Questions are multiple-choice with 4 options A, B, C, and D. We assume that a
student knows a concept, if she correctly answered at least 3 different questions
related to that concept at her first attempt. Our experiment has three phases as
depicted in Figure 5.2. In Phase 1, we find all possible pairs (A,B) from the initial
756 unique concepts such that we can form a Treatment Group TG consisting of
students who know A and solved questions related to B, and a Control Group
CG consisting of students who only solved questions related to B. In Phase 2, we
calculate the students’ average ratio of correct answers for the questions related to
B for both groups to determine if TG outperforms CG. In Phase 3, we sort concept
pairs formed in Phase 1 based on their CSR scores to see how the average ratio of
correct answers in TG and CG change for decreasing CSR scores.

In Phase 1 of our experiment we form all ordered concept pairs (A,B) from the
initial 756 concepts which corresponds to (756× 755 = 570780) concept pairs. For
each pair in the list, we check if both TG and CG are formed. TG is formed for pair
(A,B) if we can find students who correctly answered minimum 3 questions from A

in their first attempt and answered at least one question from B. CG is formed if
we can find students who solve at least one question from B without first solving
questions from any other concept. If both TG and CG are not formed for a pair of
concepts, we discard that pair and move on to the next pair in the list. Following
this methodology, we formed a test set of 1000 concept pairs for which the average
number of students in TG and CG are 15.75 and 27.28 respectively.

In Phase 2, for each of the 1000 concept pairs (A,B), we calculate students’ average
ratio of correct answers to B in TG and CG. If the average ratio of TG is higher
than CG, we label that pair as 1, indicating that TG outperforms CG and label
it as 0 if CG outperforms TG. Given a sequence S of concept pairs, we count the
number of concept pairs in S for which TG outperforms CG (i.e., pairs with label
1) and define the ratio of outperforming pairs to all pairs Ro(S) formally as:

Ro(S) = 1
|S|

|S|∑
i=1

label(S[i])

where label(S[i]) is the label of the ith concept pair in S, and |S| is the number of
concept pairs in S.

59

The third and final phase of our experiment begins with the calculation of CSR

scores of the 1000 concept pairs (A,B) that we obtained in Phase 1. Our benchmark
data set does not contain the textual descriptions of concepts, therefore in order to
calculate CSR scores through semantic references, we opted to use GPT-3 to gener-
ate the textual descriptions. We then calculate CSR scores based on those descrip-
tions and sort the concept pairs (A,B) in descending order of CSR(B,A). The sorted
list of 1000 concept pairs is then partitioned into 10 subsequences S1,S2, ...,S10, each
containing 100 concept pairs such that S1 has the top 100 concept pairs, S2 con-
tains the next 100 concepts and so on. Finally, we calculate Ro(Sj) for each of Sj

for 1 < j < 10.

Figure 5.3 Outperforming ratio of TG over CG for lists of concept pairs with
decreasing CSR scores

In Figure 5.3 we plot the ratio of outperforming pairs of concepts where S1 denotes
the list of concept pairs with the highest CSR scores and S10 contains the pairs with
the lowest CSR scores. As can be seen in Figure 5.3, we have the highest ratio of
outperforming concept pairs for S1 with Ro(S1) = 0.88. The ratio falls as the CSR

scores decrease. We see the lowest ratio Ro(S10) = 0.64 for S10 containing pairs with
the lowest CSR scores.

If knowing the semantically referenced concepts has zero effect on the performance,
the outperforming ratio is expected to be close to 0.5. However, our benchmark
data set consists of concepts only within the Mathematics domain, therefore all the
concepts are related and even knowing the least semantically referenced concept has
some positive effect on the student performance, this could be the reason for all the
Ro values being above 0.5.

60

Overall, the decreasing Ro values in the lower ranked pairs (A,B) is an indication
that students knowing the most semantically referenced concepts in the descriptions
of B tend to perform better on the questions related to B compared to a random
student’s performance on the questions related to B, meaning that our CSR scoring
methodology can be a predictor for student success. Therefore, EKGs constructed
using CSR scores may guide students on their learning journey.

For reproducibility, we have posted all the data sets we extracted from the original
benchmark data set on Github 2. The Github page includes all the Treatment
Groups (TG), Control Groups CG, concept pairs, textual descriptions (obtained
from GPT-3) as well as the CSR scores.

5.4 Constructing and Evaluating MEKGs: Methodologies, Quality

Metrics, and Efficiency Factors

In this section, we construct MEKGs using our ACE methodology defined in Al-
gorithm 1 and assess the quality of the resulting graphs. To evaluate the produced
MEKGs, we use three different gold-standard datasets in our experiments. The
first dataset is an KG from an e-learning platform called Metacademy which is
specialized on topics related to machine learning3. This graph, which we refer to
as Metacademy, has 141 nodes, each representing a concept from Machine Learn-
ing, Statistics, or Linear Algebra. Each concept has a short description provided
by the experts of the Metacademy platform where the directed paths represent the
prerequisite relations among concepts. We remove the transitive edges from Meta-
cademy graph turning it into a MEKG. We also create our own gold-standard
MEKG using our ACE web-application. For that, we choose the Data Structures
and Algorithms field, one of the core disciplines of computer science, and named the
corresponding graph, consisting of 29 concepts, as DSA.

We use the gold-standard MEKGs with path recall and as path precision as the
quality metrics to compare two graphs. Let G1 and G2 represent two MEKGs that
we want to compare. Let P1 be the set of all paths in G1 and P2 be the set of all
paths in G2. We define path recall as:

2https://github.com/cemaytekin/EKG-Dataset

3https://metacademy.org/browse

61

https://github.com/cemaytekin/EKG-Dataset
https://metacademy.org/browse

PathRecall(G1,G2) = |P1∩P2|
|P1|

Path precision is defined similarly:

PathPrecision(G1,G2) = |P1∩P2|
|P2|

Assuming that the MEKG produced through the ACE methodology is denoted by
MEKGA and the gold-standard graph is denoted by MEKGG, to demonstrate
the role of the expert on the quality of MEKGA, we plot the relative reduction
of expert effort on the x-axis and plot the PathRecall(MEKGG, MEKGA) on the
y-axis. This way we can observe the effect of reduced expert effort (i.e., reducing
parameter t) on the path recall. We utilize 20 different values of t ranging from
5 to 100. We assume that the expert correctly identifies the prerequisite pairs in
the top t% of the concept pairs. Therefore the path precision which measures the
fraction of paths in the compared MEKG that are also in the standard MEKG

is always equal to 1 and we do not report it in the experiments. Furthermore, in
order to observe the contribution of semantic reference over exact reference in the
ranking process, we compute the prerequisite scores for the pairs twice, employing
both CSR and CER based approaches. Additionally, we use random ordering of
the pairs as a baseline in which the t percentage of pairs is randomly presented to
the expert, and the expert constructs the graph from those pairs.

Dataset # Concepts # Unordered Pairs # Direct Prerequisites Total
Metacademy 141 9870 331 1586

DSA 29 406 55 111

Table 5.2 Description of the two datasets that are used as gold-standard MEKGs

In Figure 5.4, we observe the path recall values on the y-axis for different values
of relative expert effort reduction. For instance, when the relative expert effort re-
duction is 50%, the path recall for CSR is approximately 90%, indicating that our
methodology produces a MEKG that is 90% similar to the Metacademy MEKG

by letting the expert evaluate only half of the pairs in worst case (without the in-
ferences). As expected, the lowest average recall value (0.385) belongs to random
ordering. We also see that choosing semantic references over exact references in-
crease average path recall from 0.485 to 0.684 which is a significant improvement.
We also show the maximum relative reduction in the plot as a dashed line. This line

62

Figure 5.4 Impact of CSR on path recall in Metacademy dataset.

Figure 5.5 Impact of CSR on path recall in DSA dataset.

corresponds to x-axis value of 97 indicating that if the prerequisite ranking algo-
rithm would be perfect, (every presented pair to the expert includes a prerequisite
relation) then it would give a path recall value of 1 from 0 to 97 relative expert
effort reduction. Therefore, while we can conclude that semantic references help us
succeed in making our approach more feasible, there is still room for improvement.
Similarly in Figure 5.5, we observe that CSR mode achieves the best performance
compared to the other approaches with a score of 0.634. Between the x-axis values

63

(75-95) we see that CSR and CER show almost equal performances. This can be
due to the fact that pairs with strong prerequisite relations tend to possess both
exact and semantic references, while pairs with more subtle prerequisite relations
typically display only semantic references. As the relative reduction in expert effort
becomes more significant, only the topmost pairs are presented for evaluation. Con-
sequently, both modes CSR and CER adequately capture these significant pairs.
However, as the relative reduction in expert effort becomes less substantial, CSR

outperforms CER by effectively differentiating between subtle prerequisite pairs and
non-prerequisite pairs.

We also test the effect of the language model selection on the resulting quality of
the constructed MEKG. In order to do that, we construct 3 different MEKGs one
constructed with our main language model all-MiniLM-L6-v2 and other two con-
structed using Word2Vec and Fasttext. For each constructed MEKG, we calculate
path recall for different relative reductions in expert effort and show the results in
Figure 5.6. It can be observed from the figure that with all-MiniLM-L6-v2, we
have higher path recall in the constructed MEKG for every t value between 5 to
95 indicating that it brings the top t percent of the sorted pairs to expert more
accurately than the other language models.

Figure 5.6 Impact of utilizing different language models for CSR.

There are three main factors effecting the runtime of our methodology: (1) Length
of the concept descriptions, (2) The size of the concept set, and (3) The choice of
the language model in CSR mode. To understand the impact of the first factor,
we prepared five ranked lists for DSA with varying lengths and recorded the time

64

taken to prepare each list, with the results detailed in Table 5.4. From the table, we
observe that as the length of the concept descriptions increases, the runtime of our
methodology also increases. This is expected as longer descriptions require more
processing time to generate all pairwise prerequisite scores. For instance, when the
length of the concept descriptions is 108 words, the runtime is 18 minutes, whereas
for descriptions with a length of 1370, the runtime increases to 160 minutes.

concepts in subset MEKG Runtime (in minutes)
30 15
60 55
90 125
120 185

Table 5.3 Effect of the number of concepts on Runtime.

Avg length concept descriptions (#
of words)

Runtime (in minutes)

108 18
229 35
438 55
838 90
1370 160

Table 5.4 Effect of Concept Description Length on Runtime.

In order to assess the impact of the second factor, we use four different subsets
of concepts from Metacademy dataset and construct four different MEKGs with
different number of concepts (Metacademy n=30, Metacademy n=60, Metacademy
n=90 and Metacademy n=120). Each description has on average 78 words. From
Table 5.3, it can be observed that as the number of concepts increases, the runtime
of the methodology also increases in proportion.

Lastly, in order to understand the effect of third factor, we present Table 5.6 which
demonstrates the effects of the usage of different language models on the runtime.
The three models analyzed are all-MiniLM-L6-v2, Word2Vec, and Fasttext. The
table presents the runtimes in minutes for ranking all the pairwise prerequisites of
141 Metacademy concepts each having an average description size of 78 words.

Based on the results presented in the table, it can be observed that the all-MiniLM-
L6-v2 model has the longest runtime of 150 minutes. On the other hand, both
Word2Vec and Fasttext have considerably shorter runtimes, with 12 minutes and 9

65

minutes, respectively. However, they exhibit lower path recall values as shown in
Figure 5.6.

Utilized Word Embedding Model Runtime (in minutes)
all-MiniLM-L6-v2 150
Word2Vec 12
Fasttext 9

Table 5.5 Effect of word embedding model on runtime on the Metacademy dataset.

These findings suggest that while all-MiniLM offers improved quality in the con-
structed MEKGs compared to Word2Vec and Fasttext, it constitutes the main
bottleneck in the runtime of the methodology.

Utilized Word Embedding Model Runtime (in minutes)
all-MiniLM-L6-v2 150
Word2Vec 12
Fasttext 9

Table 5.6 Effect of word embedding model on runtime on the Metacademy dataset.

5.5 Evaluating LLMs

The second part of the evaluation analyzes the prerequisite detection performance
of the fine-tuned LLMs. We do this analysis on three different datasets. The first
dataset is University Course Dataset (UCD) which is introduced in Section 5.2.2.
The second dataset is Course Dataset (CD) and the third is MOOCCubeX Dataset
(MC). Two fine-tuned LLMs’ performance (GPT-3 and LLAMA2) are compared
on UCD. We show that the fine-tuned GPT-3 is able to outperform other binary
prerequisite classifiers with a 9% improvement in F-score. Next, outputs generated
by the fine-tuned GPT-3 are compared against the raw, non-fine-tuned GPT-3 and
observed differences are reported. After that, the performances of the fine-tuned
GPT-3 and LLAMA2 are tested on CD and MC datasets. In addition to these
assessments, we put forward a unique method of comparison between AI-crafted ex-
planations and human explanations to measure the LLM’s explanatory performance.
Furthermore, we also conduct an analysis of various parameter configurations for
fine-tuning LLMs. The analysis underscores the importance of careful optimiza-
tion of these parameters for achieving better performance. Finally, we provide a

66

cost analysis for fine-tuning GPT-3 and the LLAMA2 model. Covering aspects
like computational resources, time requirements, as well as financial investment,
our comprehensive analysis offers a better understanding of the LLMs’ practical
implications.

5.5.1 Benchmark Datasets

The first benchmark dataset we utilize is the Course Dataset (CD), introduced by
Liang et al. (2015) in 2015. The dataset is based on information obtained from a
university’s course website, and it includes prerequisite relations between courses
in the domains of Computer Science and Mathematics. The authors declare that
domain experts have checked and corrected the labels of all course pairs. They
compare their RefD model on this dataset with MaxEnt. This dataset was later
utilized again for training and testing in the work of Manrique et al. (2019) and the
authors reported state-of-the-art results with the XGBOOST model. The second
benchmark dataset is the University Course Dataset (UCD) which is discussed in
Section 5.2.2. The third dataset we employ is constructed by Yu et al. (2021). Simi-
lar to the previous two benchmark datasets, MC-PSY contains concept pairs labeled
with respect to their prerequisite relation where the domain of the concepts are from
Computer Science, Mathematics and Psychology. From MC-PSY we only included
concepts from Psychology since concepts from Computer Science and Mathematics
are already covered by the other datasets we used in our evaluation. The details of
the datasets we used are provided in Table 5.7.

Dataset Domain # Pairs # Prerequisites
Course Dataset
(CD)

CS 678 108

Course Dataset
(CD)

MATH 658 75

University Course
Dataset (UCD)

CS 2520 1008

MOOCCube (MC) PSY 1000 485

Table 5.7 Benchmark Datasets

67

5.5.2 Performance Comparison of LLMs to Other Models on UCD

GPT-3 and LLAMA2 are fine-tuned on UCD training data and the results are
compared against the previous works in the literature. The results of the four other
models CPR-Recover, MOOC-RF, PREREQ, Pairwise LDA are taken from
the work of Roy et al. (2019), and the result of MHAVGAE is taken from the
work of Zhang et al. (2022). For a fair comparison, we shuffled all dataset instances,
allocating 80% for training and the remaining 20% for testing, following the same
procedure used in previous studies. In the evaluation of Zhang et al. (2022), authors
do not mention precision and recall scores separately and report only the F1-score
on UCD therefore for MHAVGAE we are only able to compare the F1-scores.
Our method does not require external resources to calculate prerequisite relations;
therefore, we achieve consistent results for both UCD and the MOOC dataset, given
that the concept pairs in both datasets are identical. However, for methods that
rely on external resources, the results differ. This variation occurs because the UCD
dataset employs university course syllabi and the MOOC dataset employs video
lectures as an external resource to calculate prerequisite relations.

In Table 5.8, we see the performances of the fine-tuned GPT-3 and LLAMA2 on
UCD. Fine-tuned GPT3 outperforms the second best model (MHAVGAE) by a
margin of 9% in terms of F-score. The fine-tuned LLAMA2, while not surpass-
ing the fine-tuned GPT-3 and MHAVGAE, still performs better than average,
ranking as the third-best model with an F-score of 65.3. In both LLMs, we observe
that fine-tuning improves the models’ capabilities in detecting prerequisite relations.
Specifically, we see that the F-score increases by 37.69% for GPT-3 (from 49.65 to
87.35) and by 19% for LLAMA2 (from 46.2 to 65.3). The best recall value on UCD
is achieved with PREREQ and the best precision value is achieved with Pairwise
LDA. Roy et al. (2019) use course syllabi as an external knowledge base, which
include course descriptions and the prerequisite information between courses. Au-
thors apply LDA to construct concept vectors where indices of each vector represent
the concept’s closeness to each course description. Concept vectors are then given
to a deep learning model called PREREQ and the model learns the prerequisite
relations between concepts using the provided training file. In the case with Pair-
wise LDA, the method not only constructs concept vectors indicating their closeness
to course descriptions but also directly incorporates the provided course-level pre-
requisite information. By analyzing concept vectors pairwise and integrating this
explicit prerequisite data, Pairwise LDA calculates scores that reflect the likelihood
of one concept being prerequisite to another. We assume that the essential courses
that are first taught in the universities (without any prerequisites) include simple

68

concepts and courses that have many prerequisites include complex concepts. Given
a concept pair (A,B), if Pairwise LDA is able to detect the frequent occurrence of
A in the basic courses and the frequent occurrence of B in the course with multiple
prerequisites, we may assume that it correctly identifies the prerequisite relation.
However given its low recall, we may argue that these types of conditions do not
occur frequently. As discussed in Chapter 2, the interpretability of the deep learning
models is difficult and authors do not explain why PREREQ shows a high recall
but low precision. In fact this is one of our motivations for teaching LLMs to provide
an explanatory output for their decisions. Therefore, in addition to classification
performance, we also analyze the explanations of the raw and fine-tuned GPT-3
in order to understand the models’ reasoning on prerequisite relation. In the next
section, we present various output samples from raw GPT-3 and fine-tuned GPT-3.
Using the generated outputs for each instance, we investigate what the GPT3’s ini-
tial perception of prerequisite relation was and how it is modified according to the
UCD training data after the fine-tuning.

5.5.3 Observable Changes in Fine Tuning on UCD

We manually analyze the outputs of GPT-3 and fine-tuned GPT-3 on random test
instances of UCD and present our findings in this section. We can already see from
Table 5.8 that raw GPT-3 has a low recall score but high precision score which
indicates that the model tends to label some prerequisite pairs as non-prerequisites;
however, the ones it labels as prerequisites are correct 84% of the time. Therefore
we can assume that model has a strict prerequisite definition before the fine-tuning.
For instance, the prompt : “Is Linear Algebra a prerequisite for Machine Learning”
has a completion: “No;Linear Algebra is not a prerequisite for Machine Learning.
However, a basic understanding of Linear Algebra is helpful in understanding how
Machine Learning algorithms work and how to interpret their results”. The pair
(Linear Algebra, Machine Learning) has a label 1. This suggests that the experts
who created the dataset consider any concept that can be helpful in understanding
the other concept as a prerequisite. When the same test instance is given to fine-
tuned GPT-3, we see the completion: “Yes; Linear algebra provides essential tools
for working with vectors, matrices, and scalars, which are central to many Machine
Learning algorithms”. By comparing the generated outputs, we observe that the
model has learned to be more flexible in its definition of prerequisite relations. In
order to understand to what extent GPT-3 and fine-tuned GPT-3 know what a pre-
requisite relation means, we create test cases to determine if both models consistently

69

Dataset Method Precision Recall F-score
UCD PREREQ 46.76 91.64 59.68
UCD Pairwise LDA 98.27 16.42 28.14
UCD CPR-Recover 16.66 46.51 24.54
UCD MOOC-RF 43.70 53.43 50.95
UCD GPT-3(No fine

tuning)
84.10 35.33 49.65

UCD Fine-tuned
GPT3

84.47 90.5 87.34

UCD MHAVGAE - - 78.75
UCD Raw LLAMA2 77 33 46.2
UCD Fine-tuned

LLAMA2
70 61.2 65.3

MOOC
Dataset

PREREQ 55.60 75.74 60.73

MOOC
Dataset

Pairwise LDA 48.43 10.47 17.22

MOOC
Dataset

CPR-Recover 17.18 52.97 25.94

MOOC
Dataset

MOOC-RF 59.74 56.48 58.07

MOOC
Dataset

GPT-3(No fine
tuning)

84.10 35.33 49.65

MOOC
Dataset

Fine-tuned
GPT3

84.47 90.5 87.34

MOOC
Dataset

Raw LLAMA2 77 33 46.2

MOOC
Dataset

Fine-tuned
LLAMA2

70 61.2 65.3

Table 5.8 Precision, Recall, and F-score for Various Methods on UCD Datasets

validate the prerequisite relation’s natural properties, as defined in Section 1.2. In
order to achieve this, we get all the positive pairs (A,B), reverse their order as
(B,A) and ask the model again to classify the instance. According to the asymme-
try property, each model should always label such instances as 0. Similarly, we also
create custom pairs (A,A) and (B,B) to test the irreflexivity property and finally,
if there exists a positive pair (A,B) and (B,C), we ask the label of the instance
(A,C) to test the transitivity property. From Table 5.9, we see that raw GPT-3
already knows that a concept can not be a prerequisite of itself and this knowledge
is preserved in fine-tuning as well. The fine-tuned GPT-3 demonstrates improved
adherence to the Asymmetry and Transitivity rules, with accuracy increasing from
72.2 to 85.7 and from 54.5 to 80.9, respectively. Although our scores significantly
surpass those of other models, the fine-tuning data may not have been sufficient for
the model to learn the Asymmetry and Transitivity rules perfectly.

70

Axiom GPT-3 GPT-3 fine-tuned
Number of
Instances

Accuracy Number of
Instances

Accuracy

Irreflexivity 400 100% 400 100%
Asymmetry 72 72.2% 147 85.7%
Transitivity 11 54.5% 21 80.9%

Table 5.9 Prerequisite Axioms

Method CS-
Accuracy

CS-
Precision

CS-Recall CS-F1

MaxEnt 72.8 87.6 53.2 66.1
RefD-EQUAL 76.4 80.4 69.9 74.7
RefD-TFIDF 77.1 82.3 69.1 75.1
XGBOOST 81.3 90.8 83.1 86.8
GPT-3 62.2 93.7 26.3 41
Fine-tuned
GPT3-(1)

72.2 86.9 78.9 80.7

Fine-tuned
GPT-3-(2)

90.3 95 84.9 89.7

Method MATH-
Accuracy

MATH-
Precision

MATH-
Recall

MATH-F1

MaxEnt 69.0 78.1 53 63.1
RefD-EQUAL 73.9 78.4 67.3 71.9
RefD-TFIDF 70.3 76.3 60.1 66.7
XGBOOST 84.1 91 84.3 87.5
GPT-3 63.5 89.7 30.1 45.1
Fine-tuned
GPT3-(1)

71.2 89.6 79.3 81.5

Fine-tuned
GPT-3-(2)

94.4 90.2 95.4 92.7

Table 5.10 Precision, Recall, and F-score for CS and MATH

5.5.4 Performance Comparison of Fine-Tuned GPT-3 to Other Models

on CD

In the experiment with the CD, instead of fine-tuning the model from scratch, we
first want to test how well fine-tuned GPT-3 does on the test instances of this
new dataset without additional fine-tuning. UCD includes concepts from Computer
Science and CD includes concepts from both Computer Science and Mathematics.
We hypothesized that the fine-tuned GPT-3 could apply its existing knowledge to
this new dataset, as the concepts in both datasets overlap in domains. We denote
our model that is only fine-tuned with UCD as Fine-Tuned-GPT-3-(1). We compare
the performance of our model with the other models; MaxEnt, RefD-EQUAL,

71

RefD-TFIDF and XGBOOST. To align our training and testing setup with that
of other models on this dataset, we initially shuffled all the instances of MATH and
CS concept pairs and randomly choose 80% instances from each domain as training
and the rest of the 20% as the test data using stratified sampling. We balanced the
classes in the training and test sets by oversampling the minority class which is a
common technique that is applied by all of the models to which we compare our
model. After the data processing, we fine-tune the Fine-Tuned-GPT-3-(1) with the
CD training data and denote this model as Fine-Tuned-GPT-3-(2).

The evaluation results in Table 5.10 demonstrate that the fine-tuned GPT-3-(2)
model outperforms other methods in predicting the prerequisite relations for both
Mathematics (MATH) and Computer Science (CS) subjects. Specifically, the fine-
tuned GPT-3-(2) model outperforms other methods in CS dataset, achieving the
highest accuracy, precision, recall, and F-score. For the MATH dataset, the fine-
tuned GPT-3-(2) model achieves the highest accuracy, recall, and F-score, but is
outperformed by XGBOOST in precision. The MaxEnt, RefD-EQUAL and RefD-
TFIDF methods show lower precision, recall, and F-score than the fine-tuned GPT-
3-(2) model for both datasets. As expected, fine-tuned GPT-3-(1) is able to use
some of its knowledge from UCD as it outperforms raw GPT-3 on both datasets.

5.5.5 Performance Comparison between Fine-Tuned GPT-3 and

LLAMA2 on MC-PSY

We fine-tuned GPT-3 and LLAMA2 on the MC-PSY dataset, with results detailed
in Table 5.11. MC-PSY contains almost equal amounts of positive and negative
pairs (485 positive 515 negative). We shuffled all the pairs in the dataset and used
70% of the data as training and 30% of it as testing. The dataset is constructed
by the designers of MOOCCubeX educational platform and can be found at the
website Repository (2024). Before the fine-tuning, we observe that both models
have a good precision but low recall, indicating a conservative approach in predict-
ing positive instances, leading to numerous false negatives. This shows the models’
initial tendency to prioritize minimizing false positives over maximizing true posi-
tives. After fine-tuning, however, both models showe improvements in recall scores
without sacrificing much on precision. This shows that the fine-tuning process suc-
cessfully adjusts the LLM’s predictions towards a more balanced assessment of pos-
itive and negative pairs in the MC-PSY dataset. In terms of accuracy, both LLMs
demonstrated comparable performance. However, fine-tuned GPT-3 beat fine-tuned

72

LLAMA2 in terms of F-score by a margin of 11%. This 11% margin in the F-score
holds particular importance in areas like educational content creation, where accu-
rately identifying prerequisites (true positives) is often more critical than identifying
non-prerequisites (true negatives).

Model Recall Precision F1 Score Accuracy
Raw GPT-3 27.4 64.5 38.5 57.3
Fine-tuned GPT-3 88.4 60.5 71.8 66.1
Raw LLAMA2 21.2 83.8 33.9 59.7
Fine-tuned
LLAMA2

51.4 73.5 60.5 67.3

Table 5.11 Performance Comparison of LLMs on MC-PSY Dataset

5.5.6 Assessment of the AI-Created Explanations

In this section, we introduce an additional experiment in which we randomly sample
100 positive pairs (A,B) from the CD and UCD test set, with our prior knowledge
that fine-tuned GPT-3-(2) successfully labeled these pairs as prerequisites and gen-
erated a reasoning on why there is a prerequisite relation from A to B in these
sampled pairs. Next, using our domain knowledge, we manually created our own
explanations and compared them to the explanations of Fine-tuned GPT-3-(2). In
order to have a fair annotation process, the 100 pairs are randomly divided into two
sets, and explanations for each set are independently prepared by the authors of
this paper, one PhD Computer Science student and one Computer Science Faculty
Member. Before the annotation process, we decided to produce brief explanations
ranging from one to five sentences. We analyzed the existing online discussions
between experts and students regarding the justifications for why a concept is a
prerequisite for another concept and decided to use the explanation style of the top-
rated answers as a guidance. To ensure unbiased judgments, each explanation was
created without access to the explanations generated by the fine-tuned GPT-3-(2)
model.

The evaluation of the AI-generated explanations is centered on two main aspects.
First, we control the validity of the explanations by checking if the explanation
contains an incorrect information. Second, we compare the similarity of the AI-
generated explanations to our manually annotated explanations and for each com-
pared explanation, we return a similarity score between 0 and 1 where 0 represents
no similarity and 1 represents perfect similarity (identical explanations).

73

The METEOR (Metric for Evaluation of Translation with Explicit ORdering) in-
troduced by Lavie & Agarwal (2007) is an advanced performance metric that is pri-
marily used for assessing the machine translation outputs against the corresponding
human-generated results. METEOR is deployed in translation tasks aimed at judg-
ing the relative quality of machine translations. METEOR has shown impressive
results, outperforming the widely-used BLEU metric by Papineni, Roukos, Ward &
Zhu (2002), in aligning more closely with human assessments of translation quality.
In our case, we use METEOR to determine how close the AI-generated explanations
are to our own and report the minimum, maximum and the average METEOR score.
Our custom dataset with human generated and AI generated explanations together
with their METEOR scores can be found at https://github.com/cemaytekin/
GPT-3-Fine-Tuning/blob/main/explanation_list_CS.csv. In the following Sec-
tion, we present our results and discuss the weaknesses and the strengths of the
model’s generated explanations.

Explana-
tion

Invalid Ex-
planation

Min Me-
teor

Max Me-
teor

Avg Me-
teor

100 Not detected 0.135 0.67 0.39

Table 5.12 Validity and Similarity of Explanations

From Table 5.12, we can observe the performance of the explanations’ validity and
similarity. All 100 generated explanations are valid, as they contain no factual inac-
curacies. This suggests that when the model detects a prerequisite pair, it does not
make a false statement in its explanations. Although the explanations are accurate,
certain differences exist between the explanations of the Fine-tuned GPT-3-(2) and
ours. This occurs because a concept can be a prerequisite for another for various
valid reasons. Moreover, the length and the style of the explanations can slightly
vary from person to person. Despite these challenges, the correlation between the
AI and human-generated explanations ranged from 0.12 to 0.67, with an average
score of 0.38. While the AI-explanations did not contain invalid statements, some
of the explanations were rather vague. For instance, when the model asked with
a pair(Geometry, Computer Vision), instead of precisely explaining which subjects
of geometry knowledge is utilized in computer vision course, it rather stated that
“Yes; understanding of geometry is crucial for computer vision algorithms”. Con-
versely, for some examples it provided very detailed explanations such as for the
pair (Differentiable Manifolds, Differential Geometry), it stated that “Yes; differen-
tiable manifolds provide the basic framework for differential geometry as they allow
for the definition of concepts such as vector fields, curves, and surfaces in a smooth
and consistent manner. Additionally, the concepts of differential geometry are ap-
plied to differentiable manifolds to study the properties of these objects in greater

74

https://github.com/cemaytekin/GPT-3-Fine-Tuning/blob/main/explanation_list_CS.csv
https://github.com/cemaytekin/GPT-3-Fine-Tuning/blob/main/explanation_list_CS.csv

detail. Therefore, a basic understanding of differentiable manifolds is necessary for
a thorough understanding of differential geometry”. We observed that the granular-
ity of the concepts influenced the description quality. When the model is presented
with broader concepts such as Probability Theory or Geometry, it produced more
generalized answers regarding their prerequisite relationships. Conversely, when it
encountered more narrowly defined concepts such as Ordinary Differential Equations
or Differentiable Manifolds, it provided more detailed reasoning on their prerequi-
site relation. This demonstrates that the model skillfully adjusts its reasoning based
on the specificity of the provided concepts. The highest METEOR score (0.669) is
recorded for the pair (Computer Programming, Variable) where the model gave an
explanation as “Yes; programming language is a prerequisite for variable because
variables are used to store data and manipulate it in different ways, which requires
a programming language to be used. Additionally, programming language provides
syntax and structure to create and manage variables. Therefore, having an under-
standing of programming language is necessary to understand the concept of vari-
ables” which is in line with the expert explanation Yes; knowledge of a programming
language is necessary to understand and use variables as they label and store the
data in the memory which can then be used by the program at any time. The lowest
METEOR score (0.135) is recorded for the pair (Information Retrieval, Algorithms)
where the model gave a general explanation as “Yes; algorithms are necessary for
information retrieval as they provide the tools needed to efficiently organize, sort,
and compare information” while the expert detailed the more specific usages of Al-
gorithms in Information Retrieval as “ Yes; IR algorithms mainly compare the query
to the collection of sources with a scoring algorithm. This scoring algorithm is used
to compute the relevance between the query and the document itself ”.

5.5.7 Analysis of Parameter Configuration for GPT-3

In this subsection, we explore how various parameter configurations affect GPT-3’s
fine-tuning process. In order to do that, we fine-tune a raw GPT-3 model from
scratch using different parameter values at each experiment and then evaluate the
model on a test dataset. Each fine-tuning experiment utilizes an identical set of 200
pairs for a fair comparison. The pairs for the training set are chosen from UCD and
CD dataset using stratified sampling. The test set consists of 100 pairs and as in
the case with the training set, each experiment is validated using the same test set.
The pairs in the test set, also utilized in the experiment of Section 5.5.6, consist
of those for which we have manually prepared explanations illustrating why one

75

concept is the prerequisite of the other. Thus, for models fine-tuned with varying
parameters, we assess whether they can accurately identify prerequisite relations
and provide meaningful justifications. Hence, we employ the METEOR metric to
simultaneously evaluate the accuracy of prerequisite detection and the quality of the
explanations. METEOR scores close to 0 indicate that the prerequisite relations
are not captured by the model and scores close to 1 indicate that the prerequisite
relations are captured and justified with high-quality explanations similar to those
annotated by humans.

Epoch Avg Score Min Score Max Score Variance of Scores
1 0.24692 0.04983 0.54504 0.00968
4 0.27003 0.13856 0.57151 0.00819
8 0.27153 0.06188 0.53126 0.00831
16 0.26963 0.05833 0.53435 0.00826

Table 5.13 METEOR score statistics for various epochs.

Table 5.13 presents four fine-tuned models, each trained with a varying number of
epochs. As the number of epochs increases from 1 to 4, there is an increase in
the average METEOR score from 0.25 to 0.27. However, from epoch 4 to 8, while
there is a slight increase in the average score, it is not as significant. This could
potentially suggest that increasing the number of epochs beyond a certain point has
diminishing returns in terms of model performance. When the epochs are further
increased to 16, the average METEOR score slightly decreases. This decline may
indicate overfitting, suggesting the model excessively adapts to the training data and
loses its generalization capabilities on unseen data. Moreover, the variance of the
scores decreases from the 1st epoch to the 4th and then stays relatively consistent,
indicating that the model predictions become more stable with additional epochs.
The recommended number of epochs in the official documentation of GPT-3 is 4.
We conclude that our results are consistent with the official GPT-3 documentation’s
recommendation on the selection of the number of epochs parameter.

Learning Rate Average Score Min Score Max Score Variance of Scores
0.4 0.27003 0.13856 0.57151 0.00819
0.04 0.26958 0.09433 0.48947 0.00780
4 0.27951 0.09063 0.59626 0.01135
40 0.01106 0.0 0.06880 0.00029

Table 5.14 METEOR Scores for Different Learning Rates

From Table 5.14, we observe 4 different fine-tuned models trained with varying
learning rates. According to the official GPT-3 documentation, the recommended

76

formula for calculating the learning rate is:

learning rate = 0.002×number of training examples× learning rate multiplier

Given that we used 200 examples in this training, the formula for our case becomes:

learning rate = 0.4× learning rate multiplier

We experimented with four learning rate multipliers (1, 0.1, 10, and 100), resulting
in learning rates of 0.4, 0.04, 4, and 40, respectively. We can observe that the
model with a learning rate of 4 provides the highest average score, slightly higher
than the models with learning rates of 0.04 and 0.4. However, the model with a
learning rate of 40 shows significantly lower performance, with its average score being
much less than that of the other models. This finding suggests that an extremely
high learning rate may deteriorate the model’s performance. On the other hand, a
moderately high learning rate like 4 may improve the performance of the fine-tuned
model however, with its variance being the highest (0.01135) we may state that
the model focuses too much on specific patterns in the training dataset therefore it
may be sensitive to outliers or atypical instances in the test set. Additionally, the
model fine-tuned with an extremely high learning rate (40) exhibits low variance
but significantly underperforms, as highlighted by its average METEOR score of
0.01106. Considering both the variance and the average score, we find that using a
learning rate of 0.04 or 0.4 produces better and more stable results in this setting.

5.5.8 Cost Analysis of Fine-Tuning GPT-3 and LLAMA2

In this section, we evaluate the cost of fine-tuning GPT-3 and LLAMA2 in terms
of computational resources, time requirement and financial investment. The assess-
ment is based on examples from our own experience with the fine-tuning process.
Working with GPT-3 or LLAMA2 offers unique advantages. Primarily, because of
their cloud-based nature, we bypass the need to use powerful local machines for
computation. As of November 2023, fine-tuning a small data set with 300 examples
(200 training and 100 test instances) required only about 30 seconds for GPT-3. For

77

the dataset with 2520 examples, the process required only about 5 minutes, high-
lighting a moderate increase in time despite the significantly larger dataset. The
fine-tuning time for the same dataset with 2520 examples took around 1 hour to
complete for LLAMA2. Financially, the cost of fine-tuning GPT-3 primarily depends
on the total number of tokens used in both the training and testing sets. Although
there is generally a correlation between the number of tokens and the number of
words, the internal tokenizer in GPT-3 can occasionally split a single word into
multiple tokens. Based on the experiments we conducted in Subsection 5.5.7, we
discovered that each of our 300 fine-tuning examples averaged 63.25 words. After
executing fine-tuning under various parameters eight times, we determined that the
average cost for each training and testing session was approximately $2.33. This
translates to a cost of approximately 12.22 cents for every 1000 words in the fine-
tuning process. We should also note that doubling the number of epochs is equal
to doubling the number of used tokens. In our 8 experiments, we used 45 epochs at
total (1+4+8+16+4+4+4+4). Therefore, for each epoch we found the average cost
to be 0.41 dollars for 18975 words of training/testing in GPT-3. For the LLAMA2
model, costs are calculated based on model usage time, with a unit cost of $0.0014
per second as of February 2024.

5.5.9 Current Limitations of Utilizing Fine-Tuned LLMs

Our study has several limitations which could be considered as future work. The
first limitation is the financial and computational cost associated with fine-tuning
LLMs. While fine-tuning an LLM with thousands of new data instances has a
reasonable price and processing time, scalability becomes a challenge in an educa-
tional setting with millions of student-related data records. Consequently, exploring
more cost-effective and efficient fine-tuning practices becomes essential. However,
LLMs are in their early stages and as the new open-source models emerge, it is
anticipated that cost and time associated with the fine-tuning process will diminish
significantly. The second limitation is bias and fairness. LLMs can inherit biases
from their training data which can lead to skewed or unfair outcomes when applied
in educational settings. Therefore, careful examination of bias within these models
and the development of strategies to mitigate its effects is crucial. This calls for a
multidisciplinary approach, involving experts in AI ethics, education, and data sci-
ence, to ensure the models operate fairly and inclusively. The third challenge is the
generalization of the fine-tuned models. While the domain specific fine-tuned mod-
els are promising in terms of classification and providing valid explanatory output,

78

their raw, not fine-tuned versions struggle in both areas. For this reason, domain
specific prerequisite detection requires fine-tuned models. With the scalability im-
provements in the fine-tuning process, a single fine-tuned model can be created for
prerequisite detection which can operate across multiple educational domains.

79

6. MEKG Toolkit: A Web Application for Building and Exploring

Concept Relations

6.1 Introduction

MEKGs provide innovative approaches for improving the teaching and learning
process therefore, the main methodologies described in this dissertation are imple-
mented in our web application 1 MEKG Toolkit. The implemented methodologies
include the construction of MEKGs with ACE algorithm, relevant content gener-
ation using LLMs and learning path recommendations. Our web application has
two main actors: students and instructors. Instructors enter the relevant concepts
from a domain and then through a series of interaction with the system, they form
the corresponding domain MEKG. On the other hand, students can utilize these
constructed MEKGs in their study plans. If the students do not know where to
start from the graph, they can demand a study order, and the system prepares a
learning plan for them using the available MEKGs. Each learning plan includes
a sequence of concepts together with their dynamic descriptions. The concepts in
the sequence are ordered according to their difficulty relations which was defined
as the subset of the prerequisite relation in Section 3.8. Studying from MEKGs
offers several distinct advantages over traditional textbook-based learning. Firstly,
the student knows that the presented concept will be necessary to understanding
the explanations of the upcoming concepts which improves their awareness and mo-
tivation. Secondly, each description focuses on the explanation of a single concept
at a time, reducing confusion and enhancing comprehension by creating a focused
and streamlined learning process. Finally, through MEKGs, students have the ca-
pability to visualize their learning progression in real-time. This visualization is an
advantage that traditional textbooks could never provide, giving students a sense of

1http://aytekincem.pythonanywhere.com/

80

http://aytekincem.pythonanywhere.com/

accomplishment.

6.2 System Overview

Roles of the students and instructors are clearly defined within the entry page of
the application as illustrated in Figure 6.1.

Figure 6.1 Home page of the web application

6.2.1 Instructor Role

The initial action an instructor can take is to upload a new concept to the system.
By selecting the first link under “Instructor Roles”, the instructor is directed to an
upload page as depicted in Figure 6.2. Here, they are prompted to provide a name
and description for the concept. Instructors have the flexibility to manually enter
a description or, alternatively, they can opt to generate an automatic description
using an LLM. After the concept and its description are finalized, the instructor
should click the “Save” button to store the selection. If the concepts selected by the
instructor involve formulas and mathematical expressions in their descriptions, these

81

can initially be written in plain text. The system is then capable of automatically
enhancing these descriptions by properly formatting the expressions and formulas.
Instructor can then go back to the home page and click the second instructor link
to see all the concepts present in the system.

Figure 6.2 Upload page

.

After the instructor enters sufficient amount of concepts, she can request the run
the ACE algorithm to build the corresponding MEKG. ACE can be run in two
different modes: CER and CSR. CSR mode is more accurate than CER however
it may run slower when the size of the considered concepts increase due to the high
cost of computational cost discussed in Section 3.9. There are two checkboxes in the
home page, one is called “CSR Model” and the other one is “CER Model”. Upon the
selection of the checkbox “CSR Model”, the system is instructed to use the embedded
language model all-MiniLM-L6-v2 to calculate the CSR scores. Alternatively, if
the “CER Model” checbox is selected, system is instructed to calculate the exact
reference scores without utilizing a language model. Once the “Save” button is
clicked, all the pairwise scores are computed and one by one pairs with highest scores
are presented to the expert. In order to showcase a demo scenario for instructor role,
we enter six concepts from Machine Learning domain. The entered concepts and
their initial descriptions are in Figure 6.2. We then select the checkbox with “CSR
Model” and enter the “Save” button. The page shows a load spin indicating that the
CSR scores are being computed in Figure 6.4 and then the instructor is presented
with the highest scored pair in Figure 6.5. Since the size of the concept set is n = 6,
the expert needs to evaluate at most 6 ∗ (6 + 1)/2− 6 = 18 prerequisite directions.

82

Figure 6.3 Uploaded Concepts in the System

According to the described in inference rules in Section 3.5, if one of the direction
(from C1 to C2 or from C2 to C1) can already be inferred, it is not asked to the
expert. In Figure 6.6, we see that there is no more concept pair left to consider.
Number of questions asked so far indicate that 18− 14 = 4 of the pairs’ label are
automatically inferred. Furthermore, system also informs the instructor that the
transitive edges are removed in the graph. After the instructor is done with the
annotations, she can click the “Save the MEKG” link to store the graph in the
system.

.

.

.

.

83

Figure 6.4 Computation of CSR scores.

Figure 6.5 Presentation of a pair from ranked list.

Figure 6.6 Termination of the expert interaction

.

.

.

.

84

Figure 6.7 Demo MEKG for 6 concepts.

Figure 6.8 Recommended study path consisting of 4 concepts.

6.2.2 Student Role

A student entering the system can first ask to see the current MEKG in the system.
Continuing from our demo scenario with six concepts, when the student clicks the
“See the current MEKG” link under the “Student Roles”, the MEKG in Figure
6.7 appears. This provides students with a comprehensive overview of the domain’s
concepts at first glance. If the student is interested in learning this domain, she
can go back to the main page and click on the link “Arrange Study Plan”. This
link creates a learning path for the student by selecting a random path from the
constructed MEKG which consists of at least three concepts. In Figure 6.8, we see

85

Figure 6.9 An example description for Bayes’ theorem

Figure 6.10 An example description for Conditional probability without the justi-
fication text from LLM.

Figure 6.11 An example description for Conditional probability with the justifica-
tion text from LLM.

a learning path with concepts “probability”, “conditional probability”, “conditional
distributions” and “bayes rule”. Student also has an option to request a new learning

86

path and in that case, a new random learning path from the MEKG is created and
replaced with the existing one. Each concept in the learning path is a link and the
student can click on it to see its descriptions. In Figure 6.9, we see a generated
description for the concept Bayes’ theorem which is the last concept in the learning
path and colored as red node in the MEKG. In the descriptions of the yellow and
green colored nodes, student has also an option to request a justification text on why
the concept description she is currently reading is a prerequisite for the red colored
node in the end of the learning path. This is achieved through an interface which
communicates with the fine-tuned LLM. In Figure 6.10, we see such a description.
Upon clicking the button “Ask LLM”, the question is sent as a query to the fine-
tuned LLM and the return answer is displayed in the box as shown in Figure 6.11.

6.3 Implementation Details

The web application is built using Flask, a lightweight and modular web framework
written in the Python programming language. Flask is chosen for its simplicity
and flexibility, which facilitates rapid development and ease of use. To manage
and manipulate graph data structures, we utilized NetworkX, a Python package
specifically designed for the creation, manipulation, and study of complex networks
and graphs. The graphs generated and utilized within the application are stored
in a standard text-based format using JSON (JavaScript Object Notation), which
ensures that the data remains easily readable and accessible. To incorporate the
LLMs into the application, we have subscribed to OpenAI, enabling us to utilize their
well-documented Application Programming Interface (API). Through this API, the
application communicates with both the general and fine-tuned versions of GPT-3.
For the deployment of the web application, we have opted to use PythonAnywhere, a
web hosting service tailored for Python applications. The application, accessible via
the domain name “aytekincem.pythonanyanywhere.com”, is hosted on this platform
to take advantage of its support for Python-centric environments.

87

7. CONCLUSION & FUTURE WORK

Throughout this work, we have explored innovative methodologies for constructing
and utilizing Minimal Educational Knowledge Graphs (MEKGs) as well as inves-
tigating the automatic detection of prerequisite relations between educational con-
cepts using fine-tuned large language models (LLMs). In Part I, we introduced an
AI-assisted methodology designed to generate MEKGs that demonstrate prerequi-
site relations among domain-specific concepts, significantly reducing the experts’
workload. Our novel prerequisite scoring algorithm, CSR, leverages semantic sim-
ilarity to assign unique scores to concept pairs. We implemented this methodology
in a web application, providing a comprehensive framework for experts to create
MEKGs which e-learning systems can employ for tasks such as optimizing learning
paths and identifying concept difficulty.

In Part II, we presented an approach that fine-tunes LLMs to automatically de-
tect and explain prerequisite relations. We evaluated their performance across three
different datasets. The LLMs demonstrated robust classification capabilities and of-
fered credible explanations for their predictions. Our methodology underscores the
adaptability of fine-tuning strategies for intelligent education systems. For future
research, we aim to integrate additional relations into EKGs, such as ‘subclass’ rela-
tions that represent hierarchical structures between concepts, potentially revealing
new rules and knowledge. Further, we hope that the released benchmark datasets
and fine-tuning data will continue to advance the development and use of MEKGs
and fine-tuned LLMs in intelligent educational systems, leading to more advanced
tutorial technologies.

Overall, we provide a dual framework for the innovative organization of domain
knowledge through MEKGs and the enhancement of intelligent education systems
via fine-tuned LLMs. We hope that our contributions in this dissertation will inspire
further research and lead to improved educational systems.

88

BIBLIOGRAPHY

Aguiar, C. Z., Cury, D., & Zouaq, A. (2016). Automatic construction of concept
maps from texts, 1–6.

Barker, K. & Cornacchia, N. (2000). Using noun phrase heads to extract document
keyphrases. In Hamilton, H. J. (Ed.), Proceedings of the Thirteenth Canadian
Conference on Artificial Intelligence, volume 1822 of Lecture Notes in Com-
puter Science, (pp. 40–52)., London. Springer-Verlag.

Bender, E., Gebru, T., McMillan-Major, A., & Shmitchell, S. (2021). On the dangers
of stochastic parrots: Can language models be too big? (pp. 610–623).

Chen, P., Lu, Y., Zheng, V. W., Chen, X., & Yang, B. (2018). Knowedu: A system
to construct knowledge graph for education. IEEE Access, 6, 31553–31563.

Chiou, C.-C., Tien, L.-C., & Lee, L.-T. (2015). Effects on learning of multimedia
animation combined with multidimensional concept maps. Computers & Ed-
ucation, 80, 211–223.

Corpus (2024). Corecorpus: Online database.
Cui, H., Lu, J., Wang, S., Xu, R., Ma, W., Yu, S., Yu, Y., Kan, X., Ling, C., Ho,

J., et al. (2023). A survey on knowledge graphs for healthcare: Resources,
applications, and promises. arXiv preprint arXiv:2306.04802.

DAG (2024). Binary relations - explanation and examples.
Dang, F.-R., Tang, J.-T., Pang, K.-Y., Wang, T., Li, S.-S., & Li, X. (2021). Con-

structing an educational knowledge graph with concepts linked to wikipedia.
Journal of Computer Science and Technology, 36 (5), 1200–1211.

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). Bert: Pre-training of
deep bidirectional transformers for language understanding. In North Ameri-
can Chapter of the Association for Computational Linguistics.

Dictionary, C. (2024).
Dong, L., Yang, N., Wang, W., Wei, F., Liu, X., Wang, Y., Gao, J., Zhou, M., &

Hon, H.-W. (2019). Unified language model pre-training for natural language
understanding and generation. In Neural Information Processing Systems.

Doshi-Velez, F. & Kim, B. (2017). Towards a rigorous science of interpretable
machine learning. arXiv preprint arXiv:1702.08608.

Fettach, Y., Ghogho, M., & Benatallah, B. (2022). Knowledge graphs in education
and employability: A survey on applications and techniques. IEEE Access,
10, 80174–80183.

Gong, W., Smith, D., Wang, Z., Barton, C., Woodhead, S., Pawlowski, N., Jennings,

89

J., & Zhang, C. (2022). Neurips competition instructions and guide: Causal
insights for learning paths in education.

Google Knowledge Graphs (2012). Google Knowledge Graphs. Accessed: 2022.
Hirashima, T., Yamasaki, K., Fukuda, H., & Funaoi, H. (2015). Framework of kit-

build concept map for automatic diagnosis and its preliminary use. Research
and Practice in Technology Enhanced Learning, 10 (1), 1–21.

Hogan, A., Blomqvist, E., Cochez, M., d’Amato, C., Melo, G. d., Gutierrez, C.,
Kirrane, S., Gayo, J. E. L., Navigli, R., Neumaier, S., et al. (2021). Knowledge
graphs. ACM Computing Surveys (CSUR), 54 (4), 1–37.

IBM Knowledge Graphs (2024). Ibm knowledge graphs. Accessed: 2024.
Imamguluyev, R. (2023). The rise of gpt-3: Implications for natural language pro-

cessing and beyond. International Journal of Research Publication and Re-
views, 4, 4893–4903.

Jia, C., Shen, Y., Tang, Y., Sun, L., & Lu, W. (2021). Heterogeneous graph neural
networks for concept prerequisite relation learning in educational data. In
Toutanova, K., Rumshisky, A., Zettlemoyer, L., Hakkani-Tur, D., Beltagy, I.,
Bethard, S., Cotterell, R., Chakraborty, T., & Zhou, Y. (Eds.), Proceedings
of the 2021 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, (pp. 2036–2047).,
Online. Association for Computational Linguistics.

Kasneci, E., Sessler, K., Küchemann, S., Bannert, M., Dementieva, D., Fischer, F.,
Gasser, U., Groh, G., Günnemann, S., Hüllermeier, E., Krusche, S., Kutyniok,
G., Michaeli, T., Nerdel, C., Pfeffer, J., Poquet, O., Sailer, M., Schmidt, A.,
Seidel, T., Stadler, M., Weller, J., Kuhn, J., & Kasneci, G. (2023). Chatgpt for
good? on opportunities and challenges of large language models for education.
Learning and Individual Differences, 103, 102274.

Khosravi, H., Denny, P., Moore, S., & Stamper, J. (2023). Learnersourcing in the
age of ai: Student, educator and machine partnerships for content creation.
Computers and Education: Artificial Intelligence, 5, 100151.

Lavie, A. & Agarwal, A. (2007). Meteor: An automatic metric for mt evaluation
with high levels of correlation with human judgments, 228–231.

Lee, S., Park, Y., & Yoon, W. C. (2015). Burst analysis for automatic concept map
creation with a single document. Expert systems with applications, 42 (22),
8817–8829.

Li, Z., Cheng, L., Zhang, C., Zhu, X., & Zhao, H. (2023). Multi-source education
knowledge graph construction and fusion for college curricula. In 2023 IEEE
International Conference on Advanced Learning Technologies (ICALT), (pp.
359–363). IEEE.

Liang, C., Wu, Z., Huang, W., & Giles, C. L. (2015). Measuring prerequisite relations

90

among concepts. In Conference on Empirical Methods in Natural Language
Processing.

Liang, C., Ye, J., Wang, S., Pursel, B., & Giles, C. L. (2018). Investigating active
learning for concept prerequisite learning. In Proceedings of the Thirty-Second
AAAI Conference on Artificial Intelligence and Thirtieth Innovative Applica-
tions of Artificial Intelligence Conference and Eighth AAAI Symposium on
Educational Advances in Artificial Intelligence, AAAI’18/IAAI’18/EAAI’18.
AAAI Press.

Liang, C., Ye, J., Wu, Z., Pursel, B., & Giles, C. L. (2017). Recovering concept
prerequisite relations from university course dependencies. In 31st AAAI Con-
ference on Artificial Intelligence, AAAI 2017.

Liang, C., Ye, J., Zhao, H., Pursel, B., & Giles, C. L. (2019). Active learning of
strict partial orders: A case study on concept prerequisite relations. arXiv
preprint arXiv:1801.06481.

Library, G. (2024). gensim.
Manrique, R., Pereira, B., & Mariño, O. (2019). Exploring knowledge graphs for the

identification of concept prerequisites. Smart Learning Environments, 6 (1),
1–18.

Metacademy (2024). Metacademy. Accessed: 2022.
Microsoft (2023). Microsoft.
Mihalcea, R. & Tarau, P. (2004). TextRank: Bringing order into text. In Lin, D. &

Wu, D. (Eds.), Proceedings of the 2004 Conference on Empirical Methods in
Natural Language Processing, (pp. 404–411)., Barcelona, Spain. Association
for Computational Linguistics.

MiniLM (2023). all-MiniLM-L6-v2.
Molontay, R., Horváth, N., Bergmann, J., Szekrényes, D., & Szabó, M. (2020).

Characterizing curriculum prerequisite networks by a student flow approach.
IEEE Transactions on Learning Technologies, 13 (3), 491–501.

MOOC report (2024). MOOC report.
Novak, J. D. (2010). Learning, creating, and using knowledge: Concept maps as

facilitative tools in schools and corporations. New York, NY, USA: Routledge.
Novak, J. D. & Cañas, A. J. (2006). The theory underlying concept maps and how

to construct them. Florida Institute for Human and Machine Cognition, 1,
2006–2001.

OpenAI (2023). Gpt-3 parameters. Accessed: 2023.
OpenAI (2024). Introducing gpt-3.
Pan, L., Li, C., Li, J., & Tang, J. (2017). Prerequisite relation learning for concepts

in MOOCs. In Proceedings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), (pp. 1447–1456).,

91

Vancouver, Canada. Association for Computational Linguistics.
Papineni, K., Roukos, S., Ward, T., & Zhu, W. J. (2002). Bleu: a method for

automatic evaluation of machine translation.
Paulheim, H. (2016). Knowledge graph refinement: A survey of approaches and

evaluation methods. Semantic Web, 8, 489–508.
Pinandito, A., Prasetya, D. D., Hayashi, Y., & Hirashima, T. (2021). Design and

development of semi-automatic concept map authoring support tool. Research
and Practice in Technology Enhanced Learning, 16 (1), 1–19.

Quora (2024). Quora online discussions.
Repository, M. (2024). Mooccubex: A data repository for moocs. Accessed: 2023-

10-05.
Roy, S., Madhyastha, M., Lawrence, S., & Rajan, V. (2019). Inferring concept

prerequisite relations from online educational resources. Proceedings of the
AAAI Conference on Artificial Intelligence, 33 (01), 9589–9594.

Sabanci University CS Curriculum (2023). Sabanci University CS Curriculum.
Sayyadiharikandeh, M., Gordon, J., Ambite, J.-L., & Lerman, K. (2019). Finding

prerequisite relations using the wikipedia clickstream. In Companion Proceed-
ings of The 2019 World Wide Web Conference, WWW ’19, (pp. 1240–1247).,
New York, NY, USA. Association for Computing Machinery.

sentence transformers (2023). sentence-transformers. Accessed: 2023.
Shneiderman, B. (2020). Human-centered artificial intelligence: Three fresh ideas.

AIS Transactions on Human-Computer Interaction.
Shokrzadeh, Z., Feizi-Derakhshi, M.-R., Balafar, M.-A., & Bagherzadeh Mohasefi, J.

(2023). Knowledge graph-based recommendation system enhanced by neural
collaborative filtering and knowledge graph embedding. Ain Shams Engineer-
ing Journal, 102263.

Singhal, A. (2012). Introducing the knowledge graph: things, not strings. 2020-11-
13.

Talukdar, P. & Cohen, W. (2012). Crowdsourced comprehension: Predicting pre-
requisite structure in Wikipedia. In Proceedings of the Seventh Workshop
on Building Educational Applications Using NLP, (pp. 307–315)., Montréal,
Canada. Association for Computational Linguistics.

TextRazor (2024). Textrazor - natural language processing api. Accessed: 2023-10-
01.

Touvron, H., Martin, L., Stone, K., Albert, et al. (2023). Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288.

Wikipedia contributors (2024). Named-entity recognition — Wikipedia, the free
encyclopedia.

Yu, J., Wang, Y., Zhong, Q., Luo, G., Mao, Y., Sun, K., Feng, W., Xu, W.-H., Cao,

92

S., Zeng, K., Yao, Z., Hou, L., Lin, Y., Li, P., Zhou, J., Xu, B., Li, J.-Z., Tang,
J., & Sun, M. (2021). Mooccubex: A large knowledge-centered repository
for adaptive learning in moocs. Proceedings of the 30th ACM International
Conference on Information & Knowledge Management.

Zhang, J., Lan, H., Yang, X., Zhang, S., Song, W., & Peng, Z. (2022). Weakly
supervised setting for learning concept prerequisite relations using multi-head
attention variational graph auto-encoders. Knowledge-Based Systems, 247,
108689.

Ziegler, D. M., Stiennon, N., Wu, J., Brown, T. B., Radford, A., Amodei, D.,
Christiano, P., & Irving, G. (2019). Fine-tuning language models from human
preferences. arXiv preprint arXiv:1909.08593.

93

APPENDIX A

Missing proofs for the formula in Section 3.7.1

Proof of Proposition 1

We claim that if Gdir(N,E∗) does not contain a transitive edge then its undirected
version G(N,E) is a simple triangle-free graph. We denote the maximum possible
number of distinct edges among any nodes GdirN(A), GdirN(B), GdirN(C) as nmax

and prove that nmax = 2. This is because if nmax = 3, there are 8 total possible edge
configurations for nodes A, B and C as shown in Table A.1. Each of them leads to
a transitive edge. When nmax > 3, one of the 8 possible cases for nmax = 3 is also
true.

Proof by contradiction: Assume Gdir does not contain a transitive edge and its
undirected version G is not a triangle-free graph. Then G should have at least 3
distinct edges among nodes A, B and C. However, this requires nmax > 2 which
shows a contradiction.

Case GdirE∗(A,B) GdirE∗(B,C) GdirE∗(A,C)
1 A→B B→ C A→ C
2 A→B B→ C C→ A
3 A→B C→B A→ C
4 A→B C→B C→ A
5 B→ A B→ C A→ C
6 B→ A B→ C C→ A
7 B→ A C→B A→ C
8 B→ A C→B C→ A

Table A.1 8 possible configurations of edges among nodes A,B and C.

94

Proof of Proposition 2

If G(N,E) is a triangle free graph then we can always form a Gdir(N,E∗) which
contains neither a cycle nor a transitive edge.

First, G is a triangle free graph, so nmax = 2. In order to have a transitive edge in
Gdir, nmax should be equal or greater than 3, therefore we conclude that Gdir can
not contain a transitive edge.

Second, since G(N,E) is a simple undirected graph, all the paths in G have distinct
nodes except the paths A−n1−n2−·· ·−A, which have the same beginning and end
node. These paths are called simple cycles. Therefore, G(N,E) can either contain a
simple cycle or not. If G(N,E) contains a simple cycle, then we can always create a
non-cyclic path in Gdir(N,E∗) by not assigning the same direction for all the edges
in the path. Otherwise, if G(N,E) does not contain a simple cycle, then every path
in Gdir will inherently be non-cyclic.

Proof of Mantel’s Theorem

If G(N,E) is a simple undirected triangle-free graph, then its adjacent vertices have
no common neighbors. So for an edge E(x,y) we have d(x) + d(y) ≤ n where d(x)
shows the number of nodes x is connected to and n represents the total number of
nodes in G.

The following formula

∑
x∈V

d(x)2 =
∑

x,y∈E

(d(x)+d(y)),

suggests that, if d(x) = c then node x will be summed c times in the right hand
side of the equation because c number of unordered edges will contain the node x.
Since d(x) was assumed to be c, its contribution in the summation will be c∗c which
equals to d(x)2.

If we assume G contains m edges, then we have the inequality:

∑
x∈V (G)

d(x)2 =
∑

xy∈E(G)
(d(x)+d(y))≤ n×m.

95

Moreover, the Cauchy-Schwarz inequality states that for any sequences of real num-
bers {ai} and {bi}: (∑

i

aibi

)2
≤
(∑

i

a2
i

)(∑
i

b2
i

)

To apply this inequality in our derivation we, define ai = d(xi) and bi = 1 for all
nodes xi ∈N .

By applying Cauchy-Schwarz:

 ∑
xi∈G

aibi

2

≤

 ∑
xi∈N

a2
i

 ∑
xi∈N

b2
i

Substituting ai = d(xi) and bi = 1, the inequality becomes:

∑
x∈N

d(x) ·1
2

≤

 ∑
x∈N)

d(x)2

∑
x∈N

1

Simplifying further: ∑
x∈N

d(x)
2

≤

∑
x∈N

d(x)2

 ·n
we have:

1
n

∑
x∈N

d(x)
2

≤
∑

x∈N

d(x)2.

Furthermore, by the Handshaking Lemma we know that,

∑
x∈N

d(x) = 2m

Therefore,

1
n

(2m)2 ≤ nm

which simplifies to:

1
n
·4m2 ≤ nm

96

and further simplifying:

4m2

n
≤ nm

Dividing both sides by m:

4m

n
≤ n

Finally, multiplying both sides by n and dividing by 4 yields:

m≤ n2

4

97

	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	Importance of Prerequisite Knowledge in Education
	Mathematical Definition of a Prerequisite Relation
	Representing Prerequisite Relation Using Graphs
	Prerequisite Detection Using ACE Methodology
	Explaining the Prerequisite Relations Using Large Language Models
	Summary of Research Contributions
	Outline of the Dissertation

	RELATED WORK
	Representing Data Using Graphs
	Concept Discovery by Keyword Extraction from Text
	Prerequisite Identification
	Emergence of LLMs and their Potential in Education

	AI-Assisted Construction of Educational Knowledge Graphs
	Problem Setup
	Semantic References Versus Exact References
	Embeddings for Semantic Similarity
	Scoring Based on Semantic and Exact References
	Inference Rules
	ACE Main Algorithm and System Implementation
	Role of the Expert
	Maximum Number of Edges in MEKGs
	Bounds On the Number of Queries to the Expert
	Representing Strict Partial Ordered Sets Using MEKGs

	An Automated Algorithm to Sort Concepts based on their Difficulty
	Complexity Analysis of CSR Computation and DO Algorithm

	Discovering Prerequisite Relations Using LLMs
	Introduction
	The Study and the Method
	Fine-tuning Process
	Parameter Details for Fine Tuning and Testing
	Fine Tuning Strategy of LLMs for Other Tasks in Education
	Integrating LLMs to MEKGs
	Active Learning Strategy in ACE Algorithm

	Experimental Evaluation
	Introduction
	Prerequisite Scoring Methodology as a Supervised Binary Classifier
	Evaluation Metrics for Binary Classification
	Utilized Dataset and Compared Models

	Testing the Predictive Performance of Prerequisite Scoring Methodology on Student Success
	Constructing and Evaluating MEKGs: Methodologies, Quality Metrics, and Efficiency Factors
	Evaluating LLMs
	Benchmark Datasets
	Performance Comparison of LLMs to Other Models on UCD
	Observable Changes in Fine Tuning on UCD
	Performance Comparison of Fine-Tuned GPT-3 to Other Models on CD
	Performance Comparison between Fine-Tuned GPT-3 and LLAMA2 on MC-PSY
	Assessment of the AI-Created Explanations
	Analysis of Parameter Configuration for GPT-3
	Cost Analysis of Fine-Tuning GPT-3 and LLAMA2
	Current Limitations of Utilizing Fine-Tuned LLMs

	MEKG Toolkit: A Web Application for Building and Exploring Concept Relations
	Introduction
	System Overview
	Instructor Role
	Student Role

	Implementation Details

	CONCLUSION & FUTURE WORK
	BIBLIOGRAPHY
	APPENDIX A -4em

