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Abstract—Relative camera pose regressors estimate the relative
pose between two cameras from two input images. A convolu-
tional network with a multi layer perceptron head is usually
trained per scene with ground truth relative poses. However,
such methods are still suffering from limited accuracy and
generalization. Inspired by the success of vision transformers on
computer vision tasks, we propose to learn relative pose between
two cameras using only vision transformer backbone with fully
connected layers. The multiheaded self attention mechanism of
the vision transformer allows our model to attend to the full
image even from the lowest layers which further enables our
model to learn the layout of the scene and focuses only the
features that are relevant to our task. We evaluate our model
on one outdoor and two indoor datasets. We show that our
model achieves new competitive accuracies for both outdoor and
indoor multi-scene relative localization benchmarks. We further
compare our pose estimation results to those obtained using
recent local keypoints based approaches and we show that our
model outperforms these methods particularly for frames with
small translation, where such methods mostly fail.

Index Terms—Localization, Deep Learning, Vision Transform-
ers

I. INTRODUCTION

Estimating the relative pose between two cameras is a
crucial task in many computer vision applications, such as
structure from motion (SfM), simultaneous localization and
mapping (SLAM) and visual odometry. Traditionally, this
task can be accomplished by extracting and matching sparse
or dense keypoints and then use the 2-D correspondences
to estimate the essential matrix using 5-points or 8-point
algorithms with RANSAC to reject outliers in a robust manner
[1]. The performance of such methods is highly dependent on
finding enough keypoints between two images and performing
matching accurately. These methods fail on textureless scenes
due to few correspondences and on scenes with repetitive
structures or large view point changes due to noisy corre-
spondences. Moreover, such methods calculate the translation
vector up to a scale and fail when the the camera movement
is purely rotational or with small translations. Recently, Sarlin
et al. [2] trained an attentional graph network to perform
matching between keypoints from two frames. However, their
method is still dependent on finding enough keypoints in both
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images. Therefore, textureless and repetitive structures are
still challenging. Sun et al. [3] trained a Network to perform
both dense keypoints detections and matching using the self
and cross attention layers in transformer. However, they still
need to estimate the essential matrix using 5-points or 8-point
algorithms. Thus, their translation vector is up to scale and
their method fail when the essential matrix calculation fail
due to pure rotation or small translations.

Estimating camera pose directly using deep learning models
is shown to produce good results where feature detection
methods fail [4]. Absolute pose regression using deep learning
models are usually trained to predict the pose of a query image
in a scene [5], [4], [6]. Relative pose regression models are
trained to predict the relative pose between two input images
[7], [8]. Each of these models is usually trained per scene.
Deep learning methods still suffer from low accuracy and
limited generalization. All the previous relative and absolute
pose models used CNNs as a backbone to generate one or two
global feature vectors which are used to regress the pose.

In this work, we introduce a new vision transformer (ViT)
based relative camera pose regression network (RelViTNeT),
motivated by the recent success of ViTs in various computer
vision tasks such as image classification and segmentation
[9], [10]. The self attention mechanism of ViT allows it to
attend to the full image even from the lowest layers which
further enables it to attend to the features of an image that
are most important to a given task[10]. We propose using
ViT as a backbone for our relative pose regression network
without any CNN based features. We employ the plain vision
transformer which was in introduced in [9] and we replace
the classification head with a regression head. We finetune
a pretrained ViT, which was trained as a classifier since
ViTs usually require very large labeled image datasets. We
evaluate our model on both 7-scenes and Cambridge Land-
marks datasets which consist of multiple indoor and outdoor
scenes and are commonly used for pose estimation models.
We also evaluate our model on Scannet dataset which is
a large indoor dataset used for training the local keypoints
approaches such Superglue [2] and LoFTR [3]. We show
that our model achieves better pose accuracy, particularly in
challenging scenarios involving small translations. Moreover,
our model estimates more accurate translation vectors in all



cases. Our main contributions can be summarized as follows:
• We introduce the first completely ViT based architecture

for relative camera pose regression in indoor and outdoor
scenes without using any CNN based features.

• We show that our model achieves better translation
estimation than the local keypoints approaches and an
overall better pose estimation in scenarios involving small
translations between the two input frames.

II. RELATED WORK

A. Visual Localization

There are many methods available to perform visual local-
ization.

Local keypoint-based approaches depends on 2D-2D corre-
spondences between two images in order to find the relative
camera pose. These methods usually have three separate
phases: Feature detection, feature description and feature
matching. Traditionally, hand crafted local features like SIFT
[11] and ORB [12] have shown good performances and are
widely used in computer vision applications. Deep learning
approaches to find keypoints like SuperPoint [13] have also
shown good performances. Lately, Sarlin et al. [2] trained
an attentional graph neural network (SuperGlue) in order
to perform matching after the keypoints are detected. Their
approach showed better results than the traditional nearest
neighborhood approaches or CNN based learning. However,
enough and repeatable keypoints have to be detected first
either using detection algorithms like SIFT or deep learning
approaches like SuperPoint. In addition, the descriptors gen-
erated by SuperGlue are not position dependent which raises
many challenges in featureless environments. Sun et al. [3]
solved some of these challenges by using the self and cross
attention layers in transformer to find descriptors based on the
two input images which enabled them to find enough matches
in low-texture areas [3]. However, their method (LOFTR) only
performs detection and matching, one should still solve 8-point
or 5-point equation using RANSAC in order to find the relative
pose between two images which might fail in cases of pure
rotation or when the view scene structure is planar.

Absolute and Relative pose regression absolute pose regres-
sion was first proposed by Kendal et al. [5] and was inspired
by the CNN success in multiple computer vision tasks. Usually
a CNN based backbone which is originally trained for image
classification on big datasets such as imagenet is retrained
to regress both translation and orientation of a camera from
one query image. Relative pose regression methods retrain a
CNN backbone with MLP heads in order to regress the relative
pose between two input images. Melekhov et al. [7] used a
pretrained CNN backbone with fully-connected layers (FCs)
to estimate relative pose but they did not train the model for
outdoor scenes. En et al. [8] proposed to use a network with
two branches: a Siamese CNN based Network regressing one
pose per image and a pose inference module for computing
the relative pose. More recently, Yang et al. [14] proposed to
use cycle-consistent adversarial training to predict the relative

Fig. 1: RelViTNet model architecture: ViT backbone with 1
FC layer for Feature concatenation and 1 FC for dimension
reduction. 2 more separate FC layers are used to regress 3D
translation vector and 4D rotation vector.

camera poses of image pairs based on training over synthetic
environment data. Their model consists of Siamese CNN based
Network (RASNET) with fully connected layers to regress
pose. While their model showed good generalization over
different scenes, the accuracy is still to be improved.

B. Vision Transformers

Transformers have become the standard for sequence mod-
eling in natural language processing due to their simplicity and
computational efficiency. Recently, and after Dosovitskiy et al.
[9] introduced the vision transformer which was trained for
image classification and showed its ability to scale with data,
ViTs are getting more attention in the computer vision tasks
such as semantic segmentation [10] and image classification
[9], [10]. Numerous versions of ViTs have been introduced
with different training schemes.

In this work we use the plain ViT architecture that was
introduced in [9] as a backbone to generate a global feature
vector for each input image. We show that ViT can be trained
for multiple scenes at once and can improve the relative pose
estimation pipelines.

III. METHOD

A. Relative Camera Pose Estimation Model

RelViTNet is trained to estimate relative camera pose di-
rectly from 2 input images using one forward pass. The output
is a pose vector p = [t, q], which include 3-D vector for
relative camera translation between two images t and 4-D
vector for relative rotation q. Similar to [5], [15], [8], [14],
we represent rotation using quaternions.

B. Architecture of RelViTNet

The network architecture as shown in Figure 1 uses the
plain vision transformer architecture that was introduced in [9]
as a backbone for extracting a global feature vector for each



input image. ViT was introduced as a classification network
which performs attention on images as follows: First an input
image I ∈ RH×W×C , is divided into fixed size patches which
are flattened into sequences x ∈ RN×(P 2.C) where H and W
are the original image size and C is the number of channels.
(P, P ) is the resolution of each patch and N = HW/P 2

is the number of patches. A trainable linear projection layer
E ∈ R(P 2.C)×D is used to embed all the sequences into D
dimensions as shown in Equation 2. A positional embedding
Epos ∈ RN+1×D is added after the concatenation of an extra
learnable sequence xclass to the resulted embedded sequences.

z0 = [xclass;x1E; ..., xNE] + Epos (2)

The embeddings from Equation 2 are then passed through
transformer encoder which consists of alternating layers ℓ =
0, 1, 2.., L of multiheaded self attention (MSA) and MLP
blocks with layer normalization (LN) applied before each
block and residual connection after each block [9], as shown
by Equations 3 and 4.

z′ℓ = MSA(LN(zℓ−1)) + zℓ−1 (3)

zℓ = MLP (LN(z′ℓ)) + z′ℓ (4)

The classification head was originally attached to the state of
the extra learnable sequence at the output of the transformer
encoder z0L (shown as a green sequare in Figure 1) as the extra
learnable sequence z00 = xclass serves as an overall image
representation at the output of the transformer encoder. During
training, the multiheaded self attention mechanism ensures that
the extra learnable sequence is learned through performing
attention between all the embedded patch sequences, thereby
accounting for every patch in the image. This means that the
transformer encoder is able to effectively integrate information
from all patches of the input image, including the extra
learnable sequence. We removed the original classification
head and attached a regression head instead. Our regression
head consists of 4 fully connected layers. The state of the extra
learnable sequence of the output of the transformer encoder
is 768-D vector for each image. We concatenate the feature
vectors of the two images. Thus, The first fully connected
layer is 1536-D which is connected to 128-D layer to reduce
the dimension and reduce overfitting. Two more separate fully
connected layers (3D and 4-D) are used to output relative 3-D
translation vector and 4-D rotation vector.

C. Loss function

Training translation and rotation regressors simultaneously
leads to better overall performance [5]. Therefore, we used
stochastic gradient descent in order to minimize both the
translation and the rotation losses

L(I) =∥x̂− x∥ exp(−sq)+sq+

∥∥∥∥ q̂

|q̂|
− q

∥∥∥∥ exp(−sx)+sx (5)

where x̂ and q̂ are the estimated translation and rotation
vectors. x and q are ground truth translation and rotation

vectors. We combine the two losses using the camera pose loss
function suggested by Kendal et.al [5] sq and sx are learnable
parameters controlling the balance between the rotation and
the translation losses.

IV. DATASETS

We used the The Cambridge Landmarks dataset [5] to
train and test our model for outdoor scenes. It is from an
urban environment and consists of six medium-sized scenes
(∼ 900−5500m2). Four of these scenes were used for testing
and training. We used The 7-Scenes dataset [17] to train and
test our model for indoor scenes. The dataset is from an office
environment and includes 7 small-scale scenes (∼ 1−10m2).
We further trained our model on Scannet dataset [18] which
is a large indoor dataset from an office environment with an
average floor area of (∼ 22m2). The dataset contains 2.5
million views in more than 1500 scans and is annotated with
3D camera poses.

V. EXPERIMENTS

A. Experimental Setup

Since our model requires two input images to learn relative
pose, similar to the process mentioned in [8] we sample
training pairs while ensuring that each pair is from the same
scene and that the two images in any pair have sufficiently
overlapping field of view. Both datasets provide the absolute
pose of the camera for all images. Thus, we generate the
ground truth relative camera pose for each pair. From camera
coordinates 1 to 2, we set R12 as the rotation matrix, and T12

as the translation vector and we calculated them as follows:

R12 = RT
1 R2 (8)

T12 = RT
1 (T2 − T1) (9)

All images are resized to 224x224 with no random crops,
normalized and mean-centered using standard deviation com-
puted over the whole training set. The indoor network for
both 7 scenes and Scannet datasets is trained with an initial
learning rate of 10−4 which is gradually decreased 2 times
after every 2 epochs while the outdoor network is trained with
an initial learning rate of 10−5. We used a batch size of 4 for
both networks. All experiments reported in this paper were
performed on an 16Gb NVIDIA GeForce RTX 3080 GPU.

B. Comparison with state of the art relative pose regressors

It is common to estimate the relative pose between an
unknown query image and a known reference image with
a ground truth pose [14]. Therefore, in order to be able to
compare our results with PoseNet [5] and Structure-guidedNet
[16] which are absolute pose regression networks, we com-
puted the relative pose estimation accuracy as the absolute
pose regression accuracy for the query image. We calculated
the estimated absolute pose for the query image as follows:

R̂2 = R1R̂rel (10)



TABLE I: RelViTNet outdoor localization results for Cambridge Landmarks dataset. We report the median rota-
tion/translation error in degrees/meter for each method. Bold highlighting indicates better performance

Method Kings College Old Hospital Shop Facade St. Marys C. Average[deg/m]
PoseNet[5] 5.40/1.92 5.38/2.31 8.08/1.46 8.48/2.65 6.84/2.45
RPNet[8] 3.12/1.93 4.81/2.41 7.07/1.68 5.90/2.29 5.22/2.08

RCPNet[14] 1.72/1.80 3.09/3.15 6.93/3.84 28.6/13.8 10.09/5.65
RelViTNet(ours) 2.63/1.93 3.73/2.69 5.03/1.94 7.80/2.73 4.79/2.32

TABLE II: RelViTNet indoor localization results for 7Scenes dataset. We report the median rotation/translation error in
degrees/meter for each method. Bold highlighting indicates better performance

Method chess fire heads office pumpkin red kitchen stairs Average[deg/m]
PoseNet[5] 8.12/0.32 14.4/0.41 12.0/0.29 7.68/0.48 8.42/0.47 8.64/0.59 13.8/ 0.47 10.43/0.44

Structure-guidedNet[16] 8.44/0.10 11.7/0.26 13.3/0.16 6.63/0.16 5.05/0.16 6.32/0.20 9.65/0.27 8.72/0.19
RelPoseNet[15] 8.39/0.24 7.90/0.23 4.86/0.097 9.31/0.31 7.07/0.23 8.04/0.23 5.80/0.19 7.34/0.22

RCPNet[14] 3.46/0.13 9.45/0.31 9.87/0.15 4.81/0.17 4.39/0.22 5.53/0.21 7.24/0.26 6.39/0.21
RelViTNet(ours) 4.79/0.17 6.31/0.19 2.67/0.10 6.00/0.25 4.90/0.20 5.71/0.23 3.77/0.18 4.87/0.19

T̂2 = R1T̂rel + T1 (11)

where R̂rel is the relative rotation matrix that resulted from
the estimated rotation quaternion and T̂rel is the estimated
relative translation vector. R1 and T1 are the known rotation
and translation of the reference image.

1) Outdoor Results: In addition to PoseNet, we compare
our model to the available relative pose regression networks
which are trained depending on pairs of images and ground
truth poses with no depth information and that uses only
two input images at inference time. We compare our outdoor
results to PoseNet, RPNet and RCPNet. We report the average
of median position and orientation errors in Table I. RelViTNet
was trained across all scenes. RCPNet was trained across 3
scenes while St.Marys Church was not seen during training.
PoseNet and RPNet are trained per scene. Test pairs were sam-
pled from unseen sequences similar to [8]. RelViTNet exhibits
an average increase of 52.53% and 58.94% for rotation and
translation compared to RCPNet, an average increase of 3.10%
and 25.59% for rotation and translation compared to RCPNet
on three scenes (Kings., Old., Shop.), an average increase of
8.24% for rotation with a decrease of 11.50% for translation
compared to RPNet, and an average increase of 29.30% and
5.31% for rotation and translation compared to PoseNet.

2) Indoor Results: Indoor results are shown in Table II. We
report the average of median position and orientation errors.
PoseNet and structure-guidedNet are absolute pose networks
and are trained for each scene separately. RCPNet was trained
across-scenes for five scenes (Chess, Fire, Heads, Pumpkin,
and Stairs), while individually trained for Office and Red
Kitchen. RelViTNet and RelPoseNet were trained across all
scenes. All test pairs were sampled from unseen sequences in
each scene with 30 frames difference between the two images
in each pair. As shown even with 30 frames difference RelViT-
Net performs better than all others with an average 23.79%
and 9.52% increase for rotation and translation compared
to RCPNet, an average of 33.65% and 13.64% increase for

rotation and translation compared to RelPoseNet, an average
44.15% increase for rotation compared to structure-guidedNet,
and an average 53.31% and 56.82% increase for rotation
and translation compared to PoseNet. Our results shows good
generalization on the indoor dataset.

C. Comparison with state of the art Local keypoints based
approaches

We compare our model to two local keypoint approaches:
SuperGlue [2] and LoFTR [3]. SuperGlue uses a trained graph
attention network (GAT) for keypoint matching and employs
Superpoint [13] to detect keypoints. LoFTR [3] is a detector-
free model, performing both detection and matching using
cross and self-attention layers of the transformer. Similar to
ViT, both models use the multiheaded self attention mech-
anism. However, the attention in ViT is being performed
between all the patches of the image while the attention in
such methods is performed between keypoints’ descriptors.
We compare our model performance to these approaches. We
report the AUC of the rotation error for three thresholds (5°,
10°, 20°) where the rotation error is the angular error between
the estimated rotation matrix and the ground truth. We also
report the AUC of the translation error for three thresholds
(0.1m, 1m, 10m) where the translation error is magnitude
of the absolute difference between the estimated translation
vector and the ground truth.

We first chose three test sequences from Scannet dataset.
Theses sequences were not seen during training and consists of
1300 to 1950 frames. There is small translation between each
two consecutive frames as the images where captured at 30 Hz
[18]. Thus, we used our model to estimate the relative pose
between each two consecutive frames in each sequence. We
compare our model to both SuperGlue and LoFTR. As Table
III shows, RelViTNeT outperforms other methods for both
translation and rotation and for all sequences. Moreover, both
superglue and LoFTR have multiple failures on such cases
due to the small translation between frames and the use of
5-point or 8-point algorithm with RANSAC to estimate the



TABLE III: RelViTNet localization results for Scannet dataset- Full sequences. The AUC of the pose error in percentage
is reported. Bold highlighting indicates better performance

Sequence (#frames) Methods Rotation estimation AUC Translation estimation AUC #Failures Time (min)@5° @10° @20° @0.1m @1m @10m

1 (1390)
LoFTR 27.93 30.01 31.06 0.0 0.28 28.91 943 22.38

SuperGlue 73.60 79.13 81.91 0.0 0.67 76.34 212 11.38
RelViTNeT 72.60 86.27 93.13 55.42 95.54 99.55 0 3.58

2 (1945)
LoFTR 25.03 27.19 28.24 0.0 0.17 26.39 1375 30.73

SuperGlue 69.60 74.24 76.56 0.0 0.45 71.02 411 16.45
RelViTNeT 71.26 85.59 92.92 54.48 95.43 99.54 0 3.9

3 (1930)
LoFTR 35.69 39.88 40.40 0.00 0.22 37.79 1120 30.31

SuperGlue 60.91 63.33 64.54 0.0 0.33 59.25 660 16.18
RelViTNeT 61.66 80.01 89.99 52.01 95.19 99.52 0 3.85

TABLE IV: RelViTNet localization results for Scannet dataset- 1500 test set. The AUC of the pose error in percentage is
reported. Bold highlighting indicates better performance

Methods Rotation estimation AUC Translation estimation AUC #Failures@5° @10° @20° @0.1m @1m @10m
LoFTR 16.17 30.38 47.15 0.17 15.70 89.94 653

SuperGlue 36.3 54.29 69.21 0.92 33.57 89.29 47
RelViTNeT 23.38 27.53 38.38 24.08 54.12 93.39 0

pose from keypoint matches. In addition to having no failure
cases, RelViTNeT is also much faster than both Superglue and
LoFTR as it only needs one forward pass to estimate the pose
without the need of any further optimization algorithms.

We also tested RelViTNeT on a test set of 1500 pairs
sampled from multiple test sequences similar to the approach
followed to test both SuperGlue [2] and LoFTR [3]. These test
pairs are not necessarily consecutive frames. Table IV shows
our results. While SuperGlue performs better on rotation es-
timation, RelVitNeT outperforms both methods on translation
estimation. In addition, RelViTNeT outperforms LoFTR for
the 5◦ rotation threshold.

D. Attention Maps Visualization and Interpretation

ViTs generate attention maps revealing how they focus on
relevant image areas. Caron et al. [10] showed that after
training, these maps explicitly depict scene layout and object
boundaries. We visualize attention maps from the last block’s
self-attention modules in ViT backbones. Figure 2 shows the
attention maps of the ViT backbone before and after training
for the outdoor scenes. The attention maps before training are
generated using pretrained ViT from [10] on a classification
task. After retraining the model to regress pose, Figure 2 shows
that the model learns the overall layout of the scene and is
able to attend to the distinctive features of each scene. The
model focuses on the main buildings that are specific to each
scene and ignores the moving or temporary objects such as
pedestrians. Figure 3 show the attention maps for the indoor
scenes, more attention is placed on the distinctive features of
each scene. For example, Figure 3 shows that model focuses
mostly on the fire extinguisher for the fire scene and around the
chess board area for the chess scene. Moreover, less attention
is placed on the objects which are similar in more than one

Fig. 2: Attention Maps for different scenes in the Cam-
bridge Landmarks dataset.

scene such as screens or white walls or floors. The overall
layout of the scene can be inferred from the attention maps.

E. Ablation study

We conducted some further experiments in order to study
how different backbones and global feature vectors may influ-
ence the results. We studied 4 different backbones: two con-
volutional based (RESNET) and two ViT based architectures.
We altered the input size of the first fully connected layer
in the regression head as different backbones have different
sized feature vectors. All the other parts of the regression head
are kept constant as shown in Figure 1 and the training was
performed as mentioned in the experimental setup section. All
the models we used were pretrained on imagenet dataset. As
Table V shows, ViT based architectures greatly outperform



Fig. 3: Attention Maps for different scenes in the 7 Scene
dataset.

TABLE V: Training the Network with different backbones. We
report the median position/orientation error in meter/degrees
for each method. Bold highlighting indicates better perfor-
mance

Backbone FC input Rotation[degree] Translation[m]
ViT-S 384 5.43 2.46
ViT-B 768 4.79 2.32

RESNET-18 512 8.49 3.93
RESNET-50 2048 11.32 5.11

RESNET models on both rotation and translation. ViT-B
achieves slightly better results than its smaller version ViT-
S. We argue that this is due to the attention mechanism that
is used to aggregate image information through the layers of
ViT and its ability to focus mainly on the relevant features to
our task.

VI. CONCLUSIONS

In this work we introduced a new relative camera pose re-
gression network using only vision transformer as a backbone
with no CNN. We showed that the multiheaded self attention
mechanism of the transformer encoder allows the network to
attend to the parts of the image which are most important for
pose estimation. Our network was able to improve rotation
accuracy by 8.24% but reduces translation accuracy by 11.50%
in outdoor scenes, while in indoor scenes, it improves rotation
and translation accuracy by 23.79% and 9.52%, respectively.
Moreover, we showed that our model outperforms local key-
point approaches when used on challenging cases with small
translations and has no failure cases even when used on full
sequences with up to 1900 frames. Our model is much faster
than these approaches as it takes only up to 3.9 minutes to
perform pose estimation between consecutive frames on a
sequence with 1945 frames while the other methods takes at
least 16.5 minutes long. This is due to the fact that our model
uses no further optimization method and require one forward
pass to estimate the relative pose. As future work, we will

investigate how to improve the model in order perform more
accurate relative pose estimations with fast motion and large
rotations.

REFERENCES

[1] D. Nister, “An efficient solution to the five-point relative pose prob-
lem,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 26, no. 6, pp. 756–770, 2004.

[2] P.-E. Sarlin, D. DeTone, T. Malisiewicz, and A. Rabinovich, “Super-
glue: Learning feature matching with graph neural networks,” in 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2020, pp. 4937–4946.

[3] J. Sun, Z. Shen, Y. Wang, H. Bao, and X. Zhou, “Loftr: Detector-
free local feature matching with transformers,” in 2021 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2021,
pp. 8918–8927.

[4] F. Walch, C. Hazirbas, L. Leal-Taixé, T. Sattler, S. Hilsenbeck, and
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