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ABSTRACT

DESIGN OF A PIEZORESISTIVE PRESSURE SENSOR USING TOPOLOGY
OPTIMIZATION

ECE NAZ ERÜLKER

MECHATRONICS ENGINEERING M.A. THESIS, JULY 2024

Thesis Supervisor: Assoc. Prof. Dr. Güllü Kızıltaş Şendur

Keywords: Homogenization, modified SIMP, piezoresistive pressure sensor,
topology optimization, TPMS

Flexible pressure sensors are used commonly in applications ranging from smart per-
sonal equipment to medical devices. Different applications require sensors designed
specific to the application. In this thesis, a piezoresistive pressure sensor is designed
via topology optimization for bedsore prevention (most sensitive at 4.6 kPa). The
main objective is to develop a TO design framework for designing a sensor with
maximum sensitivity, i.e. change in relative resistance over pressure. TO has been
applied to many applications including mechanical, thermal, electromagnetic and
piezoelectric devices. Although conductive material topologies have been designed
for thermal or electric applications including use of TPMS structures, piezoresistive
material design based TO has not been much explored. Here, we develop a TO
framework based on modified SIMP material models constructed using numerical
homogenization of piezoresistive gyroid unit cells. These material models are used
during optimization and are needed during the reconstruction phase of the tapered
gyroid sensor topology. The sensor design was envisioned as a PDMS-Polypyrrole
composite material and its properties were taken from earlier measurements. A
sheet type gyroid geometry is chosen due to its advantages such as volume fraction
tunability that is easily linked to density based TO and its manufacturability using
additive manufacturing. Simulation models were built and analyzed using FEM in
COMSOL Multiphysics 6.2 and the TO framework was applied to three different
design categories targeting: 1) mechanical performance, 2) electrical performance,
and 3), both criteria simultaneously via multi-criteria design studies. CAD models
where generated by a MATLAB script.
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ÖZET

TOPOLOJİ OPTİMİZASYONU İLE PİEZOREZİSTİF BASINÇ SENSÖRÜ
TASARIMI

ECE NAZ ERÜLKER

MEKATRONİK MÜHENDİSLİĞİ YÜKSEK LİSANS TEZİ, TEMMUZ 2024

Tez Danışmanı: Doç. Dr. Güllü Kızıltaş Şendur

Anahtar Kelimeler: homogenizasyon, modifiye SIMP, piezorezistif basınç sensörü,
topoloji optimizasyonu,TPMS

Esnek basınç sensörleri, akıllı kişisel ekipmanlardan tıbbi cihazlara kadar çeşitli
uygulamalarda yaygın olarak kullanılmaktadır. Farklı uygulamalar, uygulamaya
özel tasarlanmış sensörler gerektirir. Bu tezde, bası yaralarının önlenmesi için
topoloji optimizasyonu (TO) yoluyla bir piezorezistif basınç sensörü tasarlanmıştır
(4,6 kPa basınç değerinde). Temel amaç, azami hassasiyete, yani azami basınç
üzerindeki bağıl dirençteki değişime sahip bir sensör tasarlamak üzere bir TO
tasarım çerçevesi geliştirmektir. Topoloji opimizasyonu, mekanik, termal, elektro-
manyetik ve piezoelektrik cihazların tasarımına uygulanmıştır. İletken malzeme
odaklı tasarımlar, TPMS geometrileri de dahil olmak üzere farklı termal ve elek-
trik uygulamalara yönelik çalışılmış olsa da, piezorezistif malzeme tasarımına day-
alı TO problemi çok fazla araştırılmamıştır. Bu çalışmada, piezorezistif jiroid
birim hücrelerinin sayısal homojenizasyonu kullanılarak oluşturulan modifiye SIMP
malzeme modelleri kullanılarak bir TO çerçevesi geliştirilmektedir. Geliştirilen
malzeme modelleri, hem optimizasyon sırasında hem de değişken jiroid sensör topolo-
jisinin yeniden yapılandırılması aşamasında gereklidir. Sensör tasarımının malzeme
yapısı PDMS-PPy kompozit olarak öngörülmüş ve gerekli özellikleri önceki bir
çalışmadan alınmıştır. Tezde kabuk tipi bir jiroid geometrisi, hacim oranının ko-
lay ayarlanabilirliği sayesinde yoğunluğa dayalı TO ile uyumludur ve 3 boyutlu
basım teknikleri kullanılarak üretilebilirliği gibi avantajları nedeniyle seçilmiştir.
Simülasyon modelleri COMSOL Multiphysics 6.2’de sonlu elemanlar yöntemi kul-
lanılarak analiz edilmiş ve TO çerçevesi üç farklı hedefe yönelik tasarim kategorisin-
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deki problemlere uygulanmıştır. Bunlar 1) mekanik performans, 2) elektriksel per-
formans ve 3) çok kriterli tasarım modeli yoluyla her iki kriteri aynı anda hedefleyen
tasarım problemleridir. Uygulama sırasında CAD modelleri bir MATLAB komut
dosyası tarafından oluşturulmuştur.
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1. INTRODUCTION

1.1 Motivation

Sensors have been around for many years since the popularity of semiconductors with
a rapid growing interest in recent years as new applications and material technologies
emerged with frequent use in our everyday life (Tang et al., 2021). As technology
matured and the quest for miniature products increased, a particular class of sensors,
namely flexible or conformal sensor design became an active research area. Flexible
sensors are used for robotics, wearable accessories and clothes, and patient treatment
in hospitals and houses including bedsore detection (Tang et al., 2021). Flexible
pressure sensors in particular, are studied frequently since they constitute the basic
unit used for applications ranging from pulse to body weight detection.

Different applications require the sensor to be optimized specifically for that appli-
cation to increase their sensitivity. Hence, there is a need for flexible design methods
to suit these applications. The design process doesn’t only rely on the choice of the
sensing mechanism and material, but also the structure and geometry of the sensor
is important. An efficient way to incorporate the geometry or material distribution
into the design process is to use topology optimization (TO). In TO, the structure
is initially divided into design cells, and the density of the design cells are changed
with respect to the objective function and constraints representing the design re-
quirements of the device such as a sensor to mainly increase their sensitivity. Hence,
there is a need for flexible and effective design methods to suit different design re-
quirements for a wide range of applications. Towards this need, this thesis aims
to develop a TO framework to optimize a 3D piezoresistive pressure sensor using
graded triply periodic minimal surface (TPMS) structured unit cells, and apply this
framework for bedsore prevention requirements.
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TPMS unit cells have become popular due to their desired geometric features (Feng,
Fu, Yao & He, 2022), suitability for homogenization-based TO designs and easy
manufacturability using additive manufacturing (AM) (Modrek, Viswanath, Khan,
Hassan Ali & Abu Al-Rub, 2023).

As regards the pressure sensing mechanism, most popular choices are piezoresistive,
capacitive, piezoelectric and triboelectric (Tang et al., 2021). In this thesis, we
present a design framework that concentrates on the design of a piezoresistive (PR)
pressure sensor because of their advantages such as easy read-out mechanism and
large working pressure range (Zang, Zhang, Di & Zhu, 2015) in addition to being
scalable and their continuous input measuring abilities.

Out of the various sensor properties, its structural configuration stands out while
designing the sensor. Moreover, many options ranging from 2D membranes (Chen,
Zhu, Ma & Yuan, 2008; Rubio, Silva & Nishiwaki, 2008; Yamada, Hayamizu, Ya-
mamoto, Yomogida, Izadi-Najafabadi, Futaba & Hata, 2011) to 3D complex lattice
structures (Li, Dai, Tang, Dong & Zhao, 2019; Oh, Kim, Kim, Choi, Yang, Lee,
Pyatykh, Kim, Sim & Park, 2019; Simsek, Gayir, Kiziltas & Sendur, 2020) have
been proposed. Lattices are interconnected structures which makes them available
for more accessible methods such as additive manufacturing. Among lattice struc-
tures, TPMS structures are a popular lattice type in the research community at the
moment. TPMS structures are lattice structures with zero mean curvature, and as
the name suggests, these structures are formed via a repetition of a unit cell. This
means that it can be precisely defined by mathematical functions, replicated, and
easily scaled (Feng et al., 2022).

In terms of the material property, controlling the amount of void in a unit cell,
the user can manipulate the effective material properties of that cell, enabling a
composite-like behavior possible within the same structure. Functionally graded
(FG) lattice structures mapped to TO design results are an example of this (Simsek
et al., 2020). In this study, we extend for the first time TO design using FG TPMS
topologies to the design of PR sensors. An optimal density distribution is obtained
via modified Solid Isotropic Material with Penalization (SIMP) models based on
piezoresistive material homogenization and then mapped to a final graded TPMS
topology that displays optimal sensor performance.

While there is extensive literature on the manufacturing of piezoresistive transduc-
ers, finite element modeling (FEM) specifically related to PR materials has been
under investigation for only the last decade. Design via TO using FEM in very
basic terms is to calculate the optimal arrangement of material within a given spa-
tial domain to achieve the best response for an objective. In this thesis our main
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objective is to optimize the sensor to increase its sensitivity.

It is fair to state that although there are studies on optimizing PR sensors, there
aren’t any that focus on their 3D designs. Most of the optimization models for PR
materials are for 2D strain sensors.

In this thesis, we propose a TO framework based on numerical homogenization of
PR gyroid unit cells. Since thermal and electrical conduction are analogical to each
other, we relied on existing thermal 3D optimization studies focusing on planar PR
optimization to build the backbone of the 3D piezoresistive topology optimization
model. To the best of our knowledge, the design of 3D PR sensors using TO based
on TPMS homogenization does not exist. More specifically, a PR pressure sensor is
designed by using TO with modified SIMP material models for bedsore applications
(most sensitive at 4666 Pa (Misaki, Imanishi, Takasugi, Wada, Fukagawa & Furue,
2014)).

1.2 Literature Review

1.2.1 Piezoresistive Sensors

Flexible pressure sensors can be classified with respect to their working mechanism,
material and manufacturing methods (Tang et al., 2021). These classes are inher-
ently correlated with each other such as for instance a certain mechanism requiring
a certain type of material and fabrication method.

Also, these features are directly mapped to the three design criteria for a flexible
pressure sensor that include: (1) working mechanism, (2) material choice, and (3)
structural configuration and geometry.

As regards the pressure sensing mechanism, most popular choices are capacitive,
piezoelectric and PR. Piezoelectric sensors can self-power but can only sense dy-
namic pressure while capacitive and PR can provide continuous monitoring while
depending on a current source (Cui, Huang, Zhang, Song, Zheng, Chevali, Wang &
Xu, 2022). Additionally, PR sensors are known to have an easy read-out mechanism,
and large pressure range (Zang et al., 2015). In this thesis, for the chosen applica-
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tion of bedsore detection, to supply a current source is expected to not constitute
a problem, and the pressure is expected to be monitored continuously, therefore, a
PR pressure sensing mechanism is chosen to be designed.

Figure 1.1 Types of flexible pressure sensors (Tang et al., 2021)

Regarding the material choice of the sensor, as it is earlier stated, it is interrelated
to the other two design criteria, i.e. the mechanism and geometry. Earlier well
known examples of PR pressure sensors are silicon-based MEMS sensors. Although
still often preferred for planar applications, due to their brittle nature, Silicon is not
widely used in flexible sensor applications (Chen et al., 2008).

With advances in composite materials, their use resulted in improved performance
of flexible PR sensors significantly (Mitrakos, 2014). Composites are materials con-
sisting of multiple components with differing physical and chemical properties, such
as a nonconductive material via doping becoming conductive to display both flexi-
bility and conductivity. This class of materials are called conductive filler-polymer
nanocomposites. Yamada et al. (2011)’s work is an example using composite materi-
als for PR sensors. Their sensor is a Polydimethylsiloxane(PDMS)-carbon nanotube
composite designed to detect different types of human motion, including breathing
and speech, movement, and typing.
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The one-millimeter-thick sensor performs well as the gauge factor was calculated to
be 0.82 (0 to 40% strain) while metal gauges have a factor of 2.0 (5% maximum
strain) (Yamada et al., 2011). Thin sensors are usually more suitable for detecting
tension. It can be seen in Yamada et al. (2011)’s paper that sensors are placed
such that they are in-line with the stretched muscle. Hence it can be argued that
3D structures are more suitable for pressure detecting application. Additionally,
3D sensors create more surface for the conductive material, hence better sensitivity.
In this thesis specifically, the sensor will be under body weight to detect bedsores,
therefore the sensor should be designed to be under constant pressure.

Out of the three sensor design criteria, the structural configuration and in particular
geometry of the sensor gives the user the most freedom in designing the sensor. As
earlier stated, various geometrical configurations have been proposed mainly ranging
from 2D membranes to 3D complex lattice structures (Chen et al., 2008; Li et al.,
2019; Oh et al., 2019; Rubio et al., 2008; Simsek et al., 2020; Yamada et al., 2011).

More specifically, among 3D sensor geometries, some well known ones are spheri-
cal pores (Oh et al., 2019), pyramids (Khalili, Shen & Naguib, 2018), micro-domes
(Zhang, Han, Hu, Xiong, Gu, Zhang, Zhu, Sun & Wong, 2020) and lattice structure
(Modrek et al., 2023; Ye, Lin, Xiong, Wu, Zhao & Fang, 2019). Common purpose of
the mentioned structures is to increase surface to volume ratio for better sensitivity.
Out of these options, lattice structures stand out due to their repeatability and eas-
ier fabrication opportunities (Davoodi, Montazerian, Haghniaz, Rashidi, Ahadian,
Sheikhi, Chen, Khademhosseini, Milani, Hoorfar & Toyserkani, 2020; Oh et al.,
2019). Oh et al. (2019) studied the effect of uniform and random sized pores and
showed uniformity is superior. In this study the pores are formed by microfluidic
emulsion droplet self-assembly technique which is a complicated procedure. Lat-
tices on the other hand, are interconnected structures which makes them available
for more accessible methods such as additive manufacturing.

TPMS structures as earlier defined are lattice structures with zero mean curvature,
and are formed via a repetition of a unit cell microstructures such as gyroid, dia-
mond, Schwarz-P and IWP microstructures. They are favorable as their complex
geometries can be precisely defined by mathematical functions, replicated, and eas-
ily scaled (Feng et al., 2022). Additionally, TPMS are known for high surface to
volume ratio and highly interconnected porous architectures which makes them ad-
vantageous structures to use in sensor applications such as in this thesis. Studies
such as those by Imanian, Kardan-Halvaei, Nasrollahi, Imanian, Montazerian & Nas-
rollahi (2023) and Davoodi et al. (2020) introduce 3D piezoresistive pressure sensors
that utilize TPMS geometries where the geometries are of constant volume function
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and are not a result of an optimization study. The sensor is a silicone rubber sen-
sor with graphene nanoplatelet coating, therefore conduction occurs on the surfaces
of the sensors. The ability to change the overall volume fraction throughout the
volumetric space the sensor can occupy is shown to give the designer an additional
dimension to tune the sensor performance leading to Functionally Graded (lattice)
structures (FG(L)S). This ability is particularly suitable to be implemented using a
TO formulation. In terms of the material property, controlling the amount of void
in a unit cell, the user can manipulate the effective material properties of that cell,
mathematically known as homogenization, enabling a composite-like behavior pos-
sible within the same structure. FG lattice structures mapped to TO design results
exist for several applications including mechanical bandgap structures (Simsek et al.,
2020), mechanical and thermal applications (Li et al., 2019; Modrek et al., 2023). In
this thesis, we extend for the first time TO design using FG TPMS topologies to the
design of piezoresistive pressure sensors. An optimal density distribution is obtained
via modified SIMP models based on piezoresistive material homogenization and then
mapped to a final graded TPMS topology that displays optimal sensor performance.
Related studies on optimal design of PR pressure sensors and in particular the use
of TO in PR sensor design is discussed in the next section.

1.2.2 Sensor Design and Topology Optimization

Design of a flexible sensor is divided into 3 parts:

1.1 Choice of mechanism

1.2 Choice of material

1.3 Choice of geometry

This thesis mainly concentrates on the third aspect by searching for the optimal
geometry of the sensor formulated as a material distribution of a coated flexible
material, to be solved via topology optimization. Nonetheless, the first two should
not go unmentioned. As mentioned previously the sensor studied in this thesis
uses PR to sense the change in pressure. Together with PR, choice of material is
Polydimethylsiloxane-Polypyrrole (PDMS-PPy) composite. PDMS is the main bulk
that provides elasticity for the sensor, while the PPy particles in the PDMS create
paths to conduct electricity. There are several examples of composite polymer-
conductor sensors in literature. but Oh et al. (2019)’s study of a highly uniform
3D porous pressure sensor presents a PDMS coated with PPy and demonstrates the
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effectiveness of this material combination. Although the materials are the same, in
this project a mixture of PDMS-PPy is studied while Oh et al. (2019) coats PDMS
bulk with PPy. Choice of the geometry as explained in the previous section is a
TPMS lattice, in particular a lattice with a sheet type gyroid unit cell geometry. In
this subsection, state of art for optimization of piezoresistive pressure sensors will
be provided after summarizing modeling efforts of sensors.

While there is extensive literature on the manufacturing of PR transducers, FEM
specifically related to PR materials has been under investigation for only the last
decade. Before FEM, researchers relied mostly on analytical techniques (Gridchin
& Gridchin, 1997). Lumped circuit model and analytical formulation for modeling
conducting polymers also exist (Kalantari, Dargahi, Kövecses, Mardasi & Nouri,
2012). Given that a material’s piezoresistance coefficients can be either positive or
negative, maximizing sensitivity involves increasing stress in certain directions while
reducing it in others. This task is too complex for simple models with a limited
number of degrees of freedom. Therefore, numerical studies using finite element
analysis (FEA) have been conducted to determine optimal PR designs (Zhuang,
Minami, Shiba & Yoshikawa, 2023).

Membrane and cantilever applications of PR sensors have existed longer than 3D
applications, therefore most studies on design optimization including TO of sensors
are based on 2D or cantilever beam models (Giusti, Mello & Silva, 2014; Mello,
Takezawa & Silva, 2012; Pedersen, 2004). Pedersen (2004)’s cantilever bio-probe
model with TO is one of the very first design examples of PR sensors. In this
model, a PR area is attached to the fixed end of a cantilever. The cantilever itself is
not piezoresistive but still, using TO on the cantilever beam will change the strain
applied on the piezoresistive part and affect its sensitivity. This study is followed
by Rubio et al. (2008) where again the PR material itself is not optimized but it
introduces a generic TO formulation by using 2D FEM. Both of these studies use
analytical methods to calculate and optimize sensitivity of a PR sensor using TO.
Later Mello et al. (2012) implements a TO scheme for the design of plate-based or
membrane based PR sensor, in which the PR material distribution is also optimized
(Mello et al., 2012). They use a multiobjective optimization model with a weighted
sum of sensitivity and mechanical compliance. Davoodi et al. (2020) have a follow-
up study where they optimize a 3D flexible pressure sensor, but they apply shape
optimization rather than TO which is known to limit design degrees of freedom
and hence the resulting device performance. Design via TO in very basic terms is
to calculate the optimal arrangement of material within a given spatial domain to
achieve the best response for an objective. In this thesis, our main objective is to
optimize the sensor to increase its sensitivity focusing on a 3D material distribution
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problem.

It can be concluded that although there are studies on optimizing PR sensors, there
aren’t any that exploit the use of geometry and material in full 3D using TO for pres-
sure sensors. As outlined above most of the optimization models for PR materials
are for 2D strain sensors. An example of 3D PR sensor is Sixt, Davoodi, Salehian &
Toyserkani (2023)’s study in which a Schwarz-P type piezoresistive vibration sensor
is designed. For this design, size optimization is used, i.e. parameters that dictate
the object’s size are determined. Moreover, the most desired metric of sensitivity of
a PR sensor requires the model to be optimized in both mechanical and electrical
aspects hence a multi-criteria optimization based on a multi-physics model needs
to be considered for practical sensing applications. There are many examples of
multi-criteria optimization problems based on 3D TPMS models, mostly applied to
heat sink design problems (Das & Sutradhar, 2020; Modrek et al., 2023). In Das &
Sutradhar (2020), the final objective function is a weighted combination of mechan-
ical and thermal compliance. The model is tested on different numerical examples
and was shown to be effective. Modrek et al. (2023) also follow a similar approach
and add TPMS unit cells into the material model formulation. The materials are
homogenized and modeled using a modified SIMP model from the homogenization
of TPMS unit cell geometries. They also test the objective function with different
weights. Similarly, Li et al. (2019) introduced the generic optimization scheme for
FG TPMS structures and applied this method to structural and thermal problems
separately (Li et al., 2019). In many examples applied to mechanical, thermal and
biological application (Li et al., 2019; Modrek et al., 2023; Simsek et al., 2020), the
main design scheme is similar. Essentially, a single unit cell is defined by TPMS
geometries with different thicknesses and therefore the intermediate densities are
also mapped to geometries suitable for fabrication. Relative density of the cells and
material properties are connected by a modified SIMP based on numerical homog-
enization which therefore preserves the output of the TO algorithm hence resulting
in better performance by being manufacturable at the same time. As mentioned
before, the resulting interconnected nature of graded or uniform TPMS structures,
allows to realize these designs using AM. During AM, the geometry is sliced into
many cross-sections which gives the user a very precise control of geometry and
geometrical features such as porosity. With the increasing options of materials for
AM and simplicity of the production process, it is the preferred fabrication method
for 3D structures such as porous sensors.

In this thesis we propose a TO framework based on numerical homogenization of
PR gyroid unit cells. Since thermal and electrical conduction are analogical to each
other, we relied on a systematic procedure to apply the framework to three classes

8



of TO problems by first considering the mechanical or electrical performance indi-
vidually build the backbone of the 3D PR TO model. Finally, the design scheme
is applied to PR material based multi-criteria design of the sensor targeting both
mechanical and electrical performance simultaneously. To the best of our knowl-
edge, the design of 3D PR sensors using TO based on TPMS homogenization does
not exist. More specifically, a PR pressure sensor is designed by using TO with
modified SIMP material models for bedsore prevention (occurring at 4666 Pa). The
simulation model was built and analyzed using FEM in COMSOL Multiphysics 6.2
and the TO framework was developed considering different design case studies. For
the optimization, key material properties for the sensor, Young’s modulus, initial
conductivity, and elastoresistivity properties are homogenized and used to construct
modified SIMP models to be used in the design studies. Homogenization of the
piezoresistance properties using gyroid unit cells is one of the main contributions
of this study. The topology optimization framework based on their modified SIMP
models to deliver optimal graded TPMS topologies is another novel outcome. It
is also important to note that this study is based on a coupled solid mechanical-
electrical response models of the PR sensor.

1.3 Goals and Contributions

The objective of this thesis is to develop a TO framework based on numerical homog-
enization of PR gyroid unit cells suitable for the design of pressure sensors with 3D
graded optimal topologies. Since thermal and electrical conduction are analogical to
each other, we relied on existing thermal 3D optimization studies focusing on planar
PR optimization to build the backbone of the 3D PR TO model. To the best of our
knowledge, the design of 3D PR sensors using TO based on TPMS homogenization
does not exist. More specifically, in this thesis, a PR pressure sensor is designed
by using TO with modified SIMP material models for bedsore applications (most
sensitive at 4666 Pa). The simulation model was built and analyzed using FEM
in COMSOL Multiphysics 6.2 and the TO framework was developed and applied
to different design case studies based on different criteria and optimization mod-
els. For the optimization, key material properties for the sensor, Young’s modulus,
initial conductivity, and piezoresistivity matrix are homogenized and used to con-
struct modified SIMP models to be used in these design studies. Homogenization
of the material properties such as elasticity, initial conductivity and piezoresistiv-
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ity/elastoresistivity using TPMS gyroid unit cells is one of the main contributions
of this thesis. The topology optimization framework based on their modified SIMP
models to deliver optimal graded 3D TPMS topologies with optimal sensitivity per-
formance for bedsore prevention is another novel outcome. It is also important to
note that this study is relies on a coupled solid mechanical-electrical response based
multiphysics model for predicting the PR sensor performance. The outline of the
thesis is as follows: Chapter 2 builds more on the background of piezoresistivity
and modeling steps. Methodology of the analysis and optimization procedure are
provided in Chapter 3, and the results of the simulations are given in Chapter 4.
Finally, conclusions and future work are presented in Chapter 5.
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2. Background

2.1 Piezoresistive Pressure Sensors

Flexible pressure sensors utilize mechanisms such as piezoelectricity, capacitance
and piezoresistivity to measure pressure. Piezoresistivity originates from materials
with changing resistances under deformation. This effect can be due to changing
geometric properties, intrinsic resistivity or both. OR pressure sensors can be made
of metal, semiconductors, and conductive polymer composites. Metal sensors de-
pend on macroscale geometric deformation. In semiconductors, the effect is tied to
changes in the band structure, which significantly impact both carrier mobility and
number density—far more than applied stress would affect the resistance of a com-
parable metal. Conductive polymer composites’ main working mechanism depends
on tunneling resistance (Duan, D’hooge & Cardon, 2020). Fig. 2.1 shows the work-
ing mechanism of different types of nanocomposite sensors (Tang et al., 2021). The
composite sensor is composed of conductive particles diffused in a flexible polymer.
The filler material creates a conductive network. When pressure is applied on the
material, distance between the conductive nanoparticles decreases, creating paths
for electrons to cross over with less energy, hence resistance is lowered (Seesaard &
Wongchoosuk, 2023). This effect is called the tunneling effect.
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Figure 2.1 Working mechanism of different types of nanocomposite pressure sensors:
(A) Piezoresistivity (B) Capacitive (C) Piezoelectricity (D) Triboelectricity (Tang
et al., 2021)

The related concept of elastoresistance links the material’s strain to changes in resis-
tivity. It’s important to note that the relationship between the material’s structural
mechanics and its electrical properties is one-way, meaning that applied currents do
not affect the material’s stress or strain, provided that other factors, such as heating,
are negligible (Definition, 2013). Governing equations for modeling the PR sensors
can be summarized in the form of Hooke’s Law, Ohm’s Law and piezoresistance
constitutive relationship as follows:

S = C · ε (2.1)

J = σ ·E (2.2)

∆ρ = Π ·S+M · ε (2.3)

The third equation relates stress or strain load to change in resistivity ∆ρ. Here,
S is the second-order stress tensor, C is the fourth-order stiffness tensor, ε is the
second-order strain tensor, J is the current density vector, σ is electrical conductivity
matrix, E is the electric field tensor, ∆ρ is the second-order change in resistivity
tensor, Π is the fourth-order piezoresistance tensor, and M represents the fourth-
order elastoresistance tensor (Definition, 2013). Eq. 2.2 can be rewritten as

E = ρrJ+∆ρJ (2.4)

This expansion clearly shows the effect of change in resistivity on the final elec-
trical performance. As Eq. 2.3 dictates, the change of resistivity is a cumulative
contribution of a PR response to the stress tensor S or strain tensor ε. These two
contributions are used interchangeably, in other words when one part is active under
given strain input or stress input, the other part is deactivated. Put in other words,
to map the relationship between stress and change in resistivity the first part is used
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and to map the relationship between strain and change in resistivity the second part
is used. Π and M are material properties with units Pa−1Ωm and Ωm, respectively.
In this thesis, we used the strain activated resistivity change elastoresistance form,
namely ∆ρ = M · ε, which depends on the elastoresistivity M .

It’s important to note that in COMSOL Multiphysics, rather than applying a scalar
factor outside of m which is only feasible for materials with isotropic conductiv-
ity, the definition of m incorporates the resistivity directly into each element of the
tensor (Definition, 2013). Both M or or Π, are tensors of rank 4, which consist
of 21 independent components in the most general case, but for cubic symmetric
structures such as the sheet based gyroid unit cell used in this thesis, they can be re-
duced to three components, which for m implies m11 , m12, and m44 (Wymysłowski,
Santo-Zarnik, Friedel & Belavič, 2004). Throughout the thesis direction z will be
referred as "1" in subscripts, since the geometry is cubic symmetric numeration of x
and y do not differ. Using the Voigt notation (also used in COMSOL) for Eq. 2.3,
the resistivity change can be redefined as:



∆ρ11

∆ρ22

∆ρ33

∆ρ12

∆ρ13

∆ρ23


=



m11 m12 m12 0 0 0
m12 m11 m12 0 0 0
m12 m12 m11 0 0 0

0 0 0 m44 0 0
0 0 0 0 m44 0
0 0 0 0 0 m44





ε11

ε22

ε33

ε12

ε13

ε23


(2.5)

Furthermore, for an isotropic material, the material matrix properties can be de-
fined by single scalar values. In this thesis, the material model employed within
TO, namely SIMP model is based on both the mechanical and electrical material
properties of the sensor which is mainly loaded along a single axis, i.e. uniaxial
loading conditions apply and the materials throughout the study, unless otherwise
stated were assumed to be isotropic.

Sensitivity of a PR sensor is measured by relative change in resistivity per strain or
stress. Relative change in resistivity per stress is known as its sensitivity and per
strain is defined as the pressure sensor’s gauge factor (Eq. 2.6). In mathematical
terms, these definitions can be expressed using following equations:

Sensitivity = ∆R/R0
S

GaugeFactor = ∆R/R0
ε

(2.6)

Sensitivity and gauge factor are considered as the most important design metrics of a
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pressure sensor particularly for detecting structural damage or subtle displacements
(Duan et al., 2020). As stated earlier, one of the goals in this thesis is to design a
suitable pressure sensor for bedsore detection application where bedsores are known
to develop in bedridden patients (Misaki et al., 2014). Based on studies in literature,
skin cells start to die at a critical pressure value due to bedsores, which corresponds
to the an applied pressure value of 4666 Pa. Therefore, in this thesis, the sensor is
modeled and designed at this pressure with a target of maximizing its sensitivity.

In this thesis, material properties of the sensor that control its sensitivity constitute
both the elastoresistivity (which requires the initial conductivity) as well as the
elasticity of the sensor. These material properties are homogenized for sheet based
gyroid unit cells and integrated to the design scheme using as modified SIMP models.
Next, we present details on the extraction of the modified SIMP law, followed by
the theoretical basis of numerical homogenization. In the first part of the next
chapter, we provide implementation details and the corresponding numerical results
regarding the homogenization models in COMSOL.

2.2 Lattices and the modified SIMP Law

Lattices, which are a subset of cellular solids, include both natural structures (like
cancellous bone and honeycomb) and synthetic materials (such as polymer foams)
(Maskery, Aremu, Parry, Wildman, Tuck & Ashcroft, 2018). Gibson and Ashby
have provided insights on how the properties of cellular solids, like density and
pore size, affect their physical attributes (Gibson & Ashby, 1997). Relationship of
relative elastic modulus and the volume fraction of a cellular structure is one of the
properties, and is defined as follows:

E∗ = Aρn (2.7)

where A and n are constant numbers for each lattice, where effective elastic mod-
ulus E∗ and relative density ρ are defined as E∗ = Elatt/Esol and ρ = ρlatt/ρsol,
respectively. The subscript "latt" refers to the lattice property and "sol" is the solid
material without any geometry effect. ρ is normalized and ranges between 0 and
1, this variable is referred to as both relative density and volume fraction in this
thesis. The coefficient A in Eq. 2.7 was derived by Gibson & Ashby (1997), who
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suggested a value between 0.1 and 4.0 (Maskery et al., 2018). The exponent n is
approximately 2 when the deformation involves bending of the structure’s struts
or walls. The values are adjusted with respect to the deformation and the lattice
structure’s microstructure that is the unit cell geometry. In this thesis, we use a
sheet based gyroid to model a unit cell and construct its effective material property,
i.e. perform homogenization. In the next subsection, we show how each of the three
material properties are homogenized for conducting design within a TO framework
that will rely on the use of these modified SIMP laws.

2.3 Homogenization of Elasticity, Initial Conductivity and

Elastoresistivity

The homogenization method is a widely recognized technique used to determine the
effective material properties of composites. Homogenization theory is a mathemati-
cal approach which characterizes the average or effective behavior of microscopically
heterogeneous materials at the macro scale. Developed in the 1970s, it was initially
applied to periodic domains through two-scale asymptotic expansions by Babuška
(Babuška, 1976). The heterogeneous material is assumed to consists of two scales:
the micro-scale which the material is heterogeneous and periodic, the macro-scale
which is the material is homogeneous and made of the periodic micro-scale building
blocks, hence can be represented with the effective properties (Ozdilek, Ozcakar,
Muhtaroglu, Simsek, Gulcan & Sendur, 2024).

Homogenization method aims to capture the effects of the micro-scale by repre-
senting the average behavior of the material in a homogeneous medium. Rather
than modeling the entire macro-scale with all its complexities, which would be com-
putationally overwhelming, a single periodic cell at the micro-scale is analyzed in
detail. The results from this analysis are then used to predict the average behavior
at the macro-scale, which is the core principle of homogenization. Some examples
of homogenization techniques are surface or volume average approach, micro-polar
theory, beam theory approach and asymptotic homogenization (AH) (Ozdilek et al.,
2024).

Asymptotic expansion-based homogenization (AH) is a well-known and effective
technique for determining the elastic properties of periodic unit cells (PUCs) (Has-
sani & Hinton, 1998). This approach allows the calculation of macroscopic charac-
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teristics of heterogeneous materials by utilizing coefficients obtained from the state
equations. These coefficients are derived through the asymptotic expansion of the
solution and a parameter that defines the ratio of the unit cell period to the overall
length (Wang, Cai, Zhou & Hu, 2021).

An alternative approach utilizes the energy-based homogenization method (EBHM)
(Sigmund, 1994), which relies on the average stress and strain theorems to estimate
the effective properties. Unlike the numerical homogenization of the AH method,
EBHM applies periodic boundary conditions to the boundaries of PUCs, simplifying
the initial elastic equilibrium equation in finite element analysis into a more con-
cise form (Xia, Xia, Huang & Xie, 2018). Consequently, the numerical process of
predicting effective properties using EBHM is more straightforward. Additionally,
the simplified theoretical framework of the energy-based method makes it easier to
integrate with design strategies like topology optimization.

2.3.1 Elasticity and Initial Conductivity Homogenization

The material modeling of TO based design framework is based on a repeated sheet
based gyroid unit cell geometry, and therefore the numerical homogenization pro-
cedure results in modified SIMP laws for each relevant material properties. The
fundamentals of this method rely on modeling the gyroid geometry with implicit
Finite elements such as hexahedral elements as opposed to modeling the geometry
in an explicit fashion (Şimşek et al.). The numerical homogenization scheme is well
documented for linear elastic material’s elasticity tensor. In this thesis, we mainly
follow Li et al. (2019)’s numerical homogenization method to homogenize the ma-
terial properties necessary to model piezoresistive effect of the pressure sensor that
is designed in this thesis which comprise mainly the following material properties:
the elasticity matrix, the initial conductivity and piezoresistivity material matrix.

Elasticity tensor Cijkl relates strain tensor εkl to stress tensor Sij by Hooke’s Law for
linear elastic materials, Sij = Cijklεkl . Due to TPMS lattices belonging to lattices
obeying threefold rotational symmetry, i.e. they are known to be cubic symmetric,
and the elasticity matrix property itself obeys symmetry for linear elastic materials,
elasticity tensor reduces to the use of 7 distinct elements in Eq. 2.8.
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Cij =



C11 C12 C12 C14 C15 C16

C12 C11 C12 C16 C14 C15

C12 C12 C11 C16 C15 C14

C14 C16 C16 C44 C45 C45

C15 C14 C15 C45 C44 C45

C16 C15 C14 C45 C45 C44


(2.8)

A cubic symmetric geometry such as gyroid and Schwarz-P latice geometries belong-
ing to the TPMS family allow for further matrix simplifications and the expression
of the eleasticity matrix using a total of only 3 independent matrix elements as
shown in (Eq. 2.9).



S11

S22

S33

S12

S13

S23


=



C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44





ε11

ε22

ε33

ε12

ε13

ε23


(2.9)

Moreover, based on cubic symmetry, the homogenized Young’s Modulus can be de-
rived from the elasticity tensor components using Eq. 2.10 Li et al. (2019). The
process of numerical homogenization (Bensoussan, Lions & Papanicolaou, 2011)
refers to the computation of these effective material matrix elements with which
a homogeneous cube of material would represent an equivalent response, such as
displacement or voltage difference, to the response of the unit cell with a 3D mi-
crostructure if repeated periodically in three dimensions. As a result, if one can
extract the necessary matrix components for unit cells with different volume frac-
tions, these can be used to map the volume fraction to the desired material property
using an interpolation function such as power law. The resulting interpolation func-
tion then is used in conducting TO and later in reconstruction of the resulting grey
scale topologies to graded TPMS topologies.

E = C2
11 +C11C12 −2C2

12
C11 +C12

(2.10)
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Figure 2.2 Boundary conditions and area definitions properties used in numerical
homogenization models and validation studies

To extract the effective elasticity tensor components, one strain component is set to
one, and the remaining five are set to zero (Eq. 2.11) in each step as follows for the
case of uniaxial strain in the 11, i.e. z direction. Fig 2.2 presents a visualization of
the Boundary conditions when a strain is applied in a single direction to extract a
property.



ε11

ε22

ε33

ε23

ε31

ε12


=



1
0
0
0
0
0





S11

S22

S33

S23

S31

S12


=



C11

C12

C12

C44

C44

C44


(2.11)

In the FEM model of the unit cell comprising a gyroid microstructure, strain is
specified in the form of 1% displacement on the relevant boundary. The resulting
stress will be calculated by extracting the reaction forces and dividing it to the cross
sectional area of the entire unit cell per stress definition in Eq. 2.12.

S = Freac

Asurf
(2.12)

where Freac is the reaction force on a surface, and Asurf is the corresponding surface.
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Per the Eq. 2.8 , C11 and C12 can be extracted under the application of the same
strain extension input but with corresponding surfaces where the reaction forces
need to be computed for that particular elasticity matrix element. The reaction force
for the C11 element computation, for instance, corresponds to the surface aligned
along the uniaxial strain direction, i.e. 11, while C12 is based on the reaction force
extracted on the surface perpendicular to the 11 direction, namely the 22 direction
(Eq. 2.13).

C11 = S11
ε11

= Freac,1
Asurf,1 · ε11

C12 = S22
ε11

= Freac,2
Asurf,2 · ε11

(2.13)

Further simplifications of Eq. 2.13 depends on the specific unit cell geometry that
is used, therefore more details regarding the numerical implementation for the sheet
based unit cell will be given in Chapter 3.

Since the constitutive law for conductivity is also based on a linear relationship like
in the case of linear elasticity, homogenizing initial conductivity follows an analogues
method to the extraction of the effective elasticity. This time, the constitutive law
which involves the material property to be homogenized is Ohm’s Law given in Eq.
2.14.

Ji = σij ·Ej (2.14)

Where Ji is current density tensor on a surface (or cross-section), σij is conductivity
matrix, and Ej is the electric field tensor on the same surface. More details regarding
the implementation are given in Section 3.1 Fig. 3.5. σ is a 3 by 3 matrix, that
can be reduced to an identity matrix given that the material is not subject to any
loading or strain and is isotropic (Wymysłowski et al., 2004) (Eq. 2.15).

σ =


σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 =


σ11 0 0
0 σ11 0
0 0 σ11

 (2.15)

Conductivity matrix elements can be extracted by applying electric field or rather
voltage one at a time, just like strain in the elasticity tensor. For the numerical
implementation in an FEM model, 1V potential is applied to a surface and the
opposite surface is grounded to create an electric field. It is also noted that average
electric field is the potential difference per length, i.e. E = Φ/L. Then, using Ohm’s
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law and the unit cell cubic geometry which is of size 5x5x5 mm3, the conductivity
along the 11 direction, is calculated from the following equation:

σ11 = j1/
1V

L
(2.16)

with L being the lengths of the unit cell in the x and y directions and L is the
distance between the surfaces of the unit cell, that is its thickness,

The corresponding normal current density j1 (an element of the J vector) is cal-
culated by dividing the total current on the respective surface to the value of the
surface area of the design space (Fig. 2.2). In COMSOL we used the integration
function to do the calculation, which will be explained in more detail in the following
chapters.

The derivation of the modified SIMP law requires to repeat the above procedure
described for the elasticity matrix and initial conductivity property for relative den-
sities ranging from 0.1 to 0.7 of the gyroid unit cell. This lower and upper limits are
chosen based on the modeling ability of the gyroid geometry with features without
disconnections and discontinuities. More specifically, similar to existing literature
(Al-Ketan, Lee, Rowshan & Abu Al-Rub, 2020; Panesar, Abdi, Hickman & Ashcroft,
2018), for values of volume fractions smaller than the given range, the geometry re-
sults in a disconnected structure since the walls become too thin, whereas for larger
values of volume fractions, pores start to close-up and the geometry lacks the de-
sired smooth surface behavior. The relationships between the material property and
relative densities are then fitted to an interpolation function. Usually this fit is done
using power laws as suggested by Gibson-Ashby equations (Eq. 2.7). In this thesis
we increased the number of terms of the fitted function, i.e. in the Gibson-Ashby
equations to improve the interpolation’s accuracy (Table 2.1).

2.3.2 Elastoresistivity Homogenization

A piezoresistive sensor material response is inherently governed by Hooke’s Law and
Ohm’s Law at the same time. In addition to these two, there is a third equation
that connects the two constitutive laws to each other through the definition of
piezoresistivity, Eq. 2.3 which was introduced in Section 2.1. As was pointed out in
Section 2.1, for a cubic symmetric structure, the relevant material property refers
to the elastoresistivity matrix that can be reduced to 3 elements. In addition to
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this, Wymysłowski et al. (2004) states that in most cases m44 is equal to zero.
Accordingly, the homogenization procedure in essence only requires the extraction
of m11 and m12 by applying unit strain in one of the directions, say z axis indexed
with 1 throughout the thesis, hence the applied strain refers to ε11 . The analysis
of a single strain in a chosen direction should be sufficient for the solution of the
necessary elastoresistance tensor elements. For ε =

[
ε11 0 0 0 0 0

]
, Eq. 2.5

will simplify to

∆ρ11 = m11 · ε11

∆ρ22 = m12 · ε11

∆ρ33 = m12 · ε11

(2.17)

where ∆ρ22 and ∆ρ33 are observed to be equal and will be treated as such in the
remainder of the thesis. Therefore calculating ∆ρ11 and ∆ρ22 is sufficient to com-
pute the effective or homogenized m matrix of a repeated unit cell using numerical
homogenization (Wymysłowski et al., 2004). As mentioned before, the materials
are assumed to be isotropic, therefore the elastoresistivity matrix can be defined by
single scalar value, m . Accordingly, m is a material property that linearly connects
strain to change in resistivity (∆ρ11 = m · ε11). But change in resistivity, unlike
stress or current response of a sensor when subject to strain and voltage input, is
not a directly calculated or measured output in an experimental setup, hence one
way of extracting it is to rely on Ohm’s Law, i.e. J = σcE. Use of Ohm’s law in
connection to the change of resistivity definition under applied strain, yields the fol-
lowing matrix equation (Eq. 2.18) for the current density components j1, j2, j3 in
terms of the change of resistivity components ∆ρ11, ∆ρ22, and ∆ρ33 and the electric
field vector E with components E1, E2, and E3.


j1

j2

j3

 =


σ0 + 1

∆ρ11
0 0

0 σ0 + 1
∆ρ22

0
0 0 σ0 + 1

∆ρ33



E1

E2

E3

 (2.18)

Here, σ0 is the initial conductivity. As materials are assumed to be isotropic based
on the earlier equality observation, the diagonal elements of the conductivity matrix
are also treated to be equal. One row of the matrix equation can be rewritten in
shorthand notation as

j1 = (σ0 +(∆ρ11)−1) ·E1. (2.19)
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∆ρ is the difference between the inverse of final conductivity σf (i.e. final resistivity)
and inverse of initial conductivity σ0 (Eq. 2.20), and therefore the current density
and the electric field can be related to each other using the sum on the right hand
side in Eq. 2.19.

∆ρ = ρf −ρ0 = σf
−1 −σ0

−1 (2.20)

Keeping that in mind Eq. 2.20 and recalling that ∆ρ = m ·ε (Eq. 2.3), the following
equality is derived:

m · ε11 = σf
−1 −σ0

−1 (2.21)

Since the aim is to define change in resistivity Eq. 2.20 can be rearranged as ∆ρ =
E1/j1. Then, m can be calculated as a post-processed quantity using the following
final expression:

m = (E1/j1)−σ0−1

ε11
(2.22)

During the FEM analysis, initial and final conductivities, σ0 and σf , are extracted
from two different simulation models. In the former, there is no strain applied and a
pure electrical response analysis under the application of voltage takes place. In the
latter, electrical response is solved for under the application of strain. Equation 2.22
shows that to extract m, both electric field and strain must be applied to extract
the final conductivity upon which m is based per definition as stated in 2.22. The
boundary conditions as given in detail in Section 3.1, in the FEM model used for
numerical homogenization of m is 1V potential difference and 0.01% strain applied
along the same direction. It is basically a combination of the homogenization model
inputs used for the calculation of effective Young’s Modulus and initial conductivity
properties.

2.4 Fabrication of Piezoresistive Pressure Sensors

Porous sensors including PR sensors, depending primarily on the materials used, are
fabricated using various techniques including salt leaching or gas-foaming, phase-
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separation followed by freeze-drying and lately additive manufacturing (Feng et al.,
2022). In most of the sensor design fabricated using traditional pore forming meth-
ods, to directly and precisely control the pore properties remains a challenge where
additive manufacturing (AM) stands out. During AM, the geometry is sliced into
many cross-sections which gives the user a very precise control of porosity. With
the increasing options of materials for additive manufacturing and simplicity of the
production process, it is the preferred fabrication method for 3D structures such as
porous sensors. Main techniques of AM comprise liquid, solid and powder based
methods. These divide into subcategories within themselves too. The most com-
mon used technique is fused deposition modelling using liquid-material processing
(Rasiya, Shukla & Saran, 2020). The thin plastic filament is molten (hence the
liquid-based name) at the printer head and extruded on the printer plate layer by
layer. Filaments used for Fused Deposition Modeling (FDM) printing have high
melting temperatures and cool down and solidify once it leaves the printer head.

Flexible materials such as Polydimethylsiloxane (PDMS) are not suitable for FDM
printing. As a result, a mold is modeled to cure the flexible material inside. The
mold must be a disposable material so that it could be eliminated after the curing
process. Although in this thesis we did not present any fabrication related efforts,
the feasibility of manufacturing TPMS based sensors was tested in our research
group experimentally (Erulker et al., 2022) for which the basis steps are provided
in Fig. 2.3. Here, Polyvinyl alcohol (PVA) was used to fabricate the mold which
geometrically is in the complementary/negative form of the TPMS sensor geometry
CAD model. PVA is commonly used as a support material during FDM printing
because it is eco-friendly and can dissolve in water without need of any extra mate-
rials or post-processing. Here, the main idea relies on the lost-mold technique where
the sensor made of PDMS and coated with a piezoresistive conducting polymer,
Polypyrrole (PPy) was then filled into the PVA mold, cured and then the mold was
dissolved in distilled water to deliver the TPMS geometry of the PDMS sensor.

2.5 Topology Optimization and SIMP Models

In the last three decades, topology optimization has experienced significant de-
velopments with a wide range of applications from traditional mechanics to fluid
mechanics, heat transfer and electromagnetics, as well as multiphysics applications
(Bendsøe & Sigmund, 2003). In very basic terms, it can can be regarded as a numeri-
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Figure 2.3 Fabrication steps of a TPMS sensor using lost mold technique based on
(Erulker et al., 2022)

cal iterative procedure to find the best material distribution in the pre-defined design
domain. Various topology optimization methods have been developed including the
homogenization method (Bendsøe & Kikuchi, 1988), the Solid Isotropic Material
with Penalization (SIMP) (Zhou & Rozvany, 1991), the Evolutionary Structural
Optimization (ESO) (Xie & Steven, 1993) and the Level Set Method (LSM) (Wang,
Wang & Guo, 2003) and more recent methods such as the phase field method (e.g.,
Takezawa, Nishiwaki & Kitamura (2010)), and the moving morphable component
(MMC) method (e.g., Guo, Zhang & Zhong (2014)).

Designing through topology optimization (TO) is to calculate the optimal arrange-
ment of a limited volume of material within a spatial domain to achieve the best
response formulated in terms of a mathematical objective function, in the case of the
study in this thesis, this is sensitivity of the PR pressure sensor. For the optimiza-
tion process one must first define the objective function and the limiting conditions.
For example, for the mechanical compliance case, the objective is to minimize strain
energy density while there is an upper limit for the total volume of the material,
and the governing physics is based on the continuity equation of linear elasticity
subject to Hooke’s Law and the definition of strain. The optimization process sys-
tematically and iteratively redistributes material throughout the domain to create
the final structure. The amount of the material in every unit cell after the distribu-
tion is called relative density, ρe. Unlike size and shape optimization methods, TO
can represent complex and arbitrary topologies without the need for remeshing or
intricate shape functions (Simsek et al., 2020).

In a TO design framework based on SIMP, an explicit relationship between an
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artificial density variable representative of relative density or volume fraction of the
FE cell and the respective material property. Standard SIMP based models are
exponential. Table 2.1 shows the interpolation function for each material property
constructed via numerical homogenization procedure as described in this section.
These are the so-called modified SIMP material models used in the TO framework
developed in this thesis. The corresponding multi-physics model of the PR sensor
rely on the solution of linear elasticity and electrostatics coupled via piezoresistivity
of the material. The relevant screenshots of the implemented model are shown
in Appendix 4. The PR sensor is envisioned as a volumetric design domain that
is composed of PR material that shows both elastic and piezoresistive behavior
according to prescribed modified SIMP models shown in Table 2.1 governing each
physical material property.

Table 2.1 Form of the modified SIMP functions used for respective material proper-
ties

Material Property SIMP Function

Young’s Modulus E(ρ) = Esol · (a1 ·ρn1 + b)
Initial Conductivity σ0(ρ) = (σ0)sol · (a2 ·ρn2 + b)

Elastoresistivity matrix component m(ρ) = msol · (a3 ·ρn3 + b)

Here E0,σ00 and m0 are the three material properties of the pressure sensor, namely
the Young’s modulus, initial conductivity and elastoresistivity matrix, respectively.
It is noted that the original solid mechanical material property matrix demands three
material constants but the chosen sheet based gyroid unit cell is shown in literature
to display negligible anisotropy and therefore is reduced to a single isotropic material
constant of C11 which is directly related to the Young’s modulus only. Additionally,
the use of an isotropic material model i.e., SIMP is justified based on the isotropic
behavior for sheet based gyroid TPMS lattices as documented and used in literature
(Chatzigeorgiou, Piotrowski, Chemisky, Laheurte & Meraghni, 2022; Li et al., 2019;
Lu, Zhao, Cui, Zhu & Wu, 2019).

2.6 Geometric Modeling of the Gyroid Unit Cell

The procedure of developing the SIMP functions for a material property, i.e. the
numerical homogenization procedure is described in detail in the previous section,
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and specific implementation details in the numerical simulation model will be given
in Chapter 3.

The correct implementation of this procedure is based on the geometric modeling
of the unit cell model used. The geometry chosen for this study is a sheet based
gyroid, a type of TPMS. We summarize the necessary equations and procedure that
was implemented using a MATLAB script code to generate gyroid unit cells. More
details can be found in similar modeling efforts as in Simsek et al. (2020)’s.

Among various techniques used for modeling TPMS geometries, the common sheet
phase modeling approach is based on an implicit function to generate the U = 0
iso-surface of the generalized equation given below:

fT P MS(kx,ky,kz ,x,y,z) = t (2.23)

where the periodic properties of the surfaces are governed by:

ki = 2π
ni

Li
(i = x,y,z) (2.24)

with ki representing the periodicity of the TPMS function, ni denoting the number of
cells, and Li being the total length of the structure in each respective direction. The
parameter t controls the volume fraction of the generated structure which physically
represents the thickness of the gyroid geometry within the unit cell. Previous studies
have demonstrated that this relationship is linear for most unit cells within the
manufacturable range of volume fractions. The matrix phase equations for the
applicable TPMS can be easily derived by squaring both sides of Eq. 2.23.

In this thesis, since a sheet based gyroid structure is chosen in conducting all simu-
lations including optimization the corresponding Gyroid iso-surface function can be
represented in the following form and is encoded in MATLAB:

U = [cos(kxx) · sin(kyy)+ cos(kyy) · sin(kzz)+ cos(kzz) · sin(kxx)]2 − t2 (2.25)

With the explicit function definition of U, the surface of the unit cell geometry can
be modeled and via the use of algorithms such as the marching cubes, extraction of
a triangulated face from this implicit surface description is possible. This allows not
only for the unit cell model creation necessary for numerical homogenization but
also should be used for the reconstruction of graded TPMS topologies of TO based
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design results as shown in literature (Simsek et al., 2020). The reconcstruction phase
is not performed in this thesis.

For the former objective, numerical homogenization conducted in this thesis, unit
cells were modeled of size 5x5x5 mm3 and for conducting the latter, i.e. TO design,
a model of 15x15x15 mm3 design volume was defined with a mesh size of 1x1x1
mm3 to search for the optimal relative densities occupying these finite elements. It
is also noted that the validation of the homogenization procedure requiring repeated
unit cell topologies, a model of a 3x3x3 unit cells was developed.
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3. METHODOLOGY

In this chapter, information provided in Chapter 2 on the theoretical basis of the
study presented in this thesis will be complemented with computational implemen-
tation details within the scope of this thesis.

First section of the chapter will give details about the implementation of the homog-
enization process within COMSOL Multiphysics, and the second section expands on
the implementation details of the developed TO models presented in this thesis.

Proposed TO-based design scheme is mainly composed of two major modules
as shown in Fig. 3.1 and is implemented to the design of PR pressure sensor
targeting maximum sensitivity. The design scheme essentially is an integrated
homogenization-based TO (HMTO), where in the first module, namely the FGS
based material model serves two main purposes: to construct the modified SIMP
models and to reconstruct the FGS using density mapping methods. As a first step
towards both goals, sheet based gyroid unit cells are modeled with different relative
densities using an implicit formula.

Figure 3.1 Developed design scheme for design optimization of functionally graded
cellular structures (FGCS) applied to PR sensors
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Next, a material model is established by interpolation based on a set of simulations
performed to relate the three material properties of the gyroid lattice to its rela-
tive densities. In the last step towards the first output, the original SIMP formula
is modified by the corresponding equations extracted from homogenization stud-
ies, and fed into the second module to perform TO. Towards the second output of
FGS, density mapping reconstruction takes place to transform the resulting optimal
material distribution into a graded gyroid lattice structure. Mores specifically, the
procedure starts with mapping the optimal densities from the optimization analysis
for each corner node of a solid element using an arithmetic averaging scheme. Next,
grids are enriched via tri-linear interpolation using relative density information of
the corner nodes to achieve a smoother FGS which is preferred by AM. The re-
construction process ends up with voxelization and the STL geometry generation
utilizing the enriched relative density grid, implicit gyroid formula, and the march-
ing cubes algorithm (Newman & Yi, 2006). All these steps are including tri-linear
interpolation and voxelization are exactly adopted from an earlier study carried out
in (Simsek et al., 2020).

In the second module of the design scheme, namely the optimization, the modified
SIMP models are used and a TO is conducted to find the optimal material distri-
bution for given boundary conditions and loading of the pressure sensor to achieve
optimal performance such as maximum sensitivity.

Throughout the implementation of the design scheme, for numerical analysis FEM
is used in COMSOL Multiphysics software which starts with the first step of the
geometrical modeling. Here, the gyroid unit cell model was created as an .stl file
via an in-house developed code in MATLAB and imported to COMSOL where it is
solidifed and meshed using a tetrahedral mesh for homogenization and a hexahedral
mesh within the TO studies. Screenshots of the step-by-step implementation of the
modeling scheme is shown in Appendix .1.

The remainder of the chapter is structured to provide details on each step of the
design scheme shown in Fig. 3.1.

3.1 Derivation of modified SIMP Models using Homogenization

Three homogenization models were constructed to set up the optimization prob-
lem’s SIMP modified material models for the following material properties: (1) the
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mechanical property of the sensor, i.e. Young’s modulus, (2) initial conductivity,
and (3) elastoresisitivity material property to characterize the piezoresistive matrix
property. The materials are assumed to be isotropic, hence the homogenized ma-
terial models are fitted to a modified SIMP function using single scalar properties
although all of the used material properties in their general form are tensors as ex-
plained in Chapter 2. A set of static analysis simulations were performed on the
gyroid unit cell imported to COMSOL with different volume fractions ranging from
0.1 to 0.7. Properties of the analyzed unit cell models and simulation settings are
explained for each of the respective material property’s homogenization scheme in
the next sections. Also, their validations against the response of a homogeneous
cubic model is described.

3.1.1 Homogenization of Effective Young’s Modulus and its Validation

A single unit cell gyroid model is used for Young’s Modulus homogenization. The
unit cell size is 5 mm in every direction. A single unit cell is used to reduce compu-
tational requirement. Symmetry Conditions are used at the sides as shown in (Fig.
3.2) to represent the repetition condition of gyroid unit cells, a basic assumption for
the mathematical homogenization theory to hold.

Figure 3.2 Boundary Conditions applied for the Young’s Modulus homogenization
of a gyroid shown for a unit cell with 0.5 relative density

Referring back to Chapter 2, to find the effective Young’s Modulus, we use Eq.
2.10. Hence C11 and C12 should be extracted. These are extracted under the same
loading condition per the matrix system equation. A 1% stain in z direction (ε11) is
applied from the top surface, and movement in x and y directions of the top surface
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are restricted using the Rigid Connector node available in COMSOL. The bottom
surface is fixed in every direction and the side surfaces are free to move. Since the
rest of the strain values are zero, we are left with S11 = C11 ·ε11 and S22 = C12 ·ε11.
Reaction force is measured from the bottom surface. The total reaction force is
calculated using intop() nonlocal coupling built-in function available in COMSOL at
the bottom surface. intop() optin is set to "summation over nodes". The calculated
value is divided to the top surface area of the unit cell cube that the gyroid fits
into. This implies that for the extraction of the effective property, rather than the
surface area of the gyroid itself, the cross sectional area Asurf of the unit cell cube
should be taken. A representative model and the relevant area definition is shown
in Figure 2.2. This will give an "effective" material property value of the gyroid with
prescribed relative density that a homogenized cube has to be assigned to yield the
same effective mechanical response. Since the design space is cubic, length of all
sides are of size L. Also uni-axial strain can be defined via L/∆L and substituted
to Eq. 2.13 to extract C11 and C12as follows:

C11 = Freac,1
L ·∆L

C12 = Freac,2
L ·∆L

(3.1)

In summary, the simulation for the numerical homogenization steps conducted for
the gyroid unit cell in COMSOL are as follows:

1. Input of solid material properties which are chosen as shown in Table 3.1

2. Definition and extraction of C11 and C12 as variables (Fig. .1.4 ).

3. Rigid Connector boundary condition assignment at the top surface

4. Fixed Constraint assignment at the bottom surface

5. Conducting a stationary study run

Table 3.1 Gyroid material properties: Young’s modulus homogenization

Material Property Value Unit

Young’s Modulus 2 MPa
Poisson’s Ratio 0.49

Density 980 kg/m3

It is noted that the solid material properties are chosen based on PDMS senor ma-
terial properties from literature (Moučka, Sedlačík, Osička & Pata, 2021). Free
tetrahedral mesh is used to mesh the gyroid (Fig. 3.3). The exact meshing param-
eters change depending on the volume fraction of the gyroid unit cell since thinner
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wall thicknesses will requires as a rule of thumb at least two-three finite elements per
thickness tor an acceptable modeling accuracy. The above step-by-step procedure
for the numerical homogenization is repeated for all gyroid unit cell models created
with different relative density values.

Figure 3.3 Mesh used for numerical homogenization of a gyroid unit cell and its
homogeneous cubic counterpart model used for the validation of homogenization

After the repeated simulations for each volume fraction, the resulting values are
fitted to an interpolation function, (E∗(ρ) = Esol(a1 · ρn

1 + b1), using Curve Fitting
application of MATLAB (Fig. 4.4. The application uses Trust-Region algorithm
with nonlinear least squares method to fit data sets. Power Law with one or two
terms is one of the presented fit options. After the extraction of the modified SIMP
model, the homogenization results are validated by comparing the responses of the
gyroid unit cell and its homogeneous cube counterpart at each relative density. For
validation purposes, this time a gyroid unit cell with 3 repetitions of size 5 mm unit
cells was modeled in order to satisfy the periodic/repeated unit cell assumption for
the theory of homogenization to hold. Higher number of unit cell repetitions are
expected to yield a higher match with the response of the homogeneous material cube
but is computationally prohibitive. The repeated gyroid model and its corresponding
homogenized cube’s dimensions are set to 15x15x15 mm3. In the validation model,
constant force is applied at the top surface of the repeated gyroid at the chosen
relative density. One of the important steps in performing the comparison is to
assign the homogenized material property evaluated with the fitted interpolation
function to the cube model. That is the homogenized Young’s Modulus value per
the homogenization scheme of the gyroid at the specific relative density is used to test
its validity. Bottom surfaces of both models used for comparison are fixed (Fig. 3.4),
and their average top surface displacement is compared. In the validation model
of the homogeneous cube, first step of the homogenization procedure is updated
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with the earlier extracted homogenized data at the relative density chosen for the
comparison. To do that, Young’s modulus is replaced with the modified SIMP
function’s value, density is linearly dependent on relative density, and Poisson’s
ratio stays the same as summarized in (Table 3.2).

Figure 3.4 Boundary conditions of repeated gyroid (left) and cube (right) models
used for Homogenized Young’s Modulus validation

Table 3.2 Homogenized cube material properties: Validation of Young’s modulus
modified SIMP fit.

Material Property Value Unit

Young’s Modulus E(ρ) = 2(0.8321 ·ρ1.784) MPa
Poisson’s Ratio 0.49

Density 980ρ kg/m3

As a second step, for the validation, earlier homogenization steps are basically fol-
lowed but the prescribed displacement in the z direction is unchecked and instead
the Applied Load function is added to apply a compressive Force at the top surface
of 0.1 N magnitude to both models. A small value is used to ensure that strain is
within the linear elasticity range even for smaller relative densities with less stiffness.
A hexahedral mesh is used for the homogeneous cube with 0.75 mm edge length of
each FE for every unit cell edge (Fig. 3.3).
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3.1.2 Homogenization of Initial Conductivity and its Validation

In Chapter 2, the derivation of the effective initial conductivity was derived and
shown to be equal to the current density on a cross-section ratio to the electric field
perpendicular to the surface (Eq. 2.16). If we compare Hooke’s Law to Ohm’s Law,
strain would be analogous to potential difference (Φ), and stress would be analo-
gous to current density following a simple input-output relationship. We used this
analogy to develop and compute the homogenized initial conductivity implementing
the numerical homogenization procedure in COMSOL software. Another way of
approaching the problem is to realize that the governing equations of electrostat-
ics and the constitutive laws are directly analogues with heat conduction in solids
characterized with thermal conductivity instead of electrical conductivity.

Figure 3.5 Boundary Conditions applied for the initial conductivity homogenization
of a gyroid shown for a unit cell with 0.5 relative density

For the numerical homogenization simulation model construction in COMSOL, Elec-
tric Currents physics module is imported to impose the electrical governing equa-
tions and relevant boundary conditions. 1 V potential difference is applied at the top
surface (z+) using Electric Potential node and the bottom surface (z-) is grounded
as illustrated in (Fig. 3.5). Similar to Young’s Modulus homogenization, a single
unit cell with symmetry conditions on the sides is used in the model to reduce the
computational load but simulate the repetition condition of numerical homogeniza-
tion theory. The intop() function was used to calculate the total current on the
surface, which is then divided to the cross-section of the unit cell cube to calcu-
late the average current density (Eq. 3.2). Then this value is multiplied with the
thickness of the unit cell, i.e. distance between the top and bottom surface, namely
L. Therefore, the COMSOL equivalent of the calculation of Eq. 3.2 corresponds to
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intop(ec.Jz)/Asurf *L. Extracted values from the corresponding simulation model in
COMSOL are shown in Table 4.3 in Chapter 4.

σ = intop(Jz)
Asurf

· Φ
L

(3.2)

Same mesh of the model used for the Young’s Modulus homogenization is used in
the models used for the calculation of the effective conductivity (Fig.3.3). Electrical
material properties of the solid material that are assigned to the model are as given
in Table 3.3. Number density is driven from the electrical conductivity value of
0.0001S/m based on earlier measurements (Erulker et al., 2022). The resulting
effective conductivity values are fitted to a second modified SIMP function as given in
Table 2.1, and imported to the homogenized cube model for its validation. Resulting
values are fitted to an interpolation function, (σ0(ρ) = σ0sol(a2 ·ρn

2 +b2), using Curve
Fitting application of MATLAB (Fig. 4.4

Table 3.3 Gyroid material properties: Initial conductivity homogenization

Material Property Value Unit

Electrical Conductivity 0.0001 S/m

Number Density 1.3021 ·1016 1/m3

Relative permittivity 2.75

Performances of 1x1x1 unit cell gyroid with 5 mm size and homogenized cube of
5x5x5 mm3 dimensions are compared for validation. Both have symmetry condition
present for the side surfaces. First a conductive plate with 0.1 mm thickness is added
to the geometry at the top. From the top of this geometry 1A/m2 current is applied
(Fig. 3.6). The plate is applied both to the gyroid and the homogenized cube.
Bottom of the geometry is grounded, and the output voltage is measured from the
top of the design space. SIMP material properties are inserted in the homogenized
cube model and a parametric sweep of relative density is performed. The results
will be discussed in the following chapter.
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Figure 3.6 Boundary conditions of repeated gyroid (left) and cube (right) models
used for Homogenized initial conductivity validation

Table 3.4 Homogenized cube material properties: Validation of initial conductivity
modified SIMP fit.

Material Property Value Unit

Electrical Conductivity 0.0001 · (0.877ρ1.487 +0.65) S/m

Number Density 1.3021 ·1016 · (0.877ρ1.487 +0.65) 1/m3

Relative permittivity 2.75

3.1.3 Homogenization of Elastoresistivity Component and Its Validation

To compute the homogenized elastoresistivity implementing the numerical homoge-
nization procedure in COMSOL, we apply the combined set of the same boundary
conditions applied when conducting the numerical homogenization for each property
individually as discussed for the mechanical Young’s modulus and initial conduc-
tivity homogenization cases. Extraction of this material property based on a com-
bined multi-physics model requires special care as it presents its differences from the
previous homogenization calculations mainly because it cannot be formulated and
therefore extracted as a model output directly but rather needs to be post-processed.
Similar to initial conductivity, here we start by calculating the effective final con-
ductivity of the model (Section 3.1.2, but unlike the effective initial conductivity
that was calculated under no-strain condition, the final effective conductivity is cal-
culated under the application of 1% strain of the single unit cell gyroid model as
shown in Fig. 3.8) . Then, the change in resistivity is calculated from the difference
of the initial and final conductivity values. Change in resistivity is defined as the
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product of elastoresistivity component and strain (Eq. 2.21) and the equation used
to extract m is given in Eq. 2.22.

For the numerical homogenization simulation model construction in COMSOL ,
we use Solid Mechanics, Electric Currents and Piezoresistive Domains, Boundary
Currents physics altogether. The third one introduces the piezoresistivity nature
displayed by a PR sensor via the coupling constitutive equation relating the former
two physics. Also, under Electric Currents, the gyroid unit cell domain is defıned as a
elastoresistive material under Current Conservation, Piezoresistive node. Boundary
conditions require both a 1 V potential difference and a 1% strain to be applied in the
z direction from the top surface of the gyroid while keeping the bottom surface nodes
fixed, i.e. a combination of the solid mechanics homogenization boundary conditions
shown in Fig. 3.2 and that of the the electrical conductivity homogenization (Fig.
4.9) are applied. Similar to the initial conductivity homogenization FE model, a
single unit cell gyroid model with symmetry condition on the sides is used in the
model.

Results of the aforementioned model are exported to an Excel file and are used as
input to a post-processing scheme to extract the desired final effective elastoresistiv-
ity values for the particular volume fraction of the simulated gyroid unit cell. The
calculations necessary for the extraction of m follow mainly a 4-step procedure as
follows:

1. Computation of initial conductivity σ0 (no-strain) and final conductivity σf

(under strain loading) values for a gyroid unit cell model

2. Calculation of the absolute relative resistivity change using ∆ρ = |σf
−1 −σ0−1|

3. Calculation of the absolute value of effective elastoresistivity, mlatt, using
mlatt = ∆ρ/ε11 with the strain value, ε11, calculated as a response to the
1% strain and 1 V electric potential applied loading.

4. Calculation of the final normalized effective elastoresistivity m∗ = mlatt/msol

where msol is the elastoresistivity component of the solid material. The value for
msol was taken from COMSOL’s material library and corresponds to the m11 value
for lightly doped single crystal p-silicon which is 96 kΩ ·m.
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Table 3.5 Gyroid material properties: Elastoresistivity homogenization

Material Property Value Unit

Young’s Modulus 2 MPa
Poisson’s Ratio 0.49

Density 980 kg/m3

Electrical Conductivity 0.0001 S/m

Number Density 1.3021 ·1016 1/m3

Relative permittivity 2.75
Elastoresistivity Component 96 kΩ ·m

Performances of 1x1x1 unit cell gyroid with 5 mm size and homogenized cube of
5x5x5 mm3 dimensions are compared for validation. Both models includes a plate
at the top to apply equal pressure on the corresponding unit cell models (Fig. 3.7).
1V is applied to the top of both unit cell models while all other boundary conditions
are the as same as applied while performing the homogenization of the elastoresis-
tivity material property. For the validation model, effective current density at the
bottom of the design space is compared between gyroid unit cell and same sized
homogenized cube. Mesh of the homogenized cube is the same as was used for the
initial conductivity and elasticity validation studies (Fig. 3.3).

Figure 3.7 Boundary loading conditions of repeated gyroid (left) and cube (right)
models used for homogenized elastoresistivity, m, validation.
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Figure 3.8 Expression and surface used in COMSOL for the effective final conductiv-
ity σf extraction of a gyroid unit cell model used for validation of the homogenized
elastoresistivity, m .

3.2 Topology Optimization

In this section we provide the methodology and implementation details of the de-
veloped TO models which relate to the second module of the proposed TO-based
design scheme shown in Fig. 3.1 which is implemented to the design of PR pres-
sure sensor targeting maximum sensitivity. The details of the first module, where
necessary material models are developed are discussed in Section 3.1.

Before running the developed TO based design framework scheme for its actual
purpose of designing the sensor with respect to both the mechanical and electrical
performance in an integrated multi-physics model, first the TO scheme is applied to
two other problem sets where mechanical stiffness/compliance or electrical conduc-
tivity based sensitivity is targeted separately. The design steps and definition of the
respective optimization models in these two categories are provided in the respective
flowcharts in Fig. 3.10 and Fig. 3.12, for the mechanical compliance vs. electrical
conductivity based TO sub-set of problems. Both of these design sub-problems are
used as reference designs before combining the mechanical and electrical objective
functions in a multi-criteria setting following the Multi-Criteria Design Optimization
Flowchart in Fig. 3.14 which constitutes the third category of design case studies.
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Also, the first two TO problem groups focusing on a single discipline target only
and their corresponding results assisted us in the tuning of the multi-criteria opti-
mization model as well as the interpretation of the results of the combined problem.
The first problem of the TO based design focusing only on the mechanical compli-
ance also provides a qualitative validation basis for the developed framework to be
compared with one of the mechanical benchmark problems. It is also noted that
the last step of the design cycle as apparent in the respective flowcharts constitute
the gyroid mapping step after finding the optimal topologies in the form of opti-
mized density distributions. Although this last step of reconstruction is needed to
transform the density distributions to graded gyroid structures, it was not pursued
within the scope of the thesis.

3.2.1 Common Properties of the Optimization Models

In all optimization models of all three design categories, the design space is defined
as a 15x15x15 mm3 cubic design domain to represent the PR pressure sensor. As
mentioned in the introduction, the decisive pressure for bedsores is 35 mmHg which
is approximately 4666 Pa (Misaki et al., 2014). Consequently, the boundary load
applied during optimization is 4666 Pa. The electrical boundary conditions change
depending on the model, so they will be noted for every model separately. In
the developed models, Solid Mechanics, Electric Currents, and Piezoresistive Effect
Domain Currents physics are enabled via COMSOL user interface for all models
to incorporate the necessary solution of the relevant governing equations for linear
elasticity, electrostatics, and piezoresistive coupling, respectively because relative
change in resistivity is calculated in all TO design cases even if it’s not optimized
for in the first or second category of the design categories. Similarly, all material
properties necessary for the simulation of a pressure sensor are calculated using
their corresponding modified SIMP models of all three material properties even
though they are not directly linked to the optimization model’s design objective or
constraint.

The material properties assigned to the design space rely on the modified SIMP func-
tions determined in the homogenization stage as presented earlier in Table 2.1. In
other words, Young’s Modulus, initial conductivity and elastoresistivity component
depend on the relative density of the unit cells in all models. TO is implemented us-
ing the General Optimization module of COMSOL Multiphysics ver. 6.2 and solved
using the Method of Moving Asymptotes (MMA) (Stolpe & Svanberg, 2001) and

40



sensitivity analysis was performed using Adjoint based sensitivity method which is
available as a built-in sensitivity tool in COMSOL Multiphysics. All models are
meshed using a hexahedral mesh of 4096 quadratic serendipity type elements. The
design domain space of 15x15x15 mm3 cubic domain is divided into 1x1x1 mm3 FE
design cells (Fig 3.9).

Figure 3.9 Mesh used in all Topology optimization case studies

3.2.2 Design Framework for Solid Mechanics Based Topology Optimiza-

tion

The steps followed for the first category of design problem, namely the Solid Me-
chanics based TO, which is applied in this thesis to the minimum compliance of a
compression cube are shown in the flowchart given in Fig. 3.10.
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Figure 3.10 Design Flowchart of Solid Mechanics Based Topology Optimization

Definition of the optimization model solved for the compliance minimization is as
follows:

min. Ws = UT KU

s.t. F = KU

0.1 < ρe < 0.6∫
Ω ρe dV < 0.5

where Ws represents the total strain energy or compliance and F = KU are the
discretized system equations that are solved using FEM and represent governing
equations of solid mechanics, which are assumed to obey linear elasticity. ρe repre-
sents the volume fraction of the eth design cell and refer to the design variables of a
TO problem. The integral computes the total volume of the design domain which
is set in this problem to be kept below 50 % of the entire total volume. The relative
density lower and upper bounds are set to 0.1 and 0.6, respectively.

It is noted that in addition to the pressure applied to the pressure sensor model
that the solution of the system equations are based on in conducting the compliance
based TO, a potential excitation of 1V is applied to the top of the sensor model sur-
face keeping the bottom surface grounded (Fig. 3.11). All materials that comprise
the design space are defined as a piezoresistive material even though the mechanical
property is the only material property that is optimized for in the solid mechanics
based TO problem using the calculated modified SIMP based material model for
Young’s modulus via homogenization as discussed in Section 3.1.1. The piezoresis-
tive material assignment is necessary to model the pressure sensor and to evaluate
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the piezoresistive behavior in terms of its electrical performance for varying material
distributions that the compliance based TO problem will result in. For the sake of
this evaluation, it is noted that the initial design of a homogeneous cube with 0.5
volume fraction yields an initial reference value of relative change in resistivity of
4.81%.

Figure 3.11 Boundary conditions applied on design domain used for solid mechanics
based TO case study targeting minimum compliance

3.2.3 Design Framework for Electrical Conductivity Based Topology Op-

timization

The steps followed for the second category of design problems, namely the electrical
conductivity based TO, which is applied in this thesis targeting maximum sensitivity
via different optimization models are shown in the flowchart given in Fig. 3.12.
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Figure 3.12 Design Flowchart used for Electrical Conductivity based Topology Op-
timization Studies

Compliance optimization problem is one of the mostly studied structural optimiza-
tion problems in literature, and therefore the model definition with appropriate
application of boundary conditions and the definition of a suitable objective func-
tion as well is implementation is straightforward. However, topology optimization
of 3D piezoresistive pressure sensors remain relatively unexplored as discussed in
Chapter 1. In this section, we first adopt the TO using different objective functions
for getting the best sensitivity (Table 3.6) and later in the next section integrate
it to target improvements in both the solid mechanics as well electrical sensitivity
behavior. Here, we use the modified SIMP model for (initial) conductivity with
relative density values of design cells restricted to the working range of ρ = 0.1 to
ρ = 0.6. These bounds apply to all case studies presented in all three categories to
which the graded TO framework was applied. Also, Hooke’s Law and Ohm’s law
are used for modeling all case studies listed in this second category here for electri-
cal conductivity based TO. In Chapter 4, we present and compare their resulting
change in relative resistivity values of all case studies.

A total of 3 case studies are conducted in this category. For the case study 1, the
objective was to minimize the final potential difference between the bottom ground
and the top plane comprising the sensor (Fig. 3.13). For increasing sensitivity, con-
ductivity must be as high as possible. Therefore, minimizing the potential difference
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between the plates is one way to achieve maximum sensitivity. Since the potential
difference is targeted, the model is excited with a 1 A/m2 current density applied
from the top surface, rather than the application of the electric potential. The
bottom is grounded, and similar to the problem presented in the first category of
the minimum compliance problem, 4666 Pa pressure is applied from the top. Total
average volume is constrained to 0.5 of the total volume.

The objective function of case study 2 is more intuitive. The actual target of max-
imum sensitivity is defined directly as the objective function. Namely, the inverse
of change in relative resistivity is set to be minimized. In this case study, similar to
the models used for numerical homogenization of conductivity, a potential of 1V is
applied from the top, and the bottom is grounded. Finally, for the case study 3, the
electric potential at the top surface is assigned a 1 A/m2 current density excitation
similar to the boundary loading condition of case study 1.

Figure 3.13 Boundary Conditions applied on design domain used for electrical con-
ductivity based TO case study 1 and 3 (left) and case study 2 (right)

(a) Boundary conditions case study 1
& 3

(b) Boundary conditions for case
study 2

Table 3.6 Properties and objective functions of electrical conductivity based TO
cases targeting maximum sensitivity

Case Study Objective function Objective function Boundary
No. type Conditions

1 Min. Φtop −Φtop Global 1A/m2 at top
2 Min. ρ0/∆ρ Integral 1V at top
3 Min. Φtop −Φtop Global 1A/m2 at top

For the sake of further evaluation to be carried out in Chapter 4, it is noted that
the initial design of a homogeneous cube with 0.6 volume fraction yields an initial
reference value of relative change in resistivity of 3.78%.
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3.2.4 Design Framework for Piezoresistivity based Multi-Criteria Topol-

ogy Optimization

Figure 3.14 Design Flowchart for Piezoresistivity Based Multi-Criteria Topology
Optimization Studies

In order to design a sensor with maximum sensitivity performance, we mainly try
to redistribute the material topology to increase relative change in resistivity at
the pressure value that the sensor will work at. Relying only on an optimization
model incorporating only its electrical performance, i.e. the sensitivity may lead to
designs that present itself with no structural integrity nor the desired deformability
of the sensor which are inherently linked to the mechanical performance of the
deformable sensor. Therefore, in the third category of the TO case studies we focus
on the multi-physics design requirements (Fig. 3.14, rather than a single objective
pursued in the previous two categories. Towards that objective, we adopt the TO
based design framework towards a multi-objective optimization model. Influenced
by existing work and its well-defined TO settings and solutions, we chose to keep the
mechanical design counterpart as the structural stiffness requirement of the sensor
that is defined with a well-known objective function for minimization of total strain
energy. Other alternatives such as required total displacement of minimum stiffness
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to achieve the maximum deformation ability of the sensor could be applied but is not
pursued here mainly to keep the focus of thesis on the piezoresistivity of the sensor
which constitutes the novelty of the thesis. Also, the choice of a PDMS material
for the sensor with a relatively low Young’s modulus should allow for the desired
deformability behavior for the target application of bedsore detection.

Table 3.7 Boundary conditions and objective functions of piezoresistivity based
multi-criteria TO cases

Case Study Mechanical Objective Electrical Objective Boundary
No. Function Function Condition

4 Min. UT KU Min. Φtop −Φbottom 1 A/m2 at top
5 Min. UT KU Min. ρ/∆ρ 1 V at top

Figure 3.15 Boundary conditions applied on the design domain used for multi-criteria
based TO case study 4 (left) and case study 5 (right)

(a) Boundary conditions for case
study 4

(b) Boundary conditions for case
study 5

For the first problem in this category, referred to as case study 4, the objective func-
tion responsible of the desired electrical performance is chosen to be the potential
difference. Potential difference and the integral of strain energy density are defined
as separate global objective functions under General Optimization (Fig. 3.16) be-
cause potential difference itself is the function of choice to be minimized, whereas
strain energy density needs to be integrated over the design domain to evaluate the
total strain energy that is set as the mechanical objective function to be minimized.
Instead of a multi-objective optimization study, for all case studies presented, the
weighted sum approach is used for the solution of an equivalent single objective
optimization model. That is both objective functions are summed to define the
resulting aggregate objective function which is implemented in COMSOL under the
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Study tool by choosing “Minimization” for the Type and “Sum of objectives” for
Solution as shown in Fig 3.17.

Figure 3.16 Screenshot of objective function definitions in the multi-criteria based
TO case studies using global objective feature of the general optimization module
in COMSOL.

Figure 3.17 Screenshot of optimization Settings used in the multi-criteria based TO
case studies using global objective feature of the general optimization module in
COMSOL.

In the second model presented within the third category of the multi-physics TO
framework, referred to as the case study 5, one of the objective functions is defined
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as ρ0/∆ρ and the second refers to the integral of the strain energy density (UT KU).
Since both elements are integrated, they are combined under a single Integral Ob-
jective definition in the General Optimization module available in COMSOL (Fig.
3.18). The first trial of equal weighted objective functions prompted for the me-
chanical component dominantly governing the optimization solution. Therefore, the
objective function respresenting the electrical performance was assigned a higher
value to its weight in the weighted sum of the single objective model. More specif-
ically, for the case study 5, for which the results are presented in Chapter 4, the
electrical objective function weighting function was assigned as 0.8 compared to
its mechanical counterpart which was assigned a weighting function of 0.2. Fig.
4.23 shows the results of case study 5 with a multi-criteria function defined as
0.8 · ρ0/∆ρ + 0.2 · UT KU . Due to space limitations, results of optimization models
with different objective function weights are shown in Appendix .2 shows. Addition-
ally, to prevent the model from converging to design solutions demanding completely
closed or too thin gyroid equivalents in the reconstruction step not performed in this
thesis, the relative density values of FE cells were restricted between 0.3 and 0.6 and
the total volume constraint was limited by 30% at the lower limit and 60 % at the
upper limit.

Figure 3.18 Screenshot of the weighted multi-criteria function definition in the multi-
criteria based TO case studies using the integral objective feature of the general
optimization module in COMSOL.
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4. Results and Discussion

In this chapter results of the numerical simulation studies are presented and dis-
cussed first for the numerical homogenization of all three material properties with
their corresponding validation studies. Next topology optimization design results
are presented for the following case studies:

1. Case: Solid mechanics based TO, minimum compliance of a compression cube

2. Case 1: Electrical conductivity based TO targeting maximum sensitivity with
objective of minimum potential difference

3. Case 2: Electrical conductivity based TO targeting maximum sensitivity with
objective of minimum total inverse relative change in resistivity with electrical
potential boundary condition

4. Case 3:Electrical conductivity based TO targeting maximum sensitivity with
objective of minimum total inverse relative change in resistivity with current
density boundary condition

5. Case 4: Multi-criteria optimization with compliance and potential difference
as the optimization criteria

6. Case 5: Multi-criteria optimization with compliance and total inverse relative
change in resistivity as the optimization criteria

All simulations were run on a Intel Xeon workstation with 128 GB RAM and dual
Gold 6136 processor of 3GHz CPU.
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4.1 Results of Homogenization Models and Validations

4.1.1 SIMP Model and Validation of Young’s Modulus

The results for Young’s Modulus homogenization are listed in Table 4.1. The ex-
tracted stiffness matrix components C11 and C12, and calculated effective Young’s
Modulus, Elatt, and the corresponding normalized effective Young’s Modulus E∗

values are also given.

Table 4.1 Homogenized Young’s modulus results of fitted modified SIMP function
and comparison with calculated FE model value of gyroid unit cell

Volume C11 C12 Elatt E∗ = Elatt/Esol Fit Error
Fraction (Pa) (Pa) (Pa) Function (%)

0.1 0.0772 0.0369 0.0533 0.0267 0.0150 43.64
0.2 0.1757 0.0912 0.1133 0.0567 0.0503 11.23
0.3 0.3297 0.1672 0.2171 0.1086 0.1020 6.036
0.4 0.5140 0.2661 0.3325 0.1663 0.1684 1.310
0.5 0.7600 0.4083 0.4747 0.2373 0.2485 4.719
0.6 1.1411 0.6501 0.6692 0.3346 0.3415 2.076
0.7 1.7559 1.1128 0.8926 0.4463 0.4468 0.121

The resulting interpolation resulted in the modified SIMP model E(ρe) = 0.83213 ·
ρ1.7434

e for the calculation of the normalized Young’s modulus scaled with the solid
material’s Young’s Modulus, Esol , witg a value of 2 MPa. Fig. 4.1 shows the fitted
function and the values as calculated by the FEM model that were used in fitting
the function. The error is calculated using the relative percentage error definition.
The fitted function closely follow simulated data with an average error of 4% but
the relative volume fraction of 0.1 point is an outlier and therefore was not included
in the total average error computation. The lower limit of a very thin gyroid with
0.1 relative density has a comparatively higher error which is intuitively expected
as thinner curved structures present a meshing challenge when compared to their
thicker, higher volume fraction counterparts. This is reflected on the validation
results in Fig. 4.2, too. It is noted that the model used is a single unit cell and
the imported gyroid model was created with a mesh density of 25866 in MATLAB.
Model specific statistics regarding the mesh density used in MATLAB for the CAD
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generation as well FEM mesh data and simulation time data of used models are
provided in the Appendix .3 (Table .3.1). The rule of thumb for TPMS meshing is
that there should be as least three elements across the thinnest walls of the gyroid
model. This was not always possible for the models simulated due to hardware
limitations, and hence a possible source for a higher relative error. Also, even though
symmetry condition is used, analysis of higher number of unit cell repetitions with
possibly a higher FE mesh is expected to give more accurate results.

Figure 4.1 Fitted modified SIMP function for Young’s modulus: normalized effective
Young’s modulus vs. relative density under 1% strain.

The modified Young’s Modulus evaluated based on the fitted SIMP model and
other material properties such as Poisson’s ratio and density are inserted to the
homogenized cube model to be compared with the repeated gyroid unit cell model
(Table 3.2. Average values of the displacement along z of the top surface where the
load is applied are compared. The resulting numerical comparison is provided in
detail in Table 4.2 and the corresponding 3D colour coded displacement distributions
are shown comparatively in Fig. 4.3 for a gyroid and homogenized cube of 0.5 relative
density. The results show an average total error of 15%, which decreases to 8% with
the outlier point of relative density of 0.1 excluded.
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Figure 4.2 Validation results of homogenized Young’s modulus: Displacement (y
axis) of 3x3x3 gyroid unit cell with different relative density (x axis) vs. homogenized
cube with fitted Young’s modulus value under 1 N load.

Table 4.2 Top surface z-displacement values of 3x3x3 gyroid unit cell (gyroid) vs.
its equivalent homogenized cube model under 1 N load.

VF Gyroid (mm) Homogenized Error
cube (mm) (%)

0.1 1.1331 1.8011 58.95
0.2 0.52341 0.53792 2.77
0.3 0.2717 0.26529 2.36
0.4 0.18725 0.16066 14.20
0.5 0.1257 0.10888 13.38
0.6 0.089149 0.079233 11.12
0.7 0.063265 0.060561 4.27
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Figure 4.3 Validation of homogenized Young’s modulus: displacement distribution
(mm) response of 3x3x3 gyroid unit cell (left) and its equivalent homogenized cube
(right) under 1N load .

4.1.2 SIMP Model and Validation of Initial Conductivity

Similar to the homogenization of Young’s modulus, results for numerical homoge-
nization of the initial conductivity property for different volume fractions are pre-
sented here. The resulting homogenized conductivity values σlatt are provided in
Table 4.3. Also, the normalized homogenized conductivities, σ∗ as well as the er-
ror between the fitted function to these values and the relative error of the fitted
function value are tabulated. Overall average error of the interpolation is about 5%
with outlier trends at the limits of the volume fraction range of 0.1 and 0.7 relative
densities, respectively. Similar to the thinnest gyroid mode with volume fraction
of 0.1, 0.7 represents the thickest gyroid which geometrically is the limiting point
where the surfaces start to close-up due to too thick walls of the lattice geometry.
Hence, the relative larger errors of too thin and thick gyroids are numerically ex-
pected presenting meshing challenges and hence induce less computational accuracy
but could be further improved which is limited by the available computational power
of the workstation used for the analysis and the computational time.

54



Table 4.3 Homogenized initial conductivity results of fitted modified SIMP function
and comparison with calculated FE model value of gyroid unit cell under 1V elec-
trical load

VF σlatt σ∗ = σlatt/σsol Fit Function Error
(S/m) (S/m) (%)

0.1 5.88E-06 0.0588 0.06511 10.6455
0.2 1.22E-05 0.1223 0.1166 -4.6119
0.3 1.89E-05 0.1891 0.1829 -3.2812
0.4 2.63E-05 0.2626 0.2610 -0.6196
0.5 3.45E-05 0.3446 0.3493 1.3701
0.6 4.36E-05 0.4364 0.4468 2.3658
0.7 5.61E-05 0.5608 0.5520 -1.4846
1 1.00E-04 1.0000 0.9133 -8.6660

Similar to the Young’s modulus, calculated normalized homogenized conductivities,
σ∗ are used to construct a modified SIMP function using MATLAB’s curve fitting
application (Fig. 4.4). The same fitting application was used for all curve fitting
applications in the thesis. One and two term power laws are tested in the application
and two term power law was found to have a higher R2 value, hence the resulting
fit was chosen.

Figure 4.4 Screenshot of the MATLAB’s curve fitting application used for the con-
struction of the modified SIMP model, shown for conductivity σ
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Figure 4.5 Fitted modified SIMP function for initial conductivity: normalized effec-
tive initial conductivity (y-axis) vs. relative density (x-axis).

The resulting normalized fitted function is of the following form: σ0(ρ) = 0.8768 ·
ρ1.487 +0.03654.

To validate the resulting modified SIMP model, the modified initial conductivity
evaluated based on this fitted SIMP model and other material properties such as
number density, and electrical permittivity are inserted to the homogenized cube
model to be compared with the repeated gyroid unit cell model (Fig. 3.4). Av-
erage potential values on the top surface, Φ, where 1A/m2 of current density is
applied are compared. The resulting numerical comparison is provided in detail in
Table 4.4, with the functional plot comparison in Fig.4.6 and the corresponding 3D
colour coded voltage distributions are shown comparatively in 4.7 for a gyroid and
homogenized cube of 0.5 relative density. The results show an average total error
of 6.96% and a standard deviation of 4.9% in the respective potential performance,
with individual relative errors mostly below under 10% for most relative density
values proving that the derived modified SIMP model is suitable to represent effec-
tive initial conductivities for gyroids of different volume fractions with reasonable
accuracy.
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Table 4.4 Top surface potential values Φ(V ) of 3x3x3 gyroid unit cell (gyroid) vs.
its equivalent homogenized cube model under 1A/m2 current density load

VF Φgyroid(V ) Φh.cube(V ) Error (%)
0.1 930.87 767.94 17.50
0.2 422.67 428.74 1.436
0.3 255.68 273.39 6.927
0.4 184.74 191.56 3.692
0.5 157.15 143.13 8.921
0.6 119.87 111.92 6.632
0.7 87.472 90.508 3.471

Figure 4.6 Validation of homogenized initial conductivity: Average potential (y axis)
of repeated gyroid model with different relative density (x axis) vs. homogenized
cube with fitted initial conductivity value.
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Figure 4.7 Validation of homogenized initial conductivity:electric potential (V) re-
sponse of 3x3x3 gyroid unit cell (left) and its equivalent homogenized cube under
1A/m2 current density load(right).

4.1.3 SIMP Model and Validation of Elastoresistivity

The homogenization of elastoresistivity material property results follow a similar
procedure carried out for Young’s modulus and initial conductivity. Per the imple-
mentation details in Section 3.1.3, elastoresistivity homogenization simulations are
carried out on a multi-physics model solving for both the mechanical as well as the
electrical response under applied loading and piezoresistive material coupling of the
considered unit cell model, i.e. either the gyroid or the homogenized cube model
used for validation. This procedure calls for the calculation of the electrical response
under no loading and the calculation of initial conductivities σlatt,0, as well as the
electrical response under unit strain, σlatt,F. Using resulting conductivity values,
based on the difference of their inverse, (σ−1

latt,F −σ−1
latt,0), the effective resistivity dif-

ference is calculated as ∆ρ. Finally, the effective elastoresistivity, m, is calculated
based on the ratio with this property and the strain value, ε, calculated as a response
to the 1% strain and 1 V electric potential applied from the top surface (z+) while
the bottom (z-) is grounded and fixed. All these relevant quantities are needed for
the evaluation of the final effective normalized elastoresistivity magnitude, |m∗| and
are given in Table 4.5. Next, the homogenized data is fit to a function of the form
m(ρ) = a ·ρn + b and the resulting fitted function is shown in Fig. 4.8.

Also, the effective normalized elastoresistivity, m∗, as well as the the relative error of
the fitted function value are tabulated in Table 4.6. Overall, it is observed that the
fitted function follows the data of the corresponding homogenization results of the
FE gyroid model well. The fit function error is below 5% except 0.5 and 0.6 relative
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densities where the error is calculated to be around 13% (Table 4.6). The points
with values per the FE model calculated data are observed to fall slightly below
the fitted curve data. It can be argued that either there is an accuracy related
simulation uncertainty in these specific cases, which is likely since we expect the
data to fit power law in the case of TPMS lattices, or else a different interpolation
function such as a quadratic fit could reduce the error and track the data values
at these points with a better accuracy. The validation results showed reasonably
small overall errors as will be discussed next, therefore we chose to continue with
the power fit which is also more suitable for the TO based on a modified power law
in the case of graded TPMS unit cell geometries as was discussed earlier in Chapter
2.

Table 4.5 Homogenized elastoresistivity results: Effective normalized elastoresistiv-
ity, m∗, unscaled elastoresistivity, m, calculated based on related electrical response
parameters: initial conductivity under no loading σlatt,0 and under unit strain, σlatt,F
for different volume fractions, VF

VF σlatt,F σlatt,0 ∆ρ = |σ−1
F −σ−1

0 | m = ∆ρ/ε m∗

(S/m) (S/m) (Ω ·m) (Ω) (Ω)
0.1 5.965E-06 5.88E-06 2293.38 229338 2.3889
0.2 1.242E-05 1.22E-05 1284.08 128408 1.3376
0.3 1.931E-05 1.89E-05 1098.23 109823 1.1440
0.4 2.695E-05 2.63E-05 970.56 97055 1.0110
0.5 3.450E-05 3.45E-05 794.39 79439 0.8275
0.6 4.511E-05 4.36E-05 746.62 74662 0.7777
0.7 5.894E-05 5.61E-05 867.40 86740 0.9035
1.0 1.106E-04 1.00E-04 958.41 95841 0.9983

To validate the resulting modified SIMP model, the modified elastoresistivity evalu-
ated based on this fitted SIMP model and other material properties such as Young’s
modulus and initial conductivity are inserted to the homogenized cube model to
be compared with the repeated gyroid unit cell model. Average potential current
density values on the bottom surface, J∗(A/m2) are extracted while 1V of potential
is applied to the opposing top surface and compared under constant pressure of 4666
Pa application. The resulting numerical comparison is provided in detail in Table
4.6, with the functional plot comparison in Fig.4.9) for a gyroid and homogenized
cube of 0.5 relative density.

The results show an average total error of 2.72% and a standard deviation of 1.93%
in the respective current density performance, with individual relative errors all
below under 10% for all relative density values proving that the derived modified
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SIMP model is suitable to represent effective elastoresistivities for gyroids of different
volume fractions with reasonable accuracy.

Figure 4.8 Fitted modified SIMP function for elastoresistivity component: effective
elastoresistivity component magnitude (y-axis) vs. relative density (x-axis)

Table 4.6 Effective current density J∗ on the bottom plane of single gyroid unit cell
with symmetry vs. its equivalent homogenized cube model under 1V potential and
4666 Pa loading

VF m∗ Fit Function Error J∗
gyroid(A/m2) J∗

h.cube(A/m2 Error
(|%|) (|%|)

0.1 2.388 2.402 0.539 -1.42E-04 -1.45E-04 2.05
0.2 1.337 1.357 1.471 -2.72E-04 -2.59E-04 4.71
0.3 1.143 1.097 4.098 -4.31E-04 -4.06E-04 5.70
0.4 1.011 0.988 2.252 -5.96E-04 -5.80E-04 2.67
0.5 0.827 0.931 12.49 -7.76E-045 -7.79E-04 0.39
0.6 0.778 0.896 15.24 -9.85E-04 -9.93E-04 0.82
0.7 0.904 0.874 3.308 - - -
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Figure 4.9 Validation of homogenized elastoresistivity component: Current density
(y axis) of repeated gyroid model with different relative density (x axis) vs. homog-
enized cube with fitted elastoresistivity component value.

4.2 Solid Mechanics Based TO: Minimum Compliance of a Compression

Cube

As the first example, we apply the developed design framework to a solid mechanics
design problem following Fig. 3.10 and present results for the minimum compliance
TO problem that corresponds to a well-known benchmark problem (Saadlaoui et al.,
2017) with results shown in Fig. 4.10.
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Figure 4.10 Design results given by Saadlaoui et al. (2017) for the minimization of
compliance problem of a compression cube

A four-legged structure is the result of the benchmark study of a metal cube sub-
jected to a given pressure solved using compliance optimization in COMSOL. Here,
we used the modified SIMP model instead of the standard SIMP model and adapted
the problem to the material parameters chosen for the pressure sensor. As expected,
the TO problem converges in 49 iterations to the results given in Fig.4.11 follow-
ing the convergence history shown in Fig.4.13, attaining a minimum strain energy
density value of 6.25 · 10−5J/m3 attaining the given volume constraint of 0.5. The
resulting legs, evident in the resulting optimized relative density distribution of the
compression cube, are not as distinct as the results of standard optimization models
in literature. However, the resulting topology are similar to the expected solution
given the differences of the loading, material properties referring to a softer material
of PDMS, the use of a modified SIMP model as well as different upper and lower
limits and the modeling differences related to the mesh and element types used here
in COMSOL vs. the reference study simulated in Hypermesh Optistruct software.
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Figure 4.11 Design results obtained for the minimization of compliance problem of
a compression cube: displacement (top left), Young’s modulus (top right), strain
energy density (lower left) and resistivity change in z direction (lower right). Units
are shown in corresponding colour bars

Figure 4.12 Density distribution obtained for the minimization of compliance prob-
lem of a compression cube: volumetric distribution (left) vs. cross sectional plot
(right)

Although the model doesn’t optimize electrical properties, Electric Currents physics
was enabled in order to examine the effect of the design on piezoresistivity. Since
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piezoresistivity is dependent on relative density, a similar mapping of relative density
is also observed on change in resistivity. The relative resistivity change for the final
geometry without optimizing electrically is 3.96%. This value before optimization
when the design space was homogeneously distributed at 0.4 relative density was
4.82%. This means for the case where optimization was pursued based on compli-
ance minimization only, resulting optimal design caused a decrease of its electrical
performance. This result is expected since a stiffer structure means less displacement
throughout the design space which results in less connection points and pathways
for electrical conduction. The simulation model converged at 49 iterations to 0.615
normalized compliance, down from an initial value of 0.98. The simulation took 781
s to converge.

Figure 4.13 Solid based TO case studies 2 and 3 targeting maximum sensitivity:
Convergence of objective value (blue), average volume constraint (green).

4.3 Electrical Conductivity Based TO Targeting Maximum Sensitivity

All cases presented in this section are divided to the same applied pressure for cal-
culating the final sensitivity of the designed sensors using TO based on the electrical
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performance alone without considering any solid mechanics performance metric such
as the compliance. It is noted that the a pressure load is still applied and a a multi-
physics based FE model is used to solve the pressure sensor design problem via
the use of the modified SIMP for the initial conductivity. Accordingly, since the
denominators of the sensitivity calculations are the same, only the relative change
in resistivity ∆ρ/ρ0is calculated for a one-to-one comparison of the resulting opti-
mized topologies of all three optimization cases solved for. These cases either differ
in the objective functions and/or boundary conditions as shown in detail in Table
4.7. More specifically, case 1 is solved with an objective function targeting minimum
potential difference, whereas case 2 and case 3 target maximum sensitivity in the
form of an equivalent minimization function.

The results show that case 2 and 3 show the best relative change in resistivity (Table.
4.7). Both are implemented using inverse relative change in resistivity definition
for the objective function. Their electrical loading, i.e boundary conditions, are
different, but the results show that the change of the loading type either in the form
of a current density or potential doesn’t affect the resulting objective function of the
TO problem.

Table 4.7 Properties and results of electrical conductivity based TO cases targeting
maximum sensitivity

Case Study No. Objective Function Boundary Conditions ∆ρ/ρ0

1 Min. Φtop −Φbottom 1 A/m2 at top 2.99
2 Min. ρ/∆ρ 1 A/m2 at top 6.73
3 Min. ρ/∆ρ 1 V at top 6.73

4.3.1 Case Study 1 With Objective: Minimum Potential Difference

Design results obtained for TO design case 1 are shown in 4.14 with relative density
distributions and corresponding effective initial conductivity distributions as well as
the performance response distributions attained with the optimized topology such as
vertical displacement, potential difference, current density and change in resistivity.
The TO model converged to the optimized relative sensitivity of 2.99 following the
convergence history shown in (Fig. 4.15). At 25th iteration, however, slight unusual
oscillations are observed in the objective function value. Also from the resulting
topology and the final attained volume fraction of 23%, it can be seen that the
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algorithm attempted to empty the design volume as much as possible. Although
the final relative change in resistivity is 2.99%, based on the oscillatory convergence
graph, if the simulation results are based on iteration 25, then the relative change
in resistivity would be 15% which points for future analysis of the optimization
model definition and its convergence behavior. However, based on the results of
cases 2 and 3 where the objective function produced smoother convergence with
larger improvements in sensitivity of the final design, the sensitivity based objective
function model was chosen for further TO design studies.

Figure 4.14 Design results obtained for TO design case study 1: relative density
(top left), displacement (top center), electrical potential (top right), current density
(bottom left), initial conductivity (bottom center), and change in resistivity (bottom
right). Units are shown in corresponding colour bars
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Figure 4.15 Convergence history of objective function and VF constraint of TO case
study 1

4.3.2 Case Study 2 and Case Study 3 with Objective of Relative Resis-

tivity Change - Effect of BC

Design results obtained for TO design case 2 and case 3 are shown in Fig. 4.17, and
Fig. 4.19, respectively with relative density distributions and corresponding effective
initial conductivity distributions as well as the performance response distributions
attained with the optimized topology such as vertical displacement, potential dif-
ference, current density and change in resistivity. For a better interpretation of the
resulting topologies, cross section views of the resulting topologies are shown for
case 2 and case 3 in4.18, 4.20, respectively.

Convergence history of case 2 and 3 is shown in 4.16, on left and right respectively.
The results of the TO studies directly targeting the relative resistivity based norm to
increase sensitivity in both cases of case study 2 and case study 3 gave very similar
results despite the difference in their electrical loading. Objective functions in both
cases decrease steadily and converge at around 20th iteration. Both models improve
the objective function by 25%. The relative change in resistivity output is 6.73%.
This is an improvement of the final sensitivity of the sensor design when compared
to the results of case study 1 not only in terms of the resulting resistivity change that
was directly considered in the optimization model but also in terms of the strain
energy density that was simply evaluated as the resulting mechanical performance
of the sensor. More specifically, strain energy density values in case study 2 and
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case study 3 are calculated as 76.41 J/m3 while for the resulting topology of case
study 1 the resulting strain energy density is calculated as 1 Ws = 271.92J/m3.

Figure 4.16 Electrical based TO case studies 2 and 3 targeting maximum sensitivity:
Convergence of objective value (blue), average volume constraint (green).

(a) Model 2 (b) Model 3

Based on these results, it can be concluded that change of the electrical input in
terms of the relevant boundary condition seem not to affect the resulting solution
of the TO problem. Compared with the first case study, the objective function has
a more dominant effect. It is also observed that, as would be expected, the re-
sulting optimized topologies targeting maximum sensitivity differ significantly from
the minimum compliance TO solution. The resulting material distribution obtained
for the conductivity based TO delivering optimal sensitivity is very concentrated at
specific regions, where the top is very dense while the bottom is almost completely
empty. To investigate the combined effect of both the mechanical and electrical
design requirements of a pressure sensor, their combined effect is analyzed in the
next case study via a multi-criteria optimization model.
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Figure 4.17 Design results obtained for electrical TO design case 2: relative density
(top left), displacement (top center), electrical potential (top right), current density
(bottom left), initial conductivity (bottom center), and change in resistivity (bottom
right). Units are shown in corresponding colour bars

Figure 4.18 Density distribution obtained for the minimization of electrical TO de-
sign case 2: volumetric distribution (left) vs. cross sectional plot on xy plane (center)
and cross sectional plot on xz plance (right)
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Figure 4.19 Design results obtained for electrical TO design case 3: relative density
(top left), displacement (top center), electrical potential (top right), current density
(bottom left), initial conductivity (bottom center), and change in resistivity (bottom
right). Units are shown in corresponding colour bars.

Figure 4.20 Density distribution obtained for the the minimization of electrical TO
design case 3: volumetric distribution (left) vs. cross sectional plot on xy plane
(center) and cross sectional plot on xz plance (right)

70



4.4 Piezoresistivity Based TO Targeting Maximum Sensitivity and

Compliance: Multi-Criteria Optimization

In this section two case studies, referred to case study 4 and case study 5 are pre-
sented where the TO design approach is applied targeting both maximum sensitivity
and minimum compliance simultaneously with optimization model details as given
in Table 4.8. The multi-criteria design problem was formulated and solved in all
cases with a weighted sum objective incorporating both design objectives into a sin-
gle weighted objective function (Fig 3.17). Resulting values of both metrics that
the case studies converged to are also given. Appendix .2 shows results of different
objective functions with different weights for case 5. The presented weight choice
for case study 5 is 0.8 weight on the electrical objective function and 0.2 on the
mechanical objective function (Fig. 4.23). It is noted that in both case studies, the
same objective function for the mechanical compliance is used and therefore was
not specified in Table 4.8. Similar to earlier results presented for case study 1-3,
where only the electrical performance metric was incorporated as the chosen objec-
tive function, here, for the case study 5, with the objective function of sensitivity,
the resulting sensitivity was higher than that of case 4 where the objective function
was assigned as the minimization of potential difference. However, regarding the
strain density values, case study 4 converged to a lower compliance of 18.88 J/m3

when compared to case study 5, which attained a higher value of 47.048J/m3.

Table 4.8 Properties and results of PR based TO cases targeting maximum sensi-
tivity and compliance via multi-criteria optimization

Case Study Electrical Objective Boundary ∆ρ/ρ0 Strain Energy
No. Function Conditions Density (J/m3)

4 Min. Φdiff = Φtop −Φbottom 1 A/m2 at top 2.3419 18.88
5 Min. ρ/∆ρ 1 V at top 7.4239 47.048

Design results obtained for TO design case 4 and case 5 are shown in 4.21, 4.23,
respectively with relative density distributions and corresponding effective initial
conductivity distributions as well as the performance response distributions attained
with the optimized topology such as vertical displacement, potential difference, cur-
rent density and change in resistivity. For a better interpretation of the resulting
topologies, cross section views of the resulting topology for case 5 is also shown in
Fig. 4.24, respectively.
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Convergence history of case 4 is shown in Fig. 4.22 and for case 5, it is shown in
Fig. 4.25, respectively.

Based on the optimal density distribution that case study 4 converged to in Fig. 4.21,
it is observed that there is a direct similarity with the results of the TO for minimum
compliance in Fig. 4.12 where no electrical performance metric was targeted but only
standard mechanical TO was repeated for the modified SIMP model developed in
this thesis. Therefore, it can be argued that the mechanical component of the multi-
criteria TO in case of the potential difference minimization targeted minimization
design case 4, the mechanical performance metric of minimum compliance is more
dominantly determining the final material distribution of the sensor. This is also
supported by comparing the convergence performance of both objective functions
in Fig. 4.22 that shows that the potential difference, Φdiff , barely decreases over
the iterations. On the other hand, the resulting compliance is significantly reduced
supporting that the mechanical objective function component of the design study
overweighs its electrical objective function .

Figure 4.21 Design results obtained for PR based TO design case 4: relative density
(top left), displacement (top center), electrical potential (top right), current density
(bottom left), initial conductivity (bottom center), and change in resistivity (bottom
right). Units are shown in corresponding colour bars.

72



Figure 4.22 PR based TO case number 4 targeting maximum sensitivity and min-
imum compliance: Convergence of objective value (blue) and average volume con-
straint (green).

The design case 5 where instead of the potential difference minimization for the
electrical design component the maximization of the relative change was targeted,
the convergence history graph in (Fig. 4.25) displayed a more balanced scenario with
about 13% improvement in the sensitivity starting from 6.61% relative change in
resistivity and converging to 7.42% and with a trade of in compliance performance.
In terms of the resulting optimal material distribution shown in Fig. 4.24, case 5
converged to a topology with some common characteristics to the results of TO for
in Fig. 4.12 where no electrical performance metric was targeted. The resemblance
lies in that both topologies demand removal of material in the central part with
denser/more solid material on the sides. However, there is no exact similarity to
suggest that the optimization process is driven by the mechanical component of the
design objectives dominant. When the resulting topology for case 5 is compared
to the optimized density distributions obtained for the electrical conductivity TO
designs of case 2 or case 3 in Fig. 4.17 and Fig. 4.19, some similarities also exist
here where the low-density regions exist closer to the bottom part of the resulting
sensor topologies in both cases, namely 5 and 3.
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Figure 4.23 Design results obtained for PR based TO design case 5: relative density
(top left), displacement (top center), electrical potential (top right), current density
(bottom left), initial conductivity (bottom center), and change in resistivity (bottom
right). Units are shown in corresponding colour bars.

More specifically, the resulting topology of case 5, resembles a pyramid-like topology
apparent as the mid-range/yellow material shades existing throughout the volume,
which could be argued to serve for increasing the stiffness of the sensor keeping its
structural integrity (Fig. 4.24). Also close to the top and bottom locations of the
sensor design, the material density is higher towards the edges in these cross sections.
This should result in an uneven distribution of the applied pressure throughout the
top and bottom cross-sections with less dense regions at the central regions .
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Figure 4.24 Density distribution obtained for PR based TO case number 5 targeting
maximum sensitivity and compliance (Case 5): volumetric distribution (left) vs.
cross sectional plot on xy plane (center) and cross sectional plot on xz plane (right)
s

Figure 4.25 PR based TO case number 5 targeting maximum sensitivity and mini-
mum compliance: Convergence of multi-criteria objective value (blue), average vol-
ume constraint (green), compliance (red), and Total inverse relative change in resis-
tivity (cyan).

As a follow-up study, the TO design of case study 5 was re-simulated with a higher
mesh to examine the mesh effect on the resulting topology and performance im-
provements of the objective functions. TO of case study 5 FE model relied on a
hexahedral mesh with a mesh density of 15 FE/edge length, where the edge lenght
is 15 mm, in all primary directions of the design domain as shown in (Fig. 3.9.
The finer meshed follow-up model of case 5 is meshed into 20 FE/edge length FEs
constituting 8000 design cells as shown in (Fig. 4.26 of the TO design with the
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same model properties as shown in Table. 4.7 . Hence, the number of design cells
increased from 3375 to to 8000 and the TO was repeated.

Figure 4.26 Denser mesh with 8000 elements

The TO study with the finer mesh follow-up model of case study 5 converged to
the material distribution shown in (Fig. 4.27) with 47.8 J/m3 strain energy density
and 7.61% inverse relative change in resistivity values. This prompts for a slight
improvement of the relative change in resistivity by 2.5% using a finer mesh FE
model, however, requiring a longer computational design time until convergence
mainly due to increased number of 176084 DOF of the finer mesh vs. the original
rough mesh of case study 5 with 76639 DOF. The actual computation time difference
was half an hour for the entire design cycle. Although no significant improvement
was obtained in terms of the desired relative change in resistivity, certainly the
resulting optimal sensor topology displays more intricate structural details in the
case of the finer mesh model (Fig. 4.27) when compared to the original case study
5 topology in (Fig. 4.24) .
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Figure 4.27 Density distribution obtained for PR based TO case number 5 with a
denser mesh targeting maximum sensitivity and compliance (Case 5): volumetric
distribution (left) vs. cross sectional plot on xy plane (center) and cross sectional
plot on xz plane (right)

4.5 Discussion

The results presented in the first part comprise the numerical homogenization of
three material properties, namely Young’s modulus, initial conductivity and ela-
storesistivities as well as their validation studies. Overall, for all three material
properties , results show an average total error below 10% for majority of rela-
tive density values proving that the derived modified SIMP models are suitable to
represent effective models for gyroids of different volume fractions with reasonable
accuracy.

A common observation for the homogenization analysis were related to the com-
parative higher error values at the extreme relative density points. Although the
fitted functions closely followed simulated data with an average acceptable error, the
relative volume fraction of 0.1 point was an outlier for the majority of the homoge-
nization calculations. The lower limit of a very thin gyroid with 0.1 relative density
has a comparatively higher error and intuitively is expected as thinner curved struc-
tures present a meshing challenge when compared to their thicker, higher volume
fraction counterparts. This behavior is also reflected on the validation results of
the constructed modified SIMP models. In the case of numerical homogenization,
possible errors could be also attributed to the use of a single unit cell and the need
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to increase the mesh density of the imported gyroid model when exported as an .stl
file from MATLAB. Also, the rule of thumb for TPMS lattice meshing is that there
should be at least three elements across the thinnest walls of the gyroid model. This
was not always possible for the models simulated in this thesis, and hence a possible
source for a higher relative, yet acceptable overall error. Another approximation
and possible cause of inaccuracy related to the use of symmetry boundary condition
to represent periodic repetition of gyroid unit cells as required by the theory of ho-
mogenization. To increase the analysis accuracy further, of higher number of unit
cell repetitions with possibly a higher FE mesh is needed but practically limited by
the available computational power and prohibitive time spans.

Similar to the thinnest gyroid model with volume fraction of 0.1, 0.7 represents the
thickest gyroid which geometrically is the limiting point where the surfaces start
to close-up due to too thick walls of the lattice geometry. Hence, higher relative
errors observed are related to the representation challenge of too thin as well as
thick gyroids.

Results of the second part of this chapter proved the applicability of the developed
homogenization based TO design scheme to various design case studies targeting
either only the solid mechanics related or the electrical performance of a sensor or
both at the same time. The first case study results prove the applicability of the de-
veloped design scheme to a minimum compliance TO benchmark problem delivering
a similar four-legged optimal topology with reduction in compliance. The second
class of designs where different objective functions and boundary loading conditions
are tested, namely case studies 1-3, present that inverse relative change in resistivity
proves to be a more suitable objective function for sensitivity maximization when
compared to the minimization of potential difference. Combined with the results of
the last category of TO case studies, where mechanical compliance and sensor sen-
sitivity metrics are targeted at the same time, case study 5 with a weighted sum of
these aforementioned objective functions delivered the highest overall improvement
with a relative change in resistivity of 7.42 %. Since the same pressure was applied
to all models, this model also gives the best sensitivity. It can be overall stated, that
the developed topology optimization framework based on modified SIMP models of
Young’s modulus and elastoresistivity for gyroid unit cells has the ability to improve
sensitivity of a piezoresistive sensor.
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5. CONCLUSION AND FUTURE WORK

In this study, we aimed to fill a gap in literature of FEM based topology optimiza-
tion of 3D piezoresistive sensors, in particular relying on graded TPMS lattices, to
maximize sensitivity. For this purpose, a topology optimization framework based on
homogenization of Young’s modulus, initial conductivity and elastoresistivity was
developed. The sensor was designed to reach max sensitivity at 4666 Pa as it was
planned to be useful for pressure ulcer detection targeting bedsore prevention. Gy-
roid unit cell’s Young’s modulus, initial conductivity and elastoresistivity material
properties were homogenized and integrated to the topology optimization frame-
work as modified SIMP material models. The simulation framework was applied
to different classes of optimization problems initially focusing on the mechanical
and electrical optimization studies separately and then presenting integrated design
studies with simultaneous consideration of both performance metrics in a multi-
criteria optimization setting. Under these categories, studies were presented for
different objective functions and compared within the electrical response based and
multi-criteria based TO groups. Results showed that maximum improvement was
achieved using a PR based multi-criteria TO with a weighted sum incorporating
both maximum sensitivity and minimum compliance design requirements. Based
on the results it can be stated that the sensitivity improvement of a piezoresistive
sensor can be achieved with the developed topology optimization based on gyroid
based homogenization.

Improvement of the presented design framework include the addition of the recon-
struction and validation phase of the presented final optimization results. After a
possible virtual validation comparing the compliance and sensitivity of the optimized
TO presented here with the performance of the reconstructed gyroid counterparts,
these models could be fabricated using the lost mold technique and tested. The
feasibility of manufacturing TPMS based sensors was tested in our research group
experimentally (Erulker et al., 2022) for which the basis steps are provided in Fig.
2.3 and could be followed. Main future work regarding the design framework com-
prises integration of anisotropic material models of the material matrices, extension
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of the material models to non-linear elastic behavior and addition of other desired
metrics such as flexibility as well as the incorporation of an empirical elastoresistivity
material model.
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APPENDICES 

 

.1. Gyroid Implementation in COMSOL 

 

In this section numerical implementation of homogenization will be shown with 

screenshots from COMSOL Multiphysics 6.2. 

Figure .1.1 Creating the CAD file in MATLAB in .STL format 

 

Figure .1.2 Importing the STL file to COMSOL form Mesh Parts 
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Figure .1.3 Importing geometry under Geomety tab of Component and build 

 

Figure .1.4 Defining the values to be extracted 

 

Figure .1.5 Defining governing physics and boundary conditions 
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Figure .1.6  Tetrahedral meshing the geometry 

 

Figure .1.7 Enabling the active physics and running the study  
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.2 Comparison of Multi-Criteria Functions with Different Weights 

 

Figure .2.1 0.5 weight on electrical and 0.5 weight on mechanical objective function 

 

Figure .2.2 0.6 weight on electrical and 0.4 weight on mechanical objective function 

 

Table .2.1 Optimization with respect to electrical objective function 

 

  



89 

 

.3 Simulation Statistis 

 

Table .3.1 Simulation statistics for 1x1x1 sheet gyroid 

 

 

Table .3.2 Simulation statistics for 3x3x3 sheet gyroid 
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.4 COMSOL Implementation of Material Properties and How They Relate to the 

Physics Interfac 

 

Screenshots from COMSOL Multiphysics ver. 6.2 are given showing the 

implementation of modified material properties. 

Figure .4.1 Linearelastic Material definition in COMSOL  
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Fig .4.2 Current Conservations, Piezoresistive definition in COMSOL  

 

 

Figure .4.3 Material Porperties in COMSOL whih are reffered in physics modules in 

Fig. .4.1 and Fig. .4.2 
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Figure .4.4 Variables in COMSOL: Modified SIMP Formulas 
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