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Abstract—The air pressure system (APS) plays a prime role in
pressurizing various subsystems of heavy-duty vehicles (HVDs).
However, its reliability is crucial to ensure uninterrupted op-
eration where failures in APS lead to HVDs being stranded
on the road with the manufacturers and operators incurring
associated high costs. This paper addresses the problem of
predicting failures in APS using a semi-supervised transformer-
based framework. The proposed framework commences with
important preprocessing steps including data segmentation fol-
lowed by sliding windows to handle the big raw data, and subse-
quent extraction of distinctive features. Using these features, the
transformer model was trained to reconstruct data from healthy
vehicles (i.e., vehicles without any APS failures) to capture the
normal behavior of the healthy vehicles. At inference, the trained
model distinguished the faulty vehicles with detected APS failure
from the healthy ones based on their reconstruction errors. This
semi-supervised formulation of APS failure detection overcomes
limitations such as the imbalanced data issue and anomaly
heterogeneity that are associated with the conventional supervised
formulation. The model demonstrated robust performance with
an F1 score of approximately 0.76, an accuracy of about 85%,
and a high recall of 0.833, indicating successful detection of
most faulty vehicles. Such advancements promise significant
improvements in vehicle diagnostics and predictive maintenance.

Index Terms—air pressure system (APS), semi-supervised
transformer, fault detection, heavy-duty vehicles (HVDs), pre-
dictive maintenance.

I. INTRODUCTION

Heavy-duty vehicles (HDVs) stand as the backbone of
modern transportation and logistics industries. Despite their
indispensable role, the reliability of HDVs remains a critical
concern for manufacturers, fleet operators, and end-users alike.
In HDVs, mechanical failures, downtime, and associated main-
tenance costs not only disrupt operations but also pose signif-
icant economic and safety risks. Therefore, there is a pressing
need to enhance the reliability and efficiency of HDVs through
advanced technologies such as predictive maintenance.

This study tackles the problem of predicting failures in
the air pressure system (APS). APS provides the required
pressurized air for HVDs’ subsystems such as braking and
suspension. Given its pivotal role, APS failures normally
result in HVDs being stranded on the road. In general, a
stranding incident leads to costly roadside assistance, operation
disruption, and resultant customer dissatisfaction. Failures in

APS can stem from sensor malfunctions or internal mechanical
issues, e.g., valve failures. Early prediction of such issues
decreases the chance of HVDs being stranded on the road
and avoids the corresponding cost and downtime. However,
prior detection of APS failures during regular maintenance
inspections is still challenging and requires substantial domain
knowledge.

Given their proven efficacy across different fields, machine
learning (ML) techniques have been utilized in the literature
for predicting APS failures as well. For instance, Prytz et
al. [1], [2] used supervised classifiers based on k-nearest
neighbors (KNN), decision trees, and random forest to detect
APS failures in a fleet of Volvo trucks. In another study [3], the
same research group implemented a fuzzy rule-based model
to deal with APS failures in the same Volvo fleet. Fan et
al. [4]–[6] employed different variants of a Consensus Self-
Organizing Model (COSMO) to predict APS-related faults in
a fleet of Volvo buses. On the other hand, multiple decision
models were proposed in [7] to detect APS failures in medium-
duty vehicles while utilizing the available diagnostic trouble
codes and collected operational data.

Nonetheless, the existing literature formulated the prob-
lem of APS failure detection as a supervised classification.
This inferior formulation of the problem suffers from the
imbalanced data issue since the positive class (i.e., vehicles
with APS failures) is small in size compared to the negative
class (i.e., vehicles without APS failures). Additionally, it
presumes that all failure types fall into a single class although
failures are known to be heterogeneous. In accordance with its
nature, APS failure detection should be formulated as a semi-
supervised problem instead. In this alternative formulation, the
training set includes exclusively healthy data (i.e., data from
vehicles without any APS failures) to capture normal behavior.
Accordingly, the trained model is expected to not be able to
reconstruct the data from faulty vehicles as accurately as the
data from healthy ones. Intuitively, the reconstruction error is
then used as the anomaly score to distinguish between healthy
and faulty data.

Various semi-supervised techniques – including one-class
support vector machine (SVM), support vector data description
(SVDD), and autoencoders – have been used in the automotive



literature for failure detection in general. For example, a one-
class SVM classifier was used for predicting failures related
to an internal combustion engine in [8] and braking system
failures in [9]. In addition, an SVDD was employed in [10] to
detect lithium battery failures. On the other hand, autoencoders
were used for detecting faulty sensors in [11] and powertrain
faults in [12]. Semi-supervised models based on transformers
have also been proposed to detect lithium battery faults [13],
[14]. Yet, the application of semi-supervised techniques to
APS failure detection is still lacking.

In this paper, a semi-supervised framework based on a
transformer model was proposed for failure prediction in APS.
The main contributions are as follows:

• A dataset containing 30-day operational data from 77
healthy HDVs and 30 faulty HDVs – i.e., vehicles that
have experienced APS failures and subsequent replace-
ments in their APS.

• Multiple preprocessing steps in order to process the big
data and extract relevant, meaningful features facilitating
the distinction between healthy and faulty vehicles and
the development of an effective ML model.

• A transformer-based model is proposed to tackle the
problem of APS failure detection as semi-supervised
anomaly detection.

The rest of this paper is organized as follows: Section
II provides a brief description of the collected data and
introduces the multiple preprocessing steps needed to prepare
the data for the subsequent model. Section III explains in detail
the transformer model while Section IV reports and discusses
the experimental results. Finally, Section V concludes the
paper.

II. DATA DESCRIPTION AND PREPROCESSING

A. Data Description

The collected dataset comprises 30-day operational data
from 77 healthy vehicles and 30 faulty vehicles. These single-
brand vehicles are Ford F-Max heavy-duty trucks operating
in Turkey and Europe. The faulty vehicles have experienced
APS failure and subsequent replacements of their electronic
air pressure units (E-APU), the core unit in APS. The data
from these faulty vehicles correspond to the last 30 days just
before failure occurrence. In contrast, the data from healthy
vehicles, with clean maintenance records in terms of APS,
represent historical 30-day driving sequences from different
times throughout the year.

A summary of the collected data is presented in Table
I. The overall data includes 2730 daily records from 107
Ford trucks in total. The signals related to APS are listed in
Table II. While most signals were acquired periodically, Air
Compressor Status and Brake Pedal Position were acquired
only when a change in their values occurred. This discrepancy
in the acquisition type and sampling rate leads to a significant
amount of missing values in all signals.

TABLE I
SUMMARY OF COLLECTED DATA

Details Healthy Faulty
Number of vehicles 77 30

Number of daily records 1,959 771
Number of signals 9

Nominal sampling rate 1 Hz

TABLE II
LIST OF APS-RELATED SIGNALS

No. Signal name Sampling period
1 Air Compressor Status on change
2 Brake Pedal Position on change
3 Service Brake Circuit 1 Air Pressure one second
4 Service Brake Circuit 2 Air Pressure one second
5 Parking and/or Trailer Air Pressure one second
6 Engine Speed one second
7 Vehicle Speed one second
8 Total Traveled Distance 10 seconds
9 Engine Total Hours of Operation 300 seconds

B. Data Preprocessing

The first step in preprocessing data is to delete periods
when vehicles were logging data but they were dynamically
stationary (i.e., their engines were off). After discarding these
irrelevant periods, the daily driving records were split into
drive cycles where the time gap between consecutive drive
cycles is at least five minutes. However, the collected dataset
still includes a significant amount of missing data due to
connectivity issues or the inconsistent sampling types and
rates of the different signals. To circumvent that issue, data
interpolation tailored according to the interpolated signal was
conducted. Then, moving statistics (e.g., mean, standard devia-
tion, and minimum) were extracted from the interpolated drive
cycles using a sliding window with a length of 20 minutes and
a shift of 10 minutes. This downsampling process via sliding
windows has threefold advantages: it helps in dealing with
the big dataset, in extracting meaningful features (e.g., the
duty cycle), and in smoothing noisy data. The preprocessing
workflow is depicted in Fig. 1 where ’W’ and ’S’ represent
the length and shift of the sliding windows and ’d’ represents
the time gap between consecutive drive cycles.

The moving statistics extracted from sliding windows are
listed in Table III. In total, 11 features were extracted from
each sliding window. These features act as distinctive indi-
cators in terms of healthy and faulty APS. Any failure in
APS normally manifests itself in some of these features –
e.g., duty cycle, compressor on/off count, and minimums of
pressure signals – while the remaining features – e.g., mean
and standard deviation of vehicle speed – serve as the context
summarizing the dynamical status of the vehicle.
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Fig. 1. Data preprocessing workflow: segmenting daily driving records into
drive cycles, applying data interpolation, and finally conducting sampling via
moving statistics.

TABLE III
LIST OF EXTRACTED FEATURES OVER SLIDING WINDOWS

No. Extracted feature
1 duty cycle
2 compressor on/off count
3 min. of service brake circuit 1 air pressure
4 min. of service brake circuit 2 air pressure
5 min. of parking and/or trailer air Pressure
6 traveled distance
7 mean of brake pedal position
8 mean of engine speed
9 std. of engine speed
10 mean of vehicle speed
11 std. of vehicle speed

III. TRANSFORMER-BASED FAILURE DETECTION

Transformers were proposed in [15], and they have gained
growing popularity since then. These deep learning models
have achieved state-of-the-art results in fields ranging from
natural language processing (NLP) [16] to computer vision
[17] to speech recognition [18] and beyond. Time series
anomaly detection is another field in which transformers
showed promising results [19], [20]. In the automotive sector,
transformers have also proved their efficacy in applications
like autonomous parking [21], collision avoidance [22], and
path planning [23].

Transformers’ architecture generally consists of an encoder
and decoder where multi-head attention layers serve as the
core unit of both. These attention layers enable the architecture
to attend to parts at different locations in the input sequence
and model global representations of this sequence accordingly.
Therefore, transformers, unlike recurrent neural networks
(RNN) and their variants, have the ability to model long-term
temporal dependencies of the input sequence without suffering
from the problem of vanishing gradients. Furthermore, all the
elements (i.e., tokens) of the input sequence can be processed
simultaneously in transformers. This enhances the parallelism
of these architectures and accelerates the underlying training

and inference processes [15].
The transformer architecture used in this work is depicted

in Fig. 2. Both the encoder and decoder consist of a single
layer each. As the input sequence was normalized to fall
into the [0,1] range, the sigmoid function is used as the
activation function of the output layer. This normally yields
better results as suggested in [20]. The model was trained
using only data from healthy vehicles in a semi-supervised
fashion. The main aim of the model is to reconstruct the input
sequences based on the latent representations extracted by the
multi-head attention layers in the encoder and decoder. Each
input sequence consists of 10 sample data points where each
data point contains the moving statistics of a sliding window
– the features listed in Table III. According to the semi-
supervised learning scheme, the trained model is expected to
reconstruct data from healthy vehicles more accurately than
those from faulty vehicles as the trained model has already
seen and learned the general behavior of healthy data. Hence,
the reconstruction error can be used as the anomaly score
where high anomaly scores indicate potential faulty instances.
The overall loss function, which is also defined as the anomaly
score, is as follows:

Loss = ||Ŝt − St|| (1)

where St and Ŝt are the input sequence and reconstructed
sequence, respectively.

Accordingly, each input sequence will be associated with an
anomaly score based on its reconstruction error. Nevertheless,
the anomaly score should be vehicle-level instead of sequence-
level. In other words, each vehicle has to have a single
anomaly score to predict whether the APS in this vehicle is
faulty or not. To address this issue, the anomaly score per
vehicle is defined as the median of the anomaly scores of the
sequences belonging to that vehicle. The median is used since
it is more robust against noisy scores as opposed to the mean.
To convert the anomaly scores into binary labels, an optimal
threshold in terms of the F1 score is found using a grid search.

IV. RESULTS AND DISCUSSION

The proposed model was trained using 70% of the healthy
data while the remaining 30% of the healthy data were used
for validating the model. Fig. 3 shows the convergence curves
of the training and validation data. Apparently, the model
succeeded in reconstructing both training and validation data
where reconstruction errors became very small as the training
process proceeded. For instance, the reconstruction errors for
the training and validation data became below 0.002 just
after the fifth iteration (i.e., epoch). The model succeeded
in reconstructing the validation data accurately although it
did not see them during training. This indicates that the
normal behavior exhibited by healthy vehicles was learned
by the model. Furthermore, the model convergence is fast;
the reconstruction error fell below 0.007 just after the first
iteration. Given this quick convergence, the total number of
iterations was set as 20, enabling a rapid training process.
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Fig. 2. Transformer architecture (the input and output of the model are a
sequence of 10 d-dimensional data points where d is 11 in this work).

Using the trained model, all the healthy and faulty vehicles
were assigned anomaly scores as previously explained. An
optimal threshold was obtained using the grid search method,
and each vehicle was predicted as healthy or faulty according

2 4 6 8 10 12 14 16 18 20
Iterations

0.001

0.002

0.003

0.004

0.005

0.006

0.007

M
ea

n 
re

co
ns

tr
uc

ti
on

 e
rr

or

Training error
Validation error

Fig. 3. Convergence curves of the transformer model (both the training and
validation data are from the healthy vehicles).

to its anomaly score with respect to this threshold. The
obtained confusion matrix is shown in Fig. 4. The model
correctly predicted 66 healthy vehicles whilst it incorrectly
predicted the remaining 11 healthy vehicles as faulty; that
is, the model has 11 false positives. In contrast, the model
correctly predicted 25 faulty vehicles as faulty and incorrectly
predicted the remaining five faulty vehicles as healthy; that is,
the model has five false negatives.

The model was evaluated using the following metrics:
precision, recall, F1 score, and accuracy. These evaluation
metrics for the proposed model were reported in Table IV.
The total accuracy of the model was approximately 85%.
Nonetheless, the accuracy alone cannot be relied upon since
the positive class representing faulty vehicles has a smaller
size as compared to the negative class representing healthy
vehicles. Thus, the other metrics should be considered as well
to assess the model more accurately. The model achieved a
recall of roughly 0.83 and a precision of almost 0.69. This
high recall is due to the fact that most of the faulty vehicles
(25 of them) were predicted correctly as faulty and the model
missed only five of the faulty vehicles. On the other hand, the
model predicted 36 vehicles in total as faulty; however, only 25
of these vehicles are really faulty. Accordingly, the precision
was nearly 0.69. The F1 score, defined as the harmonic mean
of the precision and recall, was approximately 0.76 which
is a relatively high value indicating the effectiveness of the
proposed model.

The transformer architecture used in this work is relatively
simple with a single-layer encoder and a single-layer decoder.
Yet, the model showed promising results as stated above. In
particular, the model started to successfully reconstruct healthy
data and even the unseen validation data at the early stage of
the training process (see Fig. 3). In addition, the model pre-
dicted most of the faulty vehicles and achieved good results in
terms of F1 score, recall, and prediction accuracy. Therefore,
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Fig. 4. Confusion matrix of Transformer model (Faulty represents the positive
class while Healthy represents the negative class).

TABLE IV
RESULTS OF TRANSFORMER MODEL

Precision Recall F1 Score Accuracy

0.694 0.833 0.758 85.1%



the complexity of the proposed transformer model is deemed
sufficient for this problem given its good performance. The
preceding preprocessing steps played a major role in enabling
this relatively simple architecture to achieve good results.

V. CONCLUSION

The reliability of heavy-duty vehicles (HDVs) raises con-
cerns among their manufacturers and operators alike. The
air pressure system (APS) is considered a key component
of HVDs that supplies pressure to various subsystems such
as brakes and suspension systems. Accordingly, the early
prediction of APS failures ensures the uninterrupted operation
of HVDs and helps avoid the high cost and customer dissat-
isfaction associated with such failures. This paper proposed
a semi-supervised framework to predict failures in APS. The
framework is based on transformer, an efficient deep-learning
model. The framework includes crucial preprocessing steps to
handle the large-scale raw data by first segmenting the raw
data into distinct driving subsections (called drive cycles),
then interpolating missing values, and eventually applying
sliding windows to extract meaningful, distinctive features.
Based on these features, the transformer model reconstructed
a subset of healthy data in a semi-supervised fashion to
learn the general behavior of healthy data. Therefore, when
reconstructed by the trained model, faulty data generally ex-
hibited higher reconstruction errors as opposed to healthy data.
The reconstruction errors were used as the anomaly scores,
accordingly. The model achieved an F1 score of approximately
0.76 with a corresponding accuracy of nearly 85%. The model
also succeeded in accurately predicting most faulty vehicles
leading to a high recall of 0.833.

In future work, more advanced transformer architectures are
to be investigated and compared against the current architec-
ture. Another research direction for improving the proposed
framework is the potential application of explainable artificial
intelligence (XAI) on top of the proposed model to provide
explanations for the model predictions. This helps improve
the trustworthiness and transparency of the current black-box
model. Also, it helps in discovering any biasedness involved
with the model.
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knowledge into a self-organized approach for predicting compressor
faults in a city bus fleet.” in SCAI, 2015, pp. 58–67.

[6] Y. Fan, S. Nowaczyk, E. A. Antonelo et al., “Predicting air compressor
failures with echo state networks,” in PHM Society European Confer-
ence, vol. 3, no. 1, 2016.

[7] C. Panda and T. R. Singh, “Ml-based vehicle downtime reduction: A
case of air compressor failure detection,” Engineering Applications of
Artificial Intelligence, vol. 122, p. 106031, 2023.

[8] D. Jung, “Data-driven open-set fault classification of residual data using
bayesian filtering,” IEEE Transactions on Control Systems Technology,
vol. 28, no. 5, pp. 2045–2052, 2020.

[9] J. Sang, J. Zhang, T. Guo, D. Zhou, M. Chen, and X. Tai, “Detection of
incipient faults in emu braking system based on data domain description
and variable control limit,” Neurocomputing, vol. 383, pp. 348–358,
2020.

[10] J. Zhang, Y. Wang, B. Jiang, H. He, S. Huang, C. Wang, Y. Zhang,
X. Han, D. Guo, G. He, and M. Ouyang, “Realistic fault detection of
li-ion battery via dynamical deep learning,” Nature Communications,
vol. 14, no. 1, p. 5940, 2023.

[11] H. Min, Y. Fang, X. Wu, X. Lei, S. Chen, R. Teixeira, B. Zhu, X. Zhao,
and Z. Xu, “A fault diagnosis framework for autonomous vehicles with
sensor self-diagnosis,” Expert Systems with Applications, vol. 224, p.
120002, 2023.

[12] A. Geglio, E. Hedayati, M. Tascillo, D. Anderson, J. Barker, and T. C.
Havens, “Deep convolutional autoencoder for assessment of drive-cycle
anomalies in connected vehicle sensor data,” in 2022 IEEE Symposium
Series on Computational Intelligence (SSCI), 2022, pp. 743–749.

[13] D. Wang, P. Ruan, D. Xu, W. Xie, X. Chen, and H. Li, “Tranad: A
deep transformer model for fault diagnosis of lithium batteries,” in
2023 International Conference on Smart Electrical Grid and Renewable
Energy (SEGRE), 2023, pp. 133–139.

[14] J. Zhao, X. Feng, J. Wang, Y. Lian, M. Ouyang, and A. F. Burke,
“Battery fault diagnosis and failure prognosis for electric vehicles using
spatio-temporal transformer networks,” Applied Energy, vol. 352, p.
121949, 2023.

[15] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[16] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language mod-
els are few-shot learners,” Advances in neural information processing
systems, vol. 33, pp. 1877–1901, 2020.

[17] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and
B. Guo, “Swin transformer: Hierarchical vision transformer using shifted
windows,” in Proceedings of the IEEE/CVF international conference on
computer vision, 2021, pp. 10 012–10 022.

[18] S. Kim, A. Gholami, A. Shaw, N. Lee, K. Mangalam, J. Malik, M. W.
Mahoney, and K. Keutzer, “Squeezeformer: An efficient transformer
for automatic speech recognition,” Advances in Neural Information
Processing Systems, vol. 35, pp. 9361–9373, 2022.

[19] J. Xu, H. Wu, J. Wang, and M. Long, “Anomaly transformer: Time
series anomaly detection with association discrepancy,” in International
Conference on Learning Representations, 2021.

[20] S. Tuli, G. Casale, and N. R. Jennings, “Tranad: deep transformer
networks for anomaly detection in multivariate time series data,” Pro-
ceedings of the VLDB Endowment, vol. 15, no. 6, pp. 1201–1214, 2022.

[21] L. Wang, X. Zhang, W. Zeng, W. Liu, L. Yang, J. Li, and H. Liu,
“Global perception-based robust parking space detection using a low-
cost camera,” IEEE Transactions on Intelligent Vehicles, vol. 8, no. 2,
pp. 1439–1448, 2023.

[22] C. Lin, Y. Cheng, X. Wang, J. Yuan, and G. Wang, “Transformer-based
dual-channel self-attention for uuv autonomous collision avoidance,”
IEEE Transactions on Intelligent Vehicles, vol. 8, no. 3, pp. 2319–2331,
2023.

[23] Z. Yu, M. Zhu, K. Chen, X. Chu, and X. Wang, “Lf-net: A learning-
based frenet planning approach for urban autonomous driving,” IEEE
Transactions on Intelligent Vehicles, pp. 1–14, 2023.


