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ABSTRACT

EXPLICIT CONSTRUCTION OF DECOMPOSABLE JACOBIANS

MESUT BUĞDAY

Mathematics, Master Thesis, June 2024

Thesis Supervisor: Assoc. Prof. Mohammad Sadek

Keywords: Hyperelliptic curves, Jacobians, decomposable abelian varieties,
rational points

In this thesis we give explicit constructions of decomposable hyperelliptic Jacobian
varieties over fields of characteristic 0. These include Jacobians that are isogenous to
a product of two absolutely simple varieties, a square of a hyperelliptic Jacobian, and
a product of four hyperelliptic Jacobians three of which are of the same dimension.
As an application, we produce families of hyperelliptic curves with infinitely many
quadratic twists having at least two rational non-Weierstrass points; and families of
quadruples of hyperelliptic curves together with infinitely many square-free d such
that the quadratic twists of each of the curves by d possess at least one rational
non-Weierstrass point.
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ÖZET

AYRIŞTIRILABİLİR JAKOBİYENLERİN AÇIK YAPILARI

MESUT BUĞDAY

Matematik, Yüksek Lisans Tezi, Haziran 2024

Tez Danışmanı: Doç. Dr. Mohammad Sadek

Anahtar Kelimeler: Hipereliptik eğriler, Jakobiyen, ayrıştırılabilir abelyen
varyeteler, rasyonel noktalar

Bu tezde 0 karakteristikli cisimler üzerinde ayrıştırılabilir hipereliptik Jakobiyen
varyetelerin açık yapılarını veriyoruz. Bahsedilen Jakobiyen varyeteleri tamamen ba-
sit iki varyetenin çarpımına, bir hipereliptik Jakobiyenin karesi ve üçü aynı boyutta
olan dört hipereliptik Jakobiyenlerin çarpımına izojeni olan Jakobiyenleri içermek-
tedir. Bunun bir uygulaması olarak, sonsuz sayıdaki kuadratik twistlerinin en az
iki Weierstrass olmayan rasyonel noktaya sahip hipereliptik eğri ailelerini ve hipere-
liptik eğri ailelerinin sonsuz sayıdaki kuadratik twistlerinin en az iki Weierstrass
olmayan rasyonel noktaya sahip eğri ailelerini ve sonsuz sayıdaki tam kare olmayan
d ile kuadratik twistlerinin en az bir Weierstrass olmayan rasyonel noktaya sahip
dörtlü hipereliptik eğri ailelerini üretiyoruz.
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1. INTRODUCTION

An elliptic curve E is a non-singular projective curve over a field K defined by the
Weierstrass equation

E : y2 +a1xy +a3y = x3 +a2x2 +a4x+a6

where a1, ...,a6 ∈ K with the point O. In particular, elliptic curves are abelian
varieties of dimension 1. Hence, elliptic curves have an abelian group structure.
The set of K-rational points

E(K) = {(x,y) ∈ K2 : y2 +a1xy +a3y = x3 +a2x2 +a4x+a6}∪{O}

is a finitely generated abelian group thanks to the celebrated Theorem of Mordell-
Weil. In particular, E(K) ∼= Zr × T where r is the Mordell-Weil rank of E over K

and T is the torsion part of E(K). In [38, 39], Mazur showed that there are 15
possible groups that can occur as torsion subgroups of E(K) when K = Q.

On the other hand, it is commonly known that a hyperelliptic curve possess only a
finite number of points over any number field due to Falting’s Theorem, [13]. Thus,
rational points on hyperelliptic curves unfortunately do not possess a natural group
structure. However, it is still possible to define a variety associated to each curve,
namely the Jacobian variety denoted by Jac(C). The Jacobian of an algebraic curve
has the structure of abelian varieties. That is the set of rational points on Jac(C)
over a number field forms an abelian group. Let J(K) denotes the set of K-rational
points of Jac(C), then due to the Mordell-Weil Theorem Jac(C) ∼= Zr × J(K)tors

where r ∈ Z≥0 is the rank of J(K) and J(K)tors is the finite torsion subgroup of
J(K).

An abelian variety is said to be decomposable over a field K if it is isogenous to a
product of abelian varieties of lower dimension. The study of decomposable Jacobian
varieties of genus two curves was initiated in [20], see also [29].

A family of hyperelliptic curves of arbitrary genus whose Jacobians decompose into
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two abelian varieties was given in [10], namely, for the Jacobian of the hyperelliptic
curve defined by the equation

y2 = (xn −1)(xn − t), n = 2k +1, k > 1, t ∈ C\{0,1},

there are two algebraic curves Y1 and Y2 of genus k such that Jac(X) is isomorphic
to Jac(Y1) × Jac(Y2). Ekedahl and Serre constructed examples of curves whose
Jacobians decompose completely into elliptic curves, [11]. The reader may also see
[67] for such examples of curves over number fields. Jacobian varieties of algebraic
curves with many automorphisms provide examples of abelian varieties that contain
many factors in their decompositions. In [51, 52, 53], such curves whose Jacobians
contain many elliptic factors were displayed. In [4], the existence of Jacobians that
are isogenous to the product of arbitrary many Jacobians of the same genus, not
necessarily equal to one, was established.

In this thesis, we consider the following question. Given a positive integer n together
with a partition n1 ≤ n2 ≤ ... ≤ nk of n, does there exist an abelian variety of
dimension n that decomposes into a product of k abelian varieties of dimensions
n1, · · · ,nk? When k = 2 and n is even, we give explicit examples of families of
hyperelliptic Jacobian varieties that decompose into the product of two absolutely
simple Jacobian varieties of the same dimension n/2; and families of hyperelliptic
Jacobian varieties that decompose as the square of a Jacobian variety. When n is
odd, we present examples of hyperelliptic Jacobian varieties that decompose into
the product of two absolutely simple Jacobian varieties of dimensions (n−1)/2 and
(n + 1)/2. We exhibit families of hyperelliptic Jacobians that decompose into the
product of three Jacobians of dimensions k, k + 1, 2k when n = 4k + 1, k ≥ 1; and
k + 1, k + 1, 2k + 1 when n = 4k + 3, k ≥ 0. Further, we prove the existence of
hyperelliptic Jacobian varieties of odd dimension n that decompose as the product
of four Jacobian varieties of dimensions k, k, k, k + 1, when n = 4k + 1, k ≥ 1; and
k, k + 1, k + 1, k + 1 when n = 4k + 3, k ≥ 1. In particular, given any integer M ,
there is a decomposable abelian variety of dimension 4M ± 1 whose decomposition
contains three factors each of dimension M .

Let C/K be a hyperelliptic curve described by C : y2 = f(x). The quadratic twist
of C by d ∈ K\K2 is given by

Cd : dy2 = f(x).

Goldfeld Conjecture states that the average rank of elliptic curves over the rational
field in families of quadratic twists is 1/2. In other words, quadratic twists of an el-
liptic curve over the rational field with rank at least 2 are rare. In [55, 30], quadratic

2



twists of elliptic curves with ranks at least 2 or 3 were given. A similar problem was
posed to find tuples of elliptic curves whose quadratic twists by the same rationals
are of positive rank infinitely often, [6, 25]. As for hyperelliptic curves, one may
construct families of these curves with infinitely many quadratic twists that possess
no rational points, [56, 32]. As a byproduct of our construction of decomposable
Jacobian varieties, we produce examples of hyperelliptic curves with infinitely many
quadratic twists possessing at least two rational non-Weierstrass points. In partic-
ular, we introduce examples of elliptic curves with infinitely many quadratic twists
of rank at least 2. In addition, we give examples of families of quadruples of hyper-
elliptic curves, three of which are of the same genus, such that for infinitely many
square-free rationals the quadratic twists of each of these hyperelliptic curves by
these rationals possess at least one rational non-Weierstrass point.

3



2. Algebraic Curves

Throughout this thesis K will be a field and K[x1, . . . ,xn] denotes the polynomial
ring in n variable over K.

2.1 Projective spaces

Definition 2.1. The Affine space An(K) over K is the collection of n-tuples given
by

An(K) = {(x1, . . . ,xn) : xi ∈ K}.

Definition 2.2. The Projective space Pn(K) over K is the set of n + 1 tuples in
An+1(K) \ {(0, · · · ,0)} under the equivalence relation ∼ defined by (x0, . . . ,xn) ∼
(x′

0, . . . ,x
′
n) if (x0, . . . ,xn) = (λx

′
0, . . . ,λx

′
n) for some λ ∈ K∗.

In other words, Pn(K) = An+1(K) \ {(0, . . . ,0)}/ ∼. The relation ∼ holds for two
points if they lie on the same line through the origin. We will denote a point in Pn

by (x0 : · · · : xn). When n = 1, P1(K) is called the projective line over K, whereas
P2(K) is called the projective plane over K. When we write An, we mean An(K)
where K is an algebraic closure of K; similarly Pn = Pn(K).

In R2, every line through the origin, y = mx where m ∈ R∗, intersects the line y = 1
in one point, namely (1/m,1). In other words, every line y = mx corresponds to the
point (1/m : 1) in P1(R). In addition, the y-axis corresponds to the point (0 : 1) in
P1(R). The x-axis does not intersect the line y = 1, and it corresponds to the point
(1 : 0) in P1(R).

Following the argument above, one can see that P1(K) = {(x : 1) : x ∈ K} ∪ {(1 :
0)}. Therefore, the projective line P1(K) can be considered as an extension of the
affine space A1(K) by an extra point (1 : 0); called the point at infinity. The latter
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description can be justified using the map Θ1 : A1 ↪→ P1 defined by x 7→ (x : 1). In
general, we can embed An in Pn via the map Θn : (x1, . . . ,xn) → (x1 : · · · : xn : 1).

2.2 Projective Curves

Definition 2.3. A point P = (a1, ...,an) ∈ An is called a zero of the polynomial
f ∈ K[X1, ...,Xn] if f(P ) = 0.

Definition 2.4. Let S ⊆ K[X1, ...,Xn]. The vanishing set of S is defined by

V (S) = {P ∈ An | F (P ) = 0 for all F ∈ S} ⊆ An

Definition 2.5. A subset X ⊆ An is called an algebraic set if there exists S ⊆
K[X1, ...,Xn] such that V (S) = X .

In other words, an affine algebraic set is exactly the zero set of polynomials. More-
over, X is irreducible if X cannot be written as the union of two of its proper
subsets.

Example 2.6. Consider F (x,y) = y2 −x(x2 −1) over R. Then the vanishing set is

V (F ) = {(x,y) : y2 = x(x2 −1)} ⊆ R2

Definition 2.7. A polynomial f ∈ K[X1, . . . ,Xn] is called homogeneous of degree n

if
f = (λx0, ...,λxn) = λnf(x0, ...,xn) for all λ ∈ K.

Definition 2.8. A projective curve C of degree d is the zero set of non-constant
homogeneous polynomial f ∈ K[X1, . . . ,Xn+1] of degree d. Namely,

C = {P = (x1 : · · · : xn+1) ∈ Pn | f(P ) = 0}.

When d = 1, the projective curve corresponds to lines. More explicitly, the ho-
mogeneous polynomial f expressed as f(x,y,z) = c0x + c1y + c2z where ci’s are in
K represents a line in P2(K). Furthermore, a line L passing through two differ-
ent points P = (x0 : ... : xn) and P ′ = (x′

0 : ... : x′
n) in Pn can be represented by
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[cx0 + dx′
0 : · · · : cxn + dx′

n] for some c,d ∈ K; or simply [Cx0 + x′
0 : · · · : Cxn + x′

n],
C ∈ K∗.

On the other hand, the projective algebraic plane curves given by the equation
F (x,y,z) = c0x2 + c1y2 + c3z2 + c4xy + c5xz + c6yz where ci’s are in K are called
conics.

Definition 2.9. Let F ∈ K[X1,X2,X3] be a homogeneous polynomial with V :=
V (F ). A function field of V is defined as

K(V ) =
{

f1
f2

: f1 and f2 are polynomials of the same degree in K[X1,X2,X3]
}

such that the following conditions hold:

i) f2 does not vanish identically on V .

ii) f1
f2

∼ g1
g2

if f1g2 −f2g1 vanishes identically in V .

Definition 2.10. Let V1 = V (F1), V2 = V (F2) ⊆P2. A rational map Φ = (f1,f2,f3) :
V1 → V2 is a map such that Φ(P ) = (f1(P ),f2(P ),f3(P )) ∈ V2; P ∈ V1 where
f1,f2,f3 ∈ K(V1).

Remark 2.11. We say that Φ is defined over K if there exists λ ∈ K
∗ such that

λf1, λf2, λf3 ∈ K(V1).

Definition 2.12. Φ is regular at P ∈ V1 if there is g ∈ K(V1) so that
gf1(P ), gf2(P ), gf3(P ) are all defined and not all zero at P .

Definition 2.13. A rational map is a morphism if Φ is regular at every point in
V1.

We have the following result that can be found in [66].

Theorem 2.14. [66] A morphism between projective curves either constant or sur-
jective.

Definition 2.15. A morphism Φ : V1 → V2 is an isomorphism if there exists Ψ :
V2 → V1 such that Φ◦Ψ = idV2 and Ψ◦Φ = idV1.

Definition 2.16. A plane projective curve C over K described by a homogeneous
polynomial f(x,y,z) has a singular point P if

∂f

∂x
(P ) = ∂f

∂y
(P ) = ∂f

∂z
(P ) = 0.

If C does not have any singular point, then C is called smooth.
6



Example 2.17. Two algebraic curves C1 and C2 described by the polynomials

C1 : f(x,y) = y2 −x3 −x = 0, C2 : g(x,y) = y2 −x3 = 0

One can easily see that C1 is smooth at every point P , however C2 has only one
singular point, (0,0).

Example 2.18. Consider the projective algebraic plane curve C with the equation
of the form F (x,y,z) = x3 +y3 − z3. It can be seen that

Fx(x,y,z) = Fy(x,y,z) = Fz(x,y,z) = 0 ⇐⇒ P = (0,0,0)

Obviously, P does not lie in P2. Hence, C is smooth.

The following result can be found in [62].

Proposition 2.19. [62, Prop. 2.1] Let V1 and V2 be a projective curves in P2 with
a rational map Φ : V1 → V2. If V1 is smooth at P then Φ is regular at P .

2.3 Conics

In this section, all materials can be found in [63] and [66].

Definition 2.20. A plane projective curve C over a field K defined by a homoge-
neous polynomial equation of the form

Ax2 +By2 +Cz2 +2Dxy +2Exz +2Fyz = 0, A,B,C,D,E,F ∈ K

is called a conic.

In particular, C is called a rational conic if K = Q. In case of char(K) ̸= 2, and after
a suitable transformation, each conic C can be described by the following form

Ca,b,c : ax2 + by2 + cz2 = 0, with abc ̸= 0.

The conic Ca,b,c is called a diagonal conic. In other words, if char(K) ̸= 2 then each
conic C is isomorphic to Ca,b,c for some a,b,c ∈ K.

One question to pose is how one can find a point on a given conic ax2 +by2 +cz2 = 0
where a,b,c ∈ Z. Thanks to Legendre, we have the following theorem.

7



Theorem 2.21. [66] Let a,b,c be pairwise coprime square-free integers whose signs
are not all the same. The equation ax2 + by2 + cz2 has a rational solution if and
only if the congruence

X2 ≡ −bc mod a, Y 2 ≡ −ca mod b, Z2 ≡ −ab mod c

can be simultaneously satisfied.

Moreover, considering the above, the following question may be asked.

Question 2.22. Is there any way to parameterize the set of all points on a conic
Ca,b,c : ax2 + by2 + cz2 = 0 if there is a known point on Ca,b,c?

The following theorem gives a parametrization of points on conics.

Theorem 2.23. [66] Let Ca,b,c : ax2 + by2 +cz2 = 0 be an irreducible diagonal conic
with a point [x0 : y0 : z0] and assume without loss of the generality that z0 ̸= 0. Then,
a point (x,y,z) on Ca,b,c can be parametrized as follows

x = Q1(U,V ) = ax0U2 +2by0UV − bx0V 2

y = Q2(U,V ) = −ay0U2 +2ax0UV + by0V 2

z = Q3(U,V ) = −az0U2 − bz0V 2

where U and V are parameters.

(Q1(U,V ) : Q2(U,V ) : Q3(U,V )) is a polynomial map defined over K that sends each
(U : V ) in P1 to a point on the curve C. Moreover, we can recover the point (U : V )
via the inverse map from C to P1 defined by

U = x− x0
z0

z, V = y − y0
z0

z.

Therefore, we have an invertible map from C to P1 that is given by rational (in fact
polynomial) functions that are defined at every point.

Theorem 2.24. [66] Let C be a geometrically irreducible conic with a rational point
over a field K of char(K) ̸= 0. Then C is isomorphic to the projective line P1 over
K.

As an application, finding rational solutions of an equation x2 +y2 = z2 is equivalent
to finding triples (a,b,c) corresponding to a point (x,y) = (a

c , b
c) on the circle C :

x2 +y2 = 1.

In particular, a unit circle has a rational point P = (−1,0), and certainly, P is not
the only point with rational coordinates.

8



Figure 2.1 Parametrization of the unit circle

Now, draw a line passing through (−1,0) with a rational slope a. That line intersects
the circle at another point P̃ . Obviously, the equation of that line is y = ax + a.
By substituting y = ax + a into the equation of a circle, one can express x in terms
of a after solving the quadratic equation (a2 + 1)x2 + 2a2x + (a2 − 1) = 0. Hence,
straightforward calculations provide a parametrization

x = 1−a2

1+a2 , y = 2a

1+a2 .

In other words, one can write x and y in terms of one free parameter a that creates
an isomorphism between the unit circle and the projective line.

Therefore, in general, once a point lies on the conic, then this leads to the existence
of infinitely many points on it.

2.4 Elliptic Curves

Consider the homogeneous polynomial F (X,Y,Z) given by an equation of the form

F (X,Y,Z) = aX3 +bY 3 +cZ3 +dX2Y +eX2Z +fXY 2 +gXZ2 +hXY Z +iY 2Z +jY Z2

in K[X,Y,Z]. Any such F with V (F ) ̸= ∅ can be written as a Weierstrass equation

F̃ (X,Y,Z) : Y 2Z +a1XY Z +a3Y Z2 = X3 +a2X2Z +a4XZ2 +a6Z3

In particular, the point (0 : 1 : 0) lies in F̃ (X,Y,Z).

9



Definition 2.25. An elliptic curve over a field K is defined as V (F ) for some
F ∈ K[X,Y,Z] where

F (X,Y,Z) = Y 2Z +a1XY Z +a3Y Z2 − (X3 +a2X2Z +a4XZ2 +a6Z3)

with the point [0 : 1 : 0], called the point at infinity, and the coefficients belong to K.

After substituting x = X
Z , y = Y

Z and dehomogenization, one may obtain the poly-
nomial

f(x,y) = y2 +a1xy +a3y −x3 −a2x2 −a4x−a6

Definition 2.26. An elliptic curve E/K has a Weierstrass equation of the form

E : y2 +a1xy +a3y = x3 +a2x2 +a4x+a6

where a1, ...,a6 ∈ K having the point O = (0 : 1 : 0) with nonzero discriminant ∆(E)

where the discriminant ∆(E) of an elliptic curve E is defined by

∆(E) = −b2
2b8 −8b3

4 −27b2
6 +9b2b4b6,

where
b2 = a2

1 +4a2,

b4 = 2a4 +a1a3,

b6 = a2
3 +4a6,

b8 = a2
1a6 +4a2a6 −a1a3a4 +a2a2

3 −a2
4.

We also define the following quantities,

c4 = b2
2 −24b4,

c6 = −b2
3 +36b2b4 −216b6,

j = c3
4/∆.

In particular, the quantity j is called j-invariant of the elliptic curve E, denoted by
j(E).

In the case of charK ̸= 2,3 and after a suitable transformation, an elliptic curve E

can always be described by the model which is called the short Weierstrass equation,

EA,B : y2 = x3 +Ax+B, A,B ∈ K.

Therefore, one may obtain the following equivalent definition of an elliptic curve.

10



Definition 2.27. An elliptic curve E is a smooth projective plane curve over K

with char(K) ̸= 2,3 defined by an equation of a form

EA,B : y2 = x3 +Ax+B, A,B ∈ K

having the point O = (0 : 1 : 0) with associated discriminant −16(4A3 +27B2).

Moreover, it is straightforward from the definition of smoothness that ∆(EA,B) ̸= 0
if and only if x3 +Ax+B does not have a multiple root.

Apparently, ∆ depends on the choice of the Weierstrass equation describing the
elliptic curve. However, that is not the case for the j-invariant.

Definition 2.28. Let (E,OE1) and (E′,OE2) be two elliptic curves over K described
by equations of the form

E : y2 +a1xy+a3y = x3 +a2x2 +a4x+a6, E′ : y2 +a′
1xy+a′

3y = x3 +a′
2x2 +a′

4x+a′
6

are isomorphic if and only if there is a transformation ω defined in the following
way

ω(x,y) = (u2x′ + r, u3y′ +u2tx′ + s); u,r,s, t ∈ K, u ̸= 0

In particular, ω(OE1) → OE2.

In case of char(K) ̸= 2,3, the two elliptic curves defined by equations

E : y2 = x3 +Ax+B, E′ : y2 = x3 +A′x+B′, A,B,A′,B′ ∈ K

are isomorphic over K if and only if A′ = u4A and B′ = u6B for some u ∈ K∗.

One can have a useful related proposition over an algebraically closed field.

Proposition 2.29. [62, Proposition 1.4] Two elliptic curves E and E′ are isomor-
phic over K if and only if j(E) = j(E′).

Example 2.30. Consider the three elliptic curves E1,E2,E3 over F2 defined by

E1 : y2 +y = x3, E2 : y2 +y = x3 +1, E3 : y2 +y = x3 +x

Clearly, j(E1) = j(E2) = j(E3) = 0 so they are all isomorphic over F2.

Let E(K) be the set of K- rational points of elliptic curve E,

E(K) = {(x,y) ∈ K2 : y2 +a1xy +a3y = x3 +a2x2 +a4x+a6}∪{O}.

11



It is widely known that elliptic curves have an algebraic group structure with the
operation denoted by "+". Hence, the pair (E,+) forms a group. This group law
can be explained geometrically through the chord and tangent process for any field
of characteristic 0. Before discussing the group operation, we must mention the key
ingredient, Bézout’s Theorem.

Theorem 2.31. [19, Bézout’s Theorem] Let f1,f2 ∈ K[x1,x2,x3] and V (f1),V (f2) ⊆
P2 be two projective plane curves having no common components in K. Then the
number of points of intersection between V (f1) and V (f2) is given by deg(f1)deg(f2).

Let P1,P2 be two distinct points on the elliptic curve E. Let ℓ be the line passing
through P1 and P2. Theorem 2.31 guarantees that line ℓ intersects the curve at third
point, call that point P3. Let ℓ′ be the line passing through P3 and O. The line ℓ′

touches the curve at P3,O and a third point which we call P1 +P2. Hence, P1 +P2

corresponds to the reflection of P3 across to x-axis. Also, P1 +P2 = O if and only if
P2 = −P1 = (x,−y) where P1 = (x,y).

Figure 2.2 Geometric interpretation of group law over K, [14]

If we want to add P1 +O, the lines ℓ and ℓ′ overlap. Draw the vertical line through
P1 then the reflection of P1 about x-axis will be the common point of ℓ and the
curve which is −P1. Thus, P1 +O = P1. It holds for any points on elliptic curve so
O is the identity element.
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Figure 2.3 Adding a point with its inverse

Remark 2.32. E(K) is a subgroup of the elliptic curve (E,+). We call E(K) the
Mordell-Weil group of E over K.

It is clear that E(K) is an abelian group by construction. The following result is
called the Mordell-Weil Theorem.

Theorem 2.33. [62, Theorem 6.7] Let K be a number field and E/K be an elliptic
curve. Then, the Mordell-Weil group E(K) is finitely generated.

We have the following result thanks to the Fundamental Theorem of Finitely Gen-
erated Abelian group.

Corollary 2.34. There exists an integer r ≥ 0 such that

E(K) ∼= Zr ×T

where r is the rank of E over K and T is the finite part consisting of elements of
finite order of E(K).

The torsion structure is completely classified when K = Q, no surprises left. How-
ever, the intriguing part is the rank. For example, people believe that all elliptic
curves with rank 0 are fifty percent and those with rank 1 are another fifty percent,
and elliptic curves of higher rank are quite rare. This is at least what people believe
due to the famous Rank Distribution Conjecture [60]. The following results can be
found in the corresponding references.

Theorem 2.35. [2, Bhargava-Shankar] At least 5
8 of elliptic curves over Q have

rank 0 or 1.
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Theorem 2.36. [66, Bhargava-Shankar] The average rank of all elliptic curves over
Q is less than 1.

On the other hand, there exists elliptic curves of rank 0 with trivial torsion even on
the number fields, see the reference for more examples [35, 40].

Theorem 2.37. [46] An elliptic curve is defined by the following expression

E : y2 = 4xn −1, n = 3, 4

has only the point at infinity.

Theorem 2.38. [40, Mazur-Rubin] For each number field K, there are infinitely
many E/K with E(K) = 0.

On the other hand, even though there is no upper bound for the rank, it is also
known as Folklore Conjecture [60], the largest rank over Q that we know up to now
is 28 by Elkies.

Mazur managed to classify all possible torsion subgroups of E(K) when K = Q.
There are also studies about the classification of the torsion part of elliptic curves
over quadratic, cubic and quartic fields. We will not dig deeply in the torsion
structure as it is out of the thesis’s scope.

Theorem 2.39. [38, 39, Mazur] Let E/Q be an elliptic curve. The possible rational
torsion subgroup T is one of the fifteen groups stated in below:Cm 1 ≤ m ≤ 12, m ̸= 11

C2 ×C2m 1 ≤ m ≤ 4

where Cm is the cyclic group of order m.

One can notice that the order of torsion point cannot exceed 12. In order to decide
whether the point belongs to the torsion part of E(Q) or not, it is enough to keep
adding point up to 12.

Theorem 2.40. [62, Nagell-Lutz] Let E/Q be an elliptic curve described by

y2 = x3 +Ax+B, A,B ∈ Z

If P = (x,y) is a nonzero torsion point then,

i) x,y ∈ Z, and

ii) either y = 0 or y2 | 4A3 +27B2.
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2.5 Elliptic Surfaces

Definition 2.41. [61] An elliptic surface E(t) is defined by the following Weierstrass
equation

E(t) : y2 = x3 +P (t)x+Q(t), P (t),Q(t) ∈ K[t]

with the discriminant ∆(t) = −16(4P (t)3 +27Q(t)2) ̸= 0.

Basically, E(t) is an elliptic curve over K(t). More precisely, the curve obtained by
replacing t0 ∈ K in the Weierstrass equation is called the specialization or fibre. For
all but finitely many specializations by t0 ∈ K represents an elliptic curve. Namely,
Et0 be an elliptic curve of the form

E(t0) : y2 = x3 +P (t0)x+Q(t0)

provided that P (t0),Q(t0) ̸= ∞ and ∆(t0) = −16(4P (t0)3 +27Q(t0)2) ̸= 0

Theorem 2.42. [31, Lang-Neron] Let E(t)/K(t) be an elliptic surface then E(K(t))
is a finitely generated abelian group.

We have the following results over Q(t) that can be found in [60, 62]. On the other
hand, Mestre provided examples of elliptic surfaces with the rank ≥ 11,12, and an
example of the rank ≥ 13 over Q(t) is given by Nagao. One may see that the elliptic
surfaces of rank ≥ 18,19,20,21,22 over Q(t) in the references [60, 15, 44, 45, 16],
respectively.

Theorem 2.43. [62, Silverman Specialization Theorem] Let Et/Q(t) be a non-
constant elliptic curve. Then, for all but finitely many t0 ∈ Q the specialization
map Et(Q(t)) → Et0(Q) is injective. Therefore,

rank(Et0(Q)) ≥ rank(Et(Q(t))).

In particular, if the point (x(t),y(t)) lies in E(Q(t)) and there is a specialization
t = t0 ∈ Q such that Pt0 : (x(t0),y(t0)) ∈ Et0(Q) is a point of infinite order on Et0

then (x(t),y(t)) is a point of infinite order in elliptic surface E(Q(t)).

In elliptic surfaces, each term is written in terms of polynomials on t and the spe-
cialization reduces a surface to a curve over Q. Luckily, we have a criteria to decide
whether point is of finite or infinite order over Q by Theorem 2.40. Hence, it enjoys
the torsion property.
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As we mentioned above, there is relation between the rank of an elliptic surface
E(Q(t)) and the rank of a specialization E(Q(t0)) for some t0 ∈ Q. Is it possible to
force this inequality to be strict i.e., rank(Et0(Q)) > rank(Et(Q(t)))?

Question 2.44. Can one find infinitely many t0 ∈ Q such that the rank of the
specialization at t0 is strictly larger than the rank of the elliptic surface?

rank(Et0(Q)) ≥ n+rank(Et(Q(t)))

n is called the jump in the rank.

Cassels and Schinzel showed that an elliptic surface defined by the equation

E(t) : y2 = x(x2 − (7+7t4)2)

has rank 0 but the rank of E(r) is odd for any r ∈ Q, see [5]. This means that there
is a jump in the rank by at least 1.

Can one improve the jump for other elliptic surfaces by +2 or +3? In fact, there
is some research on that problem. For example, C. Salgado managed to show that
the jump in the rank can be 1,2 or 3 for certain elliptic surfaces, see the references
[7, 37, 57]. In addition, 3 is the largest jump that the author reached.

On the other hand, we can define the root number of an elliptic curve E denoted by
W(E). The well-known Parity conjecture asserts that the root number of an elliptic
curve E/Q is

W(E) = (−1)rank(E).

Roughly, W(E) is always ±1. In particular, an elliptic curve E with W(E) = −1
must contain infinitely many rational points i.e., E has odd rank.

Example 2.45. [9] Every elliptic surface given by the equation of the form

E : y2 = x3 + c(3a2t6 + b2)

with generic rank 2 has a constant root number on their fibres: W (Et) = +1 for all
t ∈ Q.

Note that Theorem 2.43 together with the Parity conjecture implies that every single
specialization must have even rank ≥ 2. It is a nice example although it does not
provide a strict jump, it may lead to new questions. One of them is the following,
can we find an elliptic surface Et such that W (Et) = −1 for all t ∈ Q? Apparently,
the possible answer provides a strict inequality.
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There may be a relation between the root number and the jump in the rank. Con-
sider an elliptic surface E(t) of rank(E(t)) = 1 with W(Et0) = +1 for all specialization
t0. Then there is a jump by at least 1. The remaining problem is to find an elliptic
surface that satisfies these properties.

2.6 Quadratic Twists of Elliptic Curves

Definition 2.46. Let E/K be an elliptic curve defined by an equation of the form
E : y2 = f(x). The quadratic twist of elliptic curve E by d ∈ K\K2 is given by

Ed : dy2 = f(x).

Indeed, E and Ed are isomorphic over K[
√

d] via the map (x,y) 7→ (x,y
√

d).

Theorem 2.47. [60, Goldfeld Conjecture] The average rank of quadratic twists of
elliptic curves is 1/2 over Q.

In other words, rank(Ed) = 0 or 1. Moreover, Goldfeld conjecture states that
rank(Ed) ≥ 2 have zero density. On the other hand, there are also papers about
quadratic twists of elliptic curves with the rank ≥ 2, for those of the rank is 2, see
[55].

Example 2.48. [46] There are infinitely many elliptic curves having only point at
infinity defined by

ED : Dy2 = 4xn −1, n = 3,4 and D ∈ Z

Hence, the quadratic twists of an elliptic curve E : y2 = 4xn − 1 where n = 3,4 by
infinitely many square-free integers D do not have non-trivial rational points. In
particular, E(K) is trivial, see Theorem 2.37.

Besides the base field Q, we have the following results over a number field that can
be found in [40].

Theorem 2.49. [40] Let E/K be an elliptic curve. Then for all but finitely many
quadratic twists E′ of E, E′(K) has no odd-order torsion.
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Theorem 2.50. [40] Let K be a number field. There are elliptic curves E/K such
that E has many twists E′/K with E′(K) = 0.

Putting all of this together, one may naturally ask the following questions about
quadratic twists of elliptic curves.

Question 2.51. Can we find families of elliptic curves E/Q with rank 0 such that
Ed has a positive rank for any square-free d?

Question 2.52. Can we find pairs of elliptic curves E and Ẽ over a field K such
that their quadratic twists by infinitely many square-free d satisfying one of the
followings:

i) rank(Ed) = 0 and rank(Ẽd) = 0

ii) rank(Ed) = 0 and rank(Ẽd) > 0

iii) rank(Ed) > 0 and rank(Ẽd) > 0

Obviously, Example 2.48 satisfies i) as ED has only the point at infinity for any
D ∈ Z \{0}.

2.7 Isogeny of Elliptic Curves

Definition 2.53. Let E1 and E2 be two elliptic curves defined over a number field K.
A non-zero morphism ϕ from E1 to E2 such that ϕ(OE1) = OE2 is called an isogeny.
If an isogeny exists between E1 and E2, then E1 and E2 are called isogenous.

The fact that ϕ is either the constant map ϕ(E1) = {OE2} or, ϕ(E1) = E2 is justified
by Theorem 2.14. The set of all isogenies between two elliptic curves E1 and E2

form a group, denoted by Hom(E1,E2) under the operation + defined by ϕ1 + ϕ2 :
P 7→ ϕ1(P ) + ϕ2(P ). In case of E1 = E2, it is also possible to compose isogenies
such that ϕ1 ◦ϕ2 : P 7→ ϕ1(ϕ2(P )) for all ϕ1,ϕ2 ∈ Hom(E1,E2). Therefore, given an
elliptic curve E, the set of all isogenies from E to itself, denoted by End(E), forms
a ring structure with two operations + and ◦. Note that the composition is not
necessarily commutative.

Example 2.54. Let E1 and E2 be two elliptic curves over K. The trivial isogeny
or constant isogeny [0] ∈ Hom(E1,E2) is defined by [0] : P 7→ OE2 for all P ∈ E1.
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Example 2.55. Let E be an elliptic curve over a field K. For each n ∈ Z, one can
define an isogeny [n] : E → E ∈ End(E) defined by

[n](P ) :=


nP = P + · · ·+P , if n > 0

(−n)(−P ) = (−P )+ · · ·+(−P ) , if n < 0

O , if n = 0

If there exists P ∈ E(K) such that P is not an n-torsion point, i.e., nP ̸= O. Then
[n] must be a surjective ring homomorphism of E by construction and Theorem 2.14.
Thereof, the only constant isogeny of elliptic curves is the trivial isogeny. Altogether,
there are two options for isogenies either all E map to O or it is surjective. One may
see that Z ↪→ End(C) by the map φ : n 7→ [n]. In the case of char(K) ̸= 0, mostly φ is
not only an injective but also a surjective ring homomorphism. Hence, End(C) ∼= Z.
That is the curve C has no non-trivial automorphisms except the ones coming from
only Z which means it is trivial.

Example 2.56. [62] Consider the pairs of elliptic curves E1 and E2 over K of
char(K) ̸= 2 defined by the following equations

E1 : y2 = x(x2 +Ax+B), E2 : y2 = x3 −2Ax2 +(A2 −4B)x

There are two isogenies ϕ1 : E1 → E2 and ϕ2 : E2 → E1 so that

ϕ1 : (x,y) 7→
(

y2

x2 ,
y(B −x2)

x2

)
, ϕ2 : (x,y) 7→

(
y2

4x2 ,
y(R −x2)

8x2

)
, where R = A2 −4B.

Example 2.57. [62] Let E/K be an elliptic curve described by the following equation

E : y2 = x3 −x

Then End(C) includes an extra endomorphism [i] : (x,y) 7→ (−x,iy) as well as [n]
for all n ∈ Z. It turns out that End(C) ∼= Z[i] by a+ bi 7→ [a]+ [i]◦ [b].

Like any algebraic structure, we can mention the isomorphism between elliptic
curves. In case of an elliptic curve, there are some invariants that we can link to
an elliptic curve. Two elliptic curves are isomorphic if the following three relations
hold.

Proposition 2.58. [62, p.45] Let E and E′ be two elliptic curves defined over K

whose algebraic closure is K with charK ̸= 2,3. The elliptic curves E and E′ are
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isomorphic over K, denoted by E ∼= E′, if there exists µ ∈ K∗ such that

µ4c′
4 = c4, µ6c′

6 = c6, µ12∆′ = ∆

where c4, c6 and ∆ are defined in Definition 2.26.

Basically, an isogeny between elliptic curves is a special type and can be interpreted
as a weaker version of isomorphism and not vice versa. Similarly, checking isogeny
between two curves is more challenging than finding isomorphism as there are various
types of isogeny that can be defined.

Recall that a set of all endomorphisms of an elliptic curve possess a ring structure.
This indicates that some being units while others do not. The set of all invertible
elements of End(C), End(C)∗ is the automorphism group of C, denoted by Aut(C).
The automorphisms of an elliptic curve are all classified by the j-invariant, no mys-
teries remain. The following table demonstrates the structure of automorphism, [62,
Theorem 10.1].

Theorem 2.59. Let E be an elliptic curve over K. The automorphism group
Aut(E) is given by

TABLE
charK j(E) |Aut(E)|

No condition j(E) ̸= 0,1728 2
charK ̸= 2,3 j(E) = 1728 4
charK ̸= 2,3 j(E) = 0 6
charK = 3 j(E) = 0 = 1728 12
charK = 2 j(E) = 0 = 1728 24

Table 2.1 The automorphism group of an elliptic curve over K

Moreover, it can be concluded that Aut(E) is isomorphic to Z/2Z if j(E) ̸= 0,1728;
Z/4Z if j(E) = 1728, and Z/6Z if j(E) = 0.
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2.8 Hyperelliptic Curves

In this section, we overview facts about hyperelliptic curves based on the papers
[41, 65]. Although there is much known about elliptic curves, that is not the case
for hyperelliptic curves compared to elliptic curves. Hyperelliptic curves can be
seen as a generalization of elliptic curves to higher genus. All genus 2 curves are
hyperelliptic, but not all curves of larger genus are hyperelliptic. In case of genus 1,
a hyperelliptic curve is an elliptic curve.

The genus of an algebraic curve acts as a tool to measure complexity of curves.
There are several ways to define genus however this thesis focuses on the curves of
the form y2 = f(x) where f(x) is a polynomial of degree at least 3 without repeated
factors. The genus of such curves can be obtained in the following way.

Definition 2.60. Let f(x) is polynomial with no repeated roots over K and the
curve C is described by C : y2 = f(x) ∈ K[x]. The genus of curve is given by

⌊deg(f)−1
2

⌋

Definition 2.61. A hyperelliptic curve C is an algebraic curve of genus g > 1 over
K described by an equation of the form

C : y2 +p(x)y = q(x), p(x), q(x) ∈ K[x]

such that deg(p) < g + 2 and q(x) is polynomial of degree 2g + 1 or 2g + 2 without
multiple root over K.

Remark 2.62. If C is a hyperelliptic curve as above with char(K) ̸= 2 then C can
be described by an equation of the form

C : y2 = f(x).

We consider the two cases, when the degree of the polynomial f is odd or even. If
the degree is odd then the projective form of the equation becomes

F (x,y,z) : Y2 = (yzk)2 = y2z2k = Ax2k+1z + · · ·+Bz2k+2

with assuming the existence of a constant term B. Hence, the curve always has a
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rational point which is the point at infinity ∞ = (1 : 1 : 0). In case of even degree,

F (x,y,z) : Y2 = (yzk−1)2 = y2z2k−2 = Ax2k + · · ·+Bz2k

there are two points at infinity however these are most probably not rational. In
particular, set z = 0 and x = 1 then there are two K-rational points if and only if
the leading coefficient A is a square in K.

Although a lot of research has been done on the rank of elliptic curves and many
techniques have been found to find it, there are still many unsolved questions on the
rank. Unfortunately, this is not the case for the hyperelliptic curves. For a given
hyperelliptic curve, it is well-known that a hyperelliptic curve possess only a finite
number of points over any number field by Falting’s Theorem.

Theorem 2.63. [13, Faltings’s Theorem] If C is a smooth projective curve over a
number field K of genus g ≥ 2, then there are only finitely many rational points on
C.

Mordell proposed this conjecture around 1910 and it was proved by Faltings in 1983.

One may also define quadratic twists of hyperelliptic curves in a similar way to
elliptic curves and ask whether there is a rational point or not in the quadratic
twists of a hyperelliptic curve.

Definition 2.64. Let C/K be a hyperelliptic curve described by C : y2 = f(x). The
quadratic twist of C by d ∈ K\K2 is given by

Cd : dy2 = f(x).

One may construct families of hyperelliptic curves with infinitely many quadratic
twists that possess no rational points different from the points at infinity, see [56,
32, 46].

Example 2.65. [46] There are infinitely many hyperelliptic curves C defined by

C : Dy2 = 4xn −1, where n is divisible by 5,7,11 and D ∈ Z

have no rational point different from the points at infinity.

Note that a point P = (x,y) on a hyperelliptic curve is called a Weierstrass point if
P is invariant under the hyperelliptic involution i.e., x is a root of the defining poly-
nomial of a hyperelliptic curve. As we will see in the following chapter, we produce
examples of hyperelliptic curves with infinitely many quadratic twists possessing at
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least two rational non-Weierstrass points. In addition, we give examples of families
of quadruples of hyperelliptic curves, three of which are of the same genus, such
that for infinitely many square-free rationals the quadratic twists of each of these
hyperelliptic curves by these rationals possess at least one rational non-Weierstrass
point.

The following questions may be asked about quadratic twists as well as elliptic
curves. By a trivial point on a hyperelliptic curve, we mean a rational point that is
different from the point at infinity and not a Weierstrass point.

Question 2.66. Can we find a hyperelliptic curve C over Q with no rational points
so that its quadratic twists Cd have a rational point for any square-free integer d?

Question 2.67. Is there a recipe for twisting simultaneously two different hyperel-
liptic curves infinitely many times so that they both have non-trivial rational points;
or exactly one of the curves has non-trivial rational points; or neither of them has
non-trivial rational points?

Clearly, Example 2.65 fits in the third possibility of the Question 2.67 as they both
do not have any rational point. On the other hand, hyperelliptic curves are chosen
without restrictions, so one may add more conditions, such as whether one of them
has a rational point or not.

The next proposition identifies when two hyperelliptic curves of the same genus are
isomorphic.

Proposition 2.68. [34] Let K be a field of char K ̸= 2 and algebraic closure K.
Two hyperelliptic curves of genus g ≥ 2 described by the following equations

y2 = f(x) ∈ K[x] and y2 = f ′(x) ∈ K[x]

are isomorphic if and only if

x = ax+ b

cx+d
, y = ey

(cx+d)g+1 , for some A =
a b

c d

 ∈ GL2(K) and e ∈ K∗

In case of hyperelliptic curves of genus 2, one can attach a certain type of invariants,
namely, Igusa invariants denoted by I2, I4, I6, I8, I10. We refer the reader to see [24]
and [33] for more details.

Let C be hyperelliptic curve of genus 2 defined by an equation C : y2 = f(x) where
f(x) is a sextic polynomial. Assume, moreover, that f(x) = (x − α1) . . .(x − α6) in
its splitting field of f , and α1, . . . ,α6 are roots of f . Define the following sequence
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of Igusa-Clebsch invariants:

I2 = c2∑(α1 −α2)2 (α3 −α4)2 (α5 −α6)2

I4 = c4∑(α1 −α2)2 (α2 −α3)2 (α3 −α1)2 (α4 −α5)2 (α5 −α6)2 (α6 −α4)2

I6 = c6∑(α1 −α2)2 (α2 −α3)2 (α3 −α1)2 (α4 −α5)2 (α5 −α6)2 (α6 −α4)2

(α1 −α4)2(α2 −α5)2(α3 −α6)2

I10 = ∆f , where ∆f denotes the discriminant of polynomial f.

Now, define the following sequence of Igusa invariants J2m, m = 1,2,3,4,5.

J2 = I2/8,

J4 = (4J2
2 − I4)/96,

J6 = (8J3
2 −160J2J4 − I6)/576,

J8 = (J2J6 −J2
4 )/4,

J10 = I10/4096.

One may notice that even though a hyperelliptic curve of genus 2 might not be
expressed by a sextic polynomial, f can be converted into a sextic by Proposition
2.68.

There is an alternative way to check isomorphism between hyperelliptic curves of
genus 2 over K by comparing their Igusa invariants.

Proposition 2.69. The genus 2 hyperelliptic curves C and C ′ over K are isomor-
phic over K if and only if there exists µ ∈ K

∗ such that J2m(C) = µ2mJ2m(C ′).

One can also mention the automorphism group of hyperelliptic curves. Aut(C)
denotes the set of all isomorphisms between hyperelliptic curve C to itself and
likewise it has a group structure similar to the case of elliptic curves. Basically, points
map to points. In fact, this is not limited to just these two algebraic structures. In
general, let Cg denotes the curve of genus g over K whose algebraic closure is K.
The set Aut(Cg) represents the set of all automorphisms of Cg. Moreover, in case
of char(K) = 0, Aut(Cg) is bounded by Riemann-Hurwitz formula. Indeed, it is
well-known that |Aut(Cg)|, g ≥ 2 is finite in each characteristic, see [19].

Theorem 2.70. [23, Riemann-Hurwitz] Let Cg be an algebraic curve of genus g ≥ 2
over a field of characteristic 0. Then,

|Aut(Cg)| ≤ 84(g −1)

Example 2.71. Consider the curve hyperelliptic curve C : y2 = x6 +x3 +1 with its
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isomorphisms.

τ1 : (x,y) 7→ (1/x,y/x3), τ2 : (x,y) 7→ (ζ3x,y)

where ζ3 is cube root of unity. Basically, (1/x,y/x3) and (ζ3x,y) are points on C.

Example 2.72. Let C be curve defined by C : y2 = x(x4 +Ax3 +Ax2 +1) then,

α : (x,y) 7→ (1/x,y/x3) β : (x,y) 7→
(

−1
x

,
iy

x3

)

One can see that αβ(x,y) ̸= βα(x,y). Later we will see Jac(C) decomposes into a
square of an elliptic curve over Q(i) by Lemma 4.5.

Example 2.73. Let C be a hyperelliptic curve defined by C : y2 = x8 + Ax4 + 1.
Then the automorphism group contains

α : (x,y) 7→ (ix,y) β : (x,y) 7→
(

− i

x
,

y

x4

)

Similarly, αβ(x,y) =
(

i

x
,

y

x4

)
̸= βα(x,y) =

(
− i

x
,

y

x4

)
.

One may observe that a hyperelliptic curve C over K always admits a nontrivial
automorphism called the hyperelliptic involution ι : (x,y) 7→ (x,−y). This indicates
that the automorphism group of a curve cannot be trivial. On the other hand, the
involution σ : (x,y) 7→ (−x,y) is an automorphism on hyperelliptic curves defined by
polynomials p(x) ∈ K[x2]. Clearly, the automorphisms σ and ι are of order 2.

Points on hyperelliptic curves do not possess a natural group structure so the rank
notion is inapplicable. However, it is still possible to define a variety associated
to each curve with a natural group structure by the operation inherited from the
divisor group of the curve, called the Jacobian variety.

Finally, we remark that the trivial endomorphism ring leads to a trivial automor-
phism ring and determining completely the automorphism group of any curve can
be quite a demanding problem, however especially for genus 2 and 3, it may be more
worthy to show that certain groups lie inside the automorphism group of a curve.
We shall soon see that the decomposition behavior of Jacobian can be obtained by
means of the automorphism groups of curves.
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3. Abelian Varieties

Definition 3.1. An algebraic variety V over K is defined in the following way

V = {P = (a1, ...,an) : f1(P ) = · · · = fm(P ) = 0},

where f1, . . . ,fm ∈ K[x1, ...,xn].

In other words, an algebraic variety is the zero set of a system of polynomials.

Definition 3.2. An algebraic variety A over K with the specific point O in A(K)
having a binary operation φ and an inversion i

φ : A×A → A, i : A → A

satisfying the following properties:

(1) φ(S,O) = φ(O,S) = S; for all S ∈ A,

(2) φ(S,i(S)) = O; for all S ∈ A,

(3) φ(φ(S,T ),R) = φ(S,φ(T,R)); for all S,R,T ∈ A.

(A,O,φ, i) is called an abelian variety.

In other words, A satisfies the axioms of a group and the group law is commutative,
see [42]. In case of dimension 1, A is a non-singular projective curve, [61]. Hence,
an abelian variety of dimension 1 is an elliptic curve. On the other hand, the set
of all points of an abelian variety A(K) forms a group, indeed a finitely generated
abelian group.

Theorem 3.3. [31, Mordell-Weil] Let A be an abelian variety over a number field
K, the group A(K) of K-rational points of A is a finitely generated abelian group
over a number field.

Mordell proved this theorem over Q and after that Weil extended it to number fields
even for abelian varieties.
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Definition 3.4. A map ϕ between two abelian varieties (A,OA,φA, iA) and
(B,OB,φB, iB) is called a morphism if the following condition holds for all P,Q ∈ A.

ϕ(PφAQ) = ϕ(P )φBϕ(Q)

with ϕ(OA) = OB.

Definition 3.5. Let A and B be two abelian varieties over a field K. An isogeny
ϕ : A → B is a surjective morphism with a finite kernel.

In case of A = B, the set of all isogenies of an abelian variety A forms a ring similar
to the situation of elliptic curves, denoted by End(A) = {ϕisogeny : A → A}.

An abelian variety A defined over K is called simple if there are no lower dimensional
abelian varieties B and C over K such that A is isogenous to the product B × C,
otherwise it is called decomposable or split. If A is simple over K, then it is called
absolutely simple. As we will see, the endomorphism ring of an abelian variety will
assist to examine decomposition of the Jacobian of hyperelliptic curves together
with useful propositions.

3.1 Jacobian Varieties of Hyperelliptic Curves

As previously mentioned, hyperelliptic curves do not possess a natural group struc-
ture however we can define the Jacobian variety associated with it. Although there
are several equivalent ways to define the Jacobian, we consider the following series of
definitions to be most practical. Now, we collect necessary fundamentals of algebraic
curves to introduce the Jacobian variety.

Definition 3.1.1. Let C = V (F ) ⊆ P2 be a smooth curve over a field K. A divisor
on C is a formal sum

D =
∑

P ∈C

nP P

where nP ∈ Z and nP ’s are non-zero for only finitely many P ∈ C.

In other words, divisors on C can be described by formal Z-linear combination of
points in C(K). The degree of the divisor D is defined by

deg(D) =
∑

P ∈C

nP
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In general, we denote Divn(C) = {Ddivisor : deg(D) = n}. The divisors of C form
a free abelian group generated by points on curves under the addition denoted by
Div(C). Hence, the degree 0 divisors, Div0(C) is a subgroup of Div(C). For example,
if P,Q and R are points in C then P −Q,P +Q−2R,−P +2Q+−R ∈ Div0(C).

A partial ordering on Div(C) can be defined by D1 ≥ D2 if D1 −D2 has only positive
coefficients for D1,D2 ∈ Div(C).

Let f ∈ K(C), we say ordP (f) > 0 if P is a zero of f and ordP (f) < 0 if P is a pole
of f .

Definition 3.6. A principal divisor of f ∈ K(C)∗ is defined by

(f) =
∑

ordP (f) ·P

Equivalently, a principal divisor f can be expressed in terms of zeros and poles as
follows:

(f) = (f)0 − (f)∞ where

(f)0 =
∑

ordP (f)>0
ordP (f) ·P, and (f)∞ =

∑
ordP (f)<0

−ordP (f) ·P

(f)0 and (f)∞ are called zero and pole divisor, respectively.

One may define equivalence relation on Div(C) in the following way:

Definition 3.1.2. An equivalence relation exists between divisors, defined as

D ∼ D′ ⇐⇒ D −D′ is principal.

⇐⇒ D −D′ = (f), f ∈ K(C)∗

The set of all principal divisors of C is denoted by Princ(C). It is known that
every rational function on a curve has the same number of zeros and poles [64,
Theorem 1.4.11]. That means that every principal divisor has degree 0. It turns out
that Princ(C) is the group of divisors that are linearly equivalent to zero. Hence,
Princ(C) ⊂ Div0(C).

Definition 3.1.3. The Picard group of C denoted by Pic(C) is defined by the fol-
lowing quotient

Pic(C) := Div(C)/Princ(C)

and
Jac(C) := Pic0(C) = Div0(C)/Princ(C)
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Basically, an element [D] ∈ Pic(C) is of the form [D] = D+Princ(C) for D ∈ Div(C).
On the other hand, Pic0(C) forms naturally a subgroup of Pic(C).

In particular, the Jacobian of curve C can be interpreted as the linear equivalence
classes of degree zero divisors. Therefore, Jac(C) can also be expressed by

Jac(C) = Div0(C)/ ∼ .

It is clear that Jac(C) does not only have an abelian group structure due to the
divisor group but also has the structure of a variety, see [19]. Moreover, if C is
a curve of genus g over a field K then its Jacobian is also defined over the field
K with dimension g, see [42, Prop 2.1, p. 91]. In case of an elliptic curve, as we
mentioned, its Jacobian and an elliptic curve itself are the same up to isomorphism.
Explanation is provided below and we refer the reader to [8] for more details about
abelian varieties.

Definition 3.7. Let C/K be a non-singular genus one curve defined by a quartic
polynomial

C : y2 = f(x) = ax4 + bx3 + cx2 +dx+ e, a,b,c,d,e ∈ K.

Then the Jacobian of C is described by

Jac(C) = EI,J : y2 = F̃ (X) = X3 −27IX −27J,

where I and J are given as follows:

I = 12ae−3bd+ c2 and J = 72ace+9bcd−27ad2 −27b2e−2c3.

Moreover, the point (X,Y ) =
(

9b2 −24ac

4a
,
27(b3 +a2d−4abc)

(4a)3/2

)
lies in Jac(C).

In particular, if C is a non-singular genus 1 curve with a point, then C is an elliptic
curve, see [62]. Therefore, C has a Weierstrass equation by Definition 2.26. Note
that Jac(C) enjoys the same argument thanks to the following two propositions. In
particular, the first proposition states when a curve defined by a quartic polynomial
has a rational point and the second proposition indicates that C is isomorphic to
EI,J .

Proposition 3.8. [8] The curve C has a K-rational point if and only if there is a
quartic polynomial g(x) with the square leading coefficient equivalent to f(x).

Proposition 3.9. [8] Let C/K be genus 1 curve defined by a quartic polynomial
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with a point then there is a birational map ξ of degree 4 described by

ξ : C → EI,J such that ξ : [x : y : z] → [6yzg4(x,y) : 26g6(x,z) : (2yz)3] where

g4(X,Y ) = (3b2 −8ac)X4 +4(bc−6ad)X3Y +2(2c2 −24ae−3bd)X2Y 2 +4(cd−6be)XY 3

+(3d2 −8ce)Y 4,

g6(X,Y ) = (b3 +8a2d−4abc)X6 +2(16a2e+2abd−4ac2 + b2c)X5Y +5(8abe+ b2d−4acd)X4Y 2

+20(b2e−ad2)X3Y 3 −5(8ade+ bd2 −4bce)X2Y 4 −2(16ae2 +2bde−4c2e+ cd2)XY 5

− (d3 +8be2 −4cde)Y 6.

Let J(K) represents the set of K-rational points of Jac(C). As an immediate con-
sequence of Theorem 2.3, one can obtain that J(K) is a finitely generated abelian
group. Moreover, we can state the following corollary by the Fundamental Theorem
of Finitely Generated Abelian groups as in the case of abelian varieties.

Corollary 3.10. [65] Let C be a curve defined over a number field K. J(K) can
be expressed as

Zr ×J(K)tors

where r ∈ Z≥0 is the rank of J(K) and J(K)tors is the finite torsion subgroup of
J(K).

It is natural to expect that Jacobian varieties may decompose into the product of
varieties of smaller dimensions. A huge advantage of an automorphism group is that
it enables us to practically examine the Jacobian’s behavior, simply the Jacobian
decomposes or not even if you could not determine full automorphism group of a
curve. Jacobian varieties of algebraic curves with many automorphisms provide
examples of abelian varieties that contain many factors in their decompositions. In
order to see such curves whose Jacobian decompose into a product of many elliptic
factors, see [51, 52, 53].
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4. Families of Decomposable Abelian Varieties

Given that the automorphism group of a smooth algebraic curve C is non-trivial,
we may obtain new curves from C by taking the quotient of C by a non-trivial
subgroup of its automorphism group. The existence of such a curve is guaranteed
by the following theorem. Therefore, we may discuss the genus of such curves.

Theorem 4.1. [43] Let C be an algebraic curve with finite non-trivial subgroup of
its automorphism group G then C/G is an algebraic curve.

We write genus(C) for the genus of C.

Theorem 4.2. [58, 62, Riemann-Hurwitz Formula] Let C be an algebraic curve of
genus g having a finite automorphism group G with Ω : C → C/G. Then,

2g −2 = deg(Ω)(2genus(C/G)−2)+
∑

P ∈C

eP −1 ,

where eP is the ramification index.

It follows directly that g ≥ g′ where g′ is genus(C/G).

Consider the group generated by an automorphism σ having only two elements, σ

and the identity. Basically, the quotient C/⟨σ⟩ refers to the fact that any elements
that have the same image under σ will be identified. That is, C/⟨σ⟩ is a curve fixed
by σ.

Lemma 4.3. [3] Let C be a hyperelliptic curve of genus 2 with non-trivial subgroup
W of Aut(C). Then, the genus of the quotient is 1 if W is order 2, otherwise it is
0.

In other words, a quotient curve of C becomes a genus 1 curve if C is a genus 2
hyperelliptic curve with W a subgroup of Aut(C) of order 2.

An abelian variety A defined over K is called simple if there are no lower dimensional
abelian varieties B and C over K such that A is isogenous to the product B × C,
otherwise it is called decomposable. If A is simple over K, then it is called absolutely
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simple.

The study of decomposable Jacobian varieties of genus two curves was initiated in
[20], see also [29].

The following theorem assists to decompose Jacobian varieties if possible.

Theorem 4.4. [26, 59] Let C be a curve of genus g with the automorphism group
Aut(C). Let H ≤ Aut(C) such that

H =
r⋃

i=1
Hi so that Hi ∩Hj = {1} for all i ̸= j and each Hi ≤ H.

Then, the following relation holds

Jac r−1(C)×Jac |H|(C/H) ∼= Jac |H1|(C/H1)×·· ·×Jac |Hr|(C/Hr).

In other words, a succinct way of describing a decomposition of the Jacobian variety
of a hyperelliptic curve is observing its automorphism group.

In particular, the Jacobian of a genus 2 hyperelliptic curve having non-trivial au-
tomorphisms decompose into either a product of two distinct elliptic curves; or a
square of an elliptic curve, otherwise it is simple. Moreover, the Jacobian of a genus
3 hyperelliptic curves having non-trivial automorphisms decompose into either a
cube of an elliptic curve; or a product of a square of an elliptic curve E and an
elliptic curve that is not isogenous to E; or the product of three non-isogenous el-
liptic curves; or a product of an elliptic curve and an abelian variety of dimension
2, otherwise it is simple.

Furthermore, we have the following result over Q.

Lemma 4.5. [3] Let C/Q be a hyperelliptic curve of genus 2 with a non-commutative
Aut(C). Then, Jac(C) ≃ E2 over Q.

From here on, all facts are referenced with modified notations. A family of hy-
perelliptic curves of arbitrary genus whose Jacobians decompose into two abelian
varieties was given in [10]. Namely,

Example 4.6. [10] Consider the Jacobian Jac(X) of the hyperelliptic curve defined
by an equation

X : y2 = (xn −1)(xn − t), n = 2k +1, k > 1, t ∈ C\{0,1}.

There are two algebraic curves Y1 and Y2 of genus k such that Jac(X) is isomorphic
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to Jac(Y1)×Jac(Y2).

Ekedahl and Serre constructed examples of curves whose Jacobians decompose com-
pletely into elliptic curves, see [11]. The reader may also see [47] for examples of
three non-hyperelliptic curves whose the Jacobian variety is isogenous to a product
of elliptic curves.

A family of genus 3 and 5 hyperelliptic curves over a number field K whose Jacobians
decompose into a product of elliptic curves was given in [67]. Explicitly,

Example 4.7. The genus 3 hyperelliptic curve C given by the equation

C : y2 = (x4 +ax2 +1)(x4 + bx2 +1)

decomposes into a product of an elliptic curve Γ1 and the Jacobian of a genus two
curve, Γ2. Namely,

Γ1 : y2 = (x2 −2+a1)(x2 −2+a2),

Γ2 : y2 = (x2 −4)(x2 −2+a1)(x2 −2+a2)

where C → Γ1 is defined by (x,y) 7→
(

x+ 1
x

,
y

x2

)
and C → Γ2 is defined by (x,y) 7→(

x+ 1
x

,
(

x− 1
x

)
y

x2

)
. Therefore, Jac(C) ≃ Jac(Γ1)×Jac(Γ2).

In addition, Γ2 admits a non-hyperelliptic involution σ : (x,y) 7→ (−x,y). It turns out
that, the quotient curve Γ2/⟨σ⟩ corresponds to an elliptic curve. Hence, Jac(C) ≃
E1 ×E2 ×E3 where Ei’s are not necessarily isogenous elliptic curves.

On the other hand, there exists an elliptic curve C1 covered by C defined by an
equation

C1 : y2 = (x2 +ax+1)(x2 + bx+1), (x,y) 7→ (x2,y).

In particular, C has two automorphisms σ and ζ :
(1

x
,

y

x4

)
. One may easily see

that C/⟨ι⟩ ∼= Γ1, C/⟨ζ⟩ ∼= C1 and Γ1 ̸∼= C1 while they can be isogenous. On the
other hand, it is given that the automorphism group of the curve C is D4 ×C2, see
[18, 54]. This implies that the elliptic curves are not isogenous over K.

Example 4.8. The genus 5 hyperelliptic curve C̃ defined by an equation

C̃ : y2 = (x4 +ax2 +1)(x4 + bx2 +1)(x4 + cx2 +1)

has decomposable Jacobian. Namely, Jac(C̃) ≃ Jac(Γ̃1) × Jac(Γ̃2) where Γ̃1 and Γ̃2
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are two curves covered by C̃ given by

Γ̃1 : y2 = (x2 −2+a)(x2 −2+ b)(x2 −2+ c), (x,y) 7→
(

x+ 1
x

,
y

x3

)
,

Γ̃2 : y2 = (x2 −4)(x2 −2+a1)(x2 −2+a2)(x2 −2+a3), (x,y) 7→
(

x+ 1
x

,
(

x− 1
x

)
y

x3

)
.

One can see that Γ̃i’s admit automorphisms (±x,±y). As a consequence, the Jaco-
bian of C̃ decomposes into a product of elliptic curves.

In particular, a genus 2 curve given by the following equation

F̃ : y2 = x(x−1)
(

x− 2−a

4

)(
x− 2− b

4

)(
x− 2− c

4

)

is covered by Γ̃2 i.e., the Jacobian of Γ̃2 decomposes into an elliptic curve and F̃ .
Note that, moreover, F̃ is decomposable.

Families of genus 2 hyperelliptic curves whose Jacobian decompose into a square of
elliptic curves over an extension of perfect field K with char(K) ̸= 2,3 are studied in
[17]. In the next two examples, consider K to be a perfect field with char(K) ̸= 2,3.

Example 4.9. [17] The genus 2 hyperelliptic curve over the field K described by
the equation

C : y2 = x5 +ax3 + bx

has decomposable Jacobian such that Jac(C) is isogenous to the square of an elliptic
curve E over K(b1/8, i) where E is an elliptic curve defined over K(b1/2) by

E : y2 = (c+2)x3 − (3c−10)x2 +(3c−10)x− (c+2)

where c = a/
√

b and i ∈ K is a primitive fourth root of unity.

In particular, in case of K = Q, the isogeny exists over the number field Q(i) if b is
chosen to be a power of eight.

Example 4.10. [17] The genus 2 hyperelliptic curve over the field K defined by the
equation

C ′ : y2 = x6 +ax3 + b

has decomposable Jacobian such that Jac(C ′) is isogenous to the square of an elliptic
curve E′ over K(b1/6, ζ3) where E is an elliptic curve defined over K(b1/2) by

E′ : y2 = (c+2)x3 − (3c−30)x2 +(3c+30)x− (c−2)

where c = a/
√

b ∈ K and ζ3 ∈ K be a primitive third root of unity. In particular, if
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K = Q then the isogeny exists over Q(ζ3) if b is sixth power.

On the other hand, in case of a field of char(K) > 2, the following is established in
[22].

Theorem 4.11. [22] Let K be field of char(K) > 2 and E/K be an elliptic curve
having j(E) ̸= 0,1728. Then there exists a genus 2 curve C such that Jac(C) ≃ E2

over K.

Algebraic curves with many automorphisms allow their Jacobian varieties to be
decomposed into abelian varieties containing many factors in their decompositions.
Such curves whose Jacobians contain many elliptic factors were shown in [51, 52, 53].
On the other hand, the existence of Jacobians that are isogenous to the product of
not necessarily isogenous arbitrary many Jacobians of the same genus are studied
in [4].

Altogether, the following series of questions may be proposed.

Question 4.12. Can we find a family of hyperelliptic curve of genus g whose jaco-
bian decomposes for all g ≥ 2?

Question 4.13. How far can we go to construct families of curves of higher genus
whose Jacobian decomposes into a product of only elliptic curves?

We answered positively Question 4.12 over a number field in the following chapter
and J. Paulhos posed related questions as follows.

Question 4.14. For which genus g, is it possible to construct a curve C whose
Jac(C) ≃ Eg where E is an elliptic curve?

Question 4.15. What is the maximum number t so that the Jacobian decomposition
of a curve C contains t-many elliptic curves for fixed genus g? That is,

Jac(C) ≃ Et ×Ag−t

where Ag−t is an abelian variety of dimension g − t.

Paulhos was the first who provided the following example for Question 4.14 over a
number field when g = 5, see [52] for more details.

Example 4.16. [52] C be a hyperelliptic curve given by the equation

C : y2 = x(x10 +11x5 −1).

has decomposable Jacobian such that Jac(C) ≃ E5 over a number field where E is
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an elliptic curve given by

E : y2 = x(x2 +11x−1).

In [51], Paulhos classified the splitting behavior of some genus 2 and 3 curves by
examining its automorphism group. We write Cn, Dn, Sn, Un, Vn and Hn for the
cyclic group with n elements, the dihedral group with n elements, symmetric group
of order n! and the rest is defined by the following relations

Un = ⟨a,b | a2, b2n,ababn+1⟩, Vn = ⟨a,b | a4, bn,(ab)2,(a−1b)2⟩, Hn = ⟨a,b | a2, b2a2,(ab)n⟩.

Proposition 4.17. [51] If C is a curve of genus 3 or 4 over an algebraically closed
field K with charK = 0 having an automorphism group containing one of the groups
given below, then the corresponding Jacobian decomposition is given in the following
table where Ei’s are elliptic curves, whereas Ai’s are abelian varieties of dimension
2.

Genus 3 Genus 4
Aut(C) Jac(C)
C2 ×C2 E ×A2
D4 ×C2 E1 ×E2 ×E3

H2 E1 ×E2
2

U2 E1 ×E2
D12 E2

1 ×E2
D8 ×C2 E2

1 ×E2
U6 E2

1 ×E2
V8 E2

1 ×E2
S4 ×C2 E3

Aut(C) Jac(C)
C2 ×C2 A1 ×A2
V2 ∼= D8 A2

2
D8 A2

2
D16 A2

2
D10 ×C2 E2

1 ×E2
U8 A2

2
V10 A2

2

Table 4.1 Splitting behavior of genus 3 and 4 hyperelliptic curves.

We do not have data for larger genus as we had for genus 3 and 4. Moreover,
afterwards, the genus 3 hyperelliptic curve and smooth planar quartic curves were
examined by Shaska in [59].

Theorem 4.18. [59] Let C be a genus 3 curve then the following statements holds:

i) If Aut(C) is isomorphic to V4 or C2 ×C4 then Jac(C) ≃ E ×A2

ii) If Aut(C) is isomorphic to C2 ×C2 ×C2 then Jac(C) ≃ E1 ×E2 ×E3.

iii) If Aut(C) is isomorphic to D12, C2 ×S4 or group of order 24, 32 then Jac(C) ≃
E2

1 ×E2.
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The author attempted the following problem up to genus 4. However, there are still
many gaps in our data. We collect the list of hyperelliptic curves even when we were
not able to find a family for some cases. In fact, it is extremely difficult to find a
decomposition over a base field K, since all known classifications are over K.

Question 4.19. Can we construct a list of hyperelliptic curves for a fixed genus g

having each possible splitting type in the Jacobian decomposition?

We need the following remark in order to produce families of hyperelliptic curves
whose Jacobian cannot be decomposed further together with Theorem 5.3.

Remark 4.20. Let K be a number field and ft(X) = an(t)Xn +an−1(t)Xn−1 + · · ·+
a0(t) ∈ K(T ). If Gal(ft0(X)) = Sn for some t = t0 ∈ K, then there are infinitely many
such t0 for which Gal(ft0(X)) = Sn by Hilbert irreducibility theorem.

We derive the list which one can add much more examples over K. We refer the
reader to see [1, 36, 49, 52, 59] for more details and examples. The table for the
case of g = 2 and 3 are given below.

GENUS 2
Curve C Jac(C)

y2 = ax6 + bx4 + bx2 +a E2

y2 = ax6 + bx4 + cx2 +d E1 ×E2
y2 = x4 +ax3 + bx2 + cx+d A2

Table 4.2 Possible list of examples having different decomposition types for genus 2

GENUS 3
Curve C Jac(C)

y2 = x8 +14x4 +1 E3

y2 = x8 +ax4 +1 E2
1 ×E2

y2 = x8 +ax6 + bx4 +ax2 +1 E1 ×E2 ×E3
y2 = x8 +ax6 + bx4 + cx2 +1 E ×A2

y2 = x6 +ax5 + bx4 + cx3 +dx2 + ex+f A3

Table 4.3 Possible list of examples having different decomposition types for genus 3

On the other hand, obtaining elliptic curves in the decomposition of the Jacobian
is getting more complicated when the genus becomes larger. For example, we do
not have even one single example of a hyperelliptic curve C with a decomposition
Jac(C) ≃ E4. Theoretically, however, if one finds a curve with the automorphism
group (C3 × C3)⋊D8 then the result is concluded, see [54]. Hence, the list of
examples of possible different decompositions for the genus 4 is given in the following
table.

37



GENUS 4
Curve C Jac(C)

y2 = x(x4 −1)(x4 +2
√

−3x2 +1) E2
1 ×E2

2
y2 = x10 +a1x8 +a2x6 +a3x4 +a4x2 +1 A1 ×A2

y2 = x9 +1 E ×A3

y2 = x(x8 +ax4 +1) A2
2

y2 = x(x8 +ax7 + bx6 + cx5 +dx4 + ex3 +fx2 +gx+1) A4

Table 4.4 Possible list of examples having different decomposition types for genus 4
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5. Hyperelliptic Curves With Non-trivial Automorphisms

This chapter contains new materials that were obtained during the thesis.

Throughout this section K is a field with charK = 0 whose algebraic closure is K.

In this thesis, one of the families we are concerned about is y2 = f(x) where f(x) is
a palindromic polynomial with no multiple roots in K[x].

Definition 5.1. A polynomial f(x) ∈ K[x] is said to be palindromic if

f(x) = xdf(1/x)

where d = degf , i.e., if f(x) =
d∑

i=0
aix

i, then ai = ad−i for 0 ≤ i ≤ d.

We write C2, V4, and D4 for the cyclic group with 2 elements, the Klein-4 group,
and the dihedral group with 8 elements, respectively.

Proposition 5.2. Let f(x) ∈ K[x] be an even palindromic polynomial of degree
2g +2 with no multiple roots.

i) If C : y2 = f(x), then D4 ↪→ Aut(C), when g is even.

ii) If C : y2 = f(x), then C2 ×C2 ×C2 ↪→ Aut(C), when g is odd.

iii) If C ′ : y2 = xf(x), then V4 ↪→ Aut(C ′).

Proof. We write f(x) = a2g+2x2g+2 + a2gx2g + · · · + a2x2 + a0, where a2i = a2g+2−2i,
0 ≤ i ≤ g +1. For i) and ii) apart from the hyperelliptic involution, the curve C has
the following automorphisms of order 2

σ : (x,y) 7→ (−x,y) and τ : (x,y) 7→
(1

x
,

y

xg+1

)
.

We note that σ2 = τ2. Moreover, (σ ◦ τ)2 = ι when g is even. It follows that the
group generated by σ and τ is isomorphic to the dihedral group D4. Specifically, if
we fix a representation D4 := ⟨a,b | a2 = b2 = (ab)4 = 1⟩, then we have the following
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inclusion

D4 ↪→ Aut(C); a 7→ σ, b 7→ τ.

ii) follows in a similar fashion by observing that

(σ ◦ τ)2(x,y) = (σ ◦ τ)
(

−1
x

,
y

xg+1

)
=
(

− 1
−1/x

,
y/xg+1

(−1/x)g+1

)
= (x,y)

Furthermore, automorphisms σ,τ, ι and their composition form a group and are all
of order 2 when g is odd. Note that the compositions are commutative.

For iii) one my check that the map

σ : C ′ → C ′ : (x,y) 7→
(1

x
,

y

xg+2

)

is an automorphism of C ′, see Proposition 2.68, of order 2. The automorhisms ι, σ,
σ ◦ ι, 1 form a subgroup of Aut(C ′) isomorphic to the Klein 4-group, V4.

Given a hyperelliptic curve, one would like to know whether its Jacobian is simple
or not. The following results of Zarhin introduce simplicity criteria for certain
hyperelliptic Jacobian varieties based on the Galois group of the defining polynomial.

Theorem 5.3. Let C be a hyperelliptic curve defined by the equation y2 = f(x),
where deg(f) = n and f(x) is polynomial without multiple roots in K[x].

i) Assume n ≥ 5. If Gal(f) is either the full symmetric group Sn or the alternat-
ing group An, then End(Jac(C)) = Z. In particular, Jac(C) is an absolutely
simple abelian variety, see [68].

ii) Assume n ≥ 6 is even. If f(x) = (x − t)h(x) with t ∈ K and h(x) ∈ K[x], is
such that Gal(h) is either Sn−1 or An−1, then End(Jac(C)) =Z. In particular,
Jac(C) is an absolutely simple abelian variety, see [69].

iii) Assume n ≥ 9 is odd. If f(x) = (x − t)h(x) with t ∈ K and h(x) ∈ K[x], is
such that Gal(h) is either Sn−1 or An−1, then Jac(C) is an absolutely simple
abelian variety, see [69].

In other words, Jac(C) with a trivial endomorphism ring cannot be decomposed fur-
ther. Therefore, as an immediate consequence of Theorem 5.3, in order to generate
an absolutely simple Jacobian variety for any genus g, one simply needs to pick a
polynomial f(x) of degree n whose the Galois group is Sn or An where n = 2g +1.
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The following result, [12, Theorem 8] introduces a method to construct absolutely
simple varieties over number fields.

Proposition 5.4. Let K be a number field. Let g ≥ 1 be an integer, and let f ∈ K[x]
be a polynomial of degree 2g with no multiple roots. Consider the hyperelliptic curve
of genus g over K(T ) defined by CT : y2 = f(x)(x−T ). Then there are only finitely
many t ∈ K such that the Jacobian of Ct is not absolutely simple.

Proposition 5.5. Let f(x) ∈ K[x] be of degree n such that GalK(f) = Sn or An.
Let Cf , Ef and Hf be as in Proposition 5.10.

If n = 2g + 1 ≥ 5, then Jac(Cf ) ≃ Jac(Ef ) × Jac(Hf ), where both Jac(Ef ) and
Jac(Hf ) are absolutely simple of dimension g.

If n = 2g + 2 ≥ 8, then Jac(Cf ) ≃ Jac(Ef ) × Jac(Hf ), where both Jac(Ef ) and
Jac(Hf ) are absolutely simple of dimension g and g +1 respectively.

Proof. The statement follows from the combination of Proposition 5.10 with Theo-
rem 5.3.

In particular, one can simply construct an absolutely simple Jacobian variety or the
triples as in Proposition 5.5 by the following lemma and series of examples.

Lemma 5.6. [50, Osada] Let f(x) be a monic and irreducible polynomial of degree
n with square-free discriminant then, GalQ f(x) = Sn.

Example 5.7. [50, Osada] The polynomial f(x) = xn − x − 1 ∈ Q[x] has Galois
group Sn for all n ≥ 2.

Example 5.8. [48, 50, Nart-Vila, Osada] If the polynomial f(x) = xn + x + a is
irreducible with (n−1,a) = 1, then the GalQ f(x) = Sn.

On the other hand, for any integer n ≥ 7, there exists infinitely many polynomials
f(x) with the property that GalQ f(x) = An, see [21].

We particularly pay attention to a decomposition into two abelian subvarieties.

Remark 5.9. Let C be a hyperelliptic curve over K with hyperelliptic involution
ι : (x,y) 7→ (x,−y) giving rise to the morphism C → C/⟨ι⟩ ∼= P1. We assume that C

possesses an automorphism σ of order 2 such that σ ̸= ι. We set τ = σ ◦ ι. Writing
Cσ and Cτ for C/⟨σ⟩ and C/⟨τ⟩ respectively, we obtain the quotient morphisms
ϕσ : C → Cσ and ϕτ : C → Cτ respectively. This yields a morphism ϕ = (ϕσ,ϕτ ) :
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C → Cσ ×Cτ , hence a morphism

Jac(C) → Jac(Cσ)×Jac(Cτ ).

This morphism is an isogeny, in fact, it is a decomposed Richelot isogeny, see [28,
Theorem 1]. We refer the reader for more details to [26] and [27].

In this work, we give special attention to the hyperelliptic curve defined by y2 = f(x2)
where f(x) ∈ K[x] has no multiple roots.

Proposition 5.10. Let f(x) ∈ K[x] \ xK[x] have no multiple roots. Define the
following hyperelliptic curves over K

Ef : y2 = f(x), Cf : y2 = f(x2), Hf : y2 = xf(x).

Then Jac(Cf ) ≃ Jac(Ef )×Jac(Hf ).

Proof. We write σ for the automorphism (x,y) 7→ (−x,y) on Cf . The automorphism
σ is of order 2. The map ϕσ : Cf → Ef defined by ϕσ : (x,y) 7→ (x2,y) is the quotient
map Cf → Cf /⟨σ⟩ ∼= Ef . Similarly, if we set τ = σ ◦ ι : (x,y) 7→ (−x,−y), then
ϕτ : Cf → Hf defined by ϕτ : (x,y) 7→ (x2,xy) is the quotient map such that

Cf → Cf /⟨τ⟩ ∼= Hf .

One may ask whether it is always possible to find an explicit equation of the quotient
curve. The answer is that finding such an explicit equation is not always feasible.
We are certainly sure of its existence by Theorem 4.1 nonetheless finding its explicit
equation is not always an easy task at all. Finding these equations mostly involves
using action of automorphisms on coordinates x and y. In the previous proof, we
identify two independent variables, namely x2 and xy fixed by σ and σ ◦ ι, respec-
tively. Hence, the equation describing the curve is obtained by finding the equation
satisfied by these two parameters.

Theorem 5.11. Let K be a number field. Given any integer n ≥ 2, there exists an
abelian variety that splits over K into two absolutely simple varieties of dimensions
n/2 and n/2 if n is even; and (n−1)/2 and (n+1)/2 if n is odd.

Proof. The statement holds in view of Proposition 5.5 for any integer n except
possibly 2,3 and 5. A hyperelliptic curve with genus two whose Jacobian splits can
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be constructed easily using Proposition 5.10. For example, one may consider the
curve y2 = f(x2) where f(x) ∈ K[x] \ xK[x] is a polynomial of degree 3 with no
multiple roots.

Let f(x) be a polynomial of degree d = 4; or of degree d = 6 with Galois group either
A6 or S6. The Jacobian of the curve y2 = f(x) is absolutely simple. This is justified
by the fact that the Jacobian is an elliptic curve when d = 4; or it is an absolutely
simple Jacobian of a genus two curve when d = 6, see Theorem 5.3. Now, for all but
finitely many t ∈ K, the Jacobian of the curve y2 = (x− t)f(x) is absolutely simple,
see Proposition 5.4. For each such value of t such that t is not a root of f , one may
consider the following curves

Ef : y2 = gt(x) = f(x+ t), Cf : y2 = gt(x2) = f(x2 + t), Hf : y2 = xgt(x).

The latter curves are of genus 1 and 2 respectively when d = 4; or of genus 2 and
3 when d = 6, with absolutely simple Jacobians. Note that Hf is a shifting of the
curve y2 = (x − t)f(x) by the transformation x 7→ (x + t), being absolutely simple
is preserved since translation is an isomorphism. In addition, the Jacobian of the
curve y2 = gt(x2) = f(x2 + t) is of dimension 3 when d = 4; or of dimension 5 when
d = 6, for any such K-rational value t; and it enjoys the required splitting property,
see Proposition 5.10.

In other words, Theorem 5.11 asserts that for any given genus g, there exists a
hyperelliptic curve whose jacobian decomposes into a product of two absolutely
simple abelian varieties of either same or consecutive dimensions over a number
field.

The following proposition indicates that given a polynomial in K[x] of degree n with
no multiple roots, one may construct an infinite sequence of hyperelliptic curves
of any genus ≥ n − 1 whose Jacobian varieties decompose into two hyperelliptic
Jacobian varieties whose dimensions differ by at most 1.

Proposition 5.12. Let f(x) ∈ K[x]\xK[x] be a polynomial with no multiple roots.
Define the following sequence of polynomials

f0(x) = f(x),

gi(x) = xfi(x), i ≥ 0,

fi(x) = gi−1(x+ai−1), ai−1 is not a root of gi−1(x), i ≥ 1.
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Setting H−1 : y2 = f(x), Hi : y2 = gi(x) and Ci : y2 = fi(x2), one has the following

Jac(Ci) ≃ Jac(Hi−1)×Jac(Hi), i ≥ 0

If degf = 2g + 1, then Hi−1, Hi and Ci are of genus g + i/2, g + i/2 and 2g + i,
respectively, when i is even; and of genus g + r, g + r + 1, 2g + i, respectively, when
i = 2r +1 is odd.

If degf = 2g +2, then Hi−1, Hi and Ci are of genus g + i/2, g + i/2+1, 2g + i+1,
respectively, when i is even; and of genus g +r +1, g +r +1, 2g + i+1, respectively,
when i = 2r +1 is odd.

Proof. Observing that Ei : y2 = fi(x) and Hi−1, i ≥ 1, are isomorphic hyperelliptic
curves, the proof follows directly from Proposition 5.10.

In a similar fashion, we note that the construction of the genus 3 and 5 curves using
Proposition 5.4 in the proof of Theorem 5.11 can be used to provide an alterna-
tive way of constructing families of hyperelliptic curves of genus 2n + 1 ≥ 5 whose
Jacobians decompose into the product of two absolutely simple abelian varieties of
dimensions n and n + 1. In addition, the defining polynomials of these curves are
essentially multiples of a fixed polynomial of even degree with no multiple roots.

Given a polynomial f ∈ K[x] of even degree with no multiple roots, we set

S(f) = {t ∈ K : the Jacobian of y2 = (x−t)f(x) is not absolutely simple; or t is a root of f(x)}.

By Proposition 5.4, S(f) is finite.

Corollary 5.13. Let K be a number field. Let f(x) ∈ K[x]\xK[x] be a polynomial of
degree 2g, g ≥ 1, with no multiple roots. Define the following sequence of polynomials

f0(x) := f(x),

fi,ti−1(x) := (x+ r′
i,ti−1)2g+2gi−1,ti−1

x+ ri,ti−1

x+ r′
i,ti−1

 , ri,ti−1 ̸= r′
i,ti−1

g0,t0(x) := xf0(x+ t0),

gi,ti(x) := xfi,ti−1(x+ ti), ti ̸∈ S(fi,ti−1), i ≥ 1,

where ri,ti−1 and r′
i,ti−1 are chosen so that fi,ti−1(x) ∈ K[x]\xK[x].

Setting Hi,ti : y2 = gi,ti(x), and Ci,ti−1 : y2 = fi,ti−1(x2), then one has the following

Jac(Ci,ti−1) ≃ Jac(Hi−1,ti−1)×Jac(Hi,ti)
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where Jac(Hi−1,ti−1) is absolutely simple for i ≥ 1. The genus of the curves Hi,ti

and Ci,ti−1 are g + i and 2g +2i−1, respectively.

Proof. We remark that the polynomial fi,ti−1 is of even degree. The statement
holds in view of Proposition 5.4 and Proposition 5.10 as the curves Hi−1,ti−1 and
Ei,ti−1 : y2 = fi,ti−1(x) are isomorphic hyperelliptic curves.

If f(x) = a2g+2x2g+2 +a2gx2g + · · ·+a2x2 +a0 ∈ K[x] is an even palindromic polyno-
mial with no multiple roots, we write fh(x) = a2g+2xg+1 + a2gxg + · · · + a2x + a0.
We notice that fh(x) is a palindromic polynomial itself. We, moreover, set
Fh(x,y) = a2g+2xg+1 +a2gxgy + · · ·+a2xyg +a0yg+1.

Theorem 5.14. Let f(x) = a2g+2x2g+2 +a2gx2g + · · ·+a2x2 +a0 ∈ K[x] be an even
palindromic polynomial with no multiple roots. Let fh is defined to be

fh(x) = a2g+2xg+1 +a2gxg + · · ·+a2x+a0.

Assume, moreover, that C : y2 = f(x) and E : y2 = fh(x).

i) If g ≥ 2 is even, then Jac(C) ≃ (Jac(E))2.

ii) If g ≥ 3 is odd, then Jac(C) ≃ Jac(E)×Jac(G1)×Jac(G2) where G1 : y2 = p(x)
and G2 : y2 = xp(x), and p(x) ∈ K[x] is just that

p(x2) = (x2 −1)Fh (x+1,x−1)

Proof. One observes that Jac(C) ≃ Jac(E) × Jac(H), where H is defined by y2 =
xfh(x), see Proposition 5.10.

If g = 2k, then E and H are isomorphic hyperelliptic curves via the transformation

H −→ E, (x,y) 7→
(1

x
,

y

xk+1

)
,

see Proposition 2.68, hence the result.

If g = 2k +1, then we consider the map

H −→ G, (x,y) 7→
(

x+1
x−1 ,

y

(x−1)k+2

)

where G : y2 = ℓ(x). One obtains that

ℓ(x) = (x2 −1)
(
a2g+2(x+1)2k+2 +a2g(x+1)2k+1(x−1)+ · · ·+a2(x+1)(x−1)2k+1 +a0(x−1)2k+2

)
,
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hence ℓ(−x) = ℓ(x), and ℓ is an even polynomial of degree 2k + 4. It follows that
ℓ(x) = p(x2) for some p(x) ∈ K[x]. In view of Proposition one has the following 5.10,

Jac(G) ≃ Jac(G1)×Jac(G2)

where G1 : y2 = p(x) and G2 : y2 = xp(x).

Remark 5.15. In Proposition 5.2, The curve C ′ : y2 = xf(x) possesses the automor-
phisms σ and σ ◦ ι described by (x,y) 7→

(
1
x , ±y

xg+2

)
. In Theorem 5.14, the curve C ′

is described using a different equation, namely, y2 = p(x2) where the two aforemen-
tioned automorphisms are now (x,y) 7→ (−x,±y). Therefore, C ′/⟨σ⟩ and C ′/⟨σ ◦ ι⟩
are isomorphic to the hyperelliptic curves defined by y2 = p(x) and y2 = xp(x).

Corollary 5.16. i) For any integer n ≥ 1, there exist abelian varieties of dimen-
sion 2n that decompose over K as the square of an abelian variety of dimension
n.

ii) For any integer n ≥ 1, there exist abelian varieties of dimension 2n + 1 that
decompose over K as the product of three abelian varieties of dimensions n,
(n+1)/2, and (n+1)/2 if n is odd; and n, 1+n/2, and n/2 if n is even.

Remark 5.17. We remark that Proposition 5.10 may be used to construct abelian
varieties of dimension 2n + 1 that decompose into three abelian varieties of lower
dimensions, namely, n + 1, (n + 1)/2, (n − 1)/2 if n is odd; and n + 1, n/2, n/2
if n is even; which differs from the partitions of the dimension given in Corollary
5.16. In addition, Proposition 5.10 does not provide a decomposable Jacobian whose
dimension is 3.

Example 5.18. If we consider the curve

C : y2 = ax6 + bx4 + bx2 +a ∈ K[x],

then Jac(C) ≃ E2 where E is the elliptic curve y2 = ax3 + bx2 + bx+a.

Example 5.19. In Theorem 5.14, if one considers the curve

C : y2 = ax8 + bx6 + cx4 + bx2 +a ∈ K[x]

of genus 3, then Jac(C) is isogenous to the product of three elliptic curves that are
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the Jacobians of the following genus 1 curves

E1 : y2 = ax4 + bx3 + cx2 + bx+a,

E2 : y2 = (2a+2b+ c)x3 +(10a−2b−3c)x2 +(−10a−2b+3c)x+(−2a+2b− c),

E3 : y2 = x
(
(2a+2b+ c)x3 +(10a−2b−3c)x2 +(−10a−2b+3c)x+(−2a+2b− c)

)
.

Proposition 5.20. Let f(x) ∈ K[x] be a palindromic polynomial of degree at least
3. Consider the hyperelliptic curve C : y2 = f(x4). Then,

Jac(C) ≃ Jac(E1)×Jac(E2)×Jac(G1)×Jac(G2)

where E1 : y2 = f(x), E2 : y2 = xf(x), and G1 and G2 are as in Theorem 5.14.

Proof. In view of Theorem 5.14, one has Jac(C) ≃ Jac(E)×Jac(G1)×Jac(G2) where
E : y2 = f(x2). Now due to Proposition 5.10, one obtains that

Jac(E) ≃ Jac(E1)×Jac(E2).

Corollary 5.21. Given any integer n ≥ 2. There exists abelian varieties of di-
mension 2n + 1 that decompose over K as the product of four abelian varieties of
dimensions (n−1)/2, (n+1)/2, (n+1)/2, and (n+1)/2 if n is odd; and n/2, n/2,
n/2, and 1+n/2 if n is even.

Example 5.22. The Jacobian of the hyperelliptic curve y2 = ax12 + bx8 + bx4 + a

is isogenous to the product of the elliptic curves that are the Jacobians of the genus
one curves E1, E2, G1; and the Jacobian of the genus 2 curve G2

E1 : y2 = ax3 + bx2 + bx+a,

E2 : y2 = x(ax3 + bx2 + bx+a),

G1 : y2 = 2(a+ b)x4 +2(14a−2b)x3 +2(−14a+2b)x+2(−a− b),

G2 : y2 = x
(
2(a+ b)x4 +2(14a−2b)x3 +2(−14a+2b)x+2(−a− b)

)
.
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5.1 Rational Points on Quadratic Twists

In this section, given any integer g ≥ 1, we construct a hyperelliptic curve of genus
g with infinitely many quadratic twists containing at least two K-rational non-
Weierstrass points.

Proposition 5.23. Let f(x) = a2g+2xg+1 +a2gxg + · · ·+a2x+a0 ∈ K[x] be a palin-
dromic polynomial with no multiple roots. Consider the curve C : y2 = f(x). If g

is even, then there exists infinitely many quadratic twists of C with at least two
K-rational non-Weierstrass points.

Proof. Consider the curve Cf(t2) defined over K(t) by

f(t2)y2 = f(x).

The set of rational points of Cf(t2) contains the K(t)-rational points
(
t2,1

)
and(

1
t2 , 1

t2k+1

)
where g = 2k. We remark that these points are obtained by considering

the quotient maps in 5.14 i).

In the previous proposition, if g = 2, then C is a genus 1 curve. This implies
the existence of infinitely many quadratic twists of C that are elliptic curves with
Mordell-Weil rank at least 2. That the points are of infinite order follow from
Theorem 2.43 together with Theorem 2.40, whereas the independence of the points
follows from the fact that the quotient maps in Theorem 5.14 are independent maps
by construction.

In what follows, we concern ourselves with the construction of tuples of hyperel-
liptic curves C1, · · · ,Cn and infinitely many square-free K-rational d such that the
quadratic twists of these curves by each d contain K-rational non-Weierstrass points.

Proposition 5.24. Let f(x) ∈ K[x] be a palindromic polynomial of degree at least
3 with no multiple roots. Consider the following curves

E1 : y2 = f(x), E2 : y2 = xf(x), G1 : y2 = p(x), G2 : y2 = xp(x)

where p(x) is defined as in Theorem 5.14. There exists infinitely many nonzero
d ∈ K \ K2 such that the quadratic twists of E1, E2, G1 and G2 by d contain K-
rational non-Weierstrass points.

Proof. We set n := degf . We will list down the quadratic twists together with the
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K-rational points on them

f(t4)y2 = f(x), (t4,1),

f(t4)y2 = xf(x),
( 1

t4 ,
1

t2n+2

)
,

f(t4)y2 = p(x),
(

(t2 +1)2

(t2 −1)2 ,
2n+1t

(t2 −1)n+1

)
,

f(t4)y2 = xp(x),
(

(t2 +1)2

(t2 −1)2 ,
2n+1t(t2 +1)
(t2 −1)n+2

)
.

These K-rational points are obtained using the quotient maps in Proposition 5.20.

In Proposition 5.24, if f is chosen to be of degree 3, then the proposition presents
an example of three elliptic curves together with a genus 2 curve such that there
are infinitely many d for which the quadratic twists of these curves by such a d has
at least one K-rational point. Moreover, we can check these independent rational
points have non-constant coordinates by specialization. It follows that the points
are of infinite order on the quadratic twists of the elliptic curves by Theorem 2.43
with Theorem 2.40, and it is a K-rational non-Weierstrass point on the genus two
curve.
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