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ABSTRACT

THE PERIODIC VEHICLE ROUTING PROBLEM WITH VISUAL
ATTRACTIVENESS AND DRIVER CONSISTENCY

SAEEDEH AHMADI BASIR

Industrial Engineering Ph.D DISSERTATION, July 2024

Dissertation Supervisor: Asst. Prof. Amine Gizem Tiniç

Keywords: Vehicle Routing, Logic-Based Benders Decomposition, Column
Generation, Visual Attractiveness, Driver Consistency, Parallel Tempering,

Adaptive Large Neighborhood Search

This thesis explores advanced methodologies and innovative approaches to the
Periodic Vehicle Routing Problem (PVRP) and its variants. Initially, we propose a
new vehicle flow formulation for the PVRP and strengthen it with valid inequali-
ties. We also investigate two prominent formulations for the PVRP available in the
literature: a commodity flow formulation, referred to as the load-based formulation,
and a cut-based formulation which is adapted from a formulation originally devel-
oped for a variant of the PVRP. We also extend these formulations to model the
PVRP with time windows (PVRPTW) and employ valid inequalities to tighten the
resulting formulations. A comprehensive computational study is then carried out to
compare the performances of alternative PVRP and PVRPTW formulations on var-
ious sets of benchmark instances with different characteristics. The results attest to
the robustness and the consistency of the proposed formulation and its strengthened
versions in producing good quality solutions, especially for large instances although
the load-based formulations tend to perform well in small instances. Subsequently,
we address the PVRP using a Logic-Based Benders Decomposition approach and
a Column Generation-based heuristic. Our findings reveal that the Column Gen-
eration algorithm achieves near-optimal solutions, deviating by an average of only
0.21% from the best-known solutions in the literature. Further, we incorporate
visual attractiveness and driver consistency constraints into the PVRPTW, devel-
oping a Mixed-Integer Linear Programming formulation for this extended problem
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(PVRPTWVADC). To solve the PVRPTWVADC, we propose an Adaptive Large
Neighborhood Search (ALNS) algorithm and a Parallel Tempering-based ALNS
(PTALNS). Comprehensive computational studies highlight the robustness and su-
perior performance of the PTALNS algorithm.
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ÖZET

GÖRSEL ELVERIŞLILIK VE SÜRÜCÜ TUTARLILIĞI KISITLARI ILE
PERIYODIK ARAÇ ROTALAMA PROBLEMI

SAEEDEH AHMADI BASIR

Endüstri Mühendisliği DOKTORA TEZİ, Temmuz 2024

Tez Danışmanı: Dr. Öğr. Üyesi Amine Gizem Tiniç

Anahtar Kelimeler: periyodik araç rotalama, mantık-temelli Benders ayrıştırması,
sütun türetme, görsel elverişlilik, sürücü tutarlılığı, paralel temperleme, adaptif

geniş komşuluk arama

Bu tezde, periyodik araç rotalama problemi (PARP) ve varyantlarına yönelik
yenilikçi ve etkin çözüm yaklaşımları geliştirilmesine odaklanılmıştır. İlk olarak,
PARP için yeni bir araç akış formülasyonu önerilmiş ve geçerli eşitsizliklerle
güçlendirilmiştir. Ayrıca, literatürde PARP için mevcut olan iki önemli formülasyon
incelenmiştir: yük-temelli formülasyon ve başlangıçta PARP’nin bir varyantı için
geliştirilmiş bir formülasyondan uyarlanan kesi-temelli formülasyon. Bu formülasy-
onlar, zaman pencereli PARP’yi (PARP-ZP) modelleyecek biçimde genişletilmiş ve
elde edilen formülasyonları güçlendirmek için yine geçerli eşitsizliklerden ve opti-
malite kesilerinden faydalanılmıştır. Farklı özelliklere sahip çeşitli problem örnek-
leri üzerinde, alternatif PARP ve PARP-ZP formülasyonlarının performanslarını
karşılaştırmak için kapsamlı bir hesaplama çalışması gerçekleştirilmiştir. Sonuçlar,
özellikle büyük örnekler için, önerilen formülasyonun ve güçlendirilmiş versiyon-
larının, iyi kalitede çözümler üretme konusunda gürbüzlüğünü ve tutarlılığını doğru-
lamakta, ancak yük-temelli formülasyonların küçük ve orta örneklerde üstün perfor-
mans gösterme eğiliminde olduğuna işaret etmektedir. Ardından, PARP’yi çözmek
için bir mantık temelli Benders ayrıştırma (MTBA) yaklaşımı ve sütun türetmeye
dayalı bir sezgisel yöntem geliştirilmiştir. Elde edilen bulgular, sütun türetme algo-
ritmasının, literatürde bilinen en iyi çözümlere kıyasla ortalamada yalnızca %0.21
sapmaya sahip çözümler belirleyebildiğini ortaya koymuştur. Son olarak, PARP-
ZP’ye görsel elverişlilik ve sürücü tutarlılığı kısıtlarının eklenmesiyle elde edilen
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genişletilmiş problem (PARP-ZPGEST) için bir karışık tamsayılı programlama for-
mülasyonu geliştirilmiştir. Problemi etkin bir şekilde çözmek için bir adaptif geniş
komşuluk arama algoritması ve buna dayalı bir paralel temperleme yöntemi öner-
ilmiş ve önerilen algoritmanın performansı, yapılan hesaplama çalışmaları ile doğru-
lanmıştır.
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1. INTRODUCTION

The periodic vehicle routing problem (PVRP) is a generalization of the vehicle
routing problem (VRP) in which customers require one or several visits within a
multi-period planning horizon. Visit dates are not fixed; instead, a list of allowable
visiting options is associated with each customer. Without labeling the problem
with a specific name, Beltrami and Bodin (1974) introduce it in a study about
garbage collection in which some sites require service three times a week (Monday,
Wednesday, and Friday; or Tuesday, Thursday, and Saturday), whereas other sites
should be visited six times a week. Russell and Igo (1979) name the problem as
the assignment routing problem and allow more flexible visiting options making
all days of the week acceptable for each customer. Christofides and Beasley (1984),
naming the problem as the period routing problem, consider predetermined allowable
visiting options for each customer as in Beltrami and Bodin (1974). Gaudioso and
Paletta (1992) use the term periodic vehicle routing for the first time. They enforce
a minimum and a maximum number of days between two consecutive visits to a
given customer.

The PVRP has many real-life applications; multi-period routing plans with cus-
tomers or points of interest requiring regular and frequent visits are generic examples.
As evidenced in Beltrami and Bodin (1974) as the very first study, the waste collec-
tion systems are straightforward applications of the PVRP. More recently, special
purpose waste collection such as used oil and recyclable materials have become even
more common (Elbek and Wøhlk, 2016). In urban freight logistics, planning for the
distribution of Fast-moving consumer goods (FMCG) orders to retailers and sales
points can also be considered as another solid example as the frequency of visits to
customers, that is, the number of times each customer should be visited during the
planning horizon, varies significantly (Çopur et al., 2020). In the care of elderly and
disabled persons, the services are provided to users at different frequencies within a
certain period of time depending on their needs and requests; the visit schedules of
the care personnel can be constructed by solving a PVRP (Alves. et al., 2019).

The PVRP has a rich history of research since Beltrami and Bodin (1974). A
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variety of approaches have been proposed to model and solve the problem. A syn-
opsis of alternative PVRP formulations up to 2008 is presented by Francis et al.
(2008). Considering the various modeling approaches in the literature, our study
aims to provide an overview and a detailed computational comparison of the most
prominent PVRP formulations.

In particular, we investigate three alternative formulations: (1) a cut-based for-
mulation involving vehicle flow variables and exponentially many subtour elimi-
nation constraints (SECs), (2) a commodity flow formulation referred to as the
load-based formulation, involving both vehicle and commodity flow variables, and
a polynomial number of SECs, and (3) a new mixed integer programming formu-
lation, the so-called MTZ-based formulation, involving vehicle flow variables and a
polynomial number of Miller-Tucker-Zemlin type SECs (MTZ-SECs), which com-
bines several aspects of the existing modeling techniques. Our primary goal is to
study the computational performance of these formulations. We also extend these
formulations by adding time window constraints, which are commonly encountered
in practice, and we investigate how the resulting formulations perform in solving
the PVRP with time windows (PVRPTW). Moreover, we employ families of valid
inequalities to tighten the formulations.

Our study also brings together various data sets from the literature. We conduct
an extensive computational study on seven data sets with varying characteristics
to provide a thorough comparison of the aforementioned formulations as well as to
assess the benefits of using valid inequalities. The early PVRP benchmark instances
are presented by Russell and Igo (1979), Christofides and Beasley (1984), Russell
and Gribbin (1991), and Chao et al. (1995). Several studies use these instances as is
while others adapt them based for their problem structures (Cordeau et al., 1997), or
generate their own data sets with different characteristics (Rodriguez-Martin et al.,
2019). Cordeau et al. (2001) adapt the ten basic PVRP instances of Cordeau et al.
(1997) to the PVRPTW. Pirkwieser and Raidl (2009a) assign random allowable visit
schedules to the customers in the famous Solomon data set for the VRP with time
windows (Solomon, 1987).

Furthermore, the concept of "visual attractiveness" in routing, though not pre-
cisely defined (Constantino et al., 2015), has been increasingly recognized for its
practical importance. It generally encompasses certain desirable features for routes:

• compactness (Hollis and Green, 2012; Matis, 2008; Matis and Koháni, 2011;
Poot et al., 2002; Rossit et al., 2016; Tang and Miller-Hooks, 2006);

• non-overlapping or non-crossing routes (Hollis and Green, 2012; Poot et al.,
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2002; Kim et al., 2006; Rossit et al., 2016; Toth and Vigo, 2014; Lu and
Dessouky, 2006; Tang and Miller-Hooks, 2006; Matis, 2008);

• not complex (Constantino et al., 2015; Mesa et al., 2024);

• driver consistency (Braekers and Kovacs, 2016a; Rodriguez-Martin et al., 2019;
Rodríguez-Martín and Yaman, 2022)

Visual attractiveness in routing is highly relevant in practical applications.
Routes that are compact and well-separated are often more acceptable to practition-
ers and facilitate the implementation of routing plans. In some cases, compactness
is even a design requirement, such as in area-based distribution systems for parcel
delivery (Schneider et al., 2015). The differences between solutions optimized for
traditional objectives, like minimizing length or cost, and those optimized for visual
attractiveness are stark. For instance, Figures 1.1 and 1.2 illustrate solutions for
PVRPTW with and without considering non-crossing routes and driver consistency
constraints.

Figure 1.1 Solution routes to the PVRPTW without considering visual attractive-
ness and driver consistency constraints
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Figure 1.2 Solution routes to the PVRPTW considering visual attractiveness and
driver consistency constraints

Despite the inherent vagueness in defining visual attractiveness, this concept has
often been central in designing routing plans. To the best of our knowledge, Poot
et al. (2002) were the first to use this term, reflecting their customers’ requirements.
They noted that some customers considered the outputs from the ORTEC vehicle
routing software (http://www.ortec.com/) to be "poor." This dissatisfaction was
not only due to traditional metrics such as cost, total number of vehicles used, or
total distance traveled but also to non-standard indicators customers used to assess
plan acceptability. They observed that these non-standard measures were not well-
studied in the scientific literature and suggested that visually attractive plans seemed
more logical and aligned with traditional working methods, thereby fostering trust
among both drivers and planners, leading to quicker system acceptance (Poot et al.,
2002).

Since then, the importance of considering visual attractiveness has been fre-
quently emphasized in the literature, with its foundations largely based on practical
applications. According to Matis (2008), overlapping routes can lead to complaints
from drivers, who perceive such planning as inefficient. Practitioners generally dis-
like routes optimized solely for length that spread across different areas while in-
tersecting each other (Mourgaya and Vanderbeck, 2007). "Nice" solutions are often
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easier to implement practically, reducing the time needed to instruct drivers and
leading to more stable route durations due to their homogeneity in traffic conditions
(Battarra et al., 2014; Schneider et al., 2015). Routes can be further refined by fa-
miliarity with the area and clients (Kant et al., 2008; Poot et al., 2002). In addition,
if customer service cannot be provided at the preferred time, returning later is easier
if the vehicle remains in the same area. Similarly, in the case of traffic jams or road
disruptions, finding alternative routes is simpler when customers are in a compact
area (Hollis and Green, 2012).

Battarra et al. (2014) described applications where route compactness is crucial,
such as transporting elderly people to recreation centers, where users prefer being
picked up with neighbors, or in "gated communities" where customers should be vis-
ited sequentially by the same vehicle to avoid time-consuming stops at checkpoints.
Another example is household newspaper delivery, where it is undesirable to serve
the same area with multiple carriers, as neighboring subscribers may receive their
newspapers at very different times (Hasle et al., 2011).

In the home health care system, it is highly preferred that customers are visited
by the same nurse throughout their treatment planning horizon. This continuity
fosters trust and comfort, improves the quality of care, and ensures a better under-
standing of the patient’s needs and medical history (Yang et al., 2021).

From our perspective, the importance of visual attractiveness lies mainly in its
proven critical role in practical applications. Planning a near-minimum-cost rout-
ing plan that is unattractive and likely to be rejected by practitioners or modified
according to their preferences can be a waste of time and effort. Therefore, generat-
ing visually appealing routing plans can enhance customer satisfaction and reduce
implementation costs.

The contributions of this study are as follows:

• Mixed Integer Linear Programming (MILP) Formulations:

– We investigate the mixed integer linear programming (MILP) formula-
tions of the PVRP and the PVRPTW with a unified and comparative
perspective,

– We present a new formulation using vehicle flow variables, and

– We conduct a comprehensive computational study in which we bring
together seven sets of benchmark instances with different characteristics.

To the best of our knowledge, this is the first study exploring the behavior
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of traditional PVRP(TW) formulations on such a diverse set of problem in-
stances. We believe that our findings will provide guidance to those wishing
to study and develop solution methods for the PVRP(TW) and its variants as
well as other closely related problems in the future.

• Optimization Methodologies for PVRP:

– We propose Logic-Based Benders Decomposition (LBBD) algorithms to
solve the PVRP.

– We introduce a column generation-based heuristic to address the same
problem.

• Enhancements to PVRPTW Formulations:

– We extend the cut-based PVRPTW formulation to incorporate non-
crossing routes and driver consistency restrictions.

– We utilize PTALNS to solve the problem effectively.

By addressing these contributions, our study not only advances the theoretical
understanding of PVRP(TW) formulations but also provides practical insights
for improving routing plans in real-world applications.

The structure of this thesis is organized as follows:

• Chapter 2 presents a comprehensive literature review, outlining the relevant
studies and methodologies in the field.

• Chapter 3 is a comparative study of alternative PVRP(TW) formulations in
which in Section 3.1, the PVRP is formally defined, four formulations are
presented, and corresponding valid inequalities are introduced; then, all three
formulations, defined on the directed network, are extended to the PVRPTW
as well. In Section 3.2, the computational results on the data sets from the
literature are reported and discussed. Finally, Section 3.3 presents our findings
and concluding remarks.

• In Chapter 4, we address the PVRP using Logic-based Benders Decomposition
(LBBD) algorithms and a column generation-based heuristic.

– We propose LBBD algorithms in Section 4.1, which comprises five subsec-
tions. In Section 4.1.1, we introduce the Generalized Assignment Master
Problem. Section 4.1.2 presents the Vehicle Routing Sub-Problems, fol-
lowed by an introduction to Benders’ cuts in Section 4.1.3. Section 4.1.4
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explains the implementation of the proposed algorithms, and Section 4.1.5
covers the computational experiments.

– Section 4.2 introduces a column generation-based heuristic to address the
same problem, also divided into five subsections. Section 4.2.1 presents
the problem definition and formulation. Section 4.2.2 details the col-
umn generation approach. Section 4.2.3 discusses the pricing subprob-
lem. Section 4.2.4 describes the Integer solution of the problem. Section
4.2.5 provides the computational results. Finally, Section 4.3 offers the
conclusion of the chapter.

• In Chapter 5 we take into account the visual attractiveness and driver consis-
tency constraints and define PVRPTW with visual attractiveness and driver
consistency (PVRPTWVADC). In Section 5.1, we define the problem and pro-
vide detailed formulations. In Section 5.2, we introduce an adaptive large
neighborhood search (ALNS) algorithm, while Section 5.3 delves into the
Parallel Tempering technique. Section 5.4 integrates these methodologies,
describing the parallel tempering-based adaptive large neighborhood search
(PTALNS) Algorithm. The effectiveness and performance of the proposed ap-
proach are evaluated in Section 5.5 through a thorough computational study.
Finally, Section 5.6 concludes the chapter, summarizing key findings and sug-
gesting directions for future research.
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2. Literature Review

The PVRP is introduced in Beltrami and Bodin (1974), where, for the first time, pe-
riodicity of customer deliveries is taken into account in addition to routing decisions.
However Beltrami and Bodin (1974) do not present a mathematical formulation of
the problem. Another influential study in the early history of the PVRP by Russell
and Igo (1979) approaches the PVRP as the assignment routing problem and pro-
vides a verbal description of the parameters and the constraints of the problem in
detail, yet again without a formulation. Christofides and Beasley (1984) are credited
for providing the first mathematical formulation of the PVRP in many studies, but
in fact, Foster and Ryan (1976) made the earliest attempt to formulate the PVRP as
a vehicle scheduling problem incorporating the periodic delivery requirements. Al-
though the work by Foster and Ryan (1976) predates both Christofides and Beasley
(1984) and Russell and Igo (1979), only Russell and Igo (1979) cite Foster and Ryan
(1976). In general, most of these studies have been cited by the majority of the
subsequent studies due to the pioneering roles they played in the evolution of the
PVRP literature. In a more recent study, Campbell and Wilson (2014) discuss the
wide applicability of the PVRP and describe the development of solution methods.
In line with the focus of our study, in sections 2.1 and 2.2 we particularly focus on
the modeling approaches and formulations as well as other VRP variants that can
be considered as extensions or relatives of the PVRP. In Section 2.3, we explore the
importance of visual attractiveness in routing problems from various perspectives.

2.1 Modelling Approaches

Considering the mathematical modeling approaches available in the PVRP lit-
erature, vehicle-indexed formulations seem to be relatively more popular (Cordeau
et al., 1997; Christofides and Beasley, 1984; Huerta Muñoz, 2018; Alves. et al.,
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2019). Christofides and Beasley (1984) define the PVRP as the problem of assign-
ing customers to schedules to meet the required visit frequencies and designing a set
of routes for the customers assigned to be visited on each day of the planning horizon
in a separate subproblem. They present an integer programming (IP) formulation
for the problem using two sets of decision variables, one for assigning customers to
visit combinations and another for routing on each day. To circumvent computa-
tional difficulties of routing constraints, Tan and Beasley (1984) use a simplified
VRP formulation of Fisher and Jaikumar (1981) in which the routing constraints
are not explicitly specified. They define a cost measure θ that represents the cost of
visiting a specific node with a specific vehicle on a specific day and use two sets of
binary decision variables to formulate the problem.

Christofides and Beasley (1984) propose an aggregate vehicle-indexed formula-
tion for the PVRP (PVRP-A) by using aggregated binary variables which determines
if a customer is visited on a specific day without specifying the vehicle identity.
Huerta Muñoz (2018) develops a disaggregate vehicle-indexed formulation for the
PVRP (PVRP-D) and compares it with the PVRP-A. According to the results, the
PVRP-D produces better quality solutions than the PVRP-A.

Another approach to model the PVRP is by using commodity flow variables,
instead of vehicle-indexed variables, to identify the total flow (i.e. the total quantity
transported) on a given arc for each day of the planning horizon without addressing
the specific vehicle that traverses the arc; this approach is referred to as the load-
based formulation. Archetti et al. (2017) propose the first so-called load-based
formulation for the problem. Huerta Muñoz (2018) compare it with the PVRP-D
and the PVRP-A. The results show that the load-based formulation outperforms
both the PVRP-D and the PVRP-A.

In vehicle-indexed formulations, mostly to guarantee the connectivity of the ve-
hicle routes, standard SECs are used (Cordeau et al., 1997; Christofides and Beasley,
1984). Huerta Muñoz (2018) reinforces the classical SECs to have a stronger linear
programming relaxation. Archetti et al. (2017) define a set of three-indexed com-
modity flow variables to keep track of the vehicles’ load as they traverse the arcs to
avoid subtours and capacity violation. To prevent the formation of subtours, Alves.
et al. (2019) use a set of three-indexed integer variables which correspond to the
place of each customer in the sequence of visits of each vehicle on each day.

As it is common with other variants of the VRP, some studies present set cover-
ing and set partitioning formulations of the PVRP (Foster and Ryan, 1976; Baldacci
et al., 2011; Cacchiani et al., 2014). It is interesting to observe that the only exact
solution algorithm was proposed ten years ago by Baldacci et al. (2011), and yet, it is
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still credited for being the state-of-the-art methodology to solve the PVRP. This al-
gorithm is based on a set partitioning formulation of the PVRP. The authors propose
three different relaxations of their set partitioning formulation, which are then used
to derive strong lower bounds for the problem. Based on these lower bounds and
the information collected through a related dual solution, they reduce the number of
variables in the formulation without eliminating any optimal integer solution. The
reduced integer program is solved exactly by a commercial solver. Computational
results show that the proposed method can achieve lower bounds within 1% of opti-
mality on the average, improves the best-known upper bound for five instances, and
solves several test instances to optimality for the first time. Rothenbächer (2019)
uses their exact branch-and-price-and-cut algorithm, originally proposed to solve
the PVRPTW, also to solve some PVRP instances from the literature.

2.2 Relatives and Extensions of the PVRP

The multi-depot VRP (MDVRP) is a single-period VRP with multiple depots
in which each vehicle is assigned to one of the given depots. Cordeau et al. (1997)
show that the MDVRP can be formulated as a special case of the PVRP by asso-
ciating the depots in the MDVRP with the periods in the PVRP, and by enforcing
a single visit to every customer throughout the planning horizon. Consequently,
any method that can solve the PVRP can also solve the MDVRP. Bettinelli et al.
(2011) introduce a set-covering formulation for the multi-depot heterogeneous VRP
with time windows and develop a branch-and-cut-and-price algorithm to solve the
problem. The algorithm adopts different combinations of cutting planes and pricing
strategies. It can also be used as a column generation-based heuristic for large-scale
instances that cannot be solved to proven optimality. Computational results show
that the proposed methodology is competitive and often better in comparison with
local search heuristics from the literature.

Contardo and Martinelli (2014) provide an ad-hoc compact two-indexed IP for-
mulation, namely the vehicle-flow formulation, and a set-partitioning formulation
for the MDVRP. Several families of valid inequalities are used to strengthen both
formulations. They present an exact algorithm for the MDVRP which employs the
ad-hoc vehicle-flow and set-partitioning formulations at different stages. The first
one is used to derive a lower bound and implement variable fixing. The second
is solved by column-and-cut generation considering the reduced network obtained
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through the variable fixing procedure. The algorithm proves optimality for some
previously open instances. For the instances that the algorithm is not able to solve,
the terminal lower bounds are stronger than those obtained by earlier methods.

Francis et al. (2006) generalize the definition of periodicity and introduce the
PVRP with service choice in which service frequency is a decision of the problem.
They present an IP formulation for the PVRP-SC by extending the VRP formulation
of Fisher and Jaikumar (1981) to accommodate service choice and develop an exact
procedure to solve the problem. They deploy a Lagrangian relaxation scheme to
separate the decisions on scheduling customer visits from the routing decisions, and
create two subproblems. Then, they apply a subgradient optimization procedure on
both subproblems to obtain lower bounds. At the end of the Lagrangian relaxation
phase, if the solution, constructed along the way as the best-known upper bound,
equals to the lower bound, an optimal solution is found. Otherwise, a branch and
bound algorithm is used to close the remaining gap between the upper and lower
bounds. They also present a heuristic variation of their exact method for larger
problem instances.

Archetti et al. (2015a) propose MILP formulations for the multi-period VRP
with due dates (MVRPD), where customers have to be served between predefined
release and due dates. Their first formulation is a flow-based formulation (a vehicle
flow formulation) containing a set of four-indexed binary decision variables indicat-
ing whether a given arc is traversed by a particular vehicle on a particular day. The
flow-based formulation is then extended by defining additional variables to assign
customers to vehicles and days, which yields another formulation. Finally, a load-
based formulation, where aggregated vehicle flow variables are used, is obtained by
adding commodity flow variables representing the quantity transported via each arc
in the network. The authors present a series of valid inequalities for each formu-
lation, and a branch-and-cut algorithm to solve the formulations. The load-based
model outperforms the flow-based formulations according to the results of a compu-
tational study. Larrain et al. (2019) introduce two new classes of valid inequalities
for the load-based model of Archetti et al. (2015a) to improve the performance of
the branch-and-bound algorithm proposed by Archetti et al. (2015a). The enhanced
branch-and-bound algorithm is further improved by a variable MIP neighborhood
descent search algorithm (VMND) with local search operators in which whenever
the exact phase of the algorithm reaches a new upper bound, the local search proce-
dure is executed to speed up the search for high-quality solutions around the current
solution. Upon termination of the local search phase, the exact solution algorithm
resumes execution.
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Rodriguez-Martin et al. (2019) propose a MILP model of the PVRP with driver
consistency constraints which enforce all visits to a given customer within the plan-
ning horizon to be made by the same vehicle. They present several families of valid
inequalities to strengthen the linear programming relaxation of their formulation
and develop an exact branch-and-cut algorithm to solve the problem. On a new
set of randomly generated instances, the authors demonstrate the efficiency of their
algorithm as well as the benefits of the suggested valid inequalities and several al-
gorithmic enhancement procedures implemented. The algorithm is able to solve
to optimality all the feasible instances with 10, 20, and 30 customers and several
instances with 50, 60, and 70 customers.

Rothenbächer (2019) addresses the PVRPTW and its variant with fully flexible
schedule sets. The author presents a route-based extended set-partitioning formu-
lation for the PVRPTW and an exact branch-and-price-and-cut algorithm to solve
both problems. Results of a computational study with the PVRPTW benchmark
instances of Cordeau et al. (2001) demonstrate that the suggested algorithm is able
to identify lower bounds that are close to the best-known upper bounds for several
large instances. However, tests on the PVRP instances indicate that the algorithm
could not produce competitive results when compared to those reported by Baldacci
et al. (2011).

2.3 Visual Attractiveness

As previously mentioned, the concept of visual attractiveness, introduced by Poot
et al. (2002), is relatively new in the routing literature. However, earlier studies have
addressed similar ideas, primarily focusing on route compactness.

Tang and Miller-Hooks (2006) develop an iterative heuristic for solving the VRP
with maximum travel time constraints using a clustering-based algorithm. Initially,
seed customers are selected, and other customers are assigned to the nearest seed via
a Semi-Assignment Problem (SAP). A TSP heuristic then determines the schedule
and routing time for each cluster. If a route exceeds the maximum travel time,
the SAP is resolved with a modified cost matrix, increasing distances to overloaded
clusters and reducing distances to feasible ones. If SAP still does not yield a feasible
solution after several iterations, a Multi-objective Assignment Problem is used to
reassign customers, aiming to minimize the number of customers closer to another
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route’s center and the total travel times while explicitly limiting each route’s travel
time. The algorithm was tested on real-life instances from FedEx and compared with
Tang and Hu (2005), showing the expected trade-off between visual attractiveness
and standard objectives.

Zhou et al. (2006) and Lu and Dessouky (2006) present an insertion heuristic
to solve the multi-vehicle VRP with Pickup and Delivery with time windows that
includes a crossing-avoidance penalty in the insertion cost calculation. Both studies
note that it is relatively easy to find feasible and inexpensive insertions without
crossings at the beginning of route construction due to the availability of many
customers and the low initial route occupancy. However, as routes near capacity,
the focus shifts from visual attractiveness to optimizing length and capacity uti-
lization. To maintain some level of visual attractiveness, their algorithm allows for
increasingly less attractive insertions by reducing the crossing-avoidance penalty as
more customers are assigned. Their algorithm was tested on instances derived from
Solomon (1987) and compared to the Sequential Insertion Algorithm and a parallel
insertion heuristic, generally yielding better results in terms of both visual attrac-
tiveness and standard objectives. However, when compared with Li and Lim (2001),
their solutions performed worse in terms of the number of vehicles used and travel
time.

Kim et al. (2006) develop a clustering-based algorithm to enhance the visual
attractiveness of VRPTW solutions for waste collection. The two-stage heuristic
begins with a capacitated clustering algorithm to estimate and form clusters, fol-
lowed by an extended insertion algorithm to route points within each cluster. Ini-
tially, customers are assigned to the nearest seed customer, and cluster centroids are
calculated. Customers are then reassigned based on their distance from a "grand
centroid" while maintaining capacity and travel time constraints. The process re-
peats until cluster compositions stabilize. The second stage sorts clusters and applies
an insertion algorithm to determine routes, refining them further using a Simulated
Annealing algorithm. Similarly, Sahoo et al. (2005) introduced a route-management
application for waste collection that emphasizes route compactness. Their algo-
rithm, resembling Kim et al. (2006) method, employs the K-means Variant Balanced
Clustering Algorithm (Surya Sahoo PhD, 2004) instead of using a "grand centroid."
Tested on Solomon (1987), their approach generally produced more visually appeal-
ing but less efficient solutions compared to the best-known ones, whereas Kim et al.
(2006) focused on real-world waste collection problems.

Another area where companies prioritize generating visually attractive routes
is product distribution. Kant et al. (2008) demonstrate a heuristic algorithm im-
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plemented via the ORTEC vehicle routing software, which resulted in substantial
savings for the Coca-Cola Company. This algorithm combines an insertion method
with local search, avoiding movements that cause route overlaps and incorporating
a Clustering Penalty (CP) to discourage non-compact routes. The CP, proportional
to the distance of customers from the route’s central customer, is initially set high
to create familiar routes for dispatchers and drivers. As they become accustomed
to the new routes, the CP is lowered to optimize for cost. This gradual adjustment,
suggested by Poot et al. (2002), facilitates a smoother transition to more efficient
routes.

Poot et al. (2002) also collaborate with ORTEC clients to adapt a savings al-
gorithm, originally by Clarke and Wright (1964), to emphasize route compactness
by considering customer location, time windows, and vehicle type. Incorporating
a "region" factor in the savings calculation improved route compactness, outper-
forming standard insertion algorithms. Bosch (2014) further modified the ORTEC
software to include visual attractiveness constraints, based on Savelsbergh’s circle
covering method (Savelsbergh, 1990). This modification, inspired by experienced
planners’ manual improvements, led to cost reductions for the Zeeman chain store
in the Netherlands.

Hollis and Green (2012) develop a complex heuristic algorithm to create visually
attractive routes for Schweppes Australia Pty. Ltd. The algorithm operates in two
stages: a novel variation of Solomon’s Sequential Insertion Algorithm (Solomon,
1987), followed by a local search using the Guided Local Search Algorithm by Kilby
et al. (1999). Recognizing that insertion techniques alone can result in elongated,
non-compact routes, they implement an alternative insertion criterion. When a
route nears its maximum duration, new customers are inserted based on proximity
to already visited customers, avoiding elongated routes. Additionally, the local
search algorithm aims to minimize both routing costs and the overlap of convex
hulls associated with the routes. Testing on real-world instances from Melbourne
and Solomon’s VRPTW benchmark (Solomon, 1987) show that their algorithm while
yielding more visually appealing routes, resulted in greater total distances and more
routes compared to the best-known solutions.

Gretton et al. (2013) enhance the visual attractiveness of solutions generated
by the Indigo software, designed by Kilby and Verden (2011). Their approach uti-
lizes the ALNS method by Ropke and Pisinger (2006), which iteratively removes
and reinserts a large set of customers using a heuristic. They incorporate an in-
sertion algorithm that prioritizes visual attractiveness by considering the distance
of customers to the route median (the customer nearest to the route’s geometric
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centroid) and the sum of turn angles, referred to as bending energy. Their tests,
conducted on literature benchmarks (Solomon, 1987; Gehring and Homberger, 1999)
and real-world instances, demonstrate improved visual attractiveness of the routes.

Rossit et al. (2016) introduce a heuristic algorithm aimed at optimizing both
visual attractiveness and standard costs in the capacitated VRP (CVRP). Their
approach begins by generating an initial solution using a clustering-based algorithm
similar to Surya Sahoo PhD (2004), followed by refinement through local search
techniques. Testing on CVRP instances proposed by Uchoa et al. (2017) shows that
their algorithm produced visually appealing solutions surpassing the best-known
solutions in terms of aesthetic quality but with a trade-off of longer total route
lengths.

Rocha et al. (2022) tackles the challenge of designing vehicle routes that are
both cost-effective and visually attractive, suggesting that clustering can effectively
proxy for visual attractiveness. The authors present a bi-objective CVRP model
that aims to minimize travel costs and clustering criteria simultaneously. They
employ a multi-objective evolutionary algorithm to approximate the Pareto frontier.
Extensive computational experiments assess the impact of three clustering criteria:
diameter minimization, min-sum of cliques, and minimum sum-of-squares. The
results indicate that the latter two criteria yield high-quality, visually attractive
solutions while maintaining low travel costs.

Recent studies have introduced new variants of PVRP with a focus on "consis-
tency." Consistency can refer to the consistency of routes, as explored by Yao et al.
(2021), or to the consistency of visit times and drivers. Time consistency ensures
that visits to a customer occur at roughly the same time of day, which is crucial in
scenarios such as administering medication or conducting tests in-home healthcare
services. Driver consistency means that the same driver visits a customer each time,
enhancing service quality and leveraging the driver’s familiarity with customers,
routes, and traffic conditions (Smilowitz et al., 2013).

The Consistent VRP, which considers both time and driver consistency, has
been examined by Groër et al. (2009). In Consistent VRP, customer visit schedules
are predetermined, with consistency requirements linking different periods. Goeke
et al. (2019) proposed exact and heuristic algorithms to solve this problem, achieving
optimal solutions for instances with 30 customers over five periods within reasonable
time frames.

Other studies, such as those by Braekers and Kovacs (2016b), Zhu et al. (2008),
and Luo et al. (2015), explore a broader concept of driver consistency by limiting
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the number of drivers visiting each customer. Kovacs et al. (2015a) introduce the
generalized ConVRP, where a customer is visited by a limited number of drivers, and
variations in arrival times are penalized. A multi-objective approach to this problem
was studied by Kovacs et al. (2015b), while Campelo et al. (2019) examined a variant
involving multiple daily deliveries and service level agreements.

Rodriguez-Martin et al. (2019) develop a branch-and-cut algorithm for the PVRP
with Driver Consistency, where each customer must be visited by the same vehicle at
each visit. This study does not consider consistency in visit times or vehicle travel
time limits but requires the model to determine the visit schedules. Rodríguez-
Martín and Yaman (2022) address a variant called the PVRP with Driver Consis-
tency and Service Time Optimization, which not only determines routes and visit
schedules but also optimizes service times to maximize service utility for the com-
pany. The authors present a MILP formulation for this problem and propose three
branch-and-cut methods to solve it, including two methods based on Benders de-
composition.

For a more comprehensive insight into visual attractiveness in routing problems,
see Rossit et al. (2019). Their review paper provides a detailed exploration of the
topic.

2.4 Solution Approaches

To solve the PVRP and its variants, various solution methods have been devel-
oped, capable of producing good solutions within a reasonable amount of time. The
evolution of these methods can be traced from early heuristic approaches to more
advanced metaheuristics and exact methods.

2.4.1 Early Approaches

Initial methods for solving the PVRP primarily relied on construction and im-
provement heuristics. Beltrami and Bodin (1974) introduce key heuristics involving
the Clarke and Wright procedure and random assignment of customers to delivery
days. In the heuristic presented by Russell and Igo (1979) customers are clustered
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based on delivery requirements, followed by three heuristics: initial scheduling based
on cost estimates, link exchanges for improvement, and a modified Clarke and Wright
method. Christofides and Beasley (1984) present a heuristic for solving VRPs by
initially assigning customers based on delivery constraints and quantities, then re-
fining through cost-minimizing combinations. They improve solutions via customer
swaps and solve new problems as median problems or TSPs using heuristics, testing
with the dataset from Russell and Igo (1979) and 10 new instances.

2.4.2 Metaheuristics

As computational power increased, metaheuristics gained popularity due to their
ability to handle larger instances effectively.

Tabu Search: Cordeau et al. (1997), introduce the first tabu search algorithm
for PVRP, Periodic TSP, and MDVRP. It randomly assigns customers to deliv-
ery days, then optimizes routes using insertion heuristics and neighborhood moves,
with penalties for infeasible solutions to encourage diversity. Their method, requir-
ing fewer user parameters, produced new best solutions on many instances. This
approach inspired numerous adaptations for related problems, such as PVRPTW,
PVRP incorporates intermediate facilities, and applications in various industries,
enhancing computational power and operational flexibility.

Variable Neighborhood Search: Hemmelmayr et al. (2009) improve best-
known solutions using Variable Neighborhood Search (VNS), which alternated neigh-
borhoods to escape local optima. They allowed inferior solutions similar to simulated
annealing, which proved effective on canonical datasets. Pirkwieser and Raidl (2010)
extended this approach with multilevel refinement, abstracting and solving simpler
versions of the problem.

Adaptive Large Neighborhood Search: Dayarian et al. (2016) investigate
the design of tactical plans for a transportation problem inspired by real-world milk
collection in Quebec. To account for seasonal variations, they modeled the problem
as a multi-period VRP and developed an ALNS algorithm incorporating several
heuristics. Testing the algorithm on a large set of instances of different sizes, they
compared results for smaller instances with existing exact solutions and computed
lower and upper bounds for larger instances.

Other Metaheuristics: Several other metaheuristics have been developed for
the PVRP. Ochi and Rocha (2000) propose a genetic algorithm combined with local
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search. Vidal et al. (2012) enhanced genetic search by increasing population diver-
sity. Matos and Oliveira (2004) applied ant colony optimization, while Gonçalves
et al. (2005) used a greedy-randomized adaptive search procedure.

2.4.3 Exact Solution Approaches

Christofides and Beasley (1984) is well cited by PVRP papers, likely since they
provide the first IP formulation for the PVRP. Although many publications ref-
erence or extend that formulation or provide their own mathematical formulation,
most admit that solving these formulations is limited to at most moderate-size prob-
lems and resort to other solution approaches. Mostly, Heuristics and metaheuristics
are applied, some based on the information provided by the IPs. However, a few
publications exploit deeply the flexibility of mathematical programming approaches
to solve the PVRP or its variations.

Francis et al. (2006) generalize the definition of periodicity in PVRP and in-
troduce the PVRP with service choice. They present an IP formulation for the
PVRP-SC by extension of Fisher and Jaikumar (1981) VRP formulation in several
dimensions to accommodate service choice and propose an exact solution proce-
dure to solve the problem. The first component is the Lagrangian relaxation of
one constraint and separates the decisions on scheduling customers from routing to
create two subproblems. Then, they apply a subgradient optimization procedure
on a Lagrangian function to develop lower bounds on the solution. At the end of
the Lagrangian relaxation phase, if the solution, constructed along the way as the
best-known upper bound, equals the lower bound, the optimal solution is reached.
Otherwise, a branch and bound algorithm is used to close the remaining gap be-
tween the upper and lower bounds. They also present a heuristic variation of the
exact method. These solution methods are limited to problem instances of medium
size.

Francis and Smilowitz (2006) present a continuous model by approximating dis-
crete variables and parameters of the formulation presented in Francis et al. (2006)
with continuous functions. They propose a solution approach based on geographic
decomposition and variable substitution. Utilizing this approach leads to a simple
problem that can be solved quickly. Therefore, it can be useful for larger prob-
lems. They apply this approach to the 100b PVRP dataset from Christofides and
Beasley (1984). Although this approach does not improve the best-known value,
it is competitive. Its quick results can also be used to help design valuable service
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options.

Mourgaya and Vanderbeck (2007) develop a model with a twofold objective: op-
timization of regionalization and balancing the workload across vehicles. To solve
the relaxed problem, they employ a Dantzig–Wolfe reformulation and column gener-
ation. They apply insertion heuristics to price out columns with considering balanc-
ing the two objectives. A feasible solution for the PVRP is produced by rounding
the solution, obtained at the end of the LP solution phase, by exploring the branch
and bound tree. They use some instances from the Cordeau dataset (Cordeau et al.,
1997) to evaluate the solution approach. Although this approach produces costly
routes, it can compete with the approach of Cordeau et al. (1997) when regionaliza-
tion and workload balancing are taken into account.

Rodriguez-Martin et al. (2019) propose an integer linear mathematical formula-
tion for the PVRP with driver consistency in which each customer should be visited
by the same vehicle within the planning horizon. They presented several families
of valid inequalities to strengthen the LP relaxation of the problem. They devel-
oped an exact algorithm, which is a combination of a branch and bound method
and a cutting-plane method, to solve the problem. The latter is used to derive lower
bounds by solving the improved LP relaxation of the problem. They generated their
own benchmark instances to evaluate the performance of the algorithm. Compar-
ing the branch and bound algorithm with other simplified versions of it shows the
efficiency of applied valid inequalities and other procedures in the algorithm. The
algorithm is able to solve to optimality all the feasible instances with 10, 20, and 30
customers and several instances with 50, 60, and 70 customers.

Baldacci et al. (2011) propose a new IP for the PVRP and three different re-
laxations of this formulation, which are used to derive strong lower bounds for the
problem. Without eliminating any optimal integer solution, they reduce the number
of variables in the formulation, using the incorporation of these lower bounds and
the information gained from a related dual solution. The reduced integer problem
is solved exactly. Computational results show that the exact method can achieve
the lower bound on average within 1% of optimality. The algorithm improves the
best-known upper bound for five instances and solves several test instances to op-
timality for the first time. Their proposed algorithm currently is credited as the
state-of-the-art methodology for the exact solution of the PVRP.

Archetti et al. (2015b) propose three alternative IP and MIP formulations for the
multi-period vehicle routing problem with due dates (MVRPD), where customers
have to be served between a predefined release and a due date. They present a
series of valid inequalities for each formulation. The formulations were solved with
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a branch and cut algorithm. According to computational results aggregated load-
based model (MIP) outperformed the other two flow-based formulations (IPs).

Larrain et al. (2019) formulate MVRPD as a mixed-integer programming prob-
lem. They improve the performance of the branch-and-bound algorithm (B&B−1)
proposed by Archetti et al. (2015b) by introducing two new classes of valid inequal-
ities. They compare the enhanced algorithm (B&B− 2) with B&B− 1 through
computational experiments. They also present a hybrid algorithm for the MVRPD,
which combines variable MIP neighborhood decent search (VMND) and branch-and-
bound algorithm. The idea is to speed up the search for the high-quality solution in
the local search heuristic embedded in B&B−2 through VMND and define search
operators through variable fixing on MILP problems. Computational results show
that the new branch-and-bound algorithm (B&B−2) beats the B&B−1 in 47 in-
stances, ties in 26, loses in 7 and reduces the average optimality gap on each group
of instances. The B&B− 2 increases the number of instances solved to optimality
from 21 to 24 out of 80 and reduces the optimality gap from 12.1% to 5.1% on the
instances with one vehicle. The hybrid algorithm improves the best-known solution
for 35 out of 80 instances and reduced the average optimality gap from 5.1% to
3.6%.

Cordeau et al. (1997) show the MDVRP can be formulated as a special case of
PVRP. Consequently, the same methodology can be applied to solve both problems.
According to the survey on the MDVRP provided by Montoya-Torres et al. (2015),
exact solution techniques are employed in 25% of reviewed papers on MDVRP.
Baldacci and Mingozzi (2009) develop an exact method for solving different classes
of VRP that is also capable of solving MDVRP. The algorithm is based on the
set-partitioning formulation and on dual heuristics. Firstly, the algorithm applies a
procedure to generate routes. Then, three bounding procedures based on the LP-
relaxation and Lagrangian relaxation of the formulation are applied to reduce the
number of variables. The reduced problem can be solved by an ILP solver. The
computational results show that the exact algorithm was able to improve the best-
known upper bound of some instances from the literature. They also improve the
lower bound for the main instances from the literature.

Bettinelli et al. (2011) present a branch-and-cut-and-price algorithm for opti-
mization of the multi-depot heterogeneous vehicle routing problem with time win-
dows. The method is allowed to use different combinations of cutting and pricing
strategies. When the scale of the instances makes the algorithm unable to find
provably optimal solutions, the algorithm can be used as a column generation-based
heuristic. Computational results show that these procedures are competitive and
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often better in comparison with local search heuristics from the literature.

Contardo and Martinelli (2014) formulate MDVRP through a vehicle-flow and
a set-partitioning formulation. Several families of valid inequalities are used to
strengthen both formulations. They present an exact algorithm for the MDVRP
in which the formulations are exploited at different stages. The algorithm includes
variable fixing, column-and-cut generation, and column enumeration. To find a
tight lower bound, they eliminate non-promising edges by using the flow-based for-
mulation. They solve the set partitioning formulation by using the reduced network
obtained through the variable fixing procedure. The exact algorithm is able to prove
optimality for some previously open instances. For the instances that the algorithm
is not able to solve, the terminal lower bounds prove stronger than those presented
by earlier state-of-the-art methods.

Rodríguez-Martín and Yaman (2022) explore PVRPDC, an extension of the
classic VRP where routes for several vehicles must be determined over a multi-day
horizon. Each customer has possible visit schedules and must always be visited by
the same vehicle. They studied a variant incorporating service time optimization,
aiming to maximize the utility of the service. They proposed a mixed-integer linear
programming formulation and three branch-and-cut methods, two based on Benders
reformulations, and reported computational results on diverse benchmark instances.

These advancements, particularly in metaheuristics and exact methods, have
significantly improved the ability to solve complex PVRP instances efficiently, with
ongoing research continuing to refine and extend these approaches.
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3. A Comparative Study of Alternative Formulations for the

Periodic Vehicle Routing Problem

3.1 Problem Definition and Formulation

The PVRP can be defined on a complete directed graph G = (N,A) with N =
{0,1, . . . ,n} being the set of nodes, where node 0 represents the depot and the nodes
in the set Nc = {1, . . . ,n} correspond to the customers. The set of arcs is given by
A = {(i, j) : i, j ∈N,i ̸= j}. Each arc (i, j) is associated with a non-negative cost cij .
Let T = {1, . . . , τ} denote the set of time periods defining the planning horizon. A
fleet of homogeneous vehicles K = {1, . . . ,κ}, each having a capacity of Q units, is
available to serve the customers. Associated with every customer i∈Nc is a demand
di for each visit, and a predefined set of possible visit schedules Pi. A given schedule
p ∈ Pi consists of the specific days on which the customer should be visited, i.e.,
p ⊆ T . The problem is to select a visit schedule for each customer and design the
vehicle routes in order to minimize the total routing cost. A feasible solution to
the PVRP involves τ sets of vehicle routes that satisfy customer visit frequency and
demand constraints while respecting the vehicle capacities.

We discuss alternative formulation approaches for the PVRP to compare against
each other with respect to computational performance. Two of these formulations
are already studied: the load-based formulation (Archetti et al., 2017) and the cut-
based formulation (Rodriguez-Martin et al., 2019). In addition, we develop a for-
mulation of the problem using vehicle flow variables and the well known MTZ-SECs
(Miller et al., 1960). This formulation is referred as the MTZ-based formulation. All
three formulations are extended to the PVRPTW as well. We also present some valid
inequalities adapted from the literature to strengthen the proposed formulations.
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3.1.1 MTZ-based Formulation

We use the following decision variables in the MTZ-based formulation; xijt is a
binary variable which is equal to 1 when arc (i, j) ∈A is traversed on day t ∈ T , and
0 otherwise, sip is a binary variable which is equal to 1 if schedule p ∈ Pi is chosen
to visit customer i ∈Nc, and 0 otherwise, yit is binary variable which is equal to 1
if customer i is visited at time period t, and 0 otherwise, and continuous variable
uit which denotes load of the vehicle when it arrives at node i ∈N on day t ∈ T .

Accordingly, the PVRP is formulated with the model M1 as

minimize
∑

(i,j)∈A

∑
t∈T

cijxijt,(3.1)

subject to
∑

p∈Pi

sip = 1 ∀i ∈Nc,(3.2)

∑
p∈Pi:t∈p

sip = yit ∀i ∈Nc,∀t ∈ T,(3.3)

xijt ≤
yit +yjt

2 ∀i, j ∈Nc,∀t ∈ T,(3.4) ∑
j∈Nc

x0jt ≤ κ ∀t ∈ T,(3.5)

∑
j∈N\{i}

xijt = yit ∀i ∈Nc,∀t ∈ T,(3.6)

∑
j∈N\{i}

xjit = yit ∀i ∈Nc,∀t ∈ T,(3.7)

ujt ≤ uit−diyit +Q(1−xijt) ∀i ∈Nc,∀j ∈Nc,(3.8)

∀t ∈ T,

di ≤ uit ≤Q ∀i ∈Nc,∀t ∈ T,(3.9)

xijt ∈ {0,1} ∀(i, j) ∈ A,∀t ∈ T,(3.10)

sip ∈ {0,1} ∀i ∈Nc,∀p ∈ Pi,(3.11)

yit ∈ {0,1} ∀i ∈Nc,∀t ∈ T.(3.12)

The objective function (3.1) minimizes the total routing cost. Constraints (3.2)
ensure that an allowable visit schedule is selected for each customer. Constraints
(3.3) relate the customer visit variables and the schedule selection variables. Con-
straints (3.4) guarantee that only those arcs connecting the customer pairs assigned
to the same day are used. Constraints (3.5) impose that the number of vehicles
that can be used on any day of the planning horizon cannot exceed the fleet size κ.
Any customer to be served on a given day will be visited exactly once due to con-
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straints (3.6) and (3.7), which, together, imply vehicle flow conservation. Subtours
are prevented through constraints (3.8). Finally, vehicle capacity and demand satis-
faction constraints are given by (3.9). Constraints (3.10)–(3.12) specify the domain
restrictions on the variables.

The model M1 also allows the following family of valid inequalities inspired by the
valid inequalities originally developed for the capacitated vehicle routing problem
by Kara et al. (2004).

Inequalities I1 . The inequalities

ujt−uit +Qxijt +(Q−dj−di)xjit ≤Q−di ∀i ∈Nc,∀j ∈Nc,∀t ∈ T(3.13)

are valid for the MTZ-based formulation.

Proof. The inequalities

ujt ≤ uit−di +Q(1−xijt) ∀i ∈Nc,∀j ∈Nc,∀t ∈ T(3.14)

is the logical interpretation of constraints (3.8). Rearranging constraints (3.14)
yields

ujt−uit +Qxijt ≤Q−di ∀i ∈Nc,∀j ∈Nc,∀t ∈ T.(3.15)

Adding an extra term αjitxjit to the left-hand side as,

ujt−uit +Qxijt +αjitxjit ≤Q−di ∀i ∈Nc,∀j ∈Nc,∀t ∈ T,(3.16)

we seek the largest value of αjit such that (3.16) is valid. If xjit = 0, then αjit can
take any value. If xjit = 1, then xijt = 0 and we obtain

αjit ≤Q+(uit−ujt)−di ∀i ∈Nc,∀j ∈Nc,∀t ∈ T.(3.17)

Constraints (3.15) for xjit = 1 imply that

(uit−ujt)≤−dj ∀i ∈Nc,∀j ∈Nc,∀t ∈ T.(3.18)

Then, we obtain (3.19) from (3.17) and (3.18)

αjit ≤Q+(uit−ujt)−di ≤Q−dj−di ∀i ∈Nc,∀j ∈Nc,∀t ∈ T.(3.19)

Finally, by substituting the largest value of αjit in (3.16), we get (3.13).
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Inequalities I2 . Symmetry-Breaking of Routes: By exploiting the fact
that arc costs are symmetric, each route is associated with a cost regardless of its
orientation. we impose

xi0t ≤
∑

r≤i x0rt ∀i ∈Nc,∀t ∈ T(3.20)

to break the symmetry of the routes and choose the orientation that starts with the
customer with the lowest index among two possible orientations for a route. The
inequalities (3.20) are optimality cuts, but not valid inequalities.

Inequalities I3 . Valid inequalities: The relation between variables x and y

is imposed by constraints (3.4)

xijt ≤
yit+yjt

2 ∀i ∈Nc,∀j ∈Nc,∀t ∈ T,

which state that no arc (i, j) can be used between two customers i and j on a
particular day t unless they are both scheduled for delivery on day t. Taking into
account that no arc will be traversed in both directions in the same time period, the
inequalities

xijt +xjit ≤
yit+yjt

2 ∀i < j ∈Nc,∀t ∈ T,(3.21)

are valid for MTZ-based formulation.

3.1.2 Load-based Formulation

The load-based formulation proposed by Archetti et al. (2017) includes, in addi-
tion to the previously defined x, y, and s variables used in the MTZ-based formu-
lation, a set of continuous (commodity flow) variables lijt representing the load of
the vehicle when traversing arc (i, j) ∈ A in time period t ∈ T , and a set of integer
variables vt corresponding to the number of vehicles used in time period t ∈ T . The
model L1 corresponding to the load-based formulation of the PVRP is as follows:
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minimize
∑

(i,j)∈A

∑
t∈T

cijxijt,(3.1)

subject to (3.2)− (3.6),(3.10)− (3.12),∑
j∈N\{i}

xijt =
∑

j∈N\{i}
xjit ∀i ∈N, ∀t ∈ T,(3.22)

∑
j∈N\{i}

lijt−
∑

j∈N\{i}
ljit =(3.23)

−diyit, i ∈Nc∑
j∈Nc

djyjt, i = 0
∀t ∈ T,

∑
i∈Nc

diyit ≤Qvt ∀t ∈ T,(3.24)

lijt ≤Qxijt ∀(i, j) ∈ A, ∀t ∈ T,(3.25)

lijt ≥ 0 ∀(i, j) ∈ A, ∀t ∈ T,(3.26)

vt ∈ Z+ ∀t ∈ T.(3.27)

The objective function and constraints (3.1) to (3.6) and constraints (3.10) to
(3.12) are already discussed for M1. The vehicle flow and the commodity flow
conservation constraints are given by (3.22) and (3.23), respectively. Constraints
(3.24) guarantee that the total amount delivered within a given period does not
exceed the total capacity of the vehicles used in that time period. Constraints
(3.25) link the vehicle flow and the commodity flow variables. Constraints (3.26)
and (3.27) define the domains of the new variables.

Equality I4 . Sum of final loads: All vehicles come back to the depot without
carrying any load. This equality is not valid because there exist valid solutions to
the problem that do not adhere to this restriction. Instead, it is an optimality cut,
meaning that at least one optimal solution meets this condition. It can be utilized
to tighten the solution space.

∑
t∈T

∑
j∈Nc

lj0t = 0(3.28)

Equality (3.28) are exploited in order to strengthen the Load-based formulation.
Optimality cuts (3.20) and valid inequalities (3.21) also can be considered for the
Load-based formulation. Valid inequalities (3.21) and optimality cuts (3.20) and
(3.28) are borrowed from Archetti et al. (2017).
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3.1.3 Directed Cut-based Formulation

The cut-based formulation presented here is the directed version of the model
proposed by Rodriguez-Martin et al. (2019) on an undirected graph, in which driver
consistency restrictions are relaxed and customers have arbitrary demands (different
than the unit demand assumption made by the authors). The newly defined and
modified variables used in the cut-based formulation are as follows; binary variable
xijtk which is equal to 1 if vehicle k ∈K traverses arc (i, j) ∈ A on day t ∈ T , and
0 otherwise, binary variable zitk which is equal to 1 if vehicle k ∈K visits customer
i ∈Nc on day t ∈ T , and 0 otherwise, and also binary variable vtk which takes value
1 if vehicle k ∈K is used on day t ∈ T , and 0 otherwise.

For any subset S ⊆ N , we define δ+(S) as the set of outgoing arcs, i.e., arcs
(i, j) with i ∈ S and j ∈N \S, and δ−(S) as the set of incoming arcs, i.e., arcs (i, j)
with i ∈N \S and j ∈ S. The model DC1 corresponding to the directed cut-based
formulation is:

minimize
∑

(i,j)∈A

∑
t∈T

∑
k∈K

cijxijtk,(3.29)

subject to (3.2),(3.11),∑
p∈Pi:t∈P

sip =
∑

k∈K

zitk ∀i ∈Nc,∀t ∈ T,(3.30)

∑
i∈Nc

zitk di ≤Qvtk ∀k ∈K,∀t ∈ T,(3.31)

∑
j∈N\{i}

xijtk = zitk ∀i ∈Nc,∀k ∈K,∀t ∈ T,(3.32)

∑
j∈N\{i}

xjitk = zitk ∀i ∈Nc,∀k ∈K,∀t ∈ T,(3.33)

∑
(h,m)∈δ+(S)

xhmtk ≥ zitk ∀S ⊆Nc,∀i ∈ S,∀k ∈K,(3.34)

∀t ∈ T,

xijtk ∈ {0,1} ∀i, j ∈N,∀k ∈K,∀t ∈ T,(3.35)

zitk ∈ {0,1} ∀i ∈Nc,∀k ∈K,∀t ∈ T,(3.36)

vtk ∈ {0,1} ∀k ∈K,∀t ∈ T.(3.37)

The objective function (3.29) minimizes the total routing cost. Since ∑k∈K zitk =
yit for all i ∈ Nc and t ∈ T , constraints (3.30) and (3.32)–(3.33) are equivalent to
(3.3) and (3.6)–(3.7), respectively. Constraints (3.31) are the vehicle capacity re-
strictions. Constraints (3.34) prevent subtours. Variable domain restrictions are

27



given by (3.35)–(3.37).

3.1.4 Undirected Cut-based Formulation

The periodic vehicle routing problem (PVRP) can be defined on a complete
undirected graph G = (N,E) with N = {0,1, . . . ,n} being the set of nodes, where
node 0 represents the depot and the nodes in the set Nc = {1, . . . ,n} correspond
to the customers. The set of edges is given by E = {e ⊂ N : |e| = 2}. Each edge
e is associated with a non-negative cost ce. Integer variable xetk may take values
{0,1} ∀{i, j} ∈E\{{0, j} : j ∈Nc} and values {0,1,2} ∀{0, j}, j ∈Nc. For any subset
S ⊆N , let δ(S) = {e ∈ E : |S ∩ e| = 1}. If S = {i} , we write δ(i) instead of δ({i}).
In addition, for a given subset of edges E′ ⊆E, we define xtk(E′) =∑

e∈E′ xetk. The
model UC1 corresponding to the undirected cut-based formulation is:

minimize
∑
e∈E

∑
t∈T

∑
k∈K

cexetk,

(3.38)

subject to (3.2),(3.30),(3.31),(3.11),(3.36),(3.37),

xtk(δ(i)) = 2zitk ∀i ∈N,∀k ∈K,∀t ∈ T,(3.39)

xtk(δ(S))≥ 2zitk ∀S ⊆Nc,∀i ∈ S,∀k ∈K,∀t ∈ T,(3.40)

xetk ∈ {0,1} ∀e ∈ E\{{0, j} : j ∈Nc},∀k ∈K,(3.41)

∀t ∈ T,

x0jtk ∈ {0,1,2} ∀{0, j}, j ∈Nc,∀k ∈K,∀t ∈ T.(3.42)

The objective function (3.38) minimizes the total routing cost. Constraints (3.39)
are the degree constraints for the depot and the customers. Constraints (3.40)
prevent subtours. Variable domain restrictions are given by (3.41)–(3.42).

3.1.5 Extension to the PVRPTW

The PVRPTW is the extension of the PVRP in which each customer i must be
served within a specified time interval [Ei,Li], called a time window. The vehicle

28



must stop at the customer location for ri units of time for service. In the case of
early arrival at a customer, it must wait until Ei when the time window opens.

3.1.5.1 MTZ-based PVRPTW Formulation

Let wit be the start time of serving customer i on day t and M be a large
constant. We extend the MTZ-based PVRP model M1 to obtain a model M2 for
the PVRPTW as follows:

minimize (3.1),

subject to (3.2)− (3.12),

wit + ri + cij−wjt ≤ (1−xijt)M ∀i ∈N,∀j ∈Nc,∀t ∈ T,(3.43)

wit + ri + ci0−L0 ≤ (1−xi0t)M ∀i ∈Nc,∀t ∈ T,(3.44)

Ei ≤ wit ≤ Li ∀i ∈N,∀t ∈ T.(3.45)

Constraints (3.43)–(3.45) guarantee the feasibility of the tours with respect to
time window restrictions. The large constant M may be equal to max(i,j)∈A{Li +
ri + cij−Ej}.

3.1.5.2 Load-based PVRPTW Formulation

Using the new variables, wit as defined in the MTZ-based PVRPTW model and
the corresponding set of constraints (3.43)–(3.45), we extend the load-based PVRP
model L1 to the model L2 to account for time window constraints as follows:

minimize (3.1),

subject to (3.2)− (3.6),(3.10)− (3.12),(3.22)− (3.27),(3.43)− (3.45).

For both M2 and L2, we adapt the following valid inequalities, well-known in
the literature without the multi-period planning horizon aspect, for the PVRPTW
without any proof.
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Inequalities I5 . The constraints

E0 + c0i ≤ wit ≤ L0− ci0 ∀i ∈Nc,∀t ∈ T,(3.46)

are valid inequalities for models M2 and L2. It states that the initiation of service at
node i∈Nc is within the range of the earliest possible departure time from the depot
plus the time it takes to travel from the depot to node i, and the latest allowable
arrival time of a vehicle at the depot minus the time it takes to travel from node i

to the depot.

3.1.5.3 Cut-based PVRPTW Formulation

We now define witk as the service start time of customer i with vehicle k on day
t. We extend the directed cut-based PVRP model DC1 to the model C2 for the
PVRPTW formulation as follows:

minimize (3.29),

subject to (3.2),(3.11),(3.30)− (3.37),

witk + ri + cij−wjtk ≤ (1−xijtk)M ∀i ∈N,∀j ∈Nc,∀k ∈K,∀t ∈ T,(3.47)

witk + ri + ci0−L0 ≤ (1−xi0tk)M ∀i ∈Nc,∀k ∈K,∀t ∈ T,(3.48)

Ei

∑
j∈N

xijkt ≤ witk ≤ Li

∑
j∈N

xijkt ∀i ∈N,∀k ∈K,∀t ∈ T.(3.49)

Constraints (3.47) to (3.49) guarantee the feasibility of the tours with respect to
time window restrictions.

3.2 Computational Experiments

We investigate the computational performance of the alternative formulations for
both the PVRP and the PVRPTW as well as the contribution of the proposed valid
inequalities. Our first set of experiments focuses on the comparison among the MTZ-
based PVRP model (M1) and the load-based PVRP model (L1), in the presence and
absence of valid inequalities, and the undirected cut-based PVRP model (UC1). In
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the second set of experiments, we compare the MTZ-based PVRPTW formulation
(M2) and the load-based PVRPTW formulation (L2), in the presence and absence of
the presented valid inequalities, and the directed cut-based PVRPTW formulation
(C2). All computational experiments are carried out on a virtual machine with Intel
Xeon CPU E5-2640 processor with 2.60 GHz speed, 16 GB RAM, and 64-bit, using
Gurobi Optimizer 8.1.1 as the commercial solver with Python 3.7.4.

3.2.1 Benchmark Instances

One of the contributions of this study is to bring together all benchmark problem
instances in the literature; we have identified eight sets: five for the PVRP and three
for the PVRPTW. Their features are summarized below.

First data set (S1) The PVRP instances in S1 consists of 32 instances with up
to 417 customers and τ ∈ {2,4,5,6,7,8,10}; it is composed of instances originally
proposed by Christofides and Beasley (1984), Russell and Igo (1979), Russell and
Gribbin (1991), and Chao et al. (1995). Visit schedules of customers are symmetric,
i.e., allowable visit schedules for the customers with the same visit frequency are the
same. In some instances, the spatial distribution of nodes is random, and for the
rest, it is symmetric with respect to the origin.

Cordeau (1997) data set (S2) The PVRP instances in S2 consists of ten in-
stances with up to 288 customers and τ ∈ {4,6}; it is composed of randomly gen-
erated instances by Cordeau et al. (1997). Visit schedules of customers are also
symmetric.

Archetti (2017) data set (S3) The PVRP data set S3 is provided by Archetti
et al. (2017) which consists of 25 instances with τ = 5 and |Nc| ∈ {7,9,11,15,49}.
They generated the instances in a similar way to those used by Francis et al. (2006).
In these instances visit schedules of customers are also symmetric.

Archetti (2017) data set (S4) This set consists of 35 PVRP instances with
clustered customers in which τ = 5 and |Nc| ∈ {10,15,20}. Other parameters are: the
number of clusters p, a radius |r| ∈ {0.15,0.30,0.50} which determines the coverage
area of each cluster, and β which is used in determining the minimum distance β×r

among the centers of the clusters. For |Nc| = 10, the number of clusters has been
set to p = 2, whereas for instances with |Nc| ∈ 15,20 has been set to p = 3. To avoid
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clusters overlapping the value of β has been set to 2 when |r| ∈ {0.15,0.30}. For the
instances with |r| = 0.50, β has been set to 1 to allow that a customer can belong
to more than one cluster.

Rodriguez-Martin (2019) data set (S5) The PVRP instances in S5 are pro-
posed by Rodriguez-Martin et al. (2019), originally for the PVRP with driver con-
sistency. The data set consists of 80 combinations of n∈Nc, k ∈K, and t∈ T where
|Nc| ∈ {10,20, ...,70}, κ ∈ {2,3,4} and τ ∈ {2,3,4,5}. There are three instances for
each combination which results in 240 instances. The spatial distribution and visit
schedules of nodes are randomly generated. The nodes with the same visit fre-
quency have various options of visit schedules. Due to the violation of the capacity
constraints, some instances had to be modified by increasing the vehicle capacity.

Cordeau (2001) data set (S6) The PVRPTW instances in S6 are proposed
by Cordeau et al. (2001). This set of 20 instances was generated by adding time
windows of different widths to ten basic PVRP instances introduced by Cordeau
et al. (1997). The basic instances were created randomly by clustering the cus-
tomers around a given number of seed points and the visit schedules of cus-
tomers are symmetric. The new set consists of two groups of ten instances with
|N | ∈ {48,72,96,144,192,216,240,288} and τ ∈ {4,6}. The first group has tight time
windows which are created by choosing the uniform random numbers Ei and Li re-
spectively in the intervals [60,480] and [Ei +90,Ei +180]. For the second group, wide
time windows are generated by using the intervals [60,300] and [Ei + 180,Ei + 360]
respectively for Ei and Li. The depot is set to have a time window of [0,1000].

Pirkwieser (2009) data set (S7) The PVRPTW instances in S7 are proposed
by Pirkwieser and Raidl (2009a). They derive 45 PVRPTW instances from the
Solomon VRPTW data set by evenly assigning the possible visit combinations to
the customers at random. They use the first five instances of each of types with the
tight time windows, of random (R), clustered (C), and mixed random and clustered
(RC). They use three planning horizons: four (P4), six (P6), and eight (P8) days.
The distribution of nodes are identical for all instances within one type (i.e., R, C
and RC). The instances differ with respect to the time window density (i.e., the
percentage of customers with time windows).

Vidal (2013) data set (S8) PVRPTW instances in S8 are introduced by Vidal
et al. (2013). S8 consists of 28 instances involving 360 to 960 customers with τ ∈
{4,6,12}. Due to the size of instances, they can only be attempted with heuristic
methods; we do not conduct any computational experiments on S8.
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3.2.2 Evaluation of Alternative PVRP Formulations

Data sets S1, S2, S3, S4 and S5 are used for the comparison among the MTZ-
based PVRP model (M1), the load-based PVRP model (L1), and the cut-based
PVRP model (UC1). Each instance in S1 and S2 is solved with M1, UC1, and L1
within a time limit of 14400 seconds, while for the less complex instances in S3, S4,
and S5, a time limit of 7200 seconds is imposed. We also include a variant of M1 by
replacing constraints (3.8) in M1 with valid inequalities (3.13); the resulting model
is called M1+(3.13). Then, we add constraints (3.20) and (3.21) to M1+(3.13),
the resulting model is called M1+(3.13, 3.20, 3.21). Model L1+(3.20, 3.21, 3.28) is
obtained by adding valid inequalities (3.21) and optimality cuts (3.20) and (3.28) to
model L1.

The results for different data sets are shown in Tables 3.1, 3.2, 3.3, 3.5 and 3.7
where the first column shows the instance name. The second one is the best objective
function value obtained by the alternative models (Best OFV). The next six blocks
of five columns each correspond to models M1, L1, UC1, M1+(3.13), M1+(3.13,
3.20, 3.21) and L1+(3.20, 3.21, 3.28), respectively. In these tables, for a given
model, OFV is the objective function value of the best solution obtained, ∆% shows
the percentage deviation of OFV from the Best OFV, Time reports the computing
time (in seconds), Root is the objective function value obtained at the root node
of the branch-and-bound tree, i.e., the root relaxation bound and LP is the LP-
relaxation objective function value obtained by lifting the integrality requirement
on the variables. “NA” means that no feasible solution could be identified by the
model within the given time limit for the instances in the corresponding rows. “T-
UP” shows that the time limit is reached before a solution is certified as optimal.
When the objective function value is typed in bold, it indicates the best (i.e., the
lowest) OFV for the instance.

If the same OFV is obtained by more than one model, only the one that is found
within a shorter amount of time is typed in bold. In the case that the same OFV is
obtained by more than one model and all models hit the time limit, all those OFVs
are typed in bold.

Table 3.1 reports the results with the alternative PVRP models for S1. It should
be noted that instances p06-N75p10m1 and p09-N100p8m1 respectively have a plan-
ning horizon of ten and eight days and instance p13-N417p7m9 consists of 417 cus-
tomers. Due to the size of these instances, we do not conduct any computational
experiments on them and Table 3.1 shows the results for the remaining 29 instances
in date set S1. According to Table 3.1, L1 and UC1 are able to find a feasible solu-
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Table 3.1 Results of the alternative PVRP models on data set S1

Instance Best OFV
M1 L1 UC1

OFV ∆% Time Root LP OFV ∆% Time Root LP OFV ∆% Time Root LP

p01 529.34 597.65 12.90 T-UP 379.32 379.32 529.34 0.00 T-UP 473.60 473.60 584.93 10.50 T-UP 422.18 422.18
p02 1356.68 1739.10 28.19 T-UP 881.64 881.64 NA _ T-UP 1105.03 1105.03 1763.07 29.95 T-UP 995.72 995.72
p03 567.83 NA _ T-UP 379.32 379.32 722.01 27.15 T-UP 473.60 473.60 567.83 0.00 T-UP 422.18 422.18
p04 993.56 NA _ T-UP 485.49 485.49 NA _ T-UP 714.07 714.07 NA _ T-UP 587.70 587.70
p05 2386.74 2623.32 9.91 T-UP 1129.53 1129.53 NA _ T-UP 1719.67 1719.67 NA _ T-UP 1355.90 1355.90
p07 862.31 1328.65 54.08 T-UP 579.86 579.86 862.31 0.00 T-UP 736.28 736.28 NA _ T-UP 654.91 654.91
p08 2372.56 2674.38 12.72 T-UP 1305.36 1305.36 2689.80 13.37 T-UP 1776.07 1776.07 NA _ T-UP 1547.62 1547.62
p10 2143.79 NA _ T-UP 1071.50 1071.50 NA _ T-UP 1421.17 1421.17 2567.88 19.78 T-UP 1234.37 1234.37
p11 969.16 1030.45 6.32 T-UP 369.79 369.79 1042.07 7.52 T-UP 580.82 580.82 NA _ T-UP 421.64 421.64
p12 1666.23 NA _ T-UP 425.41 425.41 1666.23 0.00 T-UP 1011.44 1011.44 NA _ T-UP 692.43 692.43
p14 954.81 954.81 0.00 T-UP 687.12 687.12 954.81 0.00 2715 755.50 755.50 954.81 0.00 452.31 736.86 736.86
p15 1862.63 1920.18 3.09 T-UP 1507.32 1507.32 1862.63 0.00 T-UP 1634.06 1634.05 1862.63 0.00 T-UP 1576.77 1576.77
p16 2875.24 2994.67 4.15 T-UP 2401.56 2401.56 2875.24 0.00 T-UP 2580.16 2580.16 3033.16 5.49 T-UP 2475.22 2475.22
p17 1660.75 1717.33 3.41 T-UP 958.24 958.24 1686.18 1.53 T-UP 1172.98 1172.98 1883.88 13.44 T-UP 1066.60 1066.60
p18 3362.94 3439.34 2.27 T-UP 2155.36 2155.36 3362.94 0.00 T-UP 2485.30 2485.30 3754.15 11.63 T-UP 2275.76 2275.76
p19 4947.97 5804.68 17.31 T-UP 3698.88 3698.88 NA _ T-UP 4147.58 4147.58 NA _ T-UP 3825.30 3825.30
p20 11616.36 11616.36 0.00 T-UP 6966.24 6966.24 NA _ T-UP 7634.93 7634.93 NA _ T-UP 7098.68 7098.68
p21 2239.16 2432.83 8.65 T-UP 1140.96 1140.96 2239.16 0.00 T-UP 1610.14 1610.14 NA _ T-UP 1320.96 1320.96
p22 4720.18 5249.89 11.22 T-UP 2549.28 2549.28 NA _ T-UP 3226.86 3226.86 NA _ T-UP 2749.28 2749.28
p23 8894.41 8894.41 0.00 T-UP 4349.76 4349.76 NA _ T-UP 5212.10 5212.10 NA _ T-UP 4559.76 4559.76
p24 3772.96 3841.08 1.81 T-UP 2500.02 2500.02 3865.32 2.45 T-UP 3350.82 3350.82 3772.96 0.00 T-UP 3350.25 3350.25
p25 3865.32 4067.12 5.22 T-UP 2500.02 2500.02 3865.32 0.00 T-UP 3412.42 3412.42 NA _ T-UP 3410.71 3410.71
p26 3854.01 3854.01 0.00 T-UP 2500.02 2500.02 NA _ T-UP 3473.45 3473.45 4446.28 15.37 T-UP 3471.17 3471.17
p27 24986.53 25336.74 1.40 T-UP 15000.00 15000.00 NA _ T-UP 18910.48 18910.48 NA _ T-UP 16765.71 16765.71
p28 24586.47 24586.47 0.00 T-UP 15000.00 15000.00 NA _ T-UP 19252.51 19252.51 NA _ T-UP 16888.34 16888.34
p29 26268.73 26268.73 0.00 T-UP 15000.00 15000.00 NA _ T-UP 19653.55 19653.56 NA _ T-UP 17022.30 17022.30
p30 89597.65 93319.61 4.15 T-UP 51001.98 51001.98 103091.46 15.06 T-UP 63082.68 63082.69 NA _ T-UP 53885.58 53885.58
p31 89208.36 92643.30 3.85 T-UP 51001.98 51001.98 NA _ T-UP 64208.87 64208.87 NA _ T-UP 54126.34 54126.34
p32 91636.00 97286.12 6.17 T-UP 51001.98 51001.98 NA _ T-UP 65684.02 65684.02 NA _ T-UP 54374.41 54374.41

Table 3.1 Results of the alternative PVRP models on data set S1 (continued)

Instance Best OFV
M1+(3.13) M1+(3.13, 3.20, 3.21) L1+(3.20, 3.21, 3.28)

OFV ∆% Time Root LP OFV ∆% Time Root LP OFV ∆% Time Root LP

p01 529.34 571.02 7.87 T-UP 379.36 379.36 549.00 3.71 T-UP 414.98 414.98 531.02 0.32 T-UP 491.52 491.52
p02 1356.68 1492.82 10.03 T-UP 890.03 890.03 1471.17 8.44 T-UP 996.91 917.57 1356.68 0.00 T-UP 1186.02 1122.49
p03 567.83 NA _ T-UP 379.36 379.36 NA _ T-UP 414.98 414.98 615.22 8.35 T-UP 491.52 491.52
p04 993.56 993.56 0.00 T-UP 485.53 485.53 NA _ T-UP 536.53 536.53 NA _ T-UP 740.07 740.07
p05 2386.74 2386.74 0.00 T-UP 1142.33 1142.33 2570.17 7.69 T-UP 1262.60 1194.61 NA _ T-UP 1779.54 1749.83
p07 862.31 997.52 15.68 T-UP 579.90 579.90 982.16 13.90 T-UP 625.82 625.82 905.03 4.95 T-UP 762.08 762.08
p08 2372.56 2667.89 12.45 T-UP 1310.69 1310.69 2596.71 9.45 T-UP 1433.64 1350.91 2372.56 0.00 T-UP 1840.66 1789.31
p10 2143.79 2227.31 3.90 T-UP 1072.77 1072.77 2331.41 8.75 T-UP 1120.09 1120.09 2143.79 0.00 T-UP 1439.35 1439.35
p11 969.16 1072.39 10.65 T-UP 374.60 374.60 969.16 0.00 T-UP 435.47 403.43 1062.67 9.65 T-UP 627.98 594.90
p12 1666.23 2111.87 26.75 T-UP 425.42 425.42 2009.17 20.58 T-UP 473.30 473.30 NA _ T-UP 1017.42 1017.42
p14 954.81 954.81 0.00 T-UP 687.17 687.17 959.09 0.45 T-UP 762.56 703.72 954.81 0.00 1131.55 824.44 755.50
p15 1862.63 1864.56 0.10 T-UP 1507.37 1507.36 1884.52 1.18 T-UP 1604.08 1557.84 1862.63 0.00 T-UP 1711.55 1660.73
p16 2875.24 3030.15 5.39 T-UP 2423.59 2423.59 2879.52 0.15 T-UP 2585.73 2484.17 2875.24 0.00 T-UP 2725.24 2628.65
p17 1660.75 1683.67 1.38 T-UP 958.34 958.34 1716.40 3.35 T-UP 1153.73 1038.29 1660.75 0.00 T-UP 1339.07 1193.23
p18 3362.94 3550.72 5.58 T-UP 2155.57 2155.57 3436.80 2.20 T-UP 2312.74 2202.53 NA _ T-UP 2597.02 2485.44
p19 4947.97 6061.36 22.50 T-UP 3699.10 3699.10 5602.73 13.23 T-UP 3804.11 3732.27 4947.97 0.00 T-UP 4203.52 4150.94
p20 11616.36 13708.61 18.01 T-UP 6997.27 6997.27 13867.90 19.38 T-UP 7303.51 7089.76 NA _ T-UP 7887.11 7704.29
p21 2239.16 2493.91 11.38 T-UP 1140.96 1140.96 2325.10 3.84 T-UP 1496.63 1338.51 2242.28 0.14 T-UP 1829.25 1650.84
p22 4720.18 5583.01 18.28 T-UP 2549.28 2549.28 4917.75 4.19 T-UP 2887.88 2705.22 4720.18 0.00 T-UP 3437.99 3246.25
p23 8894.41 9031.39 1.54 T-UP 4349.86 4349.86 9408.53 5.78 T-UP 4624.09 4468.68 NA _ T-UP 5370.85 5212.45
p24 3772.96 3796.03 0.61 T-UP 2500.02 2500.02 3785.89 0.34 T-UP 2696.10 2696.10 3823.39 1.34 T-UP 3489.70 3350.82
p25 3865.32 4087.05 5.74 T-UP 2500.02 2500.02 4110.11 6.33 T-UP 2696.10 2696.10 3865.41 0.00 T-UP 3550.16 3412.43
p26 3854.01 3969.50 3.00 T-UP 2500.02 2500.02 3867.50 0.35 T-UP 2696.10 2696.10 3865.41 0.30 T-UP 3610.63 3473.47
p27 24986.53 24986.53 0.00 T-UP 15000.00 15000.00 25595.88 2.44 T-UP 16176.61 16176.61 26903.50 7.67 T-UP 19676.25 18910.43
p28 24586.47 25967.67 5.62 T-UP 15000.00 15000.00 25989.52 5.71 T-UP 16176.61 16176.61 27706.11 12.69 T-UP 20000.21 19252.46
p29 26268.73 26306.24 0.14 T-UP 15000.00 15000.00 27147.83 3.35 T-UP 16176.61 16176.61 NA _ T-UP 20375.21 19653.51
p30 89597.65 89597.65 0.00 T-UP 51001.98 51001.98 91480.02 2.10 T-UP 55385.94 55385.94 NA _ T-UP 0 63147.63
p31 89208.36 89208.36 0.00 T-UP 51001.98 51001.98 93363.48 4.66 T-UP 55385.94 55385.94 NA _ T-UP 0 64278.56
p32 91636.00 91636.00 0.00 T-UP 51001.98 51001.98 97574.97 6.48 T-UP 55385.94 55385.94 NA _ T-UP 0 65749.04

Table 3.2 Results of the alternative PVRP models on data set S2

Instance Best OFV
M1 L1 UC1

OFV ∆% Time Root LP OFV ∆% Time Root LP OFV ∆% Time Root LP

pr01-N48m2p4 2187.98 2413.49 10.31 T-UP 1451.45 1451.45 2200.36 0.57 T-UP 1628.18 1628.18 2189.27 0.06 T-UP 1529.24 1529.24
pr02-N96m4p4 4120.58 4336.09 5.23 T-UP 2255.79 2255.79 4298.07 4.31 T-UP 2770.16 2770.16 NA _ T-UP 2347.14 2347.14
pr03-N144m6p4 6165.23 6230.21 1.05 T-UP 3032.08 3032.08 6165.23 0.00 T-UP 4083.99 4083.99 NA _ T-UP 3389.02 3389.02
pr04-N192m8p4 7661.55 7688.84 0.36 T-UP 3377.91 3377.91 NA _ T-UP 4693.53 4693.53 NA _ T-UP 3836.42 3836.42
pr05-N240m10p4 NA NA _ T-UP 3525.92 3525.92 NA _ T-UP 5340.67 5340.67 NA _ T-UP 4065.58 4065.58
pr06-N288m12p4 10451.02 10451.02 0.00 T-UP 4275.34 4275.34 NA _ T-UP 6468.34 6468.34 NA _ T-UP 5147.57 5147.57
pr07-N72m3p6 5051.59 5750.27 13.83 T-UP 3398.81 3398.81 5423.38 7.36 T-UP 3884.69 3884.69 NA _ T-UP 3504.43 3504.43
pr08-N144m6p6 9976.73 NA _ T-UP 3842.02 3842.02 NA _ T-UP 5467.25 5467.25 NA _ T-UP 4416.01 4416.01
pr09-N216m9p6 13646.28 13755.84 0.80 T-UP 5502.17 5502.17 NA _ T-UP 8315.47 8315.47 NA _ T-UP 6764.80 6764.80
pr10-N288m12p6 NA NA _ T-UP 6069.61 6069.61 NA _ T-UP 9965.74 9965.74 NA _ T-UP 7583.18 7583.18
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Table 3.2 Results of the alternative PVRP models on data set S2 (continued)

Instance Best OFV
M1+(3.13) M1+(3.13, 3.20, 3.21) L1+(3.20, 3.21, 3.28)

OFV ∆% Time Root LP OFV ∆% Time Root LP OFV ∆% Time Root LP

pr01-N48m2p4 2187.98 2448.74 11.92 T-UP 1544.35 1544.35 2480.00 13.35 T-UP 1729.31 1634.07 2187.98 0.00 T-UP 1828.41 1771.68
pr02-N96m4p4 4120.58 4189.39 1.67 T-UP 2707.14 2707.14 4261.60 3.42 T-UP 2958.04 2787.77 4120.58 0.00 T-UP 3350.05 3224.29
pr03-N144m6p4 6165.23 6890.63 11.77 T-UP 3149.51 3149.51 6520.53 5.76 T-UP 3654.97 3360.97 6386.52 3.59 T-UP 4442.56 4247.93
pr04-N192m8p4 7661.55 7661.55 0.00 T-UP 3636.17 3636.17 8500.16 10.95 T-UP 4120.77 3766.05 NA _ T-UP 5203.34 4947.27
pr05-N240m10p4 NA NA _ T-UP 3602.33 3602.33 NA _ T-UP 4154.72 3789.55 NA _ T-UP 5670.61 5446.26
pr06-N288m12p4 10451.02 10866.57 3.98 T-UP 4447.53 4447.53 10607.87 1.50 T-UP 5025.33 4631.96 NA _ T-UP 6908.12 6647.70
pr07-N72m3p6 5051.59 5580.80 10.48 T-UP 3440.25 3440.25 6434.33 27.37 T-UP 3837.12 3527.18 5051.59 0.00 T-UP 4236.39 3980.95
pr08-N144m6p6 9976.73 9976.73 0.00 T-UP 3919.68 3919.68 NA _ T-UP 4528.91 4111.79 NA _ T-UP 5927.56 5651.66
pr09-N216m9p6 13646.28 13827.72 1.33 T-UP 5687.37 5687.37 13646.28 0.00 T-UP 6440.76 5953.24 NA _ T-UP 8743.78 8501.65
pr10-N288m12p6 NA NA _ T-UP 6283.45 6283.45 NA _ T-UP 7158.28 6671.55 NA _ T-UP 10511.60 10234.41

tion respectively for 15 and 11 out of 29 instances. This number increases to 25, 28
and 27 for M1, M1+(3.13) and M1+(3.13, 3.20, 3.21), respectively.

• For two out of four instances (p03-N50p5m1 and p12-N163p5m3) for which
a feasible solution cannot be found by M1, a feasible solution is found by L1
within the time limit. On the other hand, M1 attains a feasible solution for 12
instances that remained unsolvable by L1. Both M1 and L1 return no feasible
solution for two instances, namely p04-N75p2m5 and p10-N100p5m4. Among
the 13 instances solved by M1 and L1, M1 beats L1 in four instances, ties in
one and loses in eight with respect to solution quality.

• The only instance solved to optimality by L1 and UC1 is p14-N20p4m2, re-
spectively in 2715 and 452.31 seconds. Although M1 and M1+(3.13) reach
the same OFV for this instance, they cannot prove its optimality within the
specified time limit. UC1 is not able to identify any feasible solution for 18
instances while it finds the best solution for four instances. UC1 finds a feasi-
ble solution for p03-N50p5m1 and p10-N100p5m4 which remained unsolvable
by M1.

• M1+(3.13) is capable of improving the solution quality in 12 instances com-
pared to M1 by 6.14% on average, and six instances overall. Compared to
M1, M1+(3.13) does not produce better solutions for 12 instances; however,
the deviation of OFVs has an average of 4.21%. M1+(3.13) also returns a
feasible solution for three out of four instances for which M1 does not return
any feasible solution within the time limit. Hence, M1+(3.13), which uses the
stronger version of the SECs, seems more effective and robust than M1.

• M1+(3.13, 3.20, 3.21) is capable of improving the solution quality in 13 in-
stances compared to M1 , and one instance overall. M1+(3.13, 3.20, 3.21) also
returns a feasible solution for two out of four instances for which M1 does not
return any feasible solution within the time limit.

• L1+(3.20, 3.21, 3.28) is capable of improving the solution quality in 4 instances
compared to L1 by 7.29% on average, and nine instances overall. L1+(3.20,

35



3.21, 3.28) also returns a feasible solution for seven instances which remained
unsolvable by L1.

• According to the results on data set S1, in terms of the quality of the root
relaxation bounds, models L1 and L1+(3.20, 3.21, 3.28) yield significantly
better objective function values at the root node than other models.

Table 3.2 shows the results for data set S2. Accordingly, L1 and UC1 are able
to find a feasible solution respectively for four and one out of ten instances. This
number increases to seven and eight for M1 and M1+(3.13), respectively. M1 attains
a feasible solution for three instances that remained unsolvable by L1. Both M1 and
L1 return no feasible solution for three instances, namely pr05-N240p4m10, pr08-
N144p6m6 and pr10-N288p6m12. M1+(3.13) found a feasible solution for eight in-
stances including pr08-N144p6m6 which remained unsolved by other models. While
M1+(3.13) returned superior solutions in two instances, it does not produce the
best solutions for six instances with an average deviation of 6.85% of the best solu-
tion. While L1+(3.20, 3.21, 3.28) does not reach a feasible solution for unsolvable
instances by L1, it is capable of finding a best solution for three instances overall.
Generally, M1+(3.13) can be considered as the most reliable model among other
models with respect to instances also in S2 with 5.14% deviation from the best
OFV and finding a feasible solution for eight instances out of ten.

Table 3.3 Results of the alternative PVRP models on data set S3

Instace Best OFV
M1 L1 UC1

OFV ∆% Time Root LP OFV ∆% Time Root LP OFV ∆% Time Root LP

Instn8t5k3_1-Q871 5.81 5.81 0.00 9.83 3.89 3.87 5.81 0.00 2.80 3.99 3.99 5.81 0.00 0.36 3.75 3.58
Instn8t5k3_2-Q705 5.81 5.81 0.00 5.12 4.04 4.01 5.81 0.00 2.69 4.16 4.16 5.81 0.00 0.42 3.75 3.74
Instn8t5k3_3-Q765 5.81 5.81 0.00 10.38 3.98 3.95 5.81 0.00 6.43 4.09 4.09 5.81 0.00 0.34 3.75 3.65
Instn8t5k3_4-Q496 6.32 6.32 0.00 27.77 4.36 4.32 6.32 0.00 3.09 4.53 4.53 6.32 0.00 2.20 4.30 4.22
Instn10t5k3_1-Q1058 6.84 6.84 0.00 1023.98 3.24 3.15 6.84 0.00 11.30 4.41 4.41 6.84 0.00 4.66 3.22 3.21
Instn10t5k3_2-Q1045 6.84 6.84 0.00 472.16 3.25 3.16 6.84 0.00 18.39 4.44 4.44 6.84 0.00 0.86 3.23 3.22
Instn10t5k3_3-Q1208 6.70 6.70 0.00 118.16 3.09 3.04 6.70 0.00 5.45 4.15 4.15 6.70 0.00 0.51 3.12 3.12
Instn10t5k3_4-Q1037 6.84 6.84 0.00 609.86 3.26 3.17 6.84 0.00 9.76 4.45 4.45 6.84 0.00 0.83 3.23 3.23
Instn12t5k3_1-Q546 4.81 4.81 0.00 T-UP 3.05 3.05 4.81 0.00 1031.51 3.89 3.89 4.81 0.00 149.54 3.18 3.18
Instn12t5k3_2-Q802 4.48 4.48 0.00 504.88 3.05 3.05 4.48 0.00 31.31 3.53 3.53 4.48 0.00 11.65 3.14 3.14
Instn12t5k3_3-Q748 4.51 4.51 0.00 1528.81 3.05 3.05 4.51 0.00 88.05 3.58 3.58 4.51 0.00 23.48 3.15 3.15
Instn12t5k3_4-Q925 4.42 4.42 0.00 132.24 3.05 3.05 4.42 0.00 16.15 3.45 3.45 4.42 0.00 1.62 3.14 3.13
Instn12t5k3_5-Q1491 4.42 4.42 0.00 102.77 3.05 3.05 4.42 0.00 12.70 3.30 3.30 4.42 0.00 1.61 3.14 3.10
Instn12t5k3_6-Q1521 4.42 4.42 0.00 267.38 3.05 3.05 4.42 0.00 19.01 3.29 3.29 4.42 0.00 1.61 3.14 3.10
Instn12t5k3_7-Q1399 4.42 4.42 0.00 136.03 3.05 3.05 4.42 0.00 12.28 3.32 3.32 4.42 0.00 1.62 3.14 3.10
Instn12t5k3_8-Q1146 4.42 4.42 0.00 125.52 3.05 3.05 4.42 0.00 13.29 3.37 3.37 4.42 0.00 1.64 3.14 3.11
Instn16t5k3_1-Q1056 5.62 5.66 0.71 T-UP 2.67 2.67 5.62 0.00 310.52 3.29 3.29 5.62 0.00 14.27 2.73 2.73
Instn16t5k3_2-Q1030 5.65 5.67 0.35 T-UP 2.68 2.68 5.65 0.00 985.50 3.32 3.32 5.65 0.00 181.66 2.74 2.74
Instn16t5k3_3-Q1240 5.62 5.62 0.00 T-UP 2.65 2.65 5.62 0.00 414.80 3.16 3.16 5.62 0.00 13.43 2.69 2.69
Instn16t5k3_4-Q1232 5.62 5.64 0.36 T-UP 2.65 2.65 5.62 0.00 147.06 3.16 3.16 5.62 0.00 11.19 2.69 2.69
Instn16t5k3_5-Q802 5.77 5.77 0.00 T-UP 2.72 2.72 5.77 0.00 424.29 3.65 3.65 5.77 0.00 185.88 2.85 2.85
Instn16t5k3_6-Q757 5.77 5.77 0.00 T-UP 2.73 2.73 5.77 0.00 699.22 3.74 3.74 5.77 0.00 174.77 2.88 2.88
Instn16t5k3_7-Q851 5.76 5.77 0.17 T-UP 2.71 2.71 5.76 0.00 1254.57 3.56 3.56 5.76 0.00 639.33 2.82 2.82
Instn16t5k3_8-Q1027 5.65 5.67 0.35 T-UP 2.68 2.68 5.65 0.00 1096.99 3.32 3.32 5.65 0.00 142.01 2.74 2.74
Instn50t5k4-Q1111 14.44 15.53 7.55 T-UP 8.55 8.55 14.90 3.19 T-UP 11.10 11.10 NA _ T-UP 9.23 9.23

Table 3.3 shows the results for data set S3; Table 3.4 reports the number of
instances in S3 solved to optimality by the alternative PVRP models. The instances
are grouped based on the number of customers (|Nc|) as given in the first column,
and the number of instances in each group is provided in the second column plus
the number of instances solved to optimality by alternative models. The next six
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Table 3.3 Results of the alternative PVRP models on data set S3 (continued)

Instace Best OFV
M1+(3.13) M1+(3.13, 3.20, 3.21) L1+(3.20, 3.21, 3.28)

OFV ∆% Time Root LP OFV ∆% Time Root LP OFV ∆% Time Root LP

Instn8t5k3_1-Q871 5.81 5.81 0.00 13.59 4.94 4.48 5.81 0.00 12.06 4.94 4.61 5.81 0.00 1.21 4.80 4.65
Instn8t5k3_2-Q705 5.81 5.81 0.00 23.73 4.94 4.48 5.81 0.00 8.48 4.94 4.61 5.81 0.00 0.99 4.83 4.71
Instn8t5k3_3-Q765 5.81 5.81 0.00 10.33 4.94 4.48 5.81 0.00 10.81 4.94 4.61 5.81 0.00 0.79 4.82 4.69
Instn8t5k3_4-Q496 6.32 6.32 0.00 106.38 4.97 4.48 6.32 0.00 38.59 4.97 4.61 6.32 0.00 0.71 5.05 5.00
Instn10t5k3_1-Q1058 6.84 6.84 0.00 2160.02 5.31 5.11 6.84 0.00 T-UP 5.31 5.20 6.84 0.00 5.96 6.01 5.93
Instn10t5k3_2-Q1045 6.84 6.84 0.00 2095.00 5.31 5.11 6.84 0.00 T-UP 5.31 5.20 6.84 0.00 5.46 6.02 5.95
Instn10t5k3_3-Q1208 6.70 6.70 0.00 433.42 5.31 5.11 6.70 0.00 526.61 5.31 5.20 6.70 0.00 1.50 5.88 5.79
Instn10t5k3_4-Q1037 6.84 6.84 0.00 940.22 5.31 5.11 6.84 0.00 T-UP 5.31 5.20 6.84 0.00 2.86 6.03 5.95
Instn12t5k3_1-Q546 4.81 4.81 0.00 T-UP 3.55 3.13 4.81 0.00 5721.48 3.55 3.48 4.81 0.00 40.83 4.12 4.12
Instn12t5k3_2-Q802 4.48 4.48 0.00 90.00 3.55 3.13 4.48 0.00 59.03 3.55 3.48 4.48 0.00 8.42 3.77 3.77
Instn12t5k3_3-Q748 4.51 4.51 0.00 203.07 3.55 3.13 4.51 0.00 137.03 3.55 3.48 4.51 0.00 7.94 3.81 3.81
Instn12t5k3_4-Q925 4.42 4.42 0.00 45.00 3.55 3.13 4.42 0.00 26.16 3.55 3.48 4.42 0.00 2.06 3.71 3.70
Instn12t5k3_5-Q1491 4.42 4.42 0.00 28.31 3.55 3.13 4.42 0.00 34.41 3.55 3.48 4.42 0.00 2.13 3.61 3.60
Instn12t5k3_6-Q1521 4.42 4.42 0.00 18.67 3.55 3.13 4.42 0.00 31.05 3.55 3.48 4.42 0.00 3.53 3.61 3.60
Instn12t5k3_7-Q1399 4.42 4.42 0.00 19.66 3.55 3.13 4.42 0.00 41.19 3.55 3.48 4.42 0.00 3.28 3.62 3.61
Instn12t5k3_8-Q1146 4.42 4.42 0.00 31.45 3.55 3.13 4.42 0.00 22.50 3.55 3.48 4.42 0.00 2.70 3.66 3.64
Instn16t5k3_1-Q1056 5.62 5.64 0.36 T-UP 3.90 3.34 5.68 1.07 T-UP 3.90 3.78 5.62 0.00 34.36 4.37 4.18
Instn16t5k3_2-Q1030 5.65 5.71 1.06 T-UP 3.90 3.34 5.7 0.88 T-UP 3.90 3.78 5.65 0.00 186.19 4.39 4.20
Instn16t5k3_3-Q1240 5.62 5.62 0.00 T-UP 3.90 3.34 5.63 0.18 T-UP 3.90 3.78 5.62 0.00 31.16 4.27 4.07
Instn16t5k3_4-Q1232 5.62 5.62 0.00 T-UP 3.90 3.34 5.62 0.00 T-UP 3.90 3.78 5.62 0.00 31.73 4.28 4.07
Instn16t5k3_5-Q802 5.77 5.77 0.00 T-UP 3.90 3.34 5.77 0.00 T-UP 3.90 3.78 5.77 0.00 128.80 4.59 4.43
Instn16t5k3_6-Q757 5.77 5.77 0.00 T-UP 3.90 3.34 5.83 1.04 T-UP 3.90 3.78 5.77 0.00 16.45 4.65 4.50
Instn16t5k3_7-Q851 5.76 5.76 0.00 T-UP 3.90 3.34 5.77 0.17 T-UP 3.90 3.78 5.76 0.00 621.33 4.54 4.37
Instn16t5k3_8-Q1027 5.65 5.66 0.18 T-UP 3.90 3.34 5.67 0.35 T-UP 3.90 3.78 5.65 0.00 121.53 4.39 4.20
Instn50t5k4-Q1111 14.44 16.61 15.03 T-UP 8.66 8.66 16 10.80 T-UP 9.83 9.36 14.44 0.00 T-UP 11.61 11.31

Table 3.4 The number of instances in data set S3 solved to optimality by alterna-
tive models

|Nc| No M1 L1 UC1 M1+(3.13) M1+(3.13, 3.20, 3.21) L1+(3.20, 3.21, 3.28)

7 4/4 4/4 4/4 4/4 4/4 4/4 4/4
9 4/4 4/4 4/4 4/4 4/4 4/1 4/4
11 8/8 8/7 8/8 8/8 8/7 8/8 8/8
15 8/8 3/0 8/8 8/8 5/0 3/0 8/8
49 1/0 0/0 0/0 0/0 0/0 0/0 0/0

Table 3.5 Results of the alternative PVRP models on data set S4

Instance Best OFV
M1 L1 UC1

OFV ∆% Time Root LP OFV ∆% Time Root LP OFV ∆% Time Root LP

radius 15

FPVRP_n10k4t5_2 13.02 13.02 0.00 T-UP 7.56 1.76 13.02 0.00 37.45 10.15 10.15 13.02 0.00 T-UP 9.45 9.39
FPVRP_n10k4t5_4 15.09 15.09 0.00 T-UP 7.78 3.80 15.09 0.00 29.30 11.19 11.19 15.09 0.00 T-UP 10.85 10.71
FPVRP_n10k5t5_1 _ inf _ 27.28 19.05 4.54 inf _ 242.64 17.08 17.08 inf _ 0.70 18.97 16.02
FPVRP_n10k5t5_3 13.79 13.79 0.00 50.69 9.69 3.36 13.79 0.00 6.13 11.42 11.42 13.79 0.00 T-UP 9.95 7.85
FPVRP_n10k8t5_5 26.07 27.79 6.60 0.73 23.87 3.76 27.79 6.60 3.16 23.65 23.65 27.79 6.60 3.30 25.29 23.22
FPVRP_n15k6t5_2 19.82 19.82 0.00 T-UP 7.91 4.87 19.82 0.00 T-UP 15.05 15.05 19.82 0.00 T-UP 9.79 9.75
FPVRP_n15k7t5_5 25.66 25.66 0.00 T-UP 14.39 4.49 25.66 0.00 T-UP 20.81 20.81 25.66 0.00 T-UP 18.37 17.11
FPVRP_n15k8t5_4 34.18 34.18 0.00 T-UP 27.67 6.48 34.18 0.00 5304.79 27.46 27.46 34.18 0.00 T-UP 28.52 25.22
FPVRP_n15k10t5_1 36.26 36.26 0.00 11.69 33.36 10.83 36.26 0.00 90.03 30.72 30.72 36.26 0.00 T-UP 31.85 19.01
FPVRP_n15k10t5_3 28.06 28.06 0.00 1.81 25.38 4.89 28.06 0.00 65.61 23.11 23.11 28.06 0.00 2185.41 23.38 21.24
FPVRP_n20k10t5_1 25.88 25.88 0.00 T-UP 15.60 5.03 25.88 0.00 T-UP 21.81 21.81 25.90 0.08 T-UP 16.40 13.16
FPVRP_n20k10t5_4 39.55 39.57 0.05 T-UP 24.62 6.24 39.55 0.00 T-UP 31.10 31.10 39.57 0.05 T-UP 29.28 23.79
FPVRP_n20k10t5_5 28.38 31.55 11.17 T-UP 12.86 5.10 31.50 10.99 T-UP 26.28 26.28 31.50 10.99 T-UP 23.50 20.45
FPVRP_n20k11t5_3 26.70 26.70 0.00 T-UP 17.47 5.53 26.70 0.00 T-UP 20.95 20.95 26.70 0.00 T-UP 18.33 14.63
FPVRP_n20k12t5_2 39.08 39.08 0.00 T-UP 30.88 6.99 39.08 0.00 1114.64 31.85 31.85 39.08 0.00 T-UP 32.52 22.87

radius 30

FPVRP_n10k5t5_3 15.58 15.58 0.00 89.42 10.58 4.12 15.58 0.00 26.47 11.84 11.84 15.58 0.00 T-UP 10.85 9.50
FPVRP_n10k5t5_4 15.06 15.06 0.00 59.52 10.50 5.99 15.06 0.00 11.36 12.53 12.53 15.06 0.00 T-UP 11.52 11.12
FPVRP_n10k6t5_1 20.15 20.15 0.00 2.44 17.79 7.42 20.15 0.00 21.95 17.26 17.26 20.15 0.00 1301.65 15.81 12.53
FPVRP_n10k6t5_2 15.62 15.62 0.00 0.64 14.38 5.37 15.62 0.00 35.55 12.14 12.14 15.62 0.00 41.03 12.87 11.30
FPVRP_n10k8t5_5 21.53 21.53 0.00 0.38 21.47 6.68 21.53 0.00 11.08 17.99 17.99 21.53 0.00 28.25 21.00 15.91
FPVRP_n15k6t5_5 22.25 22.25 0.00 T-UP 14.54 6.95 22.25 0.00 T-UP 17.06 17.06 22.25 0.00 T-UP 14.97 14.70
FPVRP_n15k7t5_3 29.17 29.17 0.00 T-UP 21.65 9.91 29.17 0.00 T-UP 23.76 23.76 29.17 0.00 T-UP 24.99 21.01
FPVRP_n15k7t5_4 18.27 18.27 0.00 T-UP 11.72 6.85 18.27 0.00 T-UP 14.88 14.88 18.27 0.00 T-UP 13.94 13.82
FPVRP_n15k9t5_1 27.98 27.98 0.00 27.44 23.73 11.80 27.98 0.00 187.52 25.12 25.12 27.98 0.00 T-UP 23.54 21.54
FPVRP_n15k9t5_2 32.89 32.89 0.00 15.66 29.84 7.17 32.89 0.00 182.69 26.84 26.84 32.89 0.00 T-UP 28.90 22.72
FPVRP_n20k10t5_1 32.56 32.56 0.00 T-UP 23.65 10.74 32.56 0.00 T-UP 25.86 25.86 32.58 0.06 T-UP 24.96 19.54
FPVRP_n20k10t5_3 28.62 28.62 0.00 T-UP 16.34 8.06 28.62 0.00 T-UP 22.72 22.72 28.62 0.00 T-UP 21.07 18.55
FPVRP_n20k12t5_2 32.00 33.44 4.50 443.20 27.71 11.04 33.44 4.50 1241.03 28.99 28.99 33.44 4.50 T-UP 29.65 26.32
FPVRP_n20k12t5_5 37.24 37.24 0.00 28.83 25.35 12.27 37.24 0.00 2589.06 30.80 30.80 37.24 0.00 T-UP 27.45 25.01
FPVRP_n20k13t5_4 46.22 46.22 0.00 525.44 39.39 11.72 46.22 0.00 2259.42 38.32 38.32 46.22 0.00 T-UP 41.25 31.11

radius 50

FPVRP_n20k7t5_3 24.43 24.43 0.00 T-UP 17.26 12.78 24.43 0.00 T-UP 20.39 20.39 24.48 0.20 T-UP 19.61 16.55
FPVRP_n20k10t5_2 32.42 32.42 0.00 T-UP 21.05 12.17 32.42 0.00 T-UP 25.11 25.11 32.42 0.00 T-UP 23.60 20.71
FPVRP_n20k10t5_4 27.93 27.93 0.00 T-UP 17.16 8.94 28.02 0.32 T-UP 21.31 21.31 27.95 0.07 T-UP 17.86 15.18
FPVRP_n20k11t5_5 38.13 38.13 0.00 3791.09 28.13 13.20 38.13 0.00 T-UP 30.50 30.50 38.13 0.00 T-UP 29.20 26.24
FPVRP_n20k14t5_1 34.45 34.45 0.00 190.46 27.76 10.64 34.45 0.00 5518.98 29.84 29.84 34.45 0.00 T-UP 30.57 27.21
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Table 3.5 Results of the alternative PVRP models on data set S4 (continued)

Instance Best OFV
M1+(3.13) M1+(3.13, 3.20, 3.21) L1+(3.20, 3.21, 3.28)

OFV ∆% Time Root LP OFV ∆% Time Root LP OFV ∆% Time Root LP

radius 15

FPVRP_n10k4t5_2 13.02 13.02 0.00 T-UP 7.91 1.78 13.02 0.00 T-UP 7.99 2.41 13.02 0.00 58.58 10.88 10.88
FPVRP_n10k4t5_4 15.09 15.09 0.00 T-UP 9.32 4.03 15.09 0.00 T-UP 9.77 4.07 15.09 0.00 103.08 11.42 11.26
FPVRP_n10k5t5_1 _ inf _ 5.24 20.27 4.25 inf _ 5.80 20.50 4.36 inf _ 47.59 17.35 17.10
FPVRP_n10k5t5_3 13.79 13.79 0.00 17.80 10.51 3.41 13.79 0.00 31.87 10.51 3.69 13.79 0.00 6.44 11.74 11.66
FPVRP_n10k8t5_5 26.07 26.07 0.00 0.50 24.26 1.99 26.07 0.00 0.83 25.40 2.36 27.79 6.60 2.55 23.71 23.68
FPVRP_n15k6t5_2 19.82 19.83 0.05 T-UP 8.43 4.98 19.82 0.00 T-UP 8.87 5.18 19.82 0.00 T-UP 15.51 15.20
FPVRP_n15k7t5_5 25.66 25.66 0.00 T-UP 15.26 4.51 25.67 0.04 T-UP 15.26 4.96 25.66 0.00 T-UP 21.18 20.89
FPVRP_n15k8t5_4 34.18 34.18 0.00 T-UP 27.77 4.65 34.18 0.00 T-UP 27.77 4.95 34.18 0.00 1698.33 27.73 27.49
FPVRP_n15k10t5_1 36.26 36.26 0.00 12.27 33.68 6.09 36.26 0.00 15.86 33.68 6.26 36.26 0.00 108.14 30.82 30.74
FPVRP_n15k10t5_3 28.06 28.06 0.00 1.53 25.66 4.38 28.06 0.00 2.38 25.86 5.03 28.06 0.00 59.25 23.25 23.11
FPVRP_n20k10t5_1 25.88 25.88 0.00 T-UP 17.17 5.08 25.88 0.00 T-UP 18.76 5.45 25.88 0.00 T-UP 21.93 21.87
FPVRP_n20k10t5_4 39.55 39.57 0.05 T-UP 26.32 5.47 39.55 0.00 T-UP 27.24 5.83 39.55 0.00 T-UP 31.51 31.13
FPVRP_n20k10t5_5 28.38 28.38 0.00 T-UP 13.03 4.77 28.38 0.00 T-UP 16.92 5.05 31.50 10.99 T-UP 26.47 26.29
FPVRP_n20k11t5_3 26.70 26.70 0.00 T-UP 19.19 5.49 26.70 0.00 T-UP 19.68 5.91 26.70 0.00 T-UP 21.08 20.95
FPVRP_n20k12t5_2 39.08 39.08 0.00 T-UP 31.69 6.93 39.08 0.00 T-UP 32.52 7.31 39.08 0.00 853.30 31.93 31.87

radius 30

FPVRP_n10k5t5_3 15.58 15.58 0.00 57.55 10.83 4.08 15.58 0.00 50.06 10.85 5.66 15.58 0.00 27.77 12.94 12.76
FPVRP_n10k5t5_4 15.06 15.06 0.00 54.21 10.97 6.32 15.06 0.00 115.04 11.23 6.36 15.06 0.00 19.72 13.17 13.17
FPVRP_n10k6t5_1 20.15 20.15 0.00 2.05 17.92 7.52 20.15 0.00 2.44 18.07 8.05 20.15 0.00 36.75 17.70 17.38
FPVRP_n10k6t5_2 15.62 15.62 0.00 0.45 14.38 5.26 15.62 0.00 0.72 14.38 5.55 15.62 0.00 43.11 12.39 12.14
FPVRP_n10k8t5_5 21.53 21.53 0.00 0.30 21.47 5.42 21.53 0.00 0.28 21.53 5.96 21.53 0.00 10.33 18.09 17.99
FPVRP_n15k6t5_5 22.25 22.25 0.00 T-UP 15.25 7.39 22.25 0.00 T-UP 15.25 8.13 22.25 0.00 T-UP 18.23 17.57
FPVRP_n15k7t5_3 29.17 29.17 0.00 T-UP 22.85 10.07 29.17 0.00 6985.89 23.03 10.15 29.17 0.00 T-UP 23.83 23.81
FPVRP_n15k7t5_4 18.27 18.27 0.00 T-UP 12.26 7.00 18.27 0.00 T-UP 12.26 7.57 18.27 0.00 4638.70 15.65 15.27
FPVRP_n15k9t5_1 27.98 27.98 0.00 24.25 24.85 10.72 27.98 0.00 29.94 25.30 10.95 27.98 0.00 128.55 25.40 25.14
FPVRP_n15k9t5_2 32.89 32.89 0.00 19.24 30.26 6.77 32.89 0.00 20.60 30.26 7.03 32.89 0.00 264.09 27.02 26.99
FPVRP_n20k10t5_1 32.56 32.56 0.00 T-UP 23.93 10.76 32.56 0.00 T-UP 25.00 11.11 32.56 0.00 T-UP 26.21 26.14
FPVRP_n20k10t5_3 28.62 28.62 0.00 T-UP 19.00 8.43 28.62 0.00 T-UP 19.04 9.22 28.62 0.00 T-UP 22.96 22.76
FPVRP_n20k12t5_2 32.00 32.00 0.00 404.66 28.25 11.02 32.00 0.00 208.64 29.31 11.30 33.44 4.50 876.14 29.06 28.99
FPVRP_n20k12t5_5 37.24 37.24 0.00 37.64 26.90 9.71 37.24 0.00 25.75 27.96 9.97 37.24 0.00 2898.42 30.88 30.88
FPVRP_n20k13t5_4 46.22 46.22 0.00 166.98 40.42 9.48 46.22 0.00 52.08 42.31 10.92 46.22 0.00 3596.06 38.38 38.37

radius 50

FPVRP_n20k7t5_3 24.43 24.56 0.53 T-UP 17.43 12.85 24.43 0.00 T-UP 18.00 13.50 24.43 0.00 T-UP 20.61 20.48
FPVRP_n20k10t5_2 32.42 32.42 0.00 T-UP 21.27 12.33 32.42 0.00 T-UP 22.89 13.16 32.42 0.00 T-UP 25.55 25.33
FPVRP_n20k10t5_4 27.93 27.93 0.00 T-UP 18.22 9.55 27.93 0.00 T-UP 20.35 10.87 27.93 0.00 T-UP 22.06 21.90
FPVRP_n20k11t5_5 38.13 38.13 0.00 T-UP 29.83 12.98 38.13 0.00 T-UP 32.99 13.74 38.13 0.00 T-UP 31.60 31.13
FPVRP_n20k14t5_1 34.45 34.45 0.00 260.39 29.75 10.27 34.45 0.00 328.02 31.56 10.60 34.45 0.00 1946.27 29.84 29.84

columns indicate the number of instances solved to optimality and the number of
instances solved to optimality by proof by each model. For example, 8/7 for model
M1 means that M1 reach the optimal solution for eight instances. However, the
optimality is proven for seven instances out of eight.

According to the results presented in Table 3.3 and Table 3.4, L1, L1+(3.20,
3.21, 3.28) and UC1 find optimal solutions to all of the instances with up to 15
customers. Models M1 and M1+(3.13) solve the instances having up to nine cus-
tomers plus seven of the instances with 11 customers to proven optimality. M1,
M1+(3.13) and M1+(3.13, 3.20, 3.21) fail to reach a proven optimal solution for in-
stances with 14 customers. The non-optimal solutions obtained with M1, M1+(3.13)
and M1+(3.13, 3.20, 3.21) have respectively an average 1.58%, 4.15% and 2.07% de-
viation from the best OFV. The best OFV is gained by L1+(3.20, 3.21, 3.28) for
instance Instn50t5k4-Q1111. Table 3.3 suggests that M1, M1+(3.13) are more de-
manding than L1, L1+(3.20, 3.21, 3.28) and UC1 in terms of computation time.
Finally, it should also be noted that UC1 cannot return a feasible solution for the
instance with 49 customers within the time limit unlike the other models.

Table 3.5 and Table 3.6 show the results for data set S4. Table 3.6, similar
to Table 3.4 in format, shows the number of instances solved to optimality by the
alternative models. In this Table, instances are categorized with respect to radius.
The results show that eight and 12 instances are solved to proven optimality out of
each 15 instances categorized as radius 15 and 30 respectively. L1+(3.20, 3.21, 3.28)
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finds the optimal solution for all of them while not being able to prove optimality
for one of them. Only two instances out of five instances with radius 50 are solved
to proven optimality by alternative models. Despite UC1 not being able to prove
optimality for both of them, M1 reaches the optimal solution with proof for both.
Except for instance FPVRP_n10k5t5_1 which is infeasible due to the capacity
violation, all models reach the reported best OFV for most of the instances.

Table 3.6 The number of instances in data set S4 solved to optimality by alterna-
tive models

Radius No M1 L1 UC1 M1+(3.13) M1+(3.13, 3.20, 3.21) L1+(3.20, 3.21, 3.28)

15 15/8 8/4 8/8 7/2 8/4 8/4 8/8
30 15/12 12/10 12/10 12/3 12/10 12/11 12/11
50 5/2 2/2 2/1 2/0 2/1 2/1 2/1

Table 3.7 shows the results for the first instance of each combination in the data
set S4. L1 and C1 both find optimal solutions to all of the instances with 10 and
20 customers despite C1 not being able to prove optimality for three of them. For
M1, M1+(3.13), M1+(3.13, 3.20, 3.21) and L1+(3.20, 3.21, 3.28) these numbers are
seven, seven, six and one, respectively.

Considering the solution quality, the results of the experiments on data set S4
(Table 3.7) suggest that L1 and L1+(3.20, 3.21, 3.28) outperforms the other models.
L1 and L1+(3.20, 3.21, 3.28) respectively solve to optimality 32 and 35 instances
out of 80 and attains feasible solutions for the remaining. Nevertheless, M1 is
able to identify an optimal solution for 12 and M1+(3.13) and M1+(3.13, 3.20,
3.21) to 13 instances. M1 and M1+(3.13) prove the optimality of seven of those
instances and this number for M1+(3.13, 3.20, 3.21) is six. Models M1, M1+(3.13)
and M1+(3.13, 3.20, 3.21) produce a feasible solution for the remaining instances
except for one (test51-2-3-a-Q110) in which M1+(3.13) hits the time limit without
returning a feasible solution.
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Table 3.7 Results of the alternative PVRP models on data set S5

Instance Best OFV
M1 L1 UC1

OFV ∆% Time Root LP OFV ∆% Time Root LP OFV ∆% Time Root LP

test11-2-2-a-Q51 620.48 620.48 0.00 2.35 471.71 470.70 620.48 0.00 0.97 553.78 553.78 620.48 0.00 0.81 556.52 530.99
test11-2-3-a-Q51 620.48 620.48 0.00 2.61 471.71 470.70 620.48 0.00 0.94 553.78 553.78 620.48 0.00 1.43 534.87 530.99
test11-3-2-a-Q51 834.96 834.96 0.00 344.80 608.29 607.75 834.96 0.00 2.27 741.16 741.16 834.96 0.00 1.26 724.82 701.75
test11-3-3-a-Q51 834.96 834.96 0.00 407.54 608.29 607.75 834.96 0.00 1.92 741.16 741.16 834.96 0.00 6.79 705.57 701.75
test11-4-2-a-Q51 1043.91 1043.91 0.00 90.14 740.19 738.60 1043.91 0.00 2.50 920.40 920.40 1043.91 0.00 0.93 888.17 874.92
test11-4-3-a-Q51 1043.91 1043.91 0.00 131.06 740.19 738.60 1043.91 0.00 2.00 920.40 920.40 1043.91 0.00 2.47 924.54 874.92
test11-5-2-a-Q51 1083.97 1083.97 0.00 T-UP 728.63 724.91 1083.97 0.00 37.67 928.18 928.18 1083.97 0.00 7.36 905.66 904.91
test11-5-3-a-Q51 1083.97 1083.97 0.00 T-UP 728.63 724.91 1083.97 0.00 55.53 928.18 928.18 1083.97 0.00 96.38 906.65 904.91
test21-2-2-a-Q71 828.98 828.98 0.00 7161.35 623.09 622.20 828.98 0.00 1.92 749.84 749.84 828.98 0.00 3.02 730.58 717.20
test21-2-3-a-Q71 828.98 828.98 0.00 T-UP 623.09 622.20 828.98 0.00 1.97 749.84 749.84 828.98 0.00 2.64 717.20 717.20
test21-2-4-a-Q71 828.98 828.98 0.00 T-UP 623.09 622.20 828.98 0.00 1.89 749.84 749.84 828.98 0.00 34.97 717.20 717.20
test21-3-2-a-Q71 1088.36 1088.36 0.00 T-UP 781.74 781.14 1088.36 0.00 16.54 931.36 931.36 1088.36 0.00 4.21 892.80 870.80
test21-3-3-a-Q71 1088.36 1095.95 0.70 T-UP 781.74 781.14 1088.36 0.00 19.73 931.36 931.36 1088.36 0.00 42.95 877.80 870.80
test21-3-4-a-Q71 1088.36 1098.60 0.94 T-UP 781.74 781.14 1088.36 0.00 13.81 931.36 931.36 1088.36 0.00 108.85 870.80 870.80
test21-4-2-a-Q71 1253.47 1278.42 1.99 T-UP 828.44 827.78 1253.47 0.00 208.05 985.93 985.93 1253.47 0.00 76.29 935.32 934.75
test21-4-3-a-Q71 1253.47 1262.64 0.73 T-UP 828.44 827.78 1253.47 0.00 476.11 985.93 985.93 1253.47 0.00 327.73 935.32 934.75
test21-4-4-a-Q71 1253.47 1259.01 0.44 T-UP 828.44 827.78 1253.47 0.00 456.24 985.93 985.93 1253.47 0.00 T-UP 934.75 934.75
test21-5-2-a-Q71 1729.00 1779.87 2.94 T-UP 984.77 984.77 1729.00 0.00 2341.55 1268.65 1268.65 1729.00 0.00 1293.83 1185.11 1122.59
test21-5-3-a-Q71 1729.00 1774.25 2.62 T-UP 984.77 984.77 1729.00 0.00 4926.02 1268.65 1268.65 1729.00 0.00 T-UP 1122.59 1122.59
test21-5-4-a-Q71 1729.00 1787.14 3.36 T-UP 984.77 984.77 1729.00 0.00 3772.19 1268.65 1268.65 1729.00 0.00 T-UP 1122.59 1122.59
test31-2-2-a-Q80 841.63 876.56 4.15 T-UP 551.97 551.96 841.63 0.00 124.06 665.77 665.77 841.63 0.00 15.72 620.02 615.47
test31-2-3-a-Q64 917.28 934.17 1.84 T-UP 553.87 553.85 917.28 0.00 T-UP 689.39 689.39 917.28 0.00 1757.67 623.97 623.97
test31-2-4-a-Q64 911.89 918.13 0.68 T-UP 553.87 553.85 911.89 0.00 T-UP 689.39 689.39 911.89 0.00 T-UP 623.97 623.97
test31-3-2-a-Q80 1190.97 1255.21 5.39 T-UP 765.86 765.74 1190.97 0.00 496.63 936.48 936.48 1190.97 0.00 70.13 848.47 848.47
test31-3-3-a-Q64 1285.54 1317.64 2.50 T-UP 767.50 767.31 1287.10 0.12 T-UP 1004.17 1004.17 1285.54 0.00 T-UP 877.07 877.07
test31-3-4-a-Q64 1287.10 1307.25 1.57 T-UP 767.50 767.31 1287.10 0.00 T-UP 1004.17 1004.17 1288.27 0.09 T-UP 877.07 877.07
test31-4-2-a-Q80 1625.85 1704.06 4.81 T-UP 981.08 980.57 1625.85 0.00 1815.83 1250.23 1250.23 1625.85 0.00 T-UP 1144.77 1113.89
test31-4-3-a-Q64 1742.31 1879.50 7.87 T-UP 985.57 984.78 1753.21 0.63 T-UP 1348.56 1348.56 1742.31 0.00 T-UP 1152.33 1152.33
test31-4-4-a-Q64 1741.92 1853.06 6.38 T-UP 985.57 984.78 1750.24 0.48 T-UP 1348.56 1348.56 1752.70 0.62 T-UP 1152.33 1152.33
test31-5-2-a-Q80 1673.06 1761.89 5.31 T-UP 1013.46 1013.15 1676.28 0.19 T-UP 1208.85 1208.84 1673.06 0.00 T-UP 1110.70 1110.70
test31-5-3-a-Q64 1773.10 1808.14 1.98 T-UP 1015.51 1015.02 1780.12 0.40 T-UP 1301.45 1301.45 1780.61 0.42 T-UP 1147.22 1147.22
test31-5-4-a-Q64 1771.75 1942.78 9.65 T-UP 1015.51 1015.02 1777.24 0.31 T-UP 1301.45 1301.45 1809.47 2.13 T-UP 1147.22 1147.22
test41-2-2-a-Q180 871.32 886.41 1.73 T-UP 653.15 653.15 871.32 0.00 357.30 681.36 681.36 871.32 0.00 144.61 669.79 659.95
test41-2-3-a-Q150 889.32 896.95 0.86 T-UP 653.98 653.98 889.32 0.00 225.06 694.89 694.89 889.32 0.00 2988.48 664.67 664.67
test41-2-4-a-Q60 1073.75 1157.75 7.82 T-UP 661.44 661.32 1080.06 0.59 T-UP 851.96 851.96 1089.37 1.45 T-UP 736.37 736.37
test41-3-2-a-Q180 1185.19 1198.00 1.08 T-UP 952.19 952.16 1185.19 0.00 1137.67 984.03 984.03 1185.19 0.00 408.95 958.07 958.07
test41-3-3-a-Q150 1214.05 1274.48 4.98 T-UP 953.36 953.31 1214.05 0.00 754.25 999.55 999.55 1214.05 0.00 T-UP 964.78 964.78
test41-3-4-a-Q60 1489.58 1558.55 4.63 T-UP 963.85 963.57 1493.45 0.26 T-UP 1209.36 1209.36 1543.21 3.60 T-UP 1067.04 1067.04
test41-4-2-a-Q180 1460.46 1514.93 3.73 T-UP 1104.28 1104.17 1460.46 0.00 962.98 1161.52 1161.52 1460.46 0.00 6396.19 1124.58 1124.58
test41-4-3-a-Q150 1476.33 1583.14 7.23 T-UP 1105.35 1105.18 1476.33 0.00 2835.68 1182.72 1182.72 1478.80 0.17 T-UP 1132.30 1132.30
test41-4-4-a-Q60 1750.77 1860.68 6.28 T-UP 1114.97 1113.98 1750.77 0.00 T-UP 1420.78 1420.78 1942.06 10.93 T-UP 1258.19 1258.19
test41-5-2-a-Q190 1921.38 2040.06 6.18 T-UP 1388.04 1387.97 1924.87 0.18 T-UP 1473.15 1473.15 1971.05 2.59 T-UP 1431.82 1431.82
test41-5-3-a-Q160 1952.17 2117.74 8.48 T-UP 1390.76 1390.66 1952.47 0.02 T-UP 1499.35 1499.35 2001.29 2.52 T-UP 1445.72 1445.72
test41-5-4-a-Q60 2468.46 2712.85 9.90 T-UP 1419.81 1419.06 2468.46 0.00 T-UP 1872.36 1872.36 NA _ T-UP 1614.43 1614.43
test51-2-2-a-Q190 1085.59 1148.34 5.78 T-UP 735.00 734.97 1085.59 0.00 1343.70 855.49 855.49 1085.59 0.00 2978.97 813.44 797.40
test51-2-3-a-Q110 1217.06 1414.89 16.25 T-UP 740.65 740.54 1217.06 0.00 T-UP 984.51 984.51 1226.23 0.75 T-UP 884.28 884.28
test51-2-4-a-Q100 1248.60 1352.14 8.29 T-UP 741.98 741.86 1248.60 0.00 T-UP 1006.63 1006.63 1345.40 7.75 T-UP 882.75 882.75
test51-3-2-a-Q160 1677.65 1875.03 11.77 T-UP 1125.69 1125.68 1677.65 0.00 T-UP 1307.59 1307.59 1703.23 1.52 T-UP 1204.70 1202.87
test51-3-3-a-Q110 1804.88 2165.23 19.97 T-UP 1132.73 1132.72 1804.88 0.00 T-UP 1437.71 1437.71 2086.25 15.59 T-UP 1252.03 1252.03
test51-3-4-a-Q100 1888.78 1990.94 5.41 T-UP 1134.98 1134.97 1888.78 0.00 T-UP 1483.59 1483.59 2176.38 15.23 T-UP 1272.46 1272.46
test51-4-2-a-Q160 1936.78 2226.11 14.94 T-UP 1251.36 1251.35 1943.83 0.36 T-UP 1450.85 1450.85 1954.72 0.93 T-UP 1360.80 1360.80
test51-4-3-a-Q120 2020.04 2384.30 18.03 T-UP 1253.06 1253.05 2028.29 0.41 T-UP 1544.90 1544.90 2153.69 6.62 T-UP 1405.81 1405.81
test51-4-4-a-Q100 2128.49 2413.85 13.41 T-UP 1254.42 1254.40 2184.53 2.63 T-UP 1633.10 1633.09 2464.00 15.76 T-UP 1444.24 1444.24
test51-5-2-a-Q200 2401.49 2647.04 10.22 T-UP 1501.01 1501.01 2415.55 0.59 T-UP 1715.89 1715.89 2540.61 5.79 T-UP 1622.14 1622.14
test51-5-3-a-Q190 2425.05 2655.09 9.49 T-UP 1501.52 1501.52 2460.19 1.45 T-UP 1732.38 1732.38 NA _ T-UP 1629.43 1629.43
test51-5-4-a-Q170 2469.66 2756.79 11.63 T-UP 1502.72 1502.72 2470.63 0.04 T-UP 1771.96 1771.96 2917.50 18.13 T-UP 1651.51 1651.51
test61-2-2-a-Q180 1168.95 1374.12 17.55 T-UP 902.62 902.62 1175.40 0.55 T-UP 974.33 974.33 1168.95 0.00 5037.86 933.13 931.05
test61-2-3-a-Q120 1267.71 1718.50 35.56 T-UP 905.29 905.28 1269.04 0.10 T-UP 1041.40 1041.40 1383.84 9.16 T-UP 954.83 954.83
test61-2-4-a-Q97 1323.03 1646.27 24.43 T-UP 907.18 907.18 1323.03 0.00 T-UP 1095.56 1095.56 1662.45 25.65 T-UP 973.97 973.97
test61-3-2-a-Q190 1741.95 2095.39 20.29 T-UP 1270.74 1270.72 1741.95 0.00 T-UP 1388.80 1388.80 1796.95 3.16 T-UP 1312.51 1307.85
test61-3-3-a-Q150 1790.93 2113.95 18.04 T-UP 1273.53 1273.49 1795.87 0.28 T-UP 1444.52 1444.52 1911.15 6.71 T-UP 1328.07 1328.07
test61-3-4-a-Q97 1999.44 2398.03 19.94 T-UP 1280.75 1280.66 3015.23 50.80 T-UP 1617.87 1617.87 2388.40 19.45 T-UP 1409.43 1409.43
test61-4-2-a-Q180 2200.08 2956.72 34.39 T-UP 1537.08 1537.03 2231.16 1.41 T-UP 1710.10 1710.10 2340.70 6.39 T-UP 1626.38 1615.36
test61-4-3-a-Q150 2319.59 2855.08 23.09 T-UP 1539.75 1539.68 2319.59 0.00 T-UP 1766.04 1766.03 NA _ T-UP 1634.97 1634.97
test61-4-4-a-Q97 2507.13 3064.86 22.25 T-UP 1548.50 1548.34 2529.01 0.87 T-UP 1974.49 1974.49 NA _ T-UP 1708.33 1708.33
test61-5-2-a-Q180 2450.39 3374.70 37.72 T-UP 1914.11 1914.07 2494.84 1.81 T-UP 2040.39 2040.39 2490.96 1.66 T-UP 1943.99 1936.91
test61-5-3-a-Q150 2513.36 3360.93 33.72 T-UP 1916.00 1915.94 2546.63 1.32 T-UP 2094.16 2094.16 4804.95 91.18 T-UP 1957.19 1957.19
test61-5-4-a-Q97 2842.33 3682.97 29.58 T-UP 1922.19 1922.05 2842.33 0.00 T-UP 2300.71 2300.71 NA _ T-UP 2055.85 2055.85
test71-2-2-a-Q200 1243.98 1376.58 10.66 T-UP 935.13 935.13 1243.98 0.00 1781.23 1022.89 1022.89 1243.98 0.00 1336.43 958.23 955.63
test71-2-3-a-Q150 1326.69 1420.85 7.10 T-UP 937.38 937.38 1333.43 0.51 T-UP 1071.03 1071.03 1351.36 1.86 T-UP 974.02 974.02
test71-2-4-a-Q120 1395.07 1727.76 23.85 T-UP 939.63 939.62 1395.07 0.00 T-UP 1125.70 1125.70 1583.92 13.54 T-UP 994.50 994.50
test71-3-2-a-Q200 1641.94 1716.65 4.55 T-UP 1153.30 1153.25 1641.94 0.00 3735.14 1299.03 1299.03 1664.46 1.37 T-UP 1220.41 1206.69
test71-3-3-a-Q150 1733.11 2086.44 20.39 T-UP 1155.99 1155.92 1733.11 0.00 T-UP 1361.35 1361.35 NA _ T-UP 1231.63 1231.63
test71-3-4-a-Q120 1790.09 2328.41 30.07 T-UP 1158.69 1158.57 1790.09 0.00 T-UP 1432.07 1432.07 NA _ T-UP 1260.21 1260.21
test71-4-2-a-Q200 2167.52 2480.62 14.45 T-UP 1499.30 1499.27 2188.79 0.98 T-UP 1656.74 1656.74 2386.41 10.10 T-UP 1553.00 1541.67
test71-4-3-a-Q150 2211.85 3149.34 42.38 T-UP 1502.55 1502.50 2268.86 2.58 T-UP 1740.15 1740.15 NA _ T-UP 1579.03 1579.03
test71-4-4-a-Q120 2322.54 3011.96 29.68 T-UP 1505.81 1505.73 2349.10 1.14 T-UP 1830.92 1830.92 NA _ T-UP 1632.71 1632.71
test71-5-2-a-Q200 3009.01 3937.49 30.86 T-UP 2094.35 2094.34 3009.01 0.00 T-UP 2276.81 2276.81 4513.85 50.01 T-UP 2148.82 2148.82
test71-5-3-a-Q150 2919.21 3322.29 13.81 T-UP 2094.54 2094.53 2919.21 0.00 T-UP 2283.52 2283.52 NA _ T-UP 2151.94 2151.94
test71-5-4-a-Q120 3240.84 4232.61 30.60 T-UP 2099.29 2099.26 3240.84 0.00 T-UP 2503.94 2503.94 NA _ T-UP 2235.17 2235.17
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Table 3.7 Results of the alternative PVRP models on data set S5 (continued)

Instance Best OFV
M1+(3.13) M1+(3.13, 3.20, 3.21) L1+(3.20, 3.21, 3.28)

OFV ∆% Time Root LP OFV ∆% Time Root LP OFV ∆% Time Root LP

test11-2-2-a-Q51 620.48 620.48 0.00 14.54 524.04 505.74 620.48 0.00 10.56 524.04 512.85 620.48 0.00 1.64 579.68 553.78
test11-2-3-a-Q51 620.48 620.48 0.00 20.62 524.04 505.74 620.48 0.00 8.53 524.04 512.85 620.48 0.00 1.67 579.68 553.78
test11-3-2-a-Q51 834.96 834.96 0.00 1716.34 676.66 639.31 834.96 0.00 740.97 676.66 665.28 834.96 0.00 3.85 756.51 741.16
test11-3-3-a-Q51 834.96 834.96 0.00 1177.94 676.66 639.31 834.96 0.00 612.58 676.66 665.28 834.96 0.00 3.59 756.51 741.16
test11-4-2-a-Q51 1043.91 1043.91 0.00 334.02 899.02 807.76 1043.91 0.00 195.27 899.02 852.44 1043.91 0.00 3.89 986.19 920.40
test11-4-3-a-Q51 1043.91 1043.91 0.00 331.02 899.02 807.76 1043.91 0.00 319.56 899.02 852.44 1043.91 0.00 2.67 986.19 920.40
test11-5-2-a-Q51 1083.97 1083.97 0.00 T-UP 893.51 762.79 1083.97 0.00 T-UP 893.51 806.21 1083.97 0.00 9.12 984.54 928.18
test11-5-3-a-Q51 1083.97 1083.97 0.00 T-UP 893.51 762.79 1084.12 0.01 T-UP 893.51 806.21 1083.97 0.00 9.55 984.54 928.18
test21-2-2-a-Q71 828.98 828.98 0.00 T-UP 708.92 698.34 828.98 0.00 T-UP 708.92 705.91 828.98 0.00 3.19 793.81 749.84
test21-2-3-a-Q71 828.98 828.98 0.00 T-UP 708.92 698.34 828.98 0.00 T-UP 708.92 705.91 828.98 0.00 3.09 793.81 749.84
test21-2-4-a-Q71 828.98 828.98 0.00 4400.69 856.15 698.34 828.98 0.00 T-UP 856.15 705.91 828.98 0.00 2.05 793.81 749.84
test21-3-2-a-Q71 1088.36 1088.36 0.00 T-UP 856.15 840.16 1095.95 0.70 T-UP 856.15 850.23 1088.36 0.00 16.95 979.25 931.36
test21-3-3-a-Q71 1088.36 1088.36 0.00 T-UP 856.15 840.16 1088.36 0.00 T-UP 856.15 850.23 1088.36 0.00 26.38 979.25 931.36
test21-3-4-a-Q71 1088.36 1098.79 0.96 T-UP 856.15 840.16 1088.36 0.00 T-UP 856.15 850.23 1088.36 0.00 30.92 979.25 931.36
test21-4-2-a-Q71 1253.47 1259.01 0.44 T-UP 981.63 905.89 1260.97 0.60 T-UP 981.63 965.40 1253.47 0.00 297.20 1086.28 985.93
test21-4-3-a-Q71 1253.47 1256.30 0.23 T-UP 981.63 905.89 1260.17 0.53 T-UP 981.63 965.40 1253.47 0.00 200.70 1086.28 985.93
test21-4-4-a-Q71 1253.47 1259.01 0.44 T-UP 981.63 905.89 1260.97 0.60 T-UP 981.63 965.40 1253.47 0.00 199.83 1086.28 985.93
test21-5-2-a-Q71 1729.00 1759.32 1.75 T-UP 1100.54 1100.54 1756.79 1.61 T-UP 1242.50 1166.21 1729.00 0.00 T-UP 1445.47 1268.65
test21-5-3-a-Q71 1729.00 1769.56 2.35 T-UP 1100.54 1100.54 1758.72 1.72 T-UP 1242.50 1166.21 1729.00 0.00 5563.17 1445.47 1268.65
test21-5-4-a-Q71 1729.00 1766.37 2.16 T-UP 1100.54 1100.54 1744.60 0.90 T-UP 1242.50 1166.21 1729.00 0.00 4525.73 1445.47 1268.65
test31-2-2-a-Q80 841.63 845.76 0.49 T-UP 597.58 597.58 880.00 4.56 T-UP 644.21 617.22 841.63 0.00 20.81 745.94 665.77
test31-2-3-a-Q64 917.28 942.37 2.74 T-UP 597.58 597.58 928.77 1.25 T-UP 644.21 617.22 917.28 0.00 T-UP 772.60 689.39
test31-2-4-a-Q64 911.89 944.58 3.58 T-UP 597.58 597.58 911.89 0.00 T-UP 644.21 617.22 911.89 0.00 3423.20 772.60 689.39
test31-3-2-a-Q80 1190.97 1207.17 1.36 T-UP 826.70 826.70 1261.81 5.95 T-UP 857.09 836.66 1190.97 0.00 267.69 1011.77 936.48
test31-3-3-a-Q64 1285.54 1319.19 2.62 T-UP 826.70 826.70 1303.86 1.43 T-UP 857.09 836.66 1285.54 0.00 T-UP 1071.06 1004.17
test31-3-4-a-Q64 1287.10 1320.77 2.62 T-UP 826.70 826.70 1344.45 4.46 T-UP 857.09 836.66 1287.10 0.00 T-UP 1071.06 1004.17
test31-4-2-a-Q80 1625.85 1690.84 4.00 T-UP 1049.37 1049.37 1724.27 6.05 T-UP 1167.62 1101.80 1625.85 0.00 846.62 1355.32 1250.23
test31-4-3-a-Q64 1742.31 1801.26 3.38 T-UP 1049.37 1049.37 1805.51 3.63 T-UP 1167.62 1101.80 1752.70 0.60 T-UP 1436.87 1348.56
test31-4-4-a-Q64 1741.92 1857.93 6.66 T-UP 1049.37 1049.37 1799.29 3.29 T-UP 1167.62 1101.80 1741.92 0.00 T-UP 1436.87 1348.56
test31-5-2-a-Q80 1673.06 1747.16 4.43 T-UP 1075.18 1075.18 1774.74 6.08 T-UP 1170.13 1139.20 1673.06 0.00 T-UP 1328.67 1208.84
test31-5-3-a-Q64 1773.10 1823.27 2.83 T-UP 1075.18 1075.18 1826.94 3.04 T-UP 1170.13 1139.20 1773.10 0.00 T-UP 1413.16 1301.45
test31-5-4-a-Q64 1771.75 1822.25 2.85 T-UP 1075.18 1075.18 1853.50 4.61 T-UP 1170.13 1139.20 1771.75 0.00 T-UP 1413.16 1301.45
test41-2-2-a-Q180 871.32 883.07 1.35 T-UP 735.14 735.14 877.82 0.75 T-UP 774.02 756.49 871.32 0.00 114.72 787.47 681.36
test41-2-3-a-Q150 889.32 893.82 0.51 T-UP 735.14 735.14 889.32 0.00 T-UP 774.02 756.49 889.32 0.00 70.19 796.41 694.89
test41-2-4-a-Q60 1073.75 1121.17 4.42 T-UP 735.14 735.14 1130.82 5.32 T-UP 774.02 756.49 1073.75 0.00 T-UP 932.40 851.96
test41-3-2-a-Q180 1185.19 1193.56 0.71 T-UP 1030.93 1030.93 1185.19 0.00 T-UP 1094.19 1052.66 1185.19 0.00 272.55 1108.25 984.03
test41-3-3-a-Q150 1214.05 1247.92 2.79 T-UP 1030.93 1030.93 1262.03 3.95 T-UP 1094.19 1052.66 1214.05 0.00 980.41 1117.85 999.55
test41-3-4-a-Q60 1489.58 1575.70 5.78 T-UP 1030.93 1030.93 1529.96 2.71 T-UP 1094.19 1052.66 1489.58 0.00 T-UP 1303.64 1209.36
test41-4-2-a-Q180 1460.46 1486.47 1.78 T-UP 1217.35 1217.35 1472.58 0.83 T-UP 1315.64 1266.52 1460.46 0.00 3241.75 1335.38 1161.52
test41-4-3-a-Q150 1476.33 1540.26 4.33 T-UP 1217.35 1217.35 1550.49 5.02 T-UP 1315.64 1266.52 1476.33 0.00 1804.66 1345.73 1182.72
test41-4-4-a-Q60 1750.77 1869.94 6.81 T-UP 1217.35 1217.35 1840.26 5.11 T-UP 1315.64 1266.52 1752.93 0.12 T-UP 1541.98 1420.78
test41-5-2-a-Q190 1921.38 1946.52 1.31 T-UP 1586.09 1586.09 1991.39 3.64 T-UP 1688.68 1630.51 1921.38 0.00 1396.48 1711.70 1473.15
test41-5-3-a-Q160 1952.17 1960.33 0.42 T-UP 1586.09 1586.09 2079.13 6.50 T-UP 1688.68 1630.51 1952.17 0.00 4425.48 1727.72 1499.35
test41-5-4-a-Q60 2468.46 2770.25 12.23 T-UP 1586.09 1586.09 2585.36 4.74 T-UP 1688.68 1630.51 2481.09 0.51 T-UP 2057.81 1872.36
test51-2-2-a-Q190 1085.59 1100.05 1.33 T-UP 815.04 815.04 1120.14 3.18 T-UP 870.02 839.68 1085.59 0.00 730.91 953.64 855.49
test51-2-3-a-Q110 1217.06 NA _ T-UP 815.04 815.04 1302.45 7.02 T-UP 870.02 839.68 1217.06 0.00 T-UP 1069.25 984.51
test51-2-4-a-Q100 1248.60 1336.75 7.06 T-UP 815.04 815.04 1280.01 2.52 T-UP 870.02 839.68 1248.60 0.00 T-UP 1088.11 1006.63
test51-3-2-a-Q160 1677.65 1887.24 12.49 T-UP 1278.65 1278.65 1728.08 3.01 T-UP 1341.48 1311.88 1692.62 0.89 T-UP 1483.78 1307.59
test51-3-3-a-Q110 1804.88 2002.40 10.94 T-UP 1278.65 1278.65 1820.33 0.86 T-UP 1341.48 1311.88 1809.87 0.28 T-UP 1595.24 1437.71
test51-3-4-a-Q100 1888.78 1977.61 4.70 T-UP 1278.65 1278.65 1955.59 3.54 T-UP 1341.48 1311.88 1897.03 0.44 T-UP 1635.83 1483.59
test51-4-2-a-Q160 1936.78 2064.00 6.57 T-UP 1320.66 1320.66 1980.37 2.25 T-UP 1558.95 1440.24 1936.78 0.00 T-UP 1671.39 1450.85
test51-4-3-a-Q120 2020.04 2150.20 6.44 T-UP 1320.66 1320.66 2104.09 4.16 T-UP 1558.95 1440.24 2020.04 0.00 T-UP 1751.17 1544.90
test51-4-4-a-Q100 2128.49 2292.63 7.71 T-UP 1320.66 1320.66 2306.36 8.36 T-UP 1558.95 1440.24 2128.49 0.00 T-UP 1825.96 1633.09
test51-5-2-a-Q200 2401.49 2479.14 3.23 T-UP 1683.66 1683.66 2559.94 6.60 T-UP 1849.94 1747.64 2401.49 0.00 T-UP 1996.47 1715.89
test51-5-3-a-Q190 2425.05 2647.58 9.18 T-UP 1683.66 1683.66 2511.43 3.56 T-UP 1849.94 1747.64 2425.05 0.00 T-UP 2009.72 1732.38
test51-5-4-a-Q170 2469.66 2575.71 4.29 T-UP 1683.66 1683.66 2575.42 4.28 T-UP 1849.94 1747.64 2469.66 0.00 T-UP 2041.60 1771.96
test61-2-2-a-Q180 1168.95 1229.01 5.14 T-UP 965.14 965.14 1281.99 9.67 T-UP 1029.00 996.58 1168.96 0.00 T-UP 1075.91 974.33
test61-2-3-a-Q120 1267.71 1378.80 8.76 T-UP 965.14 965.14 1317.96 3.96 T-UP 1029.00 996.58 1267.71 0.00 T-UP 1130.30 1041.40
test61-2-4-a-Q97 1323.03 1393.00 5.29 T-UP 965.14 965.14 1420.12 7.34 T-UP 1029.00 996.58 1346.50 1.77 T-UP 1179.07 1095.56
test61-3-2-a-Q190 1741.95 1781.49 2.27 T-UP 1406.10 1406.10 1782.64 2.34 T-UP 1473.94 1435.96 1787.27 2.60 T-UP 1559.28 1388.80
test61-3-3-a-Q150 1790.93 1929.96 7.76 T-UP 1406.10 1406.10 1889.92 5.53 T-UP 1473.94 1435.96 1790.93 0.00 T-UP 1611.55 1444.52
test61-3-4-a-Q97 1999.44 2179.47 9.00 T-UP 1406.10 1406.10 2295.33 14.80 T-UP 1473.94 1435.96 1999.44 0.00 T-UP 1765.10 1617.87
test61-4-2-a-Q180 2200.08 2298.84 4.49 T-UP 1687.55 1687.55 2463.29 11.96 T-UP 1794.33 1742.57 2200.08 0.00 T-UP 1896.55 1710.10
test61-4-3-a-Q150 2319.59 2394.52 3.23 T-UP 1687.55 1687.55 2446.83 5.49 T-UP 1794.33 1742.57 2328.57 0.39 T-UP 1944.76 1766.03
test61-4-4-a-Q97 2507.13 2767.81 10.40 T-UP 1687.55 1687.55 2658.43 6.03 T-UP 1794.33 1742.57 2507.13 0.00 T-UP 2128.00 1974.49
test61-5-2-a-Q180 2450.39 2619.46 6.90 T-UP 2019.71 2019.71 2553.63 4.21 T-UP 2131.95 2058.92 2450.39 0.00 T-UP 2228.89 2040.39
test61-5-3-a-Q150 2513.36 2598.59 3.39 T-UP 2019.71 2019.71 2714.55 8.00 T-UP 2131.95 2058.92 2513.36 0.00 T-UP 2275.74 2094.16
test61-5-4-a-Q97 2842.33 3062.36 7.74 T-UP 2019.71 2019.71 3121.05 9.81 T-UP 2131.95 2058.92 2854.06 0.41 T-UP 2449.01 2300.71
test71-2-2-a-Q200 1243.98 1281.09 2.98 T-UP 1039.73 1039.73 1254.07 0.81 T-UP 1107.44 1072.65 1243.98 0.00 128.48 1175.63 1022.89
test71-2-3-a-Q150 1326.69 1387.89 4.61 T-UP 1039.73 1039.73 1377.74 3.85 T-UP 1107.44 1072.65 1326.69 0.00 6163.58 1211.43 1071.03
test71-2-4-a-Q120 1395.07 1544.24 10.69 T-UP 1039.73 1039.73 1496.61 7.28 T-UP 1107.44 1072.65 1421.80 1.92 T-UP 1257.82 1125.70
test71-3-2-a-Q200 1641.94 1738.56 5.88 T-UP 1283.98 1283.98 1702.57 3.69 T-UP 1397.68 1326.36 1641.94 0.00 1428.56 1491.67 1299.03
test71-3-3-a-Q150 1733.11 1829.00 5.53 T-UP 1283.98 1283.98 1845.15 6.46 T-UP 1397.68 1326.36 1745.10 0.69 T-UP 1541.59 1361.35
test71-3-4-a-Q120 1790.09 2000.33 11.74 T-UP 1283.98 1283.98 1961.17 9.56 T-UP 1397.68 1326.36 1817.94 1.56 T-UP 1602.65 1432.07
test71-4-2-a-Q200 2167.52 2294.96 5.88 T-UP 1686.77 1686.77 2531.14 16.78 T-UP 1818.31 1761.36 2167.52 0.00 T-UP 1922.11 1656.74
test71-4-3-a-Q150 2211.85 2474.41 11.87 T-UP 1686.77 1686.77 2605.37 17.79 T-UP 1818.31 1761.36 2211.85 0.00 T-UP 1995.20 1740.15
test71-4-4-a-Q120 2322.54 2679.90 15.39 T-UP 1686.77 1686.77 2568.38 10.58 T-UP 1818.31 1761.36 2322.54 0.00 T-UP 2081.11 1830.92
test71-5-2-a-Q200 3009.01 3265.11 8.51 T-UP 2225.74 2225.74 3495.66 16.17 T-UP 2377.38 2317.38 3025.68 0.55 T-UP 2537.06 2276.81
test71-5-3-a-Q150 2919.21 3282.53 12.45 T-UP 2225.74 2225.74 3189.08 9.24 T-UP 2377.38 2317.38 2969.63 1.73 T-UP 2543.76 2283.52
test71-5-4-a-Q120 3240.84 3757.32 15.94 T-UP 2225.74 2225.74 3710.61 14.50 T-UP 2377.38 2317.38 3252.40 0.36 T-UP 2750.39 2503.94
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Table 3.8 Summary of results for alternative PVRP formulations

size data set No M1 L1 UC1

# Best OFV #opt avg Gap time # Best OFV #opt avg Gap time # Best OFV #opt avg Gap time

Small

S1 3 1 0 0.19 0 3 1 0.05 0 2 1 0.10 1
S3 24 19 15 0.04 0 24 24 0 0 24 24 0 17
S4 35 30 16 0.05 3 30 19 0.01 6 27 5 0.12 0
S5 32 12 7 0.13 0 31 23 0.01 10 28 20 0.02 10

sum\avg 94 62 38 0.08 3 88 67 0.01 16 81 50 0.05 28

# Best OFV #opt # feaSol avg LB time # Best OFV #opt # feaSol avg LB time # Best OFV #opt # feaSol avg LB time

Medium

S1 8 1 0 8 1765.68 0 4 0 5 2153.56 0 2 0 7 2157.89 0
S2 1 0 0 1 1778.49 0 0 0 1 2038.04 0 0 0 1 2070.17 0
S3 1 0 0 1 10.23 0 0 0 1 12.41 0 0 0 0 10.70 0
S5 48 0 0 48 1182.81 0 26 9 48 1774.12 2 0 7 37 1684.71 1

sum\avg 58 1 0 58 1253.26 0 30 9 55 1800.6 2 2 7 45 1727.76 1

# Best OFV # feaSol avg LB # Best OFV # feaSol avg LB # Best OFV # feaSol avg LB

Large
S1 18 4 15 13431.53 3 6 16139.46 0 2 13946.61
S2 9 1 6 4675.25 1 3 6160.58 0 0 4801.71

sum\avg 27 5 21 10512.77 4 9 12813.17 0 2 10898.31

M1+(3.13) M1+(3.13, 3.20, 3.21) L1+(3.20, 3.21, 3.28)

# Best OFV #opt avg Gap time # Best OFV #opt avg Gap time # Best OFV #opt avg Gap time

Small

S1 3 1 0 0.18 0 0 0 0.18 0 3 1 0.03 0
S3 24 21 15 0.03 0 18 13 0.05 0 25 24 0 8
S4 35 31 15 0.05 5 33 16 0.04 5 31 20 0.01 5
S5 32 13 7 0.12 0 13 6 0.12 0 31 23 0.01 5

sum\avg 94 66 37 0.07 5 64 35 0.08 5 90 68 0.01 18

# Best OFV #opt # feaSol avg LB time # Best OFV #opt # feaSol avg LB time # Best OFV #opt # feaSol avg LB time

Medium

S1 8 0 0 7 1775.5 0 0 0 7 1771.23 0 2 0 8 2264.25 0
S2 1 0 0 1 1787.72 0 0 0 1 1802.52 0 1 0 1 2078.58 0
S3 1 0 0 1 10.25 0 0 0 1 10.25 0 1 0 1 12.41 0
S5 48 0 0 47 1582.06 0 2 0 48 1580.72 0 33 12 48 1786.65 10

sum\avg 58 0 0 56 1585.18 0 2 0 57 1583.75 0 37 12 58 1826.97 10

# Best OFV # feaSol avg LB # Best OFV # feaSol avg LB # Best OFV # feaSol avg LB

Large
S1 18 6 18 13222.26 1 17 13219.62 4 8 5190.18
S2 9 2 7 4698.13 1 6 4778.66 2 3 6234.50

sum\avg 27 8 25 10380.89 2 23 10405.97 6 11 5538.29
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Replacing constraints (3.8) with the stronger versions of SECs (valid inequalities
(3.13)) leads to an improvement of up to 22.68% in the solutions of 54 instances.
C1 competes with L1 and L1+(3.20, 3.21, 3.28) in the most of small instances
containing up to 30 customers. Nevertheless, it is unable to find a feasible solution
for 11 relatively larger instances. M1+(3.13) yields significantly better objective
function values at the root node than does M1: achieving a maximum of 37.40%
improvement. Yet again, L1+(3.20, 3.21, 3.28) is superior to the other models with
respect to the quality of the root node objective values.

Across all five data sets, it is consistently observed that model L1+(3.20, 3.21,
3.28) provides the best LP-relaxation objective function values. Model L1 follows
closely behind L1+(3.20, 3.21, 3.28) in terms of LP-relaxation quality, often be-
ing the second-best performer across all data sets. For data sets S1, S2, and S4,
the rankings are consistent, with L1+(3.20, 3.21, 3.28) and L1 leading the LP-
relaxation quality, followed by C1, M1+(3.13, 3.20, 3.21), M1+(3.13), and M1. For
data set S3, the inclusion of valid inequalities (3.13) and (3.21) and optimality cut
(3.20) enhances the LP-relaxation quality of MTZ-formulation to such an extent
that M1+(3.13, 3.20, 3.21) and M1+(3.13) surpass both L1 and C1 in terms of
tightness. In data set S5, L1+(3.20, 3.21, 3.28) continues to excel, while L1 takes
the lead in most instances compared to M1+(3.13, 3.20, 3.21). Models C1 competes
with M1+(3.13), and M1+(3.13, 3.20, 3.21) on data set S5. This suggests that the
quality of the LP-relaxation objective function can be dependent on the specific data
set characteristics.

It should also be noted that, in some instances, the values of the root node relax-
ation and LP-relaxation are the same. To investigate this further, we incorporated
a callback function into the optimization process to count the number of cuts added
to the root node relaxation in these instances. It becomes evident that no cuts are
added to the root node relaxation, and consequently, the root node and the LP
relaxation coincide.

Table 3.8 narrows down the evaluation of the alternative PVRP models into a
comparison of OFV, number of optimal solutions, average gap, run time, number
of instances for which at least an upper bound is obtained and average best lower
bounds. We categorize the instances into three groups as follows; instances with up
to 40 customers are considered small, instances with 41 to 71 customers are con-
sidered medium, and instances with 72 to 288 customers are considered large. The
second column of the table shows the data set while the next column indicates the
number of instances in the corresponding set that belongs to the specified instance
size category.
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For the small category, the next blocks of four columns report the number of
instances for which the corresponding model reaches the best OFV, the number of
instances solved to optimality, the average gap, and the number of instances solved
to optimality faster, respectively. For medium and large categories, due to the
existence of instances for which some of the models fail to find a feasible solution,
we report the number of instances where at least an upper bound is obtained by the
corresponding model (#feaSol) as well as average best obtained lower bounds (avg
LB) instead of the average gap. For the large category, the first two columns of the
block report the number of instances for which the corresponding model reaches the
best OFV and the number of instances solved to feasibility, respectively. The third
column presents the average of the best lower bounds attained by the corresponding
model.

• Results based on the 94 small instances illustrate the superior performance of
L1+(3.20, 3.21, 3.28) in comparison with other models. L1+(3.20, 3.21, 3.28)
finds the best OFV for 90 out of 94 instances, among which 68 instances are
solved to optimality. L1 and L1+(3.20, 3.21, 3.28) exhibit an average gap of
0.01 across the 94 instances. In terms of solution time, 75 small instances are
solved to optimality by the alternative models. For the remaining instances
the models hit the time limit. The time it takes for UC1 to find an optimal
solution is shorter compared to the other models in 28 of small instances,
followed by L1+(3.20, 3.21, 3.28) and L1 in 18 and 16 instances respectively.

• Results based on the 58 medium instances also exhibit the superior perfor-
mance of L1+(3.20, 3.21, 3.28) with regard to quality of OFV, solution time,
average best lower bounds and number of the optimal solutions. Models M1
and L1+(3.20, 3.21, 3.28) successfully find an upper bound for all medium
instances followed by M1+(3.13, 3.20, 3.21)). L1+(3.20, 3.21, 3.28) finds the
optimal solution faster in 10 out of 13 medium instances solved to optimality
by alternative formulations.

• Results based on the 27 large instances demonstrate that M1+(3.13) outper-
formed the other alternative models. Generally, in large instances the models
based on the MTZ-SECs (M1, M1+(3.13), M1+(3.13, 3.20, 3.21)), despite the
L1, L1+(3.20, 3.21, 3.28) and UC1, are able to find a feasible solution for most
of the instances. Out of 27 large instances, M1-13 finds a feasible solution for
25 instances, while this number is 11 for L1+(3.20, 3.21, 3.28). In terms of
the quality of OFV, MTZ-based formulations are still superior to load-based
and cut-based models. However, Model L1 obtains the greatest average lower
bounds.
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The aforementioned results imply that Load-based models are faster than MTZ-
based formulations in small and medium instances whereas MTZ-based formulations,
particularly M1+(3.13), produce more favorable results in solving large instances.

MTZ-based formulations, use a set of continuous two-indexed variables to guar-
antee the connectivity of the vehicle routes and to avoid vehicle capacity violations.
To this end, the load-based formulations, use a set of continuous three-indexed
(commodity flow) variables that makes the formulation stronger. Hence, in terms
of solution quality and run time, the load-based models outperform the MTZ-based
models in the small and medium instances. However, in large instances, the models
cannot even attain a feasible solution for some of the instances.

3.2.3 Evaluation of Alternative PVRPTW Formulations

In order to compare the alternative PVRPTW models, data sets S6 and S7 are
used. First, we test M2, L2 and C2; then, we evaluate the impact of valid inequalities
and optimality cuts as follows.

• Model M2+(3.13) is obtained by replacing constraints (3.8) with (3.13).

• We add valid inequalities (3.46) to models M2 and L2 and obtain models
M2+(3.46) and L2+(3.46), respectively.

• The effect of applying valid inequalities (3.13) and (3.46) together on model
M2 is also investigated with model M2+(3.13, 3.46),

• Model M2+(3.13, 3.20, 3.21, 3.46) is obtained by adding optimality cuts (3.20)
and valid inequalities (3.21) to model M2+(3.13, 3.46)

• Model L2+(3.20, 3.21, 3.28, 3.46) is obtained by adding valid inequalities
(3.21) and optimality cuts (3.20) and (3.28) to model L2+(3.46).

Overall, nine alternative formulations are tested. The time limit is set to 86400
seconds for the instances in the data set S6 and 14400 seconds for the instances in
the data set S7.

The results in Table 3.9 highlight the difficulty of the instances in the data set
S6. Out of the 20 instances, none can be solved to feasibility by C2, whereas L2 and
M2 are able to identify a feasible solution to seven and 15 instances, respectively.
More precisely, out of the first ten instances with narrow time windows,
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Table 3.9 Results of the alternative PVRPTW models on data set S6

Instance Best OFV
M2 L2 C2

OFV ∆% Time Root LP OFV ∆% Time Root LP OFV ∆% Time Root LP

pr01-N48m2p4 2909.27 2911.51 0.08 T-UP 2134.73 1451.45 2909.27 0.00 T-UP 2175.85 1628.18 NA _ T-UP 2140.77 1529.24
pr02-N96m6p4 5090.38 5090.38 0.00 T-UP 3887.02 2255.79 5258.48 3.30 T-UP 4047.29 2770.16 NA _ T-UP 3955.41 2347.14
pr03-N144m9p4 8005.54 8390.26 4.81 T-UP 4471.58 3032.08 8532.49 6.58 T-UP 5084.20 4083.99 NA _ T-UP 4718.59 3389.02
pr04-N192m12p4 8485.23 9428.59 11.12 T-UP 4713.84 3377.91 8485.23 0.00 T-UP 5595.27 4693.53 NA _ T-UP 5050.71 3836.42
pr05-N240m15p4 9916.44 9916.44 0.00 T-UP 4947.11 3525.92 NA _ T-UP 6181.79 5340.67 NA _ T-UP _ 4065.58
pr06-N288m18p4 12481.09 12749.94 2.15 T-UP 5857.50 4275.34 12812.89 2.66 T-UP 7546.70 6468.34 NA _ T-UP _ 5147.57
pr07-N72m5p6 6811.75 6882.41 1.04 T-UP 4748.77 3398.81 NA _ T-UP 4927.67 3884.69 NA _ T-UP 4743.33 3504.42
pr08-N144m10p6 11066.50 11066.50 0.00 T-UP 5952.98 3842.02 NA _ T-UP 6824.63 5467.25 NA _ T-UP 6378.16 4416.01
pr09-N216m15p6 17253.82 NA _ T-UP 7924.27 5502.17 NA _ T-UP 9671.64 8315.47 NA _ T-UP _ 6764.80
pr10-N288m20p6 20054.45 20842.08 3.93 T-UP 9007.69 6069.61 NA _ T-UP 11793.08 9965.74 NA _ T-UP _ 7583.17
pr11-N48m2p4 2327.35 2559.99 10.00 T-UP 1451.45 1451.45 2327.35 0.00 T-UP 1628.18 1628.18 NA _ T-UP 1529.24 1529.24
pr12-N96m6p4 4767.58 4960.67 4.05 T-UP 2300.56 2255.79 NA _ T-UP 2803.51 2770.16 NA _ T-UP 2347.14 2347.14
pr13-N144m9p4 6574.22 7648.39 16.34 T-UP 3032.30 3032.08 7030.50 6.94 T-UP 4083.99 4083.99 NA _ T-UP 3389.02 3389.02
pr14-N192m12p4 7242.10 8852.02 22.23 T-UP 3398.52 3377.91 NA _ T-UP 4710.86 4693.53 NA _ T-UP 3853.06 3836.42
pr15-N240m15p4 7864.38 9447.75 20.13 T-UP 3626.88 3525.92 NA _ T-UP 5372.85 5340.67 NA _ T-UP 4161.96 4065.58
pr16-N288m18p4 9807.60 12327.05 25.69 T-UP 4286.69 4275.34 NA _ T-UP 6468.88 6468.34 NA _ T-UP _ 5147.57
pr17-N72m4p6 NA NA _ T-UP 3414.30 3398.81 NA _ T-UP 3897.92 3884.69 NA _ T-UP 3518.66 3504.43
pr18-N144m8p6 NA NA _ T-UP 3848.74 3842.02 NA _ T-UP 5480.23 5467.25 NA _ T-UP 4422.73 4416.01
pr19-N216m12p6 NA NA _ T-UP 5557.29 5502.17 NA _ T-UP 8321.87 8315.47 NA _ T-UP 6814.56 6764.80
pr20-N288m16p6 NA NA _ T-UP 6100.82 6069.61 NA _ T-UP 9970.50 9965.74 NA _ T-UP _ 7583.18

• the first six instances have a planning horizon of four days and the rest has a
planning horizon of six days,

• M2 finds a feasible solution for nine instances, and the only instance (pr09)
for which M2 is not able to find a feasible solution has a planning horizon of
six days,

• L2 attains a feasible solution for five out of six instances with a planning
horizon of four days while it fails to detect a solution for the instances with a
planning horizon of six days.

The second ten instances have wide time windows. None of the models reach a fea-
sible solution for the last four instances (pr17 to pr20) with wide time windows and
a planning horizon of six days. M2 solves to feasibility all the remaining instances
with four days of planning horizon, while L2 is able to solve only two of them.
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Table 3.10 Results of the alternative PVRPTW models with valid inequalities on data set S6

Instance Best OFV
M2+(3.13) M2+(3.46) M2+(3.13, 3.46)

OFV ∆% Time Root LP OFV ∆% Time Root LP OFV ∆% Time Root LP

pr01-N48m2p4 2909.27 2909.27 0.00 T-UP 2230.87 1544.35 2916.61 0.25 T-UP 2134.73 1451.45 2919.61 0.36 T-UP 2230.87 1544.35
pr02-N96m6p4 5090.38 5194.20 2.04 T-UP 3902.58 2707.14 5176.99 1.70 T-UP 3887.01 2255.79 5092.96 0.05 T-UP 3902.58 2707.14
pr03-N144m9p4 8005.54 8038.46 0.41 T-UP 4543.41 3149.51 8390.26 4.81 T-UP 4471.57 3032.08 8394.93 4.86 T-UP 4543.41 3149.51
pr04-N192m12p4 8485.23 9677.30 14.05 T-UP 4917.03 3636.17 9364.72 10.36 T-UP 4715.61 3377.91 9941.58 17.16 T-UP 4917.03 3636.17
pr05-N240m15p4 9916.44 10028.94 1.13 T-UP 5069.41 3602.33 9964.73 0.49 T-UP 4947.10 3525.92 9937.49 0.21 T-UP 5069.41 3602.33
pr06-N288m18p4 12481.09 12783.49 2.42 T-UP 5991.17 4447.53 12898.60 3.35 T-UP 5857.50 4275.34 12792.55 2.50 T-UP 5991.17 4447.53
pr07-N72m5p6 6811.75 6934.93 1.81 T-UP 4915.18 3440.25 6855.83 0.65 T-UP 4748.77 3398.81 6926.99 1.69 T-UP 4915.18 3440.25
pr08-N144m10p6 11066.50 11177.43 1.00 T-UP 6032.73 3919.68 11851.12 7.09 T-UP 5952.98 3842.02 11825.99 6.86 T-UP 6032.73 3919.68
pr09-N216m15p6 17253.82 17253.82 0.00 T-UP 8021.50 5687.37 17551.92 1.73 T-UP 7924.26 5502.17 17531.32 1.61 T-UP 8021.50 5687.37
pr10-N288m20p6 20054.45 20227.26 0.86 T-UP 9243.02 6283.45 21384.83 6.63 T-UP 9007.68 6069.61 21467.51 7.05 T-UP 9243.02 6283.45
pr11-N48m2p4 2327.35 2482.65 6.67 T-UP 1544.35 1544.35 2349.78 0.96 T-UP 1451.45 1451.45 2473.94 6.30 T-UP 1544.35 1544.35
pr12-N96m6p4 4767.58 NA _ T-UP 2710.51 2707.14 NA _ T-UP 2300.56 2255.79 4767.58 0.00 T-UP 2710.51 2707.14
pr13-N144m9p4 6574.22 7206.87 9.62 T-UP 3149.51 3149.51 6574.22 0.00 T-UP 3032.30 3032.08 7251.57 10.30 T-UP 3149.51 3149.51
pr14-N192m12p4 7242.10 9219.59 27.31 T-UP 3649.66 3636.17 7242.10 0.00 T-UP 3398.57 3377.91 9200.60 27.04 T-UP 3649.66 3636.17
pr15-N240m15p4 7864.38 9524.95 21.12 T-UP 3695.26 3602.33 7864.38 0.00 T-UP 3626.87 3525.92 9697.24 23.31 T-UP 3695.26 3602.33
pr16-N288m18p4 9807.60 12396.29 26.39 T-UP 4456.44 4447.53 9807.60 0.00 T-UP 4286.85 4275.34 12054.66 22.91 T-UP 4456.44 4447.53
pr17-N72m4p6 NA NA _ T-UP 3457.96 3440.25 NA _ T-UP 3414.30 3398.81 NA _ T-UP 3457.96 3440.25
pr18-N144m8p6 NA NA _ T-UP 3923.04 3919.68 NA _ T-UP 3848.73 3842.02 NA _ T-UP 3923.04 3919.68
pr19-N216m12p6 NA NA _ T-UP 5734.61 5687.37 NA _ T-UP 5557.29 5502.17 NA _ T-UP 5734.61 5687.37
pr20-N288m16p6 NA NA _ T-UP 6312.31 6283.45 NA _ T-UP 6100.82 6069.61 NA _ T-UP 6312.31 6283.45

Instance Best OFV
M2+(3.13, 3.20, 3.21, 3.46) L2+(3.46) L2+(3.20, 3.21, 3.28, 3.46)

OFV ∆% Time Root LP OFV ∆% Time Root LP OFV ∆% Time Root LP

pr01-N48m2p4 2909.27 2911.27 0.07 T-UP 2340.76 1634.07 2911.27 0.07 T-UP 2175.84 1628.18 2909.27 0.00 T-UP 2356.31 1771.68
pr02-N96m6p4 5090.38 5105.18 0.29 T-UP 4040.27 2787.77 5142.78 1.03 T-UP 4047.29 2770.16 NA _ T-UP 4157.12 3224.29
pr03-N144m9p4 8005.54 8005.54 0.00 T-UP 4814.67 3360.97 9090.67 13.55 T-UP 5084.20 4083.99 NA _ T-UP 5356.07 4247.93
pr04-N192m12p4 8485.23 9974.17 17.55 T-UP 5267.48 3766.05 8580.41 1.12 T-UP 5595.63 4693.53 NA _ T-UP 5993.69 4947.27
pr05-N240m15p4 9916.44 10154.66 2.40 T-UP 5547.88 3789.55 NA _ T-UP 6181.78 5340.67 10706.33 7.97 T-UP 6629.18 5446.26
pr06-N288m18p4 12481.09 12644.75 1.31 T-UP 6367.24 4631.96 12481.09 0.00 T-UP 7546.69 6468.34 NA _ T-UP 7848.18 6647.70
pr07-N72m5p6 6811.75 6811.75 0.00 T-UP 5327.63 3527.18 NA _ T-UP 4927.66 3884.69 NA _ T-UP 5425.46 3980.95
pr08-N144m10p6 11066.50 NA _ T-UP 6514.51 4111.79 11524.93 4.14 T-UP 6824.62 5467.25 11552.58 4.39 T-UP 7251.47 5651.66
pr09-N216m15p6 17253.82 NA _ T-UP 8539.44 5953.24 NA _ T-UP 9671.64 8315.47 NA _ T-UP 10048.18 8501.65
pr10-N288m20p6 20054.45 20054.45 0.00 T-UP 9923.97 6671.55 NA _ T-UP 11793.07 9965.74 NA _ T-UP 12384.71 10234.41
pr11-N48m2p4 2327.35 2544.69 9.34 T-UP 1729.31 1634.07 2379.70 2.25 T-UP 1628.17 1628.18 2353.35 1.12 T-UP 1836.24 1771.68
pr12-N96m6p4 4767.58 NA _ T-UP 2958.60 2787.77 NA _ T-UP 2803.50 2770.16 NA _ T-UP 3349.33 3224.29
pr13-N144m9p4 6574.22 8020.96 22.01 T-UP 3654.97 3360.97 NA _ T-UP 4083.98 4083.99 NA _ T-UP 4442.56 4247.93
pr14-N192m12p4 7242.10 9254.08 27.78 T-UP 4128.78 3766.05 NA _ T-UP 4710.91 4693.53 NA _ T-UP 5203.58 4947.27
pr15-N240m15p4 7864.38 9766.15 24.18 T-UP 4173.53 3789.55 NA _ T-UP 5372.84 5340.67 NA _ T-UP 5675.56 5446.26
pr16-N288m18p4 9807.60 12490.37 27.35 T-UP 5029.47 4631.96 NA _ T-UP 6469.00 6468.34 NA _ T-UP 6908.12 6647.70
pr17-N72m4p6 NA NA _ T-UP 3843.52 3527.18 NA _ T-UP 3897.92 3884.69 NA _ T-UP 4242.72 3980.95
pr18-N144m8p6 NA NA _ T-UP 4532.26 4111.79 NA _ T-UP 5480.23 5467.25 NA _ T-UP 5931.96 5651.66
pr19-N216m12p6 NA NA _ T-UP 6454.47 5953.24 NA _ T-UP 8321.87 8315.47 NA _ T-UP 8749.55 8501.65
pr20-N288m16p6 NA NA _ T-UP 7168.68 6671.55 NA _ T-UP _ 9965.74 NA _ T-UP 10512.21 10234.41
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According to Table 3.10, replacing constraints (3.8) with valid inequalities (3.13)
leads to an improvement in the solution of five instances with respect to M2, and two
instances overall. Moreover, a feasible solution is identified for the instance pr09 with
narrow time windows. M2+(3.46) produces better quality solutions in eight and nine
instances compared to M2 and M2+(3.13), respectively, and four instances overall.
Improvements in the results of M2+(3.46) highlight the effectiveness of the valid
inequalities (3.46) in tightening the problems, especially the ones with wide time
windows. M2+(3.13, 3.46) yields a better solution for an instance (pr12) for which
M2 also returns a feasible solution while the individual addition of valid inequalities
even fail to find a feasible solution for this instance. Model M2+(3.13, 3.20, 3.21,
3.46) improves the solution for three instances with narrow time windows overall.
However, for instances with wide time windows, the solutions obtained by M2+(3.13,
3.20, 3.21, 3.46) have a deviation of 22.13% on average from reported Best OFV.
The performance of L2 is not improved consistently with the addition of the valid
inequalities. It should be noticed that, in terms of the root node solution, L2+(3.20,
3.21, 3.28, 3.46) outperforms other formulations, and is followed by L2+(3.46).

Table 3.11 Time window density and width of data set S7

C1 R1 RC1

# TWD TWW TWD TWW TWD TWW

01 100% 60.76 100% 10.00 100% 30.00
02 75% 61.27 75% 10.00 75% 30.00
05 100% 121.61 100% 30.00 100% 54.33

Table 3.12 Results of the alternative PVRPTW models on data set S7

Instance Best OFV
M2 L2 C2

OFV ∆% Time Root LP OFV ∆% Time Root LP OFV ∆% Time Root LP

P4C101 2913.94 2913.94 0.00 43.90 2910.87 786.31 2913.94 0.00 72.91 2910.87 1716.35 2913.94 0.00 8064.03 2910.87 1274.11
P4R101 4162.33 4162.33 0.00 120.16 4109.89 1391.86 4162.33 0.00 305.28 4109.89 1773.92 NA _ T-UP 4109.89 1589.05
P4RC101 3983.30 3983.30 0.00 T-UP 3039.33 1313.82 3998.22 0.37 T-UP 3224.68 2050.50 NA _ T-UP 3014.05 1577.30
P4C102 3079.89 NA _ T-UP 1954.08 865.92 NA _ T-UP 2096.00 1767.87 NA _ T-UP 2019.72 1364.26
P4R102 3763.76 NA _ T-UP 2414.20 1455.58 NA _ T-UP 2588.72 1818.07 NA _ T-UP 2456.53 1623.92
P4RC102 NA NA _ T-UP 1950.79 1346.10 NA _ T-UP 2467.40 2144.50 NA _ T-UP 2159.56 1670.22
P4C105 2889.92 2889.92 0.00 384.05 2788.82 832.51 2889.92 0.00 1043.81 2788.83 1742.67 NA _ T-UP 2788.82 1356.68
P4R105 3697.07 3710.12 0.35 T-UP 2963.16 1549.84 NA _ T-UP 3003.10 1859.74 NA _ T-UP 2891.48 1703.30
P4RC105 NA NA _ T-UP 2272.33 1411.08 NA _ T-UP 2541.52 2086.72 NA _ T-UP 2352.25 1686.18
P6C101 3989.48 3989.48 0.00 2846.14 3808.02 1096.97 3989.48 0.00 2226.65 3808.02 2302.67 3998 0.21 T-UP 3808.02 1716.39
P6R101 5393.19 5393.19 0.00 379.66 5337.68 1856.92 5393.19 0.00 611.76 5337.68 2332.18 NA _ T-UP 5337.68 2029.85
P6RC101 5834.62 5967.34 2.27 T-UP 4279.68 1764.04 NA _ T-UP 4299.05 2524.85 NA _ T-UP 4267.18 2020.08
P6C105 4059.25 4062.10 0.07 T-UP 3833.48 1048.12 4069.38 0.25 T-UP 3834.12 2333.17 NA _ T-UP 3833.48 1745.85
P6R105 NA NA _ T-UP 3533.48 1764.35 NA _ T-UP 3543.15 2224.57 NA _ T-UP 3505.34 2003.17
P6RC105 NA NA _ T-UP 3248.26 1844.41 NA _ T-UP 3550.29 2799.08 NA _ T-UP 3350.38 2212.60
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Table 3.13 Results of the alternative PVRPTW models with valid inequalities on data set S7

Instance Best OFV
M2+(3.13) M2+(3.46) M2+(3.13, 3.46)

OFV ∆% Time Root LP OFV ∆% Time Root LP OFV ∆% Time Root LP

P4C101 2913.94 2913.94 0.00 96.61 2910.87 816.27 2913.94 0.00 65.00 2910.87 786.31 2913.94 0.00 107.14 2910.87 816.27
P4R101 4162.33 4162.33 0.00 177.78 4109.89 1427.18 4162.33 0.00 195.33 4109.89 1391.86 4162.33 0.00 214.20 4109.89 1427.18
P4RC101 3983.30 3988.87 0.14 T-UP 3089.90 1344.05 3983.30 0.00 T-UP 3039.37 1313.82 3989.65 0.16 T-UP 3089.94 1344.05
P4C102 3079.89 NA _ T-UP 1959.24 898.5 3079.89 0.00 T-UP 1954.15 865.92 NA _ T-UP 1959.25 898.50
P4R102 3763.76 NA _ T-UP 2422.55 1478.95 3888.21 3.31 T-UP 2499.13 1455.58 3763.76 0.00 T-UP 2507.54 1478.95
P4RC102 NA NA _ T-UP 1963.84 1406.64 NA _ T-UP 1950.90 1346.10 NA _ T-UP 1963.84 1406.64
P4C105 2889.92 2889.92 0.00 658.71 2788.82 861.94 2889.92 0.00 175.72 2788.82 832.51 2889.92 0.00 270.18 2788.82 861.94
P4R105 3697.07 3721.18 0.65 T-UP 3009.37 1601.89 3709.58 0.34 T-UP 2963.25 1549.84 3725.34 0.76 T-UP 3009.38 1601.89
P4RC105 NA NA _ T-UP 2314.56 1444.11 NA _ T-UP 2272.33 1411.08 NA _ T-UP 2314.56 1444.11
P6C101 3989.48 3989.48 0.00 1527.72 3808.02 1162.04 3989.48 0.00 1212.13 3808.02 1096.97 3989.48 0.00 1913.72 3808.02 1162.04
P6R101 5393.19 5393.19 0.00 361.31 5337.68 1912.10 5393.19 0.00 195.38 5337.68 1856.92 5393.19 0.00 299.24 5337.68 1912.10
P6RC101 5834.62 5994.47 2.74 T-UP 4301.44 1854.79 5834.62 0.00 T-UP 4279.67 1764.04 5897.39 1.08 T-UP 4301.44 1854.79
P6C105 4059.25 4059.25 0.00 14309.01 3833.48 1064.40 4059.55 0.01 T-UP 3833.48 1048.12 4066.12 0.17 T-UP 3833.48 1064.40
P6R105 NA NA _ T-UP 3558.77 1790.65 NA _ T-UP 3533.47 1764.35 NA _ T-UP 3558.77 1790.65
P6RC105 NA NA _ T-UP 3281.73 1887.40 NA _ T-UP 3248.26 1844.41 NA _ T-UP 3281.74 1887.40

Instance Best OFV
M2+(3.13, 3.20, 3.21, 3.46) L2+(3.46) L2+(3.20, 3.21, 3.28, 3.46)

OFV ∆% Time Root LP OFV ∆% Time Root LP OFV ∆% Time Root LP

P4C101 2913.94 2913.94 0.00 154.45 2910.87 871.21 2913.94 0.00 51.01 2910.87 1716.35 2913.94 0.00 106.23 2910.87 1754.96
P4R101 4162.33 4162.33 0.00 294.23 4109.89 1473.52 4162.33 0.00 330.01 4109.89 1773.92 4162.33 0.00 457.91 4109.89 1818.99
P4RC101 3983.30 4007.34 0.60 T-UP 3344.54 1408.82 3991.82 0.21 T-UP 3224.71 2050.50 3993.02 0.24 T-UP 3364.46 2097.42
P4C102 3079.89 NA _ T-UP 1988.37 936.29 NA _ T-UP 2097.20 1767.87 NA _ T-UP 2115.49 1800.56
P4R102 3763.76 3849.59 2.28 T-UP 2511.96 1522.45 NA _ T-UP 2606.24 1818.07 NA _ T-UP 2615.08 1858.86
P4RC102 NA NA _ T-UP 2034.89 1448.52 NA _ T-UP 2459.31 2144.50 NA _ T-UP 2521.11 2178.38
P4C105 2889.92 2889.92 0.00 495.28 2830.80 895.16 2889.92 0.00 1114.65 2788.83 1742.67 2889.92 0.00 537.34 2836.83 1772.66
P4R105 3697.07 3697.07 0.00 T-UP 3112.99 1647.88 3703.55 0.18 T-UP 3001.13 1859.74 NA _ T-UP 3112.73 1917.37
P4RC105 NA NA _ T-UP 2370.54 1500.26 NA _ T-UP 2541.52 2086.72 NA _ T-UP 2598.43 2121.59
P6C101 3989.48 3989.48 0.00 1372.20 3808.02 1212.92 3989.48 0.00 2605.38 3808.02 2302.67 3989.48 0.00 11476.51 3808.02 2368.90
P6R101 5393.19 5393.19 0.00 524.06 5337.68 1956.82 5393.19 0.00 600.44 5337.68 2332.18 5393.19 0.00 895.28 5337.68 2405.66
P6RC101 5834.62 5858.02 0.40 T-UP 4501.98 1894.13 NA _ T-UP 4321.70 2524.85 NA _ T-UP 4530.65 2605.76
P6C105 4059.25 4069.60 0.25 T-UP 3909.37 1118.57 4059.25 0.00 T-UP 3834.11 2333.17 4166.35 2.64 T-UP 3909.37 2364.74
P6R105 NA NA _ T-UP 3699.98 1843.93 NA _ T-UP 3540.84 2224.57 NA _ T-UP 3700.34 2272.00
P6RC105 NA NA _ T-UP 3411.82 1973.60 NA _ T-UP 3550.28 2799.08 NA _ T-UP 3637.76 2877.14
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In data set S7, the customer coordinates are identical for all instances with the
same type (i.e., R, C and RC). The instances differ with respect to the width of
the time windows and time window density (TWD), that is, the percentage of cus-
tomers with time windows. Among 45 instances in S7, we choose 15 instances, with
TWD of 100% and 75%, which are easier to solve with the commercial solver. The
corresponding instances are indexed with 01, 02 and 05 in each subset of instances
C1, R1 and RC1. The information about the TWD and the average width of the
time window (TWW) for those instances are reported in Table 3.11. For example,
value 100% in the first column and the first row of the table shows the TWD of the
instances containing C101 in their names.

Based on the results in Table 3.12, C2 only solves two instances out of 15:
instance P4C101 is solved to optimality and instance P6C101 is solved to feasibility.
None of the models return a feasible solution for the instances with 75% TWD. M2
and L2 solve nine and seven instances out of 15, respectively. More precisely, out of
12 instances with 100% TWD,

• M2 and L2 both reach the optimal solution for five instances. M2 identifies
the optimal solutions more quickly than L2 in all instances except P6C101,

• M2 solves four instances to feasibility. L2 is not able to find a feasible solution
for two of them, P4R105 and P6RC101. For P4RC101 and P6C105, M2 returns
a better solution than L2 in the given time limit.

Replacing constraints (3.8) with valid inequalities (3.13) makes M2+(3.13) the
only model to solve P6C105 to optimality. By adding valid inequalities (3.46) to
M2 and L2,

• M2 improves the computation time in three instances overall, and finds a
feasible solution for two of the three instances with 75% TWD;

• L2 improves the quality of the solution only for one instance (P4R105) overall
and reaches the optimal solution for instance P6C105 although not being able
to prove its optimality within the specified time limit.

According to Table 3.13, adding valid inequalities (3.46) does not help L2 in pro-
ducing a feasible solution for instances with 75% TWD. Replacing constraints (3.8)
with valid inequalities (3.13) and adding (3.46) to M2 simultaneously only improves
the solution quality of instance P4R102. M2+(3.13, 3.20, 3.21, 3.46) also improves
the solution quality of only one instance (P4R105) overall.

The results based on data sets S6 and S7 indicate that valid inequalities (3.46)
do not affect LP relaxation quality, and the same objective function values of LP
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relaxations are observed between models M2 and M2+(3.46) and between models
M2+(3.13) and M2+(3.13, 3.46), as well as L2 and L2+(3.46). Across data sets S6
and S7, model L2+(3.20, 3.21, 3.28, 3.46) consistently delivers the highest quality
LP relaxation followed by model L2 (L2+(3.46)). For data set S7, the ranking
follows as C2, M2+(3.13, 3.20, 3.21, 3.46), M2+(3.13) (M2+(3.13, 3.46)), and M2
(M2+(3.46)), respectively. For data set S6, models C2, M2+(3.13, 3.20, 3.21, 3.46)
and M2+(3.13) (M2+(3.13, 3.46)) compete with each other, followed by model M2
(M2+(3.46)).

To extend the PVRP formulations M1 and L1 to model the PVRPTW, identical
(time window) constraints are used. We observe that load-based formulations yield
stronger linear relaxation bounds in comparison with the MTZ-based formulations
in the case of the PVRPTW. Furthermore, despite having weaker linear relaxation
bounds, MTZ-based formulations produce mostly better results in terms of the ob-
jective function value and run time than load-based formulations in PVRPTW in-
stances. This may be attributed to the fact that MTZ-based formulations, i.e.,
M2 and its extensions, have a smaller number of variables in comparison with the
load-based formulations, L2 and its extensions.

3.3 Conclusions

In this study, we overview the PVRP focusing on modeling approaches and ex-
act solutions to be obtained by a commercial solver. We develop a new MILP
formulation of the PVRP using vehicle flow variables and employ families of valid
inequalities and optimality cuts to tighten the formulation. Two existing prominent
PVRP formulations in the literature referred to as the load-based formulation and
the cut-based formulation are also investigated. The main differences among the
formulations are the representation of vehicle information and the SECs. The cut-
based formulations use decision variables explicitly including a vehicle index. The
SECs of the cut-based formulations have an exponential size and need to be sepa-
rated. In the load-based formulations and the MTZ-based formulations, auxiliary
continuous variables are used to define the constraints preventing the formation of
subtours and both formulations are compact, i.e., they do not involve exponentially
many constraints. Since the continuous variables defined in the MTZ-based formu-
lation have one dimension less than those used in the load-based formulation, the
MTZ-based formulation has smaller number of variables compared to the load-based
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formulation. We also extend these formulations to model the PVRPTW and apply
families of valid inequalities to tighten the formulations. Comprehensive computa-
tional experiments are conducted on seven sets of benchmark instances with different
characteristics to compare the performances of the alternative formulations.

The results of the computational experiments on the PVRP data sets show that
the cut-based model and the load-based model are competitive in solving small in-
stances. When it comes to solving medium instances, the load-based model overtakes
the cut-based model. While the results indicate the difficulty of solving most of the
PVRP instances of large size for the cut-based model and the load-based model,
the MTZ-based formulations are robust and consistent in producing good-quality
solutions.

Considering the PVRPTW, the results obtained by alternative models with data
sets S6 and S7 show that the cut-based model is only successful in solving two out
of 35 instances. In general, the MTZ-based formulations outperform the load-based
formulations. For the instances solved to optimality, they reach the solution faster,
and for those instances for which an optimal solution cannot be identified within the
specified time limit, they return solutions of higher quality when compared to the
load-based formulations. The superiority of the MTZ-based formulations are more
evident in solving larger instances.

The goal of this research is to compare and provide insights into the computa-
tional performance of widely used formulation approaches in the literature that can
be implemented and solved directly by state-of-the-art commercial solver capabil-
ities. Other formulation approaches are available (e.g. set partitioning) for which
an exact solution cannot be obtained directly by a solver, but only by employing
efficient optimization algorithms (e.g. column generation and branch-and-price).
Extending the computational analysis to cover a broader spectrum of exact solu-
tion methodologies may provide additional insights into the performance of different
formulation and solution techniques with respect to run times and solution quality.
Moreover, (parts of) the formulation approaches considered in this study are easily
applicable to other variants of the PVRP and exploring the computational perfor-
mance on different problem variants may also be an interesting direction for future
research.
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4. Optimization Methodologies for PVRP

In this chapter, we tackle the PVRP using two state-of-the-art methodologies. Sec-
tion 4.1 details the application of the LBBD approach to solving the PVRP, while
Section 4.2 explores the use of the column generation approach for the same problem.

4.1 LBBD Approach in Solving PVRP

Benders decomposition (Benders, 1962) was initially developed for MIP problems,
utilizing projection, outer linearization, and relaxation techniques to transform the
problem into a more tractable form. This method divides an MIP problem into two
more manageable problems: the master problem, a relaxed version of the original
that includes the integer variables, and the subproblem, a linear program parame-
terized by the temporarily fixed integer variables from the master problem. During
each iteration of the Benders method, the master problem is solved, and its solution
is used to define the subproblems. The subproblem is then dualized, with its solution
providing coefficients for inequalities known as Benders optimality cuts or feasibility
cuts. If the dual subproblem is optimal, it generates an optimality cut; if it is infea-
sible, a feasibility cut is produced. This method converges to the optimal solution as
long as the Benders master problem solution continues to improve the lower bound
by solving to optimality and excluding the current master problem solution through
added cuts. The process repeats until an optimal solution to the original problem
is found or an early stopping criterion is met. In the latter case, the solution from
the master problem combined with a feasible subproblem solution yields a globally
feasible MIP solution, while the optimally solved master problem provides a lower
bound for the original objective function value. Benders decomposition is effective
when it concludes well before reaching the total number of potential master problem
solutions.
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A modified version of UC1 is well-suited for the application of Benders decompo-
sition, resulting in a master problem resembling a generalized assignment problem
(GAP), where customers are assigned to days, and independent VRP subproblems.
This approach, known as cluster-first and route-second, generates MIP subproblems
instead of linear ones, rendering the classical Benders method inapplicable. Instead,
LBBD, developed by Hooker (2000) and Hooker and Ottosson (2003), is used to
handle a broader range of optimization problems, including those with Benders’
subproblems containing one or more sets of integer variables.

For the sake of completeness, we bring the expansion of UC1 formulation here;

minimize
∑
e∈E

∑
t∈T

∑
k∈K

cexetk,(4.1)

subject to
∑

p∈Pi

sip = 1 ∀i ∈Nc,(4.2)

∑
p∈Pi:t∈p

sip =
∑

k∈K

zitk ∀i ∈Nc,∀t ∈ T,(4.3)

∑
i∈Nc

zitk di ≤Qvtk ∀k ∈K,∀t ∈ T,(4.4)

xtk(δ(i)) = 2zitk ∀i ∈N,∀k ∈K,∀t ∈ T,(4.5)

xtk(δ(S))≥ 2zitk ∀S ⊆Nc,∀i ∈ S,∀k ∈K,(4.6)

∀t ∈ T,

sip ∈ {0,1} ∀i ∈Nc,∀p ∈ Pi,(4.7)

yitk ∈ {0,1} ∀i ∈Nc,∀k ∈K,∀t ∈ T,(4.8)

vtk ∈ {0,1} ∀k ∈K,∀t ∈ T.(4.9)

xetk ∈ {0,1} ∀e ∈ E\{{0, j} : j ∈Nc},(4.10)

∀k ∈K,∀t ∈ T,

x0jtk ∈ {0,1,2} ∀{0, j}, j ∈Nc,∀k ∈K,(4.11)

∀t ∈ T.

LBBD generalizes the classical Benders decomposition by similarly dividing a prob-
lem into a master problem and subproblems. Unlike the classical Benders method,
which uses linear programming duality to derive cuts from subproblems, LBBD
employs the more general inference dual. The inference dual solution provides a
bounding function on the cost of the master problem that is tight for its current
solution. However, unlike classical Benders decomposition, there is no standardized
procedure for deriving these cuts in LBBD. Instead, cuts must be developed specific
to the problem.

54



4.1.1 Generalized Assignment Master Problem

Let σt represent the lower bound on the routing cost for each period t ∈ T , con-
strained by the Benders cuts. The proposed LBBD addresses the following GAP
master problem:

minimize
∑
t∈T

σt,(4.12)

subject to
∑

p∈Pi

sip = 1 ∀i ∈Nc,(4.13)

∑
p∈Pi:t∈p

sip = yit ∀i ∈Nc,∀t ∈ T,(4.14)

∑
i∈Nc

yitdi ≤KQy0t ∀t ∈ T,(4.15)

σt ≥ bounding functions of optimality cuts ∀t ∈ T,(4.16)

feasibility cuts,(4.17)

sip ∈ {0,1} ∀i ∈Nc,∀p ∈ Pi,(4.18)

yit ∈ {0,1} ∀i ∈N,∀t ∈ T,(4.19)

Here, constraints (4.16) and (4.17) consist of the optimality and feasibility cuts
derived in Section 4.1.3.

4.1.2 Vehicle Routing Sub-Problems

For each period t ∈ T , let H̄(t) represent the clusters of nodes assigned to day t by
the solution of the master problem (4.12)–(4.19). For each day t with H̄(t) ̸= ∅, the
following independent VRP sub-problems originate from fixed values of y variables:
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minimize
∑
e∈E

cex
(t)
ek ,(4.20)

subject to
∑

k∈K

z
(t)
ik = 1 ∀i ∈ H̄(t)\{0},(4.21)

x
(t)
k (δ(i)) = 2z

(t)
ik ∀i ∈ H̄(t),∀k ∈K(4.22)

x
(t)
k (δ(S))≥ 2z

(t)
ik ∀S ⊆ H̄(t),∀i ∈ S,∀k ∈K,(4.23) ∑

i∈H̄(t)

z
(t)
ik di ≤Qvk ∀k ∈K,(4.24)

x
(t)
ek ∈ {0,1} ∀e ∈ E\{{0, j} : j ∈ H̄(t)},∀k ∈K,(4.25)

x
(t)
0jk ∈ {0,1,2} ∀{0, j}, j ∈ H̄(t),∀k ∈K.(4.26)

z
(t)
ik ∈ {0,1} ∀i ∈ H̄(t),∀k ∈K(4.27)

v
(t)
k ∈ {0,1} ∀k ∈K(4.28)

The objective function (4.20) minimizes the total routing cost. Constraints (4.21)
assign each customer to a vehicle. Constraints (4.22) are the degree constraints
for the depot and the customers. Constraints (4.23) prevent subtours. Constraints
(4.24) are the capacity constraints. Variable domain restrictions are given by (4.25)
to (4.28).

4.1.3 Benders Cuts

The solution of each independent VRP sub-problem produces either an optimality
cut or a feasibility cut, which is then incorporated into the GAP master problem.
These cuts are described as follows.

4.1.3.1 Optimality Cut
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Let C(t) denote the optimal cost for a VRP solution associated with cluster H̄(t).
We apply the following optimality cuts for the Benders master problem

σt ≥ C(t)(
∑

i∈H̄(t)

yit−|H̄(t)|+1).(4.29)

where C(t) is the optimal objective function value of the tth subproblem, and |H̄(t)|
is the number of customers assigned to day t. It means that if exactly the same set
of customers are assigned to day t, the cost of this particular subproblem will be at
least C(t). As a result, the solver should avoid allocating the same set of customers
to day t to obtain less cost. The optimality cut applied is the adapted optimality
cut from Riazi et al. (2013).

4.1.3.2 Feasibility Cut

Whenever a cluster H̄(t) assigned to day t yields an infeasible VRP subproblem, the
inequality

∑
i∈H̄(t)

(1−yit)≥ 1(4.30)

is a feasibility cut for the master problem.

4.1.4 LBBD implementation

The LBBD algorithm builds upon the classical Benders method as outlined in Al-
gorithm 1, where itr represents the iteration counter, LB is the lower bound, and
UB is the upper bound on the optimal cost for the PVRP (lines 1-3). The iterative
process is detailed in lines 4-21. Initially, the solution to the master problem assigns
values y∗

itr to the variables y, forms the customer clusters H̄(t), t = 1, . . . , |T |, and
updates the lower bound LB, as this problem is a relaxation of the PVRP (lines
4-5). Subsequently, the VRP subproblems are solved (lines 7-18), producing opti-
mality (line 12) and/or feasibility cuts (line 15), and potentially updating the upper
bound UB (line 19). The loop from lines 4-21 continues until the optimality gap
(UB−LB)/UB is less than the specified tolerance, ϵ.
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Algorithm 1 LBBD
1: itr← 0
2: LB← 0
3: UB←∞
4: while (UB−LB)/UB > ϵ do
5: Solve the master problem to optimality, obtaining y∗

(itr)and H̄(t)

6: LB←∑
t∈T σ

(itr)
t

7: for (t); t ∈ T do
8: if H̄(t) ̸= ∅ then
9: Solve the VRP sub-problem associated with cluster H̄(t)

10: if the VRP sub-problem is feasible then
11: C(t)← VRP optimal cost
12: Add a new optimality cut (4.29) to the master problem
13: else
14: C(t)←∞
15: Add a new feasibility cut (4.30) to the master problem
16: end if
17: end if
18: end for
19: UB←min(UB,

∑
t C̄(t))

20: itr← itr +1
21: end while

4.1.4.1 Branch and check

Algorithm 2 describes a Branch and Check (BAC) approach for solving the PVRP.
This method involves solving a single master problem using a general branch-and-
cut MIP solver. A callback function is utilized to handle each potentially feasible
solution ȳ identified by the master problem, which is then used to formulate the sub-
problems. This leverages the functionality of modern MIP solvers that allow user
intervention during the solution process through incumbent callbacks. Such call-
backs, known in Gurobi Optimization as MIPSOL callbacks are triggered whenever
a new potential incumbent solution is discovered.

If the inequality ∑t∈T C̄(t) ≤∑t∈T σt holds true for the optimal solutions C̄(t) of the
subproblems for all t ∈ T , then a globally feasible solution for the PVRP has been
identified. Otherwise, Benders cuts generated from the subproblems are added to
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the master problem as lazy constraints, thereby excluding the current solution ȳ

from the feasible solution space.

Algorithm 2 BAC
1: Solve the master problem using an MIP solver
2: for all potential incumbent solution ȳ with cost ∑t∈T σt do
3: Obtain the associated clusters H̄(t),∀t ∈ T

4: for (t); t ∈ T do
5: if H̄(t) ̸= ∅ then
6: Solve the VRP sub-problem associated with cluster H̄(t)
7: if the VRP sub-problem is feasible then
8: C(t)← VRP optimal cost
9: Generate a new optimality cut (4.29) to the master problem

10: else
11: C(t)←∞
12: Generate a new feasibility cut (4.30) to the master problem
13: end if
14: end if
15: end for
16: if ∑t∈T C̄(t)≤∑t∈T σt then
17: Accept the current globally feasible solution ȳ

18: else
19: Add the generated Benders cuts to the master problem excluding the
20: current solution ȳ

21: end if
22: end for

4.1.5 Computational Results of the LBBD Algorithms

To evaluate the performance of the proposed algorithms, we utilize dataset S5. This
dataset categorizes instances based on the number of customers and sorts them
according to the planning horizon length. We selected dataset S5 because it allows us
to begin with the category containing 11 customers and progress until the algorithms
demonstrate efficient performance. Each algorithm is executed with a 2-hour time
limit. All computational experiments are performed on a virtual machine equipped
with an Intel Xeon CPU E5-2640 processor running at 2.60 GHz, 16 GB of RAM,
and a 64-bit operating system. The Gurobi Optimizer 8.1.1, integrated with Python
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3.7.4, is used as the commercial solver.

Table 4.1 provides a comparative analysis of the BAC and LBBD algorithms ap-
plied to dataset S5. The comparison includes various metrics such as "OFV" (best
obtained objective function value), "Gap" (reported gap by Gurobi), "RunTime"
(computing time), "#Opt− cut" (number of generated optimality cuts), "Average
VRP Time" (average time to solve each VRP subproblem), "Total VRP Time" (to-
tal computing time dedicated to solving VRPs), "#V RP " (number of solved VRPs),
"#callback" (number of times the callback function is called), "RunTime-Total VRP
Time" (remaining computing time after extracting total VRP time), "UB" (upper
bound), "LB" (lower bound), "#it" (number of iterations), "Total Master Time"
(total time spent solving master problems), and "Average Master Time" (average
master solution time).

According to Table 4.1, as complexity increases with more customers and longer
planning horizons, the BAC algorithm generally outperforms LBBD, regarding the
solution time. For instance, in test21-4-3-a-Q71, BAC completes in 2047.64 seconds
compared to LBBD’s 6050.05 seconds. Consequently, we proceed with the BAC
algorithm and evaluate its performance by comparing it with model UC1.

Table 4.2 presents the results of UC1 and BAC for selected instances in S5. The
first column lists the instance names. The following two columns display the best
objective function value obtained by UC1 and its corresponding solution time. The
next block of eight columns provides detailed information about the BAC imple-
mentation. Instances with up to 30 customers are solved within a 7200-second time
limit, while instances with 40 customers are given a 14400-second limit. BAC was
executed without any algorithmic enhancements. According to the BAC results,
convergence to an optimal solution is slow. Furthermore, as the problem size in-
creases, the time required to solve the VRP subproblem also increases, rendering
the algorithm inefficient.
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Table 4.1 LBBD versus BAC

Instance

BAC LBBD

OFV Gap RunTime # Opt_cut
Avgerage Total

# VRP # callback
Run Time -

UB LB Run Time
Avgerage Total

# VRP # it
Total Avgerage

VRP Time VRP Time Total VRP Time VRP Time VRP Time Master time Master Time

test11-2-2-a-Q51 620,48 0 0,49 14 0,03 0,41 14 7 0,08 620,48 620,48 0,26 0,02 0,23 10 5 0,024 0,005
test11-2-3-a-Q51 620,48 0 0,99 14 0,07 0,94 14 7 0,06 620,48 620,48 0,51 0,05 0,49 10 5 0,018 0,004
test11-3-2-a-Q51 834,96 0 2,97 81 0,03 2,76 81 27 0,21 834,96 834,96 1,84 0,02 1,70 69 23 0,103 0,004
test11-3-3-a-Q51 834,96 0 4,72 78 0,06 4,53 78 26 0,19 834,96 834,96 3,44 0,05 3,29 69 23 0,105 0,005
test11-4-2-a-Q51 1043,91 0 3,42 156 0,02 3,16 156 39 0,26 1043,91 1043,91 2,31 0,02 2,05 136 34 0,199 0,006
test11-4-3-a-Q51 1043,91 0 6,21 156 0,04 5,94 156 39 0,27 1043,91 1043,91 4,37 0,03 4,07 136 34 0,215 0,006
test11-5-2-a-Q51 1083,97 0 34,31 1300 0,02 30,44 1300 260 3,87 1083,97 1083,97 83,71 0,01 16,40 1335 267 66,631 0,250
test11-5-3-a-Q51 1083,97 0 51,34 1170 0,04 47,19 1170 234 4,14 1083,97 1083,97 91,96 0,02 23,10 1405 281 68,188 0,243
test21-2-2-a-Q71 828,98 0 7,26 10 0,71 7,07 10 5 0,19 828,98 828,98 1,04 0,13 1,01 8 4 0,018 0,004
test21-2-3-a-Q71 828,98 0 16,88 14 1,19 16,68 14 7 0,20 828,98 828,98 2,74 0,27 2,69 10 5 0,024 0,005
test21-2-4-a-Q71 828,98 0 20,63 14 1,46 20,43 14 7 0,20 828,98 828,98 5,44 0,54 5,40 10 5 0,025 0,005
test21-3-2-a-Q71 1088,36 0 94,43 267 0,35 92,64 267 89 1,79 1088,36 1088,36 21,96 0,08 20,83 255 85 0,882 0,010
test21-3-3-a-Q71 1088,36 0 146,53 255 0,57 145,09 255 85 1,44 1088,36 1088,36 34,86 0,13 33,83 252 84 0,782 0,009
test21-3-4-a-Q71 1088,36 0 232,19 273 0,84 230,51 273 91 1,68 1088,36 1088,36 62,54 0,24 61,30 255 85 0,934 0,011
test21-4-2-a-Q71 1253,47 0 874,89 3568 0,24 840,11 3568 892 34,77 1253,47 1253,47 2068,56 0,06 601,90 9568 2392 1456,518 0,609
test21-4-3-a-Q71 1253,47 0 2047,64 4380 0,46 2004,83 4380 1095 42,81 1253,47 1253,47 6050,05 0,13 1842,35 14044 3511 4189,595 1,193
test21-4-4-a-Q71 1253,47 0 3117,08 4056 0,76 3080,22 4056 1014 36,86 1253,47 1253,47 6277,35 0,20 2814,19 14164 3541 3443,654 0,973
test31-5-2-a-Q80 1775,57 1 7222,39 7630 0,93 7071,72 7630 1526 150,67 1737,06 0 7207,36 0,60 4478,60 7465 1493 2695,302 1,805
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Therefore, to expedite the algorithm, we attempted to enhance the LB by incorpo-
rating cuts derived from the dual of the LP relaxation of the subproblem at each
iteration. However, this approach did not yield any significant improvement in the
LB and the cuts appeared to be redundant. we also aimed to enhance the speed of
solving the VRP subproblem. Initially, we applied an exact column generation algo-
rithm for this purpose. However, our proposed column generation approach did not
yield significant improvements in solution time. Consequently, we opted to refine
and adapt it specifically for the PVRP problem, aiming to solve the PVRP directly
using the column generation algorithm.

Table 4.2 Comparison of results obtained by UC1 and BAC

Instance
UC1 BAC

OFV RunTime (s) OFV Gap RunTime (s) # Opt_cut # feas_cut Avg VRP Time Total VRP time # callback

test11-2-2-a-Q51 620,48 0,97 620,48 0 0,49 14 0 0,03 0,41 7
test11-2-3-a-Q51 620,48 1,73 620,48 0 0,99 14 0 0,07 0,94 7
test11-3-2-a-Q51 834,96 1,56 834,96 0 2,97 81 0 0,03 2,76 27
test11-3-3-a-Q51 834,96 8,22 834,96 0 4,72 78 0 0,06 4,53 26
test11-4-2-a-Q51 1043,91 1,08 1043,91 0 3,42 156 0 0,02 3,16 39
test11-4-3-a-Q51 1043,91 2,58 1043,91 0 6,21 156 0 0,04 5,94 39
test11-5-2-a-Q51 1083,97 7,84 1083,97 0 34,31 1300 0 0,02 30,44 260
test11-5-3-a-Q51 1083,97 99,11 1083,97 0 51,34 1170 0 0,04 47,19 234
test21-2-2-a-Q71 828,98 3,50 828,98 0 7,26 10 0 0,71 7,07 5
test21-2-3-a-Q71 828,98 2,77 828,98 0 16,88 14 0 1,19 16,68 7
test21-2-4-a-Q71 828,98 34,81 828,98 0 20,63 14 0 1,46 20,43 7
test21-3-2-a-Q71 1088,36 4,52 1088,36 0 94,43 267 0 0,35 92,64 89
test21-3-3-a-Q71 1088,36 42,84 1088,36 0 146,53 255 0 0,57 145,09 85
test21-3-4-a-Q71 1088,36 106,75 1088,36 0 232,19 273 0 0,84 230,51 91
test21-4-2-a-Q71 1253,47 75,94 1253,47 0 874,89 3568 0 0,24 840,11 892
test21-4-3-a-Q71 1253,47 333,03 1253,47 0 2047,64 4380 0 0,46 2004,83 1095
test21-4-4-a-Q71 1253,47 7200,28 1253,47 0 3117,08 4056 0 0,76 3080,22 1014
test21-5-2-a-Q71 1729,00 1274,06 1729,00 0 5455,50 4230 0 0,47 1995,94 846
test21-5-3-a-Q71 1729,00 7200,33 1729,00 0,01 7200,11 3930 0 0,92 3605,06 786
test21-5-4-a-Q71 1729,00 7200,42 1729,19 0,03 7200,08 3645 0 1,53 5591,05 729
test31-2-2-a-Q80 841,63 15,02 841,63 0 67,92 28 0 2,40 67,33 14
test31-2-3-a-Q64 917,28 1735,72 917,28 0 3473,66 340 0 10,21 3469,77 170
test31-2-4-a-Q64 911,89 7200,34 915,76 0,49 7441,98 274 0 27,15 7438,55 137
test31-3-2-a-Q80 1190,97 69,66 1194,00 0,33 7234,07 5352 0 1,34 7167,08 1784
test31-3-3-a-Q64 1285,54 7200,36 1308,86 0,67 7208,20 1719 0 4,18 7190,13 573
test31-3-4-a-Q64 1288,27 7200,55 1348,55 0,68 7777,21 495 0 15,70 7770,73 165
test31-4-2-a-Q80 1625,85 7200,41 1626,00 0,73 7257,50 5032 0 1,43 7183,47 1258
test31-4-3-a-Q64 1742,31 7200,55 1785,83 0,76 7210,22 1168 0 6,16 7191,30 292
test31-4-4-a-Q64 1752,70 7200,63 1803,94 0,88 7549,22 452 0 16,69 7542,50 113
test31-5-2-a-Q80 1673,06 7200,58 1775,57 1 7222,39 7630 0 0,93 7071,72 1526
test31-5-3-a-Q64 1780,61 7200,75 1885,27 1 7327,73 2705 0 2,70 7294,22 541
test31-5-4-a-Q64 1809,47 7200,73 1909,31 1 7259,48 1250 0 5,80 7245,22 250
test41-2-2-a-Q180 871,32 162,58 871,32 0 11068,60 2252 0 4,90 11029,60 1126
test41-2-3-a-Q150 889,32 3329,77 889,76 0,52 14837,66 636 0 23,31 14824,23 318
test41-2-4-a-Q60 1089,37 14400,63 _ _ _ 15 0 2016.66 30249.98 8
test41-3-2-a-Q180 1185,19 454,86 1247,09 1 14439,33 4149 0 3,46 14339,64 1383
test41-3-3-a-Q150 1214,05 14400,59 1267,27 1 14658,58 939 0 15,59 14643,01 313
test41-3-4-a-Q60 1542,96 14400,96 _ _ _ 12 0 1604.34 19252,09 4
test41-4-2-a-Q180 1460,46 6959,16 1527,26 0,78 14446,12 6168 0 2,31 14270,43 1542
test41-4-3-a-Q150 1476,33 14401,06 1606,61 1 14478,00 1684 0 8,58 14441,42 421

4.2 Heuristic Column Generation Approach in Solving Periodic Vehicle
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Routing Problem

4.2.1 Problem Definition and Formulation

PVRP can be defined on a complete undirected graph G = (N,E) with N =
{0,1, . . . ,n} being the set of nodes, where node 0 represents the depot and the
nodes in the set Nc = {1, . . . ,n} correspond to the customers. The set of edges is
given by E = {e ⊂N : |e| = 2}. Each edge e is associated with a non-negative cost
ce. Let T = {1, . . . , τ} denote the set of time periods defining the planning horizon.
A fleet of homogeneous vehicles K = {1, . . . ,κ}, each having a capacity of Q units, is
available to serve the customers. Associated with every customer i∈Nc is a demand
di for each visit, and a predefined set of possible visit schedules Pi. A given schedule
p ∈ Pi consists of the specific days on which the customer should be visited, i.e.,
p⊆ T .

Let Ω be the set of all feasible routes, which is exponentially large. For each route
r ∈ Ω its cost is ζr. Let also αir and βpt be binary constants and indicate whether
customer i is visited by route r and whether day t is in combination p ∈ Pi, respec-
tively.

The following decision variables are used in the integer master problem (IMP) for
the PVRP; xrt is a binary variable which is equal to 1 if route r is traversed on day
t, otherwise 0, sip is a binary variable which is equal to 1 if combination p ∈ Pi is
chosen for visiting customer i ∈Nc, and 0 otherwise.

We formulate MIP for the PVRP as a set-covering model as follows:

minimize
∑
r∈Ω

∑
t∈T

ζrxrt,(4.31)

subject to
∑

p∈Pi

sip ≥ 1 ∀i ∈Nc,(4.32)

∑
r∈Ω

αirxrt−
∑

p∈Pi

βptsip ≥ 0 ∀i ∈Nc,∀t ∈ T,(4.33)

∑
r∈Ω

xrt ≤ κ ∀t ∈ T,(4.34)

xrt ∈ {0,1} ∀r ∈ Ω,∀t ∈ T,(4.35)

sip ∈ {0,1} ∀i ∈Nc,∀p ∈ Pi.(4.36)

The objective function (4.31) minimizes the total routing cost. Constraints (4.32)
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ensure that at least one allowable visit schedule is selected for each customer. Con-
straints (4.33), which relate the routes and the visit combinations, ensure that every
customer is visited by at least one route on each day belonging to its allowable visit
schedules. Constraints (4.34) guarantee that the number of vehicles that can be
used on any day of the planning horizon cannot exceed the fleet size κ. Constraints
(4.35) and (4.36) specify the domain restrictions on the variables.

4.2.2 Column Generation

As there are exponentially many variables (columns) corresponding to routes, it is
not tractable to solve the set covering problem (4.31-4.36) directly. Therefore, we use
a Column generation technique based on the following principle. We introduced the
Restricted Master Problem (RMP) as the linear relaxation of (4.31-4.36) in which
the initial columns set is Ω′ ⊆ Ω.

minimize
∑

r∈Ω′

∑
t∈T

ζrxrt,(4.37)

subject to
∑

p∈Pi

sip ≥ 1 ∀i ∈Nc,(4.38)

∑
r∈Ω′

αirxrt−
∑

p∈Pi

βptsip ≥ 0 ∀i ∈Nc,∀t ∈ T,(4.39)

∑
r∈Ω′

xrt ≤ κ ∀t ∈ T,(4.40)

xrt ≥ 0 ∀r ∈ Ω′,∀t ∈ T,(4.41)

sip ≥ 0 ∀i ∈Nc,∀p ∈ Pi.(4.42)

Let D-RMP(Ω′) be the dual program of the RMP(Ω′):
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maximize
∑
i∈C

αi +
∑
t∈T

κλ0t,(4.43)

subject to αi−
∑
t∈T

βp′tλit ≤ 0 ∀i ∈Nc,∀p′ ∈ Pi,(4.44)
∑

i∈Nc

αirλit +λ0t ≤ ζr ∀r ∈ Ω′,∀t ∈ T,(4.45)

αi ≥ 0 ∀i ∈Nc, ,(4.46)

λit ≥ 0 ∀i ∈Nc,∀t ∈ T,(4.47)

λ0t ≤ 0 ∀t ∈ T,(4.48)

in which αi, ∀i ∈ Nc are the non-negative dual variables associated to constraints
(4.38), λit, ∀i ∈ Nc,∀t ∈ T are the non-negative dual variables associated to con-
straints (4.39), and λ0t, ∀t ∈ T are the non-positive dual variables associated to
constraints (4.40).

4.2.3 Pricing Subproblem

The subproblem aims to find routes r ∈ Ω\Ω′ such that

ζr−
∑

i∈Nc

αirλ∗
it−λ∗

0t ≤ 0.(4.49)

In other words, this condition is:

∑
(i,j)∈A

bijrt(cij−λ∗
it)≤ 0,(4.50)

where bijrt = 1 if on day t route r uses arc (i, j), otherwise 0. Inequality (4.50) is
equivalent to

∑
(i,j)∈A

bijrt(cij−
λ∗

it +λ∗
jt

2 )≤ 0.(4.51)

According to inequality (4.51) the subproblem reduces to an elementary shortest-
path problem with resource constraints (ESPPRC). The ESPPRC holds for each
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day t ∈ T . One has to find a path without cycles from the depot to the depot,
respecting the maximum vehicle capacity limit with a negative cost, where costs are
defined as

Ĉijt = cij−
λ∗

it +λ∗
jt

2 ∀i ∈N,∀j ∈N,∀t ∈ T.(4.52)

We solve the ESPPRC using a dynamic programming-based approach, ng-route
decremental state-space relaxation (DSSR), and completion bounds (Martinelli
et al., 2014). In DP-based methods, new paths, represented by labels, are con-
structed from the depot to its duplicate. For each customer i ∈Nc, let Ni ⊆Nc be a
subset of customers associated with i. This association can be defined by proximity,
meaning Ni includes the nearest customers to i, including i itself. These subsets are
known as ng-sets, representing the customers that customer i can "remember." The
size of each ng-set Ni is constrained by ∆(Ni), a predefined parameter.

Consider a path P = (0, i1, . . . , ip−1, ip). The components of a label L(P ) =
(ip,d(P ),Πp,Cp) corresponding to path P are defined as follows:

• ip: the last customer assigned to path P ,

• d(P ): the total demand serviced by path P ,

• Πp: the prohibited extensions (the “memory”) of path P , defined as

Πp = {ik ∈ C(P )\{ip} : ik ∈
p⋂

s=k+1
Nis}∪{ip}(4.53)

where

• C(P ) is the set of customers visited by path P ,

• Cp: the total cost of path P .

A label L(P ) can be extended to include a customer ip+1 if ip+1 /∈ Πp and
d(P )+dip+1 ≤Q. When extended, ip+1 becomes the last customer in the new path
P ′ = (0, i1, . . . , ip, ip+1), and the new label L(P ′) is derived from L(P ) through the
following updates:

L(P ′) = (ip+1, d(P )+dip+1 , Πp∩Nip+1 ∪{ip+1}, Cp +Cipip+1)(4.54)
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The adapted DSSR is an iterative algorithm that initially relaxes the state space
of the original ng-sets Ni. During each iteration k, it replaces Ni with subsets
Γk

i ⊆ Nc. These subsets Γk
i are used in place of Ni in the definition from Eq. 4.53

and in creating new labels as specified in Eq. 4.54. Initially, the algorithm starts
with Γ0

i as an empty set and runs the dynamic programming algorithm. Since the
optimal routes identified by this process may not be ng-routes with respect to the
original ng-sets Ni, their feasibility must be verified before accepting them as the
pricing solution. This verification is conducted, and the subsets Γk

i are updated
if necessary. If any subset Γk

i is modified at the end of iteration k, the dynamic
programming algorithm is rerun with the updated subsets Γk+1

i .

DSSR and the ng-route relaxation aim to keep this set as small as possible
without losing the elementarity of the routes. DSSR ensures elementarity, whereas
ng-route relaxation does not guarantee it.

To preserve elementarity, Martinelli et al. (2014) propose a modified approach
where the sets, though functioning similarly, are not strictly subsets of the original
neighborhoods. The update procedure is triggered whenever a cycle is detected.
This method does not utilize ng-routes, resulting exclusively in elementary routes.

In another study, Dayarian et al. (2015) addresses the prevention of non-
elementary optimal paths while employing ng-routes differently. If the algorithm
identifies a non-elementary ng-route, it does not allow it to terminate convention-
ally; instead, an additional layer of DSSR is applied. Consequently, any repeating
vertex i within a valid ng-cycle is designated as critical and incorporated into all
applicable neighborhoods Γj , j ∈ N as if j ∈ Nj . This supplementary step ensures
the elementarity of all columns, thereby enhancing the lower bound. Algorithm 1
employs this strategy to uphold elementarity.

As we observed, when the ∆ (the size of each ng-set) is small, the size of Γi,
i ∈ N increases rapidly. So, we extend Γ only according to invalid ng-cycles and
keep critical customers in set S. Set S are the customers for which a customer-visit
resource is maintained. We start with S = ∅ and update S at the end of each label
setting iteration that returns a non-elementary ng-route. Suppose that the state
corresponding to a given path p is described by the label vector U = (U1, . . . ,U|S|).
if ck is the kth customer added to S, then Uk shows whether customer ck is included
in the path p or not. We also have to respect these limits while constructing resource-
feasible paths. We refer to this approach as a hybrid NG-customer-visit resource
approach and use it in Algorithm 2 to maintain elementarity.

We employ a matrix-based data structure of dimensions |N | ×Q to store the
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labels on the graph. Each cell (i, q) in this matrix contains a list of all labels ending
at node i ∈ N with an accumulated load of q, where 0 ≤ q ≤ Q. This structure’s
benefit lies in the fact that, since each cell contains labels with identical loads, the
labels can be compared using classical dominance rules. However, the drawback
is the extensive number of labels stored. At any given node i, some labels in cell
(i, q) might dominate labels in cells (i, q′) for q′ ≥ q. This dominance is not detected
because the verification process only considers labels within the same cell.

To decrease the number of possible paths, we incorporate specific dominance rules
in Algorithm 1, described as follows. Suppose we have two paths with labels L(P1)
and L(P2). Path P1 dominates path P2 if it can achieve every possible extension of
P2 at an equal or lower total cost. For this to be valid, two conditions must be met:

• CP1 ≤ CP2 and

• Π(P1)⊆ Π(P2).

In Algorithm 2 besides the mentioned dominance rules an additional rule is also
needed to be checked. Path P1 is said to dominate path P2 if U1 ̸= U2 and Uk

1 ≤ Uk
2

for k = 1, . . . , |S|, where k is the number of resources.

4.2.3.1 Acceleration Methods

In each iteration, it is not necessary to return the column(s) with the most
negative reduced cost. It is sufficient to return (at least one) column(s) with a
negative reduced cost if one exists. Adding any negative reduced cost column instead
of the most negative reduced cost column may lead to a smaller change in the value
of the solution and consequently increase the number of pricing iterations to reach
the optimal solution. However, the reduction in the solution time of each pricing
iteration can lead to less overall computation time. This concept can be applied
simplistically by observing that many negative reduced-cost paths are usually found
during the first few label-setting iterations.

Therefore, we implement the algorithm in such a way that we collect elemen-
tary negative reduced cost paths found in each iteration and sometimes terminate
the algorithm prematurely, i.e., before there has been a finding of the most nega-
tive reduced cost column, and instead return the top specific number of collected
elementary negative reduced cost columns (Ozbaygin et al., 2017).

The second useful idea comes from another observation: duals are updated after
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each pricing iteration, which means that some elementary paths may have non-
negative reduced costs in one pricing iteration, but negative reduced costs in the next
iterations. Thus, after the last label setting iteration, non-dominated elementary
paths with non-negative reduced costs are kept in a column pool (Ozbaygin et al.,
2017). Each pricing iteration starts with an evaluation of the columns in the pool
to confirm if they (now) have a negative reduced cost. Keeping a maximum number
of columns prevents the column pool from becoming too expensive to explore. If
the maximum pool size is exceeded after a pricing iteration, the oldest columns are
removed and the new ones are added until the desired pool size is reached.

It is also possible to detect negative reduced cost columns quickly by using
heuristics before invoking the exact pricing algorithm (Ozbaygin et al., 2017). To this
end, we implement a truncated version of the dynamic programming-based approach
in which each cell (i;q) of the matrix can keep a limited number of efficient labels (we
refer to it as bucket length). Each time a new label is added to the list of efficient
labels, we discard the one with the largest cost if the number of labels exceeds the
limit. In this way, fewer labels are treated at each label setting iteration which
can facilitate faster detection of negative cost elementary paths. Again, excluding a
part of the solution space may come at the expense of performing more iterations,
i.e., there is a trade-off between the number of efficient labels maintained and the
number of label setting iterations performed.

Briefly, we attempt to identify negative reduced cost columns by first exploring
the column pool, then implementing the truncated-search version of the dynamic
programming algorithm, and finally implementing the full-search version of the dy-
namic programming algorithm if the other approaches fail. After finding a prede-
termined number of elementary negative reduced cost columns, we terminate any
pricing iteration further to control time.

4.2.4 Integer solution

When the optimal solution to the master problem is fractional, We solve the
following RMP where Ω′ consists of all columns generated during the column gen-
eration phase.
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minimize
∑

r∈Ω′

∑
t∈T

ζrxrt,(4.55)

subject to
∑

p∈Pi

sip = 1 ∀i ∈Nc,(4.56)

∑
r∈Ω′

αirxrt−
∑

p∈Pi

βptsip ≥ 0 ∀i ∈Nc,∀t ∈ T,(4.57)

∑
r∈Ω′

xrt ≤ κ ∀t ∈ T,(4.58)

xrt ∈ {0,1} ∀r ∈ Ω′,∀t ∈ T,(4.59)

sip ∈ {0,1} ∀i ∈Nc,∀p ∈ Pi.(4.60)

Due to the inequality (4.57), the model has the chance of selecting routes for
each day with less cost although some routes may contain customers that are not
assigned to those days. We get the solution from the model and create a new Ω
containing the routes in the solution plus some extra routes which are generated
by editing the routes containing customers who are visited more than their corre-
sponding frequencies. We consider all the customers’ combinations, who are visited
more than their corresponding frequencies while generating new routes. Then, we
change the sign of (4.57) to equality and solve the model one more time with new
Ω to obtain a feasible solution for the problem.

4.2.5 Computational Results of the Column Generation Algorithm

15 benchmark instances from the S1 dataset were used to test our algorithms
since vehicles have a small capacity and these algorithms are suitable for solving
them. All computational experiments are carried out on a virtual machine with
Intel Xeon CPU E5-2640 processor with 2.60 GHz speed, 16 GB RAM, and 64-bit,
using Julia 1.8.3.

Table 4.3 describes the chosen instances of data set S1 for the PVRP, where n

is the number of customers, m is the number of vehicles that can be used, t is the
number of days in the planning horizon, Q is the maximum capacity of the vehicles,
and fi is the number of customers that must be visited i times.

In the implementation, we set the bucket length to 2. The run time is limited
to 4 hours. In Table 4.4, the first column lists the instance names. The second
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Table 4.3 Instance description

Instance n m t Q
Service frequency

f1 f2 f4 f6
14 20 2 4 20 8 8 4 _
15 38 2 4 30 16 16 6 _
16 56 2 4 40 24 24 8 _
17 40 4 4 20 16 16 8 _
18 76 4 4 30 32 32 12 _
21 60 6 4 20 24 24 12 _
24 51 3 6 20 36 9 _ 6
25 51 3 6 20 36 9 _ 6
26 51 3 6 20 36 9 _ 6
27 102 6 6 20 72 18 _ 12
28 102 6 6 20 72 18 _ 12
29 102 6 6 20 72 18 _ 12
30 153 9 6 20 108 27 _ 18
31 153 9 6 20 108 27 _ 18
32 153 9 6 20 108 27 _ 18

and third columns display the results reported by Baldacci et al. (2011) and Vidal
et al. (2012) for these instances, with Vidal’s results representing the best-known
solutions in the literature.
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Table 4.4 Results of Algorithm 1 and Algorithm 2 for Various ∆ Values with Bucket Length of 2

bucket length = 2

∆ = 4 ∆ = 8 ∆ = 16

Instance Baldacci et al. (2011) Vidal et al. (2012) OFV Time Alg.1 Time Alg.2 OFV Time Alg.1 Time Alg.2 OFV Time Alg.1 Time Alg.2

P14 954.81 954.81 954.81 15.49 14.71 954.81 22.47 19.32 954.81 23.54 24.387
p15 1862.63 1862.63 1862.63 188.82 178.67 1862.63 651.99 598.97 1862.63 546.17 530.025
P16 2875.24 2875.24 2875.24 530.14 393.09 2875.24 856.73 934.96 2875.24 1001.02 1113.52
P17 1597.75 1597.75 1597.75 158.38 121.73 1597.75 125.00 123.91 1597.75 167.93 172.626
P18 3136.69 3131.09 3169.05 1973.81 1894.89 3169.05 4372.64 3932.763 3177.71 5342.19 5117.37
P21 2170.61 2170.61 2172.74 655.67 520.15 2172.74 654.19 674.088 2199.837 693.65 734.423
P24 3687.46 3687.46 3687.46 234.91 192.77 3687.46 254.05 229.30 3687.46 276.887 304.653
P25 3777.15 3777.15 3781.38 174.33 135.24 3781.38 174.67 163.073 3789.004 202.038 238.55
P26 3795.32 3795.32 3795.32 115.54 116.37 3795.32 193.77 170.45 3795.32 201.10 193.873
P27 21912.85 21833.87 21941.30 6332.57 5282.01 21954.37 3641.29 3205.785 21948.45 3710.25 3411.398
P28 22242.51 22242.51 22242.51 1612.38 1551.74 22242.51 2369.47 2050.863 22242.51 2003.55 1931.457
P29 22543.76 22543.76 22543.76 1998.62 2076.83 22543.76 2536.33 2167.619 22543.76 2456.98 2010.475
P30 74464.26 73875.19 74944.79 14400.00 74728.26 14400.00 14400.00 74848.32 14400.00 14400.00

74393.49 14400.00
P31 76322.04 76001.57 76287.97 14400.00 14400.00 76391.87 14400.00 76248.73 14400.00 11342.06

76333.32 14400.00
P32 78072.88 77598.00 77833.57 14400.00 77794.69 14400.00 14400.00 77755.90 14400.00 11309.20

77759.79 14400.00
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Following these, there are three blocks of three columns each, corresponding to
specific ∆ values (4, 8, and 16). Within each block, the first column shows the
objective function value (OFV), the second column reports the runtime for Algo-
rithm 1, and the third column reports the runtime for Algorithm 2. For problem
instances p30, p31, and p32, if the solutions of Algorithm 1 and Algorithm 2 dif-
fer, the solution from Algorithm 2 would be reported in a separate row below the
original. Bold values indicate that the results match the best-known solutions in
the literature. Bold and Underlined values indicate that our algorithm outperforms
Baldacci’s results but does not surpass Vidal’s results.

As it is evident from the Table 4.4, Algorithm 2 generally outperforms Algorithm
1 in terms of runtime. The Ω set at the end of the Column Generation phase is
identical for both algorithms. Since Algorithm 2 is frequently faster during the
Column Generation phase, this advantage allows Algorithm 2 more time after the
Column Generation phase to find the integer solution.

Considering the best solution obtained from the algorithms for each instance, the
average percentage deviation of them from Vidal’s results is approximately 0.21%.
The relatively low average deviation (0.21%) indicates that the solutions produced
by the algorithms are very close to the best-known solutions provided by Vidal,
showing a high level of performance and accuracy.

• For 9 out of the 15 instances, the OFV exactly matches Vidal’s results, result-
ing in a 0% deviation. These instances are p14, p15, p16, p17, p24, p26, p28,
and p29.

• Most deviations from Vidal’s results are small, typically under 0.5%. This
suggests that the solutions are very close to the best-known solutions in the lit-
erature. Specifically p21 (0.098%), p25 (0.112%), p27 (0.492%), p31 (0.325%),
p32 (0.203%).

• There are two instances with deviations greater than 0.5%, p30 (0.702%) and
p18 (1.212%).

In summary, the proposed algorithms yield results that are very close to the
best-known solutions in the literature, with an average deviation of only 0.21%.
This underscores the algorithm’s effectiveness, as most instances exhibit either no
deviation or only slight deviations from the best-known solution in the literature

4.3 Conclusions
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In the first part of the chapter, we proposed the LBBD and BAC algorithms to
solve the PVRP. Computational results demonstrate that BAC outperforms LBBD
in medium-sized instances. However, a comparison between the BAC algorithm and
the UC1 formulation reveals that the convergence of BAC to the optimal solution
is slow, and the time required to solve the VRP subproblem is considerable.

To expedite the algorithm, we aimed to enhance the speed of solving the VRP
subproblem. Initially, we applied an exact column generation algorithm for this
purpose. Unfortunately, our proposed column generation approach did not yield
significant improvements in solution time. Consequently, we refined and adapted
this approach specifically for the PVRP problem, aiming to solve the PVRP directly
using the column generation algorithm.

In the second part of the chapter, we propose a column generation-based heuristic
to solve the PVRP. In the pricing problem, we applied Martinelli et al. (2014)
algorithm. However, to maintain elementarity in solving the pricing sub-problem,
we applied two different approaches: one proposed by Dayarian et al. (2015) and a
hybrid approach. At the end of the algorithm, if the optimal solution to the master
problem is fractional, we solve the integer RMP, allowing visits to customers more
frequently than their specified frequencies. Based on this solution, we generate a
new Ω and enrich it with additional columns. We then resolve the problem using
the updated Ω.

The results show that the proposed algorithm produces results very close to the
best-known solutions in the literature, with an average deviation of only 0.21%. This
highlights the effectiveness of the algorithm, especially given that most instances
show either no deviation or very minor deviations from the best-known solution in
the literature.

Time window and non-crossing intra-route constraints can be seamlessly inte-
grated into the proposed algorithm by incorporating them directly into the pricing
problem. This approach ensures that these constraints are enforced during the col-
umn generation process. However, integrating non-crossing inter-route and driver
consistency constraints requires a different approach. These constraints need to be
included in the master problem, where the master problem verifies the absence of
arc intersections between different routes. As the size of Ω increases, this verification
process can become computationally intensive.

Future research can explore various algorithmic enhancements to improve the
performance of the column generation approach. These include the implementation
of cutting planes, advanced branching strategies, and sophisticated data structures
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for label storage during the pricing stage. Additionally, the integration of meta-
heuristics could further enhance the efficiency and effectiveness of the method.
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5. A Parallel Tempering-based Adaptive Large Neighborhood Search

Algorithm for a Periodic Vehicle Routing Problem with Time
Windows and Visual Attractiveness constraints

5.1 Problem Definition and Formulations

In this section, we define and formulate PVRPTW and PVRPTWDCVA problems.
PVRPTW formulation is the extension of the directed cut-based formulation for
the PVRPTW in which we also consider the tour duration constraint. Then we
extend the PVRPTW formulation to the PVRPTWDCVA formulation by adding
constraints that prevent both inter-route and intra-route crossings, while also en-
suring driver consistency.

5.1.1 Mathematical Formulation for PVRPTW

Assume D is the maximum allowable route duration. The PVRPTW considering
route duration restriction can be formulated as follows:
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minimize
∑

(i,j)∈A

∑
t∈T

∑
k∈K

cijxijtk,(5.1)

subject to
∑

p∈Pi

sip = 1 ∀i ∈Nc,(5.2)

∑
p∈Pi:t∈P

sip =
∑

k∈K

zitk ∀i ∈Nc,∀t ∈ T,(5.3)

∑
i∈Nc

zitk di ≤Qvtk ∀k ∈K,∀t ∈ T,(5.4)

∑
j∈N\{i}

xijtk = zitk ∀i ∈N,∀k ∈K,(5.5)

∀t ∈ T,∑
j∈N\{i}

xjitk = zitk ∀i ∈N,∀k ∈K,(5.6)

∀t ∈ T,

witk + ri + cij−wjtk ≤ (1−xijtk)M ∀i ∈N,∀j ∈Nc,(5.7)

∀k ∈K,∀t ∈ T,

witk + ri + ci0−L0 ≤ (1−xi0tk)M ∀i ∈Nc,∀k ∈K,(5.8)

∀t ∈ T,

Ei

∑
j∈N

xijkt ≤ witk ≤ Li

∑
j∈N

xijkt ∀i ∈N,∀k ∈K,(5.9)

∀t ∈ T,

witk + ri + ci0−w0tk ≤D ∀i ∈Nc,∀k ∈K,(5.10)

∀t ∈ T,

sip ∈ {0,1} ∀i ∈Nc,∀p ∈ Pi,(5.11)

xijtk ∈ {0,1} ∀i, j ∈N,∀k ∈K,(5.12)

∀t ∈ T,

zitk ∈ {0,1} ∀i ∈Nc,∀k ∈K,(5.13)

∀t ∈ T,

vtk ∈ {0,1} ∀k ∈K,∀t ∈ T,(5.14)

witk ≥ 0 ∀i ∈N,∀k ∈K,(5.15)

∀t ∈ T.

The objective function (5.1) minimizes the total routing cost. Constraints (5.2) en-
sure that an allowable visit schedule is selected for each customer. Constraints (5.3)
relate the customer visit variables and the schedule selection variables. Constraints
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(5.4) are the vehicle capacity restrictions. Any customer to be served on a given
day will be visited exactly once due to constraints (5.5) and (5.6), which, together,
imply vehicle flow conservation. Constraints (5.7)–(5.9) guarantee the feasibility of
the tours with respect to time window restrictions. Constraints (5.10) are the route
duration restriction. Constraints (5.11)–(5.15) specify the domain restrictions on
the variables.

5.1.2 Mathematical Formulation for PVRPTWDCVA

In this section, we aim to propose a new formulation that focuses on enhancing
the visual appeal of solution routes by avoiding inter and intra-route crossings and
ensuring driver consistency. In addition to the previously defined x, w, z, and v

variables used in the PVRPTW formulation, we define sipk which is equal to 1 if
schedule p ∈ Pi is chosen to visit customer i ∈Nc, and if all visits in that schedule
are done by vehicle k ∈K, and 0 otherwise. In the following model, the additional
input data δ(i, j,m,n) is considered, which takes the value 1 if arcs (i, j) and (m,n)
intersect. To ensure non-crossing routes, at most one of any pair of intersecting arcs
can be included in the solution.

The PVRPTWDCVA formulation is as follows;

78



minimize
∑

(i,j)∈A

∑
t∈T

∑
k∈K

cijxijtk,(5.16)

subject to
∑

p∈Pi

∑
k∈K

sipk = 1 ∀i ∈Nc,(5.17)

∑
p∈Pi:t∈P

sipk = zitk ∀i ∈Nc,∀t ∈ T,(5.18)

∀k ∈K,∑
i∈Nc

zitk di ≤Qvtk ∀k ∈K,∀t ∈ T,(5.19)

∑
j∈N\{i}

xijtk = zitk ∀i ∈N,∀k ∈K,(5.20)

∀t ∈ T,∑
j∈N\{i}

xjitk = zitk ∀i ∈N,∀k ∈K,(5.21)

∀t ∈ T,∑
k∈K

xijtk +
∑

k∈K

xjitk +(5.22)

∑
k∈K

xmntk +
∑

k∈K

xnmtk ≤ 1 ∀i, j,m,n ∈Nc,

∀t ∈ T,

if δ(i, j,m,n) = 1,

witk + ri + cij−wjtk ≤ (1−xijtk)M ∀i ∈N,∀j ∈Nc,(5.23)

∀k ∈K,∀t ∈ T,

witk + ri + ci0−L0 ≤ (1−xi0tk)M ∀i ∈Nc,∀k ∈K,(5.24)

∀t ∈ T,

Ei

∑
j∈N

xijkt ≤ witk ≤ Li

∑
j∈N

xijkt ∀i ∈N,∀k ∈K,(5.25)

∀t ∈ T,

witk + ri + ci0−w0tk ≤D ∀i ∈Nc,∀k ∈K,∀t ∈ T,(5.26)

sipk ∈ {0,1} ∀i ∈Nc,∀p ∈ Pi,∀k ∈K,(5.27)

xijtk ∈ {0,1} ∀i, j ∈N,∀k ∈K,∀t ∈ T,(5.28)

zitk ∈ {0,1},witk ≥ 0 ∀i ∈Nc,∀k ∈K,∀t ∈ T,(5.29)

vtk ∈ {0,1} ∀k ∈K,∀t ∈ T.(5.30)

The objective function (5.16) minimizes the total routing cost. Constraints (5.17)
ensure that each customer is serviced by one vehicle, and following one of its al-
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lowable visit schedules. Constraints (5.18) relate the customer visit variables and
the schedule selection variables. Constraints (5.19) are the vehicle capacity restric-
tions. Any customer to be served on a given day will be visited exactly once due to
constraints (5.20) and (5.21), which, together, imply vehicle flow conservation. The
constraints (5.22) indicate that at most one of the arcs (i,j), (j,i), (n,m), and (m,n)
can be in the solution if they intersect. Constraints (5.23)–(5.25) guarantee the
feasibility of the tours with respect to time window restrictions. Constraints (5.26)
are the route duration restriction. Constraints (5.27)–(5.30) specify the domain
restrictions on the variables.

5.2 Adaptive Large Neighborhood Search

Given the intractability of the problem for large instances, we develop an ALNS-
based metaheuristic approach to solve it. ALNS a metaheuristic algorithm utilized
for solving combinatorial optimization problems, takes an initial solution and in an
iterative process explores different neighborhoods of a given solution in the hope of
finding an enhanced solution (Ropke and Pisinger, 2006). ALNS explores the search
space by adjusting the current solution at each iteration using a strategy called the
"Destruction and Construction" principle. Destruction pertains to removing a part
of the current solution, while construction involves generating a new solution by
rebuilding the destroyed portion. Appropriate heuristics are utilized to carry out
destruction and construction tasks. These heuristics are selected at each iteration
using a biased random mechanism known as the roulette-wheel. This mechanism
favors the heuristics that have demonstrated success in recent iterations based on
specific criteria, such as improvement in solution quality.

Here are some more common characteristics that can vary between ALNS imple-
mentations (Voigt, 2024).

• Search space

– Feasible solutions only: The approach only considers solutions that meet
all constraints and requirements.

– Penalized infeasible solutions*: Infeasible solutions are allowed but pe-
nalized by a generalized cost function, allowing the algorithm to explore
a wider range of solutions.
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Algorithm 3 ALNS
1: s,s∗← initial solution
2: Initialize the weights and Set parameters T , ϕ,δ,γ,c, MaxIter
3: itr← 0
4: segmentIter,seg← 1
5: Flag← false
6: while iter < MaxIter do
7: ŝ← s
8: counter← 1
9: while counter % ϕ ̸= 0 do

10: q← select the maximum number of customers to remove
11: Opr← select an operator
12: s

′ ←Opr(s,q)
13: if f(s′) < f(ŝ) then
14: ŝ← s

′

15: end if
16: counter← counter +1
17: end while
18: if f(ŝ) < f(s∗) & ŝ is feasible then
19: s,s∗← ŝ
20: segmentIter← 1
21: Flag← true
22: else if f(ŝ) < f(s∗) & ŝ is not feasible then
23: s← ŝ
24: else
25: if unif(0,1) < e− f(ŝ)−f(s)

T then
26: s← ŝ
27: end if
28: end if
29: Update the score of operation Opr
30: if segmentIter == δ then
31: if Flag == true then
32: s

′′
, IsReduced←VehicleNumberReduction(s∗)

33: if IsReduced then
34: s,s∗← s

′′

35: segmentIter← 1
36: else
37: T ← cT
38: seg← seg +1
39: end if
40: else
41: T ← cT
42: seg← seg +1
43: end if
44: end if
45: if seg%γ == 0 then
46: Update the weights
47: end if
48: iter← iter +1
49: segmentIter← segmentIter +1
50: end while
51: Return s∗
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– Single solution: In each iteration, only one new solution is generated and
it is accepted as the current solution based on the acceptance criteria.

– Parallel solutions*: In each iteration, multiple solutions are generated
from the current solution, and the best solution among them is accepted
as the current solution based on the acceptance criteria.

• Initial solution

– Feasible initial solution*: The algorithm starts with a feasible initial
solution.

– Infeasible initial solution: The algorithm starts with an infeasible initial
solution.

• stopping criteria

– Time limit: The algorithm stops after a specified amount of time.

– Maximum number of iterations*: The algorithm stops after reaching a
certain number of iterations.

– Maximum number of iterations without improvement: The algorithm
stops if no improvement is made after a certain number of iterations.

– Temperature in simulated annealing: The algorithm stops when the tem-
perature in simulated annealing reaches a certain threshold.

• operation selection

– Independent selection: The operators may be selected independently (i.e.,
there are two roulette wheels, one for destroy and one for repair operators)

– Pair-wise selection*: There is only one roulette wheel selecting a destroy-
repair pair.

• Number and type of destruction/construction operators Specifies the
number and type of operators used to explore and exploit the search space.

• Local search

– None: No local search is performed.

– When criteria are met*: Local search is performed when specific criteria
are met to improve the current solution.
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– All solutions: Local search is performed on all solutions generated by the
algorithm.

• Acceptance criteria

– Simulated annealing*: The algorithm uses simulated annealing to accept
or reject new solutions based on a temperature parameter.

– Record to record: A new solution is accepted if the absolute gap between
the candidate and the best or current solution is smaller than a threshold.

– Hill climbing: It accepts only progressively better solutions, discarding
the ones that result in a worse objective value.

• Parameter update

– After every iteration: Parameters are updated after each algorithm iter-
ation.

– After a search segment*: Parameters are updated after completing a
search segment within the algorithm.

The characteristics that we applied are shown with ∗. The overall framework of
our algorithm is reported in Algorithm 3. First, we initialize the hyper-parameters
for the ALNS. Then, we create an initial solution (Section 5.2.1) and set it as the
current solution. At each iteration, we explore the neighborhood of the current
solution, generating potentially ϕ new solutions. New solutions are obtained by
applying an operator opr ∈ Ω to the current solution, where Ω is the set of all
operators. Contrary to classical ALNS, the operators are built through coupling each
combination of destruction and construction heuristics. (A similar idea of pairing
heuristics was used by Dayarian et al. (2016) for MVRP) The main advantage is
that we can weigh the performance of each (destruction-construction) pair. We select
the operator to apply to the solution of the current iteration via a roulette-wheel
mechanism.

Following this, the best solution (ŝ) among the ϕ solutions found is accepted as the
current solution (s) depending on acceptance criteria. In case a new best feasible
solution has been found the best feasible solution s∗ and current solution s are
updated and segmentIter, which counts the number of consecutive iterations in
which the best feasible solution is not improved, is set to 0. In other cases, we
always accept the superior solution right away and accept worse solutions under
the Metropolis criterion like in simulated annealing (Kirkpatrick et al., 1983) with a
probability of e−(f(ŝ)−f(s))/T , depending on the cost difference to the current solution
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s and the temperature T . Then, we update the score of operations. Each time the
best feasible solution is not improved in δ consecutive iterations one segment in the
algorithm is completed. At the end of each segment, if a superior feasible solution is
found the algorithm enters the route reduction phase and accepts the solution with
less number of routes as the best feasible solution. Otherwise, the cooling procedure
is applied. We update the weights of the operators every γ segment.

5.2.1 Initial Solution

To generate an initial solution, customers are initially allocated to days based on
their available schedules. Subsequently, they are sorted by proximity to the depot,
from nearest to farthest. The process commences with an empty route for each
day. It iterates through the list of customers, selecting the closest one to the depot.
If this customer can be placed within the same route on their assigned days while
adhering to all constraints (such as time windows, vehicle capacity, route duration,
and avoiding inter-route crossings), we iterate through the list to place the next
customer. If not, an empty route is created for each day within the planning horizon,
and the selected customer is assigned to these new routes on the corresponding days.
This process continues until all customers are assigned to routes. Subsequently, a
reduction phase ensues, wherein routes with fewer than five customers are dissolved,
and their customers are reallocated to other routes while respecting all constraints.

An alternative procedure involves iteratively attempting to assign all customers to
a specific route on their respective days until adding a new customer violates any
constraints. Subsequently, empty routes are generated for each day, and unassigned
customers are placed on these new routes, taking into account all restrictions and
their designated days. This process repeats until all customers are allocated to
routes, followed by the reduction phase.

Additionally, different sorting strategies for customers are tested, including sorting
them by distance to the depot from farthest to nearest, as well as by their an-
gles to the depot. Among the various permutations of sorting strategies and route
creation procedures tested, the initially described method demonstrates superior
performance.

5.2.2 Search Space
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It is well known in the metaheuristic literature that allowing the search into infeasible
regions may lead to good solutions (Expósito et al., 2018; Dayarian et al., 2016),
thus smoothing the search space, by relaxing time windows, vehicle capacity, and
tour duration conditions of the problem definition. For a given solution s, the total
travel cost is represented by c(s), while the total violations of time windows, load,
and duration constraints are denoted by w(s), q(s), and d(s), respectively. The
calculations for q(s) and d(s) are based on individual routes, taking into account
the values of Qk and Dk. On the other hand, w(s) is determined by the formula∑

i max{0,ai−Li}, where ai represents the arrival time at customer i. The cost
function f(s) is defined as c(s)+θw(s)+ηq(s)+ζd(s), where θ,η and ζ are positive
weights that can be adjusted dynamically during the search process. Nevertheless,
based on initial experiments, we have decided to use a fixed value of 100, which was
also the approach taken in Polacek et al. (2004) for an MDVRP with time windows.

5.2.3 Local Search

At the end of each segment, a reduction procedure is performed on the best solution
found. This procedure aims to reduce the number of vehicles used, while staying
within the feasible region. If successful, the current and best feasible solutions are
updated accordingly.

In this procedure, routes are sorted by the number of customers they serve, from
fewest to most, within the planning horizon. It begins by dismantling the first route
in the sorted list from all days. The next step involves attempting to reallocate
the removed customers to other routes without violating any constraints. If all
removed customers can be successfully placed into other routes, the original route
is permanently removed, and the procedure proceeds to the next route in the list.
If reallocation is not feasible, the route is restored to its original state, and the
procedure moves on to the next route.

5.2.4 Adaptive Weight Adjustment Procedure

The selection of paired removal-insertion operators is managed by a roulette-wheel
mechanism. Initially, all pairs are equally likely to be chosen. Each pair opr is
assigned a weight Ψopr, which starts at 1 and is updated after each γ segments
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based on their performance history. The probability of selecting pair opr is given
by: Ψopr∑

j∈Ω Ψopr

Each pair opr is also assigned a score Πopr, which starts at zero and is reset after
every γ segments. During each iteration, the scores are updated by adding a bonus
factor σi, i ∈ {1, . . . ,4}, where σ1 ≤ σ2 ≤ σ3 ≤ σ4, according to the following criteria:

• σ4: if a new superior feasible solution is found,

• σ3: if the new solution improves the current solution but is not the best feasible
solution,

• σ2: if the new solution meets the acceptance criterion and is a feasible solution,

• σ1: if the new solution meets the acceptance criterion but is not a feasible
solution,

• 0: otherwise.

The weights are updated during the algorithm using the formula:

Ψopr,i+1 = Ψopr,i(1−α)+α
Πopr

Ξopr

where Ψopr,i+1 is the updated weight of operator opr after the ith block of γ seg-
ments, Πopr is the score of opr, Ξopr is the number of times opr was used during the
last γ segments, and α is the reaction factor.

5.2.5 Destruction Heuristics

Listed below are the destruction heuristics employed in the ALNS algorithm.

Customer with Maximum Distance from Geometric Center Removal:
This heuristic identifies the customer that is farthest from the geometric
center of the route to which they are assigned, across all periods. It then
removes this customer from the assigned route over the planning horizon,
provided that their removal does not cause inter-route or intra-route crossings.

Random Removal: This heuristic randomly selects and removes a customer from
the assigned route over the planning horizon, ensuring that the removal does
not result in inter-route or intra-route crossings.
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Customer Closer to Another Route’s Geometric Center than Its Own:
This heuristic identifies a customer whose maximum distance from the
geometric center of their assigned route during the planning horizon is greater
than their maximum distance from the geometric centers of other routes
during the same period. It then removes this customer from the assigned
route over the planning horizon, provided that their removal does not cause
inter-route or intra-route crossings.

Shaw Removal: This heuristic evaluates similar customers based on their distance,
earliest service time, route assignment, days of service, and demand. It ran-
domly selects customer i and calculates the relatedness measure Rij to identify
similar customers. The relatedness measure is defined as:

Rij = ϕ1SDij +ϕ2|Ej−Ei|+ϕ3SRij +ϕ4|Dj−Di|+ϕ5cij

where ϕ1−ϕ5 are the Shaw parameters, SRij =−1 if i and j are in the same
route, 1 otherwise, cij is the distance between customers i and j, SDij is the
number of common days among chosen days for customers i and j. A smaller
Rij indicates higher similarity. Customers are ordered in non-decreasing order
of their relatedness values with customer i, and the first q customers in this
list are sequentially removed from the solution. We adapted the heuristic from
Rastani and Çatay (2023) to suit our problem.

5.2.6 Construction Heuristics

After the destruction heuristic, the removed customer is considered for reinsertion
into routes. The following construction heuristics are considered:

Greedy Insertion with Geometric Center Proximity Priority (GCPP):
This heuristic assigns the removed customer to a randomly allowed schedule.
It sorts the routes according to the total distance of the customer from the
geometric center of the routes. Then, it goes through the sorted route list
until it finds a route that can place the customer on all chosen days without
violating visual attractiveness. The customer is then placed in the best
positions (considering visual attractiveness) within the route on each chosen
day.

Greedy Insertion on a Random Route: This heuristic assigns the removed
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customer to a randomly allowed schedule. It goes through the shuffled route
list until it finds a route that can place the customer on all chosen days with-
out violating visual attractiveness. The customer is then placed in the best
position (considering visual attractiveness) within the route on each chosen
day. We adapted the heuristic from Rastani and Çatay (2023) to suit our
problem.

Regret Greedy Insertion with GCPP: This heuristic assigns the removed cus-
tomer to a randomly allowed schedule. It sorts the routes according to the
total distance of the customer from the geometric center of the routes. Then, it
goes through the sorted route list until it finds a route that can place the cus-
tomer on all chosen days without violating visual attractiveness. The customer
is then placed in the second-best position (considering visual attractiveness)
within the route on each chosen day.

Regret Greedy Insertion on a Random Route: This heuristic assigns the re-
moved customer to a randomly allowed schedule. It iterates through the shuf-
fled route list until it finds a route that can cover that customer on all chosen
days without violating visual attractiveness. The customer is then placed in
the second-best position (considering visual attractiveness) within the route
on each chosen day. We adapted the heuristic from Rastani and Çatay (2023)
to suit our problem.

Random Insertion on a Random Route: This heuristic assigns the removed
customer to a randomly allowed schedule. It iterates through the shuffled
route list until it finds a route that can cover that customer on all chosen
days without violating visual attractiveness. The customer is then placed in a
random position (considering visual attractiveness) within the route on each
chosen day.

Insertion with the Least Infeasibility Violation and GCPP: This heuristic
assigns the removed customer to a randomly allowed schedule. It sorts the
routes according to the total distance of the customer from the geometric
center of the routes. Then, it iterates through the route list until it finds
a route that can cover that customer on all chosen days without violating
visual attractiveness. The customer is then placed in the position on the route
(considering visual attractiveness) that leads to the least infeasibility violation
on each chosen day.

Insertion with the Least Infeasibility Violation on a Random Route:
This heuristic assigns the removed customer to a randomly allowed schedule.

88



It iterates through the shuffled route list until it finds a route that can cover
that customer on all chosen days without violating visual attractiveness.
The customer is then placed in the position on the route (considering visual
attractiveness) that leads to the least infeasibility violation on each chosen
day.

5.3 Parallel Tempering

Parallel tempering, also referred to as replica exchange MCMC sampling, is a sim-
ulation technique designed to enhance the dynamic characteristics of Monte Carlo
method simulations of physical systems, as well as of Markov chain Monte Carlo
(MCMC) sampling methods. The main idea of the PT is to run multiple copies
(replicas) of the system, randomly initialized, each at a different temperature. High-
temperature replicas have the capability of exploring extensive portions of the solu-
tion space, while low-temperature replicas can examine local areas accurately.

A good sampling of the solution search space is obtained by exchanging configura-
tions at different temperatures based on the Metropolis criterion. In other words,
this method makes configurations at high temperatures available to the replicas at
low temperatures and vice versa. It is worth noting that the temperature of each
replica remains constant, setting it different from Simulated Annealing where the
temperature decreases gradually.

5.4 Parallel Tempering Based ALNS

In the proposed PTALNS algorithm a number M of the ALNS-based replicas are ex-
ecuted in parallel. The replicas differ from the ALNS in the temperature changes. In
the PTALNS, the temperature of each ALNS-based replica remains constant while
in the ALNS the temperature is gradually lowered. The overall framework of our
PTALNS algorithm is reported in Algorithm 4. PTALNS begins with the creation of
M replicas each with a unique temperature level Ti, i ∈ {1, . . . ,M}(lines 1-4) where
T1 < T2 < · · ·< TM . Afterward, each replica is allowed to do MaxRepIter iterations
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(lines 6–8). Following this, a trial is conducted to exchange the replica’s configura-
tion at Tj (where j is selected at random, line 10) with the replica’s configuration
at Tj+1 (lines 9–15). We can just switch the replicas’ temperature levels rather than
modifying their internal states (line 13). The equation contained the reciprocals
of Tj and Tj+1 and the cost difference of the replicas’ current solutions (line 12)
determines whether to switch between Tj and Tj+1 levels. Line 13 compares the
probability that is obtained with a random variable that is evenly selected from the
interval (0, 1). It is important to remember that the probability equals one if the
cost of the current solution of the (higher temperature) replica Tj+1 is less than the
corresponding cost of the (lower temperature) replica Tj . When calculating ∆E, the
cost difference is divided by the cost of the best solution so far for all replicas (line
11). This is a normalization step that aims to keep the computation independent of
the edge weights of the problem instance.

Algorithm 4 PTALNS
1: for i from 1 to M do
2: Ti← SetTemperature(i)
3: Replicai← new copy of the ALNS with Ti

4: end for
5: while Not reached stopping criterion do
6: for i from 1 to M do
7: Run replicai for MaxRepIter iterations
8: end for
9: BGC←Minimum cost among best feasible solutions of M replicas

10: j← unif{1,M −1}
11: ∆E←

Cost(CurrentSolutionreplicaj
)−Cost(CurrentSolutionreplicaj+1)
BGC

12: if unif(0,1) ≤min(1, e
∆E
Tj

− ∆E
Tj+1 ) then

13: Set the temperature of replicaj and replicaj+1 respectively to Tj+1 and Tj

14: swap replicaj and replicaj+1 to keep replicas ordered by temperature
15: end if
16: end while

5.5 Computational study
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Our computational experiments are detailed as follows. Section 5.5.1 introduces the
benchmark instances used in this chapter. In Section 5.5.2, we present the results
of an extensive sensitivity analysis conducted to calibrate the parameter values.
Section 5.5.3 evaluates the performance of the operators through a series of tests.
In section 5.5.4, we analyze the proposed formulations. Finally, sections 5.5.5 and
5.5.6 present the computational results for the test problems. All computational
experiments are carried out on a virtual machine with Intel(R) Core(TM) i9-9900K
CPU processor with 3.60 GHz speed, 64 GB RAM, and 64-bit, with Julia 1.9.4 and
Gurobi 9.1.2.

5.5.1 Benchmark Instances

We rely on two classical benchmark instances: the PVRPTW instances of Cordeau
et al. (2001) and Pirkwieser and Raidl (2009b). These datasets are described in
Chapter 2. It should be noted that the previous authors used instances from Pirk-
wieser and Raidl (2009b) without duration constraints, and the distances were trun-
cated to the first digit. We followed this convention exclusively in this case to ensure
a fair comparison. Additionally, we generated 11 smaller instances named datasets
S9 to evaluate the proposed formulations and the performance of the PTALNS al-
gorithm. These were derived from instances pr01 and pr11 of dataset S6, and from
instances P4c10, p4r101, and p4rc101 of dataset S7. The first three instances are
generated from S7, with the geographical data being clustered, random, and random-
clustered, respectively. The remaining instances are generated from S6, where the
first three have tight time windows, and the rest have wide time windows.

5.5.2 Parameter Tuning

We employ a two-phase procedure to fine-tune the parameters of the PTALNS algo-
rithm to enhance its performance. The first phase leverages the black box optimizer
HyperTuning to adjust the most impactful parameters: "M", "MaxRepIter", "δ",
"ϕ", and "γ". HyperTuning systematically explores the parameter space defined by
specified ranges, using a scenario configuration with a MedianPruner to prune un-
derperforming trials early and a maximum of 200 trials. The objective function
integrates these parameters into the PTALNS algorithm and evaluates the results,
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aiming to identify the optimal parameter set that maximizes the algorithm’s effec-
tiveness.

In the second phase, we manually tune the less sensitive parameters, "T " and "q",
through trial and error. This approach is adopted due to the diminishing returns in
accuracy with the increasing number of parameters handled by the black box opti-
mizer. By first optimizing the critical parameters automatically and then fine-tuning
the remaining ones manually, we ensure a comprehensive and efficient parameter-
tuning process. This methodology balances the thorough exploration of the pa-
rameter space with practical adjustments, leading to improved performance of the
PTALNS algorithm for our problem instances.

In parameter tuning, splitting the problem instances into training and testing sets
is standard practice to ensure robust performance evaluation. Our study generated
20 train problem instances derived from the data sets S6, S7, and S8. This ap-
proach allows us to fine-tune the algorithm’s parameters effectively, ensuring that
the optimized settings generalize well across various problem instances.

Table 5.1 Parameter values found using HyperTuning for PTALNS

Parameter Range Value
Up to 50 customers Above 50 customers

δ Segment length [50,100] 20 10
ϕ Inner loop length in ALNS [1,20] 10 20
γ Number of segments to update operator weights [1,4] 3 3
α Reaction factor in weight update [0,1] 0.25 0.25
M Number of replicas [2,8] 4 4
RepMaxIter Maximum number of iterations for each replica [100,1000] 300 300

Table 5.2 Parameter values found by trial and error for PTALNS

Parameter Value
q Maximum number of nodes to remove [0.05|Nc|]
T1,T2,T3,T4 Temperature levels for replicas 0,2,4,6
σ1,σ2,σ3,σ4 Bonus factors for adaptive weight adjustment 1,1,1,2
ϕ1,ϕ2,ϕ3,ϕ4, ϕ5 Shaw removal coefficients −0.25,0.25,0.15,0.25,0.5

In Tables 5.1 and 5.2, you will find the values determined for various parameters.
The first and second columns present the name and description of each parameter,
respectively. Table 5.1 displays the range for each parameter, as determined through
preliminary tests, while the last block of two columns shows the best value for each
parameter for instances with less than 50 and more than 50 customers.

We use the same procedure to tune the ALNS parameters. In Tables 5.3 and 5.4,
you find the values determined for various parameters by the HyperTuning black
box and through trial and error, respectively.
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Table 5.3 Parameter values found using HyperTuning for ALNS

Parameter Range Value

δ Segment length [50,100] 60
ϕ Inner loop length in ALNS [1,20] 15
γ Number of segments to update operator weights [1,4] 2
α Reaction factor in weight update [0,1] 0.25

Table 5.4 Parameter values found by trial and error for ALNS

name Parameter Optimal Value
q Maximum number of nodes to remove [0.05|Nc|]
T initial temperature 10
c Cooling rate 0.9987
σ1,σ2,σ3,σ4 Bonus factors for adaptive weight adjustment 1,1,1,2
ϕ1,ϕ2,ϕ3,ϕ4, ϕ5 Shaw removal coefficients −0.25,0.25,0.15,0.25,0.5

The maximum number of iterations in the PTALNS is set to 240,000. We use the
same value for the maximum number of iterations in the ALNS.

5.5.3 Evaluating the Performances of the Operators

Table 5.5 summarizes the statistics on the selection probabilities of different op-
erators, based on a sample of 20 instances. Each operator, defined as a pair of
destroy-repair heuristics, is evaluated using three key metrics:

• min%: The lowest probability of being chosen at the end of the solution process
across all 20 instances,

• avg.%: The mean probability of being chosen at the end of the solution process
across all 20 instances,

• max%: The highest probability of being chosen at the end of the solution
process across all 20 instances.

The range of probabilities for the minimum, average, and maximum metrics spans
[0.00,1.79], [0.06,7.58], and [1.19,26.24], respectively. Moreover, the average values
for the min, avg., and max columns are 0.21%, 2.86%, and 7.88%, respectively.

These findings reveal that each operator pair demonstrates utility at different points
across all instances, highlighting the adaptability and effectiveness of the heuristic
combinations used.
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Table 5.5 Final probabilities of choosing different destroy-repair pair.

Repair Heuristic Destroy Heuristic min% avg% max%

Greedy Insertion- GCPP Max-Dist-GC 0.00 7.11 16.32
Closer-GC 0.05 3.79 9.15
Shaw removal 0.00 2.32 4.51
Random removal 1.16 6.27 11.14

Greedy Insertion- Random Route Max-Dist-GC 0.00 2.08 5.22
Closer-GC 0.04 1.08 4.12
Shaw removal 0.04 2.07 11.21
Random removal 0.02 3.08 15.14

Regret Greedy Insertion- GCPP Max-Dist-GC 0.00 1.97 3.92
Closer-GC 0.01 0.06 1.10
Shaw removal 0.03 0.71 2.09
Random removal 0.53 1.05 3.12

Regret Greedy Insertion- Random Route Max-Dist-GC 0.00 1.13 3.44
Closer-GC 0.03 0.45 1.19
Shaw removal 0.02 4.05 12.18
Random removal 0.11 1.23 2.75

Random Insertion- Random Route Max-Dist-GC 0.00 1.29 3.10
Closer-GC 0.00 1.50 4.03
Shaw removal 0.47 7.26 23.31
Random removal 0.92 5.81 18.18

Least Infeasibility Violation- GCPP Max-Dist-GC 0.08 7.08 26.24
Closer-GC 0.14 1.29 3.15
Shaw removal 0.03 1.57 4.12
Random removal 1.42 6.69 17.93

Least Infeasibility Violation- Random Route Max-Dist-GC 0.00 6.07 11.23
Closer-GC 0.04 1.07 4.13
Shaw removal 0.01 2.42 7.04
Random removal 1.79 7.58 18.63

Average 0.21 2.86 7.88
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The operator pair Least Infeasibility Violation - GCPP and Max-Dist-GC
stands out with the highest maximum probability (26.24%), indicating a strong
preference in certain instances, followed by Random Insertion - Random Route
and Shaw removal. The operator pair Least Infeasibility Violation - Random
Route and Random removal exhibits the highest average probability (7.58%),
demonstrating consistent preference across different instances, with Random In-
sertion - Random Route and Shaw removal also performing well.

5.5.4 Analysis of the Proposed Formulations

To test the proposed formulations, data set S9 is used. A description of the different
instances of the data set S9 can be found in Table 5.6 where n is the number of
customers, m is the number of vehicles that can be used, t is the number of days
in the planning horizon, D is the maximum duration of a route, Q is the maximum
capacity of the vehicles, and visit frequency is the number of customers that must
be visited i times.

Table 5.6 Description of data set S9

Instances n t m D Q
visit frequency

4 2 1

pr01_Cus20c_p4_Q200 20 4 5 _ 200 7 4 9
pr02_Cus20r_p4_Q200 20 4 5 _ 200 6 8 6
pr03_Cus20rc_p4_Q200 20 4 5 _ 200 10 4 6
pr04_Cus10_p4_Q200_dur500 10 4 5 500 200 5 5 0
pr05_Cus15_p4_Q200_dur500 15 4 5 500 200 7 8 0
pr06_Cus20_p4_Q200_dur500 20 4 5 500 200 5 5 10
pr07_Cus15_p4_Q200_dur500 15 4 5 500 200 12 3 0
pr08_Cus15_p4_Q200_dur500 15 4 5 500 200 5 3 7
pr09_Cus20_p4_Q200_dur500 20 4 5 500 500 5 5 10
pr10_Cus25_p4_Q195_dur480 25 4 5 480 195 14 6 5
pr11_Cus30_p4_Q195_dur480 30 4 5 480 195 14 10 6

The problem instances of dataset S9 were solved using the PVRPTW and
PVRPTWDCVA formulations with Gurobi, each given a time limit of 7200 sec-
onds. The results are presented in Table 5.7.

An analysis of the PVRPTW formulation results reveals that some solutions exhibit
inefficiencies in terms of route crossings and driver consistency. For these instances,
incorporating visual attractiveness and driver consistency constraints increases the
routing cost by 10.91%, as evidenced by instance pr03_Cus20rc_p4_Q200.
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Table 5.7 PVRPTW vs. PVRPTWDCVA on data set S9

Instances
PVRPTW PVRPTWDCVA

OFV Gap Time # crossings nonDC OFV Gap Time

pr01_Cus20c_p4_Q200 566.69 0 4.58 0 0 566.69 0 3.10
pr02_Cus20r_p4_Q200 1191.65 0 5.65 1 4 1201.62 0 10.91
pr03_Cus20rc_p4_Q200 1152.31 0 121.22 6 0 1277.98 0.009 7200
pr04_Cus10_p4_Q200_dur500 1872.34 0 1.42 2 3 1889.76 0 3.03
pr05_Cus15_p4_Q200_dur500 2112.92 0 30.04 0 2 2132.88 0 64.83
pr06_Cus20_p4_Q200_dur500 1925.08 0 1731.38 1 3 1943.06 0 709.14
pr07_Cus15_p4_Q200_dur500 1761.84 0.101 7200 0 2 1806.60 0.064 7200
pr08_Cus15_p4_Q200_dur500 1525.30 0.125 7200 0 1 1527.30 0.024 7200
pr09_Cus20_p4_Q200_dur500 1616.04 0.141 7200 0 0 1616.04 0.070 7200
pr10_Cus25_p4_Q195_dur480 NA NA 7200 _ _ NA NA 7200
pr11_Cus30_p4_Q195_dur480 NA NA 7200 _ _ NA NA 7200

Figure 5.1 Solution routes to problem instance pr06 without considering visual
attractiveness and driver consistency constraints
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Figure 5.2 Solution routes to problem instance pr06 considering visual attractive-
ness and driver consistency constraints

Tables 5.1 and 5.2 present the solution routes for the problem instance pr06 with and
without the inclusion of visual attractiveness and driver consistency constraints. As
clearly shown in the figures, when visual attractiveness and driver consistency are
not considered, there is a crossing between arcs (10,12) and (5,8). It is important to
note that crossings involving the depot are excluded from this count. Additionally,
customers 2, 5, and 8 are visited by more than one driver in their visits.

5.5.5 Results for Small-size Instances

We consider data set S9 to validate the performance of the proposed PTALNS
algorithm. Each problem instance was solved using Gurobi and PTALNS algorithm.
Given that the primary goal of PTALNS is to minimize the number of vehicles used,
we adopt the following strategy to compare the performance of PTALNS with the
Gurobi implementation:

• Allocate 5 vehicles to each instance and solve them using Gurobi,

• Reduce the number of available vehicles to the smallest possible number and
solve the instances again using Gurobi,
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• Solve each instance with PTALNS twice: once incorporating the local search
procedure and once without it.

The results of these comparisons are presented in Table 5.8

Table 5.8 Results of Gurobi vs. PTALNS on Data set S9

Instances

Gurobi
PTALNS (without Local search)

5 available vehicles

OFV Gap Time veh OFV Time veh

pr01_Cus20c_p4_Q200 566.69 0 3.1 2 566.69 62.71 2
pr02_Cus20r_p4_Q200 1201.62 0 10.91 5 1201.62 74.87 5
pr03_Cus20rc_p4_Q200 1277.98 0.01 3000 4 1277.98 90.32 4
pr04_Cus10_p4_Q200_dur500 1889.76 0 3.03 3 1889.76 54.23 3
pr05_Cus15_p4_Q200_dur500 2132.88 0 64.83 3 2132.88 60.45 3
pr06_Cus20_p4_Q200_dur500 1943.06 0 709.14 3 1943.06 84.54 3
pr07_Cus15_p4_Q200_dur500 1827.30 0.13 3000 2 1806.60 68.73 2
pr08_Cus15_p4_Q200_dur500 1527.30 0.13 1284/3000 2 1527.30 73.79 2
pr09_Cus20_p4_Q200_dur500 1625.57 0.15 3000 2 1616.04 83.04 2
pr10_Cus25_p4_Q195_dur480 NA NA 3000 NA 3045.42 81.13 3
pr11_Cus30_p4_Q195_dur480 NA NA 3000 NA 3205.65 90.39 3

Instances

Gurobi
PTALNS (with local search)

reduced # of vehicles

OFV Gap Time veh OFV Time veh

pr01_Cus20c_p4_Q200 566.69 0 3.1 2 566.69 68.35 2
pr02_Cus20r_p4_Q200 1201.62 0 10.91 5 1201.62 91.83 5
pr03_Cus20rc_p4_Q200 1277.98 0.01 3000 4 1277.98 111.12 4
pr04_Cus10_p4_Q200_dur500 1901.36 0 0.84 2 1901.36 58.76 2
pr05_Cus15_p4_Q200_dur500 2154.76 0 22.62 2 2154.76 70.25 2
pr06_Cus20_p4_Q200_dur500 1965.82 0 112.72 2 1965.82 93.01 2
pr07_Cus15_p4_Q200_dur500 1806.60 0.09 1009/3000 2 1806.60 65.33 2
pr08_Cus15_p4_Q200_dur500 1527.30 0.09 64/3000 2 1527.30 71.09 2
pr09_Cus20_p4_Q200_dur500 1616.04 0.12 2010/3000 2 1616.04 84.27 2
pr10_Cus25_p4_Q195_dur480 NA NA 3000 NA 3045.42 123.18 3
pr11_Cus30_p4_Q195_dur480 NA NA 3000 NA 3205.65 112.76 3

In this table, the blocks of 4 columns present the results obtained by Gurobi with 5
and the reduced numbers for available vehicles, while the blocks of 3 columns cor-
respond to PTALNS results. Columns ‘#veh‘ indicate the number of vehicles used
in obtained solutions. In the columns labeled ‘Time‘, an entry such as ‘1284/3000‘
means that Gurobi found the reported solution in 1284 seconds for the first time.
The term "NA" indicates that Gurobi could not find any feasible solution for the
instance corresponding to that row within the time limit. We performed PTALNS
for 2400 iterations. The remaining parameters of PTALNS are as follows; M = 4,
δ = 20, γ = 3, ϕ = 20, and α = 0.25. The number of iterations for each replica is set
to 100.

According to Table 5.8,

98



• For the first three instances, Gurobi returned the optimal solutions for the
first two and failed to prove optimality for the third instance. PTALNS, both
with and without incorporating the local search procedure, also returned the
same solutions for these instances in a reasonable computational time.

• Gurobi solved the next three instances with tight time windows to optimality,
considering both five and a reduced number of available vehicles. PTALNS,
with and without incorporating the local search procedure, also returned the
same solutions for these instances in a reasonable computational time.

• With five available vehicles, Gurobi was unable to reach optimal solutions for
instances pr07 and pr09 within the time limit. However, PTALNS, without
the local search procedure, achieved better solutions for these instances than
Gurobi. For problem instance pr08, both Gurobi and PTALNS found the same
solution. Although Gurobi could not prove optimality and hit the time limit,
PTALNS reached the same solution in a reasonable runtime. Gurobi also failed
to solve instances pr10 and pr11 within the time limit, while PTALNS solved
them with three vehicles, with and without using the local search procedure.

• With the reduced number of available vehicles, Gurobi and PTALNS, both
with and without the local search procedure, solved instances pr07 to pr09
to the same solution. However, PTALNS outperformed Gurobi in terms of
runtime. Reducing the number of available vehicles rendered the first three
instances and instances pr10 and pr11 infeasible.

These results demonstrate that PTALNS is a robust and efficient algorithm, capable
of finding high-quality solutions within a reasonable timeframe, even for complex
instances where Gurobi struggles.

5.5.6 Results for Large-size Instances

We apply the VNS algorithm proposed by Pirkwieser and Raidl (2009c) to data set
S6. The results are reported in Table 5.9 where the first column shows the instance
name. The second and third columns are the number of intra-route and inter-route
crossings in the solution, respectively. In the next column, we have the number of
customers who are not visited by the same vehicle on each visit. The last column is
the best-obtained objective function value.

Table 5.9 shows that while the solutions generated exhibit zero intra-route crossings,
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Table 5.9 Results of PVRPTW on data set S6

Instance
PVRPTW

intra-route inter-route nonDC OFV

pr01_Cus48_m3_p4_Q200_dur500 0 12 16 3125.51
pr02_Cus96_m6_p4_Q195_dur480 0 16 38 5488.79
pr03_Cus144_m9_p4_Q190_dur460 0 37 57 7584.01
pr04_Cus192_m12_p4_Q185_dur440 0 47 78 8484.84
pr05_Cus240_m15_p4_Q180_dur420 0 73 101 9433.73
pr06_Cus288_m18_p4_Q175_dur400 0 75 129 11966.40
pr07_Cus72_m5_p6_Q200_dur500 0 18 36 7421.56
pr08_Cus144_m10_p6_Q190_dur475 0 66 72 10581.04
pr09_Cus216_m15_p6_Q180_dur450 0 111 108 15047.56
pr10_Cus288_m20_p6_Q170_dur425 0 236 144 19927.22
pr11_Cus48_m3_p4_Q200_dur500 0 1 9 2284.74
pr12_Cus96_m6_p4_Q195_dur480 0 9 31 4281.02
pr13_Cus144_m9_p4_Q190_dur460 0 13 53 6030.80
pr14_Cus192_m12_p4_Q185_dur440 0 21 70 7107.71
pr15_Cus240_m15_p4_Q180_dur420 0 30 96 7743.30
pr16_Cus288_m18_p4_Q175_dur400 0 53 120 9770.44
pr17_Cus72_m4_p6_Q200_dur500 0 5 24 5687.71
pr18_Cus144_m8_p6_Q190_dur475 0 21 72 8374.35
pr19_Cus216_m12_p6_Q180_dur450 0 46 107 11937.44
pr20_Cus288_m16_p6_Q170_dur425 0 117 144 15378.72

there are inefficiencies in terms of inter-route crossings and driver consistency. Each
routing solution has about 13% inter-route crossings on average and approximately
45% of customers visit more than one driver during their visits.

To have visually attractive solution routes and driver consistency, we applied ALNS
and PTALNS algorithms to solve the problems of data set S6. The results are
reported in Table 5.10, where the columns are as follows: Instance, which denotes
the name of the instances; PTALNS Avg., which is the average result obtained by the
PTALNS algorithm across five runs; PTALNS Best UB, representing the best upper
bound (UB) found by the PTALNS algorithm; ALNS Avg., which is the average
result obtained by the ALNS algorithm across five runs; ALNS Best UB, indicating
the best UB found by the ALNS algorithm; Best UB∗, which is the best upper
bound overall among all the results for that instance; and Imp%, the percentage
improvement of PTALNS Avg. over ALNS Avg., calculated as

Imp% =
(

ALNS Avg.−PTALNS Avg.
ALNS Avg.

)
×100

According to Table 5.10, for each instance, the PTALNS algorithm consistently
achieves lower average results compared to the ALNS algorithm. This indicates
that PTALNS generally performs better on average, leading to solutions closer to
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Table 5.10 Results of ALNS vs. PTALNS on Data set S6

Instance
PTALNS ALNS

Best UB∗ Imp%Avg. Best UB Avg. Best UB

pr01-N48m3p4 3255.43 3234.90 3330.82 3247.86 3234.90 2.26
pr02-N96m6p4 5812.76 5695.36 6029.44 5909.68 5695.36 3.59
pr03-N144m9p4 8851.22 8729.97 9080.99 8913.63 8729.97 2.53
pr04-N192m12p4 10609.65 10194.16 10946.80 10676.57 10194.16 3.08
pr05-N240m15p4 11422.73 11097.57 11533.03 11174.00 11097.57 0.96
pr06-N288m18p4 14559.91 14333.24 15068.53 14773.41 14333.24 3.38
pr07-N72m5p6 7895.45 7736.63 8294.13 7981.46 7736.63 4.81
pr08-N144m10p6 13673.36 13530.98 13914.22 13723.12 13530.98 1.73
pr09-N216m15p6 19115.30 18330.03 19887.57 19452.72 18330.03 3.88
pr10-N288m20p6 24609.84 24389.64 25422.40 25322.77 24389.64 3.20
pr11-N48m3p4 2408.91 2400.23 2427.98 2410.18 2400.23 0.79
pr12-N96m6p4 4760.86 4612.43 5236.97 4927.04 4612.43 9.09
pr13-N144m9p4 6814.50 6705.51 7006.06 6901.98 6705.51 2.73
pr14-N192m12p4 7910.67 7793.33 8291.12 8095.04 7793.33 4.59
pr15-N240m15p4 8333.48 8194.43 8787.72 8489.66 8194.43 5.17
pr16-N288m18p4 10463.71 10367.31 11037.51 10836.63 10367.31 5.20
pr17-N72m4p6 6337.97 6138.60 6523.75 6243.38 6138.60 2.85
pr18-N144m8p6 9821.09 9810.71 10002.95 9814.80 9810.71 1.82
pr19-N216m12p6 13474.98 13374.23 13947.04 13562.17 13374.23 3.38
pr20-N288m16p6 17907.60 17485.31 18531.94 18358.78 17485.31 3.37

the best solution across multiple runs.

The PTALNS algorithm finds better best upper bounds compared to ALNS in every
instance. The "Best UB" column, which records the best solution found among all
runs, always matches the PTALNS Best UB, showing the robustness and effective-
ness of PTALNS in the better solutions.

The "Imp%" column shows the percentage improvement of PTALNS Avg. over
ALNS Avg. for each instance. This percentage varies across instances, but PTALNS
consistently shows a positive improvement, with some instances showing substantial
improvements (e.g., pr12-N96m6p4 with 9.09% improvement)

Table 5.11 Results of ALNS vs. PTALNS on Data set S7

PVRPTW PVRPTWDCVA

Instance BKS
PTALNS ALNS

Best UB∗ Imp%Avg. Best UB Avg. Best UB

P4c101 2766.22 3071.55 3067.93 3228.46 3067.93 3067.93 4.86
P4r101 3434.18 4812.03 4735.65 4945.14 4900.59 4735.65 2.69
P4rc101 3620.70 4843.74 4797.87 4903.26 4810.05 4797.87 1.21
P6c101 3723.20 4291.82 4286.95 4397.48 4287.00 4286.95 2.40
P6r101 4428.88 6436.60 6389.30 6523.44 6460.32 6389.30 1.33
P6rc101 4952.94 7458.18 7424.00 8049.49 7428.40 7424.00 7.35
P8c101 4809.46 5350.57 5267.70 5564.19 5381.24 5267.70 3.84
P8r101 5428.80 7764.14 7737.20 7950.70 7777.70 7737.20 2.35
P8rc101 5840.84 8375.06 8303.69 8675.86 8361.52 8303.69 3.47

Table 5.11 presents the results of the ALNS and PTALNS algorithms on data set
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S7. The "BKS" column lists the best-known solutions reported for the PVRPTW.
The table follows the same format as Table 5.10. Consistent with the findings
for data set S6, the PTALNS algorithm consistently achieves lower average results
and better Best UB compared to the ALNS algorithm. According to the "Imp%"
column, the percentage improvement of PTALNS Avg. over ALNS Avg. varies
across instances, but PTALNS consistently shows a positive improvement, with
some instances exhibiting substantial improvements.

For example, the P6rc101 instance demonstrates a notable improvement of 7.35%,
indicating that PTALNS performs significantly better in this case. Similarly, other
instances such as P4c101 and P8c101 also show notable improvements, with increases
of 4.86% and 3.84%, respectively.

Overall, the results suggest that PTALNS is a more effective algorithm compared to
ALNS, particularly in achieving lower average results and better best upper bounds,
thereby demonstrating its superiority in solving PVRPTWDCVA problems.

It is noteworthy that for problem instances with clustered geographical data, when
visual attractiveness and driver consistency constraints are added, there is an average
11.86% increase in the OFV. This increase is 41.56% for random geographical data
and 41.52% for random-clustered geographical data.

5.6 Conclusions

We presented an MILP formulation and a PTALNS algorithm to efficiently solve
the PVRPTW instances considering visual attractiveness and driver consistency
restrictions. We evaluated the performance of the PVRPTWDCVA formulation
and assessed the efficiency of the PTALNS algorithm. For small-size instances,
the PTALNS algorithm was tested and compared against the Gurobi solver with
different numbers of available vehicles. PTALNS consistently found high-quality
solutions within reasonable computational times, even for instances where Gurobi
struggled to reach optimality or feasible solutions within the time limit.

Large-size instances from data set S6 were addressed using a VNS algorithm, reveal-
ing that routing has inefficiencies regarding route crossings and driver consistency.
There are on average 50.35 inter-route crossings in each solution and approximately
45 percent of customers visit more than one driver during their visits. To have ap-
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pealing routes and considering driver consistency the instances in data set S6 are also
solved by ALNS and PTALNS algorithms. In the comparison between ALNS and
PTALNS, the latter is more robust and outperforms in solving all instances. Fur-
thermore, PTALNS also demonstrated superior performance over ALNS in solving
instances from data set S7.

There are several potential directions for extending the current work. First, explor-
ing different metrics for visual attractiveness could provide valuable insights into
their impact on routing efficiency and overall effectiveness. Second, during the de-
struction and construction phases, the constraints related to visual attractiveness
and driver consistency could be relaxed. Violations of these constraints could then
be incorporated as penalty costs within the objective function, allowing for a more
flexible approach to solution optimization. Finally, leveraging data mining tech-
niques to analyze historical driver behavior could inform routing decisions, poten-
tially leading to more efficient and driver-friendly routes based on past performance
and preferences.

5.7 Chapter Conclusion

In Chapter 3, we overview the PVRP focusing on modeling approaches and exact so-
lutions to be obtained by a commercial solver. We develop a new MILP formulation
of the PVRP using vehicle flow variables and employ families of valid inequalities and
optimality cuts to tighten the formulation. Two existing prominent PVRP formu-
lations in the literature referred to as the load-based formulation and the cut-based
formulation are also investigated. The main differences among the formulations are
the representation of vehicle information and the SECs. The cut-based formulations
use decision variables explicitly including a vehicle index. The SECs of the cut-based
formulations have an exponential size and need to be separated. In the load-based
formulations and the MTZ-based formulations, auxiliary continuous variables are
used to define the constraints preventing the formation of subtours and both formu-
lations are compact, i.e., they do not involve exponentially many constraints. Since
the continuous variables defined in the MTZ-based formulation have one dimension
less than those used in the load-based formulation, the MTZ-based formulation has
smaller number of variables compared to the load-based formulation. We also extend
these formulations to model the PVRPTW and apply families of valid inequalities to
tighten the formulations. Comprehensive computational experiments are conducted
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on seven sets of benchmark instances with different characteristics to compare the
performances of the alternative formulations. The results of the computational ex-
periments on the PVRP data sets show that the cut-based model and the load-based
model are competitive in solving small instances. When it comes to solving medium
instances, the load-based model overtakes the cut-based model. While the results
indicate the difficulty of solving most of the PVRP instances of large size for the
cut-based model and the load-based model, the MTZ-based formulations are robust
and consistent in producing good-quality solutions.Considering the PVRPTW, the
results obtained by alternative models with data sets S6 and S7 show that the cut-
based model is only successful in solving two out of 35 instances. In general, the
MTZ-based formulations outperform the load-based formulations. For the instances
solved to optimality, they reach the solution faster, and for those instances for which
an optimal solution cannot be identified within the specified time limit, they return
solutions of higher quality when compared to the load-based formulations. The su-
periority of the MTZ-based formulations are more evident in solving larger instances.
The goal of this chapter is to compare and provide insights into the computational
performance of widely used formulation approaches in the literature that can be
implemented and solved directly by state-of-the-art commercial solver capabilities.
Other formulation approaches are available (e.g. set partitioning) for which an ex-
act solution cannot be obtained directly by a solver, but only by employing efficient
optimization algorithms (e.g. column generation and branch-and-price). Extending
the computational analysis to cover a broader spectrum of exact solution method-
ologies may provide additional insights into the performance of different formulation
and solution techniques with respect to run times and solution quality. Moreover,
(parts of) the formulation approaches considered in this study are easily applicable
to other variants of the PVRP and exploring the computational performance on
different problem variants may also be an interesting direction for future research.

In the first part of Chapter 4, we proposed the LBBD and BAC algorithms to solve
the PVRP. Computational results demonstrate that BAC outperforms LBBD in
medium-sized instances. However, a comparison between the BAC algorithm and
the UC1 formulation reveals that the convergence of BAC to the optimal solution
is slow, and the time required to solve the VRP subproblem is considerable. To
expedite the BAC algorithm, we attempted to enhance the LB by incorporating
cuts derived from the dual of the LP relaxation of the subproblem at each iter-
ation. However, this approach did not yield any significant improvement in the
LB and the cuts appeared to be redundant. we also aimed to enhance the speed
of solving the VRP subproblem. Initially, we applied an exact column generation
algorithm for this purpose. Unfortunately, our proposed column generation ap-
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proach did not yield significant improvements in solution time. Consequently, we
refined and adapted this approach specifically for the PVRP problem, aiming to
solve the PVRP directly using the column generation algorithm. In the second part
of Chapter 4, we propose a column generation-based heuristic to solve the PVRP.
In the pricing problem, we applied Martinelli et al. (2014) algorithm. However, to
maintain elementarity in solving the pricing sub-problem, we applied two different
approaches: one proposed by Dayarian et al. (2015) and a hybrid approach. At the
end of the algorithm, if the optimal solution to the master problem is fractional,
we solve the integer RMP, allowing visits to customers more frequently than their
specified frequencies. Based on this solution, we generate a new Ω and enrich it with
additional columns. We then resolve the problem using the updated Ω. To expedite
the column generation-based heuristic, we attempt to identify negative reduced cost
columns by first exploring the column pool, then implementing the truncated-search
version of the dynamic programming algorithm, and finally implementing the full-
search version of the dynamic programming algorithm if the other approaches fail.
After finding a predetermined number of elementary negative reduced cost columns,
we terminate any pricing iteration further to control time. The results show that the
proposed algorithm produces results very close to the best-known solutions in the
literature, with an average deviation of only 0.21%. This highlights the effectiveness
of the algorithm, especially given that most instances show either no deviation or
very minor deviations from the best-known solution in the literature.

Time window and non-crossing intra-route constraints can be seamlessly integrated
into the proposed column generation algorithm by incorporating them directly into
the pricing problem. This approach ensures that these constraints are enforced
during the column generation process. However, integrating non-crossing inter-route
and driver consistency constraints requires a different approach. These constraints
need to be included in the master problem, where the master problem verifies the
absence of arc intersections between different routes. As the size of Ω increases, this
verification process can become computationally intensive.

In Chapter 5, we presented an MILP formulation and a PTALNS algorithm to ef-
ficiently solve the PVRPTW instances considering visual attractiveness and driver
consistency restrictions. We evaluated the performance of the PVRPTWDCVA
formulation and assessed the efficiency of the PTALNS algorithm. For small-size
instances, the PTALNS algorithm was tested and compared against the Gurobi
solver with different numbers of available vehicles. PTALNS consistently found
high-quality solutions within reasonable computational times, even for instances
where Gurobi struggled to reach optimality or feasible solutions within the time
limit. Large-size instances from data set S6 were addressed using a VNS algo-
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rithm, revealing that routing has inefficiencies regarding route crossings and driver
consistency. There are on average 50.35 inter-route crossings in each solution and
approximately 45 percent of customers visit more than one driver during their vis-
its. To have appealing routes and considering driver consistency the instances in
data set S6 are also solved by ALNS and PTALNS algorithms. In the comparison
between ALNS and PTALNS, the latter is more robust and outperforms in solving
all instances. Furthermore, PTALNS also demonstrated superior performance over
ALNS in solving instances from data set S7.

Future research can explore various algorithmic enhancements to improve the per-
formance of the column generation approach to solve PVRP. These include the
implementation of cutting planes, advanced branching strategies, and sophisticated
data structures for label storage during the pricing stage. Additionally, the inte-
gration of metaheuristics could further enhance the efficiency and effectiveness of
the method. There are also several potential directions for extending the current
work on PVRPTWVADC. First, exploring different metrics for visual attractiveness
could provide valuable insights into their impact on routing efficiency and overall ef-
fectiveness. Second, during the destruction and construction phases, the constraints
related to visual attractiveness and driver consistency could be relaxed. Violations
of these constraints could then be incorporated as penalty costs within the objective
function, allowing for a more flexible approach to solution optimization. Finally,
leveraging data mining techniques to analyze historical driver behavior could inform
routing decisions, potentially leading to more efficient and driver-friendly routes
based on past performance and preferences.
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6. Conclusions and Future Research

In Chapter 3, we overview the PVRP focusing on modeling approaches and exact so-
lutions to be obtained by a commercial solver. We develop a new MILP formulation
of the PVRP using vehicle flow variables and employ families of valid inequalities and
optimality cuts to tighten the formulation. Two existing prominent PVRP formu-
lations in the literature referred to as the load-based formulation and the cut-based
formulation are also investigated. The main differences among the formulations are
the representation of vehicle information and the SECs. The cut-based formulations
use decision variables explicitly including a vehicle index. The SECs of the cut-based
formulations have an exponential size and need to be separated. In the load-based
formulations and the MTZ-based formulations, auxiliary continuous variables are
used to define the constraints preventing the formation of subtours and both formu-
lations are compact, i.e., they do not involve exponentially many constraints. Since
the continuous variables defined in the MTZ-based formulation have one dimension
less than those used in the load-based formulation, the MTZ-based formulation has
smaller number of variables compared to the load-based formulation. We also extend
these formulations to model the PVRPTW and apply families of valid inequalities to
tighten the formulations. Comprehensive computational experiments are conducted
on seven sets of benchmark instances with different characteristics to compare the
performances of the alternative formulations. The results of the computational ex-
periments on the PVRP data sets show that the cut-based model and the load-based
model are competitive in solving small instances. When it comes to solving medium
instances, the load-based model overtakes the cut-based model. While the results
indicate the difficulty of solving most of the PVRP instances of large size for the
cut-based model and the load-based model, the MTZ-based formulations are robust
and consistent in producing good-quality solutions.Considering the PVRPTW, the
results obtained by alternative models with data sets S6 and S7 show that the cut-
based model is only successful in solving two out of 35 instances. In general, the
MTZ-based formulations outperform the load-based formulations. For the instances
solved to optimality, they reach the solution faster, and for those instances for which
an optimal solution cannot be identified within the specified time limit, they return
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solutions of higher quality when compared to the load-based formulations. The su-
periority of the MTZ-based formulations are more evident in solving larger instances.
The goal of this chapter is to compare and provide insights into the computational
performance of widely used formulation approaches in the literature that can be
implemented and solved directly by state-of-the-art commercial solver capabilities.
Other formulation approaches are available (e.g. set partitioning) for which an ex-
act solution cannot be obtained directly by a solver, but only by employing efficient
optimization algorithms (e.g. column generation and branch-and-price). Extending
the computational analysis to cover a broader spectrum of exact solution method-
ologies may provide additional insights into the performance of different formulation
and solution techniques with respect to run times and solution quality. Moreover,
(parts of) the formulation approaches considered in this study are easily applicable
to other variants of the PVRP and exploring the computational performance on
different problem variants may also be an interesting direction for future research.

In the first part of Chapter 4, we proposed the LBBD and BAC algorithms to solve
the PVRP. Computational results demonstrate that BAC outperforms LBBD in
medium-sized instances. However, a comparison between the BAC algorithm and
the UC1 formulation reveals that the convergence of BAC to the optimal solution
is slow, and the time required to solve the VRP subproblem is considerable. To
expedite the BAC algorithm, we attempted to enhance the LB by incorporating
cuts derived from the dual of the LP relaxation of the subproblem at each iter-
ation. However, this approach did not yield any significant improvement in the
LB and the cuts appeared to be redundant. we also aimed to enhance the speed
of solving the VRP subproblem. Initially, we applied an exact column generation
algorithm for this purpose. Unfortunately, our proposed column generation ap-
proach did not yield significant improvements in solution time. Consequently, we
refined and adapted this approach specifically for the PVRP problem, aiming to
solve the PVRP directly using the column generation algorithm. In the second part
of Chapter 4, we propose a column generation-based heuristic to solve the PVRP.
In the pricing problem, we applied Martinelli et al. (2014) algorithm. However, to
maintain elementarity in solving the pricing sub-problem, we applied two different
approaches: one proposed by Dayarian et al. (2015) and a hybrid approach. At the
end of the algorithm, if the optimal solution to the master problem is fractional,
we solve the integer RMP, allowing visits to customers more frequently than their
specified frequencies. Based on this solution, we generate a new Ω and enrich it with
additional columns. We then resolve the problem using the updated Ω. To expedite
the column generation-based heuristic, we attempt to identify negative reduced cost
columns by first exploring the column pool, then implementing the truncated-search
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version of the dynamic programming algorithm, and finally implementing the full-
search version of the dynamic programming algorithm if the other approaches fail.
After finding a predetermined number of elementary negative reduced cost columns,
we terminate any pricing iteration further to control time. The results show that the
proposed algorithm produces results very close to the best-known solutions in the
literature, with an average deviation of only 0.21%. This highlights the effectiveness
of the algorithm, especially given that most instances show either no deviation or
very minor deviations from the best-known solution in the literature.

Time window and non-crossing intra-route constraints can be seamlessly integrated
into the proposed column generation algorithm by incorporating them directly into
the pricing problem. This approach ensures that these constraints are enforced
during the column generation process. However, integrating non-crossing inter-route
and driver consistency constraints requires a different approach. These constraints
need to be included in the master problem, where the master problem verifies the
absence of arc intersections between different routes. As the size of Ω increases, this
verification process can become computationally intensive.

In Chapter 5, we presented an MILP formulation and a PTALNS algorithm to ef-
ficiently solve the PVRPTW instances considering visual attractiveness and driver
consistency restrictions. We evaluated the performance of the PVRPTWDCVA
formulation and assessed the efficiency of the PTALNS algorithm. For small-size
instances, the PTALNS algorithm was tested and compared against the Gurobi
solver with different numbers of available vehicles. PTALNS consistently found
high-quality solutions within reasonable computational times, even for instances
where Gurobi struggled to reach optimality or feasible solutions within the time
limit. Large-size instances from data set S6 were addressed using a VNS algo-
rithm, revealing that routing has inefficiencies regarding route crossings and driver
consistency. There are on average 50.35 inter-route crossings in each solution and
approximately 45 percent of customers visit more than one driver during their vis-
its. To have appealing routes and considering driver consistency the instances in
data set S6 are also solved by ALNS and PTALNS algorithms. In the comparison
between ALNS and PTALNS, the latter is more robust and outperforms in solving
all instances. Furthermore, PTALNS also demonstrated superior performance over
ALNS in solving instances from data set S7.

Future research can explore various algorithmic enhancements to improve the per-
formance of the column generation approach to solve PVRP. These include the
implementation of cutting planes, advanced branching strategies, and sophisticated
data structures for label storage during the pricing stage. Additionally, the inte-
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gration of metaheuristics could further enhance the efficiency and effectiveness of
the method. There are also several potential directions for extending the current
work on PVRPTWVADC. First, exploring different metrics for visual attractiveness
could provide valuable insights into their impact on routing efficiency and overall ef-
fectiveness. Second, during the destruction and construction phases, the constraints
related to visual attractiveness and driver consistency could be relaxed. Violations
of these constraints could then be incorporated as penalty costs within the objective
function, allowing for a more flexible approach to solution optimization. Finally,
leveraging data mining techniques to analyze historical driver behavior could inform
routing decisions, potentially leading to more efficient and driver-friendly routes
based on past performance and preferences.
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