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Abstract—This paper presents a machine learning (ML)-based
system designed to detect high fuel consumption in heavy-duty
vehicles (HDVs) using operational data. The system addresses
environmental and efficiency challenges in the transportation
industry by precisely monitoring fuel consumption to curb
CO2 emissions. An ensemble learning method that integrates
unsupervised anomaly detection techniques, including Isolation
Forest, Autoencoder, and k-NN Regressor models, is proposed.
The anomaly detection results from these models are combined
using a weighted majority voting (WMV) approach. This method
was tested on a dataset comprising 459 driving records and 14
signals collected from 187 HDVs. Additionally, the Local Outlier
Factor (LOF) model was employed to validate the ensemble
learning method and identify the root causes of the anomalies.
This work contributes to the field of transportation efficiency by
offering a novel approach to analyzing fuel consumption in HDVs,
thereby paving the way for future advancements in sustainable
transportation practices.

Index Terms—Machine Learning, Fuel Consumption, Heavy-
Duty Vehicles, Anomaly Detection, Environmental Sustainability

I. INTRODUCTION

Nowadays, heavy-duty vehicles (HDVs) are commonly uti-
lized in various industries associated with logistics and trans-
portation. Therefore, many manufacturers find it compelling
to implement fuel anomaly detection systems for HDVs due
to environmental and efficiency issues. High fuel consumption
is not only a primary cause for greenhouse emissions but it
also leads to drastic manufacturing costs and inconveniences
for the customers. The application of machine learning (ML)
techniques for fuel consumption prediction and anomaly de-
tection in HDVs has been extensively examined. This review
highlights key contributions in this domain, focusing on the
ML methods employed and their applications.

Supervised learning techniques, where models are trained
on labeled datasets, are commonly used for predicting fuel
consumption and detecting anomalies in HDVs. Gong et al.
[1] focused on categories of factors that influence FC by
implementing and comparing the results of Binary Logistic
Regression, BP Neural Network, CART Decision Tree and
Random Forest. Bousonville et al. [2] compared the perfor-
mance of k-NN Regression, Artificial Neural Network (ANN)
and Gradient Boost Regression to predict FC in medium and
heavy vehicles. Schoen et al. [3] implemented Feed-Forward
Neural Network (FNN) on data aggregated over fixed window
sizes of distance traveled. Mumcuoglu et al. [4] proposed two

models using an ensemble of bagged decision trees where
the first one classifies 10-minute driving sections as high or
normal fuel consumption, while the second model identifies
outlier fuel consumption. Additionally, in [5], Support Vector
Machine (SVM) model was implemented along with other
traditional supervised models. Adhikary et al. [6] proposed
Distributed Nearest Hash (DNH) to address the limitations
of k-NN model. Furthermore, Uyanık et al. [7] implemented
Ridge and Lasso Regression models for FC prediction of ships.
Syahputra [8] applied Adaptive Neuro-Fuzzy Inference System
(ANFIS) to predict vehicle FC accurately.

Semi-supervised and unsupervised learning methods are
particularly valuable when labelled data is limited. These
approaches help detect both known and unknown anomalies.
Chen et al. [9] utilized both conventional Autoencoders and
Convolutional Autoencoders (CAE) for network anomaly de-
tection. Cheng et al. [10] proposed a novel two-layer pro-
gressive ensemble method combining Isolation Forest and
Local Outlier Factor (LOF) for efficient outlier detection. Xu
et al. [11] presents an enhanced method for data anomaly
detection named SA-iForest, a combination of Isolation Forest
and Simulated Annealing algorithm.

In addition to supervised, semi-supervised, and unsuper-
vised machine learning models, there exists an advanced
method known as Ensemble Learning. Ensemble Learning
is a sophisticated machine learning technique that combines
multiple base models to create a single best prediction model.
Ensemble approaches increase prediction, robustness and ac-
curacy by combining numerous models and generally outper-
form any single component model [12].

This paper aims to employ the versatile and adaptive
capabilities of machine learning (ML) through an ensemble
of unsupervised learning techniques, to devise a more en-
compassing and precise fuel consumption anomaly detection
model. The dataset utilized in this study comprises 459
records and 14 signals from 187 vehicles, providing a robust
foundation for developing models to detect anomalies. An
Ensemble Learning approach, encompassing Isolation Forest,
Autoencoder, and k-NN Regressor models, was implemented.
These methodologies collectively enabled the detection of
anomalies in fuel consumption of the vehicles. The results of
the Ensemble Learning model were further interpreted with
the implementation of Local Outlier Factor (LOF) model. The
architecture of the proposed system is demonstrated in Fig 1.



The organization of the paper is as follows: in Section II, the
dataset acquisition, standardization, and signal selection are
explained. The anomaly detection methodology is presented
in section III. In section IV, the results are discussed. Finally,
in Section V, the conclusions are presented.

II. DATA AND PREPROCESSING

A. Dataset Acquisition

The data were gathered from a cloud-integrated system en-
compassing various models of heavy-duty trucks. The dataset
comprises road trip records for each vehicle, documenting
different routes with varying slopes and at different time
intervals. Signals were obtained through the sensors embedded
in the vehicles. The dataset comprises 459 driving records,
each containing 14 signals, collected from 187 heavy-duty
vehicles (HDVs). The descriptions and units of these signals
are detailed in Table I.

TABLE I: Signal Description

Signal Name Signal Description Unit

DateTime Date and time signal is given in ”Serial Date Time” format (yyyy-MM-dd HH:mm:ss.SSS)
VehicleID ID of the vehicle (from 1 to 187)
HghRslutionTotalVehicleDistance Total distance traveled by the given vehicle Meters
TachographVehicleSpeed Vehicle speed Km per hour
EngSpeed Vehicle engine speed Rpm
ActualEngPercentTorque Vehicle torque in percentage Percentage (%)
AccelPedalPos1 Accelerator pedal position Percentage (%)
BrakePedalPos Brake pedal position Percentage (%)
PCCM Slope Road slope -
DStgy dmRdcAgAct Adblue consumption indicator Liter (L)
EngOilTemp1 Engine oil temperature Degree Celsius (°C)
EngCoolantTemp Engine coolant temperature Degre Celsius (°C)
GrossCombinationVehicleWeight Gross vehicle weight (including carryload) Kilograms (kg)
EngTotalFuelUsed Total fuel consumed by the given vehicle Liter (L)

B. Data Standardization

To prepare the dataset for further analysis, linear interpola-
tion was utilized to fill in existing NaN values. Specifically, the
interpolation of the Brake Pedal Position signal was handled
such that positive values were retained and NaN values were
set to zero. Additionally, Positive Slope and Negative Slope
signals were extracted from the PCCM Slope signal to exam-
ine the independent influences of these two signals on fuel
consumption. Each entry in these columns was calculated to
retain only positive or negative values, with all others set to
zero.

Instead of examining second-by-second deviations in the
data, a sliding window approach was used to capture more
significant deviations in signals that result in high fuel con-
sumption. A window size of 10 minutes and a stride length of 2
minutes were selected for generating the windows. During the
sliding window process, the time series signals were converted
into mean and standard deviation values for each signal within
the corresponding window. Additionally, the Avg Fuel signal
was calculated to reflect the average fuel consumption per 100
km as follows:

Avg Fuel =
Total Fuel Consumption

Distance Travelled
× 100 (1)

Moreover, extreme values were removed using the In-
terquartile Range (IQR) method. Any points outside the range
[Lower Bound, Upper Bound] were eliminated. The Lower

Bound and Upper Bound were calculated as follows (with Qi

denoting the ith quartile):

IQR = Q3 −Q1 (2)

Lower Bound = Q1 − 1.5× IQR (3)

Upper Bound = Q3 + 1.5× IQR (4)

Lastly, to ensure better comparability between different
signals and to prevent any signal from dominating the models
due to its scale, the data used to train the models were scaled.
Standard scaling was employed due to the data’s approximate
normal distribution.

C. Signal Selection

The selection of signals was based on their high correla-
tion with the Avg Fuel signal and expert knowledge. The
following signals were chosen due to their high correlation
with Avg Fuel: acceleration pedal position mean, brake pedal
position mean, positive slope mean, negative slope mean,
engine coolant temperature mean, and AdBlue consumption
mean. Additionally, tachograph vehicle speed mean, tacho-
graph vehicle speed standard deviation, and gross combination
vehicle weight mean were selected based on their reported
influence on fuel consumption by experts. In total, ten signals,
including the average fuel consumption signal, were selected
for use in the models.

III. ANOMALY DETECTION METHODOLOGY

A. Isolation Forest

Isolation forest is a widely used unsupervised machine
learning algorithm for anomaly detection. The algorithm cre-
ates an ensemble of isolation trees by recursively partitioning
the data. Partitioning is performed by randomly selecting a
feature at a time and randomly choosing a split value between
minimum and maximum values of the corresponding feature.
During the partitioning, each data point travels down the tree
as far as it is isolated. The path length is the number of splits
required to isolate a data point. Thereafter, path lengths are
used for calculating an anomaly score for each data point.
The shorter the average path length to isolate a point over all
trees, it is more likely to be an anomaly [13]. The anomaly
score is then calculated by the following formula:

s(x, n) = 2−
E(h(x))

c(n) (5)

where:
• s(x, n) is the anomaly score for a data point x in a dataset

of size n.
• E(h(x)) is the average path length of point x across all

trees.
• c(n) is the average path length of unsuccessful searches

in a Binary Search Tree, used for normalization.
Data points with anomaly scores close to 1 indicate anoma-

lies.



Fig. 1: Architecture of the proposed system

B. Autoencoder

Autoencoders consist of two main parts: the encoder and the
decoder. The encoder compresses the input data into a smaller,
encoded representation. The decoder then attempts to generate
the original data from this encoded representation. The goal
is for the autoencoder to learn a representation (encoding)
for a set of data, typically for the purpose of dimensionality
reduction or anomaly detection [9]. The reconstruction loss,
which is minimized by the autoencoder model is calculated as
follows:

Loss (MAE) =
1

N

N∑
t=1

∥xt − x̂t∥ (6)

where:

• N is the number of data points.
• xt is the actual value at time t.
• x̂t is the predicted value at time t.

For the purpose of detecting fuel consumption anomalies,
an unsupervised basic Autoencoder model is implemented.

C. k-NN Regressor

The k-NN Regressor can be defined as the estimation of
the conditional expectation of a variable by calculating the
mean of its k nearest neighbors [1]. The Euclidean distance
was selected as the distance metric:

d(x, y) =

√√√√ n∑
i=1

(xi − yi)2 (7)

where:

• x and y are the feature vectors of the two points.
• xi and yi are the i-th components of the feature vectors

x and y.
• n is the number of dimensions (features).

D. Ensemble Learning

Three of the aforementioned models—Isolation Forest, Au-
toencoder, and k-NN Regressor—employ different methods
for identifying anomalies. The Isolation Forest model identifies
anomalies as data points that are easy to isolate. The Autoen-
coder model identifies anomalies as data points that deviate
from the common pattern. The k-NN Regressor identifies
anomalies as data points with high prediction errors.

To utilize these different methods simultaneously as part
of the main prediction model, a simplified version of the
weighted majority voting (WMV) algorithm was employed,
demonstrated in Fig 2. Since the k-NN Regressor model is
the primary prediction model, it was assigned a weight of two,
while the Autoencoder and Isolation Forest models were each
assigned a weight of one. The WMV label of a data point is
calculated as follows:

S =

n∑
i=1

wi · yi (8)

where:
• yi is the label (prediction) of the i-th model.
• wi is the assigned weight of the i-th model.
• n is the number of predictors.
The final prediction is determined as:

ŷ =

{
1 if S ≥ 0 (normal point)
−1 if S < 0 (anomalous point)

E. Local Outlier Factor (LOF)

LOF is used to identify density-based local outliers. The
algorithm calculates the LOF score for each point to measure
its local deviation from its neighbors. LOF assigns a score to
each point based on its density relative to its neighbors. Points
with a LOF score of -1 are flagged as outliers, indicating sig-
nificant deviation in local density compared to their neighbors.
These are considered areas of lower density [14]. Points with
a score of 1 are considered normal. The signals used in the
algorithms are same as the aforementioned selected signals,
the number of neighbors is 10 and contamination rate is 0.05.



Fig. 2: Structure of the ensemble method.

• Reachability Distance: The reachability distance between
two points p and o is defined as:

reach-dist(p, o) = max(k-dist(o), d(p, o)) (9)

where d(p, o) is the Euclidean distance between p and
o, and k-dist(o) is the distance of o to its k-th nearest
neighbor.

• Local Reachability Density (LRD): The local reachability
density of a point p is defined as:

LRD(p) =
1∑

o∈Nk(p) reach-dist(p,o)

|Nk(p)|

(10)

where Nk(p) is the set of the k-nearest neighbors of p.
• Local Outlier Factor: The local outlier factor of a point

p is then defined as:

LOF(p) =

∑
o∈Nk(p)

LRD(o)
LRD(p)

|Nk(p)|
(11)

In the model, LOF consolidates findings from three different
models and verifies ensemble results to ensure reliable outlier
detection.

IV. RESULTS AND DISCUSSION

A. Anomaly Detection Results

• Isolation Forest
In the model used in this paper, input is the combination

of all selected signals mentioned above, and the outputs are
anomaly scores and anomaly labels. A 5% contamination rate
was used, aligning with industry standards, meaning that the
5% of data points with the highest anomaly scores were
labeled as anomalies, while all others were labeled as normal
points. As a result, the model identified up to 484 anomalous
points and 9189 non-anomalous points.

• Autoencoder
The inputs used in this model are the selected signals

demonstrated above. The output is a reconstructed version
of the input data, based on the compressed representation
learned by the encoder. Evaluation metric of the model is the

reconstruction loss which is MAE. The model has an input
layer of 10, consisting of the aforementioned selected signals.
The encoder consists of three Dense layers of 8, 5 and 2 units
respectively, and each of them relies on the “RELU” activation
function. Similarly, the decoder also consists of three Dense
layers of 5, 8 and 10 units respectively. However, the third
layer utilizes the “Sigmoid” activation function. In total, the
model makes use of 298 trainable parameters, while using
Adam optimizer, with the aim of minimizing MAE, which is
the loss function.

• k-NN Regressor

The aforementioned selected signals, except for Avg Fuel,
are used as inputs to predict the output, Avg Fuel, which rep-
resents the average fuel consumption. Using cross-validation,
the optimal k parameter (i.e., the number of neighbors) was
determined to be 5, resulting in the highest negative squared
error. Subsequently, MAE of the actual and predicted values
for each data point was calculated, and the 5% of data points
with the highest MAE scores were labeled as anomalies, while
all others were labeled as normal points. Calculation of MAE
score is provided in Equation 6.

Feature importance is expressed through the out-of-bag
(OOB) permuted predictor importance, derived from the k-NN
model. Essentially, the OOB permuted predictor importance
assesses each feature’s significance by evaluating the impact
of shuffling its values on the OOB data. In this context,
features that are more important are expected to have a greater
influence.

According to Fig. 4, the most important signal is the positive
slope mean, followed by the negative slope mean, vehicle
weight mean, and vehicle speed mean. This importance rank-
ing aligns with domain knowledge based on vehicle dynamics
and prior research conducted.

Evaluation scores of k-NN regressor model is shown in
Table II.



Fig. 3: Time series plots of driving signals and average fuel consumption from sample healthy and anomalous drive cycles of HDVs

Fig. 4: Feature importance plot for k-NN regressor model

TABLE II: k-NN Regressor Evaluation Scores.

Evaluation Metrics

MAE MSE R-Squared
0.1588 0.0596 0.9403

B. Ensemble Method Prediction Results

In total, 484 data points were labeled as anomalies while
9673 data points were labeled as normal for each model,
due to using the same contamination rate (i.e., 5%). After
applying the WMV algorithm, 169 data points were identified
as anomalous. For further analysis, the ratio of anomalies
and anomaly counts were calculated for each vehicle. These
vehicles were then sorted in descending order, first by the ratio
of anomalies and secondly by the anomaly count.

Fig. 3 shows the time series of signals (i.e., tachograph
vehicle speed standard deviation, acceleration pedal position
mean, positive slope mean, brake pedal position mean, neg-
ative slope mean, and average fuel consumption) recorded

during the given cycles of the corresponding signals. Red dots
represent the time intervals in which an anomalous high fuel
consumption rate is detected by the ensemble model.

The time series of vehicle 1 (first row) represents a typical
example of a non-anomalous driving record. As observed,
non-anomalous driving cycles exhibit fluctuations in average
fuel consumption that resemble fluctuations in the acceleration
pedal position mean and positive slope mean. The second row
pertains to the vehicle 2 and represents a common scenario
where high values and deviations in brake pedal position on
a road with a negative slope result in anomalous high fuel
consumption rates.

Moreover, the driving cycle of vehicle 3 (third row) exem-
plifies a case where high acceleration pedal position on a road
with a positive slope causes a high fuel consumption anomaly.
Timeseries of vehicle 4 (fourth row) illustrates anomalies
where a high standard deviation of vehicle speed leads to
high fuel consumption. This analysis lead to a classification
of cycles that average fuel consumption anomaly occurs under
specific cases:

• Case 1: High negative road slope and frequent break pedal
use.

• Case 2: High positive road slope and frequent acceleration
pedal use.

• Case 3: High standard deviation of tachograph vehicle
speed.

Case 1 and Case 2 indicate that high average values of certain
combination of signals may lead to an anomaly in FC. On
the other hand, Case 3 demonstrates that the driver behavior
plays a crucial role regarding FC as the vehicle speed is mostly



dependent on a driver’s decisions, as observed in the paper
[15].

C. Combining Results of LOF with Ensemble Method

This method uses 169 data points generated by the WMV
algorithm. This method seeks to provide a more compre-
hensive analysis of the causes of anomalies. As illustrated
in Fig. 5, the negative slope exhibits the highest number
of outliers per signal, followed by the standard deviation of
the tachograph vehicle speed, and the average of the gross
combination vehicle weight. The feature importance ranking
determined by the k-NN algorithm aligns with the findings
obtained through LOF method.

The outcomes of the LOF model provide justification for
the visual outcomes of the ensemble method. In the first
driving cycle of vehicle 106, the high negative road slope
and frequent use of the brake pedal cause anomalies in the
ensemble learning approach, and LOF also confirms that the
average of the negative road slope has the highest anomalies
in the data points. Moreover, the anomaly in the driving cycle
of vehicle 134 is caused by the high standard deviation of the
tachograph vehicle speed. As shown in Fig. 5, the tachograph
vehicle speed has the second highest anomaly in the signals.

Fig. 5: Frequency plot for identified signal anomalies by Local
Outlier Factor (LOF)

V. CONCLUSION

This paper proposes a series of machine learning algorithms
to address the issue of high fuel consumption in HDVs. The
utilization of multiple data standardization methods was vital
in terms of increasing the prediction accuracy of the models
and obtaining consistent results. The key findings include the
identification of anomalous fuel consumption patterns through
unsupervised machine learning models. Each of the models
followed a different approach for detecting anomalies. The
Isolation Forest considers anomalous instances as data points
that are easy to isolate. In the Autoencoder model, data points
deviating from the common pattern are considered anomalies.
The k-NN Regressor on the other hand, pinpoints anomalies
as data points having high prediction errors. In order to
simultaneously employ these models as a single prediction
model, an Ensemble Learning approach with WMV algorithm

was adopted. The combination of the LOF method and the
WMV algorithm yields results consistent with the outcomes.
Both analyses indicate that the average negative road slope and
the standard deviation of the tachograph vehicle speed are the
primary factors causing anomalies in the dataset.

For future work, expanding the dataset to include more
diverse environmental and operational conditions could further
validate the model’s robustness and generalizability. Explain-
able AI methods can be utilized to improve the identification of
the root causes of fuel consumption anomalies. These methods
enable a deeper understanding of the factors contributing to
high fuel consumption, thereby facilitating more accurate and
actionable insights.
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